
General structural model – Part 2: 
Categorical variables and beyond

Psychology 588: Covariance structure and factor models



Categorical variables 2

• Conventional (linear) SEM assumes continuous observed 
variables (except for exogenous  x)  --- thus, SE modeling of 
categorical variables not fully justifiable

• Empirical (discretized) vs. conceptual categories:

 Length measured in quarter-inch intervals
 # of deaths for heart failure
 Political affiliation, ethnicity
 Color

• Dichotomies as quantitative variables  --- dichotomous (and 
polytomous) variables used for “quantification” of nominal 
variables and any quantitative analysis/interpretation with them 
meaningful up to distinction of the categories



Why problem? 3

• Discretized variables are necessarily censored at the tails and  
center becomes taller with fewer categories  --- deviation from 
normality gets severe with 2 or 3 categories

 If continuous variable discretized, is it polytomous or 
ordinal?

• Crude measurement (too much rounding)  --- increased 
measurement error

• Individual differences in where to put thresholds  --- may create 
some systematic tendency (bias) or add more measurement 
error at best

• Following histograms show effects on kurtosis by even-interval 
categorization (N = 300)
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Consequences 5

• Suppose a linear structure holds for true, unobserved 
continuous indicators  y* as:

*
y y Λ η ε

then the categorized indicators  y don’t agree with the model:
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Simulation results 6

• Excessive kurtosis and skewness created by categorization 
result in too large chi-square (more rejection of correct 
parsimonious models than it should) and too large SE (more 
rejection of correct non-zero  θ)

• Chi-square estimates tend to be more influenced by excessive 
kurtosis and skewness than by # of categories

• Generally coefficients (β and  γ) and loadings are attenuated 
toward 0  --- in that categorization adds measurement errors

• When unobserved continuous indicators are highly correlated, 
categorization into few categories may artificially increase 
factorial complexity (resulting in correlated errors)  --- since 
mis-classifying has a bigger consequence (than less correlated 
cases) and the consequence is likely to vary by variables



Correction of  Σ 7

• Assuming the unobserved, continuous  y* takes certain 
distributional form (most often normal),  Σ* (i.e., tetrachoric or 
polychoric correlations) may be estimated based on observed 
proportions at bivariate combinations of categories, by 
maximizing the likelihood:
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where  Nij and  πij are, respectively, frequency and probability 
at the ij-th category of y1 and  y2;  Φ2 is CDF of bivariate
normal distribution;  and  ai and  bj are thresholds for the ij-th
category



• Any continuous  y is used as observed so that the entries of  
Σ* are Pearson, polyserial (biserial) or polychoric (tetrachoric) 
correlations

• ML estimation of these correlations requires intensive 
computation  --- thus, unstable with small samples

• Given  Σ*,  the usual SEM estimators will provide consistent 
estimates of  θ,  but WLS is recommended for correct statistical 
testing  --- available in PRELIS (included in LISREL)

• See the examples, Tables 9.6 & 9.8



Nonlinear measurement models 9

• Relationship between observed and latent variables is defined 
as, e.g., the logistic or ogive function: 

 If  y* is normal,  Pr(y < c) follows the normal CDF (ogive
function) with varying central locations  

 Assuming only one latent variable, it becomes “graded item 
response” or “2 parameter logistic” model

 The generalized latent variable modeling approach allows 
for such nonlinear relationships, along with other 
relationships for counts and duration (survival), by adopting 
the generalized linear modeling (GLM) approach  --- offered 
e.g., by Mplus



 Comprehensive treatment of the generalized modeling 
approach  --- Skrondal A.  & Rabe-Hesketh S. (2004). 
Generalized latent variable modeling, CRC

 Short introduction  --- Muthen B.O. (2002). Beyond SEM: 
General latent variable modeling. Behaviormetrika, 29, 81-
117. (available in the course website)



Further developments of SEM 11

• Latent growth curve modeling

• Multilevel SEM for hierarchically designed data

• Categorical latent variables

 When one latent categorical variable assumed with multiple 
categorical indicators, it becomes latent class model

 More general modeling framework is what’s known as “finite 
mixture” modeling  --- possible with continuous indicators

 It yields probabilistic membership as “latent variable scores”

 Such idea of “latent clusters” can be applied to any SEM 
modeling approaches


