Notation and preliminaries

Psychology 588: Covariance structure and factor models



Notation for path diagrams

X; | observed variables

@ latent variables

J, error terms (unenclosed)

— causal path or factor loading/weight

_—_ Covariance or unconstra_ined (nonzero) relationship
between exogenous variables



Multiple regression

y=bx +b,x, +bx,+e

=b'x+e

x1

07
02

X2

=

 How could the intercept term enter into the diagram?

y « e




Principal component model (rank-reduced)

x1

x=Af +e

X2

cov(x)=AA'+0O

X3

x4

« 2 orthogonal components fitted to 4 manifest variables

* Rotationally indeterminant if no component loadings are

constrained (e.g., to zero)



LISREL notation 5

» Like the standard matrix notation, the LISREL notation uses

Lower italic: a scalar (as a variable or a parameter; cf. X)

Lower bold: vector
Upper bold: matrix

 Uses Roman letters only for observed (or manifest, indicator)
variables (e.g., X, y) and Greek letters for all others (i.e., latent

variables and model parameters; ¢, I')

« Distinguishes between exogenous (independent) vs.
endogenous (dependent) variables parts

> We will consider later an alternative notation and model
representation --- the reticular action model (RAM, chap. 9)



Notation for latent variables

Symbol Size Definition
Variables
S nx1 latent exogenous variables
1 m X 1 latent endogenous variables
G m % 1 specification error terms
Coefficients
I mxn coefficient matrix for ¢
B m X m coefficient matrix for n
Covariance matrix
() nxn covariance matrix of &, E(EE)
b ¢ m X m covariance matrix of C, E(CC)




Notation for measurement models

Symbol size Definition
variables

X g *1 observed indicators of ¢

y px1 observed indicators of n

0 g %1 measurement errors for x

g px1 measurement errors for y
coefficients

A, g *xn loadings relating x to &

A, pxm loadings relating y to n
covariance matrix

O; g *q covariance matrix of o, E(00)

0. pXp covariance matrix of ¢, E(gg’)




Equation for latent variables 8

n=Bn+T&+;{ or n=(1-B) (T&+{)
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« Equations are linear both in the variables (#, ¢) and in the
parameters (f, v); same for equations for manifest variables




Assumptions

E(n)=0, E(&)=0, E({)=0

E(L')=0,,

(I-B) isnonsigular so that (I— B)_1 exists

¢, has a homogeneous variance for all subjects, i.e.,

E(g’.z)zvar(gi) for k=1,...N,i=1,....m

1

and independent, i.e., cov(¢,,¢,)=0 forall k#1;

l

otherwise, multilevel structure




An example
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Measurement models 11

x=AE+d . _Of.ten, a uni-factorial structure
Isimposed on A, A such
y=Amn+e as.
A, 0 0
o - A, 0 0
X Ay A, | S o, A, 0 0
= I 0 A, O
_xq_ _ﬂ“ql ﬂ“qn_ _fn_ _5q_ Ax = O 152 O
0 4, O
Xi = /11'151 T /11'252 Tt ﬂ’ingn T 51 0 0 4
0 0 A,
0 0 Ay




Assumptions 12

« All latent variables expected to be zero --- a natural
consequence when fitting mean-centered manifest variables

E(n)=0, E(§)=0, E(g)=0, E(8)=0

But not so natural when multiple groups or hierarchically nested
(multilevel) data are considered

 Observed variables are correlated only through the modeled
latent variables and parameters (latent path coefficients and
loadings), with simplifying conditions of

E(en')=0, E(e£')=0, E(£f')=0, E(£d')=0
E(88')=0, E(8n')=0, E(d()=0



« Typically, @5 and ®_ are considered to be diagonal matrices,
l.e., measurement errors of the indicators are uncorrelated,;

however, there may be justifiable cases for non-diagonal @
and O_ oreven E(e0’) #0, for some selective entries

e.g., Fig. 2.6 (p. 37) of industrialization and democracy
model,

« Like {, 0 and ¢ are assumed to be homoscedestic and
Independent (i.e., iid)

 We will consider later distributional assumptions for manifest
variables x and y



An example

14

x=AE+9
_xl ) _/111 0
Xy A, 0|
X3 _ A 0§
Xy 0 4, _52_
Xs 0 A,
X | | 0 /162_

 Where is the double-headed arrow defined in the equation?

L0 &S
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X2
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Algebraic rules for covariance 15

* Following rules may be useful:
cov(e,X)=0
cov(cX,, X,)=c-cov(X,,X,)
cov(X, +X,,X;)=cov(X,,X;)+cov(X,,X;)

 But the standard algebra will do; suppose, e.g., x, = 4& +9,,
x,=A4&+0,:

cov(xl,x2) = E(xlxz) = E(&fl +0, )(1251 +3,)
- E(ﬂ'lﬂ“zéjlél + 40,6 + 4,06 + 5152)

= 21/12E(§1§1) =449,



e Matrix algebra useful for operation of covariance matrices:

x=AE+o,
cov(x,x)=E(xx')=E(A §+8)(EA +8')
=E(A A + A E8'+8E'A’ +68)

=A E(EE')A +E(88')=A @A’ +0,



Effect decomposition 17

« Direct effect: unmediated expected change on a variable due to
another --- a path coefficient

* Indirect effect: all other possible influences from a variable to
another, other than its direct effect --- product of all involved
mediating path coefficients for each indirect effect

« Total effect = direct effect + all indirect effects

e Recursive vs. hon-recursive models

e convergent vs. divergent series of indirect effects



Effect decomposition example 1
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 Direct effect of x; on y, = 7,

21
x1

Indirect effect = y,,6,, --- expected change on y, dueto 1l
unit change on X,

Total effect = yp,, + 7111321



Effect decomposition example 2 19
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Effect decomposition example 3

e non-recursive since all 3 variables indirectly influence itself

ez
/ B
» y2 0 0 B,
N 2 L
ylL = = y3 - | '832 | -

 Indirect effect of y; on y;:

1821:832 + 1821:332 (1813,321,332 ) + ﬂ21ﬂ32 (,813,321,332 )2 ...

o0

— 1321/832 Z (181318211332 )k

k=0



