
Confirmatory Factor Analysis: 
measurement models

Psychology 588: Covariance structure and factor models



Few things on measurement theory 2

• Measurement may be defined as assigning numbers to 
observational units (“subjects”) so as to indicate the magnitude 
(and direction if bipolar) on an intended concept (construct, 
latent variable)

• A measurement model quantitatively defines the relationships 
between observed phenomena (items, indicators, measures, 
manifest variables) and unobservable concepts (factors, latent 
variables)  

 e.g., Spearman’s single factor model, 2-parameter logistic 
model, graded response model, etc.

 We will only consider linear relationships in SEM (in the 
classical form, while generalized SEM allows nonlinear 
relationships)



Spearman’s single factor model 3

• A set of measures are modeled to linearly relate to a single 
common factor as:
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• With means included:
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• Rescaling does (and should) not affect measurement structure  
--- though it’s not trivial to find right rescaling, e.g., in multiple 
group analysis



Convergent & discriminant validity 4

• According to construct validity, a properly measured latent 
variable should strongly covary with an item that is theoretically 
believed to highly relate with; and should weakly covary with 
one that is theoretically believed to relate not so much with

• MTMM (multitrait-multimethod) 
procedure is one modeling 
technique to verify a type of 
convergent and discriminant 
validity (Fig 6.4 in p.192; also 
see Tables 6.2 and 6.3)
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• (Construct, criterion, convergent-divergent, etc.) validity is 
typically assessed by bivariate correlations of observed 
variables  --- possibly misleading due to measurement errors

• Alternatively, validity of a measure  xi of  ξ j may be defined by 
the magnitude of the direct structural relation between  ξ j and 
xi
 Unstandardized validity coefficient:   λij

 Standardized validity coefficient: 

Validity considered in SEM 5
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 Unique validity variance (analogous to incremental  R2 of  xi
solely due to  ξ j):

where the SMCs are generally given by:
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where        is a submatrix of  Φ only including the  ξ that 
directly influence  xi ;  ~ξ j indicates all  ξ in       except the 
j-th;  and          is a vector of covariances between  xi and all  
ξ in 
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Classical test-theory models viewed from SEM 7
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• Parallel measures:    1, var var  i j i je e   

• tau-equivalent measures:    1, var var  i j i je e   

• congeneric measures:

 essentially equivalent to the uni-factorial measurement 
models in SEM
Joreskog, K.G. (1971). Statistical analysis of sets of congeneric tests. 
Psychometrika, 36, 109-133.
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• Internal-consistency reliability is the ratio of the variance due to 
true scores to the variance of observed variable, which equals 
the squared correlation between  xi and  τ (i.e.,        ) 
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• Reliability can be assessed in several ways: test-retest, split-
half, Coefficient  α --- the latter assumes measures to be 
parallel or tau-equivalent and, consequently, it’s a lower bound 
of the reliability measured as internal consistency



• Given a set of congeneric measures, the reliability of their 
unweighted sum (as scale scores) is:
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which reduces to                                             for parallel or tau-
equivalent measures from which the formula for Coefficient  α
can be derived as (see Eq. 6.40, p. 216)
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Exploratory vs. confirmatory FA 10

• Exploratory-confirmatory distinction is better made on a 
continuum rather than by a strict dichotomy  --- people do an 
exploratory analysis with “CFA programs” (e.g., AMOS) and a 
confirmatory analysis with “EFA programs” (e.g., “data 
reduction” in SPSS) 

• Both EFA and CFA take the same model form, while they have 
different ways of imposing constraints  --- EFA with minimal 
constraints for identification and CFA with further constraints, 
typically at specific entries in the loading matrix

• CFA sometimes refers to “Common Factor Analysis” as 
opposed to “Principal Component Analysis” (PCA)



• Linear relationship between factors and indicators

• Error terms not correlated with factors

• No distinction of cause and effect among indicators (unlike 
regression)

• Many dimensional observed variables (indicators) 
approximated by less dimensional latent variables (factors)

• Subject to scaling indeterminacy

Common to both EFA and CFA 11



• EFA is indeterminant in dimensionality and rotation  --- CFA is 
determinant (i.e., all parameters are identifiable) thanks to 
selective constraints on  Λ
Rotational indeterminacy in EFA is solved by seeking an 
optimal rotation to a “simple structure”

• EFA finds an R-dimensional solution by which covariances
between variables are explainable parsimoniously  --- CFA 
imposes a specific loading pattern and tests how bad fit it 
results in

• EFA tends to rely more on the data  --- CFA needs a “good” 
understanding of the factor structure (that wouldn’t vary over 
samples)

Differences between EFA and CFA 12



Specification 13

• Same equation for CFA and EFA:

 x y   x Λ ξ δ y Λ η ε

• Only difference is whether we selectively put some constraints 
on  Λ and                and some relaxation on 

• Further partitioning of measurement errors:

s --- specific variance, not shared with any other indicators 
but replicable over random samples

e --- remaining random variance, not replicable

Note:  δ is typically called “unique factor” in factor analysis
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EFA vs. CFA rethought 14

• About the political democracy example (pp. 231 & 235),

 What if most of covariation among  xi explainable by two 
distinct aspects of democracy which do not vary much 
between 1960 and 1965?

 Are the equality constraints and correlated  δi (particularly, 
the correlated  δ2-δ4 and  δ6-δ8 pairs) shown in Fig 7.3 
more sensible than EFA in Fig 7.2?

 Would it be like this example for every factor-analysis 
application?



Model specification in CFA 15

• Only one structural equation is sufficient since all factors are 
exogenous variables:

x x Λ ξ δ

• Although it’s typical to have only one free parameter per row in  
Λx (i.e., uni-factorial pattern), such “extreme” constraints are 
not necessary provided that whatever less constrained model is 
identifiable

• Also, flexible constraints (and/or relaxation) can be imposed on 
off-diagonal entries of  Φ and  Θδ

• In theory, constraints can be zero, non-zero constant, equality, 
or inequality  --- “can estimate?” is another question



Implied covariance matrix 16

• Covariance structure of measurement model:
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With constraints, many individual parameters will vanish  ---
particularly so with the uni-factorial loading pattern


