
Module 7: Probabilistic
(Mis)Reasoning and Related

Confusions

bioinformatics: a synergistic fusion of huge data bases and bad statistics

data mining: panning for gold in a sewer

– Stephen Senn (Dicing with Death, 2003)

Abstract: The introductory module started with the well-known

case of Sally Clark and how a misunderstanding about probabilistic

independence helped lead to her wrongful imprisonment for killing

her two children. The present module will provide more examples

of mistaken probabilistic reasoning, with many involving misinter-

pretations of conditional probability. We will revisit the O.J. Simp-

son criminal case where his defense team took advantage of what is

termed the “defendant’s fallacy,” as well as some specious reason-

ing about conditional probability (perpetrated by Alan Dershowitz).

Several additional high-profile legal cases will be mentioned that were

mishandled because of the prosecutor’s fallacy, much like that of Sally

Clark. One is recent – the Dutch nurse, Lucia de Berk, was accused

of multiple deaths at the hospitals she worked at in the Netherlands;

another is much older and involves the turn-of-the-century (the late

1800s, that is) case of Alfred Dreyfus, the much maligned French Jew

who was falsely imprisoned for espionage.
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1 The (Mis)assignment of Probabilities

Clear probabilistic reasoning requires a good understanding of how

conditional probabilities are defined and operate. There are many

day-to-day contexts we face where decisions might best be made from

conditional probabilities, if we knew them, instead of from marginal

information. When deciding on a particular medical course of action,

for example, it is important to condition on personal circumstances

of age, risk factors, family medical history, and our own psychological

needs and makeup. A fairly recent and controversial instance of this,

where the conditioning information is “age,” is reported in the New

York Times article by Gina Kolata, “Panel Urges Mammograms at

50, Not 40” (November 16, 2009). The failure to consider conditional

instead of marginal probabilities is particularly grating for many of

us who follow various sporting activities and enjoy second-guessing

managers, quarterbacks, sports commentators, and their ilk. As an

example, consider the “strike-‘em-out-throw-‘em-out” double play in

baseball, where immediately after the batter has swung and missed

at a third strike or taken a called third strike, the catcher throws out

a base runner attempting to steal second or third base. Before such a

play occurs, announcers routinely state that the runner “will or will

not be sent” because the “batter strikes out only some percentage

of the time.” The issue of running or not shouldn’t be based on the

marginal probability of the batter striking out but on some condi-

tional probability (for example, how often does the batter strike out
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when faced with a particular count or type of pitcher). For many

other instances, however, we might be content not to base our de-

cisions on conditional information; for example, always wear a seat

belt irrespective of the type or length of trip being taken.

Although the assignment of probabilities to events consistent with

the mutually exclusive event rule may lead to an internally valid sys-

tem mathematically, there is still no assurance that this assignment

is “meaningful,” or bears any empirical validity for observable long-

run expected frequencies. There seems to be a never-ending string

of misunderstandings in the way probabilities can be generated that

are either blatantly wrong, or more subtly incorrect, irrespective of

the internally consistent system they might lead to. Some of these

problems are briefly sketched below, but we can only hope to be

representative of a few possibilities, not exhaustive.

One inappropriate way of generating probabilities is to compute

the likelihood of some joint occurrence after some of the outcomes are

already known. For example, there is the story about the statistician

who takes a bomb aboard a plane, reasoning that if the probability

of one bomb on board is small, the probability of two is infinitesimal.

Or, during World War I, soldiers were actively encouraged to use

fresh shell holes as shelter because it was very unlikely for two shells

to hit the same spot during the same day. And the Minnesota Twins

baseball manager who bats for an individual who earlier in the game

hit a home run because it would be very unlikely for him to hit two

home runs in the same game. Although these slightly amusing stories

may provide obvious misassignments of probabilities, other related

situations are more subtle. For example, whenever coincidences are
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culled or “hot spots” identified from a search of available informa-

tion, the probabilities that are then regenerated for these situations

may not be valid. There are several ways of saying this: when some

set of observations is the source of an initial suspicion, those same

observations should not be used in a calculation that then tests the

validity of the suspicion. In Bayesian terms, you should not obtain

the posterior probabilities from the same information that gave you

the prior probabilities. Alternatively said, it makes no sense to do

formal hypothesis assessment by finding estimated probabilities when

the data themselves have suggested the hypothesis in the first place.

Some cross-validation strategy is necessary; for example, collecting

independent data. Generally, when some process of search or opti-

mization has been used to identify an unusual situation (for instance,

when a “good” regression equation is found through a step-wise pro-

cedure [see Freedman, 1983, for a devastating critique]; when data

are “mined” and unusual patterns identified; when DNA databases

are searched for “cold-hits” against evidence left at a crime scene;

when geographic “hot spots” are identified for, say, some particu-

larly unusual cancer; or when the whole human genome is searched

for clues to common diseases), the same methods for assigning prob-

abilities before the particular situation was identified are generally

no longer appropriate after the fact.1

A second general area of inappropriate probability assessment con-
1A particularly problematic case of culling or locating “hot spots” is that of residential

cancer-cluster identification. A readable account is by Atul Gawande, “The Cancer-Cluster
Myth,” New Yorker, February 8, 1999. For the probability issues that arise in searching the
whole human genome for clues to some condition, see “Nabbing Suspicious SNPS: Scientists
Search the Whole Genome for Clues to Common Diseases” (Regina Nuzzo, ScienceNews,
June 21, 2008).
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cerns the model postulated to aggregate probabilities over several

events. Campbell (1974, p. 126) cites an article in the New York

Herald Tribune (May, 1954) stating that if the probability of knock-

ing down an attacking airplane were .15 at each of five defensive po-

sitions before reaching the target, then the probability of knocking

down the plane before it passed all five barriers would be .75 (5×.15),

this last value being the simple sum of the individual probabilities—

and an inappropriate model. If we could correctly assume indepen-

dence between the Bernoulli trials at each of the five positions, a

more justifiable value would be one minus the probability of passing

all barriers successfully: 1.0− (.85)5 ≈ .56. The use of similar bino-

mial modeling possibilities, however, may be specious—for example,

when dichotomous events occur simultaneously in groups (such as

in the World Trade Center disaster on 9/11/01); when the success

proportions are not valid; when the success proportions change in

value over the course of the trials; or when time dependencies are

present in the trials (such as in tracking observations above and be-

low a median over time). In general, when wrong models are used to

generate probabilities, the resulting values may have little to do with

empirical reality. For instance, in throwing dice and counting the

sum of spots that result, it is not true that each of the integers from

two through twelve is equally likely. The model of what is equally

likely may be reasonable at a different level (for example, pairs of

integers appearing on the two dice), but not at all aggregated lev-

els. There are some stories, probably apocryphal, of methodologists

meeting their demises by making these mistakes for their gambling

patrons.

Flawed calculations of probability can have dire consequences within
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our legal systems, as the case of Sally Clark and related others make

clear. One broad and current area of possible misunderstanding of

probabilities is in the context of DNA evidence (which is exacerbated

in the older and more fallible system of identification through finger-

prints).2 In the use of DNA evidence (and with fingerprints), one

must be concerned with the Random Match Probability (RMP): the

likelihood that a randomly selected unrelated person from the popu-

lation would match a given DNA profile. Again, the use of indepen-

dence in RMP estimation is questionable; also, how does the RMP

relate to, and is it relevant for, “cold-hit” searches in DNA databases.

In a confirmatory identification case, a suspect is first identified by

non-DNA evidence; DNA evidence is then used to corroborate tra-

ditional police investigation. In a “cold-hit” framework, the suspect

is first identified by a search of DNA databases; the DNA evidence

is thus used to identify the suspect as perpetrator, to the exclusion

of others, directly from the outset (this is akin to shooting an arrow

into a tree and then drawing a target around it). Here, traditional

police work is no longer the focus. For a thorough discussion of the

probabilistic context surrounding DNA evidence, which extends with

even greater force to fingerprints, the article by Jonathan Koehler is

recommended (“Error and Exaggeration in the Presentation of DNA

Evidence at Trial,” Jurimetrics Journal, 34, 1993–1994, 21–39).

We excerpt part of the introduction to this article below:

DNA identification evidence has been and will continue to be powerful evi-
dence against criminal defendants. This is as it should be. In general, when
blood, semen or hair that reportedly matches that of a defendant is found on

2Two informative articles on identification error using fingerprints (“Do Fingerprints
Lie?”, Michael Specter, New Yorker, May 27, 2002), and DNA (“You Think DNA Evidence
is Foolproof? Try Again,” Adam Liptak, New York Times, March 16, 2003).
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or about a victim of violent crime, one’s belief that the defendant committed
the crime should increase, based on the following chain of reasoning:

Match Report ⇒ True Match ⇒ Source ⇒ Perpetrator
First a reported match is highly suggestive of a true match, although the
two are not the same. Errors in the DNA typing process may occur, leading
to a false match report. Second, a true DNA match usually provides strong
evidence that the suspect who matches is indeed the source of the trace,
although the match may be coincidental. Finally, a suspect who actually
is the source of the trace may not be the perpetrator of the crime. The
suspect may have left the trace innocently either before or after the crime
was committed.

In general, the concerns that arise at each phase of the chain of inferences
are cumulative. Thus, the degree of confidence one has that a suspect is the
source of a recovered trace following a match report should be somewhat less
than one’s confidence that the reported match is a true match. Likewise,
one’s confidence that a suspect is the perpetrator of a crime should be less
than one’s confidence that the suspect is the source of the trace.

Unfortunately, many experts and attorneys not only fail to see the cumula-
tive nature of the problems that can occur when moving along the inferential
chain, but they frequently confuse the probabilistic estimates that are reached
at one stage with estimates of the others. In many cases, the resulting mis-
representations and misinterpretation of these estimates lead to exaggerated
expressions about the strength and implications of the DNA evidence. These
exaggerations may have a significant impact on verdicts, possibly leading to
convictions where acquittals might have been obtained.

This Article identifies some of the subtle, but common, exaggerations that
have occurred at trial, and classifies each in relation to the three questions
that are suggested by the chain of reasoning sketched above: (1) Is a reported
match a true match? (2) Is the suspect the source of the trace? (3) Is the
suspect the perpetrator of the crime? Part I addresses the first question and
discusses ways of defining and estimating the false positive error rates at
DNA laboratories. Parts II and III address the second and third questions,
respectively. These sections introduce the “source probability error” and
“ultimate issue error” and show how experts often commit these errors at
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trial with assistance from attorneys on both sides. (pp. 21–22)

In 1989, and based on urging from the FBI, the National Re-

search Council (NRC) formed the Committee on DNA Technology

in Forensic Science, which issued its report in 1992 (DNA Tech-

nology in Forensic Science ; or more briefly, NRC I). The NRC I

recommendation about the cold-hit process was as follows:

The distinction between finding a match between an evidence sample and a
suspect sample and finding a match between an evidence sample and one of
many entries in a DNA profile databank is important. The chance of finding a
match in the second case is considerably higher. . . . The initial match should
be used as probable cause to obtain a blood sample from the suspect, but
only the statistical frequency associated with the additional loci should be
presented at trial (to prevent the selection bias that is inherent in searching
a databank). (p. 124)

A follow-up report by a second NRC panel was published in 1996

(The Evaluation of Forensic DNA Evidence; or more briefly, NRC

II), having the following main recommendation about cold-hit prob-

abilities and using the “database match probability” or DMP:

When the suspect is found by a search of DNA databases, the random-match
probability should be multiplied by N , the number of persons in the database.
(p. 161)

The term “database match probability” (DMP) is somewhat unfor-

tunate. This is not a real probability but more of an expected number

of matches given the RMP. A more legitimate value for the probabil-

ity that another person matches the defendant’s DNA profile would

be 1− (1− 1
RMP)N , for a database of size N ; that is, one minus the

probability of no matches over N trials. For example, for an RMP of

1/1,000,000 and an N of 1,000,000, the above probability of another
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match is .632; the DMP (not a probability) number is 1.00, being

the product of N and RMP. In any case, NRC II made the recom-

mendation of using the DMP to give a measure of the accuracy of a

cold-hit match, and did not support the more legitimate “probability

of another match” using the formula given above (possibly because

it was considered too difficult?):3

A special circumstance arises when the suspect is identified not by an eye-
witness or by circumstantial evidence but rather by a search through a large
DNA database. If the only reason that the person becomes a suspect is that
his DNA profile turned up in a database, the calculations must be modified.
There are several approaches, of which we discuss two. The first, advocated
by the 1992 NRC report, is to base probability calculations solely on loci not
used in the search. That is a sound procedure, but it wastes information,
and if too many loci are used for identification of the suspect, not enough
might be left for an adequate subsequent analysis. . . . A second procedure is
to apply a simple correction: Multiply the match probability by the size of
the database searched. This is the procedure we recommend. (p. 32)

2 More on Bayes’ Rule and the Confusion of Condi-

tional Probabilities

The case of Sally Clark discussed in the introductory module and

the commission of the prosecutor’s fallacy that lead to her conviction

is not an isolated occurrence. There was the recent miscarriage of

justice in the Netherlands involving a nurse, Lucia de Berk, accused of
3As noted repeatedly by Gigerenzer and colleagues (e.g., Gigerenzer, 2002; Gigerenzer et

al., 2007), it also may be best for purposes of clarity and understanding, to report proba-
bilities using “natural frequencies.” For example, instead of saying that a random match
probability is .01, this could be restated alternatively that for this population, 1 out of every
10,000 men would be expected to show a match. The use of natural frequencies supposedly
provides a concrete reference class for a given probability that then helps interpretation.
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multiple deaths at the hospitals where she worked. This case aroused

the international community of statisticians to redress the apparent

injustices visited upon Lucia de Berk. One source for background,

although now somewhat dated, is Mark Buchanan at the New York

Times online opinion pages (“The Prosecutor’s Fallacy,” May 16,

2007). The Wikipedia article on Lucia de Berk provides the details

of the case and the attendant probabilistic arguments, up to her

complete exoneration in April 2010.

A much earlier and historically important fin de siecle case, is

that of Alfred Dreyfus, the much maligned French Jew, and captain

in the military, who was falsely imprisoned for espionage. In this

case, the nefarious statistician was Alphonse Bertillon, who through

a very convoluted argument reported a small probability that Drey-

fus was “innocent.” This meretricious probability had no justifiable

mathematical basis and was generated from culling coincidences in-

volving a document, the handwritten bordereau (without signature)

announcing the transmission of French military information. Dreyfus

was accused and convicted of penning this document and passing it

to the (German) enemy. The “prosecutor’s fallacy” was more or less

invoked to ensure a conviction based on the fallacious small probabil-

ity given by Bertillon. In addition to Émile Zola’s well-known article,

J’accuse . . . !, in the newspaper L’Aurore on January 13, 1898, it is

interesting to note that turn-of-the-century well-known statisticians

and probabilists from the French Academy of Sciences (among them

Henri Poincaré) demolished Bertillon’s probabilistic arguments, and

insisted that any use of such evidence needs to proceed in a fully

Bayesian manner, much like our present understanding of evidence

in current forensic science and the proper place of probabilistic argu-
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mentation.4

We observe the same general pattern in all of the miscarriages
4By all accounts, Bertillon was a dislikable person. He is best known for the development

of the first workable system of identification through body measurements; he named this
“anthropometry” (later called “bertillonage” by others). We give a brief quotation about
Bertillon from The Science of Sherlock Holmes by E. J. Wagner (2006):

And then, in 1882, it all changed, thanks to a twenty-six-year old neurasthenic clerk in the
Paris Police named Alphonse Bertillon. It is possible that Bertillon possessed some social
graces, but if so, he was amazingly discreet about them. He rarely spoke, and when he did,
his voice held no expression. He was bad-tempered and avoided people. He suffered from an
intricate variety of digestive complaints, constant headaches, and frequent nosebleeds. He
was narrow-minded and obsessive.

Although he was the son of the famous physician and anthropologist Louis Adolphe
Bertillon and had been raised in a highly intellectual atmosphere appreciative of science,
he had managed to be thrown out of a number of excellent schools for poor grades. He had
been unable to keep a job. His employment at the police department was due entirely to his
father’s influence. But this misanthropic soul managed to accomplish what no one else had:
he invented a workable system of identification.

Sherlock Holmes remarks in The Hound of the Baskervilles, “The world is full of obvious
things which nobody by any chance ever observes.” It was Bertillon who first observed
the obvious need for a scientific method of identifying criminals. He recalled discussions
in his father’s house about the theory of the Belgian statistician Lambert Adolphe Jacques
Quetelet, who in 1840 had suggested that there were no two people in the world who were
exactly the same size in all their measurements. (pp. 97–98)

Bertillonage was widely used for criminal identification in the decades surrounding the
turn-of-the-century. It was eventually supplanted by the use of fingerprints, as advocated by
Sir Francis Galton in his book, Finger Prints, published in 1892. A short extraction from
Galton’s introduction mentions Bertillon by name:

My attention was first drawn to the ridges in 1888 when preparing a lecture on Personal
Identification for the Royal Institution, which had for its principal object an account of the
anthropometric method of Bertillon, then newly introduced into the prison administration
of France. Wishing to treat the subject generally, and having a vague knowledge of the
value sometimes assigned to finger marks, I made inquiries, and was surprised to find, both
how much had been done, and how much there remained to do, before establishing their
theoretical value and practical utility.

One of the better known photographs of Galton (at age 73) is a Bertillon record from a
visit Galton made to Bertillon’s laboratory in 1893 (a Google search using the two words
“Galton” and “Bertillon” will give the image).
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of justice involving the prosecutor’s fallacy. A very small reported

probability of “innocence” is reported, typically obtained incorrectly

either by culling, misapplying the notion of statistical independence,

or using an inappropriate statistical model. This probability is cal-

culated by a supposed expert with some credibility in court: Roy

Meadow for Clark, Henk Elffers for de Berk, Alphonse Bertillon for

Dreyfus. The prosecutor’s fallacy then takes place, leading to a con-

viction for the crime. Various outrages ensue from the statistically

literate community, with the eventual emergence of some “statistical

good guys” hoping to redress the wrongs done: Richard Gill for de

Berk, Henri Poincaré (among others) for Dreyfus, the Royal Statis-

tical Society for Clark. After long periods of time, convictions are

eventually overturned, typically after extensive prison sentences have

already been served. We can only hope to avoid similar miscarriages

of justice in cases yet to come by recognizing the tell-tale pattern of

occurrences for the prosecutor’s fallacy.

Any number of conditional probability confusions can arise in im-

portant contexts and possibly when least expected. A famous in-

stance of such a confusion was in the O.J. Simpson case, where

one conditional probability, say, P (A|B), was equated with another,

P (A|B and D). We quote the clear explanation of this obfuscation

Besides anthropometry, Bertillon contributed several other advances to what would now be
referred to as “forensic science.” He standardized the criminal “mug shot,” and the criminal
evidence picture through “metric photography.” Metric photography involves taking pictures
before a crime scene is disturbed; the photographs had mats printed with metric frames
placed on the sides. As in “mug shots,” photographs are generally taken of both the front
and side views of a scene. Bertillon also created other forensic techniques, for example,
forensic document examination (but in the case of Dreyfus, this did not lead to anything
good), the use of galvanoplastic compounds to preserve footprints, the study of ballistics,
and the dynamometer for determining the degree of force used in breaking and entering.
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by Krämer and Gigerenzer (2005):

Here is a more recent example from the U.S., where likewise P (A|B) is con-
fused with P (A|B and D). This time the confusion is spread by Alan Der-
showitz, a renowned Harvard Law professor who advised the O.J. Simpson
defense team. The prosecution had argued that Simpson’s history of spousal
abuse reflected a motive to kill, advancing the premise that “a slap is a pre-
lude to homicide.” Dershowitz, however, called this argument “a show of
weakness” and said: “We knew that we could prove, if we had to, that an
infinitesimal percentage—certainly fewer than 1 of 2,500—of men who slap
or beat their domestic partners go on to murder them.” Thus, he argued that
the probability of the event K that a husband killed his wife if he battered
her was small, P (K|battered) = 1/2,500. The relevant probability, however,
is not this one, as Dershowitz would have us believe. Instead, the relevant
probability is that of a man murdering his partner given that he battered her
and that she was murdered, P (K|battered and murdered). This probability
is about 8/9. It must of course not be confused with the probability that
O.J. Simpson is guilty; a jury must take into account much more evidence
than battering. But it shows that battering is a fairly good predictor of guilt
for murder, contrary to Dershowitz’s assertions. (p. 228)

Avoiding the prosecutor’s fallacy is one obvious characteristic of

correct probabilistic reasoning in legal proceedings. A related specious

argument on the part of the defense is the “defendant’s fallacy”

(Committee on DNA Technology in Forensic Science, 1992, p. 31).

Suppose that for an accused individual who is innocent, there is

a one-in-a-million chance of a match (such as for DNA, blood, or

fiber). In an area of, say, 10 million people, the number of matches

expected is 10 even if everyone tested is innocent. The defendant’s

fallacy would be to say that because 10 matches are expected in a

city of 10 million, the probability that the accused is innocent is 9/10.

Because this latter probability is so high, the evidence of a match for
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the accused cannot be used to indicate a finding of guilt, and there-

fore, the evidence of a match should be excluded. A version of this

fallacy appeared (yet again) in the O.J. Simpson murder trial; we

give a short excerpt about the defendant’s fallacy that is embedded

in the Wikipedia article on the prosecutor’s fallacy :

A version of this fallacy arose in the context of the O.J. Simpson murder
trial where the prosecution gave evidence that blood from the crime scene
matched Simpson with characteristics shared by 1 in 400 people. The defense
retorted that a football stadium could be filled full of people from Los Angeles
who also fit the grouping characteristics of the blood sample, and therefore
the evidence was useless. The first part of the defenses’ argument that there
are several other people that fit the blood grouping’s characteristics is true,
but what is important is that few of those people were related to the case,
and even fewer had any motivation for committing the crime. Therefore, the
defenses’ claim that the evidence is useless is untrue.

We end this chapter with two additional fallacies involving condi-

tional probabilities that were also reviewed by Krämer and Gigeren-

zer (2005). One will be called the facilitation fallacy, and the second,

the category (mis)representation fallacy.

The facilitation fallacy argues that because a conditional proba-

bility, P (B|A), is “large,” the event B must therefore be facilitative

for A (i.e., it must be true that P (A|B) > P (A)). As an example,

suppose that among all people involved in an automobile accident,

the majority are male; or, P (male|accident) is “large.” But this does

not imply that being male is facilitative of having an accident (i.e., it

is not necessarily true that P (accident|male) > P (accident). There

could be, for example, many more male drivers on the road than

female drivers, and even though accident rates per mile may be the
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same for males and females, males will be in the majority when only

those individuals involved in an accident are considered.

The category (mis)representation fallacy begins with the true ob-

servation that if B is facilitative of A, so that P (A|B) > P (A), then

B̄ must be inhibitive of A; that is, P (A|B̄) < P (A). The fallacy is

to then say that all subsets of B̄ must also be inhibitive of A as well.

To paraphrase a hypothetical example given by Krämer and Gigeren-

zer(2005), suppose an employer hires 158 out of 1000 applicants

(among the 1000, 200 are black, 200 are Hispanic, and 600 are white).

Of the 158 new hires, 38 are non-white (36 are Hispanic and 2 are

black), and 120 are white. Being white is facilitative of being hired:

P (hired|white) = 120
600 = .20 > P (hired) = 158

1000 = .158

And being nonwhite is inhibitive of being hired:

P (hired|nonwhite) = 38
400 = .095 < P (hired) = .158

But note that although being black is inhibitive of being hired:

P (hired|black) = 2
200 = .01 < P (hired) = .158,

the same is not true for the Hispanic subset:

P (hired|Hispanic) = 36
200 = .18 is greater than P (hired) = .158.
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