
General structural model – Part 1: 
Power of testing, mean-structure, etc.

Psychology 588: Covariance structure and factor models



Estimation 2

• Fitting functions (FML, FGLS, FULS) of a general SE model have 
the same forms as those for path modeling only of observed 
variables and CFA, but the implied covariance matrix is 
differently defined, e.g.,

• Properties of the ML, GLS and ULS estimators hold essentially 
the same

• Given a converged solution, all estimates must be substantively
sensible  --- Exercise: fit the model explained in p. 334 to the 
political democracy data (with and without the equal-loading 
constraints in nested modeling approach); which are given in 
the data directory (poldemcov.xls)
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Power of chi-square tests 3

• Given a pair of nesting-nested models, we can set up  H0 and  
Ha as follows:

H0 --- the constraints that make the only difference between 
the two models are correct, such that
θa = θ0,  and θb contains free parameters for both  H0
and  Ha

Ha ---

• The constraints are often  θa = 0,  though not necessary;  it 
equally holds for constraints at nonzero constants

• If the nesting model (i.e.,  Ha is true) has  0 model df,  the test 
is about goodness of fit of a hypothesized model
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a 0θ θ



• Type-I error occurs only when  H0 is true while Type-II error 
(and hence power) is relevant only when  Ha is true

 Nominal vs. true Type-I error rate  --- do we know true 
Type-I error rate in practice? And true power?

• All chi-square tests so far assumed true  H0

• When  Ha is true, the chi-square values computed under  H0
do not follow the  χ2 distribution we use for null-hypothesis 
testing (which is called “central”  χ2 distribution); instead, they 
follow noncentral χ2 distribution, which has one more 
parameter, noncentrality that depends on true values of  θa

• Thus, calculating power of a chi-square test boils down to 
estimation of the noncentrality parameter



• Noncentrality, ω essentially defines how much chi-square 
values deviate from their incorrect expectation (= df) due to the 
wrong assumption of true  H0 --- i.e., 

 As in usual null hypothesis testing, smaller  α leads to 
smaller Type I error and power; and “small effects” are hard 
to detect and so resulting in weak tests

 What’s wrong with Fig. 8.6 (p. 339)?
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• The Wald statistic is defined under true  H0,  i.e., it’s chi-square 
distributed when  θa = θ0 with  df = #(θa)

     1
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where                    is an estimate of asymptotic covariance 
matrix of the parameters  θa

 ˆacov aθ

• Under true  Ha,  the noncentrality parameter  ω is defined as:

     
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where  θa is the true parameter values (either empirically 
obtained or rationally specified) and  θ0 is constrained values



How to compute noncentrality? 8

Based on the W statistic,

1. Determine                       (e.g., user-provided plausible values 
for  θa)  --- fixing  θa at particular values amounts to setting a 
particular “effect size”, though the size itself is not apparent

2. Generate model-implied matrix  Σ(θ) according these 
constants (or effect)

3. Fit the model under  Ha (with θa as free parameters) to  Σ(θ)
so as to obtain                 the sub-matrix of

4. Plug in                    and  (θa – θ0) into the formula

 a b,  θ θ θ
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• Given an estimate of  ω (and df,  cut-off  χ2 value at  α),  we 
can calculate power by mapping on the corresponding 
noncentral χ2 distribution (available in computer programs, 
e.g., MATLAB)

• If only one parameter is considered and the common 
parameters  θb and  θa are to be set at their estimates under  
Ha, then the asymptotic variance of  θa is simply square of the 
standard error of available in usual SEM output, and so ω
is readily available as:

• There are cases where the fitting of   Σ(θ) under  Ha is not 
feasible (e.g., the alternative model is not identifiable, or one of 
several equivalent models so that it’s not unique)  --- in such 
cases, the LR approach may be used

Note  -- if the alternative model is not unique,                    is not meaningful 
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Based on the LR statistic,

1. & 2.  Do the same as before 

3. Fit the model under  H0,  i.e., with the constraints of  θa = θ0

4. The chi-square estimate is taken as an approximation of  ω in 
that it’s an estimate of  χ2 increase (from 0 with the “right” 
alternative model) only due to the “wrong” constraints

Based on the LM statistic,

• Steps 1-3 are the same as in the LR procedure;  then,  ω is 
estimated as the LM statistic

• If only one parameter is considered,  ω is simply its 
modification index



Power used in model evaluation 11

Case 1: p-value < 0.05 and estimated power < 0.7  →  H0 likely to 
be false; confidently reject it; significant even with a weak 
test

Case 2: p-value < 0.05 and estimated power ≥ 0.7  →  could be 
ambiguous since suggested rejection may be due to 
spurious power with very large N

Case 3: p-value ≥ 0.05 and estimated power < 0.7  →  ambiguous 
since suggested acceptance may be due to weak test

Case 4: p-value ≥ 0.05 and estimated power ≥ 0.7  →  H0 likely to 
be true; confidently accept it since it’s insignificant even 
with the sufficient power 

• Suppose we set  α = 0.05 and minimum power of  0.7 (see 
Figure 8.9, p. 347)



What to do with too weak test 12

• Increase  α so as to make the test more powerful at the cost of 
increased type-I error (failure to reject wrong constraints) 

• Increase sample size in that chi-square estimate proportional to  
N – 1 --- Hoelter’s N may be useful, with caution not to make 
it excessively powerful simply due to too large sample

• Increase # of indicators and/or reliability of given measures so 
that latent variables become more reliable (i.e., internally 
consistent), and in consequence estimates are more accurate 
(so as to increase the chance to reject wrong  H0 when  Ha is 
true)  --- note the tradeoff between more reliable measurement 
by more indicators vs. increase in model  df



What to do with excessive power 13

• “Trivial” deviations may be powerfully detected

• Reduce  α so as to make the test more tolerant of Type-II 
errors (wrong acceptance of false  H0)

• Reducing sample size (e.g., by randomly taking a subsample) 
is somewhat controversial since it adds more sampling error 
and consequently yields less accurate estimates by wasting 
what’s given  --- maybe okay only if an optimal  N is known so 
as not to reduce  N below the optimal level

• Reducing reliability is more problematic since it amounts to 
adding measurement errors and yielding “weak” measurement 
of latent variables



Standardization 14

• Standardized coefficients useful to compare relative magnitude 
of parameters  --- but blind interpretation without reference to 
the substantive meaning of “one standard unit change” could be 
misleading (e.g., 1 SD change of gender)

• To obtain standardized coefficients, multiply unstandardized
coefficients by the SD of explanatory variables & divide them by 
the SD of dependent variables, e.g., 

0.5
( ) ( ) 0.5 0.5        jjs s
ij ij x xx x

ii



  

 
  

 
Λ D Λ Dor

When                standardized coefficients may differ by 
programs

ˆ ,ii iis 



Mean structure 15

• To include mean structure, all equations need to have an 
additional term for intercept (for each DV) and all explanatory 
variables have expectation other than 0, while all error terms 
are expected 0
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Identification for mean-structure parameters 16

• Input data have  p + q more distinctive data  df --- observed 
variables’ means

• New parameters in the model:  p + q intercepts and  m + n
means of  η and  ξ;  So, we need at least  m + n more 
constraints which fix the shift ambiguity of latent variable 
distributions  --- typically done by setting  κ = 0 and   α = 0
(and so all LVs have a zero mean) or alternatively one  νx and  
νy set to  0 per LV

• With the  m + n mean (or intercept) constraints, the mean 
structure is just identified, and thus not so much of interest at 
least from the modeling perspective (unless some further 
constraints are imposed)



• When multiple groups or times (e.g., in panel data) are 
considered, particularly with some constraints across groups, 
it’s not optimal to arbitrarily choose the metric of LVs (e.g., 
same metric as one indicator by setting its loading to 1 and 
intercept to 0)  --- an optimal procedure to be discussed in 
multiple groups analysis (see e-copy of “comparing 
populations.pdf”; McDonald, R.P., 1999, chapter 15, pp. 325-346 in Test 
theory: A unified treatment)

• Differences in mean structure can be tested by the LR statistic;  
Or individual differences may be tested by asymptotic variances 
and covariances of individual estimates   --- when requested, 
AMOS prints critical ratios of differences of all pairs of 
parameters


