
Exploratory Factor Analysis: rotation

Psychology 588: Covariance structure and factor models



• Given an initial (orthogonal) solution (i.e., Φ = I), there exist 
infinite pairs of “rotated” factor loading and score matrices such 
that all have exactly identical fit since
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subject to “rows” of  T having unit-norm (sum of squares = 1) 
so that the total variances of  ξ and      are the same, i.e.,

--- rotation preserves the VAF collectively by 
the  n factors,  or equivalently, rotation doesn’t change 
communalities

   tr tr ξξ ξξ 
ξ

• If                                    --- orthogonal (or rigid) rotation which 
preserves the angles between the initial factors, and so the 
initial orthogonal factors rotated rigidly to orthogonal factors

,     TT I Λ ΛT



• Note that the rotation matrix is defined for “factor score” matrix  
ξ,  not for the loading matrix  Λ --- makes no difference in the 
orthogonal case, but should be clear in the “oblique” case

• Rotational indeterminacy shown in the covariance structure:
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If rows of  T are orthogonal, angles between rotated factors 
remain orthogonal;  otherwise, the angle between factors  i
and j is defined by 



• Covariances between  x and      (a.k.a., “factor structure” 
matrix  P, as compared to “factor pattern” matrix     ):

    E E   xξ Λξ δ ξ ΛΦ   

ξ

• Communality is invariant over rotation and represented 
generally in an oblique system as:
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• Could absolute factor loadings in an oblique system be greater 
than 1 even when a correlation matrix is analyzed (so that 
communality is upper bounded by 1)?



1. Each row (variable) of the loading matrix 
should have at least one zero

2. Each column (factor) should have at least  n
zeros

3. Every pair of columns should have several 
rows where entries “vanish” in one column 
but not in the other

• To resolve the rotational indeterminacy problem, Thurstone
(1947) suggested, so called “simple structure” to be sought to 
attain  n distinctive (not necessarily orthogonal) factors that are 
likely to be substantively meaningful; satisfying the following 
conditions:
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4. For every pair of columns, a large proportion 
of rows have vanishing entries in both 
columns if  n > 3

5. Every pair of columns should have only a 
small number of rows with non-vanishing 
entries in both columns
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• These conditions are, though providing 
conceptual grounds for rotational criteria, more 
intuitive than numerically manageable, in that the 
simple structure is not defined as a scalar-valued 
optimization function



• When  n = 2, it’s possible to find new axes in the factor space 
that go through  n distinctive clusters of variables, or that many 
variables vanish on one factor and stand out on the other

• When  n = 3, the graphical rotation should alternate across all 
pairs of factors and iterate until a satisfactory loading matrix is 
obtained  --- since rotating two axes in a 2-dimensional 
subspace will change coordinates on the other axis unless it’s 
orthogonal to the (n – 2) dimensional subspace

• With  n > 3, this graphical process becomes very tedious and 
needs some subjective judgment; and so a quantitative criterion 
was of a great demand

Graphical rotation with small  n 7



• Analytic rotations operationally define the simple structure by a 
“simplicity function”;  unfortunately, there are quite many

Quartimax (Carroll, 1953) seeks an  n × n nonsingular orthogonal 
rotation matrix  T so as to maximize the overall variance of all 
squared loadings with its simplicity function defined as:
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 and so

• Quartimax tends to yield a “g” factor and  n – 1 small factors



Varimax (Kaiser, 1958) seeks an  n × n nonsingular orthogonal 
rotation matrix  T so that the sum of variances of squared 
loadings within columns are maximized with its simplicity 
function defined as:
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• A normalized version uses adjusted squared loadings for 
communality sizes to make an even contribution of variables to 
the function;  also true for all other analytic rotations

* 2 2 2
jk jk jh  

• Varimax tends to produce rather evenly sized factors, 
compared to Quartimax



Oblimin (Carroll, 1960) minimizes sum of covariances between all 
paired columns of squared elements of the structure matrix P, 
with the following simplicity function; 

where  γ is a user-provided parameter and ranges [0,1], which 
controls degree of obliqueness as:

• Quartimin:  γ = 0 --- most oblique

• Biquartimin:  γ = 0.5 --- less oblique;  recommended by author

• Covarimin:  γ = 1 --- least oblique;  this criterion is equivalent 
to the Varimax criterion if  T is orthogonal
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• With  δ = 0, the solution is most oblique (maybe called “Direct 
Quartimin); the loss function  fDO approaches ‒∞ iff δ > 0.8
and the solution becomes less oblique with negative and 
smaller  δ

Direct Oblimin (Jennrich & Sampson, 1966) is equivalent to 
Oblimin, but the simplicity function is minimized directly with 
factor loadings (i.e., pattern matrix), instead of elements of the 
structure matrix as:

where  δ is a user-provided parameter, which controls degree 
of obliqueness as for Oblimin, but its range is not bounded
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Procrustes rotation --- as an alternative to analytic 
rotation, if an ideal loading pattern is known, the 
initial loading matrix may be rotated maximally 
toward the ideal (named after the inn keeper in 
Greek Myth who chopped or stretched his customer 
to fit to his bed)

• Or, an ideal pattern might be enforced via 
constraints, as in confirmatory FA

• Given a target  ΛT , the least-square solution for the 
rotation matrix  T is found as  --- assuming zero column 
means of  ΛT and  Λ,  and  tr(ΛT′ΛT) = tr(Λ′Λ)
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• Procrustes rotation may be called orthogonal target rotation to 
be specific;  in comparison, procrustes analysis refers to a 
linear transformation, consisting of translation and overall 
scaling (a.k.a., dilation) as well as the orthogonal target rotation

• Some “sign flipping” may be included in the rotation matrix in 
addition to literal “rotation”

Promax --- (a) an orthogonal  T is found first (e.g., by Varimax); 
(b) entries of  T are raised to  k-th power (typically with k = 4
as default) to exaggerate the distinction between small and 
large loadings; (c) the raised loading matrix is used as a target 
to rotate obliquely the original loading matrix
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• 2 factors extracted from the national track data and rotated by 
Varimax (black) and by Direct Oblimin (red)
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