
Confirmatory Factor Analysis: 
measurement models

Psychology 588: Covariance structure and factor models



Few things on measurement theory 2

• Measurement may be defined as assigning numbers to 
observational units (“subjects”) so as to indicate the magnitude 
(and direction if bipolar) on an intended concept (construct, 
latent variable)

• A measurement model quantitatively defines the relationships 
between observed phenomena (items, indicators, measures, 
manifest variables) and unobservable concepts (factors, latent 
variables)  

 e.g., Spearman’s single factor model, 2-parameter logistic 
model, graded response model, etc.

 We will only consider linear relationships in SEM (in the 
classical form, while generalized SEM allows nonlinear 
relationships)



Spearman’s single factor model 3

• A set of measures are modeled to linearly relate to a single 
common factor as:

i i ix      x λ δ

• With means included:
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• Rescaling does (and should) not affect measurement structure  
--- though it’s not trivial to find right rescaling, e.g., in multiple 
group analysis



Convergent & discriminant validity 4

• According to construct validity, a properly measured latent 
variable should strongly covary with an item that is theoretically 
believed to highly relate with; and should weakly covary with 
one that is theoretically believed to relate not so much with

• MTMM (multitrait-multimethod) 
procedure is one modeling 
technique to verify a type of 
convergent and discriminant 
validity (Fig 6.4 in p.192; also 
see Tables 6.2 and 6.3)
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• (Construct, criterion, convergent-divergent, etc.) validity is 
typically assessed by bivariate correlations of observed 
variables  --- possibly misleading due to measurement errors

• Alternatively, validity of a measure  xi of  ξ j may be defined by 
the magnitude of the direct structural relation between  ξ j and 
xi
 Unstandardized validity coefficient:   λij

 Standardized validity coefficient: 

Validity considered in SEM 5
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 Unique validity variance (analogous to incremental  R2 of  xi
solely due to  ξ j):

where the SMCs are generally given by:
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where        is a submatrix of  Φ only including the  ξ that 
directly influence  xi ;  ~ξ j indicates all  ξ in       except the 
j-th;  and          is a vector of covariances between  xi and all  
ξ in 

 Note that                                      with  
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Classical test-theory models viewed from SEM 7
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• Parallel measures:    1, var var  i j i je e   

• tau-equivalent measures:    1, var var  i j i je e   

• congeneric measures:

 essentially equivalent to the uni-factorial measurement 
models in SEM
Joreskog, K.G. (1971). Statistical analysis of sets of congeneric tests. 
Psychometrika, 36, 109-133.

   , var var  i j i je e  



• Internal-consistency reliability is the ratio of the variance due to 
true scores to the variance of observed variable, which equals 
the squared correlation between  xi and  τ (i.e.,        ) 
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• Reliability can be assessed in several ways: test-retest, split-
half, Coefficient  α --- the latter assumes measures to be 
parallel or tau-equivalent and, consequently, it’s a lower bound 
of the reliability measured as internal consistency



• Given a set of congeneric measures, the reliability of their 
unweighted sum (as scale scores) is:
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which reduces to                                             for parallel or tau-
equivalent measures from which the formula for Coefficient  α
can be derived as (see Eq. 6.40, p. 216)
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Exploratory vs. confirmatory FA 10

• Exploratory-confirmatory distinction is better made on a 
continuum rather than by a strict dichotomy  --- people do an 
exploratory analysis with “CFA programs” (e.g., AMOS) and a 
confirmatory analysis with “EFA programs” (e.g., “data 
reduction” in SPSS) 

• Both EFA and CFA take the same model form, while they have 
different ways of imposing constraints  --- EFA with minimal 
constraints for identification and CFA with further constraints, 
typically at specific entries in the loading matrix

• CFA sometimes refers to “Common Factor Analysis” as 
opposed to “Principal Component Analysis” (PCA)



• Linear relationship between factors and indicators

• Error terms not correlated with factors

• No distinction of cause and effect among indicators (unlike 
regression)

• Many dimensional observed variables (indicators) 
approximated by less dimensional latent variables (factors)

• Subject to scaling indeterminacy

Common to both EFA and CFA 11



• EFA is indeterminant in dimensionality and rotation  --- CFA is 
determinant (i.e., all parameters are identifiable) thanks to 
selective constraints on  Λ
Rotational indeterminacy in EFA is solved by seeking an 
optimal rotation to a “simple structure”

• EFA finds an R-dimensional solution by which covariances
between variables are explainable parsimoniously  --- CFA 
imposes a specific loading pattern and tests how bad fit it 
results in

• EFA tends to rely more on the data  --- CFA needs a “good” 
understanding of the factor structure (that wouldn’t vary over 
samples)

Differences between EFA and CFA 12



Specification 13

• Same equation for CFA and EFA:

 x y   x Λ ξ δ y Λ η ε

• Only difference is whether we selectively put some constraints 
on  Λ and                and some relaxation on 

• Further partitioning of measurement errors:

s --- specific variance, not shared with any other indicators 
but replicable over random samples

e --- remaining random variance, not replicable

Note:  δ is typically called “unique factor” in factor analysis

  ,E ξξ

 δ s e

 E δδ



EFA vs. CFA rethought 14

• About the political democracy example (pp. 231 & 235),

 What if most of covariation among  xi explainable by two 
distinct aspects of democracy which do not vary much 
between 1960 and 1965?

 Are the equality constraints and correlated  δi (particularly, 
the correlated  δ2-δ4 and  δ6-δ8 pairs) shown in Fig 7.3 
more sensible than EFA in Fig 7.2?

 Would it be like this example for every factor-analysis 
application?



Model specification in CFA 15

• Only one structural equation is sufficient since all factors are 
exogenous variables:

x x Λ ξ δ

• Although it’s typical to have only one free parameter per row in  
Λx (i.e., uni-factorial pattern), such “extreme” constraints are 
not necessary provided that whatever less constrained model is 
identifiable

• Also, flexible constraints (and/or relaxation) can be imposed on 
off-diagonal entries of  Φ and  Θδ

• In theory, constraints can be zero, non-zero constant, equality, 
or inequality  --- “can estimate?” is another question



Implied covariance matrix 16

• Covariance structure of measurement model:
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With constraints, many individual parameters will vanish  ---
particularly so with the uni-factorial loading pattern


