
Notation and preliminaries

Psychology 588: Covariance structure and factor models



Notation for path diagrams 2

observed variablesx1

ξ1 latent variables

causal path or factor loading/weight

covariance or unconstrained (nonzero) relationship 
between exogenous variables

δ1 error terms (unenclosed)



Multiple regression 3
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• How could the intercept term enter into the diagram?



Principal component model (rank-reduced)
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• 2 orthogonal components fitted to 4 manifest variables

• Rotationally indeterminant if no component loadings are 
constrained (e.g., to zero)
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LISREL notation 5

• Like the standard matrix notation, the LISREL notation uses

Lower italic: a scalar (as a variable or a parameter;  cf.  X)
Lower bold: vector
Upper bold: matrix

• Uses Roman letters only for observed (or manifest, indicator) 
variables (e.g.,  x,  y) and Greek letters for all others (i.e., latent 
variables and model parameters;  ξ,  Γ)

• Distinguishes between exogenous (independent) vs. 
endogenous (dependent) variables parts

 We will consider later an alternative notation and model 
representation  --- the reticular action model (RAM, chap. 9)



Notation for latent variables 6

Symbol size Definition
Variables

ξ n × 1 latent exogenous variables

η m × 1 latent endogenous variables

ζ m × 1 specification error terms 
Coefficients

Γ m × n coefficient matrix for  ξ
Β m × m coefficient matrix for  η

Covariance matrix
Φ n × n covariance matrix of  ξ, E(ξξ')
Ψ m × m covariance matrix of  ζ, E(ζζ')



Notation for measurement models 7

Symbol size Definition
variables

x q × 1 observed indicators of  ξ
y p × 1 observed indicators of  η
δ q × 1 measurement errors for  x
ε p × 1 measurement errors for  y

coefficients
Λx q × n loadings relating  x to  ξ
Λy p × m loadings relating  y to  η

covariance matrix
Θδ q × q covariance matrix of  δ , E(δδ')
Θε p × p covariance matrix of  ε , E(εε')



Equation for latent variables 8

   1     η Βη Γξ ζ η I Β Γξ ζor

12 1
1 1 11 1 11

21

1,
1

1 , 1

0

0

m
n

m m
m m m mn mn

m m m

 
    




    
 





 
         
                    
                 

 




 
     




   ( 2) 2 ( 1) 1 1 1 2 2i i i i i i i i i in n i                      

• Equations are linear both in the variables (η, ξ) and in the 
parameters (β, γ); same for equations for manifest variables



•

•

•

• has a homogeneous variance for all subjects, i.e., 

and independent, i.e.,
otherwise, multilevel structure

Assumptions 9
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An example 10
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Measurement models 11
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• Often, a uni-factorial structure 
is imposed on                 such 
as:
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• All latent variables expected to be zero  --- a natural 
consequence when fitting mean-centered manifest variables

Assumptions 12
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But not so natural when multiple groups or hierarchically nested 
(multilevel) data are considered

• Observed variables are correlated only through the modeled 
latent variables and parameters (latent path coefficients and 
loadings), with simplifying conditions of



• Typically,  Θδ and  Θε are considered to be diagonal matrices, 
i.e., measurement errors of the indicators are uncorrelated; 
however, there may be justifiable cases for non-diagonal  Θδ
and  Θε or even  E(εδ') ≠ 0, for some selective entries

e.g., Fig. 2.6 (p. 37) of industrialization and democracy 
model, 

• Like  ζ, δ and  ε are assumed to be homoscedestic and 
independent (i.e., iid)

• We will consider later distributional assumptions for manifest 
variables  x and  y



An example 14
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• Where is the double-headed arrow defined in the equation?



Algebraic rules for covariance 15
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• Following rules may be useful:

• But the standard algebra will do; suppose, e.g., 
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• Matrix algebra useful for operation of covariance matrices: 
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Effect decomposition 17

• Direct effect: unmediated expected change on a variable due to 
another  --- a path coefficient

• Indirect effect: all other possible influences from a variable to 
another, other than its direct effect  --- product of all involved 
mediating path coefficients for each indirect effect

• Total effect = direct effect + all indirect effects

• Recursive vs. non-recursive models

• convergent vs. divergent series of indirect effects



Effect decomposition example 1 18
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• Direct effect of  x1 on  y2  = γ21

Indirect effect  = γ11β21 --- expected change on  y2 due to 1 
unit change on  x1

Total effect  = γ21 + γ11β21 



Effect decomposition example 2 19

eta1 eta3

xi1

y1

e1

a4

1

y2

e2

a5

1

y3

e3

a6

1

y7

e7

a10

1

y8

e8

a11

1

y9

e9

a1
2

1

x3

d3

a3

1
x2

d2

a2

1
x1

d1

a1

1

eta2

y6

e6

y5

e5

y4

e4

a9

1

a8

1

a7

1

z1 z3

z2

?
?

?

?

?
?



Effect decomposition example 3 20
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• non-recursive since all 3 variables indirectly influence itself 

• Indirect effect of  y1 on  y3:
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