
General structural model – Part 1: 
comparing groups, missing values, 

partitioning of effects

Psychology 588: Covariance structure and factor models



Comparing groups 2

• All modeling so far considered a single group  --- multiple-
group analysis fits a model simultaneously to several groups, 
typically with some equality constraints across groups (how 
different from modeling with a covariate for grouping?)

• Testing for group invariance built on the additive nature of the 
chi-square statistic:

• Levels of comparability
 Model form  --- comparison mostly qualitative or best fitting 

model derived per group

 Hierarchy of invariance  --- given the same model form, sort 
out parameters; primary interest vs. secondary, observed vs. 
latent
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Testing hierarchy: path modeling part 3

• There is no gold standard for order of invariance testing

• Any ordering effect is not arbitrary in that the LR test is subject 
to the common part of the nested and the nesting model

• For strict invariance/equivalence, lower-level invariance 
necessary for higher-level invariance, given a chosen order of 
testing
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Testing hierarchy: measurement part 4

• Same hierarchy, but regression weights are factor loadings 
instead of latent path coefficients
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• For y-measurement models, invariance on  Φ irrelevant since 
covariances between  η’s are modeled as functions of 
parameters, not parameters themselves

• How should the LV scales be fixed for multiple groups? 



Invariance in mean structure 5

• When structural equations include mean-structure, there is 
more flexibility in testing order of different kinds of parameters

• Yet, wide consensus on minimum requirement: invariance in 
model form and loading pattern needed for mean-structure 
invariance since                                                              thus
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• The Morale data (morale.xls; Table 8.7, p. 367) available for practice
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Measurement equivalence 6

• Measurement of an LV is equivalent/invariant across distinctive 
groups if subjects (as random observational units) with identical 
LV scores are expected to have the same scores on indicators, 
regardless of group membership

• What’s invariant: measurement parameters, not LV distribution
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Why bother? 7

• It’s crucial to establish measurement equivalence for any 
comparison involving LVs to be meaningful since the scale of 
LVs are arbitrarily chosen

 Cases when measurement equivalence is needed ---
distinctive groups (e.g., males vs. females, 3rd vs. 5th 
graders as different age cohorts), repeated (longitudinal) 
measures (e.g., children measured at 3rd and 5th grades), 
alternative forms or raters, etc.

• Testing measurement equivalence boils down to testing equality 
of the loadings and intercepts (i.e., measurement parameters 
under the linear model)
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Equating for distinctive groups 8

• Given estimated loadings and intercepts of a reference and a 
focal group (with conventional scaling within groups, e.g., 0 
mean of LVs and same metric as one indicator for all compared 
groups), we need to find two constants for a linear 
transformation of the focal group’s LV metric to the reference’s

• Any equating procedure assumes a null hypothesis of 
equivalent measurement relationships up to a linear rescaling

• The two transformation constants are sought so that 
accordingly transformed parameter sets of the focal group 
maximally resemble the reference group’s



Linear equating 9

• Suppose the same LV is arbitrarily scaled separately within 
groups to have a convenient scale
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• Since the group-specific metrics are arbitrarily chosen, we want 
to find a linear transformation of the focal group                       
such that the measurement equivalence holds maximally

After substitution, we have the focal group’s data represented in 
the reference group’s metric and accordingly equated    
and
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• Under the linear measurement model, optimal transformation 
constants can be found by the least-squares estimator
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(f), (r) --- focal and reference group’s parameters, respectively 
(arbitrarily scaled)

tilde  --- transformed parameters to the reference group’s metric



Missing mechanisms 11

• MCAR (missing completely at random)  --- probability of 
missing does not depend on value of  X whatsoever

• MAR (missing at random)  --- probability of missing does not 
depend on the values of missing  X,  but may depend on values 
of other variables

• Non-ignorable  --- missing dependent on what’s missing

     com com obs mismissing missingPr Pr , ,X X X X 
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Non- or less-optimal missing-value treatment 12

• Listwise-deletion  --- consistent and inefficient under MCAR; 
often severe data loss

• Pairwise-deletion  --- less data loss, but overall  N is unknown; 
also consistent and inefficient under MCAR

• Mean imputation  --- poorest; equivalent to say “all I can predict 
is the univariate mean given incomplete information on 
covariation with other variables”, equivalent to imputing with 
expectation of implied covariances equal to 0, and thus leading 
to inconsistent results



Better treatments /w conditional imputation 13

• Multiple-group approach  --- each missing pattern split into a 
separate group and treated as distinctive; an optimal way of 
missing treatment but practical only for a small number of 
missing patterns, impractical in most SEM cases; assumes 
MAR

• FIML (full information ML)  --- likelihood function separately 
computed per subgroup with the same missing pattern, more 
feasible, assumes MAR (offered in AMOS)

• Multiple imputation: not only optimal imputation under MAR but 
also several imputations to provide more accurate standard 
errors



Effects partitioning 14

• Direct effect: influence of one variable on another, not mediated 
by anything else

• Indirect effects: causal influences mediated by at least one 
other variable

• Total effect = direct effect + all indirect effects
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• If          converges to  0, indirect  (H)  and total  (T)  effects are 
defined; refer to Table 8.9 (p. 382) for various decomposed 
effects
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Specific indirect effects 15

• Refers to indirect effects only through a particular mediator

 Step 1  --- compute decomposed indirect effects with 
altered  B (0 replacing column and row for the chosen 
mediator) and  Γ (0 replacing the corresponding row) for the 
effects not through the chosen mediator

 Step 2: subtract the resulting effects from the (total) indirect 
effects

• Similar change can be done for a particular pathway (with only 
the entries of  B and  Γ that are included in the pathway are 
replaced by 0) so as to obtain specific indirect effects only 
through that pathway


