
SEM with observed variables: 
parameterization and identification

Psychology 588: Covariance structure and factor models



Limitations of SEM as a causal modeling 2

• If an SEM model reflects the reality, the data will be consistent 
with the model, given that measurement errors are tolerable, all 
assumptions made are tenable, etc.; but the reverse is not true 
(e.g., see Fig. 3.9, p. 70)

• Theory- vs. data-driven

• Cause vs. effect indicators

 simultaneous reciprocal relation (e.g., financial health and 
stock price of companies)  --- really concurrent?

• To be cautious about goodness (mostly badness) of fit testing



Fundamental equation with observed variables 3
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• Dependent variables y are modeled as linear combinations of 
(a subset of)  y and  x as

Hypothesized explanation 
for the covariances of  y

unexplained (but allowed to 
exist) in the  y variation

• From the measurement perspective,  y and  x may be 
considered as “single-indicator latent variables” with no 
measurement errors

Demographic variables are often considered so (e.g., sex, age)



Fundamental equation with observed variables 4

• Alternatively,  y is modeled as linear combinations of a 
partitioned vector of  y, x and  ζ as
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• This is essentially the approach taken by RAM (reticular action 
model), though RAM incorporates all latent variables,  ξ and  η
--- to be discussed later



Two conditions for recursive models 5

• B should be a lower triangular matrix, and so no feedback loop 
of causal paths

• All error terms  ζ are not correlated with one another

Correlated errors themselves don’t result in a feedback loop; 
instead, they lead to inconsistent estimates due to errors 
correlated with explanatory variables

 Note: any exogenous variables (including error terms) can be set to inter-
correlate while no endogenous variables are allowed so (instead, set to 
correlate through exogenous variables) 
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Implied covariance matrix 6

• Basic hypothesis with ideal measurement:

Σ = Σ(θ)  --- population covariance matrix  Σ is a 
function of free model parameters  θ

• Basic hypothesis in reality:

--- sample covariance matrix  S is a function of 
estimates of model parameters  

• Discrepancy in the data (Σ vs. S) is due to sampling errors 
while the discrepancy in the parameters (θ vs. ) is due to not 
only sampling errors but also any violated assumptions made 
for a particular way of finding the estimates (e.g., ML) 

 ˆS Σ θ
θ̂

θ̂



Implied covariance matrix 7
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• SEM is a modeling technique for covariance structures; thus 
structural models are written and treated in the covariance form  
--- indirect vs. direct fitting

• In most SEM models, we exclusively consider only the 
covariance matrix, not means; in addition, third and higher 
moments are excluded by imposing multinormality on observed 
variables

• Variances and covariances of observed variables are assumed 
to be known; thus we represent model parameters as a function 
of these “knowns”

Identification 8

Preliminaries:



• Identification in its complete sense means that unknown model 
parameters are determined to take particular values (preferably 
unique values)

• To identify unknown parameter values, we take two steps:

Step 1: Identifiability of model form  --- mathematical 
reasoning of whether a given model takes a form of 
solvable problem

Step 2: Estimation of the parameter values  --- numerical 
optimization of some loss function (e.g., sum of 
squared residuals for the OLS regression)



• Given the degrees of freedom in the covariance data (“knowns”;  
df1) and in the model (“unknowns”;  df2), there are 3 
possibilities:

 df1 = df2 --- just identified, data exactly reproducible
(“known to be identified”, “identifiable”)

 df1 > df2 --- over-identified, uniquely identifiable with  
additional conditions but imperfect fit

 df1 < df2 --- under-identified, impossible to uniquely 
identify
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• t = # of distinctive free parameters in  θ,  p + q = # of 
observed variables  

 equality constraints reduce  t but inequality constraints 
don’t  --- inequality constraints limit the search space of the 
parameter, and so they may produce more accurate and 
reliable estimates if they are consistent with the data 

• Necessary but not sufficient; only useful for ruling out 
unidentifiable models

Identification: t-rule 11
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• E.g., the SES model (Fig. 4.4, p. 84) meets the t-rule  (df1 = df2
= 15), but it doesn’t mean it’s identifiable  --- we’ll reconsider 
this model with other rules
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• All DVs are influenced only by IVs, not DVs; i.e., there is no 
mediators; and so the fundamental equation reduces to the 
multivariate regression model (with some regression 
coefficients possibly constrained to zero):

Identification: null  B rule 13
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• Consequently, the implied covariance matrix reduces to: 
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• B = 0 is a sufficient condition for identification, but not 
necessary, and so this rule doesn’t tell if models with  B ≠ 0
are identifiable

• Furthermore, if all entries of   are unconstrained (i.e., the 
multivariate linear regression model), models with  B = 0 are 
just identified implying a perfect fit 

 How is the perfect fit possible if residual variances  (11,…,
pp)  in the regression model are not zero, unless the DVs 
are exactly linear combinations of IVs (i.e.,  Ψ = 0)?

• Obviously, the SES model doesn’t meet the null-B rule



• All (fully) recursive models are identifiable:  B is lower-
triangular and  Ψ is diagonal

• Consider a single equation for  yi in  

Identification: recursive rule 15
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where                   are non-zero elements in the i-th row of  B
and  Γ,  and zi collects corresponding  y and  x variables; By 
postmultiplying both sides by       and taking expectation,iz

i i β γand  
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since  i (error term of  yi)  is orthogonal to  zi (the predictors 
of yi)  --- a regression model form

• Likewise, by postmultiplying the  yi equation by its transpose 
and taking expectation (and substituting the above), we have
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• The estimation equation for  βi and  γi is the OLS estimator 
(with some  y as IVs), and so with proper distributional 
assumptions on  yi,  we can do statistical testing as in 
regression analysis

• Recursive rule is sufficient but not necessary, and so some 
models with non-triangular  B and/or  non-diagonal  Ψ may be 
identifiable;  recursive rule met for the SES model?
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• Useful for nonrecursive models

• No specific condition on  B except that  (I – B) is nonsingular 
so that  (I – B)–1 exists

• Identification is considered one equation at a time

• No restriction in  Ψ, and so these rules would not necessarily 
apply to cases of restricted  Ψ (e.g., diagonal) in that a 
restricted  Ψ may help identification of otherwise unidentifiable 
models

Identification: order and rank conditions 18



• Consider the equation for  yi similar to the one before

Order condition 19
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where        is row  i in  B without the i-th element, is row  i
in  Γ, and accordingly  zi collects all  y and  x variables 
except  yi

• By postmultiplying both sides by  x' and taking expectation, we 
have  q covariances between  yi and  x (all IVs)
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which has  q equations with  q + p – 1 unknowns



• Consequently, if p – 1 or more of the unknowns are excluded 
by zero constraints, all free parameters for the  yi equation are 
identifiable

• All equations’ order conditions can be collectively checked with

 ,  C I B Γ

If each row of  C has  p – 1 or more zeros, it passes the order 
condition;  satisfied for the SES model?
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• Useful for ruling out underidentified models with unconstrained  
,  since it’s necessary but not sufficient

• A case when the order condition is met for individual equations, 
yet the model is not uniquely identifiable (e.g. in pp. 100-101)
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• For the second equation, any linear combination of the two 
equations can’t produce an alternative solution of the same 
form as the second row (i.e., the last two entries of zero), which 
implies that the second equation is uniquely identifiable

• The insufficiency of the order condition leads to the rank 
condition



Rank condition 23

• From the  C for the order condition, delete all columns with 
non-zero at row  i and call the submatrix of remaining columns  
Ci

• The i-th equation is identified if  rank(Ci) = p – 1

• This guarantees that the  p – 1 equations (excluding the i-th) 
are all linearly independent (which are independent from 
equation  i as well)

• The rank condition is necessary and sufficient for identification, 
but it doesn’t take into account any restrictions on  Ψ, and so 
some models with restricted  Ψ may be identifiable even if the 
rank condition is not met



• For the SES model in p. 84, is the rank condition met for each 
equation? 
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• How about the example of
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little more to identification 25

• Inequality constraints may or may not help identification since it 
limits the range of possible values of a free parameter, not to a 
particular value

• Constant values, equality, and linear combinations of other 
parameters are also a form of restriction that affects 
identification, but the identification rules considered so far 
assume only zero-constraints (except for t-rule)

• Identification discussed so far focuses only on whether the 
equation systems are solvable, which does not guarantee 
convergence or properness of a solution (e.g., negative ψii)

• Identification rules considered here applies to a part of the 
general model, not the “measurement models” part


