General structural model – Part 2: Categorical variables and beyond

Psychology 588: Covariance structure and factor models
Categorical variables

• Conventional (linear) SEM assumes continuous observed variables (except for exogenous \(x \)) --- thus, SE modeling of categorical variables not fully justifiable

• Empirical (discretized) vs. conceptual categories:
 - Length measured in quarter-inch intervals
 - # of deaths for heart failure
 - Political affiliation, ethnicity
 - Color

• Dichotomies as quantitative variables --- dichotomous (and polytomous) variables used for “quantification” of nominal variables and any quantitative analysis/interpretation with them meaningful up to distinction of the categories
Why problem?

• Discretized variables are necessarily censored at the tails and center becomes taller with fewer categories --- deviation from normality gets severe with 2 or 3 categories

 ➢ If continuous variable discretized, is it polytomous or ordinal?

• Crude measurement (too much rounding) --- increased measurement error

• Individual differences in where to put thresholds --- may create some systematic tendency (bias) or add more measurement error at best

• Following histograms show effects on kurtosis by even-interval categorization ($N = 300$)
continuous, $b_2=2.935$

11 cat, $b_2=2.907$

9 cat, $b_2=2.878$

7 cat, $b_2=2.968$

6 cat, $b_2=2.823$

5 cat, $b_2=3.000$

4 cat, $b_2=2.732$

3 cat, $b_2=7.500$

2 cat, $b_2=1.000$
Consequences

• Suppose a linear structure holds for true, unobserved continuous indicators \(y^* \) as:

\[
y^* = \Lambda y \eta + \varepsilon
\]

then the categorized indicators \(y \) don’t agree with the model:

\[
y \neq \Lambda y \eta + \varepsilon, \quad \Sigma \neq \Sigma(\theta) \rightarrow \text{biased} \ \hat{\theta}
\]

\[
\text{acov}(s_{ij}, s_{gh}) \neq \text{acov}(s^*_{ij}, s^*_{gh}) \rightarrow \text{invalid stat testing}
\]
Simulation results

- Excessive kurtosis and skewness created by categorization result in too large chi-square (more rejection of correct parsimonious models than it should) and too large SE (more rejection of correct non-zero θ).

- Chi-square estimates tend to be more influenced by excessive kurtosis and skewness than by # of categories.

- Generally coefficients (β and γ) and loadings are attenuated toward 0 --- in that categorization adds measurement errors.

- When unobserved continuous indicators are highly correlated, categorization into few categories may artificially increase factorial complexity (resulting in correlated errors) --- since mis-classifying has a bigger consequence (than less correlated cases) and the consequence is likely to vary by variables.
Correction of Σ

- Assuming the unobserved, continuous y^* takes certain distributional form (most often normal), Σ^* (i.e., tetrachoric or polychoric correlations) may be estimated based on observed proportions at bivariate combinations of categories, by maximizing the likelihood:

$$
\ln L = A + \sum_{i=1}^{c} \sum_{j=1}^{d} N_{ij} \ln(\pi_{ij})
$$

$$
\pi_{ij} = \Phi_2(a_i, b_j) - \Phi_2(a_{i-1}, b_j) - \Phi_2(a_i, b_{j-1}) + \Phi_2(a_{i-1}, b_{j-1})
$$

where N_{ij} and π_{ij} are, respectively, frequency and probability at the ij-th category of y_1 and y_2; Φ_2 is CDF of bivariate normal distribution; and a_i and b_j are thresholds for the ij-th category.
• Any continuous y is used as observed so that the entries of Σ^* are Pearson, polyserial (biserial) or polychoric (tetrachoric) correlations

• ML estimation of these correlations requires intensive computation --- thus, unstable with small samples

• Given Σ^*, the usual SEM estimators will provide consistent estimates of θ, but WLS is recommended for correct statistical testing --- available in PRELIS (included in LISREL)

• See the examples, Tables 9.6 & 9.8
Nonlinear measurement models

- Relationship between observed and latent variables is defined as, e.g., the logistic or ogive function:
 - If y^* is normal, $\Pr(y < c)$ follows the normal CDF (ogive function) with varying central locations
 - Assuming only one latent variable, it becomes “graded item response” or “2 parameter logistic” model
 - The generalized latent variable modeling approach allows for such nonlinear relationships, along with other relationships for counts and duration (survival), by adopting the generalized linear modeling (GLM) approach --- offered e.g., by Mplus

Further developments of SEM

- Latent growth curve modeling
- Multilevel SEM for hierarchically designed data
- Categorical latent variables
 - When one latent categorical variable assumed with multiple categorical indicators, it becomes latent class model
 - More general modeling framework is what’s known as “finite mixture” modeling — possible with continuous indicators
 - It yields probabilistic membership as “latent variable scores”
 - Such idea of “latent clusters” can be applied to any SEM modeling approaches