
Exploratory Factor Analysis: 
common factors, principal 

components, and more

Psychology 588: Covariance structure and factor models



• As learned earlier for CFA, both CFA and EFA are of (almost) 
the same model form, which defines  q indicator variables as 
linear combinations of  n “common” factors plus  q mutually 
orthogonal “unique” factors as follows:
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• Difference between CFA and EFA resides in whether some 
selective elements of loading matrix  Λ are constrained at 
particular constants (e.g., at 0 or by equality)  --- consequently, 
the parameters are estimated by different methods



• Technically, CFA and EFA differ by the degree of constraints 

 EFA  --- loading matrix has minimal constraints for a unique 
solution with fixed orientation of factors

To fix orientation of factor axes,  n × n “constraints” need be 
imposed, and that is done by  n scaling constraints,  n (n – 1)/2
elements for orthogonal factors  ξ and  n (n – 1)/2 elements for the 
loading matrix Λ (i.e., canonical form)

 CFA  --- further constraints (motivated by theoretical 
hypotheses) imposed to see if they agree with the data

• Furthermore, CFA may allow correlated measurement errors 
(so long as all parameters identifiable), but EFA doesn’t allow 
such relaxation by definition
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Implied cov matrix of the common factor model        4

• It’s a convention in EFA to scale the common factors to have a 
variance of 1 (instead of setting their metric equal to one of their 
indicators)  --- by this scaling,  Φ becomes a correlation matrix

• When considered for realized data (i.e., “subjects”), ξ is often 
called “factor score” matrix



• Common factors  ξ are constrained to be mutually orthogonal, 
and so with the unit-variance scaling, factors becomes mutually 
orthogonal z-scores:

Orthogonal factor model 5

• Thanks to the rotational indeterminacy, orthogonal common 
factors are typically estimated in a canonical form for a 
computationally unique (unrotated) solution without loss of 
generality

• Principal components might be considered as such orthogonal 
unrotated factors
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• From the orthogonal factor model,  Σ =ΛΛ + Θ:
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Variance and covariance by the model 6



Principal components as special orthogonal factors 7

• Principal components are defined as linear combinations of  x
that are mutually orthogonal and successively account for 
maximum variance of the data

 n = q,
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 n < q,
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How to compute principal components 8

• By spectral decomposition of  Σ,
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where  e1, …, eq are eigenvalues in descending order

• If  n < q,  sum of variances of  n components is the maximum 
among all sets of  n linear combinations;  geometrically 
speaking, the  n components span a subspace of the original 
q-dimensional data space, on which the projections of the data 
points have a maximum variance  --- Eckart-Young theorem



• By singular value decomposition of  X:
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• Rank-n approximation by SVD:
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Common factors vs. principal components 10

• While two conditions of the PC model, dual orthogonality and 
successive maximization, guarantee a unique solution 
(identifiability), the orthogonality on the component weights is 
totally arbitrary under the CF model and so undone by “rotation”

• There are two ways of looking at principal components:

 Pearson’s view  --- components as  n linear combinations 
(functions) of data variables,  y = V'x

 Hotelling’s view  --- components as  n explanatory 
variables of data variables,  x ≈ Vy

• With loss function of least-squares, PCA minimizes it w.r.t.  x
(like the OLS for regression) while CFA minimizes it w.r.t. Σ
(i.e., the ULS)



Principal factor method 11

• Since eigenvectors (i.e., the “loadings” defining principal 
components) yield       that is meant to maximally reproduce 
var(x) (                     by the CF model), they don’t produce the 
least-squares estimates for covariances

• Alternatively, loadings may be obtained from a modified 
covariance matrix,
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• In that the unique variances (hence communalities) are not 
known, the adjustment should be made iteratively, typically with 
initial communality estimates of variances of  xi predicted by all 
other variables (by the OLS regression)

• Given such communality estimates, the loading matrix can be 
obtained by the spectral decomposition of and 
communalities are updated with the new estimates of loadings  
--- these alternating updates iterate until the loading estimates 
converge

• One complication due to the adjustment is, so called, Heywood 
case of negative error variance  --- common to most extraction 
methods of common factors, not only to the principal factors 
method; and more likely to occur with small  q/n ratio (i.e., 
consequence of overfitting)

,Σ



MINRES method 13

• Under the common factor model, communalities are a function 
of factor loadings (i.e.,                 ), and so covariances (i.e., off-
diagonal elements of  Σ) contain all information on “common” 
factors

• Accordingly, MINRES minimizes residuals of only the off-
diagonal entries of  Σ as:
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• Note that the common factor model is a recursive model and so 
the diagonal entries of  Σ have no residuals  --- in this regard, 
MINRES optimizes the least-squares function w.r.t. only the 
relevant quantities

• MINRES is the best analytic (non-parametric) factoring method 
for the common factor model

• For those familiar with MATLAB, a function file called 
“minresfac.m” available in my netfiles under “\data” (with 
syntax, “lambda_hat = minresfac(data_cov,n)”);  since the 
solution is only locally optimal, multiple runs would be needed



Maximum likelihood method 15

• With normally distributed  ξ and  δ,  their linear combinations  x
is also normally distributed (or put differently, normally 
distributed  x indicates normal  ξ and  δ), and so its likelihood 
function is known (essentially the same as for CFA)
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• Unlike analytic factoring methods (e.g., principal factoring and 
MINRES), a  χ2 test is available for the model fit with the ML 
estimator since the sampling distribution of its  χ2 estimate is 
known based on the assumed data distribution 



• Note that the likelihood function is scale free, and so it would 
not make any difference whether covariance or correlation data 
are used 

• One technical difference  --- the ML estimator uses a side 
condition of  Λ′S–1Λ being diagonal instead of the usual 
canonical form for a unique solution

• Residuals of the covariance matrix are generally better 
minimized by those implementing the common factor model 
properly (such as MINRES and ML); while PCA (and principal 
factors) tend to maximize total variance of  x

• The following are results from 4 different factoring methods of 
men’s track and field records of 55 countries on 8 Olympic 
games (data given in the course website as “trackm.xls”)



Communalities for the track data for men (taken from Johnson & 
Wichern, Applied multivariate statistical analysis 6th, 2007) by 4 
factoring methods;  Correlation matrix is analyzed for an equal 
contribution by the games

PCA        PF           ML         MINRES

100m     0.950      0.942      0.919      0.925
200m     0.940      0.930      0.924      0.913
400m     0.892      0.871      0.849      0.855
800m     0.900      0.895      0.865      0.878

1500m     0.938      0.942      0.918      0.925
5000m     0.965      0.980      0.966      0.962

10000m     0.974      0.997      0.982      0.979
Marathon     0.943      0.921      0.914      0.904

sum 7.502     7.478      7.337      7.341
MAR       0.013      0.014      0.007      0.006

• MAR: mean absolute residuals of correlations
• What’s the df of the ML fitting (n = 2)?


