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ABSTRACT: This article gives a pedagogical description of growth modeling of 
longitudinal data using latent variable methods. The growth modeling is 
described using an example of mathematics achievement developing over grades 
7 to 10 in two cohorts of students. The article describes the basic idea behind 
growth modeling of individual differences in growth over time and applies it to 
mathematics achievement development as a function of background variables 
such as gender, mother's education, and home resources. The modeling ideas are 
described in words, diagrams, and formulas. The discussion covers modeling that 
assesses the form of the growth, the influence of background variables on the 
growth, multiple-cohort analysis, analysis with missing data, and multiple-group 
analysis of males and females. A corresponding set of analYses are performed on 
the mathematics data to illustrate the modeling ideas. 

Educational studies are often used to answer questions about educational 
progress and obstacles to such progress. Longitudinal data with repeated mea- 
surements on a set of individuals provide information for answering such ques- 
tions. Examples of large-scale, longitudinal data bases are NELS (the National 
Education Longitudinal Study), LSAY (the Longitudinal Study of American 
Youth), and NYS (the National Youth Survey). Often, questions are tangible but 
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regard complex underlying processes that can only be observed with fallible indi- 
cators e.g. what particular achievement disadvantages population subgroups 
have, what usefulness new test forms have, what gender differences develop over 
time in math and science achievement, what effects tracking has on mathematics 
skill development, and what developmental differences exist across adolescents 
with respect to problem behavior. Data are available in complex multivariate 
form, often involving different test forms, attrition, and students sampled hierar- 
chically within schools. 

This article focuses on new latent variable technology that is suitable for stud- 
ies of the above kind. Methods are described for modeling individual differences 
in growth. In such modeling, however, data are usually not available in a form 
that allows standard analysis. Instead, it is frequently the case that some data are 
missing. Methods have recently been developed for modeling with data that are 
not necessarily missing completely at random. These new techniques are shown 
to fit into a conventional structural equation modeling framework, including 
mean structures and multiple-group techniques. Existing structural equation 
modeling software can be used. The article focuses on developments for continu- 
ous response variables, using conventional, normal-theory estimators such as 
maximum-likelihood. This makes it easier to cover the topics in one article, utiliz- 
ing their common features. The central unifying feature is latent variable 
constructs. 

The article is structured as follows. First, a motivating example will be pre- 
sented. Using this example, the growth modeling will be introduced, starting from 
a relatively simple situation and making the modeling increasingly more realistic 
and complex. The method will be presented using four components. The methods 
ideas will be presented conceptually in words, statistically in terms of formulas, 
graphically in terms related to software specifications, and numerically in terms of 
analysis results for the example. The presentation is hereby made more generally 
accessible. For example, the statistical sections can be skipped by the statistically 
less sophisticated reader, and the reader familiar with the ideas of the analyses can 
go straight to the graphical representation to find out how to set up the software 
input. 

A LONGITUDINAL STUDY OF GROWTH 
IN MATHEMATICS ACHIEVEMENT 

Sponsored by the National Science Foundation, The Longitudinal Study of Amer- 
ican Youth (LSAY) is a national study of performance in and attitudes towards sci- 
ence and mathematics. LSAY uses a national probability sample of about 100 
public schools, testing an average of about 50 students per school. It was con- 
ducted as a longitudinal survey of two cohorts spanning grades seven to twelve. 
The first wave of data gathering was carried out in 1987 and each testing occasion 
took place in the Fall. Background information was collected from parents, teach- 
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ers, and school principals. In this article, we will focus on mathematics achieve- 
ment. LSAY uses mathematics items from the 1986 National Assessment of 
Educational Progress (NAEP). The test measures mathematics skills in a number 
of subtopics including algebra, probability and statistics, geometry, measurement, 
and arithmetic. To properly capture growth in achievement over grades, the test 
items that are administered differ in part across grades and across students within 
grades. An adaptive testing strategy was used in order to avoid floor and ceiling 
effects and to maximize the information obtained on the students' achievement 
level. Given the performance at a certain grade, an easy, medium, or hard test 
form was chosen for the next grade. The test forms also differed across grades 
within difficulty designation. The various test forms do, however, have many 
items in common so that achievement scores from the various forms can be 
equated. This equating was carried out via Item Response Theory. 

Figure I shows the means of the mathematics achievement scores for grades 7, 8, 
9, and 10 (the younger cohort, called Cohort 2 in LSAY) and for grades 10, 11, and 
12 (the older cohort, called Cohort I in LSAY). Here, results are presented by gen- 
der (Table 1 gives further detail). It is seen that females start out ahead of males in 
the Fall of the 7th grade, but  that males overtake females in higher grades. The dif- 
ferences are small, however. Considering for example grade 12, the standard 
deviation for males is about 13 and for females it is about 11 while the mean is only 
one unit higher for males than for females. In fact, the gender differences in means 
are not significant for any of the grades. The total increase in the mean over the six 
grades is about 14 for males, i.e. about one 12th grade standard deviation. For 

FIGURE 1 
Mathematics achievement in grade 7-12 in the longitudinal study of American youth. 
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TABLE 1 
Sample Statistics 

Means and Standard Deviations 

Younger Cohort Older Cohort 

Male Female Male Female 
(N = 1393) (N= 1331) (N= 1111 ) (N= 1209) 

Mean SD Mean SD Mean SD Mean SD 

Y7 50.87 10.31 52.12 9.31 
Y8 53.49 11.12 54.70 9.53 
Y9 57.30 12.34 58.17 11.05 

Y10 60.09 14.02 60.92 12.20 
Yll  
YI2 
ME 2.42 1.07 2.31 1.01 
HR 3.32 1.80 3.02 1.51 

Correlations (off-diagonals) and Standard Deviations (diagonals) 

Younger Male 

Y7 10.32 
Y8 0.851 11.12 
Y9 0.801 0.857 12.34 

YI0 0.751 0.772 0.812 14.02 
ME 0.289 0.250 0.261 0.259 1.07 
HR 0.375 0.343 0.337 0.334 0.247 

Younger Female 

Y7 9.31 
Y8 0.841 9.53 
Y9 0.812 0.849 11.05 

YI0 0.761 0.788 0.818 12.20 
ME 0.318 0.278 0.297 0.300 1.0! 
HR 0.326 0.310 0.313 0.297 0.262 

Older Male 

YI0 I 1.65 
Y11 0.890 12.14 
Y 12 0.859 0.897 12.55 
ME 0.296 0.278 0.284 1.0 I 
HR 0.327 0.291 0.289 0.194 1.60 
Older Female 

YI0 9.82 
Y11 0.844 9.94 
YI2 0.802 0.853 10.69 
ME 0.234 0.254 0.242 1.01 
HR 0.331 0.322 0.319 0.212 1.14 

61.61 11.65 60.37 9.82 
64.29 12.14 63.34 9.94 
65.35 12.55 63.68 10.69 

2.36 1.01 2.35 1.01 
3.16 1.60 2.90 1.41 

1.80 

1.51 

f e m a l e s  t h e  t o t a l  m e a n  i n c r e a s e  is 12, a l s o  a b o u t  o n e  12th g r a d e  s t a n d a r d  d e v i a -  

t ion .  T h e  g r a p h  o f  F i g u r e  1, h o w e v e r ,  o n l y  s h o w s  t h e  a v e r a g e  p e r f o r m a n c e .  It  d o e s  

n o t  s h o w  t h e  a m o u n t  o f  i n d i v i d u a l  v a r i a t i o n  in  t h e  a c h i e v e m e n t  g r o w t h .  I t  is 

t h e r e f o r e  n o t  c l e a r  h o w  m u c h  o v e r l a p  t h e r e  is in  m a l e  a n d  f e m a l e  g r o w t h  c u r v e s .  
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The figure also does not show how the growth curves for males and females vary 
as a function of their background characteristics. It is the aim of growth modeling 
to make these further investigations. 

CONCEPTUAL DESCRIPTION OF GROWTH MODELING 

A basic idea behind growth modeling is that individuals differ in their growth 
over time. This notion is highly relevant to the LSAY example of mathematics 
achievement. Students are likely to show differences in growth as a function of dif- 
ferences in background characteristics such as gender and home environment. 
Furthermore, the mathematics curriculum is quite varied in the U.S. and students 
are likely to show differences in growth due to differences in course taking as well. 

Two main parts of the description of individual differences in growth will be 
considered. First, individuals are likely to differ with respect to their perfor- 
mance at the first testing occasion, mainly due to experiences preceeding this 
testing occasion. This will be referred to as individual differences in initial sta- 

FIGURE 2 
Growth modeling in terms of random coefficients and a multilevel model. 
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tus. In the statistical section, this part of the description will use the statistical 
term of random intercepts. Second, individuals are likely to differ with respect 
to the growth in their performance across the testing occasions, referred to as 
individual differences in the rate of growth. Growth can be described as a lin- 
ear trend and in this case the statistical term of random slopes will be used. 
Growth deviating from a straight line is, however, important and will also be 
considered here. Figure 2 illustrates the idea of individual growth trajectories. 
The top part of the figure shows the development over time for three 
individuals. 

Key modeling results are estimates of the average initial status, the average 
growth rate, and estimates of the variation across individuals of initial status 
and of growth rate. For each testing occasion, time-specific factors also influ- 
ence the performance so that a certain performance that is expected of an 
individual is in fact not realized. In statistical terms, these factors are described 
as residuals. 

Growth curve analysis is particularly useful when an attempt is made to explain 
the individual variation in initial status and growth rate using background vari- 
ables for the individual. These variables are viewed as causes of growth 
preceeding the testing occasion and do not vary across time. Such variables are of 
substantive interest in that they are predictors of the growth. The bottom part of 
Figure 2 shows how the initial status (c~) and growth rate (/~) are described as func- 
tions of a (time-invariant) background variable (w). Figure 2 is discussed in the 
statistical section below. More elaborate analysis may also attempt to account for 
the fact that the progression along an individual's growth curve may be hampered 
or enhanced by time-specific background variables. 

Growth studies often use longitudinal data from more than one group of 
individuals as with the two cohorts of LSAY. These two cohorts both include 
measurements at grade 10. The older cohort has grade 10 data from the first 
year of the study, 1987, while the grade 10 data for the younger cohort was 
collected three years later, in 1990. A cohort design of this type is often used 
to be able to describe growth across all grades, 7-12, assuming that the two 
samples come from the same population. This means that any differences due 
to the two groups being three years apart are taken to be ignorable. For exam- 
ple, it assumes that grade 10 performance for the younger cohort in 1990 is 
statistically equivalent to grade 10 performance for the older cohort in 1987; 
the student composition is taken to be the same and the school environment is 
taken to be the same. This assumption can be the subject of a special investiga- 
tion. The baseline assumption is that growth in performance is to be described 
over six grades, assuming two samples drawn from a single population. Given 
that the younger cohort provides data only from the four lower grades and 
the older cohort provides data only from the three higher grades, each of the 
two samples are viewed as having missing data from some of the six grades. 
The missingness is completely random and missing data techniques can be 
applied. 
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STATISTICAL DESCRIPTION OF GROWTH MODELING 

The statistical developments to be drawn on are termed random coefficient 
models. They go beyond conventional structural equation modeling of longitudi- 
nal data and its focus on auto-regressive models (see e.g., Wheaton, Muth6n, 
Alwin, & Summers 1977). This is in line with theory provided in biostatistics (see 
e.g., Laird & Ware 1982) and extended to latent variables in psychometrics 
(Meredith & Tisak 1984, 1990). The latent variable developments have been 
applied to psychology by McArdle and Epstein (1987), to education by Muth6n 
(1993) and Willett and Sayer (1994), and to epidemiology by Muth6n (1983, 1991). 
In structural modeling terms, we will see that the model involves both a mean and 
a covariance structure. The growth model is a multilevel model in that an individ- 
ual's observations over time are correlated. Correspondingly, a second-level part 
to the model describes individual variation in growth parameters in terms of per- 
son-specific, time-invariant covariates. 

In terms of the LSAY math achievement example, consider an achievement 
score Yit  for individual i at time point t. Here, t corresponds to the different 
grades. It is convenient to set t=0 for the lowest grade. The growth model is speci- 
fied as 

Yit  = oq. + fl i  t + Fit (1) 

Here, a i and fli  are individual-specific parameters describing initial level of 
achievement and rate of achievement growth, respectively, and Fit represent time- 
varying residuals. The regression intercept and slopes are random parameters that 
vary over individuals. The top part of Figure 2 illustrates this equation for three 
individuals. 

In any given application, it is not necessary that both the intercept and the slope 
are random, but one of the two can be fixed. For example, repeated measurement, 
random effects ANOVA customarily uses a random intercept only model to 
describe the correlations among the observations over time for a given individual. 

The specification of linear growth is not necessary. As will be seen below, the 
degree of non-linearity in the growth curve can be estimated whenever there are 
data on a sufficient number of time points. For the models we will propose, at least 
four time points are desirable. 

Extending this model to include time-invariant covariates w i, t h e  individual 
variation in these parameters is specified as 

oq. = a + Y a w i  + (~m', (2) 

[Ji = [J + '}t[j w i  + ¢3~i ,. (3) 

If the mean of w is zero, a and fl represent average intercept and slope parameter 
values, respectively, whereas more generally they are intercepts in the regressions 
on w. The ~'s are regression slope parameters, and 8's represent residuals. The 
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residuals are allowed to be correlated. The bottom part of Figure 2 illustrates a case 
where w i has negative effects (negative y's) on the intercepts and slopes. The top 
part of the figure shows a positive correlation between the intercepts and slopes, 
perhaps largely due to both being influenced by w. 

The model may be further expanded by adding a time-varying covariate vit to 
the growth curve of (1), introducing time-specific deviations from the growth 
curve, 

Yit = oh. + ~i t + ~ vit + Fit, (4) 

Assuming for simplicity that there are no time-varying covariates v, the model can 
be seen to imply growth in means and variances as a function of t, 

E(Yit I wi)  = o~ + Tawi + (~  + T~wi)t 

V ( Y i t l w i ) =  (3 2 + 2toga/3 + t 2 (~  + ($~ 

(5) 

(6) 

In general, the model imposes a structure on the means. For example, in a linear 
growth model without covariates, only two parameters (re and ]3) are used to 
explain the progression of observed means. 

The growth model can be viewed as a structural equation model with latent 
variables. The oq. and ]3/ can be viewed as latent variables instead of random 
parameters in the sense that both are unobserved i.i.d (independently and identi- 
cally distributed) variables varying across individuals. In the type of application 
considered here, t does not vary over individuals because all students are in the 
same grade at a given testing occasion. In this way, t in (4) can be considered a 
fixed regression parameter (or factor loading) for the variable 3i. This parameter 
can in fact be estimated when fixing the first two t values, thereby capturing non- 
linear growth. 

GENERAL MODEL FRAMEWORK 

This latent variable model fits into the following conventional structural equa- 
tion modeling framework, letting the observed variables Yit, wi, and vit, be stacked 
in the vector y and the latent variables of oq. and fli be stacked in q, 

y = v + Arl + e, (7) 

r/-- ¢~ + Br/+ 5, (8) 

where v and A contain measurement intercept and loading (slope) parameters, 
respectively, and ~ denotes a vector of measurement errors. The (z and B contain 
structural regression intercepts and slopes, respectively, and ~" denotes a vector of 
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residuals. With E(rl) = a ,  V(e) = O,  V ( O  -- W, usual assumptions give the mean and 
covariance structure for the y vector as 

/.t = v + A ( !  - B)-lot ( 9 )  

r --- A(I - B)-Iw(I - B) -1' A' + O (10) 

Assuming multivariate normality for the vector y, maximum-likelihood (ML) esti- 
mation is carried out by minimizing the conventional ML fitting function 

~" Np[lnlEpl + tr(X-p I Tp) - lnlSpl-r] N -l, (11) 
p=l  

where 

Tp  = Sp + - a p )  - (12) 

In maximum-likelihood (ML) estimation of conventional structural equation mod- 
els with latent variables, this is the fitting function corresponding to independent 
random samples from P populations with sample sizes Np and total sample size N. 
Here, an r-dimensional vector y, say, is observed with sample covariance matrix 
S~, sample mean vector yp, population covariance matrix Y_,p, and population mean 
v~ctor pp. The items containing ln lSpl- r are offsets so that a perfectly fitting 
model has the function value of zero. The sample covariance matrices Sp are the 
ML estimates of the unrestricted F,,p matrices and are therefore divided by Np, not 
Np - 1. Multiplying the minimum value for any model by 2 x N then gives the 
value of the likelihood-ratio chi-square test of the H 0 model against the H 1 model 
of unrestricted mean vectors/~p and covariance matrices Zp. Many models do not 
impose any restrictions on/ap in which case the second term on the right-hand-side 
of (12) vanishes and only covariance matrices are involved in the estimation. The 
simultaneous analysis of several populations is considered when the populations 
have parameters in common, so that equality constraints of parameters across 
populations are invoked. 

In a simple growth model, only one population is involved and P = 1. In an anal- 
ysis of multiple cohorts assumed to be sampled from a single population the P > 1 
feature is used (see below). In this case, a single population is still assumed and the 
use of P > I is merely a technical solution to carrying out the analysis. With multi- 
ple subgroups such as gender, P > 1 even in a single cohort. In this case, the fact 
that P > 1 reflects a genuine multiple-population analysis. The growth model 
imposes a structure not only on the covariance matrix but also the mean vector so 
that both terms of (12) are involved in the estimation. It is clear from (7) that this 
modeling framework also encompasses multiple indicators of latent variable 
constructs. 

Consider now the case of analyzing two cohorts as in the LSAY data. We view 
this as a missing data situation; for theory on missing data analysis, see e.g. Little 
and Rubin (1987). We consider the data from the two cohorts as two i.i.d samples 
from the same population, where the younger cohort has missing data in the later 
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grades and the older cohort has missing data in the earlier grades. The data is 
missing completely at random due to the sampling design. The total sample con- 
sists of ny observations from the younger cohort and n o observations from the 
older cohort. Assume for simplicity that there are no covariates. Let the vector of y 
variables for the two cohorts be denoted y~ and Yo, respectively. The vector yy has 
length four (for grades 7-10) and the vector Yo has length three (for grades 10-12). 
This means that the log likelihood for the total sample can be written as 

ny n o 

log L = ~ log(~(Yyi; 12, Z) + ~ log(~(Yoj; 12, Y..) (13) 
i = 1  j = l  

where ~ denotes a multivariate normal density. Note that the population mean 
vector ~t and the population covariance matrix 5". are the same for the two cohorts 
with the exception that different elements in these two arrays are operative in the 
two densities (corresponding to the first four variables in the younger cohort and 
the last three variables in the older cohort). Allison (1987) and Muth6n, Kaplan, 
and Hollis (1987) showed that from the point of view of structural equation mod- 
eling software, the two terms of the log likelihood in (13) can be incorporated in a 
two-population analysis using the fitting function of (11) with P = 2. 

FIGURE 3 
Graphical representation of  a g r o w t h  model for four time points. 

t = O  t - -1  t = 2  t = 3  
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GRAPHICAL DESCRIPTION OF GROWTH MODELING 
IN LATENT VARIABLE FORM, MODEL STRUCTURE, AND 

ANALYSIS SPECIFICATIONS 

It is convenient to view initial status and growth rate as latent variables. In this 
way, conventional path diagrams of structural modeling can be used to show the 
growth model graphically (squares represent observed variables and circles repre- 
sent latent variables). This graphical representation can be directly translated into 
conventional structural equation modeling software. Furthermore, it can be easily 
generalized in many ways, for example analysis with multiple indicators at a 
given time point and analysis with categorical indicators. 

Figure 3 gives an example with test scores y from four time points (e.g. four 
grades) with one time-invariant covariate w. This is the same model as described 
above in the statistics section; see also Figure 2. The figure does not show the 
growth curves, but the sources of variation that influence the growth curves. The 
latent variable of initial status is denoted a (intercept) and the latent variable of 
growth rate is denoted ~/(slope). 

MODEL STRUCTURE 

The growth model is not only a covariance structure model, but also a mean 
structure model. It is therefore useful to consider the specification of this model in 
two parts: terms contributing to the means of the observed variables and terms 
contributing to variances and covariances among these variables. 

Consider first the mean structure. The intercepts in the regressions of the y's on 
the two latent variables are parameters which should be held equal across time to 
reflect the fact that the same variable is measured at all time points (e.g a test score 
in the same metric). The mean of the latent variable a (initial status) is fixed at zero 
(when more than one population is analyzed, mean differences across the popula- 
tions can be estimated). With a single indicator as in Figure 3, the y intercept 
parameter may alternatively be viewed as the mean of the initial status factor, but 
with multiple indicators it is not convenient to estimate this parameter as the mean 
of the initial status factor. The growth in observed variable means over time is cap- 
tured by the latent variable fl having a free mean to be estimated. This will be 
referred to as the growth rate in results tables. The model adds this mean to the 
expected value of the y variable at a certain time point using the factor t, that is 
multiplying the fl latent variable mean by either 0, 1, 2, or 3 for the four time 
points. When the model includes a w variable (as in Figure 3), the free mean of the 
]3 variable is achieved by estimating a free intercept in the regression of the fl vari- 
able on w. The mean of the covariate w is free (the covariate part of the model is 
unrestricted and can be fixed at observed sample values). 

Consider next the variance-covariance structure. The growth model specifies 
that the regression coefficients of the y's on these two latent variables are not all 
free to be estimated, but some have prespecified values. The growth model speci- 
fies that the coefficient for the regression of a certain y on the a variable is fixed at 
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one for all time points. For the regression of each y on the ]3 variable the values of 
the coefficients are also fixed with values taken as the convenient scaling 0, 1, 
2 .... for the variation in t over time. 

The regressions of the two latent variables on w are to be estimated. The residual 
variances and covariance for a and/J are to be estimated. The variances of the time- 
specific residuals for the y's are also to be estimated. Usually, some form of across- 
time covariance for these residuals is needed to represent the data, e.g. allowing 
different correlations among adjacent time points. The w covariate variance (and 
covariances if there are more than one covariate) is free to be estimated (the cova- 
riate part of the model is unrestricted and can be fixed at observed sample values). 

When no covariates are present (no w's or v's), the above linear growth model- 
ing for four time points gives a model with two restrictions and thefore a chi- 
square test with two degrees of freedom. It can be seen that these two restrictions 
come from the mean structure of the model in that the four means are explained in 
terms of only two parameters. With four time points the covariance structure part 
is just-identified (not restricted) in this approach to growth modeling. This implies 
that a misfitting model suggests that linear growth is not realistic for the data. 

Linear growth is established by fixing the coefficients (the scores for the time 
variable t) for the latent variable ]3 (the slope) at 0, 1, 2, 3. Using these growth 
scores means that the growth increments from one occasion to the next are ]3 x 1. 

FIGURE 4 
Graphical representation of a growth model for four time points with covariates. 
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FIGURE 5 
Growth model  for four time points with multiple indicators and covariates. 

Non-linear growth can be estimated by instead using scores 0, 1, t12, t23, where t12 
and t23 are growth score parameters to be estimated. If for example t]2 is greater 
than 2, growth is larger between time points 2 and 3 than between time points 1 
and 2. Non-linear growth can also be accomplished by using scores generated by 
a non-linear function such as a logistic growth curve or an exponential decline 
curve. 

It is useful to also consider the model structure when only three time points are 
available. Consider for simplicity the case with no covariates present (no w's or 
v's). With linear growth, there is one over-identifying restriction on the three y 
means because there are only two parameters specific to the mean structure, the 
common intercept in the regressions of the y's and the mean of the growth rate. 
The covariance part has six elements. When the y residuals are allowed to be cor- 
related as above, these six elements are expressed in terms of eight parameters. 
The covariance part is therefore not identified but there are two indeterminacies 
among the eight parameters. As an example of this indeterminacy, we note that 
both residual covariances among the y's and the covariance between the initial sta- 
tus and growth rate factors contribute to the covariances between the y's. Adding 
w covariates will not alter this. Two restrictions need to be applied to the eight 
parameters. For example, the residual covariances between the y's may be fixed to 
zero, but if this is not correct, the six remaining parameters will be misestimated. 
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FIGURE 6 
Graphical representation of a two-cohort growth model with missing data. 
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This dilemma illustrates the usefulness of having at least four time points in 
growth modeling. 

Time-varying covariates v can be incorporated as exemplified in Figure 4. The 
v's in this figure may for example correspond to the amount and type of course 
work the student has experienced in the time period preceeding the testing occa- 
sion. The influence on the means of the y's that such covariates have may explain 
deviations from an otherwise linear growth function. 

The observed variables y can be replaced by latent variable constructs 77, each of 
which has multiple indicators y. This is a useful approach to avoiding biasing 
effects of measurement error in y. Such a model is shown in Figure 5. 

SEVERAL COHORTS; MISSING DATA 

Analysis of both cohorts simultaneously can be carried out using missing data 
specifications as follows. Figure 6 describes the situation graphically in the case 
where there are no covariates. There are six time points totally (t = 0, 1, 2, 3, 4, 5). 
The top part of the figure shows the younger cohort with achievement scores y for 
grades 7, 8, 9, and 10. Scores for grades 11 and 12 are not observed (missing vari- 
ables). The bottom part of the figure shows the older cohort with achievement 
scores y for grades 10, 11, 12. Scores for grades 7, 8, and 9 are not observed (miss- 
ing variables). 
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In the missing data two-group analysis, it must be recognized that the two sam- 
ples are assumed to be drawn from a single population. For the younger cohort the 
parameters are the variances and covariance for the latent variables a and ]/, the 
residual variances and covariances for the residuals of the y's, the common inter- 
cept in the regression of the y's on the two latent variables, and the mean of the 
latent variable ]/. In total, this is 12 parameters. There are a total of four means and 
ten variances/covariances for the four observed y variables. The younger cohort 
therefore has two more observed pieces of information than the number of param- 
eters and would give a two-degree of freedom chi-square test if analyzed alone. 
Including the older cohort in the joint analysis of the two cohorts introduces only 
four new parameters: the two residual variances for grades 11 and 12 and the two 
residual covariances for the last three grades. The other parameters are equal to 
those of the younger cohort: the variances and covariance for the latent variables a 
and/~1, the residual variance for grade 10, the common intercept in the regression of 
the y's on the two latent variables, and the mean of the latent variable 1~. In total 
then, six equality constraints need to be applied in the two-group analysis. As 
explained in Muth6n et al. (1987), the missing variables in the two cohorts can be 
handled by using dummy entries in the sample mean vectors and covariance 
matrices and by fixing parameters specific to these parts. Two analyses need to be 
performed in order to get the correct chi-square test of the growth model. The H 0 
model is the one discussed above. The H 1 model is a model where no underlying 
latent variable structure is imposed, but  where equality constraints are imposed 
for mean vector and covariance matrix elements that the two cohorts have in com- 
mon (these correspond to the grade 10 y variable in Figure 6). Note that in this 
two-cohort example, the resulting degrees of freedom is not the same as would 
have been obtained had there been a single cohort observed across all six time 
points (no missing data). This is because none of the two cohorts have observed 
covariances between the y's of the three lowest grades (7, 8, 9) and the y's of the 
two highest grades (11, 12). The number of degrees of freedom is reduced by the 
number of missing covariances which would otherwise have added to the number 
of H 1 parameters. 

The missing data approach to the analysis of the two cohorts assumes that the 
two groups are random samples from the same population. There may, however, 
be substantively meaningful exceptions from this assumption. For example, main 
parameters related to the growth curve may be assumed to be the same for both 
groups while less central parameters related to the marginal distribution of the 
covariates or the residuals of the y's may differ. In such cases, both the H 0 and H 1 
models need to relax the corresponding equality constraints. 

SEVERAL POPULATIONS 

It may also be of interest to simultaneously analyze growth in several popula- 
tions. For example, males and females may be seen as representing different 
growth curves. With two cohorts, this would lead to a four-group analysis allow- 
ing for various hypotheses of invariance across gender. 
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To test the degree of gender invariance of the growth model formally, the fol- 
lowing series of analysis steps are useful. In a first analysis, full invariance across 
gender of the growth model parameters is imposed. This gender invariance model 
can be tested against the model of no gender invariance by subtracting the sum of 
the degrees of fredom and chi-square values obtained in the two gender-specific 
analyses. If non-invariance is found, the sources of non-invariance may be investi- 
gated in the following three steps. First, we may relax invariance for the marginal 
part of the model consisting of the covariates because the growth model does not 
concern itself with this part. Second, we may relax invariance of the growth model 
residual variances (variances remaining when conditioning on the covariates), 
namely the intial status and growth rate residuals and the variances of the 
achievement score residuals. Third, we may relax invariance of the growth 
model's conditional means given the covariates, namely the growth rate intercept 
and the y intercept. 

SOFTWARE IMPLEMENTATION 

The growth modeling can be carried out using latent variable structural equa- 
tion modeling computer software. The senior author's program Mplus (Muth6n & 
Muth6n, 1998) makes this implementation particularly simple. Once a model has 
been layed out in a path diagram such as the one in Figure 3, the analysis specifi- 
cations can be given without referring to matrices or equations. 

EXAMPLES OF GROWTH MODELING USING 
LSAY MATHEMATICS ACHIEVEMENT DATA 

Mathematics data from LSAY will now be analyzed by the growth model using the 
latent variable formulation and maximum-likelihood estimation in conventional 
structural equation modeling software. A series of increasingly more complex mod- 
els will be estimated. A theme in the analyses is the study of gender differences. 
Because of this, males and females will be analyzed separately. To begin with, the 
two cohorts will also be analyzed separately, leading to a final, joint analysis. 

The sample statistics for the four groups defined by gender and cohort are given 
in Table 1. This table also includes sample statistics for the covariates that will be 
used. As time-invariant (w) covariates we will use the student's mother's educa- 
tion and a measure of home resources of an academic nature. For simplicity in the 
exposition, no time-varying covariates (v) will be used. 

ANALYSIS OF THE YOUNGER COHORT: NO COVARIATES 

The younger cohort was tested in grades 7, 8, 9, and 10. In the first analysis, we 
will examine a simple growth model with only achievement scores (the y's) and no 
covariates. The sample sizes are 1,393 for males and 1,331 for females. 
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The linear growth model does not fit well, especially not for males (the chi- 
square values with two degrees of freedom are 21.5, p=0.000, and 13.5, p--0.001, 
respectively for males and females). As previously discussed, the source of this 
misfit should not be sought in the covariance structure, but in the mean structure. 
The misfit suggests that linear growth is not realistic. We allow for non-linear 
growth by allowing growth scores to be estimated for grades 9 and 10 instead of 
fixed at the values 2 and 3. While keeping the growth step from grade 7 to 8 fixed 
at one, this means that the steps from grade 8 to 9 and from grade 9 to 10 are 
allowed to be different from one. The model is then just-identified (has zero 
degrees of freedom) and a chi-square test is not available (the model fits the data 
trivially). In this model, the means for the y variables as estimated from the model 
are in fact the same as the sample means (in practice, they are the same only to two 
digits). The estimates from this model are presented in Table 2. 

It is interesting to compare the estimated growth scores to the t (time) score 
sequence for linear growth in grades 7-10: 0, 1, 2, 3. For both males and females this 
shows that there is an acceleration in growth after the eighth grade testing occa- 
sion. The estimated growth steps given in Table 2 are computed as the difference 
between growth scores for adjacent grades. This shows that for both males and 
females there is a larger growth between the grade 8 and grade 9 testing occasions 
than between grades 7 and 8 and grades 9 and 10. 

The growth rate has only a slightly higher point estimate for males than for 
females, 2.62 versus 2.58. To better understand the magnitude of the estimated 
growth rate it is useful to look at its impact on the achievement mean increase 
from one grade to the next as estimated by the model. This is obtained as the prod- 
uct of the growth rate and the growth step. Consider for example the increase from 
grade 8 to 9. The product gives the estimated achievement mean increase 3.83 for 
males and 3.48 for females. These values can be compared to the grade 9 achieve- 
ment standard deviation of 12.34 for males and 11.05 for females. In grade 9 
standard deviation units, the increases are 31% and 32%, respectively, for males 
and females. 

Table 2 shows a significant amount of individual variation in initial status for 
both males and females, indicating that seventh graders are a heterogeneous 
group in terms of math performance. The estimated variation is larger for males 
than for females, but not significantly so. The individual variation in the growth 
rate is not significant for males or for females implying that individuals of a certain 
gender grow at the same rate. For both males and females initial status and growth 
rate have a positive correlation, 0.51 for males and 0.37 for females (assuming that 
females do vary in their growth rate), so that students who start off high grow 
faster, as expected. 

ANALYSIS OF THE YOUNGER COHORT: TWO TIME-INVARIANT COVARIATES 

The next analysis step attempts to explain the individual variation in the initial 
status and growth rate by means of two time-invariant covariates (w's): mother's 
education and home resources. The non-linear growth specification found in the 
first analysis step is maintained. Including the two covariates, the model is no 
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longer just-identified but can be tested by chi square. The model now has four 
degrees of freedom, where the four restrictions imposed by the model arise 
because the influence from the two covariates to the four math achievement scores 
is mediated by the two latent variables of initial status and growth rate so that 
eight covariances are expressed by four parameters. This model achieves a mar- 
ginally acceptable fit for males (chi square of 9.32, d.f. -- 4, p=0.053) but not for 
females (chi square 16.81, d.f. -- 4, p=0.007). It may be noted that replacing 
mother's education with an SES composite including father's education and 
income, fits the data better (chi square for males is 6.28, p=0.179; chi square for 
females is 6.57, p=0.160). It appears that mother's education has influence on per- 
formance beyond what is explained by the growth curve, particularly for females. 
Allowing one direct effect from mother's education to the math achievement score 
at one time point decreases chi square signficantly for females, particularly if the 
direct effect is for achievement at grade 7. The main parameters, however, obtain 
about the same estimates. This elaboration of the model will not used here, but 
results from the more parsimonious model will be reported. The estimates from 
this model are given in Table 3. 

An interesting finding here is that for both males and females, mother's educa- 
tion and home resources both have positive influence on the student's initial status 
as well as the student's growth rate. In terms of the growth rate of males, it may be 
noted that replacing mother's education with SES did not achieve significant influ- 
ence on the 5% level (z value of 1.39). 

The two covariates explain 20% of the variance in the initital status for males and 
16% for females. For the growth rate, however, only 2% of the variance is 
explained for males and only 4% for females, showing that many more well-cho- 
sen covariates are needed to explain the growth rate variation across students. A 
somewhat surprising finding is that this model, as opposed to the previous one 
without covariates, does describe the male and female growth rate as varying 
across individuals. 

ANALYSIS OF THE OLDER COHORT: TWO TIME-INVARIANT COVARIATES 

The older cohort was tested in grades 10, 11, 12. The same two w covariates as 
for the younger cohort are considered here. The sample sizes are 1,111 for males 
and 1,209 for females. 

Due to the fact that only three time points are available for this cohort, the linear 
growth model including correlated residuals among the achievement scores is not 
identified as previously discussed. Two restrictions need to be applied to the 
parameters to make the model identified. For example, one may restrict the two 
residual covariances to zero. This will not be pursued here for two reasons. First, 
the analysis of the younger cohort does not support the assumption of zero resid- 
ual covariances. Second, this assumption is not necessary given that the older 
cohort can be analyzed jointly with the younger cohort in which case this identifi- 
cation problem does not arise. 
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ANALYSIS OF THE YOUNGER AND OLDER COHORT: SIMULTANEOUS ANALYSIS WITH TWO 
TIME-INVARIANT COVARIATES 

In the final analysis step, a single, non-linear growth model is applied to both 
cohorts jointly. It is assumed that the two cohorts are random samples from the 
same population, with growth determined by the same parameters. As discussed, 
the chi-square test for this model is obtained as the difference between the H 0 
growth model and the H 1 model with no structure on the means and (co-)vari- 
ances except across-cohort invariance. It was found, however, that already the H 1 
model was rejected, implying that the two cohorts cannot be seen as random sam- 
ples from a single population (with 50 d.f.'s the chi square and p value were 97.82 
and 0.000 for males and 82.96 and 0.001 for females). The H 1 model rejection 
appeared to mainly be due to two causes. First, the variance of grade 10 perfor- 
mance is larger for the younger cohort than the older cohort as seen in Table 1. 
This may because more 10th grade students in 1990 (the younger cohort at the 
fourth measurement occasion) than in 1987 (the older cohort at the first measure- 
ment occasion) have access to more advanced courses. Second, the variance of the 
covariate Home Resources is larger for the younger cohort than for the older 
cohort. Perhaps this is due to a larger amount of measurement error in the report- 
ing of this variable by the younger group of students. Relaxing these two equality 
restrictions resulted in a good fit of H 1 (with 48 d.f.'s the chi square value was 45.85 
for males and 22.56 for females). Given this H 1 testing outcome, the H 0 model was 
modified accordingly in two ways. First, the two cohorts were allowed to have dif- 
ferent variances for the Home Resources variable. Furthermore, the cohort 
differences in grade 10 variance was seen to continue through grades 11 and 12 
(see Table 1) indicating a cohort effect on the variances for all three achievement 
scores. Because variance development over time is modelled by the growth rate 
variance, the second modification was therefore to allow the two cohorts to have 
different residual variance for growth rate. The corresponding H 0 and H 1 differ- 
ence test of model fit indicated good fit for males (with nine degrees of freedom 
the chi square difference value was 11.87, p= 0.221) but not for females (with nine 
degrees of freedom the chi square difference value was 31.82, p= 0.000). The signif- 
icant value of the difference test for females may be merely due to the low chi 
square value of the H 1 model, perhaps indicating that the H 1 model has unneces- 
sarily many parameters for females. The H 0 model test value for females is of the 
same magnitude as for males (57.72 for males and 54.38 for females) indicating 
that the model may be equally adequate in the two groups. The results for this H 0 
model are presented in Table 4. 

The results of Table 4 appear rather similar for males and females. The non-lin- 
ear growth model again shows that growth is accelerated between Fall of eighth 
grade and Fall of ninth grade, while slowed down when going into tenth grade. 
The information added by the older cohort shows that the growth from grade ten 
to eleven is about equal to that of grade nine to ten and that the growth from grade 
eleven to twelve is less than half of that. As with the analysis of the younger 
cohort, for both males and females, mother's education and home resources both 
have positive influence on the student's initial status as well as the student's 
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growth rate. Home Resources does not, however, achieve significance influence 
on the 5% level for the growth rate of males (the z value is 1.86). 

Given that Table 4 presents rather similar results for males and females, it is of 
interest to test gender invariance of the growth model formally. This can be done 
in a simultaneous analysis of the four groups defined by gender and cohort. The 
analysis steps previously suggested are used. The Table 4 model with no gender 
invariance fits well and serves as a baseline model (we may use the sum of the two 
H 0 chi-square tests, 112.10 with 114 d.f.'s, as baseline comparison values). In a first 
analysis of the degree of gender invariance, full invariance across gender of the 
Table 4 growth model parameters was imposed. Testing this model against the 
model with no invariance leads to rejection of full gender invariance of the growth 
model (chi square value is 406.95 with 145 d.f.'s; chi square difference test value 
comparing with the no invariance model is 297.85 with 31 d.f.'s, p--0.000). To 
investigate the sources of gender non-invariance, the following three steps were 
taken. First, we relaxed invariance for the marginal part of the model consisting of 
the covariates. This improved model fit, but the model still fit significantly worse 
than the model with no invariance (chi square with 139 d.f.'s is 288.57; chi-square 
difference comparing to the no invariance model is 176.47 with 25 d.f.'s). Second, 
we also relaxed invariance of the growth model residual variances (variances 
remaining when conditioning on the covariates), namely the initial status and 
growth rate residuals and the variances of the achievement score residuals. This 
improved model fit, but the model still fit significantly worse than the model with 
no invariance (chi square with 124 d.f.'s is 136.48; chi-square difference comparing 
with the no invariance model is 24.38 with 10 d.f.'s, p--0.007). Gender differences 
in both types of residual (co-)variances were indicated. Third, we also relaxed 
invariance of the growth model's conditional means given the covariates, namely 
the growth rate intercept and the y intercept (or, equivalently in this model, the 
initial status mean). While a y intercept gender difference was not evident, a gen- 
der difference in the growth rate intercept was. The model also allowing for 
gender differences in the growth rate intercept (but not the y intercept) fit well and 
did not fit significantly worse than the no invariance model (chi square with 123 
d.f.'s is 127.42; chi-square difference comparing to the no invariance model is 15.32 
with 9 d.f's, p=0.083). This is the final model shown in Table 5. This invariance test- 
ing sequence shows that the important gender differences in growth lie in the 
variances of the initial status and growth rate factors and in the mean of the 
growth rate factor. It is particularly important to note the finding that the y inter- 
cepts show gender invariance while the growth rate mean, by virtue of the growth 
rate intercept, is significantly higher for males. This says that males and females do 
not differ significantly in their achievement level when going in to seventh grade, 
but significantly stronger male achievement growth develops over time. As seen 
from the estimated growth rates, however, the difference is not large. In terms of 
the estimated mean increase from grade 8 to 9, the increase is 4.01 for males and 
3.59 for females with grade 9 achievement standard deviations of 12.34 and 11.05, 
respectively. 
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DISCUSSION 

As the analyses of the mathematics achievement example have illustrated, growth 
modeling provides interesting ways to discover and describe individual differ- 
ences in development over time. In contrast, the plot of averages for each grade 
shown in Figure 1 merely gives an aggregated view of achievement growth over 
time. Figure 1 did not show significant mean differences between males and 
females at any grade, but the growth model was nevertheless able to show signif- 
icant gender differences in growth rate. The growth model is able to quantify the 
amount of individual differences in growth and relate the individual variation in 
growth to background variables. 

Growth modeling in a latent variable analysis framework makes possible a very 
clear and flexible analysis. The chi-square testing procedure clearly highlights the 
assumptions that are imbedded in the model for example when assuming linear 
growth, when adding covariates, or when analyzing several cohorts and popula- 
tion subgroups. The model framework allows for easy generalizations of the basic 
growth model such as using multiple indicators and measures that are not contin- 
uous-normal, e.g. binary variables (see e.g., MuthEn, 1983). Analysis approaches 
for randomized experiments are discussed in MuthEn and Curran (1997). Analysis 
of cluster data giving rise to three-level modeling is described in MuthEn (1997). 

The fact that the latent variable approach utilizes mean and covariance structure 
modeling may, however, also lead to potential misuse. First, investigators may 
neglect to scrutinize their raw data with respect to such features as the shape of 
individual growth curves and outliers. Second, in some cases there may be com- 
peting models which fit the means and covariances roughly the same but may lead 
to different data interpretations. 

Certain classic problems of growth modeling are, of course, still present in the 
latent variable analysis framework. For example, the problem of scale changes 
over time due to changes in content is relevant in the mathematics example. While 
Item Response Theory equating is used to put the achievement test items onto the 
same scale, the content emphasis of the test changes over time. In earlier grades 
arithmetic items dominate the achievement score while in later grades algebra and 
geometry items are also present. Interpretations of growth over time is problem- 
atic if the score does not have the same meaning across time and if growth over 
time is not homogeneous with respect to these different content areas. These 
potential problems are perhaps reduced when the aim is to compare growth 
across population subgroups such as in the present analysis of males and females. 

Many further growth topics can be discussed in the latent variable analysis 
framework. Two will be merely mentioned here. One topic is the estimation of 
individual growth curves. Given an estimated growth model, such curves can be 
estimated by Empirical Bayes techniques. In the present framework this translates 
into estimation of factor scores, a topic which has a large literature in the latent 
variable modeling context. Another important topic is prediction of growth. For a 
given model, it is of interest to use an individual's background information to pre- 
dict the individual's future growth. 
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