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DEDICATION

This book is reverently and affectionately dedicated to the memory of
my colleagues and friends lost during World War II. My association with
them has contributed to the development of the ideas summarized in the
following pages. In particular, I dedicate this book to the memory of:

Apam HEIDEL, lost in a German concentration camp,

JAaNINA HosiassoN, murdered by the Gestapo,

Stanistaw KoropzIEJCZYK, missing,

Kazimierz Kornirowicz, killed by a German bomb,

Tabeusz MaTuszewsKl, lost in a German concentration camp,

JaN PiearkiEwicz, murdered by the Gestapo,

ANTONI PRZEBORSKI, starved during the German occupation of Warsaw,

Jozer PRzYBOROWSKI, constrained to commit suicide when unable to
escape the onrushing German armies,

Stanistaw Saks, murdered by the Gestapo,

Henryk WILENSKI, missing.

J. Neyman
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PREFACE

The original mimeographed edition (1938) of Lectures and Conferences on
Mathematical Statistics was exhausted within two years of its publication.
This, together with the subsequent continued inquiries from various persons
and institutions, suggested that broad circles of statisticians are in need of
a book such as this which gives the general ideas behind the theory of sta-
tistics and behind its applications. Unfortunately, certain circumstances
prevented an earlier reissue of the book.

The present edition differs substantially from the first by an omission,
by several additions and by reformulation of a considerable part of the
earlier material. Owing to the extraordinary development of the econo-
metric school on the one hand and of the works on stochastic processes
on the other, the relevant Conference in the first edition became out of
date and was omitted entirely. The interested reader is referred to arti-
cles in Econometrica, particularly to those of Ragnar Frisch, T. J. Koop-
mans, Oscar Lange and J. Marschak. In addition, he will find it both
interesting and instructive to study the articles of J. L. Doob and W. Feller
recently published in the Proceedings of the Berkeley Symposium on Mathe-
matical Statistics and Probability.?

Sporadic additions to the original material are inserted throughout
the book. However, there are a few sections which deserve special mention.
One such section is concerned with sampling human populations. Specifi-
cally, Parts 1 and 2 of Chapter III include a systematic presentation of the
theory. Part 2 reproduces an article published some time ago in the Journal
of the American Statistical Association and it is a pleasure to record my
indebtedness to the Editor for the kind permission to do so.

The next substantial addition is Part 3 of Chapter III, which deals with
spurious methods of studying correlation. Although the subject is not novel,
the inclusion of a special section given to it seems justified by the fact that
it appears to have been neglected by other authors while many empirical
studies continue to involve errors of the kind described.

Although the earlier edition of Lectures and Conferences contains a
counterpart of the present Chapter IV, there is a very substantial difference
in presentation and a considerable addition of material. This chapter gives

1 University of California Press, Berkeley and Los Angeles, 1949, 501 pp.

v



PREFACE

a three-cornered discussion of the ideas of estimation, from the point of view
of Bayes’ formula, from the point of view of confidence intervals and from
the point of view of fiducial argument. Since the publication of the first
edition of Lectures and Conferences, there has occurred a certain shift in
“allegiances” exemplified by the fact that a large section devoted to fiducial
distributions, present in an early edition of a book by an eminent author,
does not appear in his subsequent books, which contain, instead, sections on
confidence intervals. However, indications of the confusion of the Bayes’
and the more modern treatment of the problem are still noticeable in certain
sections of the literature and misconceptions involved in the fiducial argu-
ment appear about as frequently. For this reason it seemed advisable to
subject the matter to a detailed discussion. Here I wish to record my hearty
thanks to Professor E. S. Pearson, the Editor of Biometrika, for his kind
permission to reproduce my article, originally published in that journal.

Part 4 of Chapter IV is entirely new and is given over to the brilliant
recent result of Charles M. Stein.

Before concluding, I take pleasure in expressing my hearty thanks to
Dr. Evelyn Fix for her invaluable help in the preparation of this book,
for preparing the numerical illustrations, for reading and correcting the
manuscript, and for kindly advice and suggestions.

J. NEYMAN
March, 1952
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CHAPTER 1

The Modern Viewpoint on the Classical Theory of Probability
and Its Applications. Tests of Statistical Hypotheses

(The contents of this chapter are based on three lectures delivered at the Graduate
School of the United States Department of Agriculture in April, 1837.)

Introduction

After the original titles of my lectures had been fixed, I received a number
of letters from members of the prospective audience and these letters forced
me to modify the original programme and to place more emphasis than
I had intended on concepts basic in the theory of probability and statistics.

The concept of probability has been discussed and defined in many dif-
ferent ways, each having its own advantage. It must be emphasized that,
although the respective theories frequently contradict each other, this does
not necessarily mean that some of them are wrong. Any theory is correct
as long as the axioms on which it is based are not mutually contradictory
and as long as there are no errorz in deductions. Among the existing
systems of axioms and theories deducible from them, we must make a choice.
In this we shall be guided by considerations of usefulness or, by what fre-
quently amounts to the same thing, our personal taste. It is important,
however, to make clear the theory in which one is working. Otherwise,
unnecessary misunderstandings may arise.

In my first lecture I shall describe the basic ideas of the theory of proba-
bility that I prefer and have had in mind when working on the’ theories of
testing statistical hypotheses and of estimation.

So far as I am aware these views of mine are shared by E. S. Pearson
and other workers attached to the Department of Statistics at University
College, London. It may be, therefore, that the present lectures will help
one to understand the whole of the work carried on in that centre.

It would be useless, of course, to try to develop the entire theory of prob-
ability in only two or three lectures. Therefore I shall concentrate on the
general ideas, definitions, etc. Details of the theory of probability treated
from the same point of view, though perhaps using different wordings, may
be found in various books and papers, of which I shall mention the following:

1



2 MATHEMATICAL STATISTICS AND PROBABILITY

1. H. Cramér: Random variables and probability distributions. Cambridge, 1937.

2. M. Fréchet: Recherches théoriques modernes sur la théorie des probabilités.
Gauthier-Villars, Paris, 1937.

3. A. Kolmogoroff: Grundbegrifie der Wahrscheinlichkeitsrechnung. Julius Springer,
Berlin, 1933.

Finally, an elementary systematic presentation is given in the recent book:

J. Neyman: First course in probability and statistics. Henry Holt and Co., New
York, 1950.

The second lecture will be given entirely to the question of the possibility
of applying the mathematical theory of probability to practical problems.
The ideas developed here have grown out of reading such writers as E. Borel,
L. v. Bortkiewicz, Karl Pearson and undoubtedly others but it is difficult
to give exact references.

In the third and last lecture I shall deal with the somewhat narrower
but still rather broad question of what is the meaning of a test of a statistical
hypothesis and what are the grounds for choosing between several alternative
tests. Material for the third lecture has been taken essentially from an
article of mine which was published in 1929 in the Proceedings of the First
Congress of Slavonic Mathematicians in Warsaw. The title of the article
is “Méthodes nouvelles de vérification des hypothéses statistiques.”

Part 1. On the Theory of Probability

1. DEFINITION OF PROBABILITY. Probability as I shall define it will always
refer to an object of a specified kind, say A, having a certain property,
say B. Thus we may speak of the probability of a ball having the property
of being black, of a person 36 years of age “having the property” of dying
during the next twelve months, ete. It has been usual to define probability
referring either to events or to propositions. Obviously the choice is very
much a matter of convenience and it seems to me that speaking of the
probabilities of objects having certain properties is convenient. Besides, it
will be noticed that in this nomenclature we may speak also of probabilities
of events. We will mean the probabilities of events having the property
of actually occurring. Also it will be possible to speak of probabilities of
propositions, which will mean the probabilities of propositions having the
property of being true. The assumed system of expressions seems, therefore,
to be not less general than the others.

In a mathematical definition, the actual wording used does not matter
very much. However, it does have some importance since different wordings
may appeal to intuition with different strengths and may give different
emphases to the essential source of the concepts introduced. The essential



TESTS OF STATISTICAL HYPOTHESES 3

point in the concept of probability which I will use is that it will always
refer to a specified set of objects, which I shall describe as the fundamental
probability set. This point is emphasized in the wording adopted, since
we agree to speak of the probability of a specified object A having a property
B. It will be noticed that the process of specifying the object A is equivalent
to specifying or perhaps even enumerating all objects that are “A” in
distinction from those that are not. Now, all objects A will form what
I shall call the fundamental probability set (F.P.S. for short). This will
also be denoted by (4).

It is obvious that in order to be able to enumerate all objects A, these
objects must be well defined by a specification of one or more properties
distinguishing the objects A from all other objects. This property will also
be denoted by the same letter A.

Before proceeding further I shall explain the terms logical sum and
logical product of two or more properties. Let B; and B, be any two
properties. The property B; is a logical sum (or sum for short) of B, and
B, if it consists in an object possessing at least one of the properties B,
and B,, and for this sum we shall write B3 = B; + B,. It will be convenient
to use an expression like “an object B; 4+ B,” to denote an object possessing
the property B; + B., etc.

A property B4 will be called a logical product (or product for short) of
the properties B, and B, if it consists in an object possessing both B, and
B,;. We shall use the notation By = B;B; for this property and use the
expression “an object B;B;” to denote an object possessing the property
B1Ba,.

The above definitions are immediately extended to the sum and product
of any number of properties, finite or infinite.

Turning now to the definition of probability of an object A possessing
the property B, I want to emphasize that it requires the enumeration of all
the objects A actually possessing the property B, i.e. all the objects possess-
ing the property AB. According to the conventions already established, the
set of those will be denoted by (AB).

Up to the present time our considerations have been perfectly general.
Owing to the fact that the mathematical theory of sets is not commonly
known, further steps leading to the definition of probability will have to be
discussed twice, once on the assumption that the fundamental probability
set (A) is finite and next, that it is anything, finite or infinite.

Suppose that the fundamental probability set (A) is finite, and denote
by n the number of objects it contains. Further, let k be the number of

1¢“(z)” stands for “all z” and analogously for any letter in parentheses. This nota-
tion is in common use.



4 MATHEMATICAL STATISTICS AND PROBABILITY

objects belonging to (A) and having the property B. The probability of
an object A having the property B will be defined as the ratio k/n, and
will be denoted by

k
P{B| A} = ~ (1)

In other words, the probability of an object A having the property B is
defined as the proportion of objects A having the property B. The expres-
sion “the probability of an object A having a property B” is, of course,
somewhat lengthy; we shall therefore use abbreviations such as ‘“the prob-
ability of B,” but it is necessary to remember the full meaning of these words.

Whenever there will be no danger of misunderstanding, the above notation
can be simplified. For instance, if the probabilities that are calculated in
the course of solving a certain problem refer always to the same funda-
mental probability set (A4), the letter A may be omitted in the symbol of
probability, whereupon P{B} will suffice for P{B | A}. Sometimes, how-
ever, we shall have to deal not only with a fundamental probability set (4),
but also with one or more others, each forming a part of (4). For instance,
besides dealing with the probability of an object A having a certain property
B’, we might deal also with the probability of an object AB having the
same property B’ (or some other). In such cases the probabilities referring
to objects A may be written without specifying their set, while probabilities
referring to objects AB may not be: thus, P{B’ | AB} may be shortened
to P{B’| B}, and P{B’| A} may be shortened to P{B’}.

It is most important to distinguish the probabilities P{B’|A} and
P{B’ | AB}. The former is the proportion of all objects A having the prop-
erty B’, while the latter is the proportion of objects AB having the property
B’ in addition to the property AB. Special care in distinguishing these two
concepts is needed when we use shorter expressions and notations.

In order to emphasize this distinction we shall sometimes describe
P{B’| A} as the absolute probability of B’ and P{B’| AB} as the relative
probability of B’ given B. The relative probability of B’ given B may or
may not be equal to the absolute probability of B’. If it is, then we say
that the property B’ is independent of B.

It will be noticed that the definition of probability applies only to cases
where the fundamental probability set is not empty, that is to say, only
when it contains at least one element. Otherwise the word probability
would have no meaning. It follows that whenever we speak of a probability,
we imply that the fundamental probability set is not empty.

It follows from the definition that the probability P of any property, E,
is a fraction between zero and unity. If P = 0, none of the elements of
the F.P.S. has the property E. In this case we can conveniently describe
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E as an impossible property. If on the other hand P =1, it follows that
the property E may be described as a sure property.? It is easily seen that
the converses are true, namely that if E; and E, are an impossible and a
sure property respectively, then P{E,} =0 and P{E,;} = 1. It will be
noticed that the relative probability P{B’| B} of B’ given B has a definite
meaning only if B is not an impossible property.

The characteristic feature of the above definition of probability is (i)
that it refers to sets of objects and (i1) that it does not involve any reference
to “equally probable” cases. In order to emphasize the consequences of
the definition, I shall discuss a few examples.

Example 1.—A die has six faces, one and only one of which has six points
on it. The probability of a side of the die having six points on it will be,
according to our definition, always 1/6. No experiments with die throwing
are able to alter this conclusion.

Example 2.—The probability of a side of the die having #ix points on it
must be distinguished from the probability of getting six points on the
die when the die is thrown.

Reading this last sentence once again and comparing it with the definition
of probability, equation (1), one will easily see that, without further descrip-
tion of the situation, the definition of probability could not be applied to
the throws. In speaking of “the probability of getting six points on the
upper side of a die when throwing” and in trying to apply the definition
of probability, we may have various things in mind.

(a) We may think of a set of 100 throws already carried out. Then
there will be no difficulty in calculating the probability required.

(b) We may think of a set of some 100 future throws. In that case the
probability required, say P{six}, will be just unknown. To establish its
value, we should carry out the throws and count the cases with “six.”

(c) Finally we may have in mind some hypothetical series of throws and
discuss various probabilities referring to it. Usually such discussions con-
sist in deducing values of one or more probabilities from the assumed hypo-
thetical values of others. Some examples of such discussions will be found
later.

Of the three ways of interpreting the ambiguously stated problem con-
cerning the probability of getting “six” on a die when throwing, the last is
the most fruitful. We shall see this a little further on when I shall speak
of the so-called empirical law of large numbers.

Ezxample 3.—Consider the familiar expansion = = 3.14159 - -+ and denote
by Zi000 its thousandth decimal. What is the probability P{zip00 = 5} of
its being equal to 5? Here the question is not ambiguous and the answer

2 “Sure property” is an English adaptation of the French phrase, “propriété certaine,”
as introduced by Maurice Fréchet and used in similar contexts.
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is immediately found: the value of the probability P{zi000 = 5} is actually
unknown, but it is certainly either zero or unity. In fact, there is but
one object satisfying the definition of Zi900. Therefore, the fundamental
probability set consists of only one element and thus the denominator
in the right hand side of equation (1) is equal to unity. The numerator
may be equal to unity—this if x990 is actually equal to 5—or to zero, if
Z1000 18 not equal to 5. As the decimals in the expansion of = are known
only to 707 places, Z1000 1s unknown and therefore we do not know whether
P{Z1000 = 5} is zero or unity.

As I have mentioned before, probabilities may refer to some hypothetical
probability sets, with assumed properties. This case is the one with which
the theory is most often concerned, and is of extreme importance. There-
fore I shall give two illustrations.

Ezample 4—Consider a set F; of n die tosses, and denote by F, the set
of Yn(n — 1) different pairs that may be formed out of them, no element
to be repeated in a pair. If certain properties of the set F, are given we
may calculate the probability, say P{six, six | F»}, of a pair of throws with
two “sixes,” referring it to F, as the F.P.S. The property of F; that is
needed for the calculation of P{six,six |F,} consists in the probability
P{six | F1} of getting a six in one throw. Assume, for instance, that

Pfsix| F1} = %. @)

This would mean that among the n throws in F; there are exactly n/6
with six on the top face of the die, from which we could conclude that,
among the ¥%n(n — 1) pairs of throws forming F, there are exactly

o)

such pairs that consist of two “sixes,” and therefore that the probability

Pisix, six | Fy) = ——° 4

{six, six | Fa} 360 — 1) (4)

It will be seen that the above result is purely hypothetical: 2f the con-
nection between F; and F, is as described above, and if the probability of
a specified property (‘“‘six”) calculated with regard to F, is 1/6, then the
probability P{six,six | Fo} = (n — 6)/36(n — 1). Thus, ¢f the probability
set F2 has the properties as specified in the conditions of the problem, then
formula (4) holds good. We may notice at this stage that the properties
of a probability set F, relevant for the calculation of probabilities may be
given indirectly by specifying certain properties of some other set F; (or
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of many other such sets), and by describing the connection between F, and
F;. A similar situation prevails in the following example.

Ezample 5§—Consider a series of n hypothetical experiments and assume
that each of these experiments results either in an event E or in a failure
to produce E, described as non-E. Assume further that a separate prob-
ability set is connected with each of the experiments, each set consisting of
the same number m of elements and denote by F{ the set corresponding to
the tth experiment, 1 = 1, 2, -+, n. Suppose that whatever be 7, the prob-
ability of the event E calculated with regard to F/ is the same, that is,

PlE|F!} = p. (5)

We may now consider still another probability set, say Fo, the elements
of F, being all possible combinations of elements of the sets Fy’, Fy/, -+ -, F/
taken n at a time, where each element in the combination is selected from
a different set. If each of the sets F,’, Fy’, ---, F, consists of the same
number m of elements, then the set F, will consist of m" elements.

The assumed properties of the sets Fy/, F)’, ---, F,” and their connection
with Fo permit the calculation of various probabilities referring to Fo. For
instance we may calculate the probability, say P,x, which frequently is
picturesquely described as the probability of getting an event E exactly
k times in the course of n’ independent trials, the probability of E in each
trial being permanently equal to p. This probability is easy to calculate
and is known to be equal to

n!

"M
Pk = — o P

1 -p* (6)
But it is important to know what this formula denotes. This probability
P, x is no more and no less than the proportion of elements of the set F, that
have the desired property of k “events” E and n — k “events” non-E.

Again in this example, the calculation of the probability P, ; referring to
the probability set Fo was based on probabilities referring to the sets F,’,
Fy, ---, F,/ and on the structure of elements of Fy, each of them being
composed of elements of Fy', Fy/, - -+, F,/.

This is a typical situation and it will be convenient to introduce special
terminology for its description. If the elements of any probability set F,
are combinations of those of some other sets F, F;, etc., then we shall say
that the set Fy is of a higher order than the sets Fy, F5, +--. Thus we
may distinguish probability sets of first, second, third, etc. order.

In Example 4 the set F, is of first, and the set F» of second order. In
Example 5 the sets Fy/, Fy/, -+, F, are of first order and the set Fy of the
second. It is easy to construct examples in which there will be probability
sets of three or more successive orders.
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” o«

In what I have just said I used the expressions “experiments,” “results,”
“events,” which were not directly involved in the definition of probability.
I want to emphasize that these expressions are no more than a picturesque
description of fundamental probability sets and that if purity of language
really were demanded, they should not be used. However, these and
similar expressions are very frequent in all works on probability. They
were established in olden days when the point of view regarding prob-
ability theory was somewhat different. We hold on to them now because
of their convenience. This point will be discussed later when I shall speak
of applications and of the law of large numbers.

We shall notice now that a description of a conceptual experiment, as in
the above examples, amounts really to a description of probability sets.
As the sets were classified, so will be classified the corresponding hypo-
thetical experiments. Therefore we shall speak of experiments of the first,
second, third, --- order.

In order to clear away any possible misunderstanding, let us consider
again the probability sets involved in the last two examples, and illustrate
them graphically. The set F, of Example 4 may be represented by the
use of the letter s for “six,” and the letter r for “not-six.” With n = 12,
we might have the following picture:

The numbers 1 to 12 below the line represent the ordinal numbers of the
elements of F;.

To represent F, diagrammatically it will be convenient to use two dimen-
sions. Each element of F, is represented by rr, rs, sr, or ss. The rectangular
coordinates z and y of an element of F, are equal to the ordinal numbers
of the two elements of F; making up this element of F;. As z can never
be equal to y, i.e., no element of F; is to be repeated, it is permissible to
take £ > y. There will be only one element of F. possessing the property
“six-six” (ss), that composed of the eleventh and twelfth elements of F;.
It may be seen from Figure 1 that the number of elements forming F, is
66 and that, therefore, P{six, six | Fs} = 46, which agrees perfectly with
formula (4) above, if n therein be set equal to 12.

We may now illustrate the connection between the probability sets Fy
and Fy/, Fy’, ---, F,’ of Example 5. Letusputk =n=2,m =6,p = 1/6,
so that among the six elements forming either F,” or F,’ there will be only
one possessing the property E, the other five, denoted by G, being non-E.
Let E in both sets be the 6th element. Any element of Fo is formed by .
combining an element of F,” with some element of Fy’. Therefore, it will
be convenient to represent each element of Fo by a point on a plane whose
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FiGgure 1
y
11 8s
10 sr sr
9 oo sr sr
8 T T 8T sr
7 T IT T sr sr
6 T T T IT sr sr
5 T IT T T T sr sr
4 by d T by d T T r 8r sr
3 T rr T T T T rr sr sr
2 T T T T T T by g T 8r sr
1 byd r T T T T T T rr sr 8r
1 2 3 4 5 6 7 8 9 10 11 12 b4

coordinates £ and y are equal to the ordinal numbers of the elements of
F," and F), the combination of which produces the element of F, under
consideration (see Figure 2). All the elements of F, possess the required
property of being composed of elements of F,’ and F.’, but only one of
the 36 is EE. The resulting probability P, = 14¢ is in agreement with
the binomial formula (6).

FIGURE 2

y

6 | GE GE GE GE GE EE

5| GG GG GG GG GG EG

4 | GG GG GG GG GG EG

3| GG GG GG GG GG EG-
2| GG GG GG GG GG EG

1| GG GG GG GG GG EG

1 2 3 4 5 6 x

I hope that it is not necessary to insist that the above results, namely,

P{EE| F;} = P{six,six | F5} = ¢ (Ex. 4) (7
and
P{EE| Fo} = P{six,six | Fo} = % (Ex. 5) (8)

do not represent any sort of paradox. Both probabilities are calculated
correctly and they differ only because they refer to different probability
sets, F'2 and Fo. This emphasizes the fact that probabilities refer to prob-
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ability sets and that failure to specify the probability set properly may,
and usually does, cause misunderstanding.

Example 6 —The inclusion of the present example is occasioned by cer-
tain statements of Harold Jeffreys® which suggest that, in spite of my
insistence on the phrase, “probability that an object A will possess the
property B,” and in spite of the five foregoing examples, the definition of
probability given above may be misunderstood.

Jeffreys is an important proponent of the subjective theory of probability
designed to measure the “degree of reasonable belief.” His ideas on the
subject are quite radical. He claims* that no consistent theory of prob-
ability is possible without the basic notion of degrees of reasonable belief.
His further contention is that proponents of theories of probabilities alter-
native to his own forget their definitions “before the ink is dry.”® In
Jeffreys’ opinion, they use the notion of reasonable belief without ever
noticing that they are using it and, by so doing, contradict the principles
which they have laid down at the outset.

The necessity of any given axiom in a mathematical theory is something
which is subject to proof. For example, it was possible to prove that many
of the theorems taught for decades in caleculus depend on the famous axiom
of Zermelo which by itself seems very doubtful to many mathematicians.
The method of proof is as follows: One assumes that a given theorem is
true and then deduces that the axiom subject to doubt must be true also.

However, Dr. Jeffreys’ contention that the notion of degrees of reasonable
belief and his Axiom 1° are necessary for the development of the theory
of probability is not backed by any attempt at proof. Instead, he considers
definitions of probability alternative to his own and attempts to show by
example that, if these definitions are adhered to, the results of their appli-
cation would be totally unreasonable and unacceptable to anyone. Some
of the examples are striking. On page 300, Jeffreys refers to an article of
mine 7 in which probability is defined exactly as it is in the present volume.

Jeffreys writes:

The first definition is sometimes called the “classical” one, and is stated in much
modern work, notably that of J. Neyman.

8 Harold Jeffreys: Theory of probability. Clarendon Press, Oxford, 1939, vi 4 380 pp.

4 Jeffreys, op. cit., p. 300.

5 Jeffreys, op. cit., p. 303.

8 “Given p, q is either more or less probable than 7, or both are equally probable;
and no two of these alternatives can be true.” Jeffreys, op. cit., p. 16.

7J. Neyman: “Outline of a theory of statistical estimation based on the classical
theory of probability.” Phil. Trans. Roy. Soc. London, Ser. A, Vol. 236 (1937), pp.
333-380.
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However, Jeffreys does not quote the definition that I use but chooses
to reword it as follows:

If there are n possible alternatives, for m of which p is true, then the probability of
p is defined to be m/n.

He goes on to say:

The first definition appears at the beginning of De Moivre’s book (Doctrine of
Chances, 1738). It often gives a definite value to a probability; the trouble is that the
value is one that its user immediately rejects. Thus suppose that we are considering
two boxes, one containing one white and one black ball, and the other one white and
two black. A box is to be selected at random and then a ball at random from that box.
What is the probability that the ball will be white? There are five balls, two of which
are white. Therefore, according to the definition, the probability is 2/5. But most
statistical writers, including, I think, most of those that professedly accept the definition,
would give (34)-(3%) + (34)-(34) = %42. This follows at once on the present theory,
the terms representing two applications of the product rule to give the probability of
drawing each of the two white balls. These are then added by the addition rule. But
the proposition cannot be expressed as the disjunction of five alternatives out of twelve.
My attention was called to this point by Miss J. Hosiasson.

The solution, 2/5, suggested by Jeffreys as the result of an allegedly
strict application of my definition of probability is obviously wrong. The
mistake seems to be due to Jeffreys’ apparently harmless rewording of the
definition. If we adhere to the original wording and, in particular, to the
phrase “probability of an object A having the property B,” then, prior to
attempting a solution, we would probably ask ourselves the questions:
“What are the ‘objects A’ in this particular case?” and “What is the
‘property B,’ the probability of which it is desired to compute?” Once
these questions have been asked, the answer to them usually follows and
determines the solution.

In the particular example of Dr. Jeffreys, the objects A are obviously
not balls, but pairs of random selections, the first of a box and the second
of a ball. If we like to state the problem without dangerous abbreviations,
the probability sought is that of a pair of selections ending with a white
ball. All the conditions of there being two boxes, the first with two balls
only and the second with three, etc., must be interpreted as picturesque
descriptions of the F.P.S. of pairs of selections. The elements of this set
fall into four categories, conveniently described by pairs of symbols (1, w),
(1,0), (2,w), (2,b), so that, for example, (2,w) stands for a pair of
selections in which the second box was selected in the first instance, and
then this was followed by the selection of the white ball. Denote by
N1,y M5, N2, 80d N2y the (unknown) numbers of the elements of F.P.S.
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belonging to each of the above categories, and by n their sum. Then the
probability sought is

Ni,w + N2, w

P{w| pair of selections} = " 9)
The conditions of the problem imply
w 1
P{1 [ pair of selections} = %—M =3 (10)
1
P{2| pair of selections} = niw—j;—nz—b =2 (11)
w 1
P{w | pair of selections beginning with box No. 1} = U N (12)
Nw+mp 2
w 1
Plw | pair of selections beginning with box No. 2} = _Tew (13)
Ng,p + N2,6 3
It follows
M = F(1,0 + n1,) = 0, (14)
Ng,0 = F(n2,w + n2,p) = 37, (15)
P{w| pair of selections} = %. (16)

The method of computing probability used here is a direct enumeration
of elements of the F.P.S. For this reason it is called the “direct method.”
As we can see from this particular example, the direct method is occasion-
ally cumbersome and the correct solution is more easily reached through
the application of certain theorems basic in the theory of probability. These
theorems, the addition theorem and the multiplication theorem, are very
easy to apply, with the result that students frequently manage to learn the
machinery of application without understanding the theorems. To check
whether or not a student does understand the theorems, it is advisable to
ask him to solve problems by the direct method. If he cannot, then he
does not understand what he is doing.

Checks of this kind were part of the regular program of instruction in
Warsaw where Miss Hosiasson was one of my asdistants. Miss Hosiasson
was a very talented lady who has written several interesting contributions
to the theory of probability. One of these papers ® deals specifically with

8 Janina Hosiasson: “Quelques remarques sur la dépendance des probabilités a pos-
teriori de celles a priori.” C.R., Premier Congres des Math. des Pays Slaves, Warszawa,
1929, pp. 375-382.
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various misunderstandings which, under the high sounding name of para-
doxes, still litter the scientific books and journals. Most of these para-
doxes originate from lack of precision in stating the conditions of the
problems studied. In these circumstances, it is most unlikely that Miss
Hosiasson could fail in the application of the direct method to a simple
problem like the one described by Dr. Jeffreys. On the other hand, I can
well imagine Miss Hosiasson making a somewhat mischievous joke.

Some of the paradoxes solved by Miss Hosiasson are quite amusing.
The facility with which one is able to resolve these paradoxes may serve
as a test as to whether or not the definition of probability is properly
understood. The following paradox is taken from the “Treatise on Prob-
ability” by J. M. Keynes (London, 1921, p. 378). Like Dr. Jeffreys, Lord
Keynes was also a proponent of the subjective theory of probability.

Consider an urn U of which it is known that it contains exactly n balls.
About the color of the balls no information is available. Denote by m the
number of black balls in the urn. Because of the complete lack of infor-
mation as to the color of the balls and since there are n 4 1 possible
hypotheses about the value of m, namely m = 0, 1, 2, - -+, n, the subjective
theory of probability ascribes to each of these hypotheses the same prob-
ability, namely 1/(n + 1). Granting this, it is easy to show that the
probability, say P(B) that a ball drawn from the urn will be black is
P(B) = Y%. This conclusion, by itself, is not questioned. However, Lord
Keynes seems to have been puzzled by the circumstance that what applies
to black balls should equally apply to white balls and yellow balls.
Therefore, if we denote by P{W} and P{Y} the probabilities that the
ball drawn will be white and that it will be yellow, respectively, then
P{W} = P{Y} = P(B} = %.

Further, since the colors white, yellow and black are exclusive, the prob-
ability that the ball drawn will be either black, white or yellow would
appear to have the absurd value P{B + W + Y} = 1.5. How come? The
reader may wish to try to resolve this “paradox” on his own. If he does
not succeed, then he may find it interesting to consult the paper of Miss
Hosiasson.

2. MORE GENERAL DEFINITION OF PROBABILITY. The foregoing definitions
and examples are perhaps sufficient to explain the basic ideas underlying
the theory of probability when the fundamental probability set is finite.
Let us now turn to the more general case and assume that the F.P.S,, say
(A), is anything, finite or infinite. As formerly, let us denote by (B) the
set of elements of (4) that have some distinctive property B.

The definition of probability I am going to give will apply only to cer-
tain sets (4) and to certain properties B, not to all possible ones. In fact,
we shall require that the following postulates be satisfied by the class of
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subsets (B) of A which correspond to the properties B for which the prob-
ability will be defined. This class will be denoted by ((B)).
It will be assumed

(1) that the class ((B)) includes (4) so that (A4) is an element of ((B)).
(2) that for the class ((B)) it is possible to define a single-valued function
m(B), called the measure of (B), wherefore the sets (B) belonging
to the class ((B)) will be called measurable. The assumed prop-
erties of the measure are as follows:
(a) Whatever be (B) of the class ((B)), m(B) = 0.
(b) If (B) is empty (does not contain any element at all), then it is
measurable and m(B) = 0.
(¢) The measure of (A4) is greater than zero.
(d) If (By), (B3), *++, (By), <+ is any at most denumerable set of
measurable subsets, then their sum, (£B;), is also measurable.
If no two subsets (B;) and (B;) (where ¢ ¢ j), have common
elements, then m(ZB;) = Zm(B;).
(e) If (B)is measurable, then the set (B) of objects A not possessing
the property B is also measurable and consequenily, owing to

(d), m(B) + m(B) = m(4).

Under the above conditions the probability, P{B | A} of an object 4
having the property B will be defined as the ratio

m(B)
P{B|A} = —-
m(A)
The probability P{B | A}, or P{B} for short, may be called the abso-
lute probability of the property B. Denote by B;B; the property of A
consisting in the presence of both B; and B,. It is easy to show that
if (B;) and (B;) are both measurable, then (B;B:) will be measurable
also. If m(B;) > 0 then the ratio, say

m(Ble)’
m(B3)

will be called the relative probability of B; given B,. This definition of
the relative probability applies when the measure m(B;) as defined for
the fundamental probability set (A4) is not equal to zero. If, however,
m(B;) = 0, but we are able to define some other measure, say m’, applicable
to (B:) and to a class of its subsets including (B;B2) such that m’(Bs) > 0,
then the relative probability of B; given B, will be defined as

P{B,| By} =
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(BB
P{B, | B} =’—"”f—(‘B—2)l

Whatever may be the case we shall have
P{B\B;} = P{B\}P{Bz| B1} = P{B;}P{B:| Ba}. (17

It is easy to see that if the fundamental probability set is finite, then
the number of elements in any of its subsets will satisfy the definition of
measure. On the other hand, if (4) is the set of points filling up a certain
region in n-dimensional space, then the measures of Borel and of Lebesgue
will satisfy the definition used here.

If the objects A are not points (e.g., if they are certain lines, etc.), the
above definition of probability can still be applied, provided it is possible
to define a measure over a class of subsets of (4). One way of achieving
this, which is frequently applicable, is to establish a one-to-one correspond-
ence between the objects of (A) and some other objects (A”) for which a
measure has already been defined. If (B’) is any measurable subset of
(A’) and (B) the corresponding subset of (A), then the measure of (B)
can be defined to be equal to that of (B’).

If a one-to-one correspondence between (A) and (A4’) can be established
at all, then it usually will be easy to establish it in more than one way and
each definition of correspondence between objects A and objects A’ will
imply, or as one occasionally says, induce a new definition of measure for
subsets of (A). This, for instance, is the case when the objects A are chords
in a circle C of radius r and objects A’ points in a plane. It may be useful
to consider two of the possible ways of establishing a one-to-one corre-
spondence between the chords and the points leading to two different defini-
tions of measure of the subsets of chords. Specifically, we will discuss the
so-called Bertrand’s problem which consists in determining the probability
that a chord drawn “at random” in the circle C will have its length 2A
greater than some specified value 2k < 2r.

(i) Denote by x the angle between a fixed direction and the radius per-
pendicular to any given chord A4, in a circle of radius r. Further, let y
be the perpendicular distance of the chord A from the centre of the circle C.
Now let A’ denote a point on the 2y plane with coordinates  and y; then
there will be a one-to-one correspondence between the chords (4) of length
0=2h=2r and the points of a rectangle, say (A4’), defined by two pairs
of conditions [(0sz < #)(0sy=r)] and [(zsz < 2x) (0 < y=sr)]. The
class of measurable subsets of chords may now be defined to be com-
posed of all such subsets which correspond to subsets of (A’) that are
measurable in the sense of Borel. This includes the subset (AB) of chords
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with lengths 2h > 2k. In fact, these chords correspond to points, say A’B’
in (A’) with their coordinate y < /7% — k% The set of points (A’B’)
fills in a rectangle (apart from some points on the boundary) and its Borel
measure is equal to the area of this rectangle, namely 2.\/72 — k2. It
follows that the probability in which we are interested is P{h > k} =
V1= (k/r)

(ii) Denote by x and y the angles between a fixed direction and the radii
pointing towards the two ends of a given chord A. If A” denotes a point
on a plane with coordinates x and y, then there exists a one-to-one corre-

Ficure 3

+ X
0 T 2m
Solution 1.—Here the set (4) of chords is mapped on the rectangle (4’), the correspond-
ence between chords and points in (A4’) being a one-to-one correspondence.

spondence between the chords of the set (A) and the points within the
parallelogram (A4”) (see Figure 4) determined by the two pairs of condi-
tions [0z <w)(zsyszx+x)] and [(zsx<2x)(zsy<z+»)]. If
(A4,”) is a subset of (4”) which is measurable in the sense of Borel and
if (A;) is the corresponding subset of chords, then define (4;) as measur-
able and let the measure m(A;) be equal to the Borel measure of (A4,”).
The points in (A”) which correspond to chords with lengths exceeding 2k
lie above the dotted line ¥y = x 4+ 2 arc sin k/r. Since these points fill in
a parallelogram, the set is measurable and its Borel measure coincides with
the area of the parallelogram, namely 2x(= — 2 arc sin k/r). Since the
measure of the entire set (A) is equal to that of the entire set (A””) which
is 2«2, it follows that the probability P{h >k} =1 — (2/=) arc sin k/r.

It is seen that the two solutions differ and it may be asked which of
them is correct. The answer is that both are correct, but that they corre-
spond to different conditions of the problem. In fact the question “what
is the probability of a chord having its length greater than 2k” does not
specify the problem entirely. This problem is only determined when we
define the measure appropriate to the set (4) and the subsets of (4) to
be considered. We may describe this differently, using the terms “random
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experiments” and “their results.” We may say that to have a problem
of probability determined, it is necessary to define the method by which
the randomness of an experiment is attained. Describing the conditions of
the problem concerning the length of a chord that lead to the first solution
(Figure 3), we could say that in selecting at random a chord A, we first
pick at random the direction of a radius, all directions being “equally

Fioure 4
y
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o
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211' % / 3
\\\‘_/ l
X y /\V l
V) | xey=0 2%, |
a8 + |
/ < %2 I
i |
2arc sin k/r |
) I
o) m 2t X

Solution 2.—Here the set (A) of chords is mapped on the parallelogram (A"), the cor-
respondence between chords and points in (A”') being a one-to-one correspondence. -

probable,” and then, also at random, we select the distance between the
centre of the circle and the chord, all values between zero and r being
“equally probable.” It is easy to see what would be the description in the
same language of the random experiment leading to the second solution
(Figure 4).

We frequently use this way of speaking, but it is necessary to remember
that behind such words, as e.g., “picking at random a direction, all of them
being equally probable,” there is a definition of the measure appropriate
to the fundamental probability set and its subsets. I want to emphasize
that in all my writings a phrase like the previous one in quotation marks is
no more than a way of describing the fundamental probability set and its
appropriate measure. The concept “equally probable” is not in any way
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involved in the definition of probability adopted and it is a pure conven-
tion that the statement

(“For the purpose of calculating the
probabilities concerning chords in a
circle, the measure of any set (4) of
chords is defined as that of the set
(A’) of points, eath with coordinates
{z and y and such that for any chord
A in (A), z is the direction of the
radius perpendicular to A and y the
distance of A from the centre of the
circle. (A) is measurable only if
L(A') is 80.”

“In picking a chord at ran-]
dom, we first select a direc-
tion, all directions being
equally probable; and then|Means no
we choose a distance bet-|more and
tween the centre of the cir-|no less
cle and the chord, all values|than

of the distance between
zero and r being equally
probable.”

However free we are in mathematical work to use words that we find
convenient as long as they are clearly defined, our choice must be justified
in one way or another. The justification for speaking of the definition of
measure within the fundamental probability set in terms of imaginary
random experiments lies in the empirical fact which Bortkiewicz ® insisted
upon calling the “law of large numbers.” This law says that, given a
purely mathematical definition of a probability set including the appro-
priate measure, we are able to construct a real experiment, possible to carry
out in any laboratory, with a certain range of possible results and such
that if it is repeated many times, the relative frequencies of these results
and their different combinations in small series approach closely the values
of probabilities as calculated from the definition of the fundamental prob-
ability set. Examples of such real random experiments are provided by
the experience of roulette,’® by the experiment of throwing a needle ! so
as to obtain an analogy to the problem of Buffon, and by various sampling
experiments based on Tippett’s random numbers.}?

These examples show that random experiments corresponding in the
sense described to mathematically defined probability sets are possible.
However, frequently they are technically difficult. E.g., if we take any
coin and toss it many times, it is very probable that the frequency of heads
will not approach 1/2. To get this result we must select what could be
called a well-balanced coin and we must work out an appropriate method

9 L. von Bortkiewicz: Die Iterationen. Julius Springer, Berlin, 1917, x 4 205 pp.

10 Bortkiewicz, loc. cit.

11 This is mentioned by E. Borel, Eléments de la Théorie des Probabilités, Hermann,
Paris, 1909, vii 4+ 205 pp. Cf. p. 106.

12],, H. C. Tippett: “Random sampling numbers.” Tracts for Computers, No. XV,
Cambridge University Press, 1927, viii 4- 26 pp.
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of tossing. Whenever we succeed in arranging the technique of a random
experiment, such that the relative frequencies of its different results in
long series approach, sufficiently in our opinion, the probabilities calculated
from a fundamental probability set (A), we shall say that the set ade-
quately represents the method of carrying out the experiment.

We shall now draw a few obvious but important conclusions from the
definition of probability which we have adopted.

(1) If the fundamental probability set consists of only one element, any
probability calculated with regard to this set must have the value either
Zero or unity.

(2) If all elements of the fundamental probability set (A) possess a
certain property B, then the absolute probability of By, and also its relative
probability, given any other property B;, must be equal to unity, so that
P{By| A} = P{Bo} = P{Bo| B;} = 1. On the other hand, if it is known
only that P{B,} = 1, then it does not necessarily follow that P{B, | B}
must be equal to unity.

3. RanpoM vaARIABLEs. We may now proceed to the definition of a ran-
dom variable. We shall say that z is a random variable if it is a single-
valued measurable function (not a constant) defined within the funda-
mental probability set (A) with the exception perhaps of a set of elements
of measure zero. We shall consider only cases where z is a real numerical
function. If z is a random variable, then its value corresponding to any
given element A of (A) may be considered as a property of 4, and what-
ever the real numbers a < b, the definition of (4) will allow the calcula-
tion of the probability, say P{a<z < b} of =z having a value such that
aszx<b.

We notice also that as z is not constant in (A), it 1s possible to find at
least one pair of elements, A; and A, of (A4), such that the corresponding
values of z, say z; < z, are different. If we denote by B the property
distinguishing both A; and A, from all other elements of (4), and if a < b
are two numbers such that a < z; < b < z,, then P{lasz < b | B} = %.
It follows that if z is a random variable in the sense of the above defi-
nition, then there must exist such properties B and such numbers a < b
that 0 < Plasz<b|B}<1.

It is obvious that the above two properties are equivalent to the definition
of a random variable. In fact, if  has the properties (a) that whatever
a < b the definition of the fundamental probability set (A) allows the
calculation of the probability P{a<z < b}, and (b) that there are such
properties B and such numbers a < b that 0 < P{asz < b | B} <1, then
z is a random variable in the scnse of the above definition.

The probability P{asz < b} considered as a function of ¢ and b will
be called the integral probability law of z.
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A random variable is contrasted with a constant, say 6, the numer-
ical values of which, corresponding to all elements of the set (A), are
all equal. If 6 is a constant, then whatever a < b and B, the probability
P{a=6 < b| B} may have only values unity or zero according to whether
0 falls in beween a and b or not.

If we keep in mind the above definitions of the variables in our discus-
sions of them, we may speak in terms of random experiments. In the sense
of the convention adopted previously, we may say that z is a random vari-
able when its values are determined by the results of a random experiment.

It is important to keep a clear distinction between random variables
and unknown constants. The 1000th decimal, X000, in the expansion of
x = 3.14159 --- is a quantity unknown to me, but it is not a random
variable since its value is perfectly fixed, whatever fundamental probability
set we choose to consider. We could say alternatively that the value of
X000 does not depend upon the result of any random experiment.

Frequently we have to consider simultaneously several random variables

L1, T2, * "y Tn (18)

and their simultaneous integral probability law, to be defined as follows.

Denote by E the set of values of the n variables (18). This set could
be represented by a point which will be called the sample point E in an
n-dimensional space, say W, the rectangular coordinates of the point E
being the values z;, &2, **-, z». The space W will be called the sample
space. Denote by w any region in W and accept the convention that £ e w
stands for the words: “the point E is an element of w.”

If the z; are random variables, then whatever be w, we may speak of
the probability of E being an element of w, and denote it by P{E ¢ w}.
In fact this probability will be represented by the ratio of the measure of
that part, say F(w), of the F.P.S. in which the x; have values locating the
point E within the boundaries of w to the measure of the F.P.S. itself. Of
course, it must be assumed that w is measurable. With that restriction
the probability, P{E ¢ w}, is defined for every region w. This probability,
considered as a function of the region w, is called the simultaneous integral
probability law of the z;.

Apart from, or instead of, the integral probability law we may frequently
consider another function called the elementary probability law of the ran-
dom variables. This is defined as follows.

If P{E ¢w} stands for the integral probability law of the variables (18),
and if there exists a function p(E) of the z; such that whatever be w, for
which the probability P{E e w} exists,

P{E e w) =ff . -Lp(E) dzxy, dzg -« - dzy, (19)
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then the function p(E) is called the elementary probability law of the
random variables (18).

Remark: The terms “integral probability law” and “elementary prob-
ability law” were introduced in the 1920’s by the noted French probabalist,
Paul Lévy. In more recent times they are being partially replaced by
“distribution function” and “probability density function,” respectively.

It will be noticed that while the integral probability law is a function
of the region w, the elementary probability law is a function only of the
point E. It will be noticed also that p(E) may be considered as being
defined in the whole sample space and non-negative. Of course there are
cases where no elementary probability law in the above sense exists; this,
however, happens rarely in problems of statistics.

It is important to know a few simple rules of dealing with elementary
probability laws.

(1) If p(xq, 22, -+, 2s) and p(z1, 22, - -, To—1) are the elementary prob-
ability laws of

T, T2, *°y Tn—1, Tn
and (20)
L1y T2y * "y Tn—1
respectively, then
-]
p(21, T2y ** 5 Tu—1) =f p(z1, T2, * * *y Tn—1, Tn) dTn. (21)

This rule permits the calculation of the elementary probability law of any
single one of the z; whenever their simultaneous probability law is known.
(ii) If there are two sets of » random variables each,

T1, T2y, ***y Tn (22)
and
Y1, Y2y, * -, Yn (23)

such that each of the z; is a function of the y;, possessing continuous partial
derivatives with regard to any y;, the Jacobian
_ 5(.’171, Tg **- xn)
o(y1, Y2 *** Yn)

existing and being different from zero almost everywhere and never chang-
ing its sign, then the probability laws p(zy, -+, z,) and p(y1, ***, ¥a) of
the variables (22) and (23) respectively, are connected by the identity

(24)

p(ylr Yo, **-, yn) = p(xlx Zg, -, Zn)l Al (25)

where in the right-hand side the z; will ordinarily be expressed in terms of
the y;.
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Combining the two above rules we may calculate the probability law of
various functions, f(E), of the z; whenever the simultaneous probability
law of the latter is known.

In order to clear the way for the material involved in the following lec-
tures, I shall finish this one by giving definitions relating to statistical
hypotheses.

Consider the set of random variables z;, 2, -+, Z,. Any assumption
concerning their probability law (either integral or elementary) is called
a statistical hypothesis.

A statistical hypothesis is called stmple if it specifies the integral prob-
ability law, P{E ¢ w} of the z; as a single-valued function of the region w.

Any statistical hypothesis that is not simple is called composite. It may
be useful to illustrate these definitions by some examples.

The assumption H, that 2

1 \" 3
E) = > e~ Z(zi— )2/ 20 26
Px ( ) <o’ \/Zr ’ ( )
where neither u nor o > 0 is specified, is a composite statistical hypothesis.
In fact, if w denotes a region defined by the inequality

Exiz <1,

1\ .
P{E ew} = ( ) f---fe" 2e—w/2 gy dxy -+ - dz, 27)
oV 2r w

is not uniquely determined but is a function of the parameters p and o,
which are left unspecified by the hypothesis H;.

On the other hand, the assumption H, that the elementary probability
law of the z; is as given by formula (26) but with u =0 and ¢ =1 is
already a simple hypothesis. In fact, whatever the region w in the sample
space, substituting u = 0 and ¢ = 1 in (27), we shall be able to calculate
the unique numerical value of P{E ¢w}, although at times this may be
connected with great technical difficulties.

then

Part 2. Probability and Experimentation

1. ABSTRACT CHARACTER OF MATHEMATICAL THEORIES AND POSSIBILITIES OF
APPLICATIONS. It is probable that many who listened to my first lecture
were disappointed. They are engaged in applying probability to practical
problems and such problems may be the only cause of their interest in the

13 The sign Z, unless accompanied by other indications, will signify summation over ¢
from 1 ton;ie,2=1,2, -+, n,
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theory of probability. They may feel that they have no use for a theory
which treats “experiments,” “results,” or in fact everything that is of the
utmost importance to them only as picturesque descriptions of probability
sets and measures. Theory of this kind may be good for mathematicians,
they may say, but we want a mathematical theory dealing with actual
experiments, not with abstract probability sets.

It may be useful to start this lecture by considering more closely whether
or not it is possible to satisfy that part of my audience which is of the
opinion described. One might put the question this way: Is it possible to
produce a mathematical theory dealing with actual experiments or, more
generally, with phenomena of actual life?

My answer is: Probably never. That is, unless the word mathematics
changes its present meaning. The objects in a real world, or rather our
sensations connected with them, are always more or less vague and since
the time of Kant it has been realized that no general statement concerning
them is possible. The human mind grew tired of this vagueness and con-
structed a science from which anything that is vague is excluded—this is
mathematics. But the gain in generality must be paid for, and the price
is the abstractness of the concepts with which mathematics deals and the
hypothetical character of the results: 1f A is B and B is C, then A is also C.

Of course, there are many mathematical theories that are successfully
applied to practical problems. But this does not mean that these theories
deal with real objects. If they did, they could not involve general state-
ments and could not be considered as mathematical. Let us illustrate this
by a few examples. Modern geometry is a mathematical science and is
applied to practical problems. But does it deal with objects that we meet
in actual life? Let us see. Geometry deals with such concepts as planes,
straight lines, points, etc. Is there anything in real life that is exactly a
plane in the sense of geometry? We say sometimes that the surface of a
table is a plane. But if we look at the surface through a good magnifying
glass we shall immediately see that it is certainly not a plane. If we say
that it is, we mean that for practical purposes it could be considered a plane.

Here we come to the essential point: when we apply mathematics to
practical problems we never seek (and if we would, we should never suc-
ceed) to find an identity between mathematical concepts and realities; we
are satisfied if we find some correspondence between them, by which a
mathematical formula can be interpreted in terms of realities and give a
result which, for practical purposes, would in our opinion be sufficiently
accurate.

Consider a triangle T, formed by three points on this sheet of paper.
Divide it by straight lines into four smaller triangles T,, T3, T, and Ts.
If we state numerically the coordinates of all the vertices, we shall be able
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to apply known formulas and calculate the areas of all the five triangles.
Naturally, the area of T; will be equal to the sum of the areas of the other
four. This is geometry. But now take any instruments you desire and
measure the sides of all the triangles as actually drawn. Using these meas-
urements and again applying formulas we may be disappointed to find that
the area of T; so calculated is not exactly equal to the sum of the areas
of T2, T3, T4 and T5.

It will be suggested that the discrepancy is due to errors of measurement.
This is true so far as the expression “errors of measurements” stands for
something broader, including the fact that the dots representing the vertices
of the triangles are not the points we consider in mathematics. However,
for many practical purposes the agreement between the area of T'; and the
sum of areas of T», T3, T4 and T will be judged satisfactory and this is
the decisive point in the question of whether or not the mathematical theory
of geometry can be applied in practice.

A closer examination of other mathematical theories applied to practical
problems will reveal the same features. The theory itself deals with abstract
concepts not existing in the real world. But there are real objects that
correspond to these abstract concepts in a certain sense, and numerical
values of mathematical formulas more or less agree with the results of
actual measurements. In the earlier stages of any branch of mathematically
treated natural science we are satisfied with only a slight resemblance
between mathematical and empirical results, but later on our requirements
become more and more stringent.

After this somewhat long general introduction we may turn to the main
topic of this lecture which is whether, and if so, how the mathematical
theory of probability can be usefully applied in natural science.

2. RANDOM EXPERIMENTS AND THE EMPIRICAL LAW OF LARGE NUMBERS. It
follows from what I said that the foundations of the theory of probability
could be chosen in many ways. But however they are chosen, if their
accuracy is on the level now customary in mathematics, the theory of
probability will deal with abstract concepts and not with any real objects.
Therefore, the application of such a theory will be possible only if one can
establish a bridge or a correspondence between concepts of the theory and
real facts. The actual applications must be preceded by numerous checks
and rechecks of the permanency and the accuracy of such correspondence.
If one judges this to be sufficiently accurate and finds it sufficiently perma-
nent, then the predictions—the final aim of any science—based on the
mathematical theory of probability, will have some prospect of success.
Otherwise the theory may be interesting by itself, but useless from the
point of view of application.

What, then, is the class of facts that corresponds to concepts of the
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theory of probability as described in my first lecture? What is the meaning
of this correspondence?

The class of such facts may be described as the results of random experi-
ments. It is impossible to give an exact definition of experiments that are
called random, but it would be equally impossible to give a definition of
objects in the real world that deserve the description “plane,” “straight
line,” etc. If we try to do so, we shall inevitably find ourselves speaking
not of real objects but of abstract concepts. At most we can give a rough
description of random experiments and some illustrations so as to appeal
to the intuition. In what follows, unless otherwise stated, whenever I shall
speak of experiments I shall mean real experiments, not hypothetical ones.

There are experiments which, even if carried out repeatedly with the
utmost care to keep conditions constant, yield varying results. They are
“random.”

(a) We may construct a special machine to toss coins. This machine
may be very strong, driven by an electric motor so as to impart a con-
stant initial velocity to the coin. The experiments may be carried on in a
closed room with no noticeable air currents; the coin may be put into the
machine always in the same way; and even then I am practically certain
the results of the repeated experiments will vary. Perhaps frequently we
may get heads, but from time to time the coin will fall tails. The experi-
menter may be inclined to think that these cases arise from some “error of
experimentation.”

(b) Another example of this kind is provided by roulette. A well-con-
structed roulette wheel with an electrically regulated start will yield varying
results.

(c) The above were types of random experiments arranged by men. But
there are some going spontaneously. Consider a quantity of radioactive
matter and the « particles it emits in some specified direction within a
cone of small solid angle. These particles could be recorded by the fluo-
rescence they produce when falling on an appropriate screen. Let us
observe this screen for several consecutive minutes, one minute’s observa-
tion being considered as a single experiment. It will be found that how-
ever constant be the conditions of the consecutive experiments, the results
will vary in that the number of disintegrations recorded per minute will
not be the same.

(d) Another example of this kind is provided by the varying properties
of organisms forming an F, generation, however homogeneous be the con-
ditions of breeding.

These examples may make sufficiently clear what I mean by random
experiments. Now I shall explain the sense in which their results correspond
to concepts involved in the theory of probability.



26 MATHEMATICAL STATISTICS AND PROBABILITY

Let N and n be positive integers, N fairly large, say 1000 or so, and
n moderate, say 10. Let us perform a long series of Nn random experiments
of the type described, and count cases where a certain specified result E
occurred. Let it be in M cases. Dividing M by Nn we obtain the ratio

M 1
f T (1)
which will be called the relative frequency of the result E in the course of
Nn trials. These Nn trials will be called experiments of the first order.
Now divide the whole series of Nn first order experiments into N groups of
n trials each in the order in which the trials were carried out. Each such
group of n first order trials will now be considered as a trial of second order.
The second order trials could be classified according to the number k of
occurrences of the result £ in the n first order trials of which they are
formed. Obviously k£ could be equal to 0, 1, 2, ---, n, in any one of the
second order trials. Let m; denote the number of trials in which E occurred
exactly k times, and

Fop = @
n.k N
the relative frequency in the series of second order trials.

It is a surprising and very important empirical fact that whenever suffi-
cient care is taken to carry out the first order experiments under as uniform
conditions as possible, and when the number N is large, then the relative
frequency F,; appears to be very nearly equal to the familiar formula

n!
(n — k)k!

In other words, the relative frequency F,; relating to a series of second
order experiments is connected with the relative frequency of the first
order experiments in very nearly the same way as the probability P
relating to the second order probability set, as discussed in my first lecture,
is connected with the probability p referring to the corresponding first order
probability set.

In order to avoid misunderstanding, let us describe the situation in
greater detail. Suppose that the random experiment under consideration
consists in 2N throws of the same die and that f is the relative frequency
of cases where the upper side of the die had six points on it. The value
of f may be close to 1/6 or not. It may, in fact, differ considerably from
1/6, depending on the structure of the die and the exact conditions of
throwing. But if we split the whole series of trials into consecutive pairs,
then the proportions of pairs with 0, 1 and 2 sixes will be, approximately,

1 — Nkt 3)
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The above fact, which has been found empirically * many times, could
be described in a more general way by saying that single random experi-
ments and the various groups of these experiments usually behave as if
they tended to reproduce certain first order probability sets, corresponding
to first order trials, and the appropriate second order probability set. This
fact may be called the empirical law of large numbers. I want to empha-
size that this law applies not only to the simple case connected with the
binomial formula which was discussed above but also to other cases. In
fact, this law seems to be perfectly general, in the sense in which we use
the word general with respect to any other “general law” observed in the
outside world. Whenever the law fails, we explain the failure by suspecting
a “lack of randomness” in the first order trials.

Suppose now that having repeatedly performed series of random experi-
ments of some specified kind we have always found that they do conform
to the empirical law of large numbers. Then, as is our custom, we expect
them to behave similarly in the future, and we expect the calculus of prob-
ability to permit us to make successful predictions of frequencies of results
of future series of experiments.

This is the way in which the abstract theory of probability described in
my first lecture may be put into correspondence with happenings in the
outside world and how it may be, and actually is, applied to solve problems
of practical importance. The standing of the theory of probability is, in
this respect, no different from any other branch of mathematics. The appli-
cation of the theory involves the following steps.

(i) If we wish to treat certain phenomena by means of the theory of
probability we must find some element of these phenomena that could be
considered as random, following the law of large numbers. This involves
a construction of a mathematical model of the phenomena involving one
or more probability sets.

(ii) The mathematical model may be satisfactory or not. This must
be checked by observation.

(iii) If the mathematical model is found satisfactory, then it may be
used for deductions concerning phenomena to be observed in the future.

Let us illustrate these steps by a few examples taken from the current
literature.

3. ILLusTrATIONS. Ezample 1.—Two bacteriologist friends of mine, Miss
J. Supinska and Dr. T. Matuszewski, were interested in learning whether
the calculus of probability could be applied to certain problems concerning

1See, for example, L. von Bortkiewicz, Die Iterationen, Julius Springer, Berlin, 1917,
x + 205 pp.
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the colonies of bacteria on a Petri-plate. The diagram reproduces a photo-
graph of a Petri-plate with colonies that are visible as dark spots.

3 | ca |2 | 0| s, e
“a | 1[4 |*5 |i2
d.a | o] o |"1 |*3 |*4

\.'\.2 °.4 .2 3/

You will notice that the plate is divided into a number of small squares.
In order to explain the particular mathematical model that was tried in
this instance, consider the contents v of one particular square and consider
one particular living bacterium B contained in the liquid that was poured
on the plate. In the mathematical model all the operations performed with
the liquid and the plate which resulted in fixing the bacterium B in some
point are considered as a first order experiment which may result either in
B falling within v, or not. If there were N living bacteria in the liquid
poured on to the plate, then there were N such first order experiments all
relating to the same square v. They form a single second order experiment.
Finally, if the number of squares in which the plate is divided be n, then
there will be n second order experiments, which, taken together, could be
considered as one third order experiment. Without going into further
details of this mathematical model I shall state that it implies that the
probability of any of the squares containing exactly k colonies must be
approximately equal to the Poisson formula

e M\
k!

where A means the average number of colonies per square. The reader will
notice that the above k satisfies the definition of a random variable the
integral probability law of which is given by

' (5)

Py =
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b—1 k
P{a§k<b}=2e—*a for0 < a < b. (6)
k=a
If this mathematical model could be assumed to correspond accurately to
the actual experiments in the sense explained above, then it could be used
for predicting frequencies of certain circumstances that are important in
bacteriology. One of the questions that my colleagues had in mind was
how frequently a single colony is produced by two or more unconnected
bacteria.

In order to answer the question whether or not the number k of colonies
within a square could be considered as a random variable whose prob-
ability law could be represented by formula (5), my colleagues performed
a series of experiments summarized in Table 1.

The values of k are the numbers of colonies within the squares into
which the whole plate was divided. m’ and m denote respectively the
observed and the expected numbers of squares having the number k of
colonies. The last two lines give measures of the goodness of fit, the chi-
square and the corresponding P. It is seen that without exception the
agreement between the observed and the theoretical frequencies obtained
by multiplying the Py of formula (5) by the total number of squares on
the plate, is surprisingly good. As a matter of fact, the total number of
similar experiments that have been carried out is much larger, and in not
a single case has any serious disagreement between the distribution of
colonies and the Poisson law been recorded. This entitles us to expect that
the results of future experiments will be similar, and that conclusions con-
cerning these future experiments drawn from the mathematical model
described above, will be correct, or good enough.

If the model implies that in a particular case the probability of a colony
arising from more than one independently floating individual is for instance
P = 001, we may conclude that about 99.9 percent of the colonies were
produced by one individual only.

For the sake of clearness I may mention that in the above statement
“one individual” does not necessarily mean one cell. This expression refers
to one or more cells that are floating together, being connected either
mechanically or biologically.

Example 2—Table 1I is reproduced from an article in Biometrika, and
represents a comparison between the Poisson law, formula (5), and the
distribution of dodder in samples of clover seed. The problem and the
mathematical model were similar to that treated above.

The table gives 12 comparisons, of which eleven are based on material
produced by Schindler and the last by the authors of the article, J. Przybo-
rowski and H. Wilenski. It will be seen that the material as a whole is
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TasLE I

Comparison of distribution of colonies with Poisson Law

[T. Matuszewski, J. Supinska and J. Neyman, Zentralblatt fiir Bakteriologie,
Parasitenkunde und Infektionskrankheiten. I1. Abteilung, 1936, Bd. 95].

Plate 1 Plate 2 Plate 3 Plate 4 Plate 5
k
m’ m m’ m m’ m m’ m m’ m
0 5 6.1 26 27.5 59 55.6 83 75.0 0 0.7
1 19 18.0 40 42.2 86 82.2 134 | 144.5 5 3.9
2 26 26.7 38 32.5 49 60.8 135 | 139.4 9 11.0
3 26 26.4 17 16.7 30 30.0 101 89.7 23 20.9
4 21 19.6 {5 15 40 43.3 33 29.6
5 13 11.7 2 +9.1 { 3 |+15.4 16 16.7 32 34.0
6 4 2 3 32 31.8
7 {3 +9.5 {2 +7.4 24 25.8
8 1 2 13 18.3
9 12 11.6
10 8 6.7
11 7
12 2 +5.7
x> 0.77 1.61 4.05 3.47 4.94
P, 0.97 0.66 0.26 0.63 0.84
Plate 6 Plate 7 Plate 8 Plate 9 Plate 10
k
m’ m m' m m’ m m’ m m' m
0 8 6.8 0 10.3 7 3.9 3 2.1 60 62.6
1 16 16.2 12 ) 11 10.4 7 8.2 80 75.8
2 18 19.2 18 16.7 11 13.7 14 15.8 45 45.8
3 15 15.1 13 22.4 11 12.0 21 20.2 16 18.5
4 9 9.0 27 22.7 7 7.9 20 19.5 {8
5 4 19 18.3 3 19 15.0 1 +7.3
6 2 16 12.3 2 7 9.6
7 0 +6.7 6 1 +7.1 6
8 1 4 +13.3 1 1
9 1 1 0| +9.6
10 2
x? 0.30 6.67 3.21 2.63 1.09
P2 0.97 0.25 0.53 0.85 0.78

k = number of colonies per square.

m’ = observed frequency.

m = expected frequency

(Poisson).
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TaBLE II—Continued

Authors’ own experi-
Sample 11 ment with known
A=2
k
Ny NPy k N N.-P;

0 0 0.09 0 56 | 67.67
1 0 0.66 1 156 | 135.34
2 1 2.49 2 132 | 135.34
3 4 6.22 3 92 | 90.22
4 9 11.67 4 37| 45.11
5 16 17.50 5 22 18.04
6 19 21.87 6 4 6.02
7 19 23.44 7 0 1.72
8 26 21.97 8 1 0.43
9 19 18.31 | Over 8 0] 0.12
10 15 13.73

11 14 9.36

12 5 5.85

13 6 3.38

14 3 1.81

15 3 0.90

Over 15 | +1 || +0.74
X2 9.81 8.92
P2 0.548 0.179

not as satisfactory as in the preceding example. It seems to follow that
if samples of clover seed are drawn by the method employed by Schindler,
then conclusions concerning them drawn from the mathematical model
involving the Poisson Law will not necessarily be very accurate. But it is
possible that the method of drawing samples of seeds may be so adjusted
(this is the opinion of Przyborowski and Wilenski) that the number of
dodders in a small subsample of seeds could be considered rightly as a
random variable following the Poisson Law.

As mentioned above, if the outcomes of experiments or observations do
not conform with the predictions of a mathematical model that is strongly
suggested by intuition, then it is usual to ascribe the divergencies to “faults
of experimentation.” This expression is vague, and if we try to make it
more precise, we shall probably come to the description: “The random
machinery of the observed phenomena does not correspond to the mathe-
matical model assumed.” The situation can be remedied in two ways.
One is to make an effort towards a better understanding of the phenomena
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studied and therewith to modify the mathematical model. The other way
is to modify the method of experimentation so as to bring it into con-
formity with the original mathematical model. The possibility and desir-
ability of these two methods depend on the circumstances of the problem.
They are illustrated in the following two examples.

Ezxample 3.—Problems of pest control led to studies of the distribution
of larvae in small plots. An experimental field planted with some crop
is divided into a number of small plots, very much as a Petri-plate in
Example 1 was divided into small squares. Then all the larvae found in
each plot are counted. Naturally, the number of larvae varies considerably
from one plot to another. The original mathematical model of the machin-
ery behind this variability, the one strongly suggested by intuition, was the
same as that used for the interpretation of the variability of the number
of colonies from one square on the Petri-plate to another. Therefore,
attempts were made to fit the observed distributions with a Poisson fre-
quency law. Counts of larvae and attempts to understand the machinery
of their distributions were made by many research workers. Table III,

TasLE III

Comparison of the distribution of beet web worms with the Poisson and Type A
contagious distributions
{G. Beall, Ecology, Vol. 21, 1940, p. 462]

Treatment 1 (untreated) Treatment 2 Treatment 3
Class
Obs. Poisson | Type A Obs. Poisson | Type A Obs. Poisson | Type A
exp. exp. exp. exp. exp. exp.
0 117 80.1 116.7 205 | 196.2 203.8 162 | 138.6 157.6
1 87 | 112.2 84.3 84 99.0 87.8 88 | 118.1 96.0
2 50 78.5 58.3 30 25.0 25.9 45 50.3 45.4
3 38 36.7 33.6 4 4.2 6.1 23 14.3 17.6
4 21 12.8 17.4 2 0.5 1.2 5 3.0 6.0
5 7 3.6 8.3 2 0.5
6 2 0.8 3.7 +0.1 +0.2
7 2 0.2 1.6 +0.2 +2.4
8 0
9 1|1+40.1 +1.1
my 2.114 3.204 2.537
ma 0.662 0.157 0.336
x? 46.8 3.1 4.0 1.1 20.2 2.7
P,a 0.000 0.543 0.135 0.282 0.000 0.269
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TasLE III—Continued

Comparison of the distribution of diplopods with the Poisson and T'ype A contagious distributions
[L. C. Cole, Ecological Monographs, Vol. 16, 1946, p. 71]

J
l\u;:rber Obs. Poisson | Type A
board exp. , &xp-
0 128 | 100.5 133.6
1 71 95.5 61.0
2 34 45.4 35.6
3 11 14.4 17.2
4 8 3.4 7.5
5 5 0.7 3.1
Over 5 3 0.1 2.0
mi 1.307
my 0.712
x? 20.5 4.1
Py 0.000 0.249

taken from data in papers by Geoffrey Beall,? Lamont C. Cole ® and S. B.
Fracker and H. A. Brischle,* gives a few observed distributions and their
comparison with theoretical distributions.

In all cases, the first theoretical distribution tried was that of Poisson.
It will be seen that the general character of the observed distribution is
entirely different from that of Poisson. There seems to be no doubt but
that a very serious divergence exists between the actual phenomenon of
distribution of larvae and the machinery assumed in the mathematical
model. When this circumstance was brought to my attention by Dr. Beall,
we set out to discover the reasons for the divergence.

From the discussion of Example 1 you will perceive that, if we attempt
to treat the distribution of larvae from the point of view of Poisson, we
would have to assume that each larva is placed on the field independently
of the others. This basic assumption was flatly contradicted by the life
of larvae as described by Dr. Beall. Larvae develop from eggs laid by

2 Geoffrey Beall: “The fit and significance of contagious distributions when applied to
observations on larval insects.” Ecology, Vol. 21 (1940), pp. 460-474.

8 Lamont C. Cole: “A study of cryptozoa of an Illinois woodland.” Ecological Mono-
graphs, Vol. 16 (1946), pp. 49-86.

4S. B. Fracker and H. A. Brischle: “Measuring the local distribution of Ribes.”
Ecology, Vol. 25 (1944), pp. 283-303.
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TaBLE III—Continued

Comparison of distribution of ribes with the Poisson and Type A conlagious distributions
[S. B. Fracker and H. A. Brischle, Ecology, Vol. 25, 1944, p. 291]

Number
per 0.1 Obs. Poisson | Type A *
acre exp. exp.
strip
0 42 18.9 42.3
1 11 23.0 15.6
2 4 14.0 10.8
3 1 5.7 5.9
4 3 1.7 3.0
5 1 0.4 1.4
6 0 0.1
Over 6 2 |L40.2 +1.0
m 1.000
me 1.013
X2 41.7 1.92
P2 0.000 0.392

* In the original publication the fit given was worse, due to maladjustment of parameters
my and ms.

moths. It is plausible to assume that, when a moth feels like laying eggs,
it does not make any special choice between sections of a field planted with
the same crop and reasonably uniform in other respects. Therefore, as far
as the spots where a number of moths lay their eggs is concerned, it is
plausible that the distribution of spots follows a Poisson Law of frequency,
depending on just one parameter, say m, representing the average number
of spots per unit area.

However, it appears that the moths do not lay eggs one at a time. In
fact, at each “sitting” a moth lays a whole batch of eggs and the number
of eggs varies from one cluster to another. Moreover, by the time the counts
are made the number of larvae is subject to another source of variation,
due to mortality.

After hatching in a particular spot, the larvae begin to look for food and
crawl around. Since the speed of their movements is only moderate, it is
obvious that for a larva to be found within a plot, the birthplace of this
larva must be fairly close to this plot. If one larva is found, then it is
likely that the plot will contain more than one from the same cluster.
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Considerations of this kind were used to build up a mathematical model
of the distribution of larvae which led to the following results. Let
C (k) denote the probability that a plot will contain exactly k larvae, for
k=0,1,2, ---. The probability C(0) that there will be no larvae in
the plot considered is computed from the formula

C(O) = e—ml(l—e—"'z). (7)

If C(0), C(1), -+, C(k) are computed, then C(k + 1) is given by the recur-
rence formula

mze—mz k t

m
Ck + 1) =;k+—1—2t—fcac—t). 8)
== *
In particular,
c(1) = —mi(l—e ™) @ —mgz 9
( ) € 1! mye ’ ( )
2
C@) = &™) 22 (e 4 mae™™), (10)

ete.

It may be regretted that the formulae are somewhat complicated. How-
ever, since the machinery behind the distribution of larvae is rather com-
plex, one has to put up with the resulting inconvenience.

Because, as we have observed, a plot that contains one larva frequently
contains more than one, the distribution deduced was called “contagious.”
Several distributions of a similar kind were deduced and, to make a dis-
tinction, the one given by the above formulae was called contagious of
type A with two parameters.®

A distribution of type A depends on two parameters, m; and m., which
are connected with three quantities having a physical meaning as follows.
Assume that the area of the plot on which the larvae are counted is equal
to unity. Further, let m be the average number of batches of eggs per unit
of area, and let A be the average number of survivors per batch of eggs at
the time when the counts are made. Finally, let us introduce an area A
which we shall call “area of accessibility.” Imagine a plot P of unit area
on which counts of larvae are to be made and let S denote a spot on which
a batch of eggs was laid. If S is far from P, then no larva hatched at S
can be found in P. The area A, by definition, contains all points S such
that larvae born at S can reach the plot P before the counts are made.

5 The term “contagious distribution” was borrowed from G. Pélya, who was the first
to consider this type of problem. Sece G. Pélya: “Sur quelques points de la théorie des
probabilités.” Annales de U'Institut Henri Poincaré, Vol. 1 (1931), pp. 117-162.

See also W. Feller: “On a general class of ‘contagious’ distributions.” Annals of Math.
Stat., Vol. 14 (1943), pp. 389-400.
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Obviously, the more mobile the larvae are, the larger the area A and
conversely. Consequently, if one counts very young larvae, then A is
small, close to unity. For larger larvae, the area A is larger. It follows
that a reasonable agreement between theory and observation may be
expected only if counts include larvae of more or less the same age.

The parameters m; and m. are connected with m, A, and A by the fol-
lowing formulae:

A
my = Am, mg = Z (11)
The mean number of larvae per plot is
F-l’ =m= mms, (12)
the variance is
A
Mo = Am (1 + Z) = m1m2(1 + M2). (13)

1t is seen that if the mean p,” is kept constant while the area of accessibility
A is indefinitely increased, then the contagious distribution approaches the
Poisson Law. Details concerning the distribution can be found in the
original publication.® Table III gives the comparison between the observed
distribution of larvae and the one expected on the basis of contagious dis-
tribution of type A with two parameters. It is seen that in all cases the
agreement is satisfactory. The data presented do not exhaust the instances
where contagious distributions of type A fit actual counts of insects. In
fact, it seems already safe to say that satisfactory agreement between this
particular mathematical model and observation is a more or less general
rule with the restriction that the life of the insects concerned does not
depart too widely from the general scheme described above. On the other
hand, there are organisms (e.g., scales) whose distribution on units of area
of their habitat does not conform with type A. An investigation revealed
that the processes governing the distribution of these organisms were much
more complex than that described and therefore, if a statistical treatment
is desired, a fresh effort to construct an appropriate mathematical model is
necessary.

In this example, in order to have agreement between the observed and
predicted frequencies, it was imperative to adjust the mathematical model.
This is generally the case when the phenomena studied develop by them-
selves and do not admit of any sort of human control. In the next example
we consider an instance of another kind where the experimental technique
may be so changed as to fit a desirable mathematical model.

6J. Neyman: “On a new class of ‘contagious’ distributions, applicable in entomology
and bacteriology.” Annals of Math. Stat., Vol. 10 (1939), pp. 35-57.
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Example 4. —This example deals with a category of industrial problems.
Problems of this kind are treated by Walter A. Shewhart” and the reader
will find them of considerable interest.

Many laboratories are engaged in what is called routine analysis. Small
quantities of certain materials are sent to the laboratory for determining
the content of a certain ingredient X. The sample is subdivided into a
few portions, three, four or sometimes five, and these are analyzed sepa-
rately. Denote the particular results by z;, z2, z3 and x4 respectively and
by u the “true” content of the ingredient X so that the x; denote the meas-
urements of p.

Because of experimental errors the measurements z; differ from u and
differ among themselves. Frequently there is evidence that the measure-
ments could be regarded as random variables following a normal law of
frequency,

— - (@—w¥/20?

p(x) Vo e ’ (14
so that this formula forms the mathematical model of the experiments of
first order. The model may be used to estimate the value of x knowing
only the values of four measurements z,, z., 3 and z,. But we can proceed
differently. Denote by f; and f» some two functions of the z;. If the z;
are random variables, then f; and f, will also be random variables and we
may consider probabilities of their satisfying any given inequalities. We
may also look for some particular forms of the functions f; and f. such
that the probability of their satisfying a given inequality shall be equal
to any given number between zero and unity. Starting from this point of
view it has been found that the functions ®

fi = 1S
1= \/”—1’
and (15)
frm gt
2 =2 \/”;

have a remarkable property. Here & is the arithmetic mean of the measure-
ments z;, n their number, s their estimated standard deviation,® and ¢, the

7 Walter A. Shewhart: The Economic Control of Quality of Manufactured Product.
Van Nostrand, New York, 1931, 501 pp.

8J. Neyman, “Outline of a theory of statistical estimation based on the classical
theory of probability.” Phil. Trans. Royal Soc., A236 (1937), pp. 333-380. See also the
conferences on estimation and confidence intervals.
(zi — £)*
(n—1)

9 That is, s is an estimate of ¢; s2 = X
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value of Fisher’s ¢t corresponding to the number of degrees of freedom on
which s is based, and to P =1 — a =, e.g., .01l. If the measurements z;
are independent random variables following the normal law (14), then what-
ever be the values of u and o, the probability of f; falling short of u and of f,
exceeding u is exactly equal to « = .99.

This circumstance permits the estimation of u in the form of a random
experiment. We perform the experimental analysis, obtaining the values of
the z;, and then state that

oS laS
T — =S usSi+——- 16
n ] + '\/;l ( )

We may be wrong in this statement, but if the z; do follow law (14), the
probability of our being correct is equal to @ = .99. In other words, in 99
percent of such experiments, our statement concerning u will be correct.

The arbitrarily chosen number « is called the confidence coefficient and the
interval between f, and f; the confidence interval. If the number of measure-
ments is small, something like n = 4, then the value of ¢, is considerable, and
the accuracy of estimating u as measured by the length of the confidence
interval

2t,
Jo—fi = =t (17)
n

is not satisfactory.
In what preceded, the value of ¢ in Equation (14) was considered unknown.
If, however, ¢ is known, then the confidence interval will be written as

Taa' Too

_Te
by~ S AV

where T, is the value of ¢, corresponding to an infinite number of degrees of
freedom in the estimate of &. What this means in practice may be judged
from the following comparison. If a = .99, then T, = 2.576, no matter what
n is. At the same time the values of ¢, are, respectively,

t_01 = 63.657 if n= 2,-
tor = 9.925 ifn =23,
t.Ol = 5.841 ifn= 4,

’ (18)

(19)

ete.

It follows that, whenever it is known not only that the analyses made
in some particular laboratory provide numbers z that for practical pur-
poses could be considered as particular values of a random variable fol-
lowing the normal probability law (14), but also that the standard deviation
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o has permanently some particular numerical value, then the same few
parallel analyses could be used to provide an equally reliable but a much
more accurate statement concerning the value of u. Therefore, if a labora-
tory is permanently engaged in performing analyses of some particular
kind, obviously it must be interested (i) in keeping the value of ¢ constant
over long periods of time; (i1) in estimating this value of o as accurately
as possible; and (iii) in keeping watch over possible changes in o.

In order to keep o constant, say throughout a year, it is necessary fo
eliminate all factors that may influence the accuracy of the analyses. This
is frequently done; but before trying to estimate the value of o presumed
to be constant, and before applying formula (18) instead of (16) we must
see whether or not the measurements that are being obtained do agree
with the mathematical model involving a constant ¢. Otherwise, repeated
application of formula (18) may give a much greater percentage of errors
than that expected.

This circumstance was realized by J. Przyborowski, who published the
following table illustrating his efforts to stabilize the accuracy of his
analyses of oats. In Table IV, s;2 is the estimated variance of four parallel
analyses, and so? is the arithmetic mean of a number of such variances
calculated for a long period of time, such as a year or more. If the value
of o were actually constant during such a period, then the value of so?
would be a very accurate estimate and the mathematical model adopted
would imply a known distribution of the ratio v = §;2/s0%

The comparison of the expected and observed frequencies of the values
of v are given in the table for various periods. And here we see the curious
results of efforts to stabilize the accuracy of analyses. Year 1925 is very
bad; 1927 and 1928 show slight improvement, but are still bad. 1929 and
1930 are excellent; but this probably caused a false sense of security of
the personnel, and the next year 1931 is again bad. However, the three
year period 1929-1931 seems to be satisfactory. We may reasonably hope
that the experience of 1931 has stimulated the staff of Professor Przyborow-
ski’s laboratory and that confidence intervals based on formula (18), where
the value of o is estimated from a great number of previous experiments,
do give correct statements concerning p in nearly the expected percentage
of cases, 100c.

4. SumMARY. Now let us sum up the main points that I have tried to
emphasize. In speaking about probability, it is necessary to distinguish ¢
three different but related aspects of the problem:

(1) a mathematical theory, for example, the one described in my first
lecture;

10 Compare with H. Levy and L. Roth, Elements of Probability. Clarendon Press,
Oxford, 1936, p. 15.
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(2) the frequency of actual occurrences;
(3) the psychological expectation of the participant.

The mathematical theory need not be the one I described but, if it is
mathematically accurate, it will have nothing to do with the outside world
and, therefore, with either (2) or (3). This is for the good reason that
an accurate mathematical theory implies accurate definitions and axioms
and that in the outside world there are no objects that satisfy them except
within limits “good enough for practical purposes.”

The theory of probability may be constructed to provide models corre-
sponding in some sense to certain phenomena of the outside world. And
here we may distinguish a divergence: (¥) Some authors try to provide
mathematical models of what I called random experiments, the aspect
falling under (2) above. The theory presented in my first lecture is one
of the types which comes under this heading. The theory of Richard von
Mises is another. (ii) In building a mathematical theory of probability
we may aim at a model of the changes in the state of the human mind
concerning certain statements that occur as a result of changing the amount
of known facts. This view is exemplified by the theory built by Harold
Jeffreys.!* It will be noticed that the theory of probability of my first
lecture has nothing to do with a “state of mind,” although, if we find that
the probability of a certain property is equal to 0.0001, for example, the
state of our mind will undoubtedly be influenced by this finding.

As I have mentioned, any theory may be correct if the authors are suffi-
ciently accurate in their deductions. However, it is my strong opinion that
no mathematical theory refers exactly to happenings in the outside world
and that any application requires a solid bridge over an abyss. The con-
struction of such a bridge consists first, in explaining in what sense the
mathematical model provided by the theory is expected to “correspond” to
certain actual happenings and second, in checking empirically whether or
not the correspondence is satisfactory.

The examples which I have given and many others which could easily
be quoted indicate that, by taking care both in the constructing of a mathe-
matical model and in the carrying out of the experiments, the bridge between
the theory of probability sketched in this chapter and certain fields of
application may be very solid.

11 See Jeffreys’ Scientific Inference, University Press, Cambridge (Eng.), 1931, 247 pp.
Also numerous papers in the Proceedings of the Royal Society (Series A) and in the
Proceedings of the Cambridge Philosophical Society.
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Part 3. Tests of Statistical Hypotheses

1. THE TRADITIONAL PROCEDURE IN TESTING STATISTICAL HYPOTHESES. The
present lecture should not be considered as a direct continuation of the
preceding ones which were systematically connected. However, the con-
cepts discussed in my first two lectures will be used freely and combined
with a few new ones. Since it would be impossible to give all the necessary
definitions here, I must assume them to be known.

The traditional procedure in testing statistical hypotheses is widely
known but, as it is traditional, opinions concerning its exact nature vary.
I shall describe here a version that seems to summarize the common phases
in the history of several well known tests, such as the chi-test for goodness
of fit, Student’s z test and others.

If we had to test any specified (in the early stages, very vaguely speci-
fied) statistical hypothesis H concerning the random variables,

Ty, T2, ***y T,

we used to choose some function T of the z’s which, for certain reasons,
seemed to be suitable as a test criterion. Pearson’s chi-square and Stu-
dent’s z are instances of such criteria. The next step, and sometimes a
difficult one, consisted in deducing the exact probability law p(T | H) or
an approximate one, at least, which the chosen criterion T would follow
if the hypothesis H were true. The graphs of the probability laws con-
sidered usually represented curves with a single maximum at a certain
point of the range, decreasing towards the ends. This suggested a classi-
fication of possible samples into two not very distinctly divided categories,
‘“probable” and “improbable” samples. If a sample E led to a value of
the criterion T for which the value of p(T | H) was small compared with
its maximum, then the sample E would be called improbable, or the
hypothesis H improbable, and conversely. You will certainly remember
instances where both very small and very large values of chi-square are
supposed to suggest that something is wrong.

When an “improbable sample” was obtained, the usual way of reasoning
was this: “Were the hypothesis H true, then the probability of getting a
value of T as or more improbable than that actually observed would be
(e.g.) P = 0.00001. It follows that if the hypothesis H be true, what we
actually observed would be a miracle. We don't believe in miracles nowa-
days and therefore we do not believe in H being true.”

The above procedure, or something like it, has been applied since the
invention of the first systematically applied test, the Pearson chi-square of
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1900, and has worked, on the whole, satisfactorily.! However, now that
we have become sophisticated we desire to have a theory of tests. Above
all, we want to know why we should use this or that particular function T'
of the z’s as a criterion. Why should we test the goodness of fit by
calculating

(m — m')?
xX¥=Z—F7 (1)
m
and not, say
m — mr 2
x? =2 fm — ) - ) 2)
m
or
m— m’
"2 _. E| I (3)
m

or something else? What is the actual meaning of a statistical test? What
is the principle of choosing between several tests suggested for the same
hypothesis? It is the purpose of the present lecture to discuss some of
these questions and to explain certain basic ideas underlying the contribu-
tions to the theory of testing statistical hypotheses for which Professor E. S.
Pearson and myself are responsible.

The first question I shall discuss is this: when selecting a criterion to
test a particular hypothesis H, should we consider only the hypothesis H,
or something more? It is known that some statisticians are of the opinion
that good tests can be devised by taking into consideration only the
hypothesis tested. But my opinion is that this is impossible and that, if
satisfactory tests are actually devised without explicit consideration of any-
thing beyond the hypothesis tested, it is because the respective authors sub-
consciously take into consideration certain relevant circumstances, namely,
the alternative hypotheses that may be true if the hypothesis tested is
wrong. However, it is rather difficult to discuss what an author may have
in his mind subconsciously, or even consciously. The easier thing is to
consider the situations which may present themselves when we are forced

1Since the publication of Lectures and Conferences in 1938, I have found that the
first exact test of a statistical hypothesis was devised much earlier. In fact, this honor
seems to belong to Laplace. In his paper, “Mémoire sur l'inclinaison moyenne des
orbites des cométes,” Mémoires de I'Académie royale des Sciences de Paris, Vol. VII,
1773 (see also Oevres complétes de Laplace, t. 8, Paris, 1891, pp. 279-321), Laplace
deduced a test based on the exact distribution of the mean of a sample drawn from a
“rectangular” distribution. Most readers of this book will be familiar with the fact that,
when the sample size n is not too small, this distribution is very close to normal.
Laplace gives the exact formula for the distribution and illustrates it on diagrams cor-
responding to several values of n. Curiously, while his formulae are correct, the diagrams
are wrong and bear no resemblance to the normal law!
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to select a test for a particular hypothesis H with nothing to base our device
on except the hypothesis itself.

Suppose then that we have to test some hypothesis H, and that two dif-
ferent criteria T, and T are suggested. Which of them should we use?
What circumstances, referring to H and to nothing else, should influence
our choice? I cannot think of all the suggestions that have been made,
but I do remember seeing opinions that the criterion with the smaller
standard deviation would be preferable.

Let us generalize this suggestion and consider more closely the tentative
principle that the choice between possible criteria should be made on
properties of their distributions as determined by H. This principle, call it
Principle I, would obviously cover the question of the relative size of the
standard deviations.

With regard to Principle I, I shall show that it is not sufficient for the
choice. In fact, I shall prove that there may be two criteria having the
following properties:

(i) Both have identical frequency distributions; and therefore, on the
basis of Principle I alone, it will be impossible to choose between them.

(i1) Whenever one of these criteria has the most “improbable” values,
thus “disproving” the hypothesis tested, the values of the other are just
the most “probable” ones. This last circumstance will make it necessary
to choose one of the criteria.

With the above situation in view, I shall mention another principle, to
be called Principle 11, which has been suggested by certain eminent workers
in theoretical statistics: whenever you have two (or more) criteria, choose
the one which, on the sample obtained, is less favorable to the hypothesis
you test.

This principle implies, of course, that criteria could, and should, be
chosen after the sample is drawn and analyzed.

I shall show that, if this principle is adopted, then it is useless to make
any calculations with a view to testing hypotheses: given a certain amount
of mathematical skill we shall be able to “disprove” any hypothesis on
any sample.

The above two principles do not exhaust all the possibilities. There may
be other principles that do not go beyond consideration of the hypothesis
tested. For example, we may require of the functions T used as criteria
some particular properties, e.g., that they should be symmetrical with
respect to the random variables, etc. However, I cannot think of any such
limitation that would seem reasonable. Therefore, without claiming that
the two propositions which I am going to prove provide decisive evidence
that it is absolutely impossible to make a rational choice of criteria without
explicitly or tacitly considering hypotheses alternative to the one that is
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being tested, I am inclined to think that this conclusion is highly probable.
Anyhow, the two propositions do cover a certain range of possibilities and
clear away certain popular misconceptions. They show, for instance, that
an argument like ‘“use T; rather than T, because its standard error is
smaller” is not convincing. Let us now enter into details.

2. INsUFFICIENCY OF PriNcIPLE I. Consider a system of n random vari-
ables, x;, z2, * * -, Z,, known to be independent and following the normal law

1 n .
pX(xl o xn) = ( > 6—2(3‘ #)2/202, (4)

oV 2r

where ¢ > 0 and u are unknown constants. Suppose it is desired to test the
hypothesis H that 4 = 0. This is known as Student’s hypothesis. The
generally accepted criterion to test H is the one invented by Student, namely,
to calculate

T
z=— %)
s
where
1
Z = -2z ns? = Z(x; — )2 (6)
n
The probability law of z, if the hypothesis H be true, is given by
pz(2) = C(1 + 2™, (7)
where
o= [ a4+ H e = Bhn -1, 3] ®)

The hypothesis H is to be rejected whenever the value | 2’ | of | z| calculated
for the sample is so large that

P{IZIEIZ’I}=2L|p(z)dz )

is considered ‘‘small.”

To prove the insufficiency of the Principle I as explained above I shall
now define another criterion, depending on the quantity ¢, which will have
the following properties:

1. If H be true, then the probability law of ¢ is identical with that of z, so

p(t) = C(L + ™72 (10)
2. The absolute value of the product I z¢ | cannot exceed unity, i.e.,

Izﬂ < 1. (11)
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If the ¢ criterion were used to test H, then this hypothesis would be
rejected whenever | ¢ | is large. In fact the large values of | { | are “improb-
able” whenever H is true. From (11) it follows that whenever | ¢ | is large
then | z | must be small and conversely. Thus, whenever one of the alterna-
tive criteria z and ¢ indicates that the hypothesis H should be rejected, the
other is bound to protest that there is no reason for such rejection. This
means that whenever one of the criteria has a large absolute value, we
are compelled to choose the one whose verdict we shall respect. Principle I
will not help us in the choice, because the probability laws of z and ¢ are
identical. This completes the proof of the insufficiency of Principle I.

In order to define ¢ let us assume that the z; are numbered in the order
in which they are given by observation. Let

o _ N1 T2 (12)
z = —
V2n
and
ns'2 = Z 1,'"2 - nflz = %‘(zl + 552)2 + Z xl'z' (13)
1 3

The functions # and 8 thus defined will be called the quasi mean and the
quasi standard deviation of the z;, Now I shall prove Proposition a, namely
that the ratio

== (14)
8
has the properties 1 and 2 described above.
In order to prove 1, it is sufficient to show that the simultaneous probability
law of £’ and &' is identical with that of the ordinary mean # and standard

deviation s.
If the hypothesis H be true, then x = 0 and

1 n
pX(xl) ‘e, xn) = ( ) e—Ez“’/&r’. (15)

oV 2r

Let us introduce a new system of random variables, y;, y2, - -+, ¥a, con-
nected with the z; by the following formulas,

Vi+nd;
Y1 2 Y2 2'

rmh | "
- §+y2 3

Ti = Y; fort=3,4, ---,n.l

r

z2
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It will be noticed that

= 2oy (17)
! \/2n

and is therefore identical with the quasi mean defined in equation (12). We
shall return to this notation after a while. Furthermore,

z1 + 72

V1= "5 (18)
and having regard to (13) we shall have

1
8 =~ @ +us’ o). (19)

The probability law of the y; will be deduced from equation (15) following
the steps indicated in my first lecture, namely,

Py, Y2, * ) Yn) = Px(z1, T2, -+, za)| A| (Eq. 25, page 21)  (20)

where l Al is the Jacobian defined bfy equation (24) of page 21, and the z;
on the right-hand side should be expressed in terms of the y;. Easy calcula-
tions give

-y n — EI’ ’2 02
pY(yh Y2, *° yn) = P(IE y Y2, * yn) = m)_"e n(F+2%/2 ’ (21)

where s'? stands for the sum of squares (19). Our next step consists in intro-
ducing still another system of variables, u,, ug, - - -, u,, one of which will be
identical with ' and another with s'. We put

=/
Y1 = = U,

Yo = \/;m2 COS Uy COS Up_q ** + COS Uy COS Ug,
Y3 = \/7—w2 COS Uy, COS U,_1 *** COS Uy SIN Ug,

Ys = \/;uz COS Up, COS Up_1 - - - SiD Uy, (22)

Yn = \/7—zu2 sin uy,. J

The range of variation of the new variables is determined by the following
inequalities
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-0 < U < 4o,
0 < uy,
0 < uz < 2n,
—Ix<u; < +3x, i=4,5---,n,
wherefore outside these limits the probability law of the u, is identically equal

to zero.
It will be easily seen that

(23)

1
u22=;(yz”+ya’+---+yn’) (24)

and later on we shall drop the notation u; and u,, substituting for them &
and s’ respectively. Easy calculations give for the Jacobian

a(il; Y2, * yn)

= (\/1_'o)"_1u2""2 o8 ug cos ug cos® ug - - - cos® 3 u, (25)
a(ul; Ugy * -, un)

and it follows that

n—au

ne

'\/7_‘ " 24,0 /042
—2,—n(u1*+us’)/2¢ 2
pu(uy, Ug =+, Up) = ( ) ug™ 2" COS 14 cOS% Uz - - - COS
oV 2x
(26)

In order to obtain the simultaneous probability law of »; and u, or, what
comes to the same thing, of Z’ and s’, we must integrate (26) for us, uy, - -, un
from —o to +o. Since the integrand differs from zero only within the limits
shown in (23), and since these limits for ug, u4, - - -, u, do not depend on the
values of u; and uy, we have at once that

vn \" o
Plurp) = C (U %) ugh I e/ (27)

wherein

(o =f- . -fcos uy cos® ug - -+ cos™ 3 u, dug dug dus - - - du,  (28)

and the region of integration, w, is determined by

0 = uz < 2n, }

29
—dr<u; < +1x fori =4,5, -, n. (29)

Remembering that u; and us are identical with £’ and s’ respectively, we

have then s
p(E, &) = Cys'" 2™ nE H0/2 (30)
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We see that the quasi mean and the quasi standard deviation as defined by
(12) and (13) do follow a probability law identical with that of the ordinary
mean Z and standard deviation s of the z;. In order to obtain the probability
law of the ratio { we must now perform on equation (30) exactly the same
operations that lead to the probability law of Student’s z; and it is obvious
that the probability law of ¢ will be found to be identical with that of z. This
proves the first part of the proposition.

Let us now prove part 2, namely, that l 2t l = 1. For this purpose notice
that, whatever be the real numbers a and b, we shall have

(@a£b)2=a2+2ab+0b=0 (31)
and therefore
2| ab| < a® + b2 (32)
It follows that for any real numbers a and b,
(@ £ b)? < 2(a® + b2). (33)
If s is the ordinary standard deviation of the z; and Z their mean, then
ns® = Z(x; — )2 2 (21 — £)° + (x2 — 3)% (34)
On the other hand the definition of the quasi mean gives us
2nz? = (11 — 22)* = [(21 — &) — (22 — D] (35)
and, from (33), we see that
2ng? < 2[(z — )2 + (22 — 2)7). (36)
Comparing (34) and (36) we find that
% < &8 (37)

an inequality between the squares of the quasi mean and of the ordinary stand-
ard deviation. From the definition of the quasi standard deviation (13) it
follows that

Tz = n(s? + %) = n(s® 4 £2). (38)
Therefore
&2 4 72 = 2 4 2 (39)
and, owing to (37),
2 < ¢ (40)

Multiplying (37) and (40) and dividing the resulting inequality by the

product s%s'%, we get
52 2-:/2 <
2)\z) S 1 (41)

which is equivalent to | z{l =< 1, or equation (11) of page 46. This fulfills
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the proof of part 2 of Proposition a. Thus we have shown that Principle I
by itself is not sufficient for a choice between alternative criteria that may be
suggested for testing a given hypothesis.

3. CONSEQUENCES OF SUPPLEMENTING PRINCIPLE I BY PrincIPLE IT. We
shall now show that Principle I could not usefully be supplemented by
Principle II. The combination of the two principles would read as follows:
if there are several criteria for testing a given hypothesis H, all following
the same probability law as determined by H, then the choice among them
should be made after the sample is drawn and examined, and we should
choose the test that appears to be the least favorable to H. We have already
seen that if Student’s hypothesis (page 46) be true, then Student’s z is not
the only function of the z; following the familiar probability law (7). We
shall now show that, whatever be the sample E’ observed in a particular
case, not all the z; being equal to zero, it is possible to find a criterion, say
&% which for this particular sample possesses the value 4+ and which,
in repeated sampling, follows exactly the same law as z and ¢ discussed
above. If we adopt both Principle I and Principle II, then we shall have
to test Student’s hypothesis using ¢°; and this will lead to the rejection of
the hypothesis. Thus in all cases, with the sole exception that all observed
x; are equal to zero, Student’s hypothesis will have to be rejected, which
shows that the combination of the two principles I and II is not a reason-
able solution of the difficulty.

I shall now call the attention of the reader to the distinction between
z/ and z; used below. The symbol z; will mean, as before, the random
variable following the law (15). On the other hand z; will denote a value
of z; observed in some particular case.

Proposition b.—Whatever be the sample

r — 7 ’ ’ \
E=xlyx2:'°')x7l (42)

observed in a particular case, one at least of the z;/ being different from zero,
it is possible to define a criterion ¢° which is represented by a function of the
z; and which has the following properties:

(i) The probability law of {°, as determined by H, is the same as that of
Student’s z and that of ¢, equation (7), page 46.

(i) The value {°(E’) of ¢, calculated for the sample E’, is infinite.

It will be noticed that {° will have to be adjusted to the sample E’' already
observed. Therefore the values (42) will have to enter into the expression
of ¢{%. They are constant numbers and will play the role of coefficients. On
the other hand, ¢° will depend also on the random variables z,.

Proof of part (i) of Proposition b.—Since the order in which the z; are num-
bered is of no consequence, we may assume that z;’, zo’, - - -, z,," are different
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from zero, m < n. Before defining ¢° we shall need the numbers a;, ag, - - -
ay, which are connected with the z;” by the n equations

x,-'

i)
V2 + 222 4+ 1,2

Obviously a; # Ofort =1,2, ---, m,but @; = 0fori =m + 1, -- -, n; also

i=1,2 -, n (43)

a; =

Da?=1. (44)
=1

Further steps consist first in defining a ‘“pseudo mean” Z” and a “pseudo
S.D.” s and then in making the identification

j,’

== (45)

S

Here the pseudo mean and pseudo S.D. are defined by

171 + -+ anT,
7 = . 46

and

1 .
3112 =_3 2;‘,2 _ :i;”2. (47)
n

It will be noticed that if a; = 1/\/; fort =1, 2, ---, n, then the pseudo
mean and pseudo S.D. become identical with the ordinary ones, Z and s.
It will be sufficient to show the existence of a system of variables

U1, Vg, ***, Un,

whose elementary probability law as determined by H is

n —n( 2’1 /242
Py(vs, b2, - 0n) = e Otz (48)
wherein
v, =% and ns’? = (12 + -+ v,2). (49)

To show that vy, - - -, v, exist and that they possess the probability law (48)
we introduce

Br = arl(en? +- -+ o) (e +- - -+ )]
fork =2,3, ---,m and B = 0 for £ > m. (50)
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Now, we relate vy, vg, -+, v, to 71, 3 -+, Z, by the following system of
equations:

T = \/7_10!101 + 18202 + a1(B3vs + Bavs + - - -+ Bmtm),
012
zg = \/;01201 — — Bavp + a2Bav3 + az(Bavs + Bsvs + - - + Bmm),

az

a® + ap?
z3 = \/7—?&3?)1 — —————— B3vz + a3Bevs + az(Bsvs + - - -+ Bmtm), | (51)

ag

v a® +a? -4 P,y
Tr = Vnogw —

Bivk + akBr1k+1

ag
+ ar(Bryovkt2 + -+ Bumtm),
for k =2, 3, ---, m. In interpreting these equations, it is important to
remark that, owing to the definition of m and B, if m < n, then
ﬂm+l = Bm+2 = =0, =0. (52)

If m = n, then equations (51) define the transformation completely. Other-
wise, if m < n, we put

T = Vg fortr=m+1, ---,n (83)

With some algebraic reduction and the fact that a,? + - - - + a,2 = 1 (equation
44), it will be found that

1
n = '\/’I_’L (azy +- -+ anzy) = &7 (54)
and that
@+t 2a®) = i + (02 +- -+ 0a?)
= n,?2 4 ns'’2. (55)
. a(xl) Ty * xn) . .
The Jacobian | A | = = \/;, as is not difficult to work

6(01, V2, * "+, vn)

out from equations (51), (52), (53). From equation (55), and the value of
the Jacobian, it follows by applying equation (25) of page 21 that if equation
(15) is the simultaneous elementary probability law of z;, zs, -« -, 2, then
that of vy, v,, - - -, v, must be as written in equation (48).

Since equation (48) is of the same form as equation (21), and since formula
(45) is similar to (14), it is clear that the steps required to deduce p(¢®) from
(48) would be identical with those already shown in the deduction of p({)
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from (21). This completes the proof that the criterion of {° has the property
@1).

Proof of part (ii) of Proposition b.—We must now prove the other statement
(ii) on page 51 concerning {°; namely, we must prove that if in the expression
for % we substitute, instead of the random variables z;, the particular observed
values z;/ of (42) in terms of which the function {® has been defined, then the
value {°(E’) of ¢° will be found infinite. Replacing z; by z;/ in equation (46),
and remembering that the coeflicients a; therein have already been defined by
equation (43) in terms of the z;/, we easily find that the value of the pseudo
mean calculated for the sample E’ is

x1/2 + x2/2 + . + SL‘,,’Z

2"(E') = - >0 (56)

because at least one of the numbers z; is different from zero. Further, sub-
stituting z;” for z; in equation (47) to calculate the pseudo S.D. s"(E’), we
find it to be zero. It follows from equation (45) that

x”(E') ~

O/ — = o
C(E) = o)

(57)
and this completes the proof of part (ii) of Proposition b.

For the one particular sample E” already drawn, ¢° has the value o, but
in repeated sampling it follows thé same law as z and ¢.

It may be useful here to make the following remark. No number of
examples is able to provide a proof of a general statement. On the other
hand, the failure of a single example is sufficient to disprove any general
statement. Our purpose here was to show that the principles I and II
could not generally be applied for making a choice among criteria for
testing hypotheses, and the validity of the proof does not suffer from the
fact that we have limited ourselves to the consideration of one particular
example.

As a matter of fact, it is easily seen how the above reasoning could be
generalized, but such generalization would not produce any new relevant
result.

4. GENERAL BASIS OF THE THEORY OF TESTING STATISTICAL HYPOTHESES. I
shall finish this lecture by indicating what appears to be the general basis
of the theory of testing statistical hypotheses. We must start by consider-
ing the situation in its most general form.

(i) When we desire to test a particular statistical hypothesis Ho, we
imply that it may be wrong. E.g., if we try to test Student’s hypothesis
that p = 0, we admit the possibility that it may be wrong and that, there-
fore, p may have some value other than zero. It will be seen that when-
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ever we attempt to test a hypothesis we do admit, although perhaps sub-
consciously, that there are hypotheses that are contradictory or, in our
terminology, alternative, to the one tested. There is no reason why these
alternative hypotheses should not be considered explicitly when choosing
an appropriate test.

(ii) Whenever we attempt to test a hypothesis we naturally try to avoid
errors in judging it. This seems to indicate the right way of proceeding:
when choosing a test we should try to minimize the frequency of errors that
may be committed in applying this test.

Having in mind the above two points (i) and (i1) we may proceed further
and discuss the kinds of errors we may commit in testing any given
hypothesis H,. It is easy to see that there are two kinds:

After having applied a test we may decide to reject the hypothesis H,
when in fact, though we do not know it, it is actually true. This is
called an error of the first kind.

After baving applied a test we may decide not to reject the hypothesis
H, (this may be described in short by saying that we “accept H,”)
when in fact H, is wrong, and therefore some alternative hypothesis
H’ is true. This is called an error of the second kind.

The test adopted should control both kinds of errors. Now let us see
what essentially is the machinery of any test, whatever be the principle on
which it was chosen.

A test is nothing but a rule by which we sometimes reject the hypothesis
tested and sometimes accept it (in the sense explained above), according
to whether or not the observations available possess some properties speci-
fied by the rule. The observations are some n numbers, z;, z2, * - -, z, the
system of which could be represented by a point E in the n-dimensioned
space W, having the z; for the n coordinates. The point E and the space
W are called the sample point and the sample space. Any rule specifying
cases where we should reject the hypothesis tested is equivalent to a speci-
fication of the positions of E within W which, if arrived at by observation,
lead to a rejection of H. These positions usually fill up a certain region,
w, which is called the critical region or the region of rejection.

In conclusion we see that to choose a test for a statistical hypothesis
H, we must choose a critical region w in the sample space W and make
a rule of rejecting H, whenever E, as determined by observation, falls
within w.

Let us illustrate this by an example. Consider the case where a sampled
population is divided into n categories and we test the hypothesis that the
probability of an individual falling within the ith category has some
specified value p; for 1 =1, 2, +--, n. Denote by M the total number of



56 MATHEMATICAL STATISTICS AND PROBABILITY

observations and by m; the number of observations belonging to the ith
category.
The generally accepted test of this hypothesis consists in rejecting it
whenever
(mi — Mp;)?
2 _ o
X Mo; (58)
is “too large.” What “too large” means is a subjective question, but there
must be a more or less definite limit between values of chi-square that are
“too large” and others that are not. Let x,Z denote this limit; and consider
a space of n — 1 dimensions, the coordinates of any point being m;, ms, - - -,
Mmn—1- As none of the m; can be negative and their sum cannot exceed M,
the sample space W will be composed of points E with all coordinates m;,
mg, * -+, Ma—1 being non-negative integers and satisfying the inequality

my + me 4+ mp_y = M. (59)

It is easily seen that the rule of rejecting Hy whenever x2 > x;2 is equivalent
to considering the region w lying within W and outside the ellipsoid
me — Mp.)?
(m; — Mp)~ _ " (60)
Mp;
as the critical region.
It is equally easy to see that any other test has a similar feature. For
example, Student’s test is equivalent to a rule of rejecting Student’s hypothesis
whenever the sample point falls within a circular hypercone with the axis

Ty =Xy == Ty. (61)

Having disposed of this we may go on to discuss the probabilities of errors.
First of all: is it legitimate to discuss the probabilities of errors in testing
statistical hypotheses? Isn’t this equivalent to discussing the probabilities
of hypotheses themselves, which would be useless? E.g., it would be useless
to discuss the probability of Student’s hypothesis because this would be the
same as the probability of u = 0. As x is an unknown constant, the proba-
bility of u being equal to zero must be either P{u = 0} = Qor P{p =0} =1
and, without obtaining precise information as to whether u s equal to zero
or not, it would be impossible to decide what is the value of P{x = 0}.

To this criticism the answer is the following. Undoubtedly, x is an
unknown constant and, as far as we deal with the theory of probability as
described in my first two lectures, it is useless to consider P{u = 0}. On
the other hand our verdict concerning the hypothesis tested, H,, depends
on the position of the sample point E, that is to say, on its coordinates, and
these, according to our assumptions, are random variables. It follows that
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our verdict ©s random and that there is no inconsistency in considering the
probability of the verdict having this or that property, for example, of its
being erroneous.

Consider the sample point E and any region w in the sample space.
The probability of E falling within w may depend on the hypothesis that
happens to be true. For example, if formula (4) represents the probability
law of the z;, and p = 0, then the probability of E falling within some
particular region w may be 1/2. On the other hand if u = 10, say, the
same probability may be equal to 0.0001. Therefore we shall agree to
denote by P{E ew | H} the probability of E falling within w calculated on
the assumption that the hypothesis H is true.

Now consider a hypothesis Hy, which we desire to test, and any region w
which we have chosen to serve as critical region. What are the circum-
stances in which we commit an error of the first kind? They are: (i) the
hypothesis tested is true; and (ii) the sample point E falls within the
critical region w, whereupon H, is unjustly rejected. It follows that the
probability of an error of the first kind must be calculated on the assump-
tion that H, is true and, in fact, it is the probability

P{E ew| H,} (62)

of E falling within w.

Now let us turn to errors of the second kind. For an error of the second
kind to be committed it is necessary (and sufficient) that the hypothesis
tested Hy, be wrong and that the sample point fail to fall within the critical
region selected. But if H, is wrong, then some other admissible hypothesis
H’ must be true. Therefore, the probability of an error of the second kind is

1 — P{Eew|H'}. (63)

Obviously, instead of considering the probability of committing an error
of the second kind, we may consider the probability of avoiding it, which
is denoted by g(w | H’), so that

B(w| H') = P(E ew| H'}. (64)

B(w | H’) considered as a function of H’ is described as the power (the
power of detecting the falsehood of the hypothesis tested) of the region w
with respect to the alternative hypothesis H’.

Any rational choice of a test must be made with regard to the properties
of the power (64). Indeed, the values of the power g(w | H) for a fixed
region w and for a changing hypothesis H (which in particular may be
H,, the one we desire to test) give no more and no less than a complete
description of the properties of the test based on the critical region w. In
fact, what could be called “the properties of a test?” To know the proper-
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ties of a test can mean nothing but to know (i) how frequently this test
will reject the hypothesis H, tested, when it is true; and (ii) how frequently
it will disprove H, when H, is wrong. That is exactly what the values
of the function g(w|H) tell us. Without knowing the properties of
B(w | H), we cannot very well say that we know the properties of a test
based on w. And just these properties of the power seem to be the proper
rational basis for choosing a test.

For example, by considering the power of Student’s test, it is possible to
show that this test has the following properties, which put it above any
other test that may be suggested.

1. The probability of rejecting the hypothesis Hy that u = 0 is always
greater when the hypothesis H, is wrong than in cases when H, is true.
This property is described by the adjective ‘“unbiased” attached to the
test possessing the property.

2. Any other unbiased test, if it leads to the same frequency of errors of
the first kind, will less frequently detect the falsehood of the hypothesis
H, when H, is in fact wrong.

The responsibility for the above concepts and for the resulting theory
of testing statistical hypotheses is borne jointly by Egon S. Pearson and
the present writer. Our first paper ? on the subject was published in 1928,
over twenty years ago. However, it took another five years for the basic
idea of a rational theory to become clear in our minds.® Thereafter, the
work became easier and within a short time we were joined by a number
of colleagues.*

Bare statements of principles are never clear unless the principles are
illustrated in full detail with examples. It would be most satisfactory if
the use of the concepts described above could be illustrated with examples
which are both easy and of practical importance. Unfortunately, it is very
difficult to satisfy both conditions at the same time. One must choose
between the illustrativeness of an example which involves a certain arti-
ficiality and the practical importance of a test which involves technical
difficulties in dealing with the problem. Faced with the necessity of choosing
between the two alternatives, the writer felt that the readers of this book
would be best served by a simple illustrative example, even though it is
somewhat artificial.

We will imagine an early stage in the study of a pair of genes, the domi-

2J. Neyman and E. S. Pearson: “On the use and interpretation of certain test criteria
for purposes of statistical inference.” Biometrika, Vol. 20-A (1928), pp. 175-240 and
264-299.

8J. Neyman and E. S. Pearson: “On the problem of the most efficient tests of statis-
tical hypotheses.” Phil. Trans. Roy. Soc., London, Vol. 231A (1933), pp. 289-337. Re-
cently, a systematic elementary presentation of the theory was given in the author’s
First Course on Probability and Statistics already quoted.

4 See: Statistical Research Memoirs, Vol. I (1936), Vol. II (1938).
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nant gene to be called G, the recessive g. We imagine that it is more or
less taken for granted that the mating of the organisms carrying these
genes is non-assortative (i.e., that the genetical composition of one mate is
independent of that of the other mate) and is of uniform fertility. Con-
trary to this general belief, a geneticist suspects that the recessive types
gg do not participate in the reproduction. This suspicion is not based on
any trials but on some analogies, and, in preparing for a meeting at which
the genes G and g are to be discussed, the geneticist is somewhat hesitant
whether or not to come out with his doubts. Before deciding, he wishes to
take into account the results of two independent experiments performed for
other purposes, but involving genes G and g. Both experiments had the
same pattern. In each case two hybrids Gg X Gg were crossed, giving a
generation of progeny which we shall denote by F,. Next the F; indi-
viduals were allowed to mate without interference, producing the second
generation F,. Finally the F, individuals were allowed to mate without
interference and they produced the third generation Fs. Since the two
experiments were carried out for purposes not connected with genes G and
g, the records of the experiments appear to be fragmentary as far as the
genes G and g are concerned. In fact, the only information concerning
these genes in the first experiment is that the F, generation was composed
of n; = 8 individuals and that among them there were exactly z; recessives
gg. Further, the records of the second experiment show only that the Fg
generation was composed of n, = 10 individuals and that among them
there were exactly x. recessives gg. The values of the four numbers n,, z,
and ng, £, must now be used by the geneticist to make up his mind whether
or not to voice doubts about the non-assortative character of mating. Every
human action is subject to error, and therefore the geneticist would not
mind being in error from time to time. However, he is inclined to lay down
rules for his behavior so as to control the frequency of errors. First, in
cases where some established hypotheses are true, he would like to voice
doubts of these hypotheses only rarely, say with a frequency not exceeding
a selected number a, perhaps « = .1 or @ = .05 or the like. Another require-
ment which the geneticist lays down for. his behavior is that, in cases where
some hypothesis H,, alternative to the established hypothesis H,, is true,
then he wants his rule to lead him to protest as frequently as is humanly
possible.

Applying these two principles to the case of the genes G and g, the
geneticist notices that n; and n, are sure numbers while z; and z., are ran-
dom variables whose particular values are determined by the two experi-
ments. Let H, and H, denote the two hypotheses under consideration.
Namely, H, asserts that, with respect to genes G and g, the mating is non-
assortative with uniform fertility and H, asserts that the non-assortative-
ness and uniform fertility apply only to dominant and hybrid types GG
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and (g, but that the recessives gg do not participate in the reproduction.
We will assume for simplicity that the geneticist admits the possibility of
only these two hypotheses H; and H,.

On either hypothesis, the random variables z; and z, are capable of
assuming all the 99 different combinations of integer values z; = k; and
T2 = ko, with k;y =0, 1, 2, ---, 8 and k2 =0, 1, 2, .-+, 10. Thus the
sample space W is composed of 99 points with coordinates (k,, k.). Easy
calculations give the probability that the sample point E = (z,, z,) will
assume the position (k;, k2). Namely, on the hypothesis H; we have, say,

plky, k2 | Hi) = P{(z1 = k1)(z2 = ko)}
= Cu kxc" kz(i_)kx+kz(%)m+n2—kx—ks_ (65)
On the hypothesis H, we have
p(ky, k2 | Hy) = P{(z1 = k1) (22 = k) | Ha}

= G C 2GR H ()M (66)
Tables I and II give the numerical values of these probabilities for all
combinations of k; =0,1,2, ---,8 and k; =0, 1, 2, ---, 10 in so far as

these probabilities are not too small. Upon adding all the entries in
Table I the reader will obtain the total .998. Thus the probability is
approximately .002 that the sample point E will occupy any position in

TasLE I

Joint probability distribution of z1 and x2, P{(z1 = k1)(z2 = ke) I H,}, as defermined by the
hypothesis Hy

k1
ke
0 1 2 3 4 5 6 7

0 .006 .015 .018 .012 .005 .001 .000 .000
1 .019 .050 .058 .039 .016 .004 .001 .000
2 .028 .075 .088 .058 .024 .006 .001 .000
3 .025 .067 .078 .052 .022 .006 .001 .000
4 .015 .039 .046 .030 .013 .003 .001 .000
5 .006 .016 .018 .012 .005 .001 .000 .000
6 .002 .004 .005 .003 .001 .000 .000 .000
7 .000 .001 .001 .001 .000 .000 .000 .000
8 .000 .000 + .000 .000 .000 .000 .000 .000
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TasLe II
Joint probability distribution of z1 and z3, P{(z1 = k1)(z2 = ko) | H2}, as determined by Ha
ky
ks
0 1 2 3 4 5

0 .204 .204 .089 .022 .003 .000
1 .136 .136 .060 .015 .002 .000
2 .041 .41 .018 .004 .001 .000
3 .007 .007 .003 .001 .000 .000
4 .001 .001 .000 .000 .000 .000
5 000 000 000 .000 000 000

the sample space for which the entry in Table I is zero or is not listed at
all. The same probability for Table II is equal to .004.

Consider now the problem of selecting the combinations of values of
z; and z, such that, if any one of these combinations is determined by the
two experiments, then the geneticist would consider it advisable to reject
the hypothesis H;. In the terminology of this lecture, the problem is
that of selecting the critical region wy for testing the hypothesis H, against
the set @ of admissible hypotheses which, in this case, includes H, and H,
only. The principles which the geneticist laid down for his choice are
exactly those determining the best critical region for testing H, against Q.
The first of these principles is that the region wo be one of those regions w
for which

P(Ec¢w|H,} < a. (67)

The second principle is that, if wo is the selected region and w any other
region such that

P{Eélel} éP{EéWo'Hl}
then
P{E ew| H;} < P{E ewo | H.}.

The construction of the critical region w, having this property is easily
accomplished by the following simple rule, the validity of which will be
proved in general, for any number of discrete observable random variables
Xl; X2; Y Xm

Denote generally by ey, ez, -+, e,, - all possible positions of the
sample point E as may be determined by some observations. Let further
p(ex | Hy) and p(ex| Hz) denote the probabilities determined by the
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hypotheses H; and H., respectively, that E will coincide with e;. Here
some of the probabilities p(ex | Hi), t = 1, 2, may be zero while others are
positive. For each point e; for which p(ex | Hz) > 0 define the ratio

P(ex l H,)
P(ex | Hs)

Lemma. IF aIs A POSITIVE NUMBER AND %y A REGION IN THE SAMPLE SPACE
SUCH THAT IT INCLUDES ALL POINTS €; FOR WHICH R (e;) < a AND NONE OF

THOSE POINTS €,, FOR WHICH R (e,) > a, THEN, WHATEVER BE ANY OTHER
REGION W SUCH THAT

P{Eecw|H,} < P{E ew, | H;}, (68)

R(ex) =

NECESSARILY
P{E ew| H;} < P{E ew, | Hs}.

If the regions wy and w are contemplated as critical regions for testing
H,, then P{E ew | H;} is the probability that H, will be rejected using w
in those cases when the true hypothesis is H;. Thus P{E ew | H,} is the
probability of an erroneous rejection of H; (that is, rejection when H; is
true, or the probability of an error of the first kind). On the other hand,
P{E ew | H;} is the probability of rejecting H, when the true hypothesis
is H,, i.e., it is the power of the test based on w. This property of w, may
be described verbally by stating that out of all eritical regions w which
control the errors of the first kind as well as w, or better, the critical region
wo has the greatest power.

In proving the Lemma it will be convenient to use the following notation.
Let » be some region in the sample space and let

€1y Ckay °° "y Ckp

be all the possible positions of the sample point E which fall within the
region u. Then the probability P{E eu | H;} that the sample point will
fall within u is given by the sum

m

P{Eeu|H:) = X pler,; | H).
j=1
It will be convenient to denote this last sum simply by D_ p(e l H)).

With this notation, the inequality (68) can be rewritten as
> P(e| Hy) z 22 P(e| Hy)
wo w

and it follows that, say,
A(Hy) = 2 ple| Hy) — Xple| Hy) 2 0. (69)
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The two regions w, and w may have a common part which we will denote
by v. Should there be no common part of wo and w, then v will stand for
the “empty” set of points. In any case we may write that

wo = (wo — v) +v,}

w=(w-—-yv)+v, (70)

and it is clear that every point in w — v lies outside of wy.
Obviously A(H,) can now be rewritten using the summation over the re-
gions wg — vand w — v,
A(Hy) = X ple| Hi) — X ple| Hy) 2 0. (1)
we—v w—v
The region wy — v contains only points e; which are interior to wy. Because
of the definition of wy, for each of these points

P(el Hy)) = R(e)p(e| H,) < ap(e I H,). (72)
Therefore, say
A'=a 3 ple|Hy) — 20 ple| Hy) 2 A(H,y) 2 0. (73)

Since each point e belonging to w — v lies outside of wg, the definition of w,
implies that for each such point

ple| Hy) = R(e)ple | Hz) 2 ap(e| Ha). (74)
Therefore
A(Hz) = a 3 ple| Ho) —a 2 ple| Ho) 2 A" 2 A(Hy) 2 0. (75)

Since a is a positive number, it follows that

> ple]| Hy) 2 X ple| Hy). (76)

we—v
Adding to both sides of this inequality the same sum >, p(e | H,), we obtain
the desired result, namely, ’

P{E ewo | Ho} = X ple| Ho) 2 2_ple| Hy) = P{E ew| Ha). (77)

This completes the proof of the Lemma.

It follows from the Lemma that the operations necessary for determining a
best critical region for testing H, with respect to a single alternative hypoth-
esis H, are the following.

(i) Compute the ratio R(e) for all possible sample points.

(i1)) Renumber the possible sample points in order of the magnitude of
the corresponding ratios R (e), beginning with the smallest R(e,), so that
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R(e1) £ E(e2) S--- = R(ex—1) < R(ew) S+ -. (78)

(iii) Include e, in the critical region wo and also as many of the following
points, e, e3, ** -, e, as possible without impinging upon the condition that
the probability determined by H; of the sample point E falling within w,
does not exceed «,

P{Eewy | H\} = X ple:| Hy) S (79)
=1

Returning to the problem of testing the hypothesis H; concerned with
non-assortative mating and uniform fertility, we could proceed in two
slightly different ways. One of these consists in computing the ratios
R (e) numerically as indicated in step (i). The disadvantage of this method
is that it is somewhat cumbersome and involves ratios of numbers which
are so small that they are not recorded in Tables I and II.

The other method is to compute the formula for E(e). We have, say

p(k1,k2 , Hy)
p(ky,k2 | Hy)

3n1+nz—k1"k29"116"2 L (80)
= 4m+n28n1—’°115"2_k’

R(e) = R(ky, ko) =

. = C(§)"5" = CR' (k1 ks)..

where, for the sake of brevity, the letter C is used to denote the numerical
factor

3n1+n29n116n2
= 4n1+n28n115n2

which is independent of k; and k.. It is obvious that instead of ordering
the points e in the order of magnitude of R (e), we may order them in the
order of magnitude of R’(k;k.) or, since this is even more convenient, in
the order of magnitude of, say

T(klkz) = 10g10 R/(kl,kz) = kl 10g10 (%) + kz 10g10 5
= k,(.42597) + k2(.69897).

Now it is obvious that the first point to be included in w, is the one cor-
responding to k; = k» = 0. The next most desirable point is k; = 1, k; = 0,
etc. Table III gives the ordering of points (k;, k.) as indicated in step
(ii), the corresponding values of r(kq, k), the corresponding probability
determined by H; and H, and the cumulative sums of these probabilities.
The most interesting columns in Table III are columns (5) and (7).
Column (5) gives the probabilities determined by H; that the point E to

c (81)

(82)
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TasLe III
Steps (i1) and (i1i) in determining wy

(1) 2 3) 4 (5) (6) M
Order Coordi- [ i | $
of the ple; | Hy) = ] ple; | Hy) = .
point | ot | TR E ik [y E Plei LD | ey, b | H E plej | HY

€

e1 0,0 .00000 .006 .006 .204 .204
e 1,0 . 42597 .015 .021 .204 .408
e 0,1 .69897 .019 .040 .136 .544
e 2,0 .85194 .018 .058 .089 .633
3 1,1 1.12494 .050 .108 .136 .769

be determined by observing z; and z. will fall within the critical region
wo including only the point e;, or the two points e; and ez, or three points
€1, €2, e3, etc. These probabilities, then, are the probabilities of wrongly
rejecting the hypothesis H; when it is in fact true, corresponding to an
increasing critical region wo. For example, if the geneticist decides that
he should not raise false doubts concerning hypotheses more often than
five times in a hundred when such hypotheses are true, then his critical
region should include only three points (0, 0), (1, 0) and (0, 1) with the
resulting probability of an error of the first kind equal to .040. Should
this be his decision, then the probability of detecting that H, is false when
the true hypothesis is H, (or the power of the test), is .544. It is found in
column (7) of Table III.

However, the geneticist may compromise on the probability of the error
of the first kind equal to .058, or even .108. Then his chances of detecting
the falsehood of H; when the true hypothesis is H; will be .633 or .769,
respectively.

Whichever critical region is finally adopted, including any number of the
first points e¢; ordered according to the value of r(k,, k2), the Lemma guar-
antees that the power of the resulting test cannot be improved by using any
other critical region which controls the errors of the first kind to the same
(or better) level as the region chosen.

Suppose now, that the values of z; and x, that were actually observed
are ky =2, ka = 0. It follows from the foregoing that, if the geneticist
does not insist on the probability of an error of the first kind being less
than .058, he should go ahead and voice his doubts of the hypothesis H;
of non-assortativeness of mating and of uniform fertility. In taking this



66 MATHEMATICAL STATISTICS AND PROBABILITY

step he should be aware that the above analysis does not contribute any-
thing about the falsehood or correctness of the particular genetical hypoth-
esis H,. In fact, no test can reveal any definite information about any
statistical hypothesis if the values of the observable random variables
which are possible under this hypothesis are also possible under some
alternative one. All the geneticist can be certain about is that, if his
attitudes towards statistical hypotheses are consistently governed by analy-
ses such as the one described, with a fixed value of «, then, in the long
run, the relative frequency of his raising doubts concerning hypotheses,
when such doubts are unjustified, will not exceed @. Moreover, he can
also be sure that, in cases when the hypothesis tested H; is wrong, the
chance of the above method detecting the falsehood of H, is as good as or
better than that corresponding to any other method insuring the same level
of control of errors of the first kind.

The reader may be interested in considering critical regions for testing
H, against H, other than the ones suggested in Table III. For example,
the reader may wish to compute the probability of error of the first kind
and the power of critical regions whose selection is based on the probability
distribution of z; and z, determined by H,;. Upon examining Table III
one might perhaps suggest the critical region w’ composed of all possible
sample points e for which

ple | Hy) < .001 (83)
or, perhaps the critical region w” composed of all points such that
ple| Hy) < .005, (84)

etc. It will be seen that regions of this kind will control errors of the first
kind to levels comparable to those of regions w,, suggested in Table III.
However, there will be a marked difference between the two kinds of tests
in their power to detect the falsehood of H; when the true hypothesis
is H2.



CHAPTER 11

Some Controversial Matters Relating to Agricultural Trials

Part 1. Randomized and Systematic Arrangements of Field Experiments

(The contents of this lecture are based on a conference at the Cosmos Club, Washington,
D. C., held April 7, 1937, under the chairmanship of Dr. Frederick F. Stephan and also
on some sections of papers published in the Supplement to the Journal of the Royal
Statistical Society, Vol. 2, 1935.)

I am going to speak on a very controversial question: Can systematically
arranged agricultural trials be treated with any success by means of mathe-
matical statistics? Two eminent statisticians who are also experts in agri-
cultural experimentation disagree drastically on the answer and each of
them has a number of supporters. One of these scientists, Professor R. A.
Fisher, claims that, in arranging field experiments systematically, we are
bound to obtain all sorts of biases in our estimates and thus to ruin the
statistical tests. The other scientist is “Student” who can be considered,
and rightly so, the father of statistical work in agricultural experimentation.
He does not deny that the formulas usually applied to estimate the experi-
mental standard error in both randomized and systematic trials are in the
latter case somewhat biased and tend to overestimate the error. But it is
his claim that the actual accuracy of a systematic experiment is usually
greater than that of a randomized one. In his opinion, too high an estimate
of the standard error is not especially important, since it keeps the experi-
menter on the safe side.

Members of the present audience who are familiar with the material
of my first two lectures are aware that the answer to the question must
be both empirical and subjective. Since the application of formulas of
mathematical statistics to the results of agricultural trials presumes the
existence of a mathematical model of these experiments, the question under
consideration reduces to one of whether or not the correspondence between
the model and what happens in actual practice is sufficiently accurate.
This question is exactly similar to the one mentioned in my second lecture
(page 23): “Can the formulas of plane geometry be applied to measure
this or that area on the surface of the earth?” Another similar problem
(page 28) is whether or not formulas deduced from the Poisson law of

67
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frequency can be successfully used to estimate the probability that a colony
on a Petri plate is produced by a single individual.

The empirical character of the answer arises from the fact that the
answer involves trials in conditions of actual practice. The subjective
character is unavoidable, because, after we have the results of the trials
and also the corresponding theoretical deductions from their mathematical
model, we must judge whether the agreement is or is not satisfactory. One
of the ways by which the insufficiency of plane geometry may be revealed
consists in subdividing an area of the type it is desired to measure into
several suitable partial ones and in measuring each of the parts. If the
measure of the whole appears to be very different from the sum of the
measures of its parts, then we would say that the assumption that the area
measured is plane is too crude. But it will be up to us to decide whether
the disagreement between the two measures s actually large or not, and
in this respect personal opinions vary.

Having this in view, I am going to give a short account of the work
recently done by Mr. C. Chandra Sekar in the Department of Statistics,
University College, London. This provides the objective empirical part
of the answer to the question discussed by Fisher and Student. The results
that I shall describe are of the same character as those contained in my
second lecture (pp. 30-41): on the one hand you will see figures repre-
senting frequencies of various results, as predicted from the mathematical
models of the agricultural trials, and on the other, the frequencies actually
observed. If the agreement between the two is judged satisfactory, the
conclusion will be that there is no special harm in arranging the experi-
ments systematically. If, on the other hand, you find that the agreement
is bad, you will require an alteration either of the mathematical model or
of the experimental design. For example, you may decide to randomize
your trials.

Now I must enter into details and describe the experiments that I have
in mind. I shall deal with experiments of a very common type in which
the plots are rather narrow, long rectangles all arranged in one row. They
are combined into a few blocks and within each block all the compared
agricultural objects (varieties or treatments) are distributed in one way
or another. This is the general description. If we add to this some details
on the way the objects are distributed within the blocks, we shall obtain
the full description of the two types of arrangements under discussion.

One of these is the so-called arrangement in randomized blocks. In this
arrangement, as you know, each of the objects is repeated in each of the
blocks the same number of times, e.g. once, and the order in which the
objects occur within each block is determined by random sampling. If the
number of compared objects is four and they are denoted by A4, B, C, D,
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then in a randomized block experiment we may find the following distri-
bution of objects on the successive plots.

Block I Block I1 Block III Block IV

A CDB(BCAD|CDAB|BACD

This is one type of arrangement and we know the formula by which we
can calculate the estimates of the true difference between the mean yields
which any two of the objects compared, say A and B, are able to give if
sown over the whole field. It is the difference between the means z, — zg
of the observed yields. Also, we know how to calculate an unbiased esti-
mate s? of the variance of our result. Owing to the fact that the obser-
vations referring to one block are mutually dependent (e.g., if the object A
got the best of the four plots, then the object B must have gotten one of
the poorer plots), the further theory is not entirely clear.!

It is probable, however, that the application of the ¢t test gives results
very much in accordance with its theory: i.e., the hypothesis tested, namely,
that there is no difference between the mean yields of the objects compared,
is rejected both when it is true and when it is false with relative frequencies
in good accord with the mathematical tables.

Many practical agriculturists find that the objects compared are not
always satisfactorily distributed over the field if the distribution is left to
chance. For example, they would object to the variety B being sown
twice on adjoining plots. In their opinion, the conditions in which the
particular objects are compared should be as equal as possible, and they
think that this is best attained by some systematic distribution of the
objects, such as the following.

Block I Block IT Block ITI
ete.
A B CD|A BCUDI|A BUCD

Frequently, though not always, a field experiment arranged in the above
manner is treated statistically by means of the formulas mentioned above,

1J. Neyman with cooperation of K. Iwaszkiewicz and S. Kolodziejezyk: “Statistical
problems in agricultural experimentation.” Supplement to the Roy. Stat. Soc., Vol. 2
(1935), pp. 107-180.

See also Michael D. McCarthy: “On the application of the z-test to randomized
blocks.” Annals of Math. Stat., Vol. 10 (1939), pp. 337-359.
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formulas meant for randomized block experiments. There is no doubt that
from the point of view of theory this procedure is wrong. The theory of
randomized blocks assumes specifically that the blocks are randomized and
its validity is easily shown to depend on this assumption. However, it is a
question, not of the fact that discrepancies do arise from the disregard of
this condition, but of the size of these discrepancies between theory and
practice.

The above systematic arrangement is very popular in Poland. I spent
much time and wasted much paper trying to persuade practical experi-
menters to randomize their blocks, but with disappointing success. Then
the thought occurred to me that the agreement between theory and practice
may be attained not only by altering the practice, but also by adjusting the
theory. Consequently, I produced a paper? giving a statistical theory of
the agricultural trials arranged systematically.®

The general lines are as follows. It is assumed that the natural level
of fertility along a field may be adequately represented by a parabola of
some not very high order, say the fourth. If u denotes the coordinate of
the center of any of the plots, starting from the left, so that

u=1:27"')N7 (1)
then the true yield of A, if it were tested on the uth plot would be
Aw) = A + bu + cu® + du® + eut, 2)

where A is a term depending on the object A (treatment or variety), and
b, ¢, d and e are unknown coefficients. The symbol A is used here to
signify both the thing being tested (treatment or variety), and the true
value (as the yield) of the thing being tested. Experience has shown, how-
ever, that confusion does not arise, and in fact the symbolism is a very
convenient one. The true yield of the object B, if it were sown on the
same plot would be given by

B(u) = B + bu + cu® + du® + eu?, 3)

where B depends on the object B but the other constants b, ¢, d, and e are
the same as in equation (2). Similar relations are written for C, D, etc.,
b, ¢, d, and e being the same for all.

In actual experiments we do not obtain what we call the ‘true” yields.
What we obtain is the sum of the true yield plus an experimental error,

2]J. Neyman: The theoretical basis of different methods of testing cereals, Part II:
The method of parabolic curves. K. Buszczynski and Sons, Ltd., Warsaw, 1929, 48 pp.

3 In more recent times my formulae were refound by A. Hald. See A. Hald: The
decomposttion of a series of observations. G. E. C. Gads Forlag, Copenhagen, 1948,
134 pp.
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due to various factors, such as inaccuracies in measuring plots, in treatment,
damage by birds, etc. My assumption was that these experimental errors
on particular plots are independent of each other. I then applied the
Markoff ¢ theorem to get estimates of the differences, B — A, C — A4, etc.,
and of their respective variances.

If the assumptions are granted, the theory is correct. It certainly cor-
responds more exactly to the practice of systematic experiments than the
theory of randomized blocks does, but for a long time there was no answer
to the question of what this correspondence meant in figures. Now some
numerical evidence is available indicating that the theory does correspond
to what happens in practice, at least in one particular type of systematic
arrangement called half drill strip.

This experimental design was invented by Dr. E. S. Beaven ® who used
it with great success while breeding his renowned varieties of barley. The
half-drill-strip experiments are designed to compare only two objects, say
two varieties, A and B. The varieties are sown in long narrow plots, half
the drill sowing A4, the other half B. The varieties are repeated in a system-
atic order as follows.

SANDWICH 1 SANDWICH &I SANDWICH III

o ——— - o —— o ————

: / \ ( \ / )
I *I : ,.._1__,’ : ;—:—~ THE WAY OF
aie “Bia aie B Aat AalB ‘BiA THE DRILL
\_.:_J | A | A :
| 1
\__ '\\___,l '\\___J
(4)

Four consecutive plots form what is called a sandwich, two half drill
strips with B, sown in opposite directions, are enclosed between two with
A, also sown in opposite directions. These sandwiches obviously correspond
to blocks, but the blocks are not randomized.

1t will be useful to distinguish between two possible methods of randomiz-
ing the blocks of four plots to be occupied by two varieties only. One
would be a totally unrestricted randomization, allowing arrangements like

AABB, ABAB, ABBA, BAAB, BABA, BBAA. (5)
The second kind of randomizing would consist in randomizing the sand-

4See F. N. David and J. Neyman: “Extension of the Markoff theorem on least
squares.” Statistical Research Memotrs, Vol. II (1938), pp. 105-116.

5E. S. Beaven: “Trials of new varieties of cereals.” Jr. of the Ministry of Agriculture,
Vol. 29 (1922), nos. 4 and 5, pp. 1-28, 436444,
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wich. This would admit only two arrangements of the block, either ABBA
or BAAB, and the choice between them should be based on some random
experiment such as tossing a coin.

If the sandwiches are randomized as just described, and if x; denotes the
difference between the sum of the two yields of A and the two yields of B
observed on the ith sandwich, then the ordinary theory of randomized
blocks is applicable to the z;. But this is not so certain with respect to a
systematic arrangement like (4). Of course, the arrangement (4) may be
treated by the method of parabolic curves described above. It is a matter
of an easy adjustment of a few formulas and of preparing tables to facilitate
the calculations. But here again we come to the question of whether or
not the scheme underlying the method of parabolic curves corresponds with
sufficient accuracy to what happens in practice.

I shall now discuss the question of the empirical data needed for deciding
whether or not any particular mathematical model corresponds to the
experiments.

When comparing any two objects A and B, of which A is some established
standard, we may desire to obtain evidence that B is better than A. This
reduces to the test of the statistical hypothesis Hy that the true average yield
B of B if sown on the whole field, does not exceed that of 4, say A. That is,
Hj is the hypothesis that

B—-4¢xo. (6)

Whichever one of the mathematical schemes described is applied, the test
of Hy consists (i) in calculating the estimate of A = B — 4, say #, (ii) in
calculating the estimate s?/n of the variance of % and (iii) in referring the
quotient ¢ = Z/(s/ \/;L) to Fisher’s table of ¢. If the observed value of ¢ ex-
ceeds the value tabled t¢,, corresponding to some small value of P, say 0.05
or 0.01, then the hypothesis Hy is rejected and we consider that we have
“evidence” of B being able to give average yields greater than A.

The whole question under discussion, i.e., whether or not the field trials
must be randomized, whether or not the non-randomized trials give any sort of
bias in the statistical tests, is reduced to the following:

(1) Whether or not, in cases when the hypothesis tested H is true, and, in

particular, when A4 = B, the value of ¢t = /(s/ '\/;L) calculated by this or
that method exceeds the fixed value of ¢, with the frequency a = P/2 pre-
scribed by the theory.

(2) Whether or not, in cases when the hypothesis Hy is wrong and thus
B — A = A >0, the ¢ test detects this circumstance, the value of ¢ falling
above the critical ¢,, with a frequency predicted by the theory.

If, on any empirical evidence, either of the above two questions were to be
answered in the negative, then we should say that the mathematical model
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that served as a basis for calculating ¢t = Z/(s/ \/;z) does not correspond to the
actual trials, and that either the model or the experimental design should be
altered. If, however, a considerable volume of empirical data fails to deny
either 1 or 2, then the practical man would probably say that, from a purely
academic point of view (which may be interesting by itself), there may be
disagreements between the experimental technique and its mathematical
model, but that these disagreements do not concern him. In fact, the
statistical test gives all it is expected to give; it rejects the hypothesis tested
H, when it is in fact true as frequently as expected, and it detects the false-
hood of Hy when it is wrong with about the same frequency as predicted by
theory.

It is seen, therefore, that the whole question is reduced to what is the actual
empirical distribution of values of ¢ in cases when A = B, and in cases when
B—A4A=A>0. We must discuss the question of how such empirical
distributions can be obtained.

It is easier to obtain an empirical distribution of ¢ for the case when 4 = B
than for the case B — A > 0. We have to use for this purpose the results of
so-called uniformity trials. Imagine a large field divided into a number of
very small plots, considerably smaller than the ones used for actual experi-
ments. To avoid misunderstanding, we shall call them elementary plots.
If you treat all these plots in exactly the same way, so far as possible, and sow
them with the same variety, you will have a uniformity trial. The results of
such trials, represented by a plan of the experimental field with the yields of
single elementary plots, are to be found in various publications. However,
not all of them are equally suitable for our purpose, mainly because the ele-
mentary plots used are not sufficiently small, or because they differ con-
siderably from squares. If the elementary plots are very tiny squares, then
they can be combined in various ways to form what could be real experimental
plots. If we wish to see what the results of some particular experiment on
this field would be, as in comparing some objects 4, B, - - -, which are in fact
identical (though we are not aware of it), we simply assign these hypothetical
objects to particular plots and then perform all the calculations on the figures
provided by the uniformity trial and apply the tests that we should apply if
we had to deal with an actual experiment. If the elementary plots are large
or very long, then the same procedure can be applied; but it may be hard to
produce experimental plots of the desired size and shape.

For our purpose we should need uniformity trials with elementary plots
that could be combined into half drill strips. Suppose that many such
hypothetical half drill strips are available in the form of a table like the
following, where each rectangle represents a half drill strip and the figure
written on it the sum of the yields of the elementary plots of the uniformity
trial of which the experimental plot is composed. They would be the actual
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101 | 107 [ 102 | 97 |} 101 | 102 | 106 | 113 || 114 | 106 | 99 | 101

TPl iyttt et

yields obtained on these plots in an experiment with two hypothetical but
identical varieties A and B. Writing in successive letters A, B, B, A, etc.,
on the plan of the hypothetical experiment (as shown), and applying any
given mathematical model, we can calculate ¢, knowing that it refers to the
case where 4 = B. A set of such values of ¢, calculated from the results
of a number of uniformity trials, will produce the distribution we want to
compare with the theoretical one deduced by Student, namely,

p(t) = C(1 + 2277, ()

where t2 = z2(n — 1), and n — 1 is the number of degrees of freedom on
which the estimate s? is based.

If the sandwiches are randomized, then the estimate of B — A is simply
the arithmetic mean £ of the numbers z; as defined above, and

§? (r; — %)2

n n(n—l).

(8

As far as I am aware, the first authors to run tests on uniformity trial data
to see whether or not the distribution of Z/(s/ \/;L) from non-randomized
sandwiches followed Student’s frequency of ¢, were S. Barbacki and R. A.
Fisher.® They came to the conclusion that the lack of randomization is de-
structive to the ¢ test, and they blamed Student for thinking differently. It
seems to me, however, that Barbacki and Fisher were a little unfair to Student,
and that the figures they produced are entirely valueless.

Barbacki and Fisher took just one uniformity trial for which weights of
yields of wheat on short parts of single rows were published.” They
combined the adjoining rows to obtain the width of a half drill strip. The
rows were long and they divided them into 12 columns and so obtained
12 columns of hypothetical half drill strips, each being a continuation of
the strips in other columns. These columns were interpreted as representing
the results of six hypothetical experiments comparing some variety A

6 S. Barbacki and R. A. Fisher: “A test of the supposed precision of systematic arrange-
ments.” Annals of Eugenics, Vol. 7 (1936), pp. 189-193.

7G. A. Wiebe: “Variation and correlation in grain yields among 1500 wheat nursery
plots.” J. Agric. Res., Vol. 50 (1935), pp. 331-357.
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with another B. Experiment No. 1 would consist of sandwiches in columns
1 and 7; experiment No. 2 would consist of sandwiches in columns 2 and 8;
etc., as marked in the figure. The two authors calculated ¢ for each such
experiment and were pleased to find that, in spite of the fact that the
hypothetical varieties A and B were identical, the distribution of the
empirical ¢ was far from similar to the theoretical one. In fact, all values
of t had the same sign! This, of course, was to be expected because the
values thus calculated were not independent. It is known that the direction
of rows is frequently that of ploughing and that in this direction we fre-
quently observe what I call waves of fertility: if one of the plots in the
first row is better than the corresponding plot in the second, then this is
likely to be true for all other plots in these rows. These waves of fertility
are very marked on the field used by Barbacki and Fisher and consequently
the value of ¢ calculated for any one of these hypothetical experiments
could not be much different from the one for any of the others. The whole
argument is as if we would toss a penny just once, look at it six times and,
having recorded six heads, argue that the penny must be biased. The
authors are unfair to Student because he called attention to the fact that
parts of the same strip are highly correlated.®

8 Student: “On testing varieties of cereals.” Biometrika, Vol. 15 (1923), pp. 271-293.
See pp. 286-287 in particular,
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It follows that we can not accept the results of Barbacki and Fisher as
conclusive in the question which interests us. Their figures emphasize only
the known fact that there is danger in replicating an arrangement on plots
in adjolning columns because an error in one of the columns is likely to
be repeated in the others. This does represent an advantage for the ran-
domized arrangements but does not show that systematic experiments, if
carried out with due precautions, necessarily give biased results.

There is no doubt, however, that the application of the formula (8) does
represent a crude treatment. This was recognized by Student who, in a
paper published in the Supplement to the Journal of the Royal Statistical
Society, Vol. I11, pp. 114-136, 1936, suggested a new way of proceeding.
This is based on the hypothesis that the level of fertility along the row
of drill strips is either rising or falling off more or less regularly, so that,
within each pair of half drill strips, the fertility of the next half drill strip
differs from that of the preceding one by a fixed quantity, which Student
called the linear fertility slope. Again, there is no doubt that this assump-
tion does not correspond exactly to what happens in practice, but the
formulas that the new mathematical model involves—Iet it be called the
new Student’s method—have a greater chance of giving satisfactory results
than formula (8). In fact, this method along with that of parabolic curves,
is based exclusively on the assumption that the experiment is arranged
systematically. Whether or not it works well must be tested empirically.

Some work designed to throw light on the question in which we are
interested has been done by one of my students, Mr. C. Chandra Sekar.
He tried to collect as many uniformity trial data as he could possibly find,
and on each field he arranged a number of independent hypothetical ex-
periments in systematic half drill strips. The total number of experiments
was 120. For each experiment the value of ¢ was calculated twice, first by
the new Student’s method and then by the method of parabolic curves.
The distributions obtained are shown in Figures 1 and 2. In each case the
empirical distribution was compared with the theoretical Student’s distri-
bution using the smooth test ? for goodness of fit. The symbol P{y? > yo®}
represents the probability of obtaining by chance an agreement between
theory and observation worse than that actually observed. For the new
Student’s method this probability is .173 and for the method of parabolic
curves, .643. The two graphs and the two probabilities represent the
empirical part of the inquiry. Whether the agreement between the theory
and the observation is or is not satisfactory is a subjective question. How-
ever, I submit that, especially as regards the method of parabolic curves,
one could hardly expect anything better.

2J. Neyman: “‘Smooth test’ for goodness of fit.” Skandinavisk Aktuarietidskrift,
Vol. 20 (1937), pp. 149-199.
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Now let us turn to the question of the effectiveness of the two methods
in cases where one of the varieties, say B, is actually better than the
other, A. In relation to this situation and on the assumption that the
observations are mutually independent and follow the normal distribution,
the theory of the ¢ test is as follows.

(i) It has been shown '° that the superiority of B over A will be dis-
covered by the ¢ test more frequently than by any other test.

(ii) The frequency of the ¢ test failing to detect a difference A = B — 4
when it actually exists and is equal to p times the true standard error ¢ of &
is known and depends on the number of degrees of freedom on which the
estimate of o is based. This is what is technically called the probability of an
error of the second kind. The first short table of this kind was published by
S. Kolodziejezyk.!* This was later supplemented in a joint paper by
K. Iwaszkiewicz, S. Kolodziejczyk, and myself,'? wherein certain graphs are
published, two of which are shown on pages 79-80. Finally, a differently ar-
ranged table was published by Miss B. Tokarska and myself.!?

In these graphs n means the number of degrees of freedom on which the
estimate of error variance is based. Further, « means the fixed level of
significance with which you work. To make the diagrams clear let us
consider an example. Suppose you are arranging a randomized blocks
experiment with six treatments and three replications. In this case n = 10.
From previous experience you know that the standard error per plot is
likely to be, say, 10 percent of the average yield, and you want to know
the probability that the experiment will fail to detect as large a difference
between your treatments as 20% of the general mean. The expected value
of your o is 100/24 = 8.16. Your A = 20, and p = 20/8.16 = 2.45. From
the diagram you find that the probability of the ¢ test failing to detect
the difference between the treatments when it is as large as 20 percent
of the average yield is about 0.25 if @ = 0.05, and about 0.55 if « = 0.01.
You will probably decide that the experiment planned is not sufficiently
accurate, and you will try to increase the number of replications.

Of course, points (i) and (ii) refer to the ideal case of a complete cor-
respondence between the experiments and the mathematical model involving
the normal distribution and mutual independence of “errors.” Our problem

10 J. Neyman and E. S. Pearson: “On the problem of the most efficient tests of sta-
tistical hypotheses.” Phil. Trans. Royal Society, London, Vol. 231-A (1933), pp. 289-337.

11§, Kolodziejezyk: “Sur l'erreur de la seconde catégorie dans le probléme de M.
Student.” Comptes Rendus, Vol. 197 (1933), pp. 814-816.

12 K. Iwaszkiewicz, S. Kolodziejezyk and J. Neyman: “Statistical problems in agricul-
tural experimentation.” Supplement to Jr. Roy. Stat. Soc., Vol. 2 (1935), pp. 107-180.
See pp. 133-134 in particular.

13 J, Neyman and B. Tokarska: “Errors of the second kind in testing ‘Student’s’
hypothesis.” Jr. Am. Stat. Assoc., Vol. 31 (1936), pp. 318-326.
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Figure 3

Diagram showing dependence of probabilities of second kind errors on p and n,
when a = 0.05
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is to see whether or not the existing divergences from this model influence
the validity of the theoretical conclusions.

With regard to point (i) raised above, there are insurmountable difficul-
ties in this respect. There is no way to produce empirical evidence that
in any fixed conditions of experimentation it is impossible to invent a test
that would be more sensitive than the ¢ test. If any other test were sug-
gested, then we could produce empirical results comparing its sensitiveness
to that of ¢, and this comparison might show that the alternative test is
better than ¢{. But any number of such comparisons, all of them favorable
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that of A. For each such experiment we calculate the value of ¢ and see
how frequently it fails to exceed the critical tabled value of ¢, that is to
say, how frequently the ¢ test fails to detect the advantage of B over A.
This frequency must then be compared with the probability of an error
of the second kind to be found in the tables mentioned above or read from
the graphs on pages 79-80.

In order to produce the quasi-empirical data for the above purpose we
use again the same uniformity trials that were used before. I have men-
tioned on page 73 that on each of the fields with uniformity trials it is
possible to arrange more than one hypothetical experiment in half drill
strips. Each of them gives an estimate of the error variance. Several such
estimates were averaged, and this average was taken as the true value of
the error variance for the experiments on any particular field.

To see more clearly what was done next, consider the situation on any two
particular fields. The assumed true standard deviations of the estimates of
B — A on those fields are ¢; and o, respectively. Using the graphs of proba-
bilities on pages 79-80, the values p(20), p(40), p(60), and p(80) of p were
found, for which the probabilities of errors of the second kind are 0.20, 0.40,
0.60, and 0.80. These values of p were than multiplied by ¢, and o5 to obtain
what I shall denote by A;(20), A2(20), A,(40), etc., so that, for example,

A1(20) = 01p(20), A2(20) = 02p(20), ete.

You will notice that A;(20) represents the value such that if the difference
between B and A tested on the first field were equal to A;(20), then the
theoretical probability of the ¢ test failing to detect the advantage of B over
A would be exactly equal to 0.20.

Suppose that the values of A;(20), A;(40), A; (60), and A;(80) are calculated
for the 7th field. Take one of the hypothetical experiments in the systematic
half drill strips previously arranged on some particular field from data of
uniformity trials, and add A;(20) to all the hypothetical yields of the object
B. Before this addition, the variability of yields from plot to plot was due
solely to soil variation and technical errors, since all the plots were equally
treated and sown with the same variety. After the addition of A;(20) to
the yield of the hypothetical B, we obtain what could be the result of an actual
trial of A and B, including the effect of soil variation and technical errors,
A — B having the property that whatever the true yield of 4, the true yield
of B is greater by the amount A;(20). That is what we want for testing the
distribution of ¢t when B — 4 = A;(20).

Mr. C. Chandra Sekar calculated ¢t for each of the experiments in such
systematic sandwiches, obtained in the above way from the data of uni-
formity trials. Again, both the new Student’s method and the method of
parabolic curves were tried. The results, in the form of frequencies of
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non-detection of the advantage of B over A, both observed and theoretical,
are set up in the following table.

TasLE I

Relative frequencies of failure to detect a real advantage of B over A in systematic half-drill-
strip experimentls

Theory, | of L::::gg]jc Student’s
’ method,
percent curves,
percent
percent
20 23.3 27.5
40 40.8 46.7
60 62.5 61.7
80 78.3 75.8

Again, this is the objective part of the answer to the question of whether
or not the lack of randomization ruins the ¢ test. The first column gives
the theoretical frequency of cases in which the ¢ test should fail to detect
the advantage of B over A. The other columns show what these frequen-
cies would be in a number of experiments in which the variability of the
soil and the experimental errors are exactly as they were in actual uni-
formity trials. Is the disagreement sufficient to say that the ¢ test is of no
use when applied to the systematic half drill strips? This, as I said, is a
personal question. So far as I am concerned, the agreement between the
theory and the empirical results seems to be satisfactory. Especially in
the case of parabolic curves, the ¢ test both detects the advantage of B
when this advantage exists and suggests its existence when it does not
exist with relative frequencies very much the same as indicated by the
theory.

In consequence, I do not see any evidence to support the assertion that
lack of randomization by itself is ruinous to statistical tests. We must,
however, remember the following points.

(1) The above empirical results refer to one particular systematic arrange-
ment in half drill strips: ABBA, etc. It is reasonable that if we take any
other systematic arrangement, the conclusions suggested by the empirical
results may be different. If we take the systematic arrangement of blocks
with more than two objects

ABCA, ABCD, ---,
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then probably the advantage of the method of parabolic curves over the
ordinary formulas for randomized blocks will be more marked than in the
case of half drill strips, but this requires an empirical test.

(ii) The waves of fertility are an important feature that should be borne
in mind in any case and especially when the trials are arranged system-
atically. Whenever 1 was able to ascertain the direction of ploughing, I
found that the fertility seems to stay steadier along the direction of plough-
ing than across. It seems to me that the direction of ploughing may be
the real cause of these waves, but I have no definite evidence of this.
Sometimes the waves are difficult to detect when you simply look at the
uniformity trial data. In other instances they are very pronounced. The
following table gives a part of the uniformity trial data with rye as
described by Hansen.'* Looking at it you will hardly believe that all the
plots were sown with the same variety and equally treated, but this is a fact.

TasLe II
Hansen. Yields of rye. Uniformity trial data, 1909
g 1 2 3 4 5
)
8
2 101 84 113 88 110
‘s 107 91 114 88 109
_g 102 94 106 84 106
§ 97 94 99 88 105
I || |eececenlcccccccleccccccelccceccclcc e
P 101 [ 9 | 101 | 84 | 104
5 102 | 86 99 | 84 | 102
< 106 90 100 85 104
~ 106 | 92 104 | 8 | 105

Imagine now that, without knowing the peculiar fertility level of the
field, you use this field for an actual experiment and cut your plots along
the columns. The results would be deplorable. On the other hand, if
long and narrow plots were cut across the columns, the experiment might
have been fairly successful.

If practical circumstances forced one to cut the plots along the columns
of the above, say four rows deep, so that out of each column we had two
plots, then it would be most inadvisable to arrange a systematic experiment
replicated exactly in the two rows, e.g.,

14 N. A. Hangen: “Prgvedyrkning paa Forsggsstationen ved Aarslev.” Tidsskrift for
Planteavl, Vol. 21 (1914), pp. 553-617.



84 MATHEMATICAL STATISTICS AND PROBABILITY
ABCD, ABCD, ---
ABCD, ABCD, ---

since the second row would repeat almost identically the same soil errors
as there are in the first. In such circumstances, a randomized arrangement
would be most useful. In this sense, the randomized arrangements do have
definite advantages over the systematic ones.

Turning to the question of the waves of fertility, I think that from the
point of view of accuracy of agricultural trials it would be most useful to
have some indication of their cause. Probably it would not be too difficult
to make a special experiment to discover whether the direction of the waves
of fertility is actually connected with that of ploughing.

Part 2. On Certain Problems of Plant Breeding

(The contents of this lecture are based on a conference held in Room 4090 of the Depart-
ment of Agriculture, April 7, 1937, 10 o.M, Dr. S. C. Salmon presidin