
Confirmatory Factor Analysis: Model 
comparison, respecification, and more

Psychology 588: Covariance structure and factor models



Model comparison 2

• Essentially all goodness of fit indices are descriptive, with no 
statistical device for selecting from alternative models (see 
table 7.8, p. 290 for the political democracy example)

• Same for other types of fits (e.g., AIC, BIC) or cross-validation 
technique

• Chi-square difference test available for comparing a nested 
model with a nesting model, provided that all assumptions are 
reasonably met and more importantly the nesting model is 
correct

• Why does a nested model must produce an equal or higher chi-
square value regardless of types of constraints (e.g., constant, 
equality, or any functional form)? Impossible at all to have a 
lower value?



Likelihood ratio test for ML 3

• FLR itself is a chi-square variable with  df = dfnested – dfnesting

• Null hypothesis  --- a set of constraints (as the only difference 
between the nested and the nesting model) hold in the 
population 

• FLR is conditional to the nesting model  --- consequence of an 
additional constraint will depend on what’s already imposed, 
e.g., significance for pairs of  F1 > F2 > F3 > F4 are not 
necessarily consistent with the order
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• LR test is tedious when we want to find a statistically justifiable 
“best” fitting model with respect to a set of meaningful 
constraints;  or put differently, when we want to explore for a 
most optimal model among many alternative, substantively 
justifiable models

• Now we need a method that allows for statistical inference 
about:

 What if a set of constraints in a given model is freed?

 What if a set of freely estimated parameters are 
constrained?



Lagrangian Multiplier test 5

• LM test answers “What if a set of constraints are freed?” only 
based on estimates of a nested (more restricted) model

• What’s suggested by LM is the expectation of chi-square 
change (and the associated parameter estimates) if some 
constraints are removed  --- tends to underestimate the chi-
square reduction compared to the difference by LR test

• When only one constraint is considered, LM is called 
“modification index” (which is available in most SEM programs 
including AMOS)  --- though the LM statistic is defined for any 
subset of the current constraints, SEM programs print only LM 
for each constraint



• Consider a set of constrained parameters  θ0 (not necessarily 
all zero) for  θa in a partitioned set,                     ;  then the 
restricted and unrestricted parameter sets are written,
respectively,                        and                      ,  where  θ1 and 
θb are freely estimated  --- we will use this representation 
when considering power of testing

• The LM statistic is:
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where            is a first-order partial derivatives of an 
optimization function (e.g., FML)  evaluated at and then  
FLM is chi-square distributed with  df = #(θ0);  and so by  FLM
we can tell how much of chi-square improvement to expect due 
to removing the constraints  θ0
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Wald test 7

• Only by fitting the nesting (less restricted) model, the Wald test 
answers “What if a set of freely estimated parameters are 
constrained?”

• The Wald statistic  FW is defined as follows and chi-square 
distributed with  df = #(θ0) under  H0 (i.e., θa = θ0)
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where                   is an estimate of asymptotic covariance 
matrix of  θa (evaluated at     )  --- and so a significant  FW
indicates the constraints being incorrect,  θa ≠ θ0
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• If only one additional “zero” constraint is considered  (θi = 0),  
FW becomes square of the  Z statistic for  θi (called C.R. in 
AMOS)

• The LR, LM and W tests are asymptotically equivalent  ---
they’re all about the same fit change, except for differently 
defined sampling error

• Which of the LM or the Wald test fits better into the logic of null 
hypothesis significance testing?  Does it really matter?  See Fig 
7.5, p. 295
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Respecification 9

• First of all, don’t forget that SEM better serves confirmatory 
research questions  --- implying that you should start with a 
reasonably “correct” model 

• Consider different hierarchy of model structure in 
respecification, instead of only looking at FLM or  FW: 

 model “configuration”

 parameters near the observed variables vs. far

• Any respecification based on  FLM or  FW should be 
substantively justifiable; otherwise, it could be nothing but 
capitalizing on errors

• Also, researchers should try to exhaust all substantively 
interpretable models even when a satisfactory fit is attained



• Limitations of exploratory respecification, based on a sample:

 LM and Wald tests are dependent on the fit model 
(importantly on where you start)

 Like stepwise regression, there is order effects

 Some alarming evidence from simulation studies against 
exploratory use of LM and Wald tests (Herbing & Costner, 1985; 
MacCallum, 1986)

• The exploratory use is most beneficial when

 The initial model is not so much misspecified

 Large  N and

 Resepecification is considered only for a particular part of 
the model  --- i.e., sure about the other constraints or free 
parameters



• Significant chi-square change doesn’t necessarily mean a 
substantively meaningful parameter change  --- N matters

• LOOK at residuals  --- can suggest where the problems are, 
but it may not be so obvious why and how they happen

• Piecewise model fitting  --- breaking the problem into smaller 
and easy pieces, particularly for a complicated model



Factor scores 12

• Estimation of factor scores is inherently indeterminant, 
regardless of EFA or CFA 

• Essentially because too many unknowns  (n common factors +
q error terms) compared to knowns (q indicators)

• The most common approach is regression in an unusual 
direction (predicting the latent with the observed); the resulting 
regression weights called “factor-score weights”  --- different 
from loadings which are sometimes called “factor weights”

• Since any estimate of FS is fallible, replacing measurement 
models with FS estimates (treating them as observed variables) 
does not provide consistent estimates of path coefficients



Mean structure 13

• Modeling so far excluded mean structure, which is usual in 
modeling covariance structure (for a single group)

• Cases when to consider the mean structure:

 Comparison of heterogeneous groups in factor means

 Multilevel modeling  --- means in nested groups interferes 
with covariance structure unless properly addressed

 Comparison of item (or subscale) difficulties

 When missing data need be treated along with the analysis  
--- most SEM programs offer missing imputation by model 
expectation assuming “missing at random”



• Mean structure included as an additional part of the model 
without affecting the covariance structure:
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• Common scaling convention  --- 0-intercept and 1-loading for 
one indicator per factor (e.g., 3 indicators for each of 2 factors):
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Higher-order FA 15

• Higher-order factors account for covariance between lower-
order factors, not between lower-order error terms (e.g., g-
intelligence underlying specific kinds of intelligence)

• Path modeling of latent variables explains covariances between 
(1st order) factors through particularly specified directional paths 
whereas higher-order FA explains them by existence of higher-
order factors (as common causes)
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