Confirmatory Factor Analysis:
measurement models

Psychology 588: Covariance structure and factor models



Few things on measurement theory 2

« Measurement may be defined as assigning numbers to
observational units (“subjects”) so as to indicate the magnitude
(and direction if bipolar) on an intended concept (construct,
latent variable)

A measurement model quantitatively defines the relationships
between observed phenomena (items, indicators, measures,
manifest variables) and unobservable concepts (factors, latent

variables)

> e.g., Spearman’s single factor model, 2-parameter logistic
model, graded response model, etc.

» We will only consider linear relationships in SEM (in the
classical form, while generalized SEM allows nonlinear
relationships)



Spearman’s single factor model 3

 Aset of measures are modeled to linearly relate to a single
common factor as:

x. =AE+0, X=AE+0

« With means included:
X, =v,+A&i+6, E(&)=k, E(5)=0
X=V+AE+0

 Rescaling does (and should) not affect measurement structure
--- though it’s not trivial to find right rescaling, e.g., in multiple
group analysis



Convergent & discriminant validity 4

e According to construct validity, a properly measured latent
variable should strongly covary with an item that is theoretically
believed to highly relate with; and should weakly covary with
one that is theoretically believed to relate not so much with

r12

e MTMM (multitrait-multimethod)
procedure is one modeling
technique to verify a type of
convergent and discriminant
validity (Fig 6.4 in p.192; also
see Tables 6.2 and 6.3)

Prxy, = Ay g + %3134:05354
Prx, = A3y + ﬂllﬁznglgz




Validity considered in SEM 5

o (Construct, criterion, convergent-divergent, etc.) validity is
typically assessed by bivariate correlations of observed
variables --- possibly misleading due to measurement errors

 Alternatively, validity of a measure x; of /fj may be defined by
the magnitude of the direct structural relation between éj and

X

» Unstandardized validity coefficient: /ll.j

» Standardized validity coefficient:
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> Unique validity variance (analogous to incremental R? of x,
solely due to ¢)):

where the SMCs are generally given by:
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where @ is a submatrix of @ only including the & that
directly influence x;; ~¢; indicates all § in @ except the
J-th; and ¢ _. Is a vector of covariances between x; and all
Ein @

+ Note that R =A/®%, /var(x,) with ¢, =A@



Classical test-theory models viewed from SEM

7

X, =a7T+e;, X, =ar+e,
E(re)=0, E(e)=0, E(el.ej)zO

» Parallel measures: a,=a; =1, var(e)= Var(ej)
+ tau-equivalent measures: o, =a, =1, var(e )= var(e, )

+ congeneric measures: a, #a,, Var(e)=var(e,)

> essentially equivalent to the uni-factorial measurement
models in SEM

Joreskog, K.G. (1971). Statistical analysis of sets of congeneric tests.
Psychometrika, 36, 109-133.



Internal-consistency reliability is the ratio of the variance due to
true scores to the variance of observed variable, which equals

the squared correlation between x;, and 7 (i.e., pfl_r)

Calvar(r)  cov(x,r)t
P var(x,) var(x)var(r)
0<p. <1

Reliability can be assessed in several ways: test-retest, split-
half, Coefficient a --- the latter assumes measures to be
parallel or tau-equivalent and, consequently, it's a lower bound
of the reliability measured as internal consistency



Given a set of congeneric measures, the reliability of their
unweighted sum (as scale scores) Is:

(Zleai)z var (7)

var(x, )

Pun =

q
Xy =X,
i=1

which reduces to p,,, = g var(z)/var(x,) for parallel or tau-

equivalent measures from which the formula for Coefficient a
can be derived as (see Eq. 6.40, p. 216)

q 1_ Zl_q:lvar(xi)

g-—1 var(x, )
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» Cronbach, L.J. (1951). Coefficent alpha and the internal structure of tests. Psychometrika, 16,
297-334.

o Gulliksen, H. (1950). Theory of mental tests. New York: Wiley, 1950.

« Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 255-282.



Exploratory vs. confirmatory FA 10

e EXxploratory-confirmatory distinction is better made on a
continuum rather than by a strict dichotomy --- people do an
exploratory analysis with “CFA programs” (e.g., AMOS) and a
confirmatory analysis with “EFA programs” (e.g., “data
reduction” in SPSS)

 Both EFA and CFA take the same model form, while they have
different ways of imposing constraints --- EFA with minimal
constraints for identification and CFA with further constraints,
typically at specific entries in the loading matrix

 CFA sometimes refers to “Common Factor Analysis” as
opposed to “Principal Component Analysis” (PCA)



Common to both EFA and CFA 11

« Linear relationship between factors and indicators
e Error terms not correlated with factors

« No distinction of cause and effect among indicators (unlike
regression)

 Many dimensional observed variables (indicators)
approximated by less dimensional latent variables (factors)

* Subject to scaling indeterminacy



Differences between EFA and CFA 12

 EFA s indeterminant in dimensionality and rotation --- CFAIs
determinant (i.e., all parameters are identifiable) thanks to
selective constraints on A

Rotational indeterminacy in EFA is solved by seeking an
optimal rotation to a “simple structure”

 EFAfinds an R-dimensional solution by which covariances
between variables are explainable parsimoniously --- CFA
Imposes a specific loading pattern and tests how bad fit it
results in

« EFAtends to rely more on the data --- CFA needs a “good”
understanding of the factor structure (that wouldn’t vary over
samples)



Specification 13

 Same equation for CFA and EFA:
x=ACE+o0 (y :Ayn+a)

« Only difference is whether we selectively put some constraints
on A and E(&E'), and some relaxation on E(8d')

e Further partitioning of measurement errors: o =Ss+e

s --- specific variance, not shared with any other indicators
but replicable over random samples

e --- remaining random variance, not replicable

Note: o is typically called “unique factor” in factor analysis



EFA vs. CFA rethought 14

* About the political democracy example (pp. 231 & 235),

> What if most of covariation among x; explainable by two
distinct aspects of democracy which do not vary much
between 1960 and 19657

> Are the equality constraints and correlated o, (particularly,

the correlated 0,-0, and 04-04 pairs) shown in Fig 7.3
more sensible than EFAIn Fig 7.27

» Would it be like this example for every factor-analysis
application?



Model specification in CFA 15

e Only one structural equation is sufficient since all factors are
exogenous variables:

x=AE+9

« Although it’s typical to have only one free parameter per row in

A, (i.e., uni-factorial pattern), such “extreme” constraints are
not necessary provided that whatever less constrained model is
identifiable

» Also, flexible constraints (and/or relaxation) can be imposed on
off-diagonal entries of @ and ©;

e In theory, constraints can be zero, non-zero constant, equality,
or inequality --- “can estimate?” is another question



Implied covariance matrix

16

+ Covariance structure of measurement model.
X(0)=E(xx')=E(AE+8)(EA" +3)
= A E(8)A +E(38)
=A DA’ +0,

With constraints, many individual parameters will vanish ---
particularly so with the uni-factorial loading pattern



