
Module 11: Cross-validation and the
Control of Error Rates

As is your sort of mind, so is your sort of search; you’ll find what you desire.
— Robert Browning (1812–1889)

Abstract: This module emphasizes what might be termed “the

practice of safe statistics.” The discussion is split into three parts: (1)

the importance of cross-validation for any statistical method that re-

lies on an optimization process based on a given data set (or sample);

(2) the need to exert control on overall error rates when carrying out

multiple testing, even when that testing is done only implicitly; (3)

in the context of “big data” and associated methods for “data min-

ing,” the necessity of some mechanism for ensuring the replicability

of “found results.”
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1 Cross-validation

Many texts in statistics that include a discussion of (multiple) regres-

sion and related techniques give little weight to the topic of cross-

validation, which we believe is crucial to the appropriate (and “safe”)

use of these methods.1 Cross-validation might be discussed under

the rubric of how does a result found for a particular sample of data

“hold up” in a new sample. As a general illustration, consider (mul-

tiple) regression where the interest is in predicting a single dependent

measure, Y , from a linear combination of K independent variables,

X1, . . . , XK . As a measure of how well a regression equation does

in the sample, we typically use the squared correlation (R2) between

the values on Y and those predicted from the regression equation,

say, Ŷ . This is a measure of how well an equation does on the

same data set from which it was derived, typically through an op-

timization process of least-squares. Our real interest, however, may

be in how well or badly the sample equation works generally. The

sample equation has been optimized with respect to the particular

data at hand, and therefore, it might be expected that the squared

correlation is “inflated.” In other words, the concern is with sam-

ple equation performance in a new group; this is the quintessential

question of “cross-validation.”
1We have one salient example in Module 2 where a lack of cross-validation lead to overly-

optimistic estimates of how well actuarial predictions of violence could be made. This was
the development of the COVR instrument in the MacArthur Study of Mental Disorder and
Violence. In the training sample, 1 out of 3 predictions of “violence” were wrong; in the
one small cross-validation study done somewhat later using completely “new” data, 2 out
of 3 predictions of “violence” were incorrect. In fact, the COVR even failed to be clinically
efficient in the Meehl and Rosen sense – the diagnostic test was outperformed by prediction
using simple base rates.
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There are several general strategies that can be used to approach

the task of cross-validation:

a) Get new data and use the sample equation to predict Y and

calculate the squared correlation between Y and Ŷ ; denoting this

squared correlation byR2
new, the differenceR2−R2

new is called “shrink-

age” and measures the drop in how well one can predict with new

data. The chief problem with this first approach is that new data

may be “hard to come by” and/or very expensive.

b) We can first split the original sample into two parts; obtain the

equation on one part (the “training set”) and test how well it does

on the second (the “test set”). This is a common method of cross-

validation; the only possible down-side is when the original sample is

not very big, and the smaller training sample might produce a more

unstable equation than desirable.

c) Sample reuse methods : here, the original sample is split intoK

parts, with the equation obtained with K−1 of the parts aggregated

together and then tested on the one part left out. This process is

repeated K times, leaving one of the K parts out each time; it is

called K-fold cross-validation. Given the increased computational

power that is now readily available, this K-fold cross-validation is

close to being a universal default option (and with K usually set at

around 10).

At the extreme, if n subjects are in the original sample, n-fold

cross-validation would leave one person out at a time. For this person

left out, say person i, we obtain Ŷi and then calculate the squared

correlation between the Yi’s and Ŷi’s to see how well we cross-validate
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with a “new” sample. Each equation is constructed with n − 1

subjects so there should be more stability present than in approach

(b).

1.1 An Example of a Binary Classifier

The term discrimination (in a nonpejorative statistical sense) can

refer to the task of separating groups through linear combinations

of variables maximizing a criterion, such as an F -ratio. The linear

combinations themselves are commonly called Fisher’s linear discrim-

inant functions. The related term classification refers to the task of

allocating observations to existing groups, typically to minimize the

cost and/or probability of misclassification. These two topics are in-

tertwined, but here we briefly comment on the topic of classification

when there are two groups (or in the current jargon, we will construct

a “binary classifier”).

In the simple two-group situation, there are two populations, π1

and π2; π1 is assumed to be characterized by a normal distribution

with mean µ1 and variance σ2
X (the density is denoted by f1(x)); π2 is

characterized by a normal distribution with mean µ2 and (common)

variance σ2
X (the density is denoted by f2(x)). Given an observation,

say x0, we wish to decide whether it should be assigned to π1 or to π2.

Assuming that µ1 ≤ µ2, a criterion point c is chosen; the rule then

becomes: allocate to π1 if x0 ≤ c, and to π2 if > c. The probabilities

of misclassification are given in the following chart:
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True State

π1 π2

π1 1− α β

Decision

π2 α 1− β
In the terminology of our previous usage of Bayes’ rule to obtain the

positive predictive value of a test, and assuming that π1 refers to a

person having “it,” and π2 to not having “it,” the sensitivity of the

test is 1 − α (true positive); specificity is 1 − β, and thus, β refers

to a false negative and α to a false positive.

To choose c so that α + β is smallest, select the point at which

the densities are equal. A more complicated way of stating this

decision rule is to allocate to π1 if f1(x0)/f2(x0) ≥ 1; if < 1, then

allocate to π2. Suppose now that the prior probabilities of being

drawn from π1 and π2 are p1 and p2, respectively, where p1 +p2 = 1.

If c is chosen so the Total Probability of Misclassification (TPM)

is minimized (that is, p1α + p2β), the rule would be to allocate

to π1 if f1(x0)/f2(x0) ≥ p2/p1; if < p2/p1, then allocate to π2.

Finally, to include costs of misclassification, c(1|2) (for assigning to

π1 when actually coming from π2), and c(2|1) (for assigning to π2

when actually coming from π1), choose c to minimize the Expected

Cost of Misclassification (ECM), c(2|1)p1α + c(1|2)p1β, by the rule

of allocating to π1 if f1(x0)/f2(x0) ≥ (c(1|2)/c(2|1))(p2/p1); if <

(c(1|2)/c(2|1))(p2/p1), then allocate to π2.

Using logs, the last rule can be restated:

allocate to π1 if log(f1(x0)/f2(x0)) ≥ log((c(1|2)/c(2|1))(p2/p1)).

The left-hand side is equal to
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(µ1 − µ2)(σ2
X)−1x0 − (1/2)(µ1 − µ2)(σ2

X)−1(µ1 + µ2),

so the rule can be rephrased further:

allocate to π1 if

x0 ≤ {(1/2)(µ1 − µ2)(σ2
X)−1(µ1 + µ2) −

log((c(1|2)/c(2|1))(p2/p1)){ σ2
X

−(µ1 − µ2)
}

or

x0 ≤ {(1/2)(µ1+µ2)− log((c(1|2)/c(2|1))(p2/p1))}{ σ2
X

(µ2 − µ1)
} = c .

If the costs of misclassification are equal (that is, c(1|2) = c(2|1)),

then the allocation rule is based on classification functions: allocate

to π1 if

[
µ1

σ2
X

x0 − (1/2)
µ2

1

σ2
X

+ log(p1)]− [
µ2

σ2
X

x0 − (1/2)
µ2

2

σ2
X

+ log(p2)] ≥ 0 .

The classifier just constructed has been phrased using popula-

tion parameters, but to obtain a sample-based classifier, estimates

are made for the population means and variances. Alternatively, a

“dummy” binary dependent variable Y (= 0 for an observation in

group 1; = 1 for an observation in group 2) can be predicted from X ;

the sample-based classifier is obtained in this way. Also, this process

of using a binary Y but with K independent variables, X1, . . . , XK ,

leads to a binary classifier based on more than one independent vari-

able (and to what is called Fisher’s linear discriminant function).2

2In the terminology of signal detection theory and the general problem of yes/no diag-
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In moving to the sample where estimated quantities (sample means,

variances, and covariances) are used for the population parameters,

we can do more than just hope that the (sample) classification rule

does well by carrying out a cross-validation. First, a misclassification

table can be constructed based on simple resubstitution of the orig-

inal data into the sample classification rule (where n1 observations

are in group π1 and n2 are in group π2):

True State

π1 π2

π1 a b

Decision

π2 c d

sums n1 n2

The apparent error rate (APR) is (b + c)/n, which is overly opti-

mistic because it is optimized with respect to this sample. A K-fold

cross-validation would give a less optimistic estimate; for example,

letting K = n and using the “hold out one-at-a-time” strategy, the

following misclassification table might be obtained:

nostic decisions as discussed in Module 4, a plot of sensitivity (true positive probability) on
the y-axis against 1− specificity on the x-axis as c varies, is an ROC curve (for Receiver
Operating Characteristic). This ROC terminology originated in World War II in detecting
enemy planes by radar (group π1) from the noise generated by random interference (group
π2). The ROC curve is bowed from the origin of (0, 0) at the lower-left corner to (1.0, 1.0) at
the upper right; it indicates the trade-off between increasing the probability of true positives
and the increase of false positives. Generally, the adequacy of a particular diagnostic decision
strategy is measured by the area under the ROC curve, with areas closer to 1.0 being better;
that is, steeper bowed curves hugging the left wall and the top border of the square box.
For a comprehensive introduction to diagnostic processes, see Swets, Dawes, and Monahan
(2000).
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True State

π1 π2

π1 a* b*

Decision

π2 c* d*

sums n1 n2

To estimate the actual error rate (AER), we would use (b∗ + c∗)/n,

and would expect it to be greater than the APR.

2 Problems With Multiple Testing

A difficulty encountered with the use of automated software anal-

yses is that of multiple testing, where the many significance values

provided are all given as if each were obtained individually without

regard for how many tests were performed. This situation gets exac-

erbated when the “significant” results are then culled, and only these

are used in further analysis. A good case in point is reported in the

next section on odd correlations where highly inflated correlations

get reported in fMRI studies because an average is taken only over

those correlations selected to have reached significance according to

a stringent threshold. Such a context is a clear violation of a dictum

given in many beginning statistics classes: you cannot legitimately

test a hypothesis on the same data that first suggested it.

Exactly the same issue manifests itself, although in a more subtle,

implicit form, in the modern procedure known as data mining. Data

mining consists of using powerful graphical and algorithmic methods
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to view and search through high-dimensional data sets of moderate-

to-large size, looking for interesting features. When such a feature is

uncovered, it is isolated and saved. Implicit in the search, however,

are many comparisons that the viewer makes and decides are not in-

teresting. Because the searching and comparing is done in real time,

it is difficult to keep track of how many “insignificant” comparisons

were discarded before alighting on a significant one. Without know-

ing how many, we cannot judge the significance of the interesting

features found without an independent confirmatory sample. Such

independent confirmation is all too rarely done.

Uncontrolled data mining and multiple testing on some large (lon-

gitudinal) data sets can also lead to results that might best be la-

beled with the phrase “the oat bran syndrome.” Here, a promising

association is identified; the relevant scientists appear in the media

and on various cable news shows; and an entrepreneurial industry is

launched to take advantage of the supposed findings. Unfortunately,

some time later, contradictory studies appear, possibly indicating a

downside of the earlier recommendations, or at least no replicable

effects of the type reported previously. The name “the oat bran syn-

drome” results from the debunked studies from the 1980s that had

food manufacturers adding oat bran to absolutely everything, includ-

ing beer, to sell products to people who wanted to benefit from the

fiber that would supposedly prevent cancer.

To be more formal about the problem of multiple testing, suppose

there are K hypotheses to test, H1, . . . , HK , and for each, we set

the criterion for rejection at the fixed Type I error value of αk, k =

1, . . . , K. If the event Ak is defined as the incorrect rejection of Hk
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(that is, rejection when it is true), the Bonferroni inequality gives

P (A1 or · · · or AK) ≤
K∑
k=1

P (Ak) =

K∑
k=1

αk .

Noting that the event (A1 or · · · or AK) can be verbally restated

as one of “rejecting incorrectly one or more of the hypotheses,”

the experiment-wise (or overall) error rate is bounded by the sum

of the K α values set for each hypothesis. Typically, we let α1 =

· · · = αK = α, and the bound is then Kα. Thus, the usual rule for

controlling the overall error rate through the Bonferroni correction

sets the individual αs at some small value such as .05/K; the overall

error rate is then guaranteed to be no larger than .05.

The problem of multiple testing and the failure to practice “safe

statistics” appears in both blatant and more subtle forms. For exam-

ple, companies may suppress unfavorable studies until those to their

liking occur. A possibly apocryphal story exists about toothpaste

companies promoting fluoride in their products in the 1950s and

who repeated studies until large effects could be reported for their

“look Ma, no cavities” television campaigns. This may be somewhat

innocent advertising hype for toothpaste, but when drug or tobacco

companies engage in the practice, it is not so innocent and can have a

serious impact on our collective health. It is important to know how

many things were tested to assess the importance of those reported.

For example, when given only those items from some inventory or

survey that produced significant differences between groups, be very

wary!

People sometimes engage in a number of odd behaviors when doing
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multiple testing. We list a few of these below in summary form:

(a) It is not legitimate to do a Bonferroni correction post hoc; that

is, find a set of tests that lead to significance, and then evaluate just

this subset with the correction;

(b) Scheffé’s method (and relatives) are the only true post-hoc

procedures to control the overall error rate. An unlimited number

of comparisons can be made (no matter whether identified from the

given data or not), and the overall error rate remains constant;

(c) You cannot look at your data and then decide which planned

comparisons to do;

(d) Tukey’s method is not post hoc because you actually plan to

do all possible pairwise comparisons;

(e) Even though the comparisons you might wish to test are in-

dependent (such as those defined by orthogonal comparisons), the

problem of inflating the overall error rate remains; similarly, in per-

forming a multifactor analysis of variance (ANOVA) or testing mul-

tiple regression coefficients, all of the tests carried out should have

some type of control imposed on the overall error rate;

(f) It makes little sense to perform a multivariate analysis of vari-

ance before you go on to evaluate each of the component variables.

Typically, a multivariate analysis of variance (MANOVA) is com-

pletely noninformative as to what is really occurring, but people

proceed in any case to evaluate the individual univariate ANOVAs

irrespective of what occurs at the MANOVA level; we may accept

the null hypothesis at the overall MANOVA level but then illogically
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ask where the differences are at the level of the individual variables.

Plan to do the individual comparisons beforehand, and avoid the

uninterpretable overall MANOVA test completely.

We cannot leave the important topic of multiple comparisons with-

out at least a mention of what is now considered one of the more

powerful methods currently available: the False Discovery Rate (Ben-

jamini & Hochberg, 1995). But even this method is not up to the

most vexing of problems of multiplicity. We have already mentioned

data mining as one of these; a second problem arises in the search for

genetic markers. A typical paradigm in this crucial area is to isolate

a homogeneous group of individuals, some of whom have a genetic

disorder and others do not, and then to see if one can determine

which genes are likely to be responsible. One such study is currently

being carried out with a group of 200 Mennonites in Pennsylvania.

Macular degeneration is common among the Mennonites, and this

sample was chosen so that 100 of them had macular degeneration

and a matched sample of 100 did not. The genetic structure of the

two groups was very similar, and so the search was on to see which

genes were found much more often in the group that had macular

degeneration than in the control group. This could be determined

with a t-test. Unfortunately, the usefulness of the t-test was dimin-

ished considerably when it had to be repeated for more than 100,000

separate genes. The Bonferroni inequality was no help, and the False

Discovery Rate, while better, was still not up to the task. The search

still goes on to find a better solution to the vexing problem of mul-

tiplicity.3

3The probability issues involved with searching through the whole genome are discussed
in: “Nabbing Suspicious SNPS: Scientists Search the Whole Genome for Clues to Common
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3 Odd Correlations

A recent article (Vul et al. 2009) in Perspectives on Psychologi-

cal Science, has the intriguing title, “Puzzlingly High Correlations

in fMRI Studies of Emotion, Personality, and Social Cognition” (re-

named from the earlier and more controversial “Voodoo Correlations

in Social Neuroscience”; note that the acronym fMRI stands for func-

tional Magnetic Resonance Imaging, and is always written with a

lower-case letter “f”). These authors comment on the extremely high

(for example, greater than .80) correlations reported in the literature

between brain activation and personality measures, and point out

the fallaciousness of how they were obtained. Typically, huge num-

bers of separate correlations were calculated, and only the mean of

those correlations exceeding some threshold (based on a very small

significance level) are reported. It is tautological that these corre-

lations selected for size must then be large in their average value.

With no cross-validation attempted to see the shrinkage expected in

these measures on new samples, we have sophistry at best. Any of

the usual understanding of yardsticks provided by the correlation or

its square, the proportion of shared variance, are inappropriate. In

fact, as noted by Vul et al. (2009), these inflated mean correlations

typically exceed the upper bounds provided by the correction for at-

tenuation based on what the reliabilities should be for the measures

being correlated.

An amusing critique of fMRI studies that fail to correct for mul-

tiple comparisons and control false positives involves the scan of a

dead salmon’s brain and its response to human emotions (“Trawling

Diseases” (Regina Nuzzo, ScienceNews, June 21, 2008).
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the Brain,” Laura Sanders, December 19, 2009, ScienceNews). The

original article was published in the Journal of Serendipitous and

Unexpected Results (Craig Bennett, et al., 2010, 1, 1–6), with the

long title “Neural Correlates of Interspecies Perspective Taking in

the Post-Mortem Atlantic Salmon: An Argument For Proper Mul-

tiple Comparisons Correction.” This tongue-in-cheek piece provides

a cautionary lesson for anyone involved with the interpretation of

fMRI research. A dead salmon’s brain can display much of the same

beautiful red-hot areas of activity in response to emotional scenes

flashed to the (dead) salmon that would be expected for (alive) hu-

man subjects. We give the abstract below.

With the extreme dimensionality of functional neuroimaging data comes
extreme risk for false positives. Across the 130,000 voxels in a typical fMRI
volume the probability of at least one false positive is almost certain. Proper
correction for multiple comparisons should be completed during the anal-
ysis of these datasets, but is often ignored by investigators. To highlight
the danger of this practice we completed an fMRI scanning session with a
post-mortem Atlantic Salmon as the subject. The salmon was shown the
same social perspective taking task that was later administered to a group of
human subjects. Statistics that were uncorrected for multiple comparisons
showed active voxel clusters in the salmon’s brain cavity and spinal column.
Statistics controlling for the familywise error rate (FWER) and false discov-
ery rate (FDR) both indicated that no active voxels were present, even at
relaxed statistical thresholds. We argue that relying on standard statistical
thresholds (p < 0.001) and low minimum cluster sizes (k > 8) is an ineffective
control for multiple comparisons. We further argue that the vast majority of
fMRI studies should be utilizing proper multiple comparisons correction as
standard practice when thresholding their data.

For conducting the “dead-salmon” study, the main authors, Craig

Bennett and Michael Miller, received a 2012 Ig Nobel prize. They
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were interviewed shortly thereafter by Scott Simon for NPR’s Week-

end Edition. The transcript of this interview follows:

Host Scott Simon speaks with Craig Bennett and Michael Miller about
being awarded a 2012 Ig Nobel prize for their paper on the brain waves of dead
Atlantic Salmon, published in the Journal of Serendipitous and Unexpected
Results.

SCOTT SIMON, HOST:

In a couple weeks, the prestigious Nobel Prizes will be announced. But
this week, the Ig Nobels honored the silliest discoveries of 2012. A study on
the physics of the ponytail; a paper on why coffee spills when you walk; and
a prize for a group of psychologists who scanned the brain of an unpromising
patient: a deceased Atlantic salmon. Even more unlikely were their findings:
the dead fish had thoughts. Who knows – maybe dreams. Craig Bennett did
the experiment and accepted the award with good humor, and a couple of
fish jokes.

CRAIG BENNETT: Some have called functional neuroimaging, which is
an important method for studying the human brain, a fishing expedition.
Some have even called the results a red herring. But ...

SIMON: Craig Bennett and his colleague, Dr. Michael Miller, joins us now
from studios at Harvard University. Gentlemen, thanks for being with us.

MICHAEL MILLER: Thank you, Scott.
: Yeah, it’s good to be here.

SIMON: Is there any defensible reason to study the brain of a dead fish?

MILLER: Well, not for genuine, functional brain activities there’s not.
: We wanted to illustrate kind of the absurdity of improper statistical

approaches, that you can find false positives, or what is essentially garbage
results. And using the incorrect statistical approach you can actually see
that there are voxels of activity in the dead, frozen salmon’s brain.

MILLER: You know, while the salmon was in the scanner, we were doing
the testing exactly like a human would have been in there.

SIMON: I’m sorry, did you say to the postmortem salmon, just press this
button in case you get antsy?
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: We actually did, because we were also training our research assistants
on the proper methods on how to interact with humans. And so not only did
we give the experimental instructions to the salmon but we also were on the
intercom asking if the salmon was OK throughout the experiment.

SIMON: Did you just go into Legal Seafood and say give me a mackerel -
forgive me, an Atlantic salmon?

MILLER: It was a Saturday morning and we were conducting the testing
very early so that we didn’t interrupt the running of humans later in the day.
So, I walked into the local supermarket at 6:30 in the morning, and I said,
excuse me, gentlemen, I need a full-length Atlantic salmon. And I’m not a
morning person, I just kind of added - for science. And they kind of looked
at me funny, but then they were like, you know, we’ll be happy to oblige.
That’ll be $27.50, and before I knew it, I had a full-length Atlantic salmon
that was ready to scan.

SIMON: Gentlemen, I’m sorry if this question sounds indelicate, but when
your experimentation was done, grilled or poached?

: Baked. That was dinner that night.

(LAUGHTER)

SIMON: Well, science was served, I expect, right?
: And science was tasty.

SIMON: Craig Bennett and Michael Miller, University of California Santa
Barbara, won the Ig Nobel Prize this week. They joined us from Harvard
University. Gentlemen, thanks for being with us.

MILLER: Thank you, Scott.
: Thanks.

SIMON: You can hear more highlights from the Ig Nobel Awards later this
fall on a special Thanksgiving edition of NPR’s SCIENCE FRIDAY. This is
NPR News.

There are several ways to do corrections for multiple comparisons

in fMRI. One is through the false discovery method already men-

tioned (e.g., Benjamini and Hochberg, 1995); another is the class of

methods that control the familywise error rate which includes the
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Bonferroni correction strategy, random field theory, and a general

method based on permutation procedures. This later approach is

discussed in detail in ”Nonparametric Permutation Tests For Func-

tional Neuroimaging: A Primer with Examples” (Thomas E. Nichols

and Andrew P. Holmes; Human Brain Mapping, 15, 2001, 1–25);

the abstract for this paper follows:

Requiring only minimal assumptions for validity, nonparametric permuta-
tion testing provides a flexible and intuitive methodology for the statistical
analysis of data from functional neuroimaging experiments, at some compu-
tational expense. ... [T]he permutation approach readily accounts for the
multiple comparisons problem implicit in the standard voxel-by-voxel hy-
pothesis testing framework. When the appropriate assumptions hold, the
nonparametric permutation approach gives results similar to those obtained
from a comparable Statistical Parametric Mapping approach using a gen-
eral linear model with multiple comparisons corrections derived from random
field theory. For analyses with low degrees of freedom, such as single subject
PET/SPECT experiments or multi-subject PET/SPECT or fMRI designs as-
sessed for population effects, the nonparametric approach employing a locally
pooled (smoothed) variance estimate can outperform the comparable Statis-
tical Parametric Mapping approach. Thus, these nonparametric techniques
can be used to verify the validity of less computationally expensive parametric
approaches. Although the theory and relative advantages of permutation ap-
proaches have been discussed by various authors, there has been no accessible
explication of the method, and no freely distributed software implementing
it. Consequently, there have been few practical applications of the tech-
nique. This article, and the accompanying MATLAB software, attempts to
address these issues. The standard nonparametric randomization and permu-
tation testing ideas are developed at an accessible level, using practical exam-
ples from functional neuroimaging, and the extensions for multiple compar-
isons described. Three worked examples from PET and fMRI are presented,
with discussion, and comparisons with standard parametric approaches made
where appropriate. Practical considerations are given throughout, and rele-
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vant statistical concepts are expounded in appendices.

4 Cautionary Summary Comments

As a reminder of the ubiquitous effects of searching/selecting/optimi-

zation, and the identification of “false positives,” we have mentioned

some blatant examples here and in earlier modules—the weird neuro-

science correlations; the small probabilities (mis)reported in various

legal cases (such as the Dreyfus small probability for the forgery coin-

cidences, or that for the de Berk hospital fatalities pattern); repeated

clinical experimentation until positive results are reached in a drug

trial—but there are many more situations that would fail to repli-

cate. We need to be ever-vigilant of results obtained by “culling”

and then presented as evidence.

A general version of the difficulties encountered when results are

culled is labeled the file-drawer problem. This refers to the practice

of researchers putting away studies with negative outcomes (that is,

studies not reaching reasonable statistical significance or when some-

thing is found contrary to what the researchers want or expect, or

those rejected by journals that will consider publishing only articles

demonstrating significant positive effects). The file-drawer problem

can seriously bias the results of a meta-analysis, particularly if only

published sources are used (and not, for example, unpublished dis-

sertations or all the rejected manuscripts lying on a pile in someone’s

office). We quote from the abstract of a fairly recent review, “The Sci-

entific Status of Projective Techniques” (Lilienfeld, Wood, & Garb,

2000):
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Although some projective instruments were better than chance at detecting
child sexual abuse, there were virtually no replicated findings across inde-
pendent investigative teams. This meta-analysis also provides the first clear
evidence of substantial file-drawer effects in the projectives literature, as the
effect sizes from published studies markedly exceeded those from unpublished
studies. (p. 27)

The general failure to replicate is being continually (re)documented

both in the scientific literature and in more public venues. In medicine,

there is the work of John Ioannidis:

“Contradicted and Initially Stronger Effects in Highly Cited Clinical

Research” (Journal of the American Medical Association, 2005,

294, 218–228);

“Why Most Published Research Findings Are False” (PLoS Medi-

cine, 2005, 2, 696–701).

“Why Most Discovered True Associations Are Inflated” (Epidemi-

ology, 2008, 19, 640–648).4

4This particular Ioannidis article covers much more than just the field of medicine; its
message is relevant to the practice of probabilistic reasoning in science more generally. The
abstract follows:

Newly discovered true (non-null) associations often have inflated effects compared with
the true effect sizes. I discuss here the main reasons for this inflation. First, theoretical
considerations prove that when true discovery is claimed based on crossing a threshold of
statistical significance and the discovery study is underpowered, the observed effects are
expected to be inflated. This has been demonstrated in various fields ranging from early
stopped clinical trials to genome-wide associations. Second, flexible analyses coupled with
selective reporting may inflate the published discovered effects. The vibration ratio (the ratio
of the largest vs. smallest effect on the same association approached with different analytic
choices) can be very large. Third, effects may be inflated at the stage of interpretation due
to diverse conflicts of interest. Discovered effects are not always inflated, and under some
circumstances may be deflated – for example, in the setting of late discovery of associa-
tions in sequentially accumulated overpowered evidence, in some types of misclassification
from measurement error, and in conflicts causing reverse biases. Finally, I discuss potential
approaches to this problem. These include being cautious about newly discovered effect
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In the popular media, we have the discussion of the “decline effect”

by Jonah Lehrer in the New Yorker (December 13, 2010), “The

Truth Wears Off (Is These Something Wrong With the Scientific

Method?)”; or from one of the nation’s national newspapers, “Low-

Salt Diet Ineffective, Study Finds. Disagreement Abounds” (New

York Times, Gina Kolata, May 3, 2011). We give part of the first

sentence of Kolata’s article: “A new study found that low-salt diets

increase the risk of death from heart attacks and strokes and do not

prevent high blood pressure.”

The subtle effects of culling with subsequent failures to replicate

can have serious consequences for the advancement of our under-

standing of human behavior. A recent important case in point in-

volves a gene–environment interaction studied by a team led by

Avshalom Caspi (Caspi et al., 2003). A polymorphism related to

the neurotransmitter serotonin was identified that apparently could

be triggered to confer susceptibility to life stresses and resulting de-

pression. Needless to say, this behavioral genetic link caused quite

a stir in the community devoted to mental health research. Unfor-

tunately, the result could not be replicated in a subsequent meta-

analysis (could this possibly be due to the implicit culling over the

numerous genes affecting the amount of serotonin in the brain?).

Because of the importance of this cautionary tale for behavioral ge-

netics research generally, we reproduce below a News of the Week

sizes, considering some rational down-adjustment, using analytical methods that correct for
the anticipated inflation, ignoring the magnitude of the effect (if not necessary), conducting
large studies in the discovery phase, using strict protocols for analyses, pursuing complete
and transparent reporting of all results, placing emphasis on replication, and being fair with
interpretation of results.
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item from Science, written by Constance Holden (2009), “Back to

the Drawing Board for Psychiatric Genetics”:5

Geneticists have long been immersed in an arduous and largely fruitless search
to identify genes involved in psychiatric disorders. In 2003, a team led by
Avshalom Caspi, now at Duke University in Durham, North Carolina, fi-
nally landed a huge catch: a gene variant that seemed to play a major role in
whether people get depressed in response to life’s stresses or sail through. The
find, a polymorphism related to the neurotransmitter serotonin, was heralded
as a prime example of “gene-environment interaction”: whereby an environ-
mental trigger influences the activity of a gene in a way that confers suscep-
tibility. “Everybody was excited about this,” recalls Kathleen Merikangas,
a genetic epidemiologist at the National Institute of Mental Health (NIMH)
in Bethesda, Maryland. “It was very widely embraced.” Because of the
well-established link between serotonin and depression, the study offered a
plausible biological explanation for why some people are so much more re-
silient than others in response to life stresses.

But an exhaustive new analysis published last week in The Journal of the
American Medical Association suggests that the big fish may be a minnow
at best.

In a meta-analysis, a multidisciplinary team headed by Merikangas and ge-

5The general problem of exaggerated initially-found effects for a marker-allele association
is discussed by Peter Kraft in his article “Curses – Winner’s and Otherwise – in Genetic
Epidemiology” (Epidemiology, 2008, 19, 649–651). The abstract follows:

The estimated effect of a marker allele from the initial study reporting the marker-allele
association is often exaggerated relative to the estimated effect in follow-up studies (the
“winner’s curse” phenomenon). This is a particular concern for genome-wide association
studies, where markers typically must pass very stringent significance thresholds to be se-
lected for replication. A related problem is the overestimation of the predictive accuracy
that occurs when the same data set is used to select a multilocus risk model from a wide
range of possible models and then estimate the accuracy of the final model (“over-fitting”).
Even in the absence of these quantitative biases, researchers can over-state the qualitative
importance of their findings – for example, by focusing on relative risks in a context where
sensitivity and specificity may be more appropriate measures. Epidemiologists need to be
aware of these potential problems: as authors, to avoid or minimize them, and as readers,
to detect them.
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neticist Neil Risch of the University of California, San Francisco, reanalyzed
data from 14 studies, including Caspi’s original, and found that the cumu-
lative data fail to support a connection between the gene, life stress, and
depression. It’s “disappointing—of all the [candidates for behavior genes]
this seemed the most promising,” says behavioral geneticist Matthew McGue
of the University of Minnesota, Twin Cities.

The Caspi paper concluded from a longitudinal study of 847 New Zealan-
ders that people who have a particular variant of the serotonin transporter
gene are more likely to be depressed by stresses, such as divorce and job
loss (Science, 18 July 2003, pp. 291–293; 386–389). The gene differences
had no effect on depression in the absence of adversity. But those with a
“short” version of the gene—specifically, an allele of the promoter region of
the gene—were more likely to be laid low by unhappy experiences than were
those with two copies of the “long” version, presumably because they were
getting less serotonin in their brain cells.

Subsequent research on the gene has produced mixed results. To try to
settle the issue, Merikangas says, “we really went through the wringer on
this paper.” The group started with 26 studies but eliminated 12 for various
reasons, such as the use of noncomparable methods for measuring depression.
In the end, they reanalyzed and combined data from 14 studies, including
unpublished data on individual subjects for 10 of them.

Of the 14 studies covering some 12,500 individuals, only three of the
smaller ones replicated the Caspi findings. A clear relationship emerged be-
tween stressful happenings and depression in all the studies. But no matter
which way they sliced the accumulated data, the Risch team found no evi-
dence that the people who got depressed from adverse events were more likely
to have the suspect allele than were those who didn’t.

Caspi and co-author Terrie Moffitt, also now at Duke, defend their work,
saying that the new study “ignores the complete body of scientific evidence.”
For example, they say the meta-analysis omitted laboratory studies showing
that humans with the short allele have exaggerated biological stress responses
and are more vulnerable to depression-related disorders such as anxiety and
posttraumatic stress disorder. Risch concedes that his team had to omit sev-
eral supportive studies. That’s because, he says, they wanted to focus as

22



much as possible on attempts to replicate the original research, with compa-
rable measures of depression and stress.

Many researchers find the meta-analysis persuasive. “I am not surprised
by their conclusions,” says psychiatric geneticist Kenneth Kendler of Virginia
Commonwealth University in Richmond, an author of one of the supportive
studies that was excluded. “Gene discovery in psychiatric illness has been
very hard, the hardest kind of science,” he says, because scientists are looking
for multiple genes with very small effects.

Dorrett Boomsma, a behavior geneticist at Amsterdam’s Free University,
points out that many people have questioned the Caspi finding. Although
the gene was reported to have an effect on depression only in the presence
of life stress, she thinks it is “extremely unlikely that it would not have an
independent effect” as well. Yet recent whole-genome association studies for
depression, for which scientists scan the genomes of thousands of subjects
for tens of thousands of markers, she adds, “do not say anything about [the
gene].”

Some researchers nonetheless believe it’s too soon to close the book on
the serotonin transporter. . . . geneticist Joel Gelernter of Yale University
agrees with Caspi that the rigorous demands of a meta-analysis may have
forced the Risch team to carve away too much relevant material. And NIMH
psychiatrist Daniel Weinberger says he’s not ready to discount brain-imaging
studies showing that the variant in question affects emotion-related brain
activity.

Merikangas believes the meta-analysis reveals the weakness of the “can-
didate gene” approach: genotyping a group of subjects for a particular gene
variant and calculating the effect of the variant on a particular condition, as
was done in the Caspi study. “There are probably 30 to 40 genes that have
to do with the amount of serotonin in the brain,” she says. So “if we just
pull out genes of interest, . . . we’re prone to false positives.” Instead, she
says, most geneticists recognize that whole-genome scans are the way to go.
McGue agrees that behavioral gene hunters have had to rethink their strate-
gies. Just in the past couple of years, he says, it’s become clear that the
individual genes affecting behavior are likely to have “much, much smaller
effects” than had been thought.
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