
Module 6: Probabilistic Reasoning
Through the Basic Sampling Model

I know of scarcely anything so apt to impress the imagination as the wonderful
form of cosmic order expressed by the ‘Law of Frequency of Error.’ The law
would have been personified by the Greeks and deified, if they had known of
it. It reigns with serenity and in complete self-effacement, amidst the wildest
confusion. The huger the mob, and the greater the apparent anarchy, the
more perfect is its sway. It is the supreme law of Unreason. Whenever a large
sample of chaotic elements are taken in hand and marshaled in the order of
their magnitude, an unsuspected and most beautiful form of regularity proves
to have been latent all along.

– Sir Francis Galton (Natural Inheritance, 1889)

Abstract: One mechanism for assisting in various tasks encoun-

tered in probabilistic reasoning is to adopt a simple sampling model.

A population of interest is first posited, characterized by some ran-

dom variable, say X . This random variable has a population distri-

bution (often assumed to be normal), characterized by (unknown)

parameters. The sampling model posits n independent observations

on X , denoted by X1, . . . , Xn, and which constitutes the sample.

Various functions of the sample can then be constructed (that is, var-

ious statistics can be computed such as the sample mean and sample

variance); in turn, statistics have their own sampling distributions.

The general problem of statistical inference is to ask what sample

statistics tell us about their population counterparts; for example,

how can we construct a confidence interval for a population param-

eter such as the population mean from the sampling distribution for

the sample mean.

Under the framework of a basic sampling model, a number of topics
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are discussed: confidence interval construction for a population mean

where the length of the interval is determined by the square root of

the sample size; the Central Limit Theorem and the Law of Large

Numbers; the influence that sample size and variability have on our

probabilistic reasoning skills; the massive fraud case involving the

Dutch social psychologist, Diederik Stapel, and the role that lack of

variability played in his exposure; the ubiquitous phenomenon of re-

gression toward the mean and the importance it has for many of our

probabilistic misunderstandings; how reliability corrections can be

incorporated into prediction; the dichotomy and controversy encoun-

tered every ten years about complete enumeration versus sampling

(to correct for, say, an undercount) in the United States Census.
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1 The Basic Sampling Model and Associated Topics

We begin by refreshing our memories about the distinctions between

population and sample, parameters and statistics, and population

distributions and sampling distributions. Someone who has suc-

cessfully completed a first course in statistics should know these dis-

tinctions well. Here, only a simple univariate framework is considered

explicitly, but an obvious and straightforward generalization exists

for the multivariate context as well.

A population of interest is posited, and operationalized by some

random variable, say X . In this Theory World framework, X is

characterized by parameters, such as the expectation of X , µ =

E(X), or its variance, σ2 = V(X). The random variable X has a

(population) distribution, which is often assumed normal. A sample

is generated by taking observations on X , say, X1, . . . , Xn, consid-

ered independent and identically distributed as X ; that is, they are

exact copies of X . In this Data World context, statistics are func-

tions of the sample and therefore characterize the sample: the sample

mean, µ̂ = 1
n

∑n
i=1Xi; the sample variance, σ̂2 = 1

n

∑n
i=1(Xi − µ̂)2,

with some possible variation in dividing by n − 1 to generate an

unbiased estimator for σ2. The statistics, µ̂ and σ̂2, are point esti-

mators of µ and σ2. They are random variables by themselves, so

they have distributions referred to as sampling distributions. The

general problem of statistical inference is to ask what sample statis-

tics, such as µ̂ and σ̂2, tell us about their population counterparts,
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µ and σ2. In other words, can we obtain a measure of accuracy

for estimation from the sampling distributions through, for example,

confidence intervals?

Assuming that the population distribution is normally distributed,

the sampling distribution of µ̂ is itself normal with expectation µ and

variance σ2/n. Based on this result, an approximate 95% confidence

interval for the unknown parameter µ can be given by

µ̂ ± 2.0
σ̂√
n
.

Note that it is the square root of the sample size that determines the

length of the interval (and not the sample size per se). This is both

good news and bad. Bad, because if you want to double precision,

you need a fourfold increase in sample size; good, because sample

size can be cut by four with only a halving of precision.

Even when the population distribution is not originally normally

distributed, the central limit theorem (CLT) (that is, the “Law of

Frequency of Error,” as noted by the opening epigram for this mod-

ule) says that µ̂ is approximately normal in form and becomes exactly

so as n goes to infinity. Thus, the approximate confidence interval

statement remains valid even when the underlying distribution is

not normal. Such a result is the basis for many claims of robustness;

that is, when a procedure remains valid even if the assumptions un-

der which it was derived may not be true, as long as some particular

condition is satisfied; here, the condition is that the sample size be

reasonably large.

Besides the robustness of the confidence interval calculations for

µ, the CLT also encompasses the law of large numbers (LLN). As the
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sample size increases, the estimator, µ̂, gets closer to µ, and converges

to µ at the limit as n goes to infinity. This is seen most directly in the

variance of the sampling distribution for µ̂, which becomes smaller

as the sample size gets larger.

The basic results obtainable from the CLT and LLN that averages

are both less variable and more normal in distribution than indi-

vidual observations, and that averages based on larger sample sizes

will show less variability than those based on smaller sample sizes,

have far-ranging and sometimes subtle influences on our probabilis-

tic reasoning skills. For example, suppose we would like to study

organizations, such as schools, health care units, or governmental

agencies, and have a measure of performance for the individuals in

the units, and the average for each unit. To identify those units ex-

hibiting best performance (or, in the current jargon, “best practice”),

the top 10%, say, of units in terms of performance are identified; a

determination is then made of what common factors might charac-

terize these top-performing units. We are pleased when we are able

to isolate one very salient feature that most units in this top tier are

small. We proceed on this observation and advise the breaking up

of larger units. Is such a policy really justified based on these data?

Probably not, if one also observes that the bottom 10% are also small

units. That smaller entities tend to be more variable than the larger

entities seems to vitiate a recommendation of breaking up the larger

units for performance improvement. Evidence that the now-defunct

“small schools movement,” funded heavily by the Gates Foundation,

was a victim of the “square root of n law” was presented by Wainer

(2009, pp. 11–14).
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Sports is an area in which there is a great misunderstanding and

lack of appreciation for the effects of randomness. A reasonable model

for sports performance is one of “observed performance” being the

sum of “intrinsic ability” (or true performance) and “error,” leading

to a natural variability in outcome either at the individual or the

team level. Somehow it appears necessary for sports writers, an-

nouncers, and other pundits to give reasons for what is most likely

just random variability. We hear of team “chemistry,” good or bad,

being present or not; individuals having a “hot hand” (or a “cold

hand,” for that matter); someone needing to “pull out of a slump”;

why there might be many .400 hitters early in the season but not

later; a player being “due” for a hit; free-throw failure because of

“pressure”; and so on. Making decisions based on natural variation

being somehow “predictive” or “descriptive” of the truth, is not very

smart, to say the least. But it is done all the time—sports man-

agers are fired and CEOs replaced for what may be just the traces

of natural variability.

People who are asked to generate random sequences of numbers

tend to underestimate the amount of variation that should be present;

for example, there are not enough longer runs and a tendency to

produce too many short alternations. In a similar way, we do not

see the naturalness in regression toward the mean (discussed in the

next section of this module), where extremes are followed by less

extreme observations just because of fallibility in observed perfor-

mance. Again, causes are sought. We hear about multi-round golf

tournaments where a good performance on the first day is followed

by a less adequate score the second (due probably to “pressure”); or

a bad performance on the first day followed by an improved perfor-
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mance the next (the golfer must have been able to “play loose”). Or

in baseball, at the start of a season an underperforming Derek Jeter

might be under “pressure” or too much “media scrutiny,” or subject

to the difficulties of performing in a “New York market.” When in-

dividuals start off well but then appear to fade, it must be because

people are trying to stop them (“gunning” for someone is a common

expression). One should always remember that in estimating intrin-

sic ability, individuals are unlikely to be as good (or as bad) as the

pace they are on. It is always a better bet to vote against someone

eventually breaking a record, even when they are “on a pace” to so

do early in the season. This may be one origin for the phrase “sucker

bet”—a gambling wager where your expected return is significantly

lower than your bet.

Another area where one expects to see a lot of anomalous results

is when the dataset is split into ever-finer categorizations that end up

having few observations in them, and thus subject to much greater

variability. For example, should we be overly surprised if Albert Pu-

jols doesn’t seem to bat well in domed stadiums at night when batting

second against left-handed pitching? The pundits look for “causes”

for these kinds of extremes when they should just be marveling at

the beauty of natural variation and the effects of sample size. A

similar and probably more important misleading effect occurs when

our data are on the effectiveness of some medical treatment, and

we try to attribute positive or negative results to ever-finer-grained

classifications of the clinical subjects.

Random processes are a fundamental part of nature and ubiqui-

tous in our day-to-day lives. Most people do not understand them,
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or worse, fall under an “illusion of control” and believe they have in-

fluence over how events progress. Thus, there is an almost mystical

belief in the ability of a new coach, CEO, or president to “turn things

around.” Part of these strong beliefs may result from the operation

of regression toward the mean or the natural unfolding of any random

process. We continue to get our erroneous beliefs reconfirmed when

cause is attributed when none may actually be present. As humans

we all wish to believe we can affect our future, but when events have

dominating stochastic components, we are obviously not in complete

control. There appears to be a fundamental clash between our ability

to recognize the operation of randomness and the need for control in

our lives.

An appreciation for how random processes might operate can be

helpful in navigating the uncertain world we live in. When invest-

ments with Bernie Madoff give perfect 12% returns, year after year,

with no exceptions and no variability, alarms should go off. If we see

a supposed scatterplot of two fallible variables with a least-squares

line imposed but where the actual data points have been withdrawn,

remember that the relationship is not perfect. Or when we monitor

error in quality assurance and control for various manufacturing or di-

agnostic processes (for example, application of radiation in medicine),

and the tolerances become consistently beyond the region where we

should generally expect the process to vary, a need to stop and re-

calibrate may be necessary. It is generally important to recognize

that data interpretation may be a long-term process, with a need to

appreciate variation appearing around a trend line. Thus, the imme-

diacy of some major storms does not vitiate a longer-term perspective

on global climate change. Remember the old meteorological adage:

8



climate is what you expect; weather is what you get. Relatedly, it is

important to monitor processes we have some personal responsibility

for (such as our own lipid panels when we go for physicals), and to

assess when unacceptable variation appears outside of our normative

values.

Besides having an appreciation for randomness in our day-to-day

lives, there is also a flip side: if you don’t see randomness when you

probably should, something is amiss. The Bernie Madoff example

noted above is a salient example, but there are many such deter-

ministic traps awaiting the gullible. When something seems just too

good to be true, most likely it isn’t. A recent ongoing case in point

involves the Dutch social psychologist, Diederik Stapel, and the mas-

sive fraud he committed in the very best psychology journals in the

field. A news item by G. Vogel in Science (2011, 334, 579) has

the title, “Psychologist Accused of Fraud on ‘Astonishing Scale’.”

Basically, in dozens of published articles and doctoral dissertations

he supervised, Stapel never failed to obtain data showing the clean

results he expected to see at the outset. As any practicing researcher

in the behavioral sciences knows, this is just too good to be true.

We give a short quotation from the Science news item (October 31,

2011) commenting on the Tilberg University report on the Stapel

affair (authored by a committee headed by the well-known Dutch

psycholinguist, Willem Levelt):

Stapel was “absolute lord of the data” in his collaborations . . . many of
Stapel’s datasets have improbable effect sizes and other statistical irregular-
ities, the report says. Among Stapel’s colleagues, the description of data as
too good to be true “was a heartfelt compliment to his skill and creativity.”
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The report discusses the presence of consistently large effects be-

ing found; few missing data and outliers; hypotheses rarely refuted.

Journals publishing Stapel’s articles did not question the omission

of details about the source of the data. As understated by Levelt,

“We see that the scientific checks and balances process has failed at

several levels.” In a related article in the New York Times by Bene-

dict Carey (November 2, 2011), “Fraud Case Seen as a Red Flag for

Psychology Research,” the whole field of psychology is now taken to

task, appropriately we might add, in how research has generally been

done and evaluated in the field. Part of the Levelt Committee report

that deals explicitly with data and statistical analysis is redacted

below:

The data were too good to be true; the hypotheses were almost always
confirmed; the effects were improbably large; missing data, or impossible, out-
of-range data, are rare or absent.

This is possibly the most precarious point of the entire data fraud. Scien-
tific criticism and approach failed on all fronts in this respect. The falsifica-
tion of hypotheses is a fundamental principle of science, but was hardly a part
of the research culture surrounding Mr. Stapel. The only thing that counted
was verification. However, anyone with any research experience, certainly
in this sector, will be aware that most hypotheses that people entertain do
not survive. And if they do, the effect often vanishes with replication. The
fact that Mr. Stapel’s hypotheses were always confirmed should have caused
concern, certainly when in most cases the very large “effect sizes” found were
clearly out of line with the literature. Rather than concluding that this was
all improbable, instead Mr. Stapel’s experimental skills were taken to be phe-
nomenal. “Too good to be true” was meant as a genuine compliment to his
skill and creativity. Whereas all these excessively neat findings should have
provoked thought, they were embraced. If other researchers had failed, that
was assumed to be because of a lack of preparation, insight, or experimental
skill. Mr. Stapel became the model: the standard. Evidently only Mr. Stapel
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was in a position to achieve the precise manipulations needed to make the
subtle effects visible. People accepted, if they even attempted to replicate the
results for themselves, that they had failed because they lacked Mr. Stapel’s
skill. However, there was usually no attempt to replicate, and certainly not
independently. The few occasions when this did happen, and failed, were
never revealed, because the findings were not publishable.

In other words, scientific criticism has not performed satisfactorily on this
point. Replication and the falsification of hypotheses are cornerstones of
science. Mr. Stapel’s verification factory should have aroused great mistrust
among colleagues, peers and journals.

As a supervisor and dissertation advisor, Mr. Stapel should have been
expected to promote this critical attitude among his students. Instead, the
opposite happened. A student who performed his own replications with no
result was abandoned to his fate rather than praised and helped.

Strange, improbable, or impossible data patterns; strange correlations; iden-
tical averages and standard deviations; strange univariate distributions of
variables.

The actual data displayed several strange patterns that should have been
picked up. The patterns are related to the poor statistical foundation of
Mr. Stapel’s data fabrication approach (he also tended to make denigrat-
ing remarks about statistical methods). It has emerged that some of the
fabrication involved simply “blindly” entering numbers based on the desired
bivariate relationships, and by cutting and pasting data columns. This ap-
proach sometimes gave rise to strange data patterns. Reordering the data
matrix by size of a given variable sometimes produces a matrix in which
one column is identical to another, which is therefore the simple result of
cutting and pasting certain scores. It was also possible for a variable that
would normally score only a couple of per cent “antisocial,” for no reason and
unexpectedly suddenly to show “antisocial” most of the time. Independent
replication yielded exactly the same averages and standard deviations. Two
independent variables that always correlated positively, conceptually and in
other research, now each had the right expected effects on the dependent
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variable, but correlated negatively with each other. There was no consistent
checking of data by means of simple correlation matrices and univariate dis-
tributions. It is to the credit of the whistle blowers that they did discover
the improbabilities mentioned above.

Finally, a lamentable element of the culture in social psychology and psy-
chology research is for everyone to keep their own data and not make them
available to a public archive. This is a problem on a much larger scale, as has
recently become apparent. Even where a journal demands data accessibility,
authors usually do not comply . . . Archiving and public access to research
data not only makes this kind of data fabrication more visible, it is also a
condition for worthwhile replication and meta-analysis. (pp. 13-15)

2 Regression Toward the Mean

Regression toward the mean is a phenomenon that will occur when-

ever dealing with fallible measures with a less-than-perfect correla-

tion. The word “regression” was first used by Galton in his 1886 arti-

cle, “Regression Towards Mediocrity in Hereditary Stature.” Galton

showed that heights of children from very tall or short parents regress

toward mediocrity (that is, toward the mean) and exceptional scores

on one variable (parental height) are not matched with such excep-

tionality on the second (child height). This observation is purely

due to the fallibility for the various measures and the concomitant

lack of a perfect correlation between the heights of parents and their

children.

Regression toward the mean is a ubiquitous phenomenon, and

given the name “regressive fallacy” whenever cause is ascribed where

none exists. Generally, interventions are undertaken if processes are

at an extreme (for example, a crackdown on speeding or drunk driv-
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ing as fatalities spike, treatment groups formed from individuals who

are seriously depressed, or individuals selected because of extreme

good or bad behaviors). In all such instances, whatever remediation

is carried out will be followed by some lessened value on a response

variable. Whether the remediation was itself causative is problematic

to assess given the universality of regression toward the mean.

There are many common instances where regression may lead to

invalid reasoning: I went to my doctor and my pain has now lessened;

I instituted corporal punishment and behavior has improved; he was

jinxed by a Sports Illustrated cover because subsequent performance

was poorer (also known as the “sophomore jinx”); although he hadn’t

had a hit in some time, he was “due,” and the coach played him; and

so on. More generally, any time one optimizes with respect to a

given sample of data by constructing prediction functions of some

kind, there is an implicit use and reliance on data extremities. In

other words, the various measures of goodness of fit or prediction

calculated need to be cross-validated either on new data or by a clever

sample reuse strategy such as the well-known jackknife or bootstrap

procedures. The degree of “shrinkage” seen in our measures based on

this cross-validation is an indication of the fallibility of our measures

and the (in)adequacy of the given sample sizes.

The misleading interpretive effects engendered by regression to-

ward the mean are legion, particularly when we wish to interpret

observational studies for some indication of causality. There is a

continual violation of the traditional adage that “the rich get richer

and the poor get poorer,” in favor of “when you are at the top, the

only way is down.” Extreme scores are never quite as extreme as

they first appear. Many of these regression artifacts are discussed in
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the cautionary source, A Primer on Regression Artifacts (Camp-

bell & Kenny, 1999), including the various difficulties encountered

in trying to equate intact groups by matching or analysis of covari-

ance. Statistical equating creates the illusion but not the reality of

equivalence. As summarized by Campbell and Kenny, “the failure

to understand the likely direction of bias when statistical equating

is used is one of the most serious difficulties in contemporary data

analysis” (p. 85).

The historical prevalence of the regression fallacy is considered

by Stephen Stigler in his 1997 article entitled “Regression Towards

the Mean, Historically Considered” (Statistical Methods in Medical

Research, 6, 103–114). Stigler labels it “a trap waiting for the un-

wary, who were legion” (p. 112). He relates a story that we excerpt

below about a Northwestern University statistician falling into the

trap in 1933:

The most spectacular instance of a statistician falling into the trap was in
1933, when a Northwestern University professor named Horace Secrist un-
wittingly wrote a whole book on the subject, The Triumph of Mediocrity in
Business. In over 200 charts and tables, Secrist “demonstrated” what he
took to be an important economic phenomenon, one that likely lay at the
root of the great depression: a tendency for firms to grow more mediocre
over time. Secrist was aware of Galton’s work; he cited it and used Galton’s
terminology. The preface even acknowledged “helpful criticism” from such
statistical luminaries as HC Carver (the editor of the Annals of Mathematical
Statistics), Raymond Pearl, EB Wilson, AL Bowley, John Wishart and Udny
Yule. How thoroughly these statisticians were informed of Secrist’s work is
unclear, but there is no evidence that they were successful in alerting him to
the magnitude of his folly (or even if they noticed it). Most of the reviews of
the book applauded it. But there was one dramatic exception: in late 1933
Harold Hotelling wrote a devastating review, noting among other things that
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“The seeming convergence is a statistical fallacy, resulting from the method
of grouping. These diagrams really prove nothing more than that the ratios
in question have a tendency to wander about.” (p. 112)

Stigler goes on to comment about the impact of the Secrist-Hotelling

episode for the recognition of the importance of regression toward

the mean:

One would think that so public a flogging as Secrist received for his blunder
would wake up a generation of social scientists to the dangers implicit in
this phenomenon, but that did not happen. Textbooks did not change their
treatment of the topic, and if there was any increased awareness of it, the
signs are hard to find. In the more than two decades between the Secrist-
Hotelling exchange in 1933 and the publication in 1956 of a perceptively clear
exposition in a textbook by W Allen Wallis and Harry Roberts, I have only
encountered the briefest acknowledgements. (p. 113)

A variety of phrases seem to get attached whenever regression to-

ward the mean is probably operative. We have the “winner’s curse,”

where someone is chosen from a large pool (such as of job candidates),

who then doesn’t live up to expectations; or when we attribute some

observed change to the operation of “spontaneous remission.” As

Campbell and Kenny noted, “many a quack has made a good living

from regression toward the mean.” Or, when a change of diagnos-

tic classification results upon repeat testing for an individual given

subsequent one-on-one tutoring (after being placed, for example, in

a remedial context). More personally, there is “editorial burn-out”

when someone is chosen to manage a prestigious journal at the apex

of a career, and things go quickly downhill from that point.
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3 Incorporating Reliability Corrections in Prediction

As discussed in the previous section, a recognition of when regres-

sion toward the mean might be operative can assist in avoiding the

“regressive fallacy.” In addition to this cautionary usage, the same

regression-toward-the-mean phenomenon can make a positive contri-

bution to the task of prediction with fallible information, and particu-

larly in how such prediction can be made more accurate by correcting

for the unreliability of the available variables. To make the argument

a bit more formal, we assume an implicit underlying model for how

any observed score, X , might be constructed additively from a true

score, TX , and an error score, EX , where EX is typically consid-

ered uncorrelated with TX : X = TX + EX . The distribution of the

observed variable over, say, a population of individuals, involves two

sources of variability in the true and the error scores. If interests cen-

ter on structural models among true scores, some correction should

be made to the observed variables because the common regression

models implicitly assume that all variables are measured without er-

ror. But before “errors-in-variables” models are briefly discussed, our

immediate concern will be with how best to predict a true score from

the observed score.1

The estimation, T̂X , of a true score from an observed score, X ,

was derived using the regression model by Kelley in the 1920s (Kelley,
1When an observed score is directly used as a prediction for the true score, the prediction

is referred to as “non-regressive” and reflects an over-confidence in the fallible observed score
as a direct reflection of the true score. One commonly used baseball example is to consider
an “early-in-the-season” batting average (an “observed” score) as a direct prediction of an
“end-of-the-season batting average (a presumed “true” score). As given by Kelley’s equation
in the text, better estimates of the true scores would regress the observed scores toward the
average of the observed scores.
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1947), with a reliance on the algebraic equivalence that the squared

correlation between observed and true score is the reliability. If we

let ρ̂ be the estimated reliability, Kelley’s equation can be written as

T̂X = ρ̂X + (1− ρ̂)X̄ ,

where X̄ is the mean of the group to which the individual belongs. In

other words, depending on the size of ρ̂, a person’s estimate is partly

due to where the person is in relation to the group—upward if below

the mean, downward if above. The application of this statistical

tautology in the examination of group differences provides such a

surprising result to the statistically naive that this equation has been

labeled “Kelley’s Paradox” (Wainer, 2005, pp. 67–70).

In addition to obtaining a true score estimate from an obtained

score, Kelly’s regression model also provides a standard error of es-

timation (which in this case is now referred to as the standard error

of measurement). An approximate 95% confidence interval on an

examinee’s true score is given by

T̂X ± 2σ̂X((
√

1− ρ̂)
√
ρ̂) ,

where σ̂X is the (estimated) standard deviation of the observed scores.

By itself, the term σ̂X((
√

1− ρ̂)
√
ρ̂) is the standard error of mea-

surement, and is generated from the usual regression formula for the

standard error of estimation but applied to Kelly’s model that pre-

dicts true scores. The standard error of measurement most commonly

used in the literature is not Kelly’s but rather σ̂X
√

1− ρ̂, and a 95%

confidence interval taken as the observed score plus or minus twice

this standard error. An argument can be made that this latter pro-

cedure leads to “reasonable limits” (after Gulliksen, 1950) whenever
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ρ̂ is reasonably high, and the obtained score is not extremely deviant

from the reference group mean. Why we should assume these latter

preconditions and not use the more appropriate procedure to begin

with, reminds us of a Bertrand Russell quotation (1919, p. 71): “The

method of postulating what we want has many advantages; they are

the same as the advantages of theft over honest toil.”2

2The standard error of measurement (SEM) can play a significant role in the legal system
as to who is eligible for execution. The recent Supreme Court case of Hall v. Florida (2014)
found unconstitutional a “bright-line” Florida rule about requiring an I.Q. score of 70 or
below to forestall execution due to intellectual disability. We redact part of this ruling as it
pertains to the SEM of an I.Q. test:

FREDDIE LEE HALL, PETITIONER v. FLORIDA

ON WRIT OF CERTIORARI TO THE SUPREME COURT OF FLORIDA

[May 27, 2014]

JUSTICE KENNEDY delivered the opinion of the Court.

This Court has held that the Eighth and Fourteenth Amendments to the Constitution
forbid the execution of persons with intellectual disability (Atkins v. Virginia). Florida law
defines intellectual disability to require an IQ test score of 70 or less. If, from test scores, a
prisoner is deemed to have an IQ above 70, all further exploration of intellectual disability is
foreclosed. This rigid rule, the Court now holds, creates an unacceptable risk that persons
with intellectual disability will be executed, and thus is unconstitutional.

...
On its face, the Florida statute could be consistent with the views of the medical com-

munity noted and discussed in Atkins. Florida’s statute defines intellectual disability for
purposes of an Atkins proceeding as “significantly subaverage general intellectual function-
ing existing concurrently with deficits in adaptive behavior and manifested during the period
from conception to age 18.” ... The statute further defines “significantly subaverage general
intellectual functioning” as “performance that is two or more standard deviations from the
mean score on a standardized intelligence test.” ... The mean IQ test score is 100. The
concept of standard deviation describes how scores are dispersed in a population. Stan-
dard deviation is distinct from standard error of measurement, a concept which describes
the reliability of a test and is discussed further below. The standard deviation on an IQ
test is approximately 15 points, and so two standard deviations is approximately 30 points.
Thus a test taker who performs “two or more standard deviations from the mean” will score
approximately 30 points below the mean on an IQ test, i.e., a score of approximately 70
points.

On its face this statute could be interpreted consistently with Atkins and with the conclu-
sions this Court reaches in the instant case. Nothing in the statute precludes Florida from
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There are several remarkable connections between Kelley’s work

taking into account the IQ test’s standard error of measurement, and as discussed below
there is evidence that Florida’s Legislature intended to include the measurement error in the
calculation. But the Florida Supreme Court has interpreted the provisions more narrowly.
It has held that a person whose test score is above 70, including a score within the margin
for measurement error, does not have an intellectual disability and is barred from presenting
other evidence that would show his faculties are limited. ... That strict IQ test score cutoff
of 70 is the issue in this case.

Pursuant to this mandatory cutoff, sentencing courts cannot consider even substantial and
weighty evidence of intellectual disability as measured and made manifest by the defendant’s
failure or inability to adapt to his social and cultural environment, including medical histo-
ries, behavioral records, school tests and reports, and testimony regarding past behavior and
family circumstances. This is so even though the medical community accepts that all of this
evidence can be probative of intellectual disability, including for individuals who have an IQ
test score above 70. ... (“[T]he relevant clinical authorities all agree that an individual with
an IQ score above 70 may properly be diagnosed with intellectual disability if significant
limitations in adaptive functioning also exist”); ... (“[A] person with an IQ score above 70
may have such severe adaptive behavior problems ... that the person’s actual functioning is
comparable to that of individuals with a lower IQ score”).

Florida’s rule disregards established medical practice in two interrelated ways. It takes
an IQ score as final and conclusive evidence of a defendant’s intellectual capacity, when
experts in the field would consider other evidence. It also relies on a purportedly scientific
measurement of the defendant’s abilities, his IQ score, while refusing to recognize that the
score is, on its own terms, imprecise.

The professionals who design, administer, and interpret IQ tests have agreed, for years
now, that IQ test scores should be read not as a single fixed number but as a range. ... Each
IQ test has a “standard error of measurement,” ... often referred to by the abbreviation
“SEM.” A test’s SEM is a statistical fact, a reflection of the inherent imprecision of the test
itself. ... An individual’s IQ test score on any given exam may fluctuate for a variety of
reasons. These include the test-taker’s health; practice from earlier tests; the environment
or location of the test; the examiner’s demeanor; the subjective judgment involved in scoring
certain questions on the exam; and simple lucky guessing.

The SEM reflects the reality that an individual’s intellectual functioning cannot be re-
duced to a single numerical score. For purposes of most IQ tests, the SEM means that an
individual’s score is best understood as a range of scores on either side of the recorded score.
The SEM allows clinicians to calculate a range within which one may say an individual’s
true IQ score lies. ... In addition, because the test itself may be flawed or administered in a
consistently flawed manner, multiple examinations may result in repeated similar scores, so
that even a consistent score is not conclusive evidence of intellectual functioning.

Despite these professional explanations, Florida law used the test score as a fixed number,
thus barring further consideration of other evidence bearing on the question of intellectual
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in the first third of the twentieth century and the modern theory

of statistical estimation developed in the last half of the century. In

considering the model for an observed score, X , to be a sum of a true

score, T , and an error score, E, plot the observed test scores on the

x-axis and their true scores on the y-axis. As noted by Galton in the

1880s (Galton, 1886), any such scatterplot suggests two regression

lines. One is of true score regressed on observed score (generating

Kelley’s true score estimation equation given in the text); the second

is the regression of observed score being regressed on true score (gen-

erating the use of an observed score to directly estimate the observed

score). Kelley clearly knew the importance for measurement theory

of this distinction between two possible regression lines in a true-score

versus observed-score scatterplot. The quotation given below is from

his 1927 text, Interpretation of Educational Measurements. The

reference to the “last section” is where the true score was estimated

directly by the observed score; the “present section” refers to his true

score regression estimator:

This tendency of the estimated true score to lie closer to the mean than
the obtained score is the principle of regression. It was first discovered by
Francis Galton and is a universal phenomenon in correlated data. We may
now characterize the procedure of the last and present sections by saying that
in the last section regression was not allowed for and in the present it is. If
the reliability is very high, then there is little difference between [the two
methods], so that this second technique, which is slightly the more laborious,
is not demanded, but if the reliability is low, there is much difference in
individual outcome, and the refined procedure is always to be used in making

disability. For professionals to diagnose – and for the law then to determine – whether an
intellectual disability exists once the SEM applies and the individual’s IQ score is 75 or below
the inquiry would consider factors indicating whether the person had deficits in adaptive
functioning. These include evidence of past performance, environment, and upbringing.
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individual diagnoses. (p. 177)

Kelley’s preference for the refined procedure when reliability is low

(that is, for the regression estimate of true score) is due to the stan-

dard error of measurement being smaller (unless reliability is perfect);

this is observable directly from the formulas given earlier. There is

a trade-off in moving to the regression estimator of the true score in

that a smaller error in estimation is paid for by using an estimator

that is now biased. Such trade-offs are common in modern statistics

in the use of “shrinkage” estimators (for example, ridge regression,

empirical Bayes methods, James–Stein estimators). Other psycho-

metricians, however, apparently just don’t buy the trade-off; for ex-

ample, see Gulliksen (Theory of Mental Tests ; 1950); Gulliksen

wrote that “no practical advantage is gained from using the regres-

sion equation to estimate true scores” (p. 45). We disagree—who

really cares about bias when a generally more accurate prediction

strategy can be defined?

What may be most remarkable about Kelley’s regression estimate

of true score is that it predates the work in the 1950s on “Stein’s

Paradox” that shook the foundations of mathematical statistics. A

readable general introduction to this whole statistical kerfuffle is the

1977 Scientific American article by Bradley Efron and Carl Mor-

ris, “Stein’s Paradox in Statistics” (236 (5), 119-127). When reading

this popular source, keep in mind that the class referred to as James–

Stein estimators (where bias is traded off for lower estimation error)

includes Kelley’s regression estimate of the true score. We give an

excerpt below from Stephen Stigler’s 1988 Neyman Memorial Lec-

ture, “A Galtonian Perspective on Shrinkage Estimators” (Statisti-
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cal Science, 1990, 5, 147-155), that makes this historical connection

explicit:

The use of least squares estimators for the adjustment of data of course goes
back well into the previous century, as does Galton’s more subtle idea that
there are two regression lines. . . . Earlier in this century, regression was
employed in educational psychology in a setting quite like that considered
here. Truman Kelley developed models for ability which hypothesized that
individuals had true scores . . . measured by fallible testing instruments to
give observed scores . . . ; the observed scores could be improved as estimates
of the true scores by allowing for the regression effect and shrinking toward
the average, by a procedure quite similar to the Efron–Morris estimator. (p.
152)

Before we leave the topic of true score estimation by regression, we

might also note what it does not imply. When considering an action

for an individual where the goal is to help make, for example, the

right level of placement in a course or the best medical treatment and

diagnosis, then using group membership information to obtain more

accurate estimates is the appropriate course to follow. But if we are

facing a contest, such as awarding scholarships, or offering admission

or a job, then it is inappropriate (and ethically questionable) to search

for identifiable subgroups that a particular person might belong to

and then adjust that person’s score accordingly. Shrinkage estimators

are “group blind.” Their use is justified for whatever population is

being observed; it is generally best for accuracy of estimation to

discount extremes and ”pull them in” toward the (estimated) mean

of the population.

In the topic of errors-in-variables regression, we try to compensate

for the tacit assumption in regression that all variables are measured
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without error. Measurement error in a response variable does not bias

the regression coefficients per se, but it does increase standard errors

and thereby reduces power. This is generally a common effect: unre-

liability attenuates correlations and reduces power even in standard

ANOVA paradigms. Measurement error in the predictor variables

biases the regression coefficients. For example, for a single predic-

tor, the observed regression coefficient is the “true” value multiplied

by the reliability coefficient. Thus, without taking account of mea-

surement error in the predictors, regression coefficients will generally

be underestimated, producing a biasing of the structural relationship

among the true variables. Such biasing may be particularly troubling

when discussing econometric models where unit changes in observed

variables are supposedly related to predicted changes in the depen-

dent measure; possibly the unit changes are more desired at the level

of the true scores.

Milton Friedman’s 1992 article entitled “Do Old Fallacies Ever

Die?” (Journal of Economic Literature, 30, 2129-2132), gives a

downbeat conclusion regarding errors-in-variables modeling:

Similarly, in academic studies, the common practice is to regress a variable
Y on a vector of variables X and then accept the regression coefficients as
supposedly unbiased estimates of structural parameters, without recognizing
that all variables are only proxies for the variables of real interest, if only
because of measurement error, though generally also because of transitory
factors that are peripheral to the subject under consideration. I suspect that
the regression fallacy is the most common fallacy in the statistical analysis
of economic data, alleviated only occasionally by consideration of the bias
introduced when “all variables are subject to error.” (p. 2131)
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4 Complete Enumeration versus Sampling in the Cen-

sus

The basic sampling model implies that when the size of the popu-

lation is effectively infinite, this does not affect the accuracy of our

estimate, which is driven solely by sample size. Thus, if we want

a more precise estimate, we need only draw a larger sample.3 For

some reason, this confusion resurfaces and is reiterated every ten

years when the United States Census is planned, where the issue of

complete enumeration, as demanded by the Constitution, and the

problems of undercount are revisited. We begin with a short excerpt

from a New York Times article by David Stout (April 2, 2009),

“Obama’s Census Choice Unsettles Republicans.” The quotation it

contains from John Boehner in relation to the 2010 census is a good

instance of the “resurfacing confusion”; also, the level of Boehner’s

statistical reasoning skills should be fairly clear.

Mr. Boehner, recalling that controversy [from the early 1990s when Mr.
Groves pushed for statistically adjusting the 1990 census to make up for
an undercount], said Thursday that “we will have to watch closely to ensure
the 2010 census is conducted without attempting similar statistical sleight of
hand.”

There has been a continuing and decades-long debate about the ef-

ficacy of using surveys to correct the census for an undercount. The
3Courts have been distrustful of sampling versus complete enumeration, and have been so

for a long time. A case in 1955, for example, involved Sears, Roebuck, and Company and the
City of Inglewood (California). The Court ruled that a sample of receipts was inadequate to
estimate the amount of taxes that Sears had overpaid. Instead, a costly complete audit or
enumeration was required. For a further discussion of this case, see R. Clay Sprowls, “The
Admissibility of Sample Data into a Court of Law: A Case History,” UCLA Law Review, 4,
222–232, 1956–1957.
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arguments against surveys are based on a combination of partisan

goals and ignorance. Why? First, the census is a big, costly, and

complicated procedure. And like all such procedures, it will have er-

rors. For example, there will be errors where some people are counted

more than once, such as an affluent couple with two homes being vis-

ited by census workers in May in one and by different workers in July

at the other, or they are missed entirely. Some people are easier to

count than others. Someone who has lived at the same address with

the same job for decades, and who faithfully and promptly returns

census forms, is easy to count. Someone else who moves often, is

a migrant laborer or homeless and unemployed, is much harder to

count. There is likely to be an undercount of people in the latter

category. Republicans believe those who are undercounted are more

likely to vote Democratic, and so if counted, the districts they live

in will get increased representation that is more likely to be Demo-

cratic. The fact of an undercount can be arrived at through just

logical considerations, but its size must be estimated through sur-

veys. Why is it we can get a better estimate from a smallish survey

than from an exhaustive census? The answer is that surveys are, in

fact, small. Thus, their budgets allow them to be done carefully and

everyone in the sampling frame can be tracked down and included (or

almost everyone).4 A complete enumeration is a big deal, and even

though census workers try hard, they have a limited (although large)

budget that does not allow the same level of precision. Because of

the enormous size of the census task, increasing the budget to any

plausible level will still not be enough to get everyone. A number of

well-designed surveys will do a better job at a fraction of the cost.
4A sampling frame is the list of all those in the population that can be sampled.
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The Supreme Court ruling in Department of Commerce v. United

States House of Representatives (1999) seems to have resolved the

issue of sampling versus complete enumeration in a Solomon-like

manner. For purposes of House of Representatives apportionment,

complete enumeration is required with all its problems of “under-

count.” For other uses of the Census, however, “undercount” cor-

rections that make the demographic information more accurate are

permissable And these corrected estimates could be used in differ-

ential resource allocation to the states. Two items are given in an

appendix below: a short excerpt from the American Statistical Asso-

ciation amicus brief for this case, and the syllabus from the Supreme

Court ruling.

5 Appendix: Brief for American Statistical Associa-

tion as Amicus Curiae, Department of Commerce v.

United States House of Representatives

Friend of the Court brief from the American Statistical Association —
ASA takes no position on the appropriate disposition of this case or on

the legality or constitutionality of any aspect of the 2000 census. ASA also
takes no position in this brief on the details of any proposed use of statistical
sampling in the 2000 census.

ASA is, however, concerned to defend statistically designed sampling as
a valid, important, and generally accepted scientific method for gaining ac-
curate knowledge about widely dispersed human populations. Indeed, for
reasons explained in this brief, properly designed sampling is often a better
and more accurate method of gaining such knowledge than an inevitably in-
complete attempt to survey all members of such a population. Therefore, in
principle, statistical sampling applied to the census “has the potential to in-
crease the quality and accuracy of the count and to reduce costs.” . . . There
are no sound scientific grounds for rejecting all use of statistical sampling in
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the 2000 census.
As its argument in this brief, ASA submits the statement of its Blue

Ribbon Panel that addresses the relevant statistical issues. ASA respectfully
submits this brief in hopes that its explanation of these points will be helpful
to the Court.

6 Appendix: Department of Commerce v. United States

House of Representatives

Syllabus from the Supreme Court ruling: The Constitution’s Census Clause
authorizes Congress to direct an “actual Enumeration” of the American pub-
lic every 10 years to provide a basis for apportioning congressional represen-
tation among the States. Pursuant to this authority, Congress has enacted
the Census Act (Act), . . . delegating the authority to conduct the decennial
census to the Secretary of Commerce (Secretary). The Census Bureau (Bu-
reau), which is part of the Department of Commerce, announced a plan to
use two forms of statistical sampling in the 2000 Decennial Census to address
a chronic and apparently growing problem of “undercounting” of some iden-
tifiable groups, including certain minorities, children, and renters. In early
1998, two sets of plaintiffs filed separate suits challenging the legality and
constitutionality of the plan. The suit in No. 98-564 was filed in the Dis-
trict Court for the Eastern District of Virginia by four counties and residents
of 13 States. The suit in No. 98-404 was filed by the United States House
of Representatives in the District Court for the District of Columbia. Each
of the courts held that the plaintiffs satisfied the requirements for Article
III standing, ruled that the Bureau’s plan for the 2000 census violated the
Census Act, granted the plaintiffs’ motion for summary judgment, and per-
manently enjoined the planned use of statistical sampling to determine the
population for congressional apportionment purposes. On direct appeal, this
Court consolidated the cases for oral argument.

Held:
1. Appellees in No. 98-564 satisfy the requirements of Article III standing.

In order to establish such standing, a plaintiff must allege personal injury
fairly traceable to the defendant’s allegedly unlawful conduct and likely to
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be redressed by the requested relief. . . . A plaintiff must establish that there
exists no genuine issue of material fact as to justiciability or the merits in
order to prevail on a summary judgment motion. . . . The present contro-
versy is justiciable because several of the appellees have met their burden of
proof regarding their standing to bring this suit. In support of their sum-
mary judgment motion, appellees submitted an affidavit that demonstrates
that it is a virtual certainty that Indiana, where appellee Hofmeister resides,
will lose a House seat under the proposed census 2000 plan. That loss un-
doubtedly satisfies the injury-in-fact requirement for standing, since Indiana
residents’ votes will be diluted by the loss of a Representative. . . . Hofmeister
also meets the second and third standing requirements: There is undoubt-
edly a “traceable” connection between the use of sampling in the decennial
census and Indiana’s expected loss of a Representative, and there is a sub-
stantial likelihood that the requested relief—a permanent injunction against
the proposed uses of sampling in the census—will redress the alleged injury.
Appellees have also established standing on the basis of the expected effects of
the use of sampling in the 2000 census on intrastate redistricting. Appellees
have demonstrated that voters in nine counties, including several of the ap-
pellees, are substantially likely to suffer intrastate vote dilution as a result
of the Bureau’s plan. Several of the States in which the counties are located
require use of federal decennial census population numbers for their state
legislative redistricting, and States use the population numbers generated by
the federal decennial census for federal congressional redistricting. Appellees
living in the nine counties therefore have a strong claim that they will be
injured because their votes will be diluted vis-à-vis residents of counties with
larger undercount rates. The expected intrastate vote dilution satisfies the
injury-in-fact, causation, and redressibility requirements.

2. The Census Act prohibits the proposed uses of statistical sampling to
determine the population for congressional apportionment purposes. In 1976,
the provisions here at issue took their present form. Congress revised 13 U.
S. C. §141(a), which authorizes the Secretary to “take a decennial census . . .
in such form and content as he may determine, including the use of sampling
procedures.” This broad grant of authority is informed, however, by the nar-
rower and more specific §195. As amended in 1976, §195 provides: “Except
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for the determination of population for purposes of [congressional] appor-
tionment . . . the Secretary shall, if he considers it feasible, authorize the use
of . . . statistical . . . ‘sampling’ in carrying out the provisions of this title.”
Section 195 requires the Secretary to use sampling in assembling the myriad
demographic data that are collected in connection with the decennial census,
but it maintains the longstanding prohibition on the use of such sampling
in calculating the population for congressional apportionment. Absent any
historical context, the “except/shall” sentence structure in the amended §195
might reasonably be read as either permissive or prohibitive. However, the
section’s interpretation depends primarily on the broader context in which
that structure appears. Here, that context is provided by over 200 years dur-
ing which federal census statutes have uniformly prohibited using statistical
sampling for congressional apportionment. The Executive Branch accepted,
and even advocated, this interpretation of the Act until 1994.

3. Because the Court concludes that the Census Act prohibits the pro-
posed uses of statistical sampling in calculating the population for purposes
of apportionment, the Court need not reach the constitutional question pre-
sented.
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