
Exploratory Factor Analysis: 
dimensionality and factor scores

Psychology 588: Covariance structure and factor models



• Unlike confirmatory FA, the number of factors to extract is not 
known in advance, or a presumed dimensionality need be 
empirically supported

• There is no generally acceptable single guideline to determine 
the dimensionality  --- some are relevant to common factors 
and others to principal components, and mostly to both

• Many rules and tests are available, but unfortunately not 
necessarily suggesting the same number

• The most popular are Scree Test by Cattell and, so called, 
eigenvalue-greater-than-1 (or VAF per factor > average 
variance; a.k.a., Guttman-Kaiser rule)
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• Scree Test is criticized for its graphical nature (subjective and 
non-statistical)  --- parametric (Bentler & Yuan, 1998) and non-
parametric (Hong et. al, 2006) scree tests are available

• Parallel Analysis (Horn, 1965) improves the G-K rule for data 
size, yet non-statistical
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• With a random sample  x from a normal distribution, the 
sampling distributions of eigenvalues, eigenvectors, and 
equality of the last  q – n eigenvalues are known  --- but with 
large  N, these properties also hold for non-normally distributed  
x (due to central limit theorem), allowing for parametric 
statistical testing

• Sample eigenvalues  e are distributed as                            so 
that we can test                                        with associated  
100(1 – α)% CI as:
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• Another parametric test for principal components is Bartlett test
for                                 which is known to suggest too many 
PCs in practice
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• Sample size has a direct consequence on the statistic with no 
adjustment in the df --- large  N causing too many 
components retained
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• In most cases, this improved test behaves reasonably while it 
suggests too many components to retain when the 1st PC is 
dominantly large

• Similar  χ2 tests are available for the common factor model, 
due to Anderson, Lawley and Rubin 

• Anderson provides more generally applicable  χ2 statistic than 
Bartlett’s (e.g., not necessarily the last  q – n roots), which is 
widely used in practice and isn’t sensitive to too large  N



• National track records data for men tested by the Bartlett test 
(using Anderson’s formula) and the bootstrap Scree test 
(MATLAB codes available in my netfiles, “bscree.m” with its 
syntax “[dim,pvalues] = bscree(X, alpha, nBs, flagm)”

[ndim,prob,chisquare] = barttest(zscore(trackm),.05)

ndim = 8
prob =  0   

0
0.0000
0.0003
0.0074  
0.0080
0.0326

dim = bscree(zscore(trackm), [.25 .10 .05 .01], 1000, 0)
= 4     3     2     2

chisquare = 768.9522
256.6401
59.0284
39.6948
22.5032
15.6116

6.8479
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• Once all parameters of the common factor model  (Λ, Φ and
Θ) are obtained, we may sometimes want to know factor scores 
of “subjects”  --- quantities that are not considered as a part of 
model parameters, instead, as some values useful to know 
afterwards 

• Factor scores are not uniquely determinable since there are     
n + q unknown factors, given only  q data variables

Indeterminacy of factor scores 8

• Two approaches are considered here to overcome this problem  
--- weighted least squares and regression methods
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• Since the PC model “ignores” the existence of specific factors, 
the estimation of factor scores simply reduces to the OLS, 
given (mean-centered) data and the loading matrix as:

What if PCs are extracted 9
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which exactly determines the least-squares estimate of  ξ ---
accordingly, the indeterminacy of factor scores doesn’t apply to 
the PC model

• This LS property holds for any rotated  Λ
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• Under the common factor model,  q observed variables have a 
varying contribution to the  n common factors (i.e., different 
communalities)   --- taking this into account, a weighted sum of 
squared errors would provide a better prediction of factor 
scores (due to Bartlett) as:

WLS for common factor scores 10
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• Accordingly, the WLS estimator is:
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• A rotated version of            is obtained by simply replacing  Λ in 
the formula by

• The WLS estimate satisfies only the 0-mean property of  ξ but 
not the others (i.e., unit-variance & orthogonality if orthogonally 
rotated), though the deviations tend ignorable  --- alternatively, 
Anderson-Rubin’s modified estimation provides all satisfied 
results
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• Consider a partitioned vector of the data variables and common 
factors  [x′, ξ′]′,  with all entries mean-centered and normalized 
to unit variance, then we have the expectation of its cross-
products as: 

Regression on data variables 12
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• And if we set up a regression equation for common factors 
predicted by the scaled data

N n N q q n   ξ Z B ε

Then, the OLS estimator of  B is:
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• From the OLS estimator of regression weights, we have

Note that this estimator is applicable also to unstandardized, 
mean-centered data by replacing  Z, R, ΛR, ΦR, respectively, 
by  X, S, ΛC, ΦC (subscripts  R and  C represent the 
correlation and covariance data)
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Rank Reg1 Reg2 A-R1 A-R2 Reg1 Reg2 A-R1 A-R2

1 UK USA Portugl Dom Rep   -0.933 -1.688 -1.067 -1.991
2 Kenya Italy Kenya USA -0.928 -1.465 -0.976 -1.687
3 USA USSR NewZlnd Bermuda -0.864 -1.259 -0.911 -1.532
4 Portugl UK Norway Italy -0.855 -1.158 -0.846 -1.467
5 E Ger W Ger Nethrlnd Tailand -0.853 -1.015 -0.844 -1.308

• Factor scores (for factors 1 and 2) are estimated based on ML 
extraction and Oblimin rotation, once by regression and once 
by Anderson-Rubin WLS:



• Under normality, the ML method and PCA provide a basis for 
parametric testing

• For other methods, with large  N,  split-half analysis can be 
performed to see whether an optimal factor solution derived 
from one random half of the data “agree” with results from the 
other by the same method (same  n,  factoring and rotation)  ---
using congruent coefficient to see how the two sets agree

• Alternatively, bootstrapping could be used to empirically create 
sampling distribution of parameter estimates (e.g., Ichikawa & 
Konish, 1995)

 Note that this type of non-parametric approach do not require 
any of the usual parametric assumptions

Reliability of model parameters 15
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