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Preface

The first part of the present monograph’s title, Combinatorial Data Analysis
(CDA), refers to a wide class of methods for the study of relevant data sets in
which the arrangement of a collection of objects is absolutely central. Char-
acteristically, CDA is involved either with the identification of arrangements
that are optimal for a specific representation of a given data set (usually op-
erationalized with some specific loss or merit function that guides a combina-
torial search defined over a domain constructed from the constraints imposed
by the particular representation selected), or the determination in a confirma-
tory manner of whether a specific object arrangement given a priori reflects the
observed data. As the second part of the title suggests, Optimization by Dy-
namic Programming, the focus of this monograph is solely on the identification
of arrangements, and then restricted further to where the combinatorial search
is carried out by a recursive optimization process based on the general principles
of dynamic programming. For an introduction to confirmatory CDA without
any type of optimization component, the reader is referred to the monograph
by Hubert (1987). For the use of combinatorial optimization strategies other
than dynamic programming for some (clustering) problems in CDA, the recent
comprehensive review by Hansen and Jaumard (1997) provides a particularly
good introduction.

Our purpose in writing this monograph is to provide an applied documen-
tation source, as well as an introduction to a collection of associated computer
programs that would be of interest to applied statisticians and data analysts
but also accessible to a notationally sophisticated but otherwise substantively
focused user. Such a person would typically be most interested in analyzing
a specific data set by implementing the flexible dynamic programming method
for any of a number of seemingly diverse problems encountered in CDA. The
background we have tried to assume is at the same level required to follow the
documentation for good, commercially available optimization subroutines, such
as the Numerical Algorithms Group (NAG) Fortran subroutine library, or at the
level of one of the standard texts in applied multivariate analysis usually used
for a graduate second-year methodology course in the behavioral and social sci-
ences. An excellent example of the latter would be the widely used text now in
its fourth edition by Johnson and Wichern (1998). Draft versions of the current
monograph have been used as supplementary material for a course relying on
the latter text as the primary reference.



The content of the monograph itself and how the various parts are organized
can be discussed under a number of headings that serve to characterize both
the type of object arrangements to be identified and the form of the data on
which the identification is to be based. Chapter 1 is a short preview that in-
troduces the general topic of the monograph by noting areas in combinatorial
data analysis that can be approached by the optimization strategy of dynamic
programming, and presents a number of data sets to be used throughout the
remaining chapters. The second chapter introduces the general dynamic pro-
gramming paradigm (the GDPP, for short) and gives an introductory example
of its usage in the well-known linear assignment task. The next two chapters of
the monograph respectively focus the GDPP on topics within Cluster Analysis
(Chapter 3) and Object Sequencing and Seriation (Chapter 4). Chapter 3 is
further subdivided by several dichotomies: whether the clustering involves a
single object partition (partitioning) or a hierarchy of nested partitions (and
the associated representing ultrametric); the presence or absence of constraints
on the type of partitions sought (typically through subsets contiguous with
respect to some object order); the form of the available data with the usual
distinction of having proximities between objects from a single set (one-mode)
or between objects from two sets (two-mode). Chapter 4 can also be character-
ized by several dichotomies: whether the one-mode proximities are symmetric or
skew-symmetric, with the latter representing dominance information among the
objects, or whether the proximities are initially one- or two-mode. In addition,
several related topics are introduced — sequencing through the construction of
optimal paths (linear and circular); the incorporation of precedence constraints
in the construction of an optimal order; and in unifying the general areas of
clustering and sequencing by identifying optimal partitions of an object set in
which the classes are themselves ordered. Chapter 5 extends the GDPP heuris-
tically for use with large(r) object sets in both the clustering and sequencing
context, while (unfortunately) removing the absolute guarantee of optimality
for the identified object arrangements. Finally, Chapter 6 provides preliminary
discussion of a number of areas of extension and generalization that are now
being pursued by the current authors and others.

An Appendix is included as a users’ manual for a collection of programs
available as freeware (on the World Wide Web) that carry out the various opti-
mization tasks discussed in the body of the monograph and which could be used
to reproduce all the various numerical examples given. We provide both the orig-
inal code (in Fortran90) and executable programs (for 32-bit Intel-compatible
processors running under Windows N'T/95/98). Finally, we point out the liberal
use throughout of chapter endnotes (rather than the more typographically in-
trusive footnotes). These serve several purposes: to note how some topic might
be approached with one of the programs discussed in the Appendix; to provide
a little more peripheral comment on some topic introduced; or to respond to a
referee of an earlier version of this monograph who may have wished for a more
detailed presentation of a specific topic that we eventually thought best not to
incorporate into the actual text.

The research reported in this monograph has been partially supported by the
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Chapter 1

Introduction

Many of the data analysis tasks arising naturally in the general field of classi-
fication can be given some type of combinatorial characterization that involves
the identification of object groupings, partitions, or sequences. Because of this
explicit usage of a combinatorial structure for data representation and inter-
pretation, it is now common to adopt the generic term of combinatorial data
analysis (CDA) to refer to the broad class of data analysis methods that var-
iously depend on (or are directed toward the search for) such combinatorial
entities (for a recent general review of CDA, see Arabie and Hubert, 1996).
The present monograph falls within this area of CDA and is concerned with the
identification of a variety of combinatorial structures intended to satisfy certain
properties of optimality, defined using data we have on the objects. Ultimately,
the structures identified provide a mechanism for helping interpret the patterns
of relationship(s) reflected in the data that may exist among the objects. Also,
it is usual to specify the optimality properties desired (even if only implicitly)
according to achieving a small [or large| value for some loss [or merit] criterion,
where the latter characterizes numerically each possible combinatorial structure
in the domain of search. Although an obvious solution strategy exists, namely
complete enumeration of all possible combinatorial structures along with their
criterion values and retaining only the best, that approach will typically be com-
putationally infeasible. For all but the smallest object sets, the search domains
for the combinatorial structures of interest will be so enormous in size that an
exhaustive search strategy is beyond the capabilities of current computational
equipment.

The basic computational difficulties encountered in optimizing over combi-
natorial domains have spawned several well-developed areas of research. One of
these concerns the development and evaluation of heuristic optimization meth-
ods that, although not guaranteed to lead to the absolute best solutions achiev-
able, might nevertheless generate satisfactory solutions to the problem at hand
(e.g., see the volume edited by Reeves, 1993); a second is involved with the
characterization and classification of optimization tasks that are (inherently)
difficult to solve (viz., the theory of NP-completeness; see the recent review by
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Day, 1996); a third is the development of (partial enumeration) methods for the
exact solution of specific combinatorial optimization tasks that are more com-
putationally efficient than complete enumeration, although there is always some
limit on the absolute size of problems that can be approached (e.g., the general
paradigm of branch-and-bound; see Nemhauser and Wolsey, 1988). It is within
this last area of partial enumeration methods that the current monograph fo-
cuses, and specifically on a very general optimization strategy called dynamic
programming (DP) and the construction of recursive procedures that can allow
the exact solution of certain combinatorial optimization tasks encountered in
the field of classification.

The application of DP methods to data analysis problems in classification
is hardly new, and a collection of precedents can be given: Fisher (1958), Held
and Karp (1962), Jensen (1969), Rao (1971), Hartigan (1975, Chapter 5), Del-
coigne and Hansen (1975), Adelson, Norman, and Laporte (1976), Hubert and
Golledge (1981), Kruskal (1983), Hubert and Arabie (1986), Batagelj, Korenjak-
Cerne, and Klavzar (1994), among others. Our intent at one level will be to
provide a comprehensive and self-contained review delineating a very general
DP paradigm or schema that can in turn serve two functions. First, it may
be applied in various special forms to encompass all previously proposed ap-
plications suggested in the classification literature. Second, it leads directly to
several more novel uses that until now have not been noted explicitly, e.g., to
certain (restricted) forms of partitioning and hierarchical clustering, or to the
task of unidimensional unfolding, characterized by the joint sequencing of two
object sets along a continuum. As noted above, and as mentioned and empha-
sized throughout this monograph, there will always be severe limits on the size
of the optimization tasks that can be handled through the general DP paradigm
with guaranteed optimality and with readily available computational resources.
Nevertheless, we can still move much beyond the very trivial object set sizes
that might be approached through complete enumeration; moreover, for some
very specific contexts, it may be possible to restrict or limit the combinatorial
search domain in some way (e.g., through another preliminary analysis strat-
egy), making it feasible to consider fairly large object sets. Several examples of
such reduction will be given throughout our presentation. It is also possible to
apply the DP paradigm heuristically (as developed in greater detail in Chap-
ter 5) for several optimization tasks that may exceed the usual DP strategy’s
capacity to guarantee absolute optimality for the specific problem at hand.

The broad outline of the present monograph is as follows. Chapter 2 intro-
duces a very general DP paradigm (Section 2.2), but does so through a simple
expository example of what is called the linear assignment task (Section 2.1).
Chapters 3 and 4 develop a variety of specializations of the general DP para-
digm, with Chapter 3 emphasizing cluster analysis broadly defined, and Chapter
4 concentrating on the sequencing of objects along a continuum. Chapter 5 de-
velops the use of the DP paradigm in heuristic approaches to selected problems
previously identified in Chapters 3 and 4 that may be beyond exact solution by
DP because of their size. The concluding Chapter 6 offers several more general
observations and notes a few possible future extensions and applications.’



Table 1.1: A proximity matrix from Shepard et al. (1975) on the pairwise dis-
similarities among the first ten single-digit integers {0,1,2,...,9} considered as
abstract concepts, averaged over raters and conditions.

digit 0 1 2 3 4 5 6 7 8 9

0 x .421 .584 .709 .684 .804 .788 .909 .821 .850
1 X .284 .346 .646 .588 .758 .630 .791 .625
2 x .354 .059 .671 .421 .796 .367 .808
3 x .413 .429 .300 .592 .804 .263
4 x .409 .388 .742 .246 .683
5 x .396 .400 .671 .592
6 x .417 .350 .296
7 x .400 .459
8 x .392
9 X

Because of the wide scope of the present monograph, we must leave to other,
substantive sources a more extensive collection of data analysis illustrations
showing the various specializations of the DP paradigm identified and discussed
in the following chapters. However, to give numerical examples in the current
presentation, we will consider a number of small data sets. Several are specific
to particular optimization contexts and are thus introduced during these discus-
sions; here, we present three small object sets used more generally throughout
the monograph. The first, given as a dissimilarity matrix in Table 1.1, is taken
from Shepard, Kilpatric, and Cunningham (1975). The stimulus domain is the
first ten single-digits {0,1,2,...,9} considered as abstract concepts, and the
proximity matrix was constructed by averaging dissimilarity ratings for distinct
pairs of those integers over a number of subjects and conditions (thus, given the
dissimilarity interpretation for these proximity values, smaller entries in the ta-
ble reflect more similar digits). A direct inspection of these data suggests there
may be some very regular but possibly complex manifest patterning reflecting
either structural characteristics of the digits (e.g., the powers of 2 or of 3, the
salience of the two additive/multiplicative identities [0/1], oddness/evenness),
or of absolute magnitudes. These data will be relied on in Chapter 3 to provide
concrete numerical illustrations of various aspects of a clustering task.

A second data set used in Chapter 4 to illustrate several optimization prob-
lems involved with sequencing an object set along a continuum is a very old
one, originally collected in 1929 in a study of the influence of motion pictures
on children’s attitudes (see Thurstone, 1959, pp. 309-319). Both before and af-
ter seeing a film entitled Street of Chance, which depicted the life of a gambler,
240 school children were asked to compare the relative seriousness of thirteen
offenses presented in all 78 possible pairs: bankrobber, gambler, pickpocket,
drunkard, quack doctor, bootlegger, beggar, gangster, tramp, speeder, petty
thief, kidnaper, and smuggler. The data are given in Table 1.2, where the en-
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Table 1.2: The proportions of school children who evaluate the column offense
as more serious than the row offense (taken from Thurstone, 1959, p. 311). The
above-diagonal entries are before showing the film Street of Chance; those below
the diagonal were collected after viewing the motion picture. Apparently, the
single pair (petty thief, kidnaper) was inadvertently not presented for evaluation,
although no mention of this anomaly is made in Thurstone (1959). The values
of .98 for (a) and .03 for (b) are imputed based on an assumption of strong
stochastic transitivity (e.g., see Bezembinder and van Acker, 1980) and the
observed proportions for the two pairs (petty thief, bankrobber) and (kidnaper,
bankrobber).

offense 1 2 3 4 5 6 7 8 9 10 11 12 13
1:bankrobber x .07 .08 .05 .27 .29 .01 .50 .00 .06 .02 .73 .21
2:gambler 79 x .71 .52.76 .92 .07 .92 .05 .41 .49 .90 .81
3:pickpocket 93 .51 x .25 .67 .75 .02 .86 .02 .39 .42 .87 .68
4:drunkard .95 .70 .70 x .81.95 .01 .92 .03 .37 .62 .91 .87

5:quack doctor .67 .36 .28 .16 x .49 .02 .70 .02 .12 .22 .64 .55
6:bootlegger .70 .31 .30 .13 .50 x .00 .79 .01 .09 .26 .68 .50

T:beggar 98 .95 .97 .94 .98 98 x .96 .42 .86 .96 1.0 .99
8:gangster 50 .18 .13 .11 .32 .27 .01 x .02 .08 .08 .36 .31
9:tramp 1.0 .96 .98 .96 .99 .98 .64 .99 x .91 .97 .99 1.0
10:speeder 94 .73 .68 .67 .89 .90 .21 .94 .13 x .58 .90 .92
11:petty thief .97 .64 .62 .47 .81 .76 .06 .89 .05 .36 x (a) .78
12:kidnaper .38 .27 .16 .08 .35 .30 .02 .62 .01 .08 (b) x .27
13:smuggler .73 .31 .30 .16 .46 .49 .02 .66 .02 .11 .24 .64 x

tries show the proportion of the school children who rated the offense listed in
the column to be more serious than the offense listed in the row. The above-
diagonal entries were obtained before the showing of the film; those below were
collected after. The obvious substantive question here involves the effect of the
film on the assessment of the offense of being a gambler.

A third data matrix given in Table 1.3 was originally collected by Marks
(1965) and has been reanalyzed elsewhere (e.g., Schiffman, Reynolds, and Young,
1981; Schiffman and Falkenberg, 1968; Hubert and Arabie, 1995a). These data
refer to the absorption of light in a goldfish retina at specific wavelengths and by
various cones, and are provided here as dissimilarities in Table 1.3, defined by
200 minus the measured heights of these ordinates for the various spectral fre-
quencies (see Schiffman, Reynolds, and Young, 1981, p. 329). The substantive
issue concerns the sensitivity of certain receptors (cones) to specific wavelengths.



Table 1.3: Dissimilarities between specific receptors and wavelengths in goldfish
retina (taken from Schiffman, Reynolds, and Young, 1981, p. 329).

1 2 3 4 5 6 7 8 9
wave- green yellow red b-indigo b-green blue green orange violet
length: (530) (585) (660) (458)  (498) (485) (540) (610) (430)
receptor
1 103 63 155 198 148 154 94 108 186
2 46 107 200 99 60 78 47 156 101
3 188 200 200 47 143 111 196 200 53
4 48 84 174 115 73 97 52 125 154
5 114 61 54 141 148 142 121 47 113
6 49 91 200 122 79 115 46 143 127
7 116 49 80 135 127 123 98 46 156
8 186 200 200 48 100 75 200 200 55
9 168 177 200 46 125 90 176 183 47
10 145 80 68 200 161 160 138 53 200
11 144 64 89 173 176 177 128 56 140

Endnote for Chapter 1:

IThere are a number of computer programs used in the remaining chapters
of this monograph to carry out the various special cases of the DP paradigm
reviewed, and which are denoted by various names in the course of our presen-
tation (e.g., DPCL1U, DPCLI1R, DPHI1U, among others). Executable versions
(for Intel processors) for all the programs mentioned can be obtained from a
World Wide Web site set up by the authors, plus the original source code for
the programs written in Fortran90. A computational appendix to this mono-
graph includes the appropriate WWW address and provides a summary listing
of all the available programs (along with a review of what the various acronyms
refer to). The body of the appendix gives a discussion of their use, as well as
illustrative input and output. In each instance, there are upper limits on the
absolute size of the problems that can be approached with a particular program
because of realistic upper-bounds on the availability of the necessary random ac-
cess memory (RAM) required for storage (and these approximate limits will be
noted in our discussion). However, because none of the programs rely on large
fixed-size arrays that must be declared initially, but instead use Fortran90’s abil-
ity to allocate arrays dynamically, the program itself will decide (and so inform
the user) whether sufficient RAM exists in the system on which the program is
being run to solve a particular problem.
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Chapter 2

A General Dynamic
Programming Paradigm

We wish to introduce the General Dynamic Programming Paradigm (GDPP)
in a notational form sufficiently flexible for the variety of optimization tasks
surveyed in the remaining chapters of this monograph. Thus, it is convenient
to have a preliminary example of how a simply stated (and also well known)
optimization task can be solved by DP. The elements introduced for its solution
can then be used to give concrete referents for the more general notational
system of the GDPP explicated in Section 2.2. We thus begin by giving a DP
solution to the linear assignment problem.

2.1 An Introductory Example: Linear Assign-
ment

The linear assignment (LA) task (in one of its simple variants) can be phrased
using two object sets, where each contains n members, say U = {uy,...,u,}

and V = {v1.....v,}. and an n X n merit matrix C = {¢;;}, where ¢;; denotes
the value of pairing objects u; and v;. The optimization task is to find a one-
to-one matching of the objects in U and V' that will maximize the sum of the n
merit values produced by the matching. Interpretively, the objects in U might
represent n people who must be allocated to the n tasks denoted by the objects

. . . . )
in V, and where c;; is the value of assigning task v; to person u;.”

A complete enumeration strategy for the LA task requires the evaluation of
the sum of merit values for all n! one-to-one matchings of the objects in U and
V. Explicitly, if p(-) denotes a permutation of the first n integers representing
the n integer subscripts on the objects in U (i.e., p(i) = j if v; is assigned to
u;), and therefore defining a one-to-one matching between U and V', the sum of

7



8 CHAPTER 2. A GENERAL DYNAMIC PROGRAMMING PARADIGM

the merit values for that matching can be represented as
L(p() = Z Cip(s)-
i=1

Thus, T'(p(-)) could be evaluated for each of the n! permutations, and an optimal
solution to the LA problem identified by the largest value achieved for the index.
To approach the LA task through a recursive strategy avoiding the need to
enumerate completely all n! one-to-one matchings of U to V', suppose a collection
of n sets is first defined, Qi,...,Q,, where Q; (for 1 < k < n) contains all
subsets that have exactly k of the n integer subscripts indexing the objects in
V. If A denotes a subset contained in €2, and therefore a subset of size k of
the first n integers, let F(Ay) be the largest sum of & merit values that could
be achieved by assigning the k indices present in Ay, in some order, to the first
k objects, uy,...,u. For A; € 4, and where A; includes a single subscript,
say h (i.e., 41 = {h}), F(A1) = c1p. Consequently, F(A;) may be obtained
directly for all A; € 1, and starting with these initial evaluations, the optimal
sums of merit values F(A4y) for k =2,..., n can be constructed recursively as

F(Ag) = }Ibré?&}i [F(Ar —{h}) + crnl, (2.1)

where Ay € Q, and A, — {h} € Q1 when h € Aj. Starting from F(A;) for
all Ay € O, we first obtain F(As) for all Ay € Qq; then, based on F(A3) for
all As € Qq, we obtain F(As) for all A; € O3, and so on until we finally reach
F(A,,). Because there is only a single subset A4, in €, and this subset contains
all n integers, the optimal value for the LA task must be F({1,2,...,n}). An
actual assignment that would produce the optimal value can be obtained by
working backwards through the recursive process; i.e., the last assigned sub-
script (which is matched to object u,) that led to F({1,2,...,n}) is identified

and removed from the set, leaving a subset in 2,,_1, say A;L_lg the last assigned
subscript that produced F(A,,_,) is identified (which is matched to object u,_1)
and removed from A;Z_l producing a subset in €2,,_o, and so on, until a com-
plete assignment is identified by reaching a subset in 2; that includes a single
subscript.

The explicit justification for the appropriateness of a recursive system, such
as that in (2.1), is usually made in the following form (e.g., see Held and Karp,
1962, p. 197): the value F(A}) denotes the optimal sum of merit indices achiev-

able by assigning the k subscripts in Ay, to the first & objects uq,...,u;, where
one of these subscripts, call it h, must be assigned to uj;, and the remaining
subscripts in A, — {h} must be assigned optimally to uy,...,ur_1. The total

sum of merit indices for such an assignment is F (A — {h}) + cin, and taking
the maximum over all possible choices for i leads to the recursion in (2.1). The
obvious key to this argument is the italicized condition, which is satisfied be-
cause the additive increment of ¢ generated by assigning the subscript h to uy,
does not depend on the order in which the subscripts in Ay, — {h} are assigned
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sional unfolding, where for a particularly natural measure that we might seek
to optimize, a violation of such a condition follows, and therefore, no obvious
DP approach is possible using that specific measure.)

A numerical ezample. To give a small numerical illustration for clarification,
suppose U and V each contain four objects and the merit indices are given by
the 4 x 4 matrix C:

| Uy V2 U3z U4
up |5 4 2 10
up |14 9 13 7
us | 3 8 1 12
ug [ 15 6 11 16

A schematic of the recursive process from (2.1) appears in Figure 2.1, which
traces the construction of an optimal assignment of the four subscripts on the
objects in V' to the four subscripts on the objects in U considered (without loss of
generality) in the order 1 — 2 — 3 — 4. The enumeration of all the 2* —1 = 15
nonempty subscript subsets within the sets 1, ..., )y is provided along with

the optimal values F(A1),...,F(A4) beside each subset. These optimal values,
as noted in conjunction with the recursion in (2.1), are obtained as follows: first
the values F(A;) for subsets A; in ; containing single objects are found by
simple inspection of the entries in the first row of the matrix C that gives the

merit values for assigning one of the four objects in V' to uy:
F({1}) =5. F({2}) =4, F({3}) = 2. F({4}) = 10.

Based on these values of F(A;) for the single-object subsets A; € €, the values
for F(A,) for the dyadic subsets A; € Q5 are obtained by the recursion in (2.1):

F({1,2}) = max(F({1,2} = {1}) + ca1, F({1,2} = {2}) + ¢22) =
max(4 + 14,54 9) = 18;

F({1,3}) = max(F({1,3} — {1}) + cor, F({1,3} = {3}) + cas) =
max(2 + 14,5+ 13) = 18;

F({L.4}) = max(F({1,4} = {1}) + co1. F({1.4} = {4}) + c24) =
max(10 + 14,5 + 7) = 24;

F({2,3}) = max(F({2,3} = {2}) + co2, F({2,3} — {3}) + cas) =
max(2+ 9.4+ 13) = 17;

F({2,4}) = max(F({2,4) — {2}) + o0, F({2,4} — {4}) + c24) =
max(10+ 9,4+ 7) = 19;

F({3.4}) = max(F({3.4} — {3}) + ca3, F({3.4} — {4}) + c24) =
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max(10+ 13,2+ 7) = 23.

Continuing, and using these latter results for F(A2) when Az € Qs, the evalu-
ations of F(Ajz) for the three-object subsets As € Q3 are

f({l 2*3}) = max(f({17273} - {1}) + C3lvf({17 273} - {2}) + C32,
F({1,2,3} — {3}) 4+ c33) = max(17 + 3,18 + 8,18 + 1) = 26;

f({l 2*4}) = max(]—"({l,24} - {1}) + CSl:f({L 24} - {2}) + €32,
F({1,2,4} — {4}) + c34) = max(19 + 3,24 + 8,18 + 12) = 32;

f({13*4}) = max(}"({l,i’),é}} - {1}) + C3lvf({1:374} - {3}) + C33,
F({1,3,4} — {4}) 4+ c34) = max(23 + 3,24 4+ 1,18 + 12) = 30;

f({Z 3*4}) = maX(f({Q» 3. 4} - {2}) + 6327f({27 3, 4} - {3}) + Cs33,
F({2,3,4} — {4}) 4+ c34) = max(23 + 8,19+ 1,17 + 12) = 31.

Finally, F(A4) for the single four-object subset Ay = {1,2,3,4} € Q4 is obtained
from F(As) when Az € Q:

‘7:({1 23334}) = maX(]:({L 2ﬂ3=4} - {1}) + 641,.7:({1,2,3,4} - {2}) + Caz,
f({1=2=3=4} - {3}) + 0431}-({1%2%3%4} - {4} + C44) =
max(31 + 15,30 + 6,32 + 11,26 + 16) = 46.

The increments in merit are listed on the directed lines that show a transition
from a subset A, € Q to a subset Ap 1 € Qpy1, 1 < k < 3. For each subset
in € an indication is given by an underline as to which subscript was the
last assigned in generating the optimal value for that subset. Based on the
information in Figure 1, and working backwards from the optimal value of 46
for F({1,2,3,4}), and where 1 was the last assigned subscript, we successively
reach the subsets {2,3,4}, {3,4}, and {4}. Thus, the optimal matching is defined
by the permutation p(1) = 4, p(2) = 3, p(3) = 2, p(4) = 1, i.e., the one-to-one
matching is uy < vq, us < v3, ug < V2, ug < v1. The specific path followed
in the figure defining the optimal matching is marked by placing boxes around
the elements in Qq,...,€Q, that are successively visited; boxes are also placed
around the transition increments used to obtain the optional merit sum of 46.

The simple example just described can be used to illustrate several general
characteristics of DP methods and introduce some common terminology that
will appear continually in the sequel. We do this below:

(1) When it is possible to carry out a DP approach for a particular combina-
torial optimization task, the amount of computational effort is usually reduced
substantially, compared to that for a complete enumeration. In the LA task, for
example, complete enumeration requires an evaluation of the index I'(+) over all
n! possible permutations of the subscripts 1,2,...,n. Through (2.1), only the
values F(-) need be obtained for 2 — 1 nonempty subsets of the set of subscripts.
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Q1 : F(Ar1) Qo : F(A2) Q3 : F(Az) Qu : F(Ag)

{17273}26
1
{17274}32
1
1,2,3,41:46
{1,3,4}:30

Figure 2.1: A graphical representation for the recursive solution of the illustra-
tive 4 X 4 linear assignment task presented in the text. The numbers immedi-
ately following colons are either entries or sums of entries in the data matrix C.
Underlined numbers refer to the most recent addition to a subset
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(2) Although 2™ —1 is smaller than n! for n > 4 and n! grows at a much faster
rate than 2™ — 1, the latter number in an absolute sense can itself be quite large
as n becomes large. This growth does severely limit the size of the problems
that can be effectively approached with a DP strategy when used to obtain an
optimal solution. Required for setting up a DP method for the LA task is a
means to save and access all the values of F(-) that are recursively generated
over all nonempty subsets of a set containing n objects, in addition to a storage
mechanism for keeping track of the last subscripts that led to these optimal
values. Thus, large array capacity must be available for implementing all the
various DP methods reviewed as special instances of the general paradigm.?

We might also note at this point that throughout the current monograph
we will generally be content with only obtaining a single optimal solution for
a particular optimization task, and will not deal explicitly with the issue of
identifying all possible optimal solutions. To do so in the LA task, for instance,
would require a storage mechanism for keeping track of every last assigned
object that would lead to the same optimal values, F(Ay), at each stage of the
recursion, and eventually identifying all optimal solutions by working backwards
through the recursion and considering all the alternative paths back to ;.
Although such a process would be possible to carry out, it would also require
the dedication of much more (and usually scarce) storage capacity. Because of
this increase, the possible nonuniqueness of an optimal solution will typically
be left unaddressed, both here and for uses of the GDPP introduced in the next
section.

(3) The LA task was phrased as a maximization problem, but it could be
restated as the minimization of cost (or loss), and where an optimal assignment
would now have minimum cost, i.e., the sum of the n cost values induced by
an assignment is to be minimized. This observation will be true for all spe-
cializations of the GDPP presented in Chapters 3 and 4, and depending on the
problem’s definition, either a minimum or a maximum value will be sought. As
a more basic alteration to the recursion in (2.1), the additive combination of cgp,
and F(Ay — {h}) could be replaced by the minimum of ¢ and F (A — {h}) to
develop a recursion of the form

F(Ag) = max[min(F(Ar — {h}). crn)). (2.2)

heAy

for 2 < k < n. Thus, an optimal assignment is now one that maximizes the
minimum merit value over all n such merit values induced by the assignment.
Alternatively, we might minimize the maximum cost value if the entries in the
matrix {¢;;} represent cost rather than merit. In general, all the various DP spe-
cializations in the sequel, and in analogy to (2.2), have a max/min (or min/max)
form.

(4) Although the LA task may serve as a good introductory illustration for
how a DP recursion can be developed, it should be noted that at least for this
specific combinatorial optimization task, alternative and generally much better
methods exist for an optimal solution according to both the size of the problems
that can be handled and the computational effort required. For one, LA can
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be phrased as a linear programming problem, and thus, all the computational
routines for linear programming could be applied directly, such as the well-
known simplex algorithm. Furthermore, given the very special structure of LA
when reformulated as a linear programming problem, more efficient methods
than, say, the general simplex algorithm have been developed, e.g., see the
discussion of the Hungarian procedure in Hillier and Lieberman (1990, pp. 240-
243). Generally, for the various specializations of the general DP strategy we
will discuss, such alternative and more efficient methods are not available, in
contrast with the LA task.

(5) There is a very convenient graph-theoretic interpretation for the recur-
sive processes given in Equations (2.1) and (2.2) through the construction of
‘longest’ paths in an acyclic directed graph.* Such an interpretation may be
very helpful, at least intuitively, for a better understanding of the basic problem
the recursive processes solve (similar graphical representations could be given
for all the applications the GDPP reviewed in the chapters to follow). For ex-
ample, suppose in Figure 2.1 that a (source) node is first placed at the far left
and directed lines all having a weight of zero are drawn to each of the four
nodes corresponding to the entities in Q4. If the ‘length’ of a path from this
source node to the (sink) node defined by the set S = {1, 2,3, 4} is operational-
ized as either the sum of the weights for the directed lines along the path, or
alternatively, as the minimum weight for the directed lines along the path, the
recursions in (2.1) and (2.2) identify a longest path from the source node to the
sink node. In our case, for instance, and using the sum of weights as our char-
acterization of ‘length’, the longest path is 46, which is the same value attached
to F({1,2,3,4}). (Because transition costs from one node to the next obviously
do not depend on how the first node was reached, the short argument for the
validity of the recursions given earlier may be intuitively more compelling within
this general type of graphical framework.) Analogously, if a cost interpretation
is given for transitions between nodes, and if either the sum of the weights or
the maximum weight along a path is now to be minimized, the alternatives to
(2.1) and (2.2) using minimization would solve a shortest path problem from
the source node to the sink node.

2.2 The GDPP

To present the GDPP corresponding in one special case to the specific LA
recursion given in (2.1) and based on maximization and the use of additive
increments in merit, we first define a collection of K sets of entities,® Q1, ..., Qx,
where it is possible by some operation to transform entities in (), _; to certain
entities in , for 2 < k& < K. Each such transformation can be assigned a
merit value based only on the entity in j_; and the transformed entity in
Qr. An entity in Qy is denoted by Ay, and F(Ay) is the optimal value that
can be assigned to A, based on the sum of the merit increments necessary to
transform an entity in €, step-by-step, to Ap € Q. If A1 € Q1 can be
transformed into Aj, € €2, the merit of that single transition will be denoted by
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M(Aj_1, A), and where the latter does not depend on how Aj_1 may have been
arrived at starting from an entity in 2. Given these conditions, and assuming
the values F(A;) for A; € Qp are available to initialize the recursive system,
F(Ay) may be constructed for k =2,..., K as

f(AA) = max[}"(Ak_l) —‘y—]VI(A/ﬂ_l,Ak)], (23)

where Ay, € Qp, Ap_1 € Qp_1, and the maximum is taken over all A,_; that
can be transformed into Aj,.5

The specialization of (2.3) to the LA recursion in (2.1) is very direct, merely
by interpreting K to be n, and letting the entities in ), be all subsets of the
subscript set {1,2,...,n} that contain ¥ members. A transformation is possible
between Ay_1 and Ay, if Ap_1 C Ag, ie., A1 and Ay differ by one subscript;
the increment, M (Ag_1, Ay), is the merit of assigning the single subscript in
A — Ap_1 to the k** entry, ug, in U. Also, as mentioned in the context of the
LA task, a minimization analogue of (2.3) would be immediate using a cost of
transforming Ay to A, C(Ap_1, Ag):

f(Ak) = min[}"(Ak_l) —‘rC(A/ﬂ_l,Ak)L (24)
or to max/min and min/max forms:
F(Ar) = max(min(F (Ax—1), M(Ap—_1, Ax))], (25)

F(Ar) = min[max(F(Ax_1), C(Ap—_1, Ax))]. (2.6)
As in (2.3), for each expression in (2.4), (2.5), and (2.6), the leading maxi-

Y

mization or minimization is over all A;,_1 € Qj_1 that can be transformed into
Ay,

Endnotes for Chapter 2:

2For this latter interpretation of optimally assigning jobs or tasks to indi-
viduals, LA has a long history in the psychometric literature under the title
of the personnel classification problem. The interested reader might consult
Thorndike (1950) for historical context for this usage, including an anecdote,
purportedly due to a mathematician, that because there were a finite number of
possible solutions to the LA task and therefore it could be solved by complete
enumeration, the problem was of no mathematical interest.

3In managing the storage of subset information as in the LA task, for exam-
ple, we can deal effectively with n’s in their lower 20’s with the usual type of
Pentium-level PCs now available and with the amount of RAM they typically
contain. Throughout this monograph we have in mind that a ‘commonly avail-
able storage configuration’ (as of 1999, say) would be a system that contained
somewhere between 64 and 128 MB of RAM.

4A directed graph can be characterized by a finite set of nodes (or vertices)
and a set of ordered pairs of nodes (called arcs, directed edges, or directed lines).
Typically, the nodes are given as points, and for each ordered pair of nodes in
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the second set an arrow is drawn from the first node to the second. A source
node is one that only has directed lines drawn from it; a sink node is one that
only has directed lines drawn to it. A path in a directed graph is an ordered
sequence of nodes with associated directed lines between all adjacent pairs of
nodes, and where a consistency of directionality is maintained in moving from
the first node to the last. An acyclic directed graph is one in which no paths
exist that would include the same node more than once, i.e., no paths that are
cycles are present in an acyclic directed graph.

5The neutral term ‘entity’ will be used consistently to refer to a member in
one of the sets 1,...,Qx. Depending on the particular application, an entity
may be any of a variety of combinatorial objects, e.g., a subset (possibly of a
fixed size), a partition, an ordered pair of indices, an ordered pair consisting of
a subset and a single index, and so on.

6Tn addition to providing graphical interpretations of the construction of op-
timal paths in directed graphs, all the applications of the GDPP we review could
alternatively be rephrased using partially ordered sets and the construction of a
corresponding Hasse diagram (the latter, in effect, would be the directed graph
just alluded to). A single set 2 = U,{,(:l Q) would be constructed and a rela-
tion, =, defined on Q to enable deciding for two members of (2, say A and A’,
whether A < A’. (In the linear assignment task, for example, the set 0 would
be all nonempty subsets of the set of subscripts {1,2,...,n}, and “<” would be
simple subset inclusion “C”. In other applications of the GDPP, the relation
“<" would typically require a little more notational care to define precisely.)
The relation < is a partial order on Q (and the pair (2, <) is referred to as a
partially ordered set or poset), if < satisfies three conditions: reflexive (4 < A
for A € Q); antisymmetric (A < A" and A" < A imply A = A’), and transitive
(A=< A and A" < A” imply A < A”). Given =, define the relation < by A < A’
if and only if A < A" and A # A’. The element A’ is said to cover A if A < A’
and there is no A” such that A < A” < A’. A Hasse diagram of the poset (€, <)
is a figure consisting of the members of €2 with a directed line segment from A
to A" whenever A" covers A (i.e., when a transition is possible from an entry in
Qr—1 to one in Q in our original representation by an acyclic directed graph).
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Chapter 3

Cluster Analysis

The two major sections of this chapter discuss, respectively, the tasks of (a)
partitioning some set of n objects, S = {Oy,...,0,}, into M mutually exclusive
and exhaustive (as well as nonempty) subsets, and (b) hierarchical clustering in
which a sequence of hierarchically related partitions of S must be constructed.
In both cases, it is assumed that some n x n symmetric proximity matrix P =
{pi;} is available, where p;; denotes the nonnegative dissimilarity of O; and O;
(i.e., larger values for p;; indicate more dissimilar objects), and where p;; = 0
for 1 < i < n. Also common to both sections are possible extensions to the
situation where S itself may be the union of two disjoint subsets and the only
non-missing proximities in P are those defined between these distinct sets,”
and to the possibility of imposing certain admissibility criteria for the type of
partitionings and /or hierarchical clusterings to be generated. In general, the use
of admissibility criteria may be implemented by the judicious definition of large
positive or large negative cost or merit increments, respectively, that would
disallow the consideration of certain transitions between some of the entities
A1 € Q)1 and some entities Ay, € €. These criteria might be defined using
the proximity matrix P and the relationship that A;_; and Aj bear to the
information given in P, or by some prior restriction to certain subsets of the
originally defined sets 21, ..., Q. In this latter case, it may even be possible to
redefine the recursive process using a different collection €1, ..., Qg, increasing
the size of the problems that might be effectively approached. Several of these
admissibility issues will be considered in the following sections.

3.1 Partitioning

The most direct characterization of the partitioning task can be stated as follows:
given S = {Oq,..., O,,} and P = {p;;}. find a collection of M mutually exclusive

and exhaustive nonempty subsets of S, say, Si,..., Sar, such that for some

measure of heterogeneity H (-) that attaches a value to each possible subset of

17
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S, either the sum

S H(S,).

m=1

or alternatively,
max[H (S1),..., H(Swm)],

is minimized. This stipulation assumes that heterogeneity has a cost interpre-
tation and that smaller values of the heterogeneity indices represent the ‘better’
subsets (or clusters). In any event, if H(S,,) for some S,, C S depends only on
those proximities from P that are within S,, and/or between S,,, and S — S,,,
an application of the GDPP given in (2.4) and (2.6) is possible. We define K to
be M, and let each of the sets Q1,...,Qx contain all of the 27 — 1 nonempty
subsets of the n object subscripts; F(Ay) is the optimal value for a partitioning
into k classes of the object subscripts present in Aj;. A transformation of an
entity in Q1 (say, Ag_1) to one in Q;, (say, Ay) is possible if A1 C Ag, with
cost C(Ap—1,Ar) = H(A, — Ag—1). Thus, beginning with the heterogeneity
indices H (A7) for every subset A; C S, the recursion can be carried out, with
the optimal solution represented by F(Ag) when Ax = S. The M (= K) sub-
sets of S constituting the solution are obtained (as usual) by working backwards
through the recursive steps. It might also be noted that besides yielding an op-
timal solution containing M subsets, optimal solutions for partitions with from
M — 1 to 2 subsets can be obtained immediately from F(Ap—1),...,F(A2),
when Ay;_1 = --- = Ay = S. The optimal values are generated as part of the
recursion, and again, the actual optimal partitions can be identified by a process
of working backwards.®

There is a wide variety of possible subset heterogeneity measures that could
be used to obtain an optimal partitioning of S, and we are really limited only
by our own ingenuity in creating them. Some are obvious to consider, such as
the ones mentioned below, but there are, for example, many other alternatives
derivable from graph-theoretic concepts that all follow a general format: for
some given S,,, the heterogeneity of S, could be defined by the minimum prox-
imity needed to ensure that a certain property exists in the subgraph defined
by the objects in S,,, with edges between objects present whenever their prox-
imity is less than or equal to this minimum value. Two graph-theoretic options
that fit this type of format are mentioned below. These use the notation of
max(Sy,) and min(Sy,), which refer to subgraph completeness and connectiv-
ity, respectively.” For a comprehensive review of many other possibilities, see
Hubert (1974a).

For notational convenience here as well as later, if S,, C S contains n,,
objects, sum(S,,) will denote the sum of all n,,(n,, — 1) proximities between
objects within S,,, and sum(S,,,S — S;,) the sum of all 2n,,(n — n,,) prox-
imities between objects in S, and S — S,,,, where each distinct object pair is
included twice depending on the order of the two constituent objects.!® Also,
max(Sy,) will indicate the maximum proximity within S,,; min(S,,) will de-
note the minimum proximity value needed to ensure connectivity within S,,,
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i.e., a path exists between any two objects within S,,, where all proximities
between adjacent object pairs along the path are not larger than the identified
minimum proximity; and span(S,,) will be the length of the minimum spanning
tree defined between the objects within S,,. The notation counta(S,,, S — Sy,)
will specify the number of instances in which a proximity within S,, is strictly
greater than one between S, and S — S,,, and countb(S,,, S — S,,) the number
of times an object within S,, has a larger proximity to another object within
S, than it has to an object in S — S,,.'* Given these definitions, the following
twelve possible heterogeneity measures for a subset S,, are immediate. They
are indexed by lower-case Roman numerals for convenience of reference both
here and throughout the monograph:!?

(i) sum(S,,); each subset will contribute directly according to the number
of object pairs it contains, and thus, smaller size subsets will tend to be given
smaller heterogeneity values.

(i1) [1/ (N (N, — 1))]sum(Sy,); because the average proximity within S,, is
used, the absolute subset size will not affect the assigned heterogeneity.

(iii) [1/(2n4,)]sum(S,,); the number of objects (in contrast to the number
of object pairs as in (i)) contributes directly to heterogeneity. If the original
proximities are squared Euclidean distances between numerically given vectors
(or profiles) for the n objects over some set of variables, then this measure is
equivalent to the sum of squared Euclidean distances between each profile and
the mean profile for the subset (this is usually called the sum of squared error
or the k-means criterion, e.g., see Spath, 1980, p. 52).

(iv) max(S,,); this is commonly called the diameter of the cluster S,,.

(v) min(S,,); as noted earlier, this value is the minimum proximity needed
to ensure connectivity in the subgraph defined by the objects in S,,. Using this
measure, if the maximum heterogeneity is minimized over subsets, the same
partition is identified as is obtained using the well-known single-link hierarchical
clustering method and choosing that level of the hierarchy with M subsets.

(Vi) [1/(nm(nm - 1))]Sum(5m) - [1/(2nm(n - nm))]sum(sma S — Sm) be-
cause of the keying of proximities as dissimilarities, the average within-subset
proximity minus the average between that subset and its complement should be
negative and large in absolute value for highly homogeneous subsets.

(vii) =[1/(2nm(n — ny))lsum(S,,, S — Sy,); in contrast to (vi), only the

negative of the average proximity between S,, and S — S, is now considered in
defining the heterogeneity of S,,.

(viii) counta(Sy,, S — Sp,); the sizes of the sets S, and S — S, directly
influence the number of comparisons that can be made; this raw count can be
normalized as in (ix).

(ix) [1/ (N (N, — 1)2n4m (0 — Ny ))]counta(Sy,, S — Sy,); the number of in-
consistencies in the order relation between proximities for object pairs within a
subset versus object pairs defined between a subset and its complement is nor-
malized by the number of such possible comparisons to generate the proportion
of inconsistencies.
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(x) countd(Sy,, S — Sy, ); in contrast to (viii), inconsistent order relations are
now counted only between object pairs within S,,, and object pairs between S,
and S — S, when the latter pairs also include one object in common with the
object pair within S,,.

(xi) [1/(2npm (M, — 1) (1 — Ny ) ) Jcountb(S,y,, S — Sy ); this is a normalization
of (x) by the total number of order comparisons made.

(xii) span(S,,); if the sum of the lengths of the minimum spanning trees
within subsets is minimized, the same partition is identified as with the single-
link hierarchical clustering method and then choosing that level of the hierarchy
with M subsets (compare the comment made in (v) on min(S,,) and minimizing
the maximum heterogeneity for this measure).

A numerical illustration. To give a sense of the variability in the clustering
results that can be generated by the choice of different definitions for subset
heterogeneity and the two optimality criteria of minimizing either the sum of
the heterogeneity indices over subsets or their maximum, each of the twelve
definitions of subset heterogeneity listed above was matched with the two opti-
mization criteria on the digit proximity data of Table 1.1, from Shepard et al.
(1975). The ten different optimal partitions corresponding to a prechosen M
= 4 subsets are given below along with a designation of which heterogeneity
measure and optimization criterion gave a particular partition and the optimal
values achieved in each instance (we use the Roman numeral designation for the
heterogeneity measure along with a label of ‘sum’ or ‘max’ for the optimality
criterion).

The partition in (a), identified as optimal most often, has the clearest inter-
pretation using the structural properties of the digits, i.e., subsets correspond to
the additive/multiplicative identities ({0,1}), multiples of 2 ({2,4,8}), multiples
of 3 ({3,6,9}), and two odd numbers that are not multiples of 3 ({5,7}). The
partitions in (b), (¢), (d), and (e) are all subdivisions according to numerical
magnitude with each class defined by a consecutive set of digits. The two par-
titions in (f) and (g) combine (in different ways) the structural and magnitude
characteristics of the digits; (h), (i), and (j) all involve one large subset that
contains seven objects with three other objects split off into separate subsets.
Obviously, the choice of heterogeneity measure and optimization criterion influ-
ences which partitions are identified, and although each is optimal according to
the choices made, there are clearly differing patterns in the proximities being
relied on to achieve this optimality.
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Optimal partitions into M = 4 subsets, obtained using DPCLI1U:

(a) {0,1}.{2,4,8},{3,6,9}.{5.7}: (i) sum (4.704); (i) max (1.718);
i) sum (.921); i) max (.286);
viii) sum (24.0); (viii) max (12.0);
ix) sum (.235); (ix) max (.125);
X) sum (12 0); (x) max (6.0);
max (.214)

(i
(
(i
(
b) {0}.{1.2.3,4}.{5}.{6.7.8.9}:

(i

(

(i

(

(

(i

¢) {0,1}.{2,3.4}.{5}.{6.7.8.9}: (
d) {0}.{1}.12}.{3.4.5.6.7.8.9}: (xi

(i

(

(

(i

(

o

t(

(

111) max

386)
sum (.214)

1V) max

i)
i) (-
vi) max (-.224)
) sum (.
) (-421)
f) {0,1}.{2,4.8},{3.5,6,9},{7}:

) {0.11.42.4.5}.{3.6.9}.{7.8}:
h) {0}7{1}/{2/37475/67879}7{7}

vii) max (-.571)

(

(

(

(e) {0,1},{2,3.4},{5,6,7},{8,9}:
()

(g xii) max (.559)
(

iii) sum (.443); (vi) sum (-2.069);
vii) sum (-2.512)

iv) sum (.758)

v) sum (.346);  (v) max (.346);
xii) sum (1.494)

3.1.1 Admissibility Restrictions on Partitions

For each subset heterogeneity measure that could be chosen to characterize
optimality, there is an easy extension that could be used to limit the type of
subset considered admissible in forming an optimal partition. For example, if
there is a spatial context underlying the objects in S, one might wish to impose
some type of geographic contiguity constraint so clusters (or subsets) could
not be part of an optimal partition unless they consisted of objects that were
contiguous in some well-defined sense (e.g., all objects contained in a cluster
are within a certain distance of each other, or all objects must be connected
through paths defined over adjacent boundaries; see Arabie and Hubert, 1996,
pp. 15-16, for an overview of this topic). No matter how the admissibility of a
cluster might be defined, either through the information present in the proximity
matrix P itself (e.g., the imposition of absolute maximal diameter restrictions),
or through some criteria apart from P (e.g., maximal or minimal subset sizes,
geographic contiguity), there is a simple device for avoiding partitions containing
inadmissible clusters. One simply defines the heterogeneity of any inadmissible
cluster to be a very large number. The recursive process remains unchanged,
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but no partition could be selected as optimal if it contained an inadmissible
subset.

As discussed in the previous section, the identification of an optimal partition
of S into M classes with a specialization of the GDPP, involved an implicit search
over all possible M-class partitions. This statement is still applicable even
when the heterogeneity measure itself may have been augmented to eliminate
inadmissible clusters, irrespective of how they might be defined, from appearing
in an optimal solution. In some cases, however, it may be possible to use an
admissibility criterion to advantage by redefining and reducing the size of the
sets, 1, ..., Qk, needed in carrying out the recursive process, making it possible
to approach much larger object set sizes effectively.

A specific restriction discussed at some length in the literature (e.g., Fisher,
1958; Rao, 1971; Hartigan, 1975, Chapter 5; Spath, 1980, pp. 61-64) is when
there is an assumed object ordering along a continuum that can be taken without
loss of generality as O; < O3 < --- < O, and the only admissible clusters are
those for which the objects in the cluster form a consecutive sequence or segment.
Thus, an optimal partition will consist of M clusters, each of which defines a
consecutive segment along the given object ordering.

To tailor the GDPP given in Equations (2.4) and (2.6) to a consecutive-
ordering admissibility criterion, each of the sets q,...,Qk is now defined by
the n subsets of S that contain the objects {O1,...,0;} for 1 <i < n; F(Ay) is
the optimal value for a partitioning of A, into k classes; a transformation of an
entity in Qg—1 (say, Ax—1) to one in Qy, (say, Ay) is possible if A;_1 C Ay; and
the cost of the transition is H(Ay — Ai_1), where A, — Ax_1 must contain a
consecutive sequence of objects. Again, F(Ag) for Ax = S defines an optimal
solution that can be identified, as always, by working backwards through the
recursive process. Similarly, F(Ag_1),...,F(As) for Axk_1 =--- = A3 =9

allow the identification of optimal solutions for K — 1,...,2 classes.

The selection of some prechosen ordering that constrains admissible clusters
in a partition obviously does not lead necessarily to the same unconstrained
optimal partitions, even though the identical subset heterogeneity measure and
optimization criterion are being used. There are, however, several special in-
stances where the original proximity matrix P is appropriately defined and/or
patterned so that the imposition of a particular order constraint does invariably
lead to partitions that would also be optimal even when no such order con-
straint was imposed. One such result dates back to Fisher (1958) who showed
that when proximities are squared differences between the values on some (uni-
dimensional) variable, and the order constraint is derived from the ordering of
the objects on this variable, then the selection of the subset heterogeneity mea-
sure we denoted as (iii) (i.e., [1/(2n,)]sum(S,,)), and minimizing the sum as an
optimization criterion, leads to partitions that are not only optimal under the
order constraint but are also optimal when unconstrained, i.e., an unconstrained
optimal partition will include only those subsets defined by objects consecutive
in the given order. (The subset heterogeneity measure in this unidimensional
case reduces to the sum of squared deviations of the univariate values for the
objects from their mean value within the subset.)
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A more general result appears in Batagelj et al. (1994) who discuss the
special case of when a proximity matrix P can be row- and column-reordered
to display an anti-Robinson form (i.e., the entries within each row and column
of P never decrease when one moves away from a main diagonal entry in any
direction). For certain subset heterogeneity measures and optimization criteria,
the imposition of the order constraint that displays the anti-Robinson pattern in
the row and column reordered proximity matrix leads to partitions that are also
optimal when unconstrained. For example, one such case shown by Batagelj et
al. (1994) would be the use of the sum or the maximum of the subset diameters
(the measure in (iv)); other configurations, however, may sometimes fail, e.g.,
the use of the sum or the maximum of the sum of the proximities within subsets
(the measure in (i)).!?

The choice of an ordering that can be imposed to constrain the search domain
for optimal partitions could be directly tied to the task of finding an (optimal)
sequencing of the objects along a continuum (which is discussed extensively
in Chapter 4). Somewhat more generally, one possible data analysis strategy
for seeking partitions as close to optimal as possible, would be to construct
a preliminary object ordering through some initial optimization process, and
possibly one even based on another analysis method that could then constrain
the domain of search for an optimal partition. Obviously, if one were successful
in generating an appropriate object ordering, partitions that would be optimal
when constrained would also be optimal without constraint. The obvious key
here is to have some mechanism for identifying an appropriate order to give this
possible equivalence (between an optimal constrained partition and one that is
optimal without constraint) a chance to succeed.

As one explicit example of how such a process might be developed for con-
structing partitions based on an empirically generated ordering for the objects,
a recent paper by Alpert and Kahng (1995) proposed a three-stage process.
First, the objects to be partitioned are embedded in a Euclidean representation
with a specific multidimensional scaling strategy (Alpert and Kahng, 1995, sug-
gest a method they attribute to Hall, 1970, but actually developed much earlier
by Guttman, 1968, who used it to develop an initial spatial configuration for
the objects in his approach to nonmetric multidimensional scaling). Second, by
heuristic methods, a path among the n objects in the Euclidean representation
is identified (with hopefully close to minimal length) and used to define a prior
ordering for the objects and to constrain the subsets that would be present in a
partition. Finally, a DP strategy of the same general form we have described is
carried out to obtain a partitioning of S. (Alpert and Kahng, 1995, apparently
believe the DP recursion they suggest is new to the literature but except for
some trivial differences, it is identical in form to that first suggested by Fisher,
1958, which we have summarized above.)!*

A numerical illustration. To show the wide variability that the choice of het-
erogeneity measure and optimization criterion may produce in the identification
of now constrained optimal partitions, the same numerical example of the last
section was replicated but with the order constraint imposed that the subsets
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must be consecutive in their actual digit magnitudes. Twelve different optimal
partitions with M = 4 subsets were obtained and are given below with the same
designations as in the previous example. Those partitions labeled as (b), (c),
(d), and (e) correspond to the same labels in the unconstrained illustration, and
where partitions consistent with digit magnitude were identified. These were
obtained, as expected, using the heterogeneity measures and optimization crite-
ria that led to their previous identification (they were also found here for several
other choices as well). To provide a simple numerical check, and as can be seen
by comparing the actual optimal values given below for the constrained parti-
tions and those (given previously) for the unconstrained partitions, whenever
a specific heterogeneity measure/optimization criterion led to an unconstrained
optimal partition in which subsets were not consecutive in digit magnitude, the
constrained minimal values are larger (as they are required to be).

Optimal (linear order restricted) partitions into M = 4 subsels, obtained using
DPCLIR:

(a) {0}.{1.2.3}.{4.5}.{6.7.8.9}:
(b) {0}.{1.2.3.4}.{5}.{6.7.8.9}:

x) sum (50.0)

=

ii) max (.386); (ix) max (.215);
xii) sum (1.735)

(c) {0.13.{2,3.4}.{5}.{6.7.8.9}: (ii) sum (1.0643);

vi) max (-.224)

ix) sum (.243);  (xi) sum (.214);
v) sum (.400)

() {0.1}.{23.41.{5.6.71.{8.9}: (i)

11

(
(iii
(
(
(
(
(
(i) max (.404): (i) sum (5.704):
(i)

(

(

(

(

(

t(

(

(

max (2.426);  (iv) max (.421);
iii)

viii) sum (136.0)

f) {0,1.2.3}.{4}.{5}.{6.7.8.9}:
¢) {0}.{1,2,3,4,5,6},{7},{8,9}:
h) {0}.{1}.{2.3.4,5,6}.{7.8.9}:

( xi) max (.208)
(

(

(i) {0,1}.{2,3.4}.{5.6}.{7.8.9}:
(i)

(

(

vii) sum (-2.474); (v) max (.396)
vii) max (-.565)
xii) max (.792)
iv) sum (.796)
k) {0}.{1}.{2.3.4.5,6.7.8}.{9}: (iii) sum (.458);  (vi) sum (-2.000)

1) {0,1,2},{3,4},{5,6,7},{8,9}: (viii) max (56.0); (x) max (18.0)

There are two generalizations to the use of a single linear object ordering
to define subset admissibility that might be worth mentioning although we will
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not pursue these extensions in any detail here. First, if the object set can
be partitioned into, say, T > 1 subsets, where there is a consecutive object
ordering that must be satisfied within each such subset, then it is again possible
to reduce the number of entities present in Qq,...,Qk (although obviously
not as much as when T' = 1). For example, if T = 2, the subsets of S that
must be present in ;.1 < k < K, are those that contain the first ¢ and ¢’
consecutive objects within each given ordering, including those subsets that
may contain no objects from one of the orderings. Similar extensions exist for
T > 2, but clearly the limiting case when T" = n would move us all the way
back to where the sets Qr,1 < k < K, must include all nonempty subsets of
S, i.e., to the unconstrained M-class partitioning task of Section 3.1. Second,
the notion of subset admissibility based on a single linear object ordering could
be extended to the use of a fixed circular ordering that could be taken without
loss of generality as -+ < O < O3 < -+ < O, < Oy < --- . Thus, an
optimal partition would consist of M clusters, all of which would be segments
in the circular object ordering. Each of the sets Q1,...,Qx would now be
defined by the n? subsets of S that contain the objects {O,...,0;} for k =
1,...,nyi=k,....n,1,...,k— 1. The optimal value, F(A}), is associated with
a partitioning of A; € )}, into k classes; a transformation of an entity in ;4
(say, Ap_1) to one in Qy, (say, Ay) is possible if Ay 1 C A and A — A1 isa
consecutive sequence of objects with respect to the fixed circular order. Again,
the cost of transition is H (A, — Ax—1). An optimal solution can be obtained
from ming F({Og,...,0,,01,...,05_1}), where {Oy,...,Op_1} € Qi for 1 <
k < n, and then working backwards through the recursive process. Analogously,
an optimal solution into K —/h subsets for 1 < h < K—2, could be identified from
ming F({Ok,...,0r-1}), where {Oy,...,Op_1} € Qg _p. A further discussion
of this type of circular ordering restriction is given in Alpert and Kahng (1997)
in the context of defining the circular ordering restriction by some secondary
method of analysis. If we so wished, a single circular object ordering could be
generalized to multiple circular object orderings analogous to the use of multiple
linear object orderings noted above.

3.1.2 Partitioning Based on Two-Mode Proximity Matri-
ces

As noted in the introduction to Section 3, one possible extension of the optimal
partitioning task, whether unconstrained or constrained by some given object
order, is to the context where S itself is the union of two disjoint sets, say
S = 5S4 USpg, and the only proximities available are defined from the objects
in S4 to those in Sp (see endnote 7). If it is assumed that S4 and Sp each
contain n4 and npg objects, respectively, then a more convenient notation for
the available data might be as a matrix of order n4 x ng, which we denote by
Q = {g;;}. The rows and columns of Q specify two modes for the data (to use
the terminology from Tucker, 1964), and ¢;; is now the proximity (assumed to
be keyed as a dissimilarity) between the i*" object in S4 and the j™ object
in Sg. For convenience of reference, the objects in S4 and Spg, respectively,
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will now be denoted by {ri,...,r,,} and {c1,..., ¢, } (intuitively referring to
the row and column objects). (We might also note at the outset that both S,
and Sp may refer to the same set of objects, and where the original proximity
matrix between the objects from this common set could be nonsymmetric [and
even have meaningful entries along the main diagonal]. Thus, for convenience,
the row and column objects are treated as if they were distinct, and we go on
to consider the task as one of partitioning a combined row and column object
set.)

One direct approach to partitioning based on such two-mode data merely
assumes we have the single set S (= S4 U Sg), and generalizes all the hetero-
geneity measures introduced earlier to ignore missing proximities within S4 or
within Sp (and with the appropriate adjustments in taking averages for only
the number of proximities summed, and so on), and to make any subset of S
inadmissible if it contains only objects from S or from Sg.'® Because of the
constraint that all subsets must contain objects from both S4 and Sz, the max-
imum number of subsets in any partition of S4 U Sg will be the minimum of
n4 and ng.'®

Although a comparable extension to order-constrained partitioning based on
Q could also be carried out using a single joint ordering of the row and column
objects, a more general possibility is to allow separate row and column orders
to restrict the desired clusters. Thus, the aim would be to provide optimal
M-class partitions of § = S4 U Spg, based on some heterogeneity measure that
uses only the proximities in Q, and minimizing either the sum or the maximum
of the heterogeneity measures over the subsets in the partition. Each class
in an optimal partition is constrained to contain objects from both S4 and Sp
consecutive in their respective row or column orderings (that without loss of any
generality can be taken to be ry < --- <r,,, and ¢; < -+ < ¢, ). The storage
requirements needed to implement the GDPP and the use of separate row and
column ordering restrictions will be greater than for a single joint ordering
because many more entities have to be defined through the sets Q1....,Qx.""

To show explicitly how the GDPP in (2.4) and (2.6) can be tailored to
encompass consecutive order admissibility criteria separately on the rows and
columns, each of the sets 2y, ..., Qk would now be defined by the n4npg subsets

of Sa U Sp that contain the objects {ri,....7r;c1,...,¢;} for 1 < i < ny,
1 <j <ng; F(AL) for Ap € Q is the optimal value for a partitioning of Ay
into k classes. A transformation of an entity in Qg_; (say, Ax_1) to one in
(say, Aj) has a cost of H(Aj, — Ar—1), and is possible if (a) Ap_1 C Ag; (b)
(Ap — Ap—1) NS4 # 0 and forms a consecutive set of objects in the given row
order; and (c) (Ax— Ar—1)NSp # 0 and forms a consecutive set of objects in the
given column order. An optimal solution is given by F(Ak) for A = S4USg,
and an actual solution can be constructed by the usual process of working
backwards though the steps of the recursion. Also, F(Ag_1),...,F(Az) for
A1 == A = S4USp provide the optimal values for partitions containing
from K — 1 to 2 classes.

A numerical illustration. To provide an illustration of the results obtainable
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in optimally partitioning a two-mode proximity matrix, we use the 11 x 9 matrix
in Table 1.3 giving the proximities between eleven goldfish retinal receptors (the
row objects) and nine wavelengths (the column objects). Selecting the subset
heterogeneity measure defined by the subset diameter ((iv)), and minimizing
the maximum diameter over the classes of a partition, produced the following
optimal partitions for two through six classes (the nine digits that correspond
to the wavelengths are denoted by underlining):

Optimal partitions into two through siz classes, obtained using DPCL2U :

Number of Partition Maximum
Classes Diameter
2 {15.7.10,11,12.3.7.8}, 155.0
{2.3.4,6.8.9.4.5.6.9}
3 {1,4,5,10,11,2,8}, 127.0
{2737678797i7§72}7 {7*l*§/§/z}
4 {14567.102}, {21561} 910
{3.8.0.49}, {11.38}
5 {157.01.2}, {2156}, 78.0

{3.89.4.9}, {4.6.7}, {10.3.8}
6 {157.112}, {215}, {3949}, 75.0

==

{4.6.7}. {8.6}, {10.3.8}

The nine wavelengths are ordered from longest (#3, red) to shortest (#9, vio-
let) as3 =8 —2—7—1—5—6—4— 9. Except for one anomaly in
the placement of 3 for the optimal partition into three classes (which might be
viewed as a partition possibly too crude, given the size of the maximum diameter
over the three subsets compared with that for the optimal partitions containing
four, five, and six subsets), all the optimal partitions consistently group consec-
utive wavelengths with a subset of the receptors, i.e., specific receptors appear
differentially sensitive to specific wavelength ranges.

Continuing this example, we will impose row and column orders identified
later in Section 4.1.3 in an optimal joint sequencing of the rows and columns
along a continuum:

row order: 10 - 11 -5 —-7—-4—6—>2—-8 —9 — 3;
column order: 3 =8 -2 —=7—1—5— 6 — 4 — 9 (this column order is
consistent with decreasing wavelength).

Based on these restrictions, the optimal partitions into two through six classes
are given below:
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Optimal (constrained) partitions into two through siz classes, obtained using

DPCL2R:

Number of Partition Maximum
Classes Diameter
2 {1,5,7,10,11,1,2,3.7.8}, 155.0
{2.3,4,6.8,9.4,5,6.9}
3 {14127}, 143.0
{2.3.6.8.9.4.5.6.9}, {5.7,10,11,3.8}
4 {1456,7.112} {2.156.7}, 91.0
{378797i72}7 {10*§*§}
5 {157,112}, {2156} 78.0
{3.89.49}. {467}, {1038}
6 (157112}, {215}, (3949} 750

{4.6.7}. {86}, {10.3.8}

The optimal constrained partitions into two, five, and six subsets are the same
as those for the unconstrained results. For the optimal four-class partition, and
although the optimal diameter values are the same (i.e., a value of 91.0), the
receptors 10 and 11 are interchanged between the constrained and unconstrained
results. In the restricted four-class partition, the consecutive row order that
was imposed forces such an interchange. The optimal constrained three-class
partition is not the same as the unconstrained three-class partition. It has
a large maximum diameter of 143.0, reflecting again the possibly too crude
grouping that an optimal three-class partition would impose on these data (as
observed in the unconstrained optimal three-class partition and the anomalous
placement of wavelength 3.)

The discussion in this section has emphasized two-mode proximity data de-
fined between the distinct sets S4 and Spg, and where subset heterogeneity is
some function of the proximities attached to the 2-tuples within a subset (and /or
the complement), with each such 2-tuple containing an object from each of the
two modes. Without pursuing the topic, we will note here that there are very
direct generalizations of the partitioning task for {-mode data (for ¢ > 2), and
for proximities defined for each t-tuple of objects. Subsets would now contain
at least one object from each mode, and subset heterogeneity would be con-
structed by some function of the proximities attached to the t-tuples within
each subset and/or the complement. Also, it would be possible to develop spe-
cializations of the GDPP in this general t-mode context (and for ¢ = 2 as well)
that would incorporate specific order constraints for some modes but not others.
This differential set of order constraints would characterize the admissibility of
certain of the partitions and could be adopted for reducing the size of the sets
Q1,...,Qk needed in carrying out the appropriate recursive process.
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3.2 Hierarchical Clustering

In contrast to the partitioning task in which a single collection of M mutually
exclusive and exhaustive subsets is sought, the problem of hierarchical cluster-
ing will be characterized by the search for an optimal collection of partitions
of S, which for now we denote generically as Py, Pa,...,P,. Here, P; is the
(trivial) partition where all n objects from S are placed into n separate classes,
P, is the (also trivial) partition where a single subset contains all n objects,
and Py, is obtained from Pj,_1 by uniting some pair of classes present in Py,_.
(Given several generalizations encountered later, and because for now only a
single pair of classes will be united in Pj,_ to form Py, we will typically employ
the adjective of ‘full’ to refer to the partition hierarchy P, ..., P,.) Obviously,
in moving from the identification of single partitions (as in Section 3.1) to the
construction of a full partition hierarchy, we have also traveled dramatically
up the combinatorial ladder according to the number of such structures to be
considered by any partial enumeration method. It should therefore not be sur-
prising that (a) in comparison with the generation of single optimal partitions
and (b) with no further constraints on the optimization task, only smaller object
sets can be effectively approached with whatever GDPP specializations might
be proposed for the construction of an optimal partition hierarchy (e.g., given
current storage resources, the effective limit for object set sizes, is say, in their
lower teens).

Given the broadly stated task of identifying an optimal partition hierarchy,
there are still many variations possible on how the form of the optimality cri-
terion might be defined. One very flexible option includes several alternatives
as special cases, and concentrates directly on minimizing the sum of transition
costs, however they might be defined, between successive partitions in a hierar-
chy. Specifically, suppose we let T'(Pg—1, P;) denote some measure of transition
cost between two partitions Pj,_; and Py, where Py, is constructed from Pp_4
by uniting two classes in the latter partition. An optimal full partition hierarchy
Pi,..., P, will be one for which the sum of the transition costs,

> T (Pi—1, Pr), (3.1)

k>2

is minimized.

There are many ways to operationalize a transition cost between two par-
titions, but the most obvious measures would involve some direct function of
the between- and within-class proximities for the two subsets in P;_; merged
to form the new class in Pj,. However, if we so choose, we might also proceed
more indirectly. For example, suppose a heterogeneity measure L(-) is first de-
fined that assigns a value to every possible partition (with a cost interpretation,
so that smaller values represent ‘better’ partitions). As an illustration, L(P)
might merely be the sum or the maximum of the heterogeneity indices over the
subsets constituting P, using one of the alternatives noted in Section 3.1. The

transition T'(Py_1, Pr) could then be defined simply as L(Py) — L(Pr_1), i.e.,
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as the difference between the heterogeneity values attached to the partitions P;,
and Pp_1.

Necessarily limiting the scope of our present task so as to provide a direct
connection to the partitioning discussion of the previous section, we will restrict
the notion of a transition cost between two partitions to the use of a heterogene-
ity measure that can be attached to the new subset in P, formed from the union
of two subsets in P,_;. Even more specifically, we will use only those indices of
subset heterogeneity previously introduced in Section 3.1. (This limitation will
be true except for those instances developed in Section 3.2.1 on using the GDPP
to attempt an optimal fitting of an ultrametric to a given proximity matrix.)
Moreover, only the optimization criterion defined in (3.1) as a sum will be con-
sidered, because a minimization of a maximum transition cost will generally be
of more limited utility in identifying a good full partition hierarchy. Explicitly,
because subset heterogeneity measures tend to increase as fewer subsets define a
partition and the transition cost is given by the heterogeneity of the new subset
formed in a partition, the use of an optimization criterion based solely on min-
imizing the maximum transition cost would typically overemphasize the single
partition in a hierarchy that contains only two subsets, and at the expense of
the hierarchy below that point. In short, then, our discussion will generally be
limited to the identification of optimal full partition hierarchies that minimize
the sum of the heterogeneity measures for the n — 2 (new) subsets formed in
progressing from P; to P,.

The application of the GDPP in (2.4) to the minimization of (3.1), and
apart from any specific definition of transition cost, would first define n sets,
Q1,...,Q,, where ), contains all partitions of the n objects in S inton —k+1
classes. The value F(Ay) for A; € Qp is the optimal sum of transition costs
up to the partition Aj; a transformation of an entity in Qj_1 (say, Az—1) to
one in €, (say, Ag) is possible if Ay is obtainable from Ap_; by uniting two
classes in Ap_1, and has cost C(Ax_1,Ar) = T(Ag_1,Ar). Beginning with
an assumed value for F(A;) of 0 for the single entity A; € Q; (which is the
partition of S into n subsets each containing a single object), and constructing
F(Ap) recursively for 2,...,n, an optimal solution is identified by F(A,) for
the single entity A,, € ,, defined by the partition containing all n objects in a
single class. A partition hierarchy attaining this optimal value is again obtained
by working backwards through the recursion.

Given the definition of the sets 1,...,,, and because the recursive strat-
egy progresses from  to 2, guided by some transition measure T'(Py_1, Ps)
and by the total cost measure in (3.1), we might use the term ‘agglomerative’ for
this approach because pairs of sets are successively united to produce the next
partition in the sequence. The well known heuristic agglomerative strategies
for hierarchical clustering can also be interpreted as being based on measures
of transition between partitions, but the process used in obtaining the partition
hierarchy is a ‘greedy’ one in which starting at P;, each partition Py, is obtained
in turn from Pg_; by merely choosing the one with the lowest transition cost,
and continuing until P, is reached. Thus, in general there is no guarantee that
such a greedy heuristic will minimize the sum in (3.1), except for one definition
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of T(Py—1, Pi) that characterizes the single-link hierarchical clustering method.
If T(Pr_1,Pr) is defined to be a minimum proximity value between the pair of
subsets in Pj,_1 united to form the new set in Py (or equivalently, the hetero-
geneity value defined in (v) for the new subset), and Py, is formed from Pj_; by
uniting the associated pair of subsets, then the index in (3.1) is minimized by
the greedy heuristic. This result stems from the connections that exist between
single-link hierarchical clustering and the construction of minimum spanning
trees within a weighted complete graph based on the proximity matrix P (e.g.,
see Barthélemy and Guénoche, 1991, Chapter 3). It would be very computation-
ally inefficient, to say the least, to rely on the GDPP to construct a single-link
partition hierarchy given that a simple greedy heuristic is sufficient, but the
theoretical possibility still exists.

Before providing a few numerical illustrations below of the results obtainable
in constructing optimal partition hierarchies based on optimizing the sum of
heterogeneity measures over the n — 2 subsets formed while proceeding from Py
to P,, it may be helpful first to clarify several related points about the conduct
of the optimization process itself. First, for any of the subset heterogeneity
measures introduced in Section 3.1 based solely on the proximities within a
particular cluster (i.e., those defined in (i), (ii), (iii), (iv), (v), and (xii)), it
can be shown (although we will not digress here to do so formally) that in any
optimal partition hierarchy, the heterogeneity measures attached to the n — 2
new subsets constructed in the process must be monotonic with respect to subset
inclusion. Explicitly, if S, and S, denote two of the n—2 subsets identified while
constructing the partition hierarchy, and if S, C Sy, then H(S,) < H(Sp).
Thus, to exploit this result in gaining some computational advantage when
carrying out the recursive process of generating F(Ay) from F(Ai_1), and if
one of the subset heterogeneity indices noted above is being used, then only those
transitions from a partition A;,_1 to Ay are allowed for which the heterogeneity
of the new subset formed is at least as large as the heterogeneity values for all
the subsets defining the partition Ay 1.

For a subset heterogeneity measure that includes some function of the prox-
imities between the subset and its complement (i.e., those alternatives other
than (i), (ii), (iii), (iv), (v), and (xii)), the monotonicity requirement is not nec-
essarily present in an optimal partition hierarchy, and therefore, an attempt to
impose it could lead to a result that would be suboptimal according to the sum
of the heterogeneity measures over the n — 2 subsets identified in the process of
hierarchy generation. From a broader perspective on the allowability of certain
transitions between partitions in ;,_1 and €, it may be of interest, much as
in our discussion of constraining the construction of single partitions, to impose
other admissibility criteria and permit only certain transitions that produce new
subsets satisfying some particular constraint (e.g., geographic contiguity, con-
secutiveness with respect to a particular object ordering, and so on). (We will
discuss a version of constrained hierarchical clustering in Section 3.2.2 based
on an assumed ordering for the objects in S, and in Section 3.2.1 within the
context of using the GDPP to attempt an optimal least-squares fitting of an
ultrametric to a given proximity matrix.)
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As a second point, we note that the storage requirements for carrying out
a GDPP approach to hierarchical clustering are rather enormous, and in effect,
this drawback is the major determinant for how large the object sets can be that
might be approached through the GDPP.'® The computational efforts needed in
working through the recursive process are also great, however, and for at least
some subset heterogeneity measures (in fact, for all our exemplars except (vi)
and (vii) that include the use of the average proximity between a subset and
its complement), it may be possible to reduce this effort substantially with an
upper bound (separately obtained) on the value that should be achievable for
the optimization criterion for an optimal partition hierarchy. Specifically, for
each of the subset heterogeneity measures we have been considering (except, as
noted above, for (vi) and (vii)), the increment to the total optimization criterion
(defined by the sum of the heterogeneity measures over the n —2 subsets formed
in any partition hierarchy) must be nonnegative when considering a transition
from a partition Aj_1 to Aj. Thus, if one has a known (upper) bound achiev-
able from another partition hierarchy based simply on the sum of the n — 2
heterogeneity values for the n — 2 subsets formed in that hierarchy, transitions
between a partition A,y and Aj can be considered inadmissible and thus ig-
nored whenever the cumulative sum of the heterogeneity values resulting from
that transition is already greater than the achievable bound. The upper bound
that we will rely on is obtained from a simple application of the greedy heuristic
in which a partition hierarchy is formed by successively choosing the minimal
value over all possible subsets that could be formed at each successive level of
a partition hierarchy starting with 7P; and progressing step-by-step to P, by
uniting subsets that achieve this minimal value at each stage. In the numerical
examples to follow, the partition hierarchy obtained by an application of the
greedy strategy will be given, and also the bound obtained and subsequently
used to reduce the computational efforts in identifying an optimal solution.

The recursive process of constructing a partition hierarchy emphasizes ob-
taining a full hierarchy that progresses invariably from P;, in which all objects
are in separate classes, to P,, in which all objects are placed into one class. How-
ever, the information generated within this recursion can also identify a partial
partition hierarchy, P1,..., P, where Pj, contains n — k + 1 subsets, which is
optimal with respect to the same sum of heterogeneity measures for the k — 1
subsets formed up through Pj;. The identification of the minimum value for
F(Ay) over all Ay, € Qy is required, and then one works backwards from that

point in the recursion to identify the optimal partial partition hierarchy.'®

Numerical illustrations. Given the different subset heterogeneity measures
introduced in Section 3.1, the number of illustrations that would use just these
for constructing the partition hierarchy is still large. Thus, in the interests of
brevity, we will only discuss the two measures based on the diameter of a subset
(the index in (iv)) and the sum of proximities within a subset (the index in (i)).
We begin with the latter.

The optimal partition hierarchy for the digit proximity data of Table 1.1 that
minimizes the sum of the eight subset heterogeneity measures (each defined by
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the sum of within-cluster proximities) obtained in progressing from P; to Py is
as follows (in providing a partition hierarchy here and later, single object classes
are generally not listed at any level):

An optimal partition hierarchy based on the sum of within-cluster proximities,
obtained using DPHI1U:

Level Partition Index of Cumulative
New Subset Sum
1 (all digits separate) — —
2 {2,4} .059 .059
3 {2,4},{3,9} .263 .322
4 {2,4}.{3,9},{5,7} .400 722
5 {2,4}.{3,9}.,{5,7},{0,1} 421 1.143
6 {2,4,8},{3,9}.{5,7},{0,1} 672 1.815
7 {2,4,8},{3,6,9}.{5,7}.{0,1} .859 2.674
8 {2,4,8},{3,5,6,7,9},{0,1} 4.144 6.818
9 {0,1,2,4,8},{3,5,6,7.9} 4.903 11.721
10 (all digits together) — 36.077

Clearly, up to the four subsets present at level 7, the structural properties of
the digits are paramount; after level 7, the subsets that are successively united
are apparently determined more from numerical magnitude. In any case, the
optimal value for the sum of the heterogeneity values for the eight new subsets
is 11.721 (and 36.077 for the full partition hierarchy when the one additional
subset is included where all digits are placed together).

Using the same subset heterogeneity measure (as above), the partition hi-
erarchy obtained by the greedy heuristic is given below (as noted earlier, the
cumulative value of 13.667 obtained at level 9 for this hierarchy was used as
a computational bound in limiting admissible transitions when generating the
optimal partition hierarchy).

A partition hierarchy based on the greedy optimization of the sum of within-
cluster proximities, obtained using DPHI1U:

Level Partition Index of Cumulative

New Subset Sum
1 (all digits separate) — —
2 {2,4} .059 .059
3 {2,4},{3,9} .263 .322
4 {2,4},{3,9}.,{6,8} .350 672
5 {2,4}.{3,9}.,{6,8},{5,7} .400 1.072
6 {2,4},{3,9}.{6.8},{5,7}.,{0,1} 421 1.493
7 {2,4,6,8},{3,9}.{5,7},{0,1} 1.831 3.324
8 {2,4,6,8}.{3,5,7,9},{0,1} 2.735 6.059
9

{0.1,2,4,6.8}.{3.5,7.9} 7.608 13.667
— 38.023

—_
o

(all digits together)

Obviously, the greedy heuristic did not produce a full partition hierarchy that
was optimal with respect to the sum of the heterogeneity measures over all
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eight new subsets formed (i.e., a value of 13.667 was achieved for such a sum,
compared to 11.721 for the optimal hierarchy). However, it is interesting to
note that the cumulative sum of 6.059 within the greedy hierarchy up to level 8
(which includes three subsets) is smaller than the cumulative sum to that point
of 6.818 for the optimal hierarchy.?® Moreover, this level 8 partition in the greedy
hierarchy can be given a much clearer interpretation than its counterpart for the
optimal hierarchy, i.e., the level 8 greedy partition of {{0,1},{2,4,6,8},{3,5,7,9}}
is a split of the digits into the additive/multiplicative identities and subsets of
the even and odd digits. By concentrating on the global optimality of the full
hierarchy, this latter partition was obviously not identified in the process.

The ambiguities inherent in comparing the hierarchies obtained with the
optimal and greedy methods get even more complicated if we inspect an optimal
partial partition hierarchy (given below) ending at level 8. The cumulative sum
to level 8 of 5.809 is the optimal value that can be achieved for a partial partition
hierarchy up to this level. However, the interpretation for the final partition at
level 8 must again be done from a mixture of the structural characteristics of
the digits and their magnitudes.

An optimal partial partition hierarchy based on the sum of within-cluster proz-
imities, obtained using DPHI1U:

Level Partition Index of Cumulative
New Subset Sum

1 (all digits separate) — —

2 {2,4} .059 .059

3 {2,4},{6,9} .296 .355

4 {2,4},{6,9},{1,3} .346 701

5 {2,4}.{6,9},{1,3}.{5,7} .400 1.101

6 {2,4,8},{6,9}.{1,3},{5,7} 672 1.773

7 {2,4,8},{6,9},{0,1,3}.{5,7} 1.476 3.249

8 {2,4,5,7,8},{6,9},{0,1,3} 2.560 5.809

The use of the subset heterogeneity criterion defined by the subset diameter
(the index in (iv)) constructs the optimal full partition hierarchy given below.
In contrast to the use of the previous subset heterogeneity measure (defined as
the sum of within-cluster proximities), both the optimal full hierarchy and that
obtained with a greedy heuristic turn out to be identical. In fact, all optimal
partial hierarchies are merely those sections of the optimal full hierarchy up to
the appropriate number of subsets (i.e., here, the optimal partial hierarchies are
nested). This optimal partition hierarchy is very similar to that given for the
subset heterogeneity measure defined by the sum of within-cluster proximities
except for the order in which new subsets are formed; e.g., at level 7, the parti-
tions are identical. Generally, the same structural properties of the digits can be
used to interpret partitions at levels below 8, and a mixture of digit magnitude
and structural properties account for levels 8 and 9.2}
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An optimal partition hierarchy based on the sum of subset diameters, obtained
ustng DPHI1U:

Level Partition Index of Cumulative
New Subset Sum
1 (all digits separate) — —
2 {2,4} .059 .059
3 {2,4},{3,9} .263 322
4 {2,4},{3,6,9} .300 .622
5 {2,4,8},{3,6,9} .367 .989
6 {2,4,8},{3,6,9}.{5.7} .400 1.389
7 {2,4,8},{3,6,9}.{5,7}.{0,1} 421 1.810
8 {2,4,8},{3,5,6,7,9},{0,1} .592 2.402
9 {3,4,5,6,7,8,9},{0,1} .808 3.210
10 (all digits together) .909 4.119

Concerning the example just discussed, we might comment that the con-
struction of an optimal partition hierarchy minimizing the sum of the subset
diameters solves a very long-standing optimization problem from the classifi-
cation literature (e.g., see Hubert, 1974b, p. 18). Specifically, the set of all
possible partition hierarchies can be used to induce an equivalence relation on
(i.e., a partitioning of) the collection of ordered spanning trees, where an or-
dered spanning tree is a spanning tree among the n objects with edges in the
tree weighted by the proximities from P, and in which an order is imposed on
the successive deletion of edges in the tree. The weight of an ordered spanning
tree is merely the sum of the proximities on the n — 1 edges present in the
tree, and two ordered spanning trees are in the same equivalence class if they
induce the same partition hierarchy. The partition hierarchy constructed by the
single-link method can be obtained through the minimal spanning tree in which
edges are deleted according to decreasing weight, and identified in turn with a
particular equivalence class of ordered spanning trees.

Within this later equivalence class of ordered spanning trees that all induce
the same single-link partition hierarchy, there will be a spanning tree (possibly
nonunique) of maximal length; and because of the finiteness of each possible
equivalence class, a maximal length spanning tree exists within each equiva-
lence class. Thus, single-link hierarchical clustering can be reinterpreted as the
selection of a particular equivalence class of ordered spanning trees effected by
minimizing the minimal tree over all possible equivalence classes (and with no
regard for the maximal spanning tree within its equivalence class). In contrast,
the use of the sum of the subset diameters as an optimization criterion can be
interpreted as the selection of an equivalence class of ordered spanning trees
minimizing the maximal spanning tree (and where in such an optimal maximal
spanning tree the edges will again be deleted according to decreasing magni-
tude.)

There are a few additional points to note in concluding this general discussion
of using the GDPP for the hierarchical clustering task. The first involves the
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possibility of carrying out the hierarchical clustering task using the GDPP but
for two-mode proximity data. Just as the partitioning task using the GDPP
was extended in Section 3.1.2 to an na X np two-mode proximity matrix Q
by uniting the distinct object sets forming the rows and columns of Q and
directly generalizing the subset heterogeneity measures to ignore missing data,
an exactly analogous extension could be made in the hierarchical clustering
context. Although immediate to carry out, only very small data sets could be
handled by such an extension, i.e., a total number of row and column objects in
the lower teens. This limit is probably too small for empirical applications, and
thus, most realistic uses for two-mode hierarchical clustering would typically
need a heuristic application of the GDPP, to be discussed in Section 5.1 (but
which could provide the optimal hierarchical clustering [of a small two-mode
proximity matrix| as a special case).

A second point concerns our choice of how the GDPP for the hierarchical
clustering task was developed agglomeratively by defining the sets Q1,..., 2, so
that € contained all partitions of the n objects in S into n —k + 1 classes. The
recursive process started from the trivial partition in €1, and proceeded step-
by-step to 2,. Instead of proceeding agglomeratively from €2 to €,, we could
have chosen a divisive strategy that would reverse the order by starting from €2,
and moving to Q7. Explicitly, we would begin with an assumed value for F(A,,)
of 0 for the single entity A4,, € Q,, and define F(A,_j) for k = 1,...,n — 1
(where A,,_j € Q,—_1) as the optimal value for the sum of transition costs for
the partition A,,_j, consisting of k 4+ 1 classes. A transformation of an entity
in Q,_ (say, A,_1) to one in Q,_j_1 (say, Ap_p_1) is possible if A,_j_1 is
obtainable from A,,_; by splitting one class in A,, ;. The cost of the transition
C(Ap—k, Ap—j—1) is defined (in our case) as the sum of the subset heterogeneity
measures for the two new classes formed in A,,_;_1. An optimal solution is now
identified by F(A;) for the single entity A; € €Q; the optimal hierarchy can
again be identified by working backwards through the recursion.

Using as an optimization criterion the sum of the n — 2 subset heterogene-
ity measures formed while constructing the full partition hierarchy, one could
proceed either agglomeratively or divisively, and the same optimal partition hi-
erarchy would be identified. The only major difference in selecting the divisive
alternative is that now the partial partition hierarchies provided collaterally
from the information generated in carrying through the recursive procedure all
start with the n objects contained within one common class and end with a par-
tition into k classes, where k is between 2 and n— 1. Thus, the divisive approach
begins with the empirically more useful partitions (having fewer subsets).??

3.2.1 Hierarchical Clustering and the Optimal Fitting of
Ultrametrics

Ultrametrics:

A concept routinely encountered in discussions of hierarchical clustering is that
of an ultrametric, which can be characterized as any nonnegative symmetric
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dissimilarity matrix for the objects in S, denoted generically by U = {u;;}.
where w;; = 0 if and only if i = j, and u;; < max[u;p, uji] for all 1 <4, j.k <n
(this last inequality is equivalent to the statement that for any distinct triple of
subscripts, 7, j, and k, the largest two proximities among u;;, w;, and u;;, are
equal and [therefore] not less than the third). Any ultrametric can be associated
with the specific partition hierarchy it induces, having the form Py, Ps, ..., Pr,
where P; and Pr are now the two trivial partitions that respectively contain all
objects in separate classes and all objects in the same class, and Py, is formed
from Py_1 (2 < k < T) by (agglomeratively) uniting certain (and possibly more
than two) subsets in Pr_1. For those subsets merged in Pr_1 to form Py, all
between-subset ultrametric values must be equal, and no less than any other
ultrametric value associated with an object pair within a class in P,_;. Thus,
individual partitions in the hierarchy can be identified by merely increasing a
threshold variable starting at zero, and observing that P, for 1 < k& < T is
defined by a set of subsets in which all within-subset ultrametric values are
less than or equal to some specific threshold value, and all ultrametric values
between subsets are strictly greater. Conversely, any partition hierarchy of the
form Py,...,Pr can be identified with the equivalence class of all ultrametric
matrices that induce it. We note that if only a single pair of subsets can be
united in Pj_q to form Py, for 2 < k < T, then T' = n, and we could then revert

to the characterization of a full partition hierarchy Pi, ..., P, used throughout
the previous section.
Given some fixed partition hierarchy, P1,..., Py, there are an infinite num-

ber of ultrametric matrices that induce it, but all can be generated by (re-
stricted) monotonic functions of what might be called the basic ultrametric
matrix U? = {uf;}, whose entries are defined by: u?; = min[k — 1 | objects O;
and O, appear within the same class in the partition Py]. Explicitly, any ultra-
metric in the equivalence class whose members induce the same fixed hierarchy;,
P1,...,Pr, can be obtained by a strictly increasing monotonic function of the
entries in U°, where the function maps zero to zero. Moreover, because uf; for
i # j can be only one of the integer values from 1 to T — 1, each ultrametric
in the equivalence class that generates the fixed hierarchy may be defined by
one of T"— 1 distinct values. When these T" — 1 values are ordered from the
smallest to the largest, the (k — 1)¢ smallest value corresponds to the partition
Pr in the partition hierarchy P, ..., Pr, and implicitly to all object pairs that
appear together for the first time within a subset in Py.

To provide an alternative interpretation, the basic ultrametric matrix can
also be characterized as defining a collection of linear equality and inequality
constraints that any ultrametric in a specific equivalence class must satisfy.
Specifically, for each object triple there is (a) a specification of which ultrametric
values among the three must be equal plus two additional inequality constraints
so that the third is not greater; (b) an inequality or equality constraint for
every pair of ultrametric values based on their order relationship in the basic
ultrametric matrix; and (c) an equality constraint of zero for the main diagonal
entries in U. In any case, given these fixed equality and inequality constraints,
standard L, regression methods (such as those given in Spath, 1991) could be
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adapted to generate a best-fitting ultrametric, say U* = {u:j} to the given
proximity matrix P = {p;;}. Concretely, we might find U* by minimizing

Z(pij — uy)?, Z | pij — wij |, or possibly, maxi<; | pi; —us |

1<J 1<J
(As a convenience here and later, it is assumed that p;; > 0 for all i # j, to
avoid the technicality of possibly locating best-fitting ‘ultrametrics’ that could
violate the condition that u;; = 0 if and only if i = j.)

Although we will not pursue this extension in detail, besides defining a col-
lection of linear equality/inequality constraints for identifying best-fitting ultra-
metrics for a given proximity matrix P, the basic ultrametric matrix U? associ-
ated with the partition hierarchy Py, ..., Pr can also be used to define a collec-
tion of linear equality/inequality constraints to generate best-fitting additive-
tree metrics to P that would be consistent with the same partition hierarchy.
Briefly, an additive-tree metric can be characterized as any nonnegative symmet-
ric dissimilarity matrix for the objects in S, denoted by A = {a;;}, where a;; =0
ifandonly ifi = j,and for all 1 <i.j. k.l <mn, a;;+ap < max|ag+aj, aiyt+ajr]
(or equivalently, among the three sums, a;; + ax;, a;; + aj;, and a; + i, the
largest two are equal and [therefore] not less than the third). By consider-
ing subscript quadruples, 7, j, k, and [, and the corresponding sums from U? of
ug;+ug,, ug, +uf, and uf+uf,, the appropriate set of linear equality /inequality
constraints is identified for constructing a best-fitting additive-tree metric, say
A* (possibly using an L, regression loss function), that would be consistent
with the given partition hierarchy.

Optimal Ultrametrics:

Although an ultrametric matrix may arguably be considered just a convenient
device for representing in matrix form the particular partition hierarchy it in-
duces, there has also been a more fundamental usage of the ultrametric notion in
the literature as the basic mechanism through which a partition hierarchy might
be obtained in the first place. To be explicit, we can develop particular hierarchi-
cal clustering methods through direct attempts to find a best-fitting ultrametric
for the proximity matrix P by the minimization of some criterion, constructed
from a function of the discrepancies between the proximities {p;;} and the (to be
identified) ultrametric matrix {u;;} (e.g.. an L, regression alternative might be
adopted, as mentioned in connection with fitting an ultrametric to a fixed parti-
tion hierarchy). Thus, instead of merely constructing a best-fitting ultrametric
subject to a fixed set of linear equality/inequality constraints obtained from a
given partition hierarchy, the task becomes one of simultaneously identifying
the best set of constraints to impose and constructing the best-fitting ultra-
metric. Most published methods that have attempted in some way to obtain
a best-fitting ultrametric directly, adopt the least-squares criterion and some
auxiliary search strategy for locating an appropriate set of constraints (e.g., see
Hartigan, 1967; Carroll and Pruzansky, 1980; De Soete, 1984; Chandon and
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De Soete, 1984; De Soete, DeSarbo, Furnas, and Carroll, 1984a, 1984b; Hubert
and Arabie, 1995b), although some very notable recent exceptions exist in the
use of Ly and L, norms (e.g., see Farach, Kannan, and Warnow, 1995, and
Chepoi and Fichet, in press). For now, we will emphasize the least-squares loss
function, but will suggest later how other alternatives might be incorporated.
Following a characterization given by Chandon and De Soete (1984), the op-
timization task of finding an ultrametric U* that will minimize 7, _(piy — uij)?
can be rephrased so as to suggest an application of the GDPP for its solution:

Identify a (full) partition hierarchy, denoted by Py, ..., P%, where

(1) if bj_; denotes the average of the proximities between the two classes
from P;_; that form the new class in P}, then b7 < b5 <--- <b;_;;

(2) defining the transition cost between two partitions, T(P;_;,P;), to be
the sum of squared deviations of the proximities between the two classes united
in P{_; to form the new class in P} from their mean b;_,

the partition hierarchy Py,..., P} minimizes the sum of transition costs given

in (3.1) over all possible partition hierarchies that satisfy the condition in (1).

In passing, we note that without loss of generality, the search for an optimal
least-squares ultrametric U* can be restricted to the use of full partition hier-
archies because only weak inequality restrictions are imposed on b3,...,0) ;.
Thus, if an optimal least-squares ultrametric had less than n — 1 distinct val-
ues, certain of the b7,....b%_, will be tied and reflect the union of more than
two subsets at a particular level in the construction of the optimal partition
hierarchy.

It would appear from this rephrasing of how the best-fitting (least-squares)
ultrametric might be characterized, that a very direct adoption of the GDPP
as applied to the identification of optimal full partition hierarchies would be
possible. All that is necessary is to (a) choose a different subset heterogeneity
measure in carrying out the recursive process from €y to €2, based on the sum
of squared deviations from their mean for those proximities between the two
classes united in moving from Pj_; to Py, and (b) set up a mechanism for
imposing the nondecreasing condition on the between-class means themselves
through inadmissibility restrictions on certain transitions from one partition to
the next. It is this latter addition in (b) that poses some difficulties and also
goes directly to the core of the basis for the general validity of a GDPP recursion
in the first place.

To be more precise, suppose the new subset heterogeneity measure as de-
scribed above is adopted, and we are at a point in the recursive process of de-
ciding whether a transition should be admissible in moving from Ay, 1 € Q54
to A € Q, where Ay is formed from Aj_; by uniting two of its subsets. A
transition should be inadmissible if the average proximity between the subsets
united in Ag_; to form Ay is strictly less than the (last) between-subset average
that led to A;_1. Unfortunately, and almost inherent in the recursive process,
we do not know how Aj,_; was reached, and therefore, because we do not know
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the last between-subset average that led to A;_1, inadmissibility cannot be thus
defined. Admissibility must instead be characterized using only the partitions
Ap_1 and Aj, and their relation to the proximities in P.

The task of defining an admissibility criterion that invariably functions cor-
rectly for all proximity matrices, and which uses only the partitions Ax_1 and
Ay, is one that may be insolvable. What can be offered are two less-than-
ideal alternatives: (a) an admissibility criterion based only on Aj_; and Ay
that may sometimes be too lenient and thus fail to ensure that the collection
of between-subset aggregate values are nondecreasing for the (purportedly op-
timal) identified ultrametric, or (b) an admissibility criterion based only on
Aj—1 and A, that may be too strict, and the (purportedly optimal) identified
ultrametric could in fact not be the absolute best obtainable. We begin with
a detailed discussion of the possibly too lenient admissibility criterion, which
is based on observations made by Chandon, Lemaire, and Pouget (1980), and
then proceed to the possibly too strict alternative. Later in this section we note
the possibility of considering these two criteria in tandem when attempting to
identify a least-squares optimal ultrametric for a given proximity matrix P.

Chandon et al. (1980) (also, see Chandon and De Soete, 1984) in proposing a
branch-and-bound partial enumeration strategy for this same least-squares task
of locating a best-fitting ultrametric, offer what initially appears to be a solu-
tion for defining admissibility using only the partitions A;_; and Ay and the
proximity matrix P. Explicitly, Chandon et al. (1980) show that a transition is
inadmissible if the between-subset average for the two subsets united in Aj_q
to form Ay, is either (a) less than the average of all the proximities within the
subsets in Aj,_1 (or more strongly [although Chandon et al. 1980, do not give
this result explicitly], inadmissibility could be generalized to the between-subset
average being less than the average proximity within any subset in Aj_1), or
(b) greater than the average of all proximities between the subsets in Ay. Un-
fortunately, these two conditions characterizing possible inadmissibility are not
always sufficient to ensure a non-decreasing sequence of the between-subset av-
erages, and a counterexample can be provided from the proximity matrix among
the first six digits chosen from Table 1.1. Using the subset heterogeneity mea-
sure defined as the sum of squared deviations from their mean for the proximities
between the subsets united in moving from Pj,_; to P and imposing the two
inadmissibility criteria given above, the optimal partition hierarchy given be-
low would have a value for the least-squares loss criterion of .10004 (the mean
proximity between the two subsets united at each level to form the successive
partitions is also provided). There is an obvious violation of the nondecreasing
pattern needed for the mean proximities between subsets because the level 4
value of .371 is less than the level 3 value of .465. However, both the partitions
at levels 3 and 4 are respectively admissible transformations from levels 2 and
3 using the two inadmissibility criteria discussed by Chandon et al. (1980). Ex-
plicitly, for the level 3 partition, the between-subset value of .465 is greater than
the average proximity of .059 for those objects already united at level 2 and less
than the average proximity of .534 between objects not already united at level
3; similarly, for the level 4 partition, the between-subset value of .371 is greater
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than the average proximity of .330 for those objects already united at level 3,
and less than the average proximity of .589 between objects not already united
at level 4.

A counterexample to the use of the Chandon et al. admissibility criteria, obtained
ustng DPHI1U :

Level Partition Mean Proximity
Between United Subsets

1 (all digits separate) —
2 {{243.{0},{1}.{3}.{5}} 059
3 {{1,24}.{0},{3}.{5}} 465
4 {{1,2345,{0},{5}} 371
5 {{1.2.3.45}.{0}} 524
6 (all digits together) .640

The basic difficulty with the Chandon et al. (1980) inadmissibility criteria
is that these two may not be restrictive enough to eliminate (nontrivial) order
inversions in the sequence of between-subset averages when progressing from Py
to P,. Here, a nontrivial order inversion is one in which the average between-
subset proximity for the formation of a new subset at some level, say k, is
strictly greater than the average between-subset proximity involving this new
subset at level £ and some other subset, with the two united to form another
new subset at level &', where k < k’. The example immediately above provides
an illustration of a nontrivial order inversion in the two new subsets formed at
levels 3 and 4. A trivial order inversion, on the other hand, can effectively be
ignored because it can always be eliminated by just rearranging in some way the
order of new subset formation at different levels of the partition hierarchy. In
the example to follow, for example, if the formation of the two disjoint subsets
at levels 4 and 5 were reversed so {2,4,8} was formed at level 4, and {3,6,9} was
formed at level 5, the order inversion would be trivial and easily eliminated by
using the order given for the formation of these two subsets.

The two Chandon et al. (1980) criteria may turn out to be enough for a par-
ticular data set to eliminate all nontrivial order inversions. For example, merely
using these criteria on the complete set of ten digits produced the following
optimal partition hierarchy where the between-subset averages are nondecreas-
ing (no single object sets are listed at each level below). The least-squares loss
function for this hierarchy has a value of .4698, and a corresponding ‘variance-
accounted-for’ of .4941 (using the usual ‘variance-accounted-for’ formula of

1= (piy = uiy)?/ > (pis — D
1<] 1<7

where p is the mean proximity of all off-diagonal entries in P, and u}; is the
least-squares optimal ultrametric value for objects O; and O;). Interpretively,
and consistent with the partition hierarchies used as illustrations earlier, the
structural characteristics of the digits are apparent up through the partition
present at level 6, with numerical magnitude being depicted more in the parti-
tions constructed beyond level 6.
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An optimal partition hierarchy based on the least-squares estimation of a best-
fitting ultrametric, obtained using DPHI1U:
Level Partition Mean Proximity
Between United Subsets

1 (all digits separate) —
2 {24} 059
3 {24}.{3.9) 263
4 {24).{3.6.9) 208
5 {24.8).{3.6.9) 307
6 {248}.{3.69}{5.7} 400
7 {2.4.8).{3.5.6,7.9} 481
8 {2.3.4.5,6,7.8,9} 553
9 {1.2.3.4,56.7.89} 584
10 (all digits together) 730

There is an inadmissibility restriction that could be imposed (in addition to,
or instead of those suggested by Chandon et al. 1980) that would be sufficient to
guarantee a nondecreasing set of between-subset averages, but it could possibly
be too restrictive. Explicitly, in considering a transition from Py_1 to Py, the
average between-subset proximity for the two subsets united in Px_; could be
required to be no greater than the average proximity between the newly formed
subset in Py, and any other subset in Pj,. As noted above, it is possible that this
criterion may be too restrictive for some proximity matrices in the sense that
an optimal least-squares ultrametric may not satisfy it (i.e., for some subset
in P, the average proximity to the newly formed subset in Pj could be less
than the average between-subset average that led to the newly formed subset
in Py; however, in the optimal least-squares ultrametric, that specific subset
is not directly united with the newly formed subset in P;, but is first merged
with other subset(s) in Py, before an eventual merging with the new subset that
defined Py).

Both these two options for defining inadmissibility: the Chandon et al. (1980)
criteria, which may be too lenient for some proximity matrices, and the one just
proposed, which possibly could be too restrictive, can be used complementarily.
As a suggested analysis strategy, if no nontrivial order inversions appear in the
partition hierarchy with the Chandon et al. (1980) option, a least-squares best-
fitting ultrametric has then been identified. If, on the other hand, nontrivial
order inversions do appear, then the stricter inadmissibility criterion could be
used, and a best-fitting least-squares hierarchy finally identified (hopefully) —
but with the caveat that in some (presumably rare) instances an even better
one could be constructed.?3

The GDPP strategy for locating best-fitting ultrametrics that are least-
squares optimal can be extended directly to the use of loss functions based
on L, norms other than least-squares. For example, if the optimal ultrametric
U* is to minimize the Ly loss function, }7,_, | pi;j — uj; |, rather than the Lo
least-squares criterion of Zi<j(pij — uij)Q, the use of average between-subset
proximities would be replaced by the median between-subset proximity, and the

*
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transition cost between two partitions, T'(P;_,.P;). would be defined by the
sum of absolute deviations from their median for the proximities between the
two classes united in P/_; to form the new class in Pj;. Or, if the average
between-subset proximity is replaced by the average of the minimum and maxi-
mum between-subset proximities, and the transition cost T'(P;_,, P;) specified
as the maximum deviation from this value for those proximities between the
two classes in P;_; united to form P}, the loss function would be one of min-
imizing the sum of the maximum such deviations over the n — 2 new subsets
formed in constructing an optimal partition hierarchy P7....,P;. We will not
explicitly provide numerical examples for such generalizations here (although
these L, extensions are included as options in the heuristic modifications [and
associated computer programs| discussed in Chapter 5), and instead refer the
reader to Hubert, Arabie, and Meulman, 1997c, for a further development and
illustration of these ideas in the hierarchical clustering context.

Optimal ultrametrics based on dissimilarity order. Besides extending the
GDPP strategy to identify best-fitting L,-norm ultrametrics, a variety of differ-
ent loss functions could be considered that would depend only on the ordering
of proximities in {p;;} and the ordering of the ultrametric values in the (to-
be-identified) ultrametric matrix {u;;}. We mention two possibilities here that
involve minimizing the number of order inconsistencies, of particular kinds, be-
tween {p;;} and the to-be-identified base ultrametric {uZ;} (a base ultrametric
can be used without loss of generality because only the order properties are
being considered in the entries for the ultrametric matrix). First we define an
object triple inconsistency (OTI) for the subscripts ¢, j, and k& whenever the ex-
pression sign((u; —ug,)(pi; —pix)) is strictly negative, where sign(z) = +1,0, —1
when x > 0,= 0, or < 0, respectively. Obviously, an OTI occurs for a particular
subscript triple, i, j, and k, whenever the ordering of the two dissimilarities,
pi; and p;y, is opposite to what a good-fitting base ultrametric should suggest,
Le., when p;; > pip but uf; < uf, or p;; < piy, but uf; > ug,. This OTT index
when summed over object triples bears a clear similarity to what is counted in
the countd heterogeneity measure for a single partition (as defined and used in
Section 3.1) — inconsistencies in both cases are counted for two pairs of indices
only when a common object is included.

To use OTI to define the transition cost, T(P;_;, Psx), we consider the two
classes united in P;_, (to form the new class in P}), and pick two indices, say
i’ and j’, where ¢’ and j' belong to (or span) the separate classes, and £’ is an
index outside of both the two classes. If py; > piryr, then an OTI is present
for the particlar subscript triple i/, j/, and k’, and counting the number of such
inconsistencies (OTIs) over all such triples thus definable, the transition cost
T(P;_,.P;) is obtained. This cost is thus generated only by those “new” OTIs
that would be produced between the two classes in P;_, and their union, but
not from the OTIs that may be definable separately within these two classes,
and which presumably are counted earlier in the hierarchy.

Second, we define the number of object quadruple inconsistencies (OQIs)

by the number of times sign((ug; — ug,)(pi; — pr1)) is strictly negative over
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all 1 < 4,7,k 1 < n. Just as the OTIs were analogous to countb for single
partitions, the OQIs can be viewed similar to the counta heterogeneity measure
for single partitions (again, as defined and used in Section 3.1) — counts will
be made of the number of instances in which proximities within subsets are
strictly greater than those between the subset and its complement (and without
a mandatory common object required in identifying an OTT). To use OQIs to
define transition cost, and extending the discussion above for OTTs for the two
classes to be united in P;_,, the two indices i and j’ span the separate classes,
and must also consider any two other indices & and I’, where &’ or I’ is in the
union of the separate classes and the other index is outside. If p;; > pj;, then
a quadruple inconsistency is present for the particular subscript quadruple 7',
j’. k', and I’, and counting the number of such inconsistencies over all such
quadruples thus defined, the transition cost T'(P;_,, P} ) is obtained.

To illustrate the use of the OTI and OQI indices, optimal full partition
hierarchies and partial partition hierarchies up to four subsets are given below.
As is apparent, for both full partition hierarchies we have interpretations that
require some rather annoying mixtures of digit magnitude and digit structural
characteristics. Both partial partition hierarchies, however, are very clearly
interpretable by just the esthetic, structural characteristics of the digits. We
may have an empirical exemplar here that forcing optimality for identifying
a full partition hierarchy may be counterproductive vis-a-vis an ultimate final
substantive interpretation. The partial partition hierarchies are much easier to
explain, and are still optimal although to a limited level in the hierarchy.?*

An optimal full partition hierarchy and a partial partition hierarchy up to four
subsets based on minimizing the number of triple inconsistencies (OTIs) belween
a base ultrametric and the given prorimity matriz, obtained using HPHI1U:

Level Partition Cumulative OTTs
(all digits separate)
{1.2}

{0,1,2}

{0.1.2}.{3.9}
{0.1.2}.{3.6.9}
{0.1.2}.{3.6.9}.{4.8}
{0.1.2}.{3.4.6.8.0)
{0.1.2}.{3.4.6.8.9}.{5.7}

© 00 ~J O UL i W N

,,,,,,

(all digits together)

(all digits separate)

{0.1}

{0.1}.{2,4}
{0.1}.{2.4}.{3.9}
[0.11.42.4}.{3.6.9}
[0.1}.424}.{3.6.9}.{5.7}
{071}7{27478}7{37679}7{577}
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An optimal full partition hierarchy and a partial partition hierarchy up to four
subsels based on minimizing the number of quadruple inconsistencies (OQIs) be-
tween a base ultrametric and the given prozimity matriz, obtained using HPHI1U:

Level Partition Cumulative OQls
1 (all digits separate) —
2 {01} P
3 {0.1.2) 8
4 {0.1.24) 32
5 {0,1.2,34) 58
6 {01.2.34).{5.7} 59
7 {01.2.34).{5.6.7) 69
8 {0.1234}.{5,6,7}.{8.9} 74
9 {0.1.2.34},{5.6.7.8.9} 113
10 (all digits together) 113
1 (all digits separate) —
2 {01} 2
3 {01}{2.4) 2
4 {0.1}3{2.4}.{3.9} 2
5 {01}.{24}.{3.6.9} 2
6 {0.1}.{24}.{3.69}.{5.7} 3
7 {0.1}{2.48}.{3.6.9).(5.7} 6

3.2.2 Constrained Hierarchical Clustering

In the application of the GDPP to the task of hierarchical clustering (in Section
3.2), the n sets, Qy, ..., Q,, on which the recursive process was based contained
for Q) all the possible partitions of the n objects in S into n — k + 1 classes.
Because of the large number of such partitions at each level for even moderate
values of n and the need to store and access information for each partition
during the recursive process, the size of the data sets that can be analyzed has
an effective limit of n’s in the lower teens. Analogous to the discussion in Section
3.1.1 on admissibility restrictions in constructing single partitions, if one could
limit the type of partition to be considered at each level of the hierarchy and
redefine the sets Q1,...,{, accordingly, it may be possible to deal effectively
with somewhat larger object set sizes.

Analogously also to the admissibility conditions discussed for partitions in
Section 3.1.1, one constraint that might be imposed on each partition in €, is
for the constituent subsets to contain objects consecutive in some given ordering
(which could be taken as O; < O3 < -+ < O,, without loss of any generality).
Thus, Q. will be redefined to contain those partitions that include n — k +
1 classes, and where each class is defined by a segment in the given object
ordering.??
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A numerical tllustration. To give a brief example of constrained hierarchical
clustering, and one that can also be compared to an unconstrained result given
earlier in Section 3.2, an optimal partition hierarchy using the diameter crite-
rion (the subset heterogeneity measure in (iv)) is given below. Here, an order
constraint is imposed that subsets in a partition must contain digits consecutive
in magnitude.

A (restricted) optimal partition hierarchy based on the sum of subset diameters,
obtained using DPHIIR:

Level Partition Index of Cumulative
New Subset Sum
1 (all digits separate) — —
2 {1,2} .284 .284
3 {1,2,3} .354 .638
4 {1,2,3},{8,9} .392 1.030
5 {1,2,3},{5,6}.,{8,9} .396 1.426
6 {1,2,3},{4,5,6},{8,9} .409 1.835
7 {1,2,3},{4,5,6},{7,8,9} .459 2.294
8 {0,1,2,3},{4,5,6},{7,8,9} .709 3.003
9 {0,1,2,3},{4,5,6,7,8,9} 742 3.745
10 (all digits together) .909 4.654

The unconstrained partition hierarchy given earlier has an (obviously) better
cumulative sum of 4.119 compared to the current value of 4.654 when the subsets
are constrained.?®

Endnotes for Chapter 3:

"The use of a proximity matrix where the only non-missing entries are between
two disjoint sets will reappear in Chapter 4 (Section 4.1.3). The optimization
task introduced there is discussed under the label of unfolding, which involves
(in its one-dimensional form) the joint sequencing of two disjoint object sets
along a common continuum.

8The first published version of this particular DP strategy for minimizing
the sum of heterogeneity measures over the classes of a partition was by Jensen
(1969), but only for the specific heterogeneity measure (as we note below) that
defines the sum of squared error (or what is commonly called the k-means
[MacQueen, 1967]) criterion.

“The notation of max(S,,) and min(S,,) is used here only as a convenience
in referring to the heterogeneity for some fixed set S,,. It is not to be interpreted
as an index that we are trying to optimize by the choice of S,

19Given that P is symmetric, an obvious alternative choice for defining these
various sum(-) expressions would have counted each distinct object pair only
once rather than twice. Nothing done in the sequel involving optimization de-
pends on whether distinct object pairs are counted once or twice. Either the
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measures being minimized would be identical when individual subset hetero-
geneity indices are given by averages, or one would be twice the other when raw
sums are used.

Note that the calculation of counta requires considering four objects at a
time, whereas countb requires only three. Also, every instance that contributes
an increment to countd will contribute to counta, but not conversely.

12The program DPCL1U (where the suffix ‘1U’ denotes ‘1-mode unrestrict-
ed’) includes all the heterogeneity indices described and the two options for the
optimization criterion of minimizing either their sum or their maximum over
the M subsets of a partition, and was used to carry out the illustrative analyses
reported. DPCLI1U is written (potentially) to allow the analyses of object set
sizes up to 30 using allocatable arrays, but for n above, say, 20, a very large
amount of RAM is required. Object set sizes that are less than or equal to
20 are more in the range of commonly available storage configurations. Using
DPCL1U to partition an object set of size, say, 27, would require 4GB of RAM
and would be at the addressable limit for a 32 bit operating system.

I3There is some terminological confusion in the literature about the use of
“Robinson” versus “anti-Robinson”. When Robinson (1951) published his clas-
sic paper on chronologically ordering archaeological deposits by identifying a
row and column ordering of a proximity matrix to produce (approximately) a
characteristic pattern in the reordered matrix, he explicitly dealt only with simi-
larity matrices. Thus, the keying of the proximities considered by Robinson was
such that the larger values referred to the more similar objects (in contrast to a
keying as a dissimilarity in which large values refer to the less similar objects).
The pattern Robinson (1951) sought to identify in a reordered similarity matrix
was one in which the entries within each row and column never increased mov-
ing away from a main diagonal entry in any direction. In work published in the
1960’s and early 1970’s, and in honor of Robinson’s seminal contributions, the
name “Robinson” was attached to the pattern expected when reordering a sim-
tlarity matrix, and only for a similarity matriz. There is no better source than
the now classic volume edited by Hodson, Kendall, and T&utu (1971), and de-
voted to Mathematics in the Archaeological and Historical Sciences. The many
papers therein consistently define and reserve the term “Robinson” for a pattern
expected in a similarity matrix, e.g., see Gelfand (1971), Kendall (1971), Sibson
(1971), and Landau and de la Vega (1971). Although the need to distinguish
between Robinson and anti-Robinson forms for proximity matrices respectively
keyed as similarities and dissimilarities was pointed our explicitly in the 1970’s
(e.g., see Hubert, 1976, p. 33), some subsequent authors have adopted the terms
“Robinson” or “Robinsonian” to refer to patterns in dissimilarity matrices and
without distinguishing the reversed pattern thus implied in the matrix entries;
e.g., see Diday (1986), Batagelj et al. (1994), Critchley (1994), among oth-
ers. Authors more respectful of the discordant patterns and associated types
of proximities data have maintained (some might say, stubbornly) the distinc-
tion, e.g., Hubert and Arabie (1994) in their discussion of fitting (analyzing)
proximity matrices through sums of matrices each having the (anti-)Robinson
form, or Hubert, Arabie, and Meulman (1998) in developing graph-theoretic
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representations for proximity matrices through strongly-anti-Robinson or cir-
cular strongly-anti-Robinson matrices. In any case, because all the proximity
matrices considered throughout this monograph are keyed as dissimilarity ma-
trices, we will consistently use the term “anti-Robinson” whenever appropriate
to refer to the pattern expected in a proximity matrix. In Section 4.1 the is-
sue of representing an (anti-)Robinson matrix graphically will be revisited (in
an endnote) and some comments made about the difficulties that may be en-
countered if the anti-Robinson condition is not strengthened (to what is called
strongly-anti-Robinson).

'4An implementation of order-constrained clustering is available in a pro-
gram called DPCLIR (where the suffix ‘1R’ denotes ‘1-mode restricted’), and
analogous to DPCL1U includes the use of all the same subset heterogeneity
options and the two optimization criteria (i.e., either minimizing the sum or the
maximum). The specific object order that defines the admissible clustering can
either be the identity order or specified by the user at run time. Again, the use
of allocatable arrays will determine whether the memory capacity of the system
is sufficient to solve the problem of the size requested, but here the tasks can
be rather large for the typical amount of RAM, e.g., object set sizes up to, say,
500.

15Exactly this approach is carried out in the program DPCL2U (where the
suffix ‘2U" now denotes ‘2-mode unrestricted’); this program is a direct gener-
alization of DPCL1U in carrying out an unconstrained optimization approach
to the partitioning of S4 U Sp.

16 As an aside, if for the LA task discussed in the introductory Section 2.1,
the n x n cost matrix {c;;} is treated as a proximity matrix between its n rows
and n columns, the LA task in a minimization form (and, for either the sum
of costs or the maximum cost over the n! assignments) is solved as a special
case of the partitioning task if the maximum number of subsets, n, is used, and
the subset heterogeneity measure is defined, among other possibilities, by the
within-subset average.

"There are no built-in size limits in DPCL2R (where the suffix ‘2R’ now
denotes ‘2-mode restricted’), allowing the use of dual row and column object
orders. The program is otherwise the analogue of DPCL1R; however, given the
need for large allocatable arrays and the size of most current systems’ RAM,
the effective limit may be about 100 for the sum of n4 and np.

18Given the notion that a common storage configuration includes somewhere
between 64 and 128 MB of RAM, object sets of size 12 and under are reasonable
to approach with the GDPP. There are, however, a huge number of partitions
definable for object sets (just) larger than 12. For example, based on the Stirling
numbers of the second kind, there are about 4 million partitions of an object set
of size 12, but about 200 million for an object set of size 14. Thus, for an object
set of size 14, 2GB of RAM would be necessary just for storing the information
for each partition in the course of carrying out the recursive process.

The program DPHI1U used to obtain optimal full partition hierarchies
routinely provides all optimal partial hierarchies for k =2,...,n — 1.

20Thus, we have an empirical demonstration that partial partition hierar-
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chies identifiable within a globally optimal full partition hierarchy may not
necessarily be optimal partial partition hierarchies themselves. Or stated dif-
ferently, optimal partial partition hierarchies are not necessarily nested in the
sense that an optimal partial hierarchy that terminates at level ¢ — 1 is not
necessarily included as part of an optimal partial hierarchy that terminates at
level t.

21 Although we will not pursue the point in any detail, we note that if we
were considering only partitions with four classes, such as the level 7 partition
identified in the optimal hierarchy given above, which has a maximum diameter
over all four subsets of .421, there is another partition with four classes that
also has a maximum diameter of .421, but which is completely consistent with
number magnitude, i.e., {{0,1},{2,3,4},{5,6,7}.{8,9}}.

22The divisive analogue of the agglomerative strategy implemented in the
program DPHI1U is available in a separate program, called DPDI1U, with all
the same options for the choice of the subset heterogeneity measure.

23Both inadmissibility options are included in the programs DPHI1U and
DPDI1U.

24The heuristically oriented programs HPHI1U and HPHI2U, as discussed
further in Chapter 5 (and where the leading letter ‘H’ denotes ‘heuristic’), in-
clude both options of minimizing the number of OTIs or OQIs in complete or
partial partition hierarchy construction. As a special case for small object sets,
such as the one illustrated here, optimal solutions are possible with these two
programs.

25Such an option is available in the program DPHIIR (where the suffix
‘1R’ again denotes ‘l-mode restricted’); this approach is a direct extension of
DPHI1U with all the latter’s options but also requiring a specific ordering of
the objects to be used in characterizing those partitions considered admissible
when carrying out the recursive process from 2 to €2,. Although there is a
formal limit of 30 built into DPHI1R for the object set size, most current RAM
configurations (as of say, 1999) would generally allow n’s of about 20.

26Special diagnostics would have to be developed to decide whether such an
increase in loss should be considered intolerably large.
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Chapter 4

Object Sequencing and
Seriation

“Things are ordered in a wonderful manner.”
Joseph Conrad
Under Western Eyes (1911)

“...in consideration of the imperfection inherent in the order of the world...”
Heinrich von Kleist
The Marquise of O (1808)
Translation by Nigel Reeves

“ ‘.80 Princeton,” Dawn said, ‘so unerring. He works so hard to be one-
dimensional...” ”

Philip Roth

American Pastoral (1997)

The three major sections of this chapter discuss various aspects of the task of
optimally sequencing (or seriating) a set S of n objects along a continuum based
on whatever proximity data may be available between the object pairs. The
ultimate purpose of any sequencing technique, as is generally true for all CDA
methods, is to use whatever combinatorial structure is identified (which in the
present context will be object orderings) to help explain the relationships that
may be present among the objects, as reflected by the proximity data. Section
4.1 is concerned with the (unconstrained) sequencing of a single object set,
although this single set may itself be the union of two disjoint sets. In this latter
case, the task of object placement is one of obtaining a joint sequencing of the
two sets (i.e., we have a data analysis task usually discussed under the subject
of unidimensional unfolding; e.g., see Heiser, 1981). In general, proximity data
may be in the form of a one-mode matrix that may either be symmetric (which
would be consistent with the discussion in the clustering framework of Chapter
3) or nonsymmetric (and more specifically, skew-symmetric), or possibly in the

51
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form of a two-mode matrix if the set S is formed by the union of two other
sets. Section 4.2 discusses only two-mode proximity data, and within a context
where if the single object set S is formed from the union of the sets S4 and
Sp, the ordering of the objects within Sa and/or within Spg is constrained in
their joint placement along a continuum. In effect, we are combining (or in a
slightly different interpretive sense, we are comparing) the two distinct object
sets, subject to some type of constraint on the orderings for the objects within
Sa and Sp. The final Section 4.3 provides an optimization problem constituting
a mixture of an unconstrained sequencing task, as discussed in Section 4.1, and
the clustering problem of Section 3.1. Specifically, the goal will be to construct
optimal partitions of an object set S in which the classes of the partition must
themselves be ordered along a continuum. Obviously, when the number of
classes in the partition is set equal to the number of objects in S, this latter
optimization task reduces to the sequencing of a single object set as described
in Section 4.1.

In the topics just outlined briefly but to be pursued in the sections to follow,
three types of proximity data will organize the presentation. One type comes
in the usual form of a one-mode n X n nonnegative dissimilarity matrix for
the n objects in S denoted earlier by P = {p;;}, where p;; = pj; > 0, and
pii = 0 for 1 < 4,5 < n. A second is an ng X ng two-mode nonnegative
dissimilarity matrix Q, where proximity is defined only between the objects
from two distinct sets S4 and Sp containing respectively na and ng objects
and forming the rows and columns of Q. (For convenience, the objects in S4
are again denoted as {ri,...,r,,} and those in Sg as {c1,...,¢,5}, where
the letters ‘r’ and ‘¢’ signify ‘row’ and ‘column’; respectively.) In the two-
mode context, it will typically be convenient to construct a single mode from
the objects in both S4 and Sg (i.e., S = S4 U Sg), and use Q to generate a
nonnegative symmetric proximity matrix on S that contains missing proximities
for object pairs contained within S4 or within Sg. To refer to this latter matrix
explicitly, we introduce the notation PAP = {pf;-B}, where P4% has the block

form:
* Q
{ Q } ’

and the asterisk * denotes those proximities that are missing.

Finally, if the proximity information originally given between the pairs of
objects in S is nonsymmetric and in the form of an n x n nonnegative matrix,
say D = {d;;}. this latter matrix will first be decomposed respectively into the
sum of its symmetric and skew-symmetric components as

D = [(D+D")/2]+ [(D - D)/2],

and each of these components will (always) be addressed separately. The matrix
(D + D’)/2 can merely be treated as a nonnegative symmetric dissimilarity
matrix (i.e., in the notation P), and methods appropriate for such a proximity
measure can be applied. The second component of the form (D — D’)/2 is an
nxn matrix denoted by P%% = {pfﬁ} where pfjs = (d;;—dj;)/2for 1 <i,j <m,
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and the superscript ‘SS’ signifies ‘skew-symmetric’, i.e., pfjs = fpjsvis for all
1 < 4,5 < n. Thus, there is an explicit directionality to the (dominance)
relationship specified between any two objects depending on the order of the
subscripts, i.e., pf;s and pfjs are equal in absolute magnitude but differ in sign.
It may also be worth noting here that any skew-symmetric matrix {pfjs } can
itself be interpreted as containing two separate sources of information: one is
the directionality of the dominance relationship given by {sign(p%s )}, where
(as defined earlier), sign(y) = 1if y > 0; =0 if y = 0; and = —1 if y < 0; the
second is in the absolute magnitude of dominance given by {| pj;° [}. This latter
matrix is symmetric and can be viewed as a dissimilarity matrix and analyzed
as such. In fact, the first numerical examples below on object sequencing for
a one-mode symmetric proximity matrix will use the paired-comparisons data
from Table 1.2 in exactly this manner for constructing optimal orderings of the
offenses according to their perceived seriousness.

4.1 The Optimal Sequencing of a Single Object
Set

The search for an optimal sequencing of a single object set S (irrespective of the
type of proximity measure available and whether S itself is the union of two other
sets) can be operationalized by constructing a best reordering for the rows and
simultaneously the columns of an n x n proximity matrix. The row/column re-
ordering to be identified will optimize, over all possible row /column reorderings,
some specified measure of patterning for the entries of the reordered matrix. For
convenience, the particular measure of pattern will usually be defined so as to
be maximized (with a few exceptions, as in Section 4.1.4), and thus, the general
form of the GDPP to be applied is the recursion given in (2.3). (Again, much as
in the hierarchical clustering framework, the application of the max/min type
of recursion in (2.5) has limited utility. When constructing an optimal order-
ing based on the type of measure of matrix patterning we will consider, the
various positions in an ordering will have differential possible contributions to
the measure of matrix pattern. As a consequence, a max/min criterion would
overemphasize the placement of a very few middle objects in the ordering and
effectively ignore how well the entire early and late portions of a sequence were
constructed. We note, however, that not all possible measures of matrix pattern-
ing would have this property of a differential possible contribution depending
on location in an ordering. Specifically, there is a particular application of a
max/min (or min/max) recursion for obtaining a best sequencing through the
construction of optimal paths that will be discussed later in Section 4.1.4.)

A variety of specific measures of patterning will be introduced in the next
three sections and within the context of the particular type of proximity mea-
sure most appropriate (i.e., symmetric (P), skew-symmetric (P%%), or defined
between two sets S4 and S (PAF)). However, in all three cases the same
specialization of the GDPP in (2.3) will be implemented. (But we should again
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note that a variation is introduced in Section 4.1.4 in a discussion of object
sequencing based on the construction of optimal paths.)

A collection of sets Qq, ..., is defined (so, K = n), where €y, includes all
the subsets that have & members from the integer set {1,2,...,n}. The value
F(Ay) is the optimal contribution to the total measure of matrix patterning for
the objects in Ay, when they occupy the first k positions in the (re)ordering. A
transformation is now possible between Ay, 1 € Q1 and Ay € Qp if A, C Ay,
(i.e., Ay—1 and Ay, differ by one integer). The contribution to the total measure
of patterning generated by placing the single integer in A,_; — A, at the k%"
order position is M (A,_1, Ag). As always, the validity of the recursive process
will require the incremental merit index, M (Ay_1, Ag), to depend only on the
unordered sets Aj;,_1 and Ay, and the complement S — Ay, and specifically not
on how Aj_; may have been reached beginning with ;. Assuming F(A,)
for all A; € Q; are available, the recursive process can be carried out from
Q4 to Q, with F(A,) for the single set 4, = {1,2,...,n} € Q, defining
the optimal value for the specified measure of matrix patterning. The optimal
row/column reordering is constructed, as always, by working backwards through

the recursion.?’

4.1.1 Symmetric One-Mode Proximity Matrices

When the original data come in the form of a nonnegative symmetric proximity
matrix P with no missing entries, there are (as might be expected) many dif-
ferent indices of patterning that could be optimized in a row/column reordered
proximity matrix through the specialization of the GDPP described above. We
will emphasize two general classes of such measures below.2®

Row and/or column gradient measures. One ubiquitous concept encoun-
tered in the literature on matrix reordering is that of a symmetric proximity
matrix having an anti-Robinson form (this same structure was noted briefly in
the clustering context when an optimal unconstrained clustering might also be
optimal when order-constrained). Specifically, suppose p(-) is some permuta-
tion of the first n integers that reorders both the rows and columns of P (i.e.,
P, = {Pyti)p(57}). The reordered matrix P, is said to have an anti-Robinson
form if the entries within the rows and within the columns of P, moving away
from the main diagonal in any direction never decrease; or formally, two gradient
conditions must be satisfied:

within rows: p,) k) < Ppaypy) for 1 <i <k < j <n;
within columns: p,i)o() < Pp(i)pi) for 1 <i <k <j<n.

We might note that whenever P is an ultrametric, or if P has an exact Euclidean
representation in a single dimension (i.e., P = {|z; — z;|}, for some collection
of coordinate values, z1,xs,...,2,), then P can be row/column reordered to
display a perfect anti-Robinson pattern. Thus, the notion of an anti-Robinson
form can be interpreted as generalizing either a perfect discrete classificatory

structure induced by a partition hierarchy (through an ultrametric) or as the
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pattern expected in P if there exists an exact unidimensional Euclidean rep-
resentation for the objects in S. In any case, if a matrix can be row/column
reordered to display an anti-Robinson form, then the objects are orderable along
a continuum so that the degree of separation between objects in the ordering
is reflected perfectly by the dissimilarity information in P, i.e., for the ob-
ject ordering, Op(i) < Op(k) < Op(j) (fOI" < k< j) Po(i)p(k) < Po(i)o(5) and
Potk)p(j) < Pp(i)p(j) (or equivalently, because the most extreme separation in
the ordering of the three distinct objects is between O,y and O,(;), we have
Po(s)o(s) Z MaX[Po(iyo(k): Pociyp()])-

A natural (merit) measure for how well the particular reordered proximity
matrix P, satisfies these two gradient conditions would rely on an aggregate
index of the violations/nonviolations over all distinct object triples, as given by
the expression:

Y Fotoer Potoo) + D T Potkrnt): Potaro(n)- (4.1)

i<k<y i<k<g

p(i o(J

where f(-, -) is some function indicating how a violation/nonviolation of a partic-
ular gradient condition for an object triple within a row or within a column (and
defined above the main diagonal of P,) is to be counted in the total measure of
merit. The two options we concentrate on are:

(1) f(z,y) =sign(z —y) =+1if 2 > y; 0if 2 = y; and —1 if z < y; thus,
the (raw) number of satisfactions minus the number of dissatisfactions of the
gradient conditions within rows above the main diagonal of P, would be given
by the first term in equation (4.1),

Y FPairoti)s Potirets): (4.2)

1<hk<y

and the (raw) number of satisfactions minus dissatisfactions of the gradient
conditions within columns above the main diagonal of P, would be given by the
second term in equation (4.1)

Y

Y FPotnts): Poorets)): (4.3)

1<k<g

To refer to an application of this simple counting mechanism, the phrase un-
weighted gradient measure will be adopted.

(2) f(z,y) = |z—y|sign(z—1y); here, and in contrast to (1), the sign(z —y) is
also weighted by the absolute difference between z and ¥, to generate a weighted
gradient measure within rows or within columns. Thus, the weighted number
of satisfactions minus the number of dissatisfactions of the gradient conditions
within rows above the main diagonal of P, would be given by the first term in
equation (4.1) (labeled as (4.2) above), and the weighted number of satisfactions
minus the number of dissatisfactions of the gradient conditions within columns
above the main diagonal of P, would be given by the second term in equation

(4.1) (labeled as (4.3) above).
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To carry out the GDPP based on the measure in (4.1), an explicit form
must be given for the incremental contribution, M(Ay_1, Ax), to the total merit
measure of patterning generated by placing the single integer in A, — Ay _1 at
the k** order position. We observe first that the index in (4.1) for the given
matrix P in its original (identity) order can be rewritten as

Z]row(k) + Z[col(k)s

k=1 k=1

where
k—1 n
Irow(k) = Z Z f(pi]mpij)a
i=1 j=k+1
and

n

k-1
Icol(k) = Z Z f(pkjapij)'

i=1 j=k+1

Neither ;.4 (k) nor I.,;(k) depends on the ordering of the objects placed either
before or after the index k. Thus, generalizing such a decomposition for any
ordering p(-) of the rows and columns of P, the merit increment for placing an
integer, say, k' (= p(k)) (i.e., {k'} = A, — A1) at the k* order position can
be defined as

> Lrowlp(k)) + 3 Leat(p(k)).
k=1 k=1

where

Irow(p(k)) = Z Z f(pi/k’api/j’)a

VEAR_1 JES—Ay

Icol(p(k)) = Z Z f(pk/j’ﬁpi/j’)a

VEAL_1 ' ES—Ap

and Ag—1 = {p(1),...,p(k =D} S—Ap ={plk+1),..., p(n)}. Thus, letting

F(A;) =0 for all A; € Qq, and using one of the two possible specifications for
f(-,-) suggested above (i.e., f(z,y) = sign(z—vy), or f(z,y) = |z—yl|sign(z —y)),
the recursion in (2.3) can be carried out to identify an optimal row/column
reordering of the given proximity matrix P to maximize either the unweighted
or the weighted gradient measure over all row/column reorderings of P.

In using (4.1), both the row and column gradient measures in (4.2) and (4.3)
respectively are considered as a sum in optimizing a total merit measure of
patterning, and where each is defined above the main diagonal of the symmetric
reordered matrix P,. It might be noted that either (4.2) or (4.3) could be used
by itself and a best reordering of P constructed that would maximize one or the
other through the separate consideration of Y. | Irow(k) or Y7 Lo(k).°
Because P is symmetric, an optimal row/column reordering based solely on
the row gradient measure will also identify an optimal row/column reordering
based only on the column gradient measure. Specifically, a complete reversal
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of the row/column reordering that is optimal for the row gradient measure will
be an optimal row/column reordering for the column gradient measure (and
conversely).3!

Several numerical applications are given at the end of this section to illus-
trate the optimal sequencing of a single object set based on optimizing the merit
measure in (4.1), as well as just one of its constituent terms in (4.2) or (4.3). For
these illustrations and in addition to giving the optimal merit values achieved,
convenient descriptive indices are also provided for how well the gradient con-
ditions are satisfied. These descriptive ratios are defined by the optimal index
values divided by the sum of the contributions for the nonviolations and vio-
lations, where the denominators can be interpreted as the maximum the index
could be for the given proximities and if the gradient conditions were perfectly
satisfied. To be explicit, the merit measure in (4.1), for any permutation p(-),
can be written as the difference between two nonnegative terms, with the first
corresponding to the nonviolations of the gradient conditions and the second
to the violations. Thus, when the sum of these two nonnegative terms is used
to divide the difference, the ratio obtained (which is bounded by +1 and —1)
reflects the (possibly weighted) proportion that the observed index has to the
maximum that is possible if the gradient conditions were satisfied perfectly.
Formally, the descriptive ratio could be given by

D ictes L (Poiyp): Potiyp)) + 2iciai J(Pok)o(i): Potido(s))
D ichas [ (Potiyoth): Potiyo()| + 2icnei L (Poti) i) Potirets)]

(4.4)

Analogously, when only the gradient conditions, say, within rows are considered
by the use of (4.2), a descriptive ratio could be given by

2iches S Poti)o): Poti)os)
D icke [ (Potiyoti): Potio(i))]

(4.5)

As noted, in the numerical applications at the end of this current section, but
also in some later generalizations as well, descriptive ratios for an optimal solu-
tion will be routinely reported in addition to giving the optimal values achieved
for their numerators.

Measures of matriz patterning based on coordinate representations. There
are several measures of matrix patterning that can be derived indirectly from
the auxiliary problem of attempting to fit a given proximity matrix P by some
type of unidimensional scaling representation. Because detailed discussions of
this task are available in the literature (e.g., see Defays, 1978; Hubert and
Arabie, 1986; Groenen, 1993; Hubert, Arabie, & Meulman, 1997a), we merely
report the necessary results here and give the derived measure of matrix pattern
(used below in the numerical illustrations). Explicitly, suppose we wish to find
a set of n ordered coordinate values, x; < --- <z, (such that ), x;, =0), and

a permutation p(-) to minimize the least-squares criterion

> Botisotn— | &5 — s )%

1<
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After some algebraic reduction, this latter least-squares criterion can be rewrit-
ten as 1 1

SR 0 Yl — (DGR ~ () Y G

i< k 2

where

k—1 n
G(p(R) =D Pokiots) = D, Pothip(o)-
i=1

i=k+1

If the measure

S Gk (46)
k=1
is maximized over all row/column reorderings of P and the optimal permutation
is denoted by p*(-), then G(p*(1)) < --- < G(p*(n)), and the optimal coordi-
nates can be retrieved as x;, = (1/n)G(p*(k)), for 1 < k < n. The minimum
value for the least-squares criterion is

S8 - () Sl ()

1<J k

To execute the GDPP recursion using (4.6), the merit increment for placing the
integer, say k' (= p(k)) (i.e., {k'} = A, — Ap_1) in the k™ order position can
be written as [G(p(k))]?, where

Glpk) = > pwv— Y by

VEAp_q JES—Ay

with A1 = {p(1),...,p(k =1}, S— A, ={p(k+1),...,p(n)}, and F(A4;) for

Ay = {k'} € Q; defined by

S

jes—{}

The recursion in (2.3) can then be carried out to identify an optimal row /column
reordering p*(-) of P based on the measure in (4.6); also, as noted above, the
optimal coordinates x, (1 <k < n) are (1/n)G(p*(k)), where the integer p*(k)
is placed at the k™ order position in an optimal row/column reordering.

To give a more intuitive sense of the measure being optimized in (4.6), we
first note that for an optimal row/column reordering p*(-), the variance of the
coordinate estimates is maximized (using the fact that the sum of the optimal
coordinates, ), (1/n)G(p*(k)). is zero). Thus, the pattern of entries sought in
an optimally reordered matrix is one in which, within rows, the sum of entries
from the left to the main diagonal, versus the sum of entries to the right away
from the main diagonal, are maximally separated. The difference between these
two sums is G(p(k)), which when squared and aggregated over all rows, is the
measure in (4.6) that is maximized to identify the optimal permutation p*(-).
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As a slight variation on coordinate representation, suppose an equally-spaced
representation for P is to be identified by minimizing the least-squares loss
function (over all permutations, p(-)):

Y Botioy —ali—i )7

1<g

where « is a multiplicative parameter to be estimated. The measure in (4.6)
would be replaced by

> kG(p(k)).
-

Thus, the merit increment for placing an integer k' (= p(k)) (i.e., {k'} = A, —
Ap_1) in the k¥ order position is kG(p(k)), and F(A;) for A} = {k'} € Oy

defined by
Y e
j'eS—{k'}

If we wish, the least-squares estimate for the multiplicative constant a can be
obtained as

&= po(iyoriy | 3= | /[n°(n+ 1(n—1)/12],

1<

where p*(-) is an optimal row/column reordering of P.

Numerical illustrations. To give several examples of sequencing an object
set along a continuum based on a symmetric proximity matrix and the various
measures of matrix pattern just described, we first derive two separate symmet-
ric proximity matrices from the data given in Table 1.2 on the rated seriousness
of thirteen offenses. In particular, for both the ‘before’ and ‘after’ proximity
matrices, the entry defined for each pair of offenses is the absolute value of
the difference in the proportions of rating one offense more serious than the
other. (For example, because the proportion judging a bootlegger more serious
than a bankrobber is .29 before the movie was shown, a symmetric proxim-
ity of .42 = |.29 — .71] is given for the pair (bootlegger, bankrobber) in the
corresponding proximity matrix.) The two proximity matrices so constructed
are given in the upper- and lower-triangular portions of Table 4.1 (but where
for graphical convenience, the rows and columns have been already reordered
according to the optimal sequencings to be described immediately below).

We first give the optimal orderings associated with an explicit coordinate
representation and the measure given in (4.6) of matrix pattern.

Optimal orderings based on coordinate estimation, obtained using the program
DPSE1U:

Before viewing the movie:

order: 9 7T 10 4 2 11 3 5 13 6 12 8 1
coordinates: —.82 —.78 —.33 —.26 —.23 —.17 —.02 .27 .29 .32 .50 .59 .64
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Table 4.1: Symmetric proximity matrices constructed for thirteen offenses using
the absolute values of the skew-symmetric proximities generated from the entries
in Table 1.2. The above-diagonal entries are before showing the film Street of
Chance; those below the diagonal are after viewing the motion picture. The
entities followed by an asterisk were negative before taking the absolute value.

offense 9 7 104 2 11 3 5 13 6 12 8 1
9:tramp x .16 .82.94 90 .94 .96 .96 1.0 .98 .98 .97 1.0
7:beggar 28 x .72 .98 .86 .92 .96 .96 98 1.0 1.0 .92 .98
10:speeder 74 58 x .26 .18 .16 .22 .76 .84 .82 .80 .84 .88
4:drunkard .92 .88 .34 x .04* .24 50 .62 .74 .90 .82 .84 .90

11:petty thief .90 .88 .28 .06 x .02* .42 .52 .62 .84 .80 .84 .86
3:pickpocket 96 .94 .36 .40 .24 x .16 .56 .56 .48 .96 .84 .96

2:gambler 92 .90 .46 40 28 .02 x .34 .36 .50 .74 .72 .84
6:bootlegger .96 .96 .80 .74 .52 .40 .38 x .10 .02* .28 .40 .46
13:smuggler .96 .96 .78 .68 .52 .40 .38 .02 x .00 .46 .38 .58
5:quack doctor .98 .96 .78 .68 .62 .44 .28 .00 .08* x .36 .58 .42
12:kidnaper .98 .96 .84 .84 .94 .68 .46 .40 .28 .30 x .28 .46%*
8:gangster .98 .98 .88 .78 .78 .74 .64 .46 .32 .36 .24 x .00

1:bankrobber 1.0 .96 .88 .90 .94 .86 .58 .40 .46 .34 .24* .00 x

The optimal value for the index in (4.6) is 471.16, with a residual sum-of-
squares for the original least-squares task of 3.307 (we might also note that
the correlation between the original proximities and the reconstructed absolute
values of the coordinate differences is .864. However, this correlation must be
considered a conservative association measure, because the optimization process
itself did not include the estimation of an additive constant for the proximities,
and thus, the correlation was not explicitly optimized).

After viewing the movie:

order: 9 T 100 4 11 3 2 6 13 5 12 8 1
coordinates: —.81 —.75 —.39 —.26 —.21 —.05 .02 .27 .27 .29 .48 .55 .58

Here, the optimal index in (4.6) is 436.71 with a residual sum-of-squares of
2.302 for the original least-squares task (the conservative association measure
of .903 was observed for the correlation between the original proximities and
the reconstructed absolute values of the coordinate differences).

Both the before and after orderings of the offenses are obviously arranged
from least to worst in seriousness, and with a clear difference in the position of
‘gambler’ (which is #2) from the 5% least serious to the 7!*, reflecting a change
in subjective assessment after viewing the movie. The order of the offenses
numbered 5 (quack doctor), 6 (bootlegger), and 13 (smuggler) also vary among
themselves, but as is apparent in the estimated coordinates both before and
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after, these three offenses are very close to one another and any interchange from
before to after is most likely attributable to minor fluctuations in the data. The
same object orders are also optimal for an equally-spaced set of coordinates.
For both the before and after proximity matrices, the multiplicative constant o
was estimated as .12, with, respectively, residual sums of squares of 4.735 and
3.624, and correlations of .759 and .801 obtained between the absolute values of
the equally-spaced coordinate differences and the proximities.

We give below a brief summary of the optimal orders achieved for the other
measures of matrix pattern, i.e., for the weighted or unweighted gradients within
rows (or columns) alone or within both rows and columns. In each case the
optimal index value is given and separated into the constituent positive and
negative contributions, depending on the nonviolations and violations for the
achieved optimal order. Also, as given by the terms in (4.4) and (4.5), and
defined by a ratio, a descriptive index is provided in each case for how well the
gradient condition is satisfied.

Optimal orderings based on other measures of matriz pattern, obtained using

DPSE1U:
Before viewing the movie:

Criterion  Index Order

within row

(or column) 236 = (256—20) 9741021131365 128 1
unweighted

gradient (ratio = .855)

within row

and column 431 = (489-58) 97410211351361281
unweighted

gradient (ratio = .788)

within row

(or column) 95.48 = (97.56—2.08) 97104211313561281
weighted

gradient (ratio = .958)

within row

and column 161.45 = (165.66—4.21) 9710421135136 128 1
weighted

gradient (ratio = .950)



62 CHAPTER 4. OBJECT SEQUENCING AND SERIATION

After viewing the movie:

Criterion  Index Order

within row

(or column) 263 = (272-9) 97104113265131281
unweighted

gradient (ratio = .936)

within row

and column 491 = (515—24) 97104 113213651281
unweighted

gradient (ratio = .911)

within row

(or column) 104.44 = (105.00—.56) 97104113261351281
weighted

gradient (ratio = .989)

within row

and column 165.08 = (166.56—1.48) 9710411326 135128 1
weighted

gradient (ratio = .982)

These latter results are very consistent with those generated from the coordi-
nate representations — the offense ‘gambler’ is 5" least serious in all orders
for the before matrix and 7 for the after matrix; there is also some of the
same unsystematic interchange among the ‘close’ offenses 5, 6, and 13, and two
instances of an interchange of the offenses 4 (drunkard) and 10 (speeder) when
using the unweighted gradient measure for the before matrix. We might also
observe that for the optimal indices and their descriptive ratios when divided by
the maximum possible, the after matrix is apparently structured slightly better
than the before matrix (this difference was also reflected in the lower residual
sums of squares and higher correlations provided in the context of coordinate
estimation).

4.1.2 Skew-Symmetric One-Mode Proximity Matrices

As noted earlier, any skew-symmetric matrix P = {pfjs } contains two distinct
types of information about the relationship between any pair of objects. First,
for each object pair, 0;,0; € S, | p;SjS | indicates a (symmetric) degree of
dissimilarity between O; and O;, whereas sign(pfjs ) indicates the directionality
of dominance. Thus, if pisjs is positive, O; can be interpreted as dominating O;
with the magnitude of pfjs reflecting the degree of dominance. In the presence
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of a skew-symmetric matrix P%%, a natural extension of the notion of an anti-
Robinson form appropriate for a symmetric proximity matrix P would be to
a row/column reordering of P%, say by a permutation p(-), in which (a) the
degree of dominance is perfectly depicted by having an anti-Robinson form
in the reordered matrix {| pg(“si')p(j) |}, and (b) using the same row/column
reordering, the direction of dominance is perfectly depicted in the reordered
matrix {sign(p,(;),(;))} in that all above-diagonal entries are nonnegative and
all below-diagonal entries are (therefore) nonpositive.

The various classes of measures appropriate for indexing matrix patterning
and for obtaining an optimal reordering of P> could rely on either {| p;SjS |} or
{sign(p%s )} alone or, instead, attempt to use both types of information jointly
by considering the matrix P as is. (Thus, there is the possibility of assessing
the extent to which the same [or similar] optimal reorderings arise from the use
of the separate information sources.) If {| p%s |} were considered by itself, the
measures described in the previous section for symmetric proximities would ob-
viously be appropriate; in fact, the numerical examples given in the last section
for sequencing a symmetric one-mode proximity matrix relied on dissimilarity
matrices of this latter form constructed from the nonsymmetric data of Table
1.2. The more distinctive class of alternatives to be considered below is best
viewed as emphasizing {sign(p%s )} and forcing the above-diagonal entries in an
optimally reordered matrix to be as consistently positive as possible.

More pointedly, we will not discuss at this juncture the optimization through
row/column reorderings of weighted or unweighted gradient measures for the
matrix P°° that would attempt to force an anti-Robinson form for the above-
diagonal entries in the reordered matrix, and which would parallel those de-
veloped for symmetric matrices. The authors’ experience has found that these
may work well, but anomalies can arise frequently. For example, a row/column
reordering of P may exist in which the reordered matrix {| pgé)p(j) |} is
very close to being anti-Robinson in form, and for this same reordering the
above-diagonal entries in {pi(si)p(j)} tend to be positive, but an optimal re-

ordering of the matrix P°% based on the above-diagonal gradient conditions
analogous to those used for symmetric matrices finds an even ‘better’ reorder-
ing where the above-diagonal entries may no longer be predominantly positive.
Although formally better according to the particular gradient index chosen, the
latter reordering is also problematic to explain in any clear substantive fashion.
Therefore, the use of gradient conditions for the matrix P9, as is, may be best
avoided when we might wish to identify an anti-Robinson form for the mostly
positive above-diagonal entries in a reordered matrix. We note, in a discussion
at the end of this section, certain kinds of gradient conditions we might wish to
identify in a reordered matrix {pg(b;)p(j)}, but in an unfolding context where the
original nonsymmetric matrix (before generating the skew-symmetric proximity
matrix P%%) is used. Here, both subjects and objects are assumed orderable
along the same continuum and subjects generally make their preference judg-

ments as a function of their own (estimated) distances to the objects.

S

Given {pf; } (or possibly just {sign(pfjs)}), an obvious class of measures of
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matrix pattern would be the sum of the above-diagonal entries

dopy (or)sign(pl).

1< 1<y

In fact, because pfjs = sign(pfjs) | p%s |, the index 3, . pij can be interpreted
merely as a weighted version of the one based just on sign(pfjs ). We will assume

in our discussion below that ZKJ- pfjs is being considered, but the obvious

replacement of pfjs

directly.

To carry out the GDPP based on ), _ ; pfjs , the incremental contribution to
the total merit measure of patterning generated by placing the single integer,
say k' (= p(k)) in Ay, — Ax_; at the k" order position can be defined as

by sign(pfjs) could incorporate the use of >, sign(pfjs)

Ty = S P (4.7)

JEAR-1

Letting F(A;) = 0 for A; € Q, the recursion in (2.3) can be executed to
identify an optimal row/column reordering of P°° that will maximize the sum
of the above-diagonal entries over all row/column reorderings of P<%.

The optimization task of reordering the rows/columns of a matrix to maxi-
mize the sum of above-diagonal entries and its solution by the type of DP strat-
egy sketched above was first introduced by Lawler (1964) to identify minimum
feedback arc sets in a directed graph. The optimization task itself, however,
has several other distinct substantive incarnations, e.g., in maximum likelihood
paired comparison ranking (Flueck and Korsh, 1974) or to triangulating an
input-output matrix (Korte and Oberhofer, 1971). For an extensive review of
the variety of possible applications up through the middle 1970’s, the reader is
referred to Hubert (1976). For more up-to-date surveys and current work, see
Charon, Hudry, and Woirgard (1996), Barthélemy, Hudry, Isaak, Roberts, and
Tesman (1995), and Charon, Guénoche, Hudry, and Woirgard (1997).

Measures of matrix pattern for a skew-symmetric matrix P°° that might
be derivable indirectly from an attempt to generate some type of coordinate
representation have a rather different status than they had for a symmetric
matrix P. In the skew-symmetric framework, closed-form least-squares solutions
are possible, thus eliminating the need for any GDPP optimization strategy. For
example, suppose we wish to find a set of n coordinate values, x1, ..., z,, such
that the least-squares criterion,

S0~ (@)

1<y

is minimized. An optimal set of coordinates can be obtained analytically (e.g.,
see Hubert and Arabie, 1986) by letting z; be the average proximity within
column j, ie., z; = (1/n) ), p;SjS’ with a minimum least-squares loss value of
ZKj(pij)Q -ny 00 pif/n)?. Thus, an optimal row/column reordering of
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P55 can be obtained merely by using the order of the optimal coordinates from
smallest (most negative) to largest (most positive). Similarly, if we consider
an equally-spaced coordinate representation obtained by minimizing the least-

squares loss function

0 —alz; — ),

1<
where x1,...,x, are the integers 1,...,n in some order, and « is some multi-
plicative constant to be estimated, the optimal row/column reordering of P9
induced by the integer coordinates would again be generated by the ordering
of (1/n))_; pfjs for 1 < j < n. In the numerical examples given below, these
latter analytic solutions are illustrated in addition to those measures described
earlier defined by an above-diagonal sum. Because no analytic solution is possi-
ble when using these latter measures, a GDPP application is required for their
optimization.

Numerical illustration. To provide a few examples of sequencing an object set
along a continuum based on a skew-symmetric proximity matrix, we reconsider
the data of Table 1.2 and first form two skew-symmetric matrices (one associated
with before showing the motion picture and one after) based on the signed
differences between the proportions of rating one offense more serious than the
other. The absolute values of these differences were previously given in Table 4.1
and used to illustrate the sequencing of object sets based on symmetric proximity
information. We merely indicate by asterisks beside the relevant entries in Table
4.1 which differences were negative before the absolute values were taken; thus,
with this annotation, both the before and after skew-symmetric matrices can be
considered displayed in Table 4.1 as well (although using the object reorderings
obtained from coordinate representations derived from their absolute values).

The optimal orderings based on maximizing the sum of above-diagonal en-
tries for the two skew-symmetric proximity matrices are as follows (where the
offense of being a gambler, #2, is bracketed for emphasis):

before: 9 7 10 [2] 4 11 3 65131 12 8;

after: 9710 4 11 3 [2)65131128.

The before order given above produces a reordered skew-symmetric matrix in
which all the entries above the main diagonal are nonnegative except the (2,11)
pair which has a value of —.02; the after order produces a reordered skew-
symmetric matrix where all entries above the main diagonal are nonnegative
without exception. In comparison with the orderings based on the symmetric
proximities of Table 4.1, there are a few minor local interchanges among (2,4),
(5,6,13), and (1,8,12) that force a little more nonnegativity above the main
diagonals (in comparison with the orderings used in presenting Table 4.1), but
the results are otherwise very consistent. Based on the optimal orderings for
the skew-symmetric information, there is an obvious change in the position of
‘cambler’ (i.e., offense #2) from the 4" least serious before the showing of the
movie to the 7t thereafter. We also note that exactly these same two before and
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after optimal reorderings (in the present case) are also optimal if only the sign
information from the original skew-symmetric proximity matrices is considered.

For completeness we give below the object sequences obtained from closed-
form coordinate representations based on the before and after skew-symmetric
proximity matrices along with some associated descriptive information. Again,
there is an expected consistency with respect to the orderings obtained by maxi-
mizing the sum of above-diagonal entries but with some minor local interchange
differences among (2.4), (5,6,13), and (1,8,12).

Optimal orderings based on coordinate estimation for the skew-symmetric prox-
1mity matrices, obtained using DPSFE1U; the residual sum-of-squares and the
correlations between the skew-symmetric prozimities and the signed coordinate
differences are also provided:

before: 9 7 10 4 2 11 3 5 13 6 12 1 §;
coordinates: -.82 -.78 -.33 -.26 -.23 -.18 -.02 .27 .29 .32 .57 .57 .59;

before: equally-spaced coordinates (& = .12): 5.182; correlation = .739;
estimated coordinates: 3.457; correlation = .852;

after: 9 7 10 4 11 3 2 6 5 1312 1 §;
coordinates: -.81 -.75 -.39 -.26 -.21 -.05 .02 .27 .28 .29 .51 .55 .55.

after: equally-spaced coordinates (& = .12): 3.853; correlation = .788;
estimated coordinates: 2.369; correlation = .896.

The Greenberg Form:

As noted earlier in this section, there is at least one specific context in which
it is of interest to identify whether the matrix P°%, as is, may be row/column
reorderable to satisfy a particular set of gradient conditions within its rows
and columns. Explicitly, suppose the set S of n objects is assumed orderable
along a continuum, and in addition, a group of judges can be placed along the
same continuum so that when asked which of two presented objects they would
prefer, the response is made according to the closer distance between the judge’s
location and the location of the two objects presented. If the skew-symmetric
matrix P%% = {pfjs} is constructed by letting p%s = the proportion of judges
preferring object O; to O; — the proportion of judges preferring object O; to
O;, then when P®% is row/column reordered according to the placement of
the objects along the continuum, say as {pg(b;)p(j)}, the specific set of gradient
conditions we give below will be satisfied (these were first observed and discussed
by Greenberg, 1965, and will be referred to as defining a Greenberg form for
the matrix {pf(si)p(j)}):
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) IS . oSS SS ; . ; .
W%th%n rOWS: pp(m)é? < pp(i>pgjg for1 <i< A <j < n
within columns: Pot)0(5) > Doiyels) forl<i<k<j<n.

In words, the reordered matrix PES = {pg(*S;)p(j)} has a Greenberg form if the
entries within a row moving to the right from the main diagonal never decrease,
and if the entries within a column moving up from the main diagonal never
increase. (In comparison with the gradient conditions for an anti-Robinson
form for a symmetric matrix P, the obvious difference here is in the reversal
of the within-column inequality when identifying a Greenberg form for a skew-
symmetric matrix P%%.)

The natural merit measures of how well a particular reordered skew-sym-
metric proximity matrix satisfies the Greenberg gradient conditions and which
could be used in the GDPP to order the objects along the continuum, would be
the analogue of (4.1):

SS SS SS SS
Y FW e Paineo) t D TG00 Patiei):

i<k<j <k<j

but where in contrast to (4.1), the second within-column comparison term,
sS S5 : : 32

ZK,KJ. f(pp(i)p(j), pp(k)p(j)), has an interchange of its two components.

Numerical illustrations. To give an example of the use of the Greenberg
gradient conditions in optimally ordering a set of objects along a continuum,
we use a data set reported in Orth (1989) on the preferences for five German
political parties collected in 1980. The five parties are ordered below according
to their position on a political left-right dimension:

DKP: Deutsche Kommunistische Partei (German Communist Party)
SPD: Sozialdemokratische Partei Deutschlands (Social Democratic Party)
FDP: Freie Demokratische Partei (Free Democratic Party)

CDU/CSU: Christliche Demokratische Union/Christliche Soziale Union
(Christian Democratic Union/Christian Social Union)

NPD: Nationaldemokratische Partei Deutschlands

(National Democratic Party)

Based on the complete preference rankings for 1316 German voters, Table 4.2
provides a 5 x 5 skew-symmetric matrix among the five political parties derived
from the choice proportions.

The optimal orderings for the matrix of Table 4.2 for both the weighted and
unweighted gradient measures are given below, along with their indices of merit,
and descriptive ratios defined by the direct extension of equation (4.4) to the
Greenberg gradient conditions. In addition, the indices of merit are given if the
parties were merely ordered, as discussed by Orth (1989), according to their
position on the political left-right dimension.

unweighted gradient:

optimal order: DKP — SPD — CDU/CSU — FDP — NPD
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Table 4.2: A skew-symmetric proximity matrix among five German political
parties, obtained from the complete preference rankings for 1316 German voters.

party DKP SPD FDP CDU/CSU NPD
DKP x -.982-968 -862 -.015
SPD 982 x 181 131 933
FDP 968 -.181 x 114 .964
CDU/CSU .862 -.131 -.114 X .945
NPD .015 -.933 -.964  -.945 X

index = 16 = (18—2);
ratio = .800 = (18—2)/(18+2)

left-right order: DKP — SPD — FDP — CDU/CSU — NPD
index = 14 = (17-3);
ratio = .700 = (17—3)/(17+3)

weighted gradient:

optimal order: DKP — FDP — SPD — CDU/CSU — NPD
index = 11.707 = (11.771—.064);
ratio = .989 = (11.771-.064)/(11.7714.064)

left-right order: DKP — SPD — FDP — CDU/CSU — NPD
index = 11.683 = (11.769—.086);
ratio = .987 = (11.769—.086)/(11.769+-.086)

Obviously, for either the weighted or unweighted gradient measures, the left-
right order is mot optimal and better orderings can be identified. This obser-
vation casts doubt on the reasonableness of the initial assumption that voters
and political parties are jointly orderable along a common left-right continuum
and that voters would prefer those parties that are closer to their own loca-
tions. The two extreme parties, DKP and NPD, are placed appropriately at
the ends of the continuum in the optimal orderings given above, but there is
difficulty with the three intermediates, SPD, FDP, and CDU/CSU. Orth (1989)
addresses this point explicitly and notes that because coalition governments
involving SPD, FDP, and CDU/CSU have been the norm for the last several
decades, consistent preferences based on a clear-cut left-right continuum are
probably inherently difficult to observe for these intermediate parties.

Besides attempting to obtain an ordering of the parties along a continuum
that would induce an approximate Greenberg form within the rows and columns
of the reordered matrix, it is also possible to reorder the matrix of Table 4.2 using
the earlier criterion of maximizing the sum of above-diagonal entries. Doing so
is an attempt to define a dominance ordering among the political parties. An
optimal reordering of Table 4.2 maximizing the above-diagonal sum is: SPD —



4.1. THE OPTIMAL SEQUENCING OF A SINGLE OBJECT SET 69

FDP — CDU/CSU — NPD — DKP (the maximum sum is .610, and all above-
diagonal entries are non-negative.>® This specific ordering can be interpreted as
a consensus (or societal) ordering for the political parties over the set of judges.

We might note in closing this illustration that there is a very extensive liter-
ature on the use of binary choice proportions in obtaining a transitive societal
ordering for a set of objects (that form the items of choice) by maximizing the
above-diagonal sum in a reordered proximity matrix. The reader is referred to
Bowman and Colantoni (1973; 1974) or the review by Hubert (1976) for many
further details.

4.1.3 Two-Mode Proximity Matrices

As noted in the introduction to Chapter 4, if the available proximity data are
between two distinct sets, S4 and Sg, and in the form of an n4 Xn g nonnegative
dissimilarity matrix Q, a symmetric proximity matrix PAZ can be constructed
for the single object set S = Sy U Sp (n = ng + np) that will have missing
entries for object pairs within S4 and within Sg. An optimal joint sequencing
of S4 U Sg along a continuum can then be attempted using some measure of
matrix patterning defined for P4% | with the obvious candidates being the same
as those considered in Section 4.1.1. Either the weighted or the unweighted
gradient measures of (4.1) based on the function f(-,-) extend directly to a
use with PAZ merely by defining f(z,) to be identically 0 if either z or y
refers to a pairwise proximity within Sa or within Sg (and thus, either z or
y refers to a missing proximity); applications of these measures will be given
in the numerical examples. In contrast, however, the obvious analogues for
the measures of matrix patterning based on coordinate representation fail to
provide a way of constructing merit increments that are independent of the
order of the objects previously placed (as was briefly noted in the introduction
to this monograph), and thus cannot be directly implemented within a GDPP
framework. We will return to this topic at the end of this section and give a
more detailed explanation of why this difficulty arises.

Analogous to the case of complete symmetric proximity matrices P, the use
of the weighted or unweighted gradient measure to reorder P4# optimally can
be interpreted as an attempt to find a row/column reordering as close as possible
to an anti-Robinson form in its nonmissing entries. In turn, any reordering of
P4Z must also induce separate row and column reorderings for the original
na X ng proximity matrix Q. If P4% can be placed in a perfect anti-Robinson
form (as, for example, when a one-dimensional Euclidean representation exists
for the objects in S =S4 U Sg, or a perfect ultrametric defines the nonmissing
entries in P“5). the reordered matrix Q would also display a perfect order
pattern for its entries within each row and within each column. Explicitly, the
entries within each row (or column) would be nonincreasing to a minimum and
nondecreasing thereafter. Such a pattern can be called a Q-form (within rows
and within columns) in the reordered matrix Q (as named by Kendall, 1971a;
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1971b), and has a very long history in the literature of unidimensional unfolding
(e.g., see Coombs, 1964, Chapter 4; Hubert and Arabie, 1995a).

In the application of the weighted or unweighted gradient conditions for
reordering a symmetric matrix P, one possible variation discussed was to allow
the gradient measures (defined above the main diagonal) to be optimized only
within rows (or equivalently, only within columns). For two-mode data and the
derived matrix P45, a different restriction on gradient comparisons may also be
useful. Specifically, suppose that the gradient conditions are used to define an
optimal reordering of P4# both within the rows and columns of P4# but only
for those in which the common object on which a gradient comparison is made
is a member of Sp (containing those objects forming the columns of Q). This
approach can be carried out directly in the use of the gradient measures in (4.1)
merely by defining f(z,y) to be identically zero whenever the object associated
in common with the two proximities z and y is not a member of Sg. If this
restricted measure is adopted as the means to reorder P4# optimally, and if
there are no violations of these gradient conditions in the optimally reordered
matrix P4% | then the induced reordering of the n4 x ng matrix Q would have
a perfect Q-form within each column (but not necessarily within each row).
More generally, the attempt to reorder P“# optimally based on this restricted
measure can be interpreted as a mechanism for reordering the rows of Q to
approximate a Q-form within columns (alone). Analogously, if the function
f(z,y) is defined to be identically zero when the object associated in common
with the proximities z and y is not a member of S 4, then an optimal reordering
of PA% can be interpreted as a mechanism for reordering the columns of Q to
approximate a Q-form within rows (alone).

In addition to these possible variations as to how the weighted or unweighted
gradient conditions can be evaluated in a reordered matrix, there is one addi-
tional alternative on the choice of an index for matrix patterning (although for
brevity, we will not explicitly illustrate it in our numerical examples below).
Instead of maximizing the weighted or unweighted gradient conditions as they
have been defined, we can also allow the minimization of just the violations
(either weighted or unweighted). For some data sets, slightly different optimal
joint orderings of S4 and Sp might arise when emphasizing the latter measure
because it relies only on the reduction of gradient violations and not on the max-

imization of a difference between the gradient nonviolations and violations.**

Numerical illustrations. As a numerical example of optimally reordering a
two-mode proximity matrix Q, we will use the data of Table 1.3 on the dis-
similarities between the goldfish retinal receptors (the eleven rows of Q) and
the specific wavelengths of light (the nine columns of Q). The joint optimal
sequencings of the rows/columns of the derived matrix PAZ are given below
for the weighted and unweighted gradient measures, along with the relevant
descriptive information (the column objects are shown by an underline in each
joint ordering).
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Optimal orderings for the combined row/column object set based on the gradient
measures, obtained using DPSE2U :

within row and column unweighted gradient:
jointorder: 3101157821462715689349

row order: 1011571462893
column order: 382715649

index = 464 = (517—53); ratio = .814 = (517—53)/(517+53)

within row and column weighted gradient:

joint order: 38 10112571714625699483
row order: 1011571462983

column order: 382715694

index = 31025 = (32019—994); ratio = .940 = (32019—994)/(32019+994)

Although there is some variation in how the row and column objects are com-
bined for the weighted and unweighted gradient measures in the joint orders
given above, the separate row and column reorderings are very consistent, with
one adjacent receptor interchange for 8 and 9 and one adjacent wavelength in-
terchange for 4 and 9. The column ordering of the stimuli for the unweighted
ing wavelength (for the weighted gradient measure, the order of the two lowest
wavelength stimuli of 4 and 9 are reversed but otherwise the order is the same
as for the unweighted gradient measure).

As noted in our earlier discussion, we can allow some variation in how the
gradient measures are obtained and particularly in allowing the comparisons
to be defined only within the row or only within the column objects of the
original two-mode matrix Q. For example, if gradient comparisons are limited to
being within the rows (the receptors) of Q to emphasize an approximate Q-form
over columns (the light stimuli), the optimal orderings of the eight wavelength
stimuli for both the unweighted and weighted gradient measures turn out to
be identical to that obtained for the unweighted gradient measure both within
index values (i.e., within-row unweighted gradient: index = 264 = (289—25);
within-row weighted gradient: index = 19293 = (19926—633)).

In closing this section, we will illustrate below the difficulties encountered
in a two-mode context when we attempt to derive a measure of matrix pattern
based on a unidimensional coordinate representation that could then be applied
in the GDPP framework (which would be intended to parallel the measure in
(4.6) for a one-mode symmetric proximity matrix P). The two-mode coordinate
representation task can be phrased as follows: given the n x n matrix P4% =
{pf}B} (where for computational convenience the asterisk entries denoting the
missing values can be considered replaced by zeros) and an n x n indicator
matrix W = {w;;}, where w;; =0for 1 <i,5 <na;na+1<i,j<n,and =1
otherwise, find a set of n ordered coordinate values, z; < --- < x, (such that
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> i £k = 0), minimizing the least-squares criterion

AB 2
pr(i)p(j)(pp(i>p(j)— | x5 —x; |)°

i<

(Obviously, the purpose of the indicator value w,;y,(;) is to choose only squared
discrepancies that involve the nonmissing proximities in P45.) Relying on
the extensive work of Heiser (1981, Chapter 6), a solution to the (necessary)
stationary equations derived for the least-squares loss function would produce
a set of coordinates x; < --- < x, (where ), x; = 0) and an associated
permutation p(-) of the n objects in S (= S4 U Sg), such that if we let

k-1 n
K(p(k)) = D> Wotk)p(i)Potie(i) = D, Wolk)p(i)Po(k)pli):
7=1 i=k+1

and if p(k) is a row object in Sy, then
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Now, the least-squares loss function for any permutation p(-) can be rewritten
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= S GRS (K(p(h))
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Thus, if p(-) is derived from a stationary solution, all the nonconstant terms are
zero except the last three in the equation above, i.e.,

é S OEEW) S (K (o)

na
p(k)eSa p(k)ESE

1
nanp

+

ST OK(k) S K(p(k)). (4.8)

p(k)eSa p(k)eSe

Analogous to results from using a symmetric proximity matrix with (4.6), if
one could show that maximizing (4.8) leads to a stationary solution and if (4.8)
could produce additive merit increments (again, analogous to the use of (4.6)), a
GDPP recursive solution could be generated. Unfortunately, it does not appear
possible to develop such additive merit increments based on (4.8) because of the
presence of the last term

1
nANgp

Yo K(k) Yo Kpk).

p(k)ESa p(k)ESE

which requires knowledge of how an entity in A;_; was reached (i.e., a knowledge
of the values of K (p(k)) for those objects p(k) € Ai_1), and the latter depends
on the order of object placement in the construction of Aj,_;. If only the first two
terms in (4.8) were present, a GDPP recursive process could be carried out, but
with the inclusion of the third, it appears that an obvious GDPP specialization
is not possible.

4.1.4 Object Sequencing for Symmetric One-Mode Prox-
imity Matrices Based on the Construction of Opti-
mal Paths

The type of GDPP recursive process for the optimal sequencing of an object
set introduced in Section 4.1 (and implemented in the preceding sections 4.1.1
through 4.1.3) is based on a definition for the sets Q, 1 < k < n, characterized
by all subsets containing k of the subscripts on the objects in S. There is,
however, at least one other possibility for how these basic sets might be redefined
and how a recursive process might then be carried out, that would allow a
different measure of matrix patterning to be used in optimally reordering a
symmetric one-mode proximity matrix P. The specific variation discussed here
involves the construction of a sequencing of the objects in S by identifying
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an optimal path between the objects (that includes each object exactly once)
based on some function of the proximities between adjacently-placed objects
(for example, we might minimize or maximize either the sum of such adjacent
proximities or their maximum or minimum). The matrix pattern being assessed
in the reordered matrix P, would involve the magnitudes of those proximities
immediately adjacent to the principal diagonal, i.e., py;)p(i41) for 1 <7 <mn—1.
For example, in one manifestation of the various optimization options possible,
we may wish to minimize the sum

n—1
Y Potiyparn):
i=1

over all possible reorderings of P.

To be explicit in the required tailoring of the GDPP (and for the moment
emphasizing the minimization of the sum of adjacent object proximities in con-
structing a path among the objects in S), a collection of sets 1,...,Q, is
defined (thus again, K = n) so that each entity in Qf,1 < k < n, is now an
ordered pair (A, j). Here, Ay is a k-element subset of the n subscripts on the
objects in S, and ji is one subscript in Ay (to be interpreted as the subscript
for the last-placed object in a sequencing of the objects contained within Ay).
The function value F(( Ay, jx)) is the optimal contribution to the total measure
of matrix patterning for the objects in A; when they are placed in the first k
positions in the (re)ordering, and the object with subscript ji occupies the k",
A transformation is possible between (Aj_1, jrx—1) € Qp—1 and (Ayg, ji) € Qi if
Ap—1 C A and Ay — A1 = {jx} (i.e,, Ap_1 and Ay differ by the one inte-
ger ji). The cost increment C((Ar_1, jr—1), (Ag, jr)) is simply pg;, ), for the
contribution to the total measure of patterning generated by placing the object
with the single integer subscript in Aj, — Aj,_; at the k' order position (i.e., the
proximity between the adjacently-placed objects with subscripts ji—1 and jj).

As usual, the validity of the recursive process requires the incremental cost
index, C((Ag—1,Jk-1), (Ak: k) = P(jr_1)sx» to depend only on (Ag—1,jr—1) €
Qr—1 and (A, ji) € Q. but in contrast to the GDPP specializations of Sections
4.1.1 to 4.1.3, we now know which was the last-placed subscript j._; in Aj_1;
thus, cost increments can be defined using those objects with subscripts 751
and j; as the last-placed indices in Aj_1 and Ay, respectively. The values
of F((A1,71)) can be assumed zero for all (A;,7;) € i, and the recursive
process can be carried out from 1 to £2,. The value defined by the minimum
of F((An, jn)) over all j,,, 1 < j, < n, for (A,,j,) € Q, and A4, = {1,2,....n}
provides the optimal (minimal) value for the sum of adjacent proximities over all
paths among the n objects in S. As always, an optimal row /column reordering of
P attaining this minimal value can be identified by working backwards through
the recursion.

There are several variations on the optimal construction of a path that can be
directly implemented through the type of GDPP specialization just described.
One is an interpretation through the use of merit increments (rather than cost
increments), M ((Ag—1,Jk—1): (Ak: Jk)) = P(j,_1)50+ and adopts a maximization



4.1. THE OPTIMAL SEQUENCING OF A SINGLE OBJECT SET 5

optimization criterion. This change is immediate and offers no difficulty because
the GDPP recursion given in (2.3) can be applied. Similarly, a min/max or
max/min criterion can also be used merely by selecting the general recursive
structure of (2.5) or (2.6), which would identify optimal paths among the objects
in S that either minimize the maximum adjacent proximity or maximize the
minimum adjacent proximity.>® In contrast to the GDPP recursion of Sections
4.1.1 through 4.1.3, there are now greater storage requirements because in the
construction of optimal paths, the sets (,1 < k& < n, are defined by pairs
(Ag, Jx) € Q. In any case, this general type of recursive process defined on sets
having this latter form was first described independently by Bellman (1962) and
Held and Karp (1962) for what is called the traveling salesman problem. We
will return to this specific topic briefly at the end of this section.

The symmetric proximity matrix P used in the construction of an optimal
path between the objects in S has been considered arbitrary to this point.
There are, however, several substantive applications for this optimization task,
already suggested in the literature and which depend on specific definitions
of how P may be constructed from other data available on the objects in S.
To be explicit, and to mention briefly a few of these applications (for a more
detailed review, see Hubert and Baker, 1978), suppose an n x p data matrix
X = {x;;} is given, where the rows of X refer to the objects in S, and the
columns of X to p attributes measured on each of the n objects. Depending on
how P is constructed, several data analysis applications can be given as specific
exemplars:

Profile smoothing. Given an n x p data matrix X, one visual means for
displaying the information it contains is first to place the n objects along a
horizontal axis and then graph the p profiles for each attribute over the n objects.
Depending on the object order used along the horizontal axis (as discussed by
Hartigan, 1975, pp. 28-34, Spéath, 1980, Chapter 5, and Wegman, 1990), there
may be a way of reducing the complexity of the graphical representation by
minimizing the number of instances in which the profiles cross. If a proximity

matrix P = {p;,} is defined as

Pij = E 9(Tip, Tipr . T i),
<k’

where

Lif (zap — 2o ) (2 — 2j20) <O

Lilos Ljlt  Lifs Lift ) = .
9(ik, Tk Tt Tje) {O otherwise,

then the ordering of the objects in .S, minimizing the sum of proximities between
adjacent objects along the path, also minimizes the number of instances in which
the profiles cross.

Data array reordering. To help interpret the patterning of data present in X,
it may be of value to reorder the rows (and possibly the columns as well) of X so
that the numerically larger elements of the array are placed as close as possible
to each other. As discussed by McCormick, Schweitzer, and White (1972) (and
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clarified by Lenstra, 1974; see Arabie and Hubert, 1990, for a review), one
possibility would be to define a proximity matrix P = {p;;} among the n rows
of X (now, with a similarity interpretation) through a simple cross-product
measure over the p column attributes, i.e.,

Pij = E Tk X gk
k

The optimal path sought among the n objects would maximize the sum of
proximities between adjacent objects, and the object order thus obtained could
be used to reorder the rows of X.

As a related suggestion for possibly reordering the rows of X to help interpret
the pattern of information present, Kendall (1971a; 1971b) observed that if the
rows of X could be reordered to display a perfect Q-form within columns (see
Section 4.1.3), and if P = {p;;} is defined as

pbij = Z max(Tig, Tjk),
k

then P can be reordered to display a perfect anti-Robinson form. Using this
same reordering on the rows of X, a perfect Q-form within columns would be
displayed. Thus, one possible strategy for attempting to find an approximate
Q-form for X would be to identify the minimum length path using P and use the
object order so identified to reorder the rows of X. (Such a method obviously
depends on the result that if any proximity matrix P can be reordered to display
a perfect anti-Robinson pattern, then the minimum-length path can be used to
identify such an ordering.)

Numerical illustrations. As examples of constructing optimal paths based
on a symmetric proximity matrix P, we again consider the before and after
submatrices of Table 4.1 on the rated seriousness of thirteen offenses. The
two optimal reorderings minimizing the sum of proximities between adjacently-
placed objects are given graphically in Figure 4.1, where the respective optimal
lengths are 2.30 and 2.34 for the before and after data. The two orders are
very consistent with the results given earlier (e.g., with the explicit coordinate
representation using the measure of matrix pattern in (4.6)); again, there are
some differences among offenses 5, 6, and 13, which are very close to one another.

Although our discussion of constructing optimal paths based on P has been
phrased as obtaining a sequence of adjacent objects that includes each object in
S exactly once, and some function of the n — 1 proximities between adjacently-
placed objects, the more traditional discussion of optimal path construction in
the literature (e.g., see Lawler, Lenstra, Rinnooy Kan, and Shmoys, 1985, for
an extensive review in book form) is concerned with the generation of optimal
circular paths in which each object is also included exactly once but the path
is closed and now includes n proximities between the adjacently-placed objects.
This topic is typically discussed under the label of the Traveling Salesman Prob-
lem, where interpretatively, a salesperson must visit each of n cities once and
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Before: 02
02

16 72 26 9 16 36 | 28 28

9 7 10 42 118 1356 5 12 8/1
After:

02 02
28 58 34 06 .24 28 ]‘i 28 24
9 7 10 411 3% 5613 12 81

Figure 4.1: The optimal orders for the before and after matrices of Table 4.1
minimizing the sum of proximities between adjacently-placed objects.

only once, return to the city of origin, and minimize the length of the tour. The
type of GDPP recursion used for the construction of optimal linear paths can
be modified easily for the construction of optimal circular paths:

Choose object O7 as an (arbitrary) origin and force the construction of the
optimal linear paths to include Oy as the initial object by defining F((A41,j1)) =
0 for j; = 1 and A; = {1}, and otherwise by a very large positive or nega-
tive value (depending on whether the task is a minimization or a maximiza-
tion, respectively). The function values F((4,,j,)) for all j,,1 < j, < n for
(An,Jn) € Q, and A, = {1,2,...,n} can then be used to obtain the optimal
circular paths depending on the chosen optimization criteria as follows:

minimum path length: min[F((A,., jn)) + pj,1):
maximum path length: max[F((A4,, j,)) + pj.1l;
minimax path length: min[max(F((An,7n)): Pin1)l;
maximin path length: max[min(F((Ax, jn)). Pj.1)]-

Numerical illustrations (continued). As an example of how such an opti-
mization might be carried out, Figure 4.2 represents an optimal circular path
for the proximity matrix from Shepard et al. (1975) on the ten digits of Ta-
ble 1.1, and minimizing the sum of the ten pairwise input proximities between
the adjacently-placed objects (the minimal value is 3.411). Interpretatively, the
multiples of 2 (2,4,8) and of 3 (3,6,9) appear at adjacent locations, with the
odd numbers that are not multiples of 3 (5,7), and the identities, (0,1), placed
between these two groups and arranged to be as consistent as possible with digit
magnitude, e.g., 5 and 6, and 7 and 8 are adjacent; and 0 and 1 are placed close
to 2 and 3.

In closing this section, we make three final observations about the type of
GDPP recursive process discussed above. First, although it has been explicitly
assumed that the proximity matrix P is symmetric, if an n X n nonsymmetric
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Figure 4.2: An optimal circular ordering of the ten digits that minimizes the
sum of proximities from Table 1.1 between adjacently-placed objects.

matrix were to be used, then the same recursive process can be implemented
to construct optimal directed linear or circular paths among the n objects in
S, where each link in the path has an implied direction, i.e., p;; (pj;) is the
proximity from object O; to O; (or from object O; to O;).*® Second, it would
be possible to redefine further the basic sets (5, 1 < k < n, to include additional
specific information about the placement of certain objects other than just the
last, e.g., we might define Qj, to be (A, ji, l,). where jj, is the last-placed object
in the set A and l; denotes the second to the last. Although possible to do,
this latter type of extension would obviously require immensely greater storage
space; therefore, we will not explicitly pursue any of these generalizations here.
Finally, although we have suggested the use of a GDPP recursive solution for the
task of locating optimal paths (given the obvious emphases of this monograph),
there are alternative optimization approaches that would be much better for
dealing with large object sets and which could also provide optimal solutions
(much as for the LA task introduced in Section 2.1). A detailed and comprehen-
sive survey of these optimization options for the construction of optimal paths
is available in the previously cited volume edited by Lawler et al. (1985).
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4.2 Sequencing an Object Set Subject to Prece-
dence Constraints

In the presentation of object sequencing in the various subsections of 4.1, the
search for optimality using the GDPP was carried out without any constraints
on the object orderings. In all the cases discussed, however, it is straightfor-
ward to include precedence constraints that must be satisfied by the object
orderings through the inclusion of an n x n indicator matrix V.= {v;;}. The
latter is defined over object pairs formed from S (where S may be S4 U Sg for
a two-mode proximity matrix), by letting v;; = 1 if O; must precede O; in an
(optimal) ordering, and 0 otherwise. Thus, by the device of incorporating V
and not allowing transitions to occur between entities in ;_; and €, when-
ever the precedence conditions are not met, an optimal sequencing of S (or a
joint sequencing of S4 and Sg) is sought that must satisfy all the constraints
formalized by V.37

Although precedence constraints can be incorporated directly into the use
of the GDPP by the mechanism of including a precedence matrix V, it is also
possible, at least for a two-mode proximity matrix and in the joint sequencing of
S4 and Sp, to use precedence constraints given by linear orderings (for example)
of the row and/or column objects to reduce the storage requirements needed by
an application of the GDPP. In particular, if the row and/or column objects
in S4 and Sg are subject to linear order constraints, the sets Qy,...,Qx over
which the recursive process is carried out can be redefined, thereby allowing
larger object sets to be jointly sequenced optimally.

To be explicit, if there is an assumed linear ordering of the column ob-
jects in Sg = {c1,..., ¢y} (but none is assumed for the row objects in Sy =
{r1....,7,}) that without loss of generality can be taken in the subscript order
€1 < C2 < -+ < Cpy, then Q for 1 < k < n may be defined so that each entity
in Q is of the form (B, ji), where jj is an integer from 0 to k indicating that
the first j; column objects have been placed, and By, is a k — j;, element subset
of the row object subscripts {1,...,n4} (which is the empty subset () when
k—jr = 0). The function value F((Bj, ji)) denotes the optimal contribution to
the total measure of matrix patterning when the first &k positions in the reorder-
ing are occupied by the first j, column objects and the k — j, row objects in By.
Thus, because §2; contains the members (0,1), ({1},0),...,({na},0), and as-
suming, say, the use of the weighted or unweighted gradient measures of matrix
pattern of Section 4.1.3, F((B1,71)) can be assumed zero for all (By,j1) € Q4,
and the recursive process carried out from €1 to ,. The possible transforma-
tions between (By_1, jg—1) € Qg—1 and (B, ji) € Qp are:

(1) ji—1 = jr and Bi_1 C By, where Bj,_j — By, contains a single row object
placed at the k** order position:

(2) Jk—1 + 1 = jx and Bg_1 = By, where the single column object with
subscript jj is placed at the k** order position.

The optimal value is achieved for the one entity ({1,...,n4},ng) € Q,, ie.,
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F(({1,...,na},np)); as usual, working backwards through the recursion iden-
tifies an optimal ordering of the n = n4 + ng objects in S = S4 U Sg, where
the column objects in Sp appear in the subscript order ¢ < c2 < -+ < Cpp-
(Obviously, order constraints on the row objects alone [and not on the column
objects] could be handled merely by reversing the roles of the row and column
objects in the original n4 X ng proximity matrix Q.)

If linear orderings can be assumed for both the row and column objects in
Sa and Sp (that again without loss of generality can be taken in the subscript
orders, ¢; < ¢a < -+ < ¢y and 1 < r9 < -+ < 71,,, respectively), an even
more substantial reduction in storage requirements can be achieved. Here, the
sets Q for 1 < k < n would be defined so that each entity in €} is of the
form (iy, ji,), where both i;, and jj;, are integers within the range 0 to k, subject
to i + jr = k, which indicate that the first iy, row objects and the first j
column objects have been placed. The function value F((if,ji)) denotes the
optimal contribution to the total measure of matrix patterning when the first k
positions in the reordering are occupied by the first 7;, and the first j; row and
column objects. The possible transformations between (i;_1,jx—1) € Qp—1 and
(ik,jk) € Q) are

(1) jr = jr—1 and i, = i1 + 1
(2) Jr = Jr—1 + 1 and iy, = ip_1.

Beginning with €4, which contains the entities (i1, j1), where i1 + j1 = 1 (i.e.,
the two pairs (0,1) and (1,0)) and F((i1,71)) = 0 (for, say, the weighted or
unweighted gradient measures of matrix pattern of Section 4.1.3), the recursive
process proceeds from Q; to ©,. The latter contains the single entity (na,ng),
and F((na,ng)) defines the optimal value for the chosen measure of matrix
pattern. The optimal ordering is again identified by working backwards through
the recursion from €2, to 4.

The type of DP recursive process just described for finding a joint sequenc-
ing of the sets S4 and Sp when both are subject to linear order constraints
was first described in Delcoigne and Hansen (1975) for a particular measure of
matrix patterning discussed by Gordon (1973). This measure of matrix pat-
terning (to be referred to as the DHG measure) for a joint sequencing of row
and column objects is the sum of the proximities between the row objects and
the adjacently-placed column objects plus the proximities between the column
objects and the adjacently-placed row objects. So, assuming proximity has a
dissimilarity interpretation, an optimal joint sequencing would minimize the
DHG measure. (As one technicality, if there is only a single adjacent column
object for a particular row object in the joint sequence, then the proximity to
this single adjacent column object is doubled; similarly, if there is only a single
adjacent row object for a particular column object in the joint sequence, then
the proximity to this single adjacent row object is doubled). The same form of
the recursive process just described can be carried out for the DHG measure
by defining F((i1,71)) for (i1,71) € Q1 to be 2¢11, and the cost increment in
moving from (i;_1, Jx—1) € Qr—1 to (ig, ji) € Qi to be either
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(1) @iy jy. +4ir (Go+1) When ji = jr—1 and i}, = i,_1+1 (if jp = 0, the increment
is 2¢;, (ju+1): if jr = np, the increment is 2g;, 5, ).

(2) Girji +(in+1)j, When ji, = jr1+1and iy 1 = iy, (if i = 0, the increment
is 2q(i,+1)j,: if iy = na. the increment is 2q;, 5, ).%®

Numerical illustrations. To provide an example of imposing row and/or
column constraints, we will again use the 11 x 9 data matrix of Table 1.3 on
the dissimilarities between the eleven goldfish retinal receptors and the nine
specific wavelengths of light. In Section 4.1 the optimal orderings were provided
for the combined row/column object set based on both the unweighted and
weighted gradient measures. The row orders for the two gradient measures
differed by an adjacent receptor interchange for 8 and 9; the separate column
orders differed by the adjacent wavelength interchange for 4 and 9 with the
unweighted gradient measure giving an ordering that was completely consistent
with decreasing wavelengths. To illustrate the effect of imposing row and/or
column constraints, we use the weighted gradient measure in the comparisons
below but impose for the column constrained joint sequencing that column order
obtained for the unweighted gradient measure (ie., 3 -8 -2 -7 — 1 —
5 — 6 — 4 — 9). When the additional row constraints are to be imposed,
we use the row order obtained also from the unweighted gradient measure (i.e.,
0—-1-5-7—-1—-4—6—2—8—9—3). To allow comparison, the
unrestricted joint sequencing of S4 and Sg from Section 4.1 is also reproduced
below based on the weighted gradient measure; also, in all cases the descriptive
ratios obtained from equation (4.4) are provided.

Unrestricted joint sequencing of Sa and Sg, obtained using DPSE2U (taken
from Section 4.1):

3810112571714625699483

weighted gradient measure = 31025 = (32019 — 994);

ratio = .940 = (32019 — 994)/(32019 + 994)

Column order restricted joint sequencing of Sa and Sg, obtained using DPSE2R:

381011257171462561[949]83

weighted gradient measure = 30985 = (31998 — 1013);

ratio = .939 = (31998 — 1013)/(31998 + 1013)
Row and column order restricted joint sequencing of Sa and Sp, obtained using
DPSE2R:

38101125717146256[4989]3

weighted gradient measure = 30867 = (31933 — 1066);
ratio = .935 = (31933 — 1066) /(31933 + 1066)
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DHG index of matrix patterning:
3108115721476125684938
DHG index = 2317.0

In comparison with the unrestricted joint sequencing of S4 and Sg, the impo-
sition of row and/or column constraints does have an effect, albeit somewhat
small, in the optimal weighted gradient measures. Also, the comparison of the
joint sequencings for the DHG and weighted gradient measures does suggest that
the specific type of intermixing of the row and column objects will be influenced
heavily by the choice of index.

Although we will not pursue the topic in any further detail here, it may
be of some interest to note an extensively developed area in the literature that
addresses the task of comparing two linearly-ordered object sets (in contrast
to combining them and finding an optimal joint sequencing), and where the
preferred strategy of comparison is again through a DP recursive process. The
volume edited by Sankoff and Kruskal (1983) provides a variety of applications to
the comparison of genetic sequences, time-warping problems in the processing
of speech, string-correction methods in computer science, among others. In
our notation, the comparison process can be characterized as follows: we are
given two sets Sy = {ry,...,r,,} and Sgp = {c1,..., ¢y}, where it is assumed
that the linear orderings within S4 and Sg are r1 < ry < --- < r,, and
€1 =<y < -+ =< ¢y Bach of these sequences can be augmented by the inclusion
of null elements, say @, to produce two new sequences, 7"1 < 7‘/2 <=7

and ¢, < ¢y < - _<C;LA+TLB7
some integer j, 1 < j < mna, and each c; is either a null element @ or c; for some
integer j, 1 < 7 < ng, and the nonnull entities in either sequence are in their
given linear ordering. The measure of comparison between the two sequences is

’ ’ .
based on the one-to-one correspondence between r; and c; , i.e.,

. nA+nE
where each r; is either a null element @ or r; for

nat+np

> ulr;e), (4.9)

=1

where the costs, u(r;, c;), are assumed to be given and depend on whether 7";- and
c; are both nonnull entities, or if either 7"; or c; or both are null entities (it can be
supposed that u(r;, c;) = 0 whenever 7"; and C; are both null entities because they
could merely be deleted from their respective sequences, and thus, would play
no role in assessing the dissimilarity of the two sequences). Computationally, we
wish to minimize the index in (4.9) and find an optimal matching between the
two sequences (as augmented by the possible inclusion of null entities in each);
the optimal value is assumed to provide a reasonable measure of dissimilarity
between the two original (linearly-ordered) sequences.

An application of the general form of the GDPP to minimize the index in
(4.9) is very direct. The sets Qq,...,Q, (where n = ny + ng) can be defined
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so that € contains the ordered pairs (iy,jx), where iy and jj are integers
(0 < <k; 0<jr <k) and refer to the indices in the ordered sets S4 and Sg
matched up to this point, i.e., iz, row objects and k& — 7, null entities have been
matched with j; column objects and k — jj, null entries. The set €; contains
four members, (0,0), (0,1),(1,0), and (1,1), that correspond to the matching
that occurs in the first position, i.e., this matching can be, respectively, two
null entities, a null entity and ¢y, 1 and a null entity, or r; and ¢;. The values
F((i1, j1)) for (i1, J1) € Q4 are assumed given as u(@, @), u(@, c1), u(ry, @), and
u(ry, cp) for these four pairs. A transformation of an entity in (ix—1,Jr—1) €
Qr—1 to an entity (i, jr) € Q is possible if

(a) tp—1 = U, jp—1 + 1 = Ji, (with a cost increment of u(@, ¢, ));
(b) ix—1+ 1 =1y, Ju—1 = Jr (with a cost increment of u(r;,,@));
(¢) ig—1 + 1 =1y, jr—1 + 1 = jp (with a cost increment of u(r;,,c;,)):
(d) ip—1 =ik, Js—1 = Jx (with a cost increment of u(@, @) = 0).

Using the minimization form of the GDPP in (2.4), the recursion proceeds from
Q1 to Qp, where Q,, contains the single entity (na,ng). The optimal value
for a matching of the two ordered sequences is defined by F((na.ng)), with
the actual solution (or matching) obtained by working backwards through the
recursive process. As noted, the very extensive literature on this comparison
task can be accessed through the volume edited by Sankoff and Kruskal (1983).

4.3 The Construction of Optimal Ordered Par-
titions

In Section 3.1, which dealt with the partitioning of an object set, the classes of
an optimal partition, based on some measure of subset heterogeneity, had no
particular order imposed on them. In contrast, the emphasis in Chapter 4, up
to this point, has been on the optimal reordering of an object set, but this task
has effectively been carried out by placing one object at a time. As a possible
(and obvious) conjunction of these two tasks of partitioning and sequencing, this
section discusses the problem of constructing an optimal (ordered) partition of
an object set in which the classes of the partition must be sequenced along the
continuum. We will only consider one-mode proximity data that come in the
usual form of a symmetric matrix, P, or a skew-symmetric matrix, P%%, and
the relevant measures of matrix patterning from Sections 4.1.1 and 4.1.2 will be
generalized. There are, as might be expected, a host of variations and extensions
that could be pursued which would parallel many topics discussed earlier in this
monograph. Some of these possibilities will at least be noted at the end of this
section.??

The basic task of constructing an ordered partition of an object set S =
{O1,...,0,} into M ordered classes, S; < Sz < -+ < Sys, using some (merit)
measure of matrix patterning and a proximity matrix P or P°°, can be ap-
proached through the general type of GDPP recursive process applied for the
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partitioning task of Section 3.1 but with appropriate variation in defining the
merit increments. Explicitly, the sets Q1. ...,Qk (where K = M) will each con-
tain all 2 — 1 nonempty subsets of the n object subscripts; F(Ay) for Ay € Qy
is the optimal value for placing k classes in the first k positions, and the subset
Ay, is the union of these k classes. A transformation from Ay,_1 € Qp_1 to
Ayp € Qy is possible if A;_; C Ay; the merit increment M(A;_1, Ay) is based
on placing the class A,_; — A, at the k™ position (which will depend on A;_;,
Ap, and S — Ag). Beginning with F(A4;) for all A; € Qy (i.e., the merit of
placing the class A; at the first position), the recursion proceeds from §; to
Ok, with F(Ag) for Ax = S € Qg defining the optimal merit value for an
ordered partition into K (= M) classes (which can then be identified as usual
by working backwards through the recursion). Also, optimal ordered partitions
that contain from 2 to M —1 classes are identified by F(Az), ..., F(Aam—1) when
S =A== Ay _1. It is necessary to specify in a particular context the
merit increment, M (Ay_1. Ap); these are discussed below for various measures
of matrix patterning generalized from Sections 4.1.1 and 4.1.2.

For a Symmetric Proximity Matrix P:

To generalize the weighted or unweighted gradient measure given in (4.1), the
merit increment for placing the class A, — Ap_1 at the k*" order position is
]row(Ak - Ak—l) =+ ]col(Ak - Ak—l): where

Liow(Ap — A1) = > > > fpews piry),

VEAR_1 K EAR—Ar_1 JES—Ay

and (4.10)

Lot (A = Apa) = 3 ) Y. S poy):

VEAR_ 1 k'E€AR—Ap_1 5 ES— AL

To initialize the recursion, we let F(A;) =0 for all A; € Q.

A merit measure based on a coordinate representation for each of the M or-
dered classes, S1 < Sy < -+ < Sy, that generalizes (4.6) can also be developed
directly. Here, M coordinates, x; < --- < xp7, are to be identified so that the
residual sum-of-squares

Z Z (pikjk,* ‘ T — T |)2,

k<k’ i,p€Sk, jk/ eSk/

is minimized (the notation p;,;,, indicates those proximities in P defined be-
tween objects with subscripts ix € Sy and ji» € Sg/). A direct extension of the
argument that led to optimal coordinate representation for single objects would
require the maximization of

M

Z(i)(G(Ak — A1)’ (4.11)

Nni.
k=1 F
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where G(Ay — Ag—1) =

Z Z Prrir — Z Z Dreir s

K EAp—Ap_1 i/ CAp_1 b EAr—Ap_1 i/ES—Ap

and ny, denotes the number of objects in A;; — A;_1. The merit increment for
placing the subset A;, — Aj,_1 at the k" order position would be (1/n;)(G (A, —
Aj—1))?, with the recursion initialized by

FA) =Y Y el

k'cA,77€S—A,

for all A; € Q. If an optimal ordered partition that maximizes (4.11) is denoted

by ST < --- < 53, the optimal coordinates for each of the M classes can be
given as
. 1 .
» = (—)G(S]),
L (nnk) (S%),
where 27 < --- < 27, and Zk nixy, = 0. The residual sum-of-squares has the
form . .
2 x\\2
;pm* (5)¥(H—k)(0(5k)) :

For a Skew-symmetric Proximity Matrix P°5:

In extending the measure in (4.7) for skew-symmetric matrices that led to max-
imizing the above-diagonal entries in Pfs , the merit increment is now defined

as
J(A]6 — Ak‘fl) = Z Z Dirk’s

V€A 1 ECAR—Ar_1

to indicate the contribution from the class Ay — A;_1 when placed at the Lkt
order position. Again, the recursive process is initiated by letting F(A4;) = 0,
for all A; € Q4.

The definition of a merit measure based on a coordinate representation for
a skew-symmetric matrix as discussed in Section 4.1.2 was very direct when
each object is treated separately because a closed-form solution was possible
for the optimal coordinates. The situation changes, however, when attempting
to obtain an optimally ordered partition based on P®% through a coordinate
representation. Explicitly, suppose we wish to find a set of M coordinates,
Z1,...,x, and a set of M classes, Si,...,Sy (not necessarily ordered) such

DI DN S (112)

kE' 1LESE, jk/eSk/

is minimized, where again pi‘?k, indicates a proximity from objects with sub-

scripts iy € Sy to jr € Sp. If the classes S, ..., S with respective sizes
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ny,...,npy were given, the M coordinates, say xi,...,x, could be obtained

by .
Lk ::(;;;;) j{: j{: Pfsh

k€S €S-8y
There is, however, a preliminary need to choose S1, ..., Sy optimally if the loss
function in (4.12) is to be minimized. This optimal choice can be carried out by

defining an increment of merit in the GDPP for placing the subset Aj; — Ar_1
at the k™ order position, as (1/ng)(L(Ay — Ap_1))?, where

Wh-a- Y Y

k'cAp—Ar_1 i/ES—(Ak—Akfl)

and initializing the recursion by

FU) =G0 S

k'eA;ieS—A

The optimal classes thus identified, say SY,...,S},, lead directly to the M
optimal coordinates z7,...,x},;, where

=) YN B

/€Sy i €S-8y

and a residual sum-of-squares of

S 0 Y el

i<j k=1

Numerical illustrations.*® For constructing optimal ordered partitions, we
will again consider the data of Table 4.1 on the rated seriousness of thirteen
offenses both before and after viewing a film, and also both its skew-symmetric
and symmetric forms (where the latter are based on taking absolute values of
the skew-symmetric proximities). For brevity, we will present for the various
measures of matrix patterning the original ordering using single objects (i.e.,
partitions with thirteen ordered classes) and an optimally ordered partition
with five classes. In all cases, there was a very precipitous change in the merit
measures when moving from five to four classes, and therefore, the choice of
presenting only those optimal ordered partitions with five classes is not arbi-
trary. As shown in the results summarized below, the five ordered (according
to increasing severity) classes of offenses consistently include ‘gambler’ (#2) in
the second class before viewing the film, and in the third class after (we might
also comment that in most of the analyses reported, the 5-class and the 13-class
ordered partitions are completely consistent in the sense that the classes in the
former are defined by consecutively-placed single objects in the latter; the ex-
ceptions are for the gradient measures and a few adjacently-located objects).
In general, the ordered partitions into thirteen and five classes are very similar
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within the before and within the after conditions, and consistent over the vari-
ous measures of matrix patterning for either the symmetric or skew-symmetric
proximity matrices (although for completeness we give the exhaustive listing of
results for all the options below).

Optimal ordered partitions into thirteen and five classes, obtained from the pro-
gram DPOPI1U:

Before viewing;:
symmetric proximity; coordinate representation

object order 9 7 10 4 2 11 3 5 13 6 12 8 1
coordinates —-82 —-78 -33 —26 —.23 —-.17 —.02 .27 .29 .32 .50 .59 .64
(5 classes): { —.80 } { —.25 Po{—o02} { 290 } { 58 }

residual sum-of-squares: (13 classes) 3.307; (5 classes) 3.635

symmetric proximity; unweighted gradient
object order 9 7 41021135 13 612 8 1
(5classes) { } { } {} {1368} {121}

index of gradient comparisons: (13 classes) 431; (5 classes) 289

symmetric proximity; weighted gradient
object order 9 71042113513 6 12 8 1
(5 classes) { H{ }{ } {68} {12 1}

index of gradient comparisons: (13 classes) 161.45; (5 classes) 100.08

skew-symmetric proximity; above-diagonal sum
object order 9 7102411365131 128
(elasses) {} { } {}{ 1} {

above-diagonal sum: (13 classes) 49.93; (5 classes) 48.27

skew-symmetric proximity; coordinate representation

object order 9 7 10 4 2 11 3 5 13 6 1 12 8
coordinates ~ —.82 —.78 —.33 —.26 —.23 —18 —.02 .27 .29 .32 .57 .57 .59
(5 classes) { —.80 } { —.25 }o{-02} { 29 } { 58 }
residual sum-of-squares: (13 classes) 3.457; (5 classes) 3.635

After viewing:

symmetric proximity; coordinate representation

object order 9 7 10 4 11 3 2 6 13 5 12 8 1
coordinates —.81 —.75 —.39 —.26 -—.21 —.05 —.02 .27 .27 .29 .48 .55 .58
(5 classes) { -—-.78 } { —.29 }o{=02} { 28 } { 54 }
residual sum-of-squares: (13 classes) 2.302; (5 classes) 2.674

symmetric proximity; unweighted gradient
object order 9 7 10 4 113213651281
(5 classes)  { } { RN S U O G|

index of gradient comparisons: (13 classes) 491; (5 classes) 331

symmetric proximity; weighted gradient

object order 9 710 4 11 3 2613 5 12 8 1

(5 classes) {974} {10113} { } {58} {121}

index of gradient comparisons: (13 classes) 165.08; (5 classes) 101.84

skew-symmetric proximity; above-diagonal sum
object order 9 7104 113256 131 12 8

(classes) {}{ +{r{ }+{ 1}
above-diagonal sum: (13 classes) 47.42; (5 classes) 45.86
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skew-symmetric proximity; coordinate representation

object order 9 7 10 4 11 3 2 6 5 13 12 1 8
coordinates -81 —-75 -39 —26 —.21 —.05 .02 .27 .28 .29 .51 .55 .55
(5 classes) { -—-.78 } { —-29 } { —-02 %} { 28} { 54 }
residual sum-of-squares: (13 classes) 2.369; (5 classes) 2.674

The task of identifying optimal ordered partitions has been limited to a
discussion of one-mode matrices, but there are numerous variations that could
be pursued, related to topics already raised in earlier sections. For example,
extensions would be possible to the use of order (or precedence) restrictions on
a one-mode matrix (as in Section 3.1.1), or to two-mode proximity matrices
that may be row and/or column order (or precedence) restricted (as in Section
3.1.2). Similarly, the classes of the ordered partitions as M varies from 1 to n
might be restricted to be hierarchical (as in Section 3.2) and with or without
a consecutive order restriction on which objects can form the classes of each
partition. Relatedly, as in the discussion of object sequencing in Sections 4.1 and
4.2, gradient comparisons might be restricted to be only within rows or within
columns of a one-mode proximity matrix, or for a two-mode matrix, only within
the rows or columns. Alternative gradient measures could also be adopted, e.g.,
minimizing only the gradient violations, attempting to use the Greenberg form,
or concentrating on an equally-spaced coordinate representation. For a further
discussion of the task of constructing optimal ordered partitions, the reader is
referred to Hubert, Arabie, and Meulman (1997b).

Endnotes for Chapter 4:

2"Because the general recursive process just described requires the storage of
intermediate results for all possible subsets of an object set with n members,
the two programs to be used in the next three sections, DPSE1U and DPSE2U
(where the suffix ‘1U’ refers to ‘1-mode unrestricted’ and ‘2U’ to ’2-mode un-
restricted’), are effectively limited to object set sizes in their low 20’s given the
typical RAM configurations currently available, although no formal upper limits
are built into either program.

28 Although we choose not to do so, the discussion of the GDPP applications
in this chapter could employ the terminology of posets (see Chapter 2, endnote
6), as well as several more restrictive concepts usually introduced in that frame-
work, e.g.. lattices, maximal chains, and the like. To be a little more specific
(but still only in a very schematic form based on the notation in Chapter 2,
endnote 6), the set 0 would contain all partitions of S, and the relation, <,
defined by partition refinement: A < A’ (or in words, A is a “refinement” of A’)
if all the classes in A are in A" or can be formed from subdividing those present
in A’. The pair (2, <) is a poset; moreover, it is a lattice in that any two ele-
ments A and A’ in Q have a greatest-lower-bound, denoted A A A’ (and read as
A “meet” A’ or as the “meet” of A and A’), and a least-upper-bound, denoted
AV A’ (and read as A “join” A’, or as the “join” of A and A’). Formally, AN A’
is the unique element of Q such that AANA’ < A, ANA’ X A, and for any other
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member A” of Q, if A” < Aand A” < A’, then A” < AN A’. Constructively,
ANA' is generated from all pairwise intersections of the classes in A and A’. The
partition AV A’ is the unique element of ) such that A < AV A, A’ < AV A,
and for any other member A” of Q, if A < A” and A’ < A”, then AV A’ < A”.
Constructively, AV A’ is generated from the meet of all partitions in 2 that are
greater than or equal to both A and A’ according to the order relation <.

The set € is a lattice under the join and meet operations, and any nonempty
subset of ), say ', that is also a lattice under the same operations is called a
sublattice of . If in addition, A and A" in Q" imply A < A" or A" < A, then
Y is said to be totally (or simply) ordered and is called a chain. Consequently,
the later discussions in Section 3.2 of constructing a hierarchical sequence of
partitions could be phrased, if we wished, as finding totally ordered sublattices
or chains. Also, in our later use of the term “full partition hierarchy” where
successive partitions are constructed by uniting only a single pair of classes from
the one given previously, we could refer to a maximal chain, i.e., a totally ordered
sublattice of 2 in which each element except the first covers its predecessor.

29There is now a rather extensive literature on graphically representing a
matrix having either a Robinson or an anti-Robinson form (see Chapter 3, end-
note 13, for the distinction between these two terms). In this monograph our
emphasis is solely on the main combinatorial optimization tasks, and in this
chapter specifically on identifying optimal object orders for a proximity ma-
trix; therefore, we will not go further into the subsidiary issues of graphically
representing an (anti-) Robinson matrix that is being used as an approxima-
tion. The reader interested in pursuing some of the relevant literature might
begin with Diday (1986) and the introduction to graphically representing an
(anti-)Robinson matrix by pyramids, and then continue on with the review by
Durand and Fichet (1988) who point out the necessity of strengthening the
basic (anti-)Robinson condition to one that is strongly-(anti-)Robinson if a con-
sistent graphical (pyramidal) representation is to be possible — otherwise, un-
resolvable graphical anomalies can arise. Finally, there are two comprehensive
review papers on fitting a given proximity matrix (through least-squares) by
a sum of matrices each having the (anti-)Robinson form (Hubert and Arabie,
1994) or the strongly-(anti-)Robinson variation (Hubert, Arabie, and Meulman,
1998). The latter discusses in detail, and with all the appropriate historical
background, the need to strengthen the basic (anti-)Robinson condition to one
that is strongly-(anti-)Robinson if any type of consistent graphical representa-
tion is to be achieved (and then, we might add, extends the whole graphical
representation to the use of circular orders rather than the linear orders that
underlie matrices having an anti-Robinson form).

39The program DPSE1U allows such a choice.

31 Although we will not pursue the topic in any detail here, there are several
nice theoretical relationships between these choices of a row and/or column
gradient measure and the (approximate) construction of representations for the
objects in S as intervals along a continuum based on 0/1 dichotomizations of
the optimally reordered proximity matrix (see Roberts, 1978, Chapters 3—4;
Mirkin, 1979, Chapter 1). In particular, the use of only one of the row or
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column gradient measures is relevant to the construction of (general) interval
graph representations (e.g., see Mirkin, 1979, Chapter 1), and there is also the
use of both simultaneously in the construction of proper interval graphs, i.e., no
interval is properly contained within another (e.g., see Roberts, 1978, Chapters
3-4).

32Both weighted and unweighted gradient measures having this latter struc-
ture are options in the program DPSE1U and will be illustrated below.

33There is no approximate anti-Robinson form for the latter, however, be-
cause voters apparently do not have the same location along the continuum. If
they did, and all voters evaluated the parties in the same manner, one might
expect such an anti-Robinson pattern, in addition to all nonnegative above-
diagonal entries.

34 Although not an option in DPSE2U, another obvious variation would be
to maximize the gradient nonviolations alone.

35The program DPSEPH, where the suffix ‘PH’ refers to ‘path’, that imple-
ments all these optimization variations just described has an effective limit of
object set sizes of about 20, given typical current (as of 1999) RAM configura-
tions, although as usual no formal upper-limit is built into the program.

36The program DPSEPH accommodates such a nonsymmetric proximity
matrix in the construction of optimal linear or circular paths.

3"The inclusion of precedence constraints through an indicator matrix is
an option in each program mentioned thus far — DPSE1U, DPSE2U, and
DPSEPH.

38The latter DHG measure is an option in the program DPSE2R, used in
the numerical illustrations to follow (the suffix ‘2R’ again denotes ‘2-mode re-
stricted’). DPSE2R parallels DPSE2U in all the various options of the latter
(including the possible restriction of comparisons to the rows or to the columns
of either the original proximity matrix Q or the derived n x n matrix P4#) but
allows the imposition of either column, or row and column, order constraints
that can be provided by the user. It includes (as does DPSE2U) the maximiza-
tion of the weighted or unweighted gradient measures of matrix patterning (and,
as in DPSE2U, only the minimization of the weighted or unweighted discrepan-
cies). As noted, when both row and column order constraints are imposed, the
DHG measure just described is an additional option as well. Although again no
formal limits are present in DPSE2R, practical RAM configurations will allow
row object sizes of about 20 if only the (reasonably-sized) column object set is
subject to an order constraint; much larger row and column object sizes (e.g.,
na’s and ng’s in the hundreds) are possible when both the row and column
objects are subject to order constraints.

39 Although we will phrase our discussion as one of constructing optimal
ordered partitions (or linearly ordered partitions), these are the same entities
that are referred to by other names, e.g., as linear quasi-orders (Mirkin, 1979,
pp. 95-96), and much more commonly as weak orders (Krantz, Luce, Suppes,
and Tversky, 1971, pp. 14-17).

40The numerical illustrations rely on a program DPOP1U (where ‘OP’ refers
to ‘ordered partition’ and ‘1U’ to ‘l1-mode unrestricted’) that implements the
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options just described for constructing optimal ordered partitions for either
symmetric or skew-symmetric matrices. The program has a built-in limit to
object set sizes of 30, but given typical RAM configurations, the effective limit
may actually be about 20.
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Chapter 5

Heuristic Applications of
the GDPP

The various applications of the GDPP in Chapters 3 and 4 to the optimization
tasks of cluster analysis and object sequencing were generally limited to object
sets of a certain size because of the necessary storage requirements for carrying
out the attendant recursive processes. Although some possibilities may exist
for reducing the extent of the basic sets, Qq,...,Qk, through some type of
restriction on what form an optimal solution can take, which then might allow
large object sets to be approached (e.g., through linear ordering constraints),
lacking such restrictions there is an inherent upper limit on the magnitude of the
optimization tasks that can be handled with guaranteed optimality. If the ideal
of guaranteed optimality is, for the moment, put aside, it is generally possible to
use the GDPP specializations of Chapters 3 and 4 heuristically by allowing (a)
the separate analyses of subsets of a (larger) object set, and (b) the use of classes
of objects as the basic entities to be considered (in contrast to allowing the use
of single objects only). By the judicious (and sequential) application of both
these latter two options, it may be possible to analyze large object sets for the
same type of clustering and sequencing tasks discussed in the last two chapters.
An absolute guarantee of final optimality usually cannot be given, but we still
might do quite well in producing good solutions for the optimization tasks at
hand.

The two major sections of this chapter discuss the heuristic use of the GDPP
within the cluster analysis context (Section 5.1) and for object sequencing and
seriation (Section 5.2). The various unconstrained programs mentioned thus far
in this monograph also exist in generalized forms that allow parts of a (larger)
object set to be studied and the prior specification of certain object classes to
be the primary units analyzed.*" The illustrative proximity matrix considered
throughout this chapter is of size 45 x 45, and refers to the dissimilarities be-
tween the 45 pairs of foods listed in Table 5.1 given at the end of this chapter
(these data were kindly provided by Professors Greg Murphy and Brian Ross,
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Department of Psychology, University of Illinois, Champaign, Illinois; for a dif-
ferent discussion and analysis of these data, see Ross and Murphy, in press). A
group of 38 subjects was asked to sort the 45 foods into as many categories as
they wished, based on perceived similarity. The entries in Table 5.1 show the
proportion of subjects who did not place a particular pair of foods together in a
common category (thus, these proportions are keyed as dissimilarities in which
larger proportions represent the more pairwise dissimilar foods). The ultimate
substantive question involves the identification of the natural categories of food
that may underlie the subjects’ classification judgments.

The ordering given for the 45 foods in Table 5.1 (based on the analysis to
be reported in Section 5.2 on sequencing these items along a continuum), allows
a direct inspection of the patterning of entries and suggests that the types of
categorizations given by the subjects can be diverse. For example, these might
involve the differing situations in which food is used, or possibly a more basic
notion of what type of food it is. For a few illustrations, ‘egg’ is not dramatically
similar to any of the other items but does have some connection to those that
involve ‘breakfast’ (situation), or that are ‘dairy’ (type), or that are ‘meat’
(type); ‘spaghetti’ appears related either to those objects that are ‘entrees’ and
particularly to those that are ‘Ttalian’ (situation), or apparently when relying
on a different interpretation for the word, to those foods that are ‘cereal-based’
(type); ‘ice-cream’ is related to ‘dairy’ items (type) and the ‘sweet treats’ given
as desserts (situation).

5.1 Cluster Analysis

When faced with the task of finding a single optimal partition of a (large)
object set S based on one of the heterogeneity measures/optimization criteria
discussed in Section 3.1, if one somehow had knowledge that for an optimal
M-class partition the classes could be allocated to two (or more) groups, then
the aggregate collections of the objects within these latter groups could be
optimally partitioned separately, and thus, an optimal M-class partition for
the complete object set identified directly. Or, if somehow it were known that
certain elemental subsets of the objects in S had to appear within the classes
of an optimal M-class partition, one could begin with these elemental subsets
as the objects to be analyzed, and an optimal M-class partition could again
be retrieved. The obvious difficulty is that knowledge would rarely be available
about either the larger aggregate groups that might be dealt with separately, or
an appropriate collection of elemental subsets, and in a size and number that
might be handled by the recursive optimization strategy discussed in Section
3.1.

Probably the best strategy is to implement these possibilities (of having
aggregate collections or elemental subsets) empirically, and develop a heuristic
approach to analyze large object sets that would have some iterative mechanism
for modifying initially conjectured aggregate collections or elemental subsets.
For example, to give a heuristic strategy relying on identifying elemental subsets,
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one possible approach would be to begin with a partition of S into several
classes (possibly obtained through another heuristic process, such as complete-
link hierarchical clustering), and where each class contained a number of objects
that could be optimally analyzed. Based on these separate subset analyses, a
(tentative) collection of elemental subsets would be identified. These could
then be used to obtain a subdivision of S, and again within each group of this
subdivision, the objects could be optimally partitioned to generate a possibly
better collection of elemental subsets. This process could be continued until no
change occurred in the particular elemental subsets identified. As an alternative,
one could start with some collection of tentative elemental subsets obtained
through another (heuristic) optimization strategy and try, if possible, to improve
upon these through the same type of procedure. It is this latter approach
that we suggest be adopted, and specifically where a simple greedy strategy
of hierarchical clustering is used to obtain a tentative collection of elemental
subsets; the greedy heuristic will be based on the same subset heterogeneity
measure optimized in finding an optimal M-class partition.

Analogously, the task of constructing a (hopefully optimal) partition hierar-
chy for a (larger) object set could also be approached through the identification
of a collection of elemental subsets, which would then be operated on as the
basic entities for the generation of a partition hierarchy. Alternatively, we could
first identify a single partition, say P, (through other means), that is forced to
be present in the to be constructed hierarchy. Beginning with the classes of P,,
the hierarchy could first be completed optimally from that point to P,; each
of the object subsets defined by the classes in P, could then be separately, and
optimally, hierarchically partitioned. The resulting collection of n — 2 subsets
so identified will form an optimal partition hierarchy for the objects in S (and
for the chosen transition measure), subject to the condition that it includes P,.
Again, some type of iterative correction could be carried out in which subsets
identified by the hierarchical partitioning of the classes in P. were now aggre-
gated (as elemental subsets) to a possibly different partition .. This process
then could be repeated until no change occured in the identification of the par-
tition we force to be present in the hierarchy.*?

A Partitioning Illustration:

To illustrate the heuristic approach to clustering, we choose as a subset het-
erogeneity measure the diameter of a cluster (i.e., the measure labeled as (iv)
in Section 3.1) and adopt the optimization criterion of minimizing the maxi-
mum diameter over the classes of an M-class partition. The process suggested
above for finding a tentative set of elemental object classes was carried out us-
ing a greedy selection, according to diameter, of the successive partitions in a
hierarchy up to 16 classes (i.e., here, because of the choice of the diameter as
the heterogeneity measure, the well-known complete-link hierarchical clustering
strategy is being carried out). The 16 classes so obtained were then used in
the manner described above to attempt an identification of an even better col-
lection (i.e., grouping the 16 classes into a smaller number of subsets and then
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(re)partitioning these subsets). In this instance, no changes occurred in the ini-
tial collection of 16 elemental classes identified by the original greedy heuristic.
We give these elemental classes below along with their diameters and suggestive
interpretative labels whenever they contain more than a single object. We note
that because all diameters for these 16 subsets are not larger than .50, at least
50% of the subjects placed each specific food pair contained within an elemental
subset into a common class in their own sortings of the items.

Class Possible Class Label — Diameter Members

A (meat/entree) .50  lobster, hamburger, pork,
steak, salmon, chicken

B (fruit) .08  banana, apple, watermelon,
orange, pineapple

C (liquid) .16 water, soda

D (non-treat dairy) .18 butter, cheese

E (snack) .24 crackers, pretzels

F (vegetable) .24 carrots, onions, corn,
lettuce, potato, broccoli

G (sweet treat/dessert) .26 cookies, cake, pie,
chocolate bar

H (Ttalian entree) .50 pizza, spaghetti

I (breakfast/grain-based .29 pancake, cereal, oatmeal,
muffin, bagel

J (grain-based) 42 rice, bread

K (junk food) .45  popcorn, nuts, potato chips

L treat dairy) .50 yogurt, ice cream

M — — doughnuts

N — — milk

O — — eggs

P — — granola bar

Based on these 16 elemental subsets, we provide an optimal 8-class partition
(using the alphabetic labels given above), having a maximum subset diameter of
.76. Again, suggestive interpretive labels are provided along with the diameters

for each of the classes:

Class

Possible Class Label

Diameter

{LJ}
{H}

grain-based
Italian entrees

{G,M} sweets
{E,K,P} munchies
{D,L} dairy
{C,N} liquid
{B,F} plant-based

animal-based

{A.O}

.66
.50
.61
.76
.63
.63
.76
.74



5.1. CLUSTER ANALYSIS 97

(We might note that the complete-link greedy heuristic produced a partition
at the level of 8 classes [with the same elemental classes] that had a maximum
diameter of .90; so, obviously, this latter partition would be nonoptimal at this
level since the maximum diameter over the classes of a partition was used as
the loss criterion.)

A Hierarchical Clustering Illustration:

To give an example of the heuristic use of hierarchical clustering on the data
matrix of Table 5.1, we will (again) choose the diameter of a new subset formed
at a given level as the measure of transition cost between partitions, and attempt
to find a full partition hierarchy that would (hopefully) minimize the sum of the
diameters over the 45—2 = 43 new subsets formed in the process. To place this
task in a computationally feasible framework according to the size of the object
sets or object set classes that can be handled, it will be assumed that the specific
8-class partition just given in the partitioning illustration must be part of the
hierarchy to be constructed. Thus, we proceed optimally from this specific 8-
class partition to the trivial partition where all objects are united into a common
class, and provide optimal partition hierarchies restricted to those objects within
each of the 8 classes. Subject to the presence of the specific 8-class partition
as part of the full partition hierarchy, this procedure guarantees an optimal
hierarchy minimizing the sum of the diameters over all the subsets formed. We
give the results of this process below, beginning with the 8-class partition and
continuing to the single all-inclusive object class (for convenience, the same
alphabetic labels are used for the 16 elemental subsets given in the partitioning
application; also, the diameters of the newly formed subsets are provided along
with interpretive labels whenever such appear substantively possible):

Level Partition Diameter
[and Label]

8 (all together) 1.0

7 {IJ,EKP,H,AO,GM,DL,CN}.{BF} 1.0

6  {IJEKP,H,AO.GM,DL},{CN}.{BF} 1.0

5  {IJEKP,H,AO}.{GM.DL}.{CN}.{BF} 1.0

4 {1J.EKP}.JH.AO},{GM,DL}.{CN}, 95
{BF} sweets/dairy

3 {IJ.EKP}.{H,AO}.{GM}.{DL}.{CN}, 95
{BF} dinner entrees

2 {W.EKP}{H}{GM},{DL}.{CN},{BF}, .92
{AO} grain-based

1 (all separate) —

The optimal (sub)hierarchies for each class of the initial 8-class partition
are given below, along with the diameters of the new subsets formed (generally,
single object subsets are not given at any level). There are some subtle details of
interpretation that might be given for several of the (sub)hierarchies but these
are left to the readers’ perusal (e.g., see the structure of the meat-based group).
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Class  Level Partition Diameter
{.J} 7 (all together) .66
6 {bread, rice} 42
5 {cereal, oatmeal, pancake, muffin, bagel} .29
4 {cereal, oatmeal, pancake, muffin} 18
3 {pancake, muffin} .16
2 {cereal, oatmeal} .05
1 (all separate) —
{H} 2 {pizza, spaghetti} .50
1 {pizza} {spaghetti} —
{GM} 5 {cake, pie, cookies, chocolate bar, doughnuts} .61
4 {cake, pie, cookies, chocolate bar} .26
3 {cookies, chocolate bar} .16
2 {cake, pie} .08
1 (all separate) —
{E,K,P} 6 (all together) .66
5 {crackers, granola bar} A7
4 {nuts, popcorn, pretzels, potato chips} 45
3 {popcorn, pretzels, potato chips} .26
2 {pretzels, potato chips} .24
1 (all separate) —
{D,L} 4 (all together) .63
3 {yogurt, ice cream} .50
2 {butter, cheese} .18
1 (all separate) —
{C)N} 3 {water, soda, milk} .63
2 {water, soda} .16
1 (all separate) —
{B,F} 11 (all together) .76
10 {carrots, broccoli, corn, lettuce, onions, potato} .24
9 {carrots, broccoli, corn, lettuce, onions} 13
8 {banana, apple, watermelon, orange, pineapple} .08
7 {carrots, broccoli, corn, lettuce} .08
6 {carrot, broccoli, corn} .05
5 {banana, apple, watermelon, orange} .05
4 {apple, watermelon, orange} .03
3 {carrots, broccoli} .03
2 {apple, watermelon} .00
1 (all separate) —
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{A,0} 7 {lobster, salmon, pork, chicken, hamburger, steak, eggs} .74

6 {lobster, salmon, pork, chicken, hamburger, steak} .50
5 {hamburger, steak, pork, chicken} .29
4 {hamburger, steak} 13
3 {pork, chicken} .05
2 {lobster, salmon} .03

1 (all separate) —

In total, the sum of the diameters over the 43 subsets that make up the full
hierarchy for the 45 food items is 17.55, which is the optimal value for any
hierarchy that includes the given 8-class partition.

5.2 Object Sequencing and Seriation

The task of finding an optimal order for a (large) object set S along a contin-
uum, based on a measure of matrix patterning discussed in Section 4.1, can be
approached similarly to the large clustering problem in Section 5.1, by generaliz-
ing the GDPP recursive process to deal both with separate subsets of S or with
classes of objects as the basic entities to be sequenced. If one knew, for example,
that in an optimal order the object set S could be subdivided into two (or more)
groups of consecutive objects, then the overall optimal order could be retrieved
merely by separately and optimally sequencing the objects within each of these
larger groups and treating the remaining groups as aggregate object classes to
be sequenced along with the individual objects. Or, alternatively, if one had
knowledge of a (larger) collection of elemental classes where within each such
class the objects would be consecutively placed, the elemental classes could first
be sequenced optimally and then within each of the elemental classes.*

A Sequencing Illustration:

To provide an example of the heuristic approach to seriation, we will choose
the measure of matrix pattern based on coordinate representation and attempt
to minimize the index in (4.6) for the 45 x 45 matrix of Table 5.1. Explicitly,
the process followed was to first sequence the 16 elemental subsets identified in
Section 5.1 as classes along a continuum (with the order of the objects within
each class given arbitrarily). Based on this initial order of the 45 objects, several
object sets (of size 18) consecutive within this current order were considered as
separate objects, and those objects both before and after this consecutive set
as two classes to be sequenced optimally along with all the single objects in
the consecutive set (we note that just a single before or after set is considered
whenever the consecutively-placed objects form an initial or an ending string).
Only three such operations were necessary before an apparently optimal order
was identified, which was used to provide the specific object listing for the food
items in the original data in Table 5.1. (Explicitly, based on the initial order
for the 16 elemental classes, the first 18 objects plus the last 27 were considered
as a single class; the last 18 objects and the first 27 were considered as a single
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class, and a middle 18 with those objects before and after were considered as
two separate classes). Although no absolute guarantee of optimality can be
given for this order, we note that it is one that cannot be improved upon by
sequencing optimally any consecutive sequence of 18 objects when considering
those before and after as separate classes.

The coordinates estimated for the 45 objects in the process of maximizing
the index in (4.6) are given below for each of the food items in Table 5.1 (the
order given for the foods in Table 5.1 is consistent with this set of coordinates):

apple —.83  cereal —.28  pizza +.32
watermelon  —.83  mulffin —.25  ice cream +.37
orange —.82  pancake —.24  yogurt +.41
banana —.82  spaghetti —.17  butter +.45
pineapple —.81  crackers —.13  cheese +.48
lettuce —.66  granola bar —.10 eggs +.53
broccoli —.65  pretzels —.04 milk +.57
carrots —.65  popcorn +.00  water +.63
corn —.65 nuts +.02  soda +.64
onions —.63  potato chips +.06  hamburger +.78
potato —.59  doughnuts +.12  steak +.80
rice —.42  cookies +.21  pork +.81
bread —.34  cake +.23  chicken +.82
bagel —.30 chocolate bar  +.25  lobster +.86
oatmeal —.29 pie +.27  salmon +.86

In contrast with the results from the clustering illustrations, there is a much
greater amount of fine detail and subtlety available from direct inspection of
the entries in Table 5.1 using this specific order as a guide, as well as several
observations that can be made about which collections of entries appear to
violate an approximate anti-Robinson form for the reordered proximity matrix,
and why this might be so. We give some of these comments below about the
patterning of entries in Table 5.1, and invite the reader to carry out a similar
inspection in parallel to our conjectures:

The ordering of the food items in Table 5.1 displays a clear progression from
those that are plant-based (at the top) to those that are animal-based (at the
bottom). In moving from the top to the bottom, we first progress from a ‘fruit’
to a ‘vegetable’ group, where the latter both have a high degree of internal
similarity and some elevated similarity within the aggregate of these two. The
item ‘rice’, and to some extent ‘potato’, placed at the end of the ‘vegetable’
class can be considered spanning objects with elevated similarity back to ‘veg-
etables’ and forward to the long extent of foods that can be considered ‘cereal
or grain-based’. Next, there is a ‘bread-stuff’ pair of ‘bread’ and ‘bagel’, with
a succeeding ‘breakfast’ subgroup (i.e., bagel, oatmeal, cereal, muffin, and pan-
cake) in the larger expanse of ‘grain-based’ items. There are some interpretable
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anomalies in the proximities of the ‘breakfast’ group to two other items placed
elsewhere, i.e., ‘doughnuts’ appears with the ‘sweet treat’ class and ‘egg’ is
inside a ‘dairy’ grouping, but both are also possible ‘breakfast’ items. Con-
tinuing on with the ‘grain-based’ part of the ordering, we reach ‘snacks/junk
food” with the precursor of ‘spaghetti’ sitting among the ‘grain-based’ items
but with some understandable connections to the later-placed ‘pizza’ and the
last six ‘meat/entrees’. Note the ‘granola bar’ item and its small connections
back to the ‘breakfast’ grouping including ‘egg’, although it appears among the
‘snacks/junk food’ grouping; also, ‘nuts’ has some small elevated and plausi-
ble similarity back to the beginning ‘fruit’ and ‘vegetable’ classes. Moving on,
we reach, in order, those items that can be labeled ‘sweet treats’, ‘dairy’, ‘lig-
uid’, and ‘meat/entrees’. Although ‘pizza’ is placed within the ‘treats’, there
is some obvious connection forward to the ‘meat/entrees’ category. ‘Ice-cream’
may be another natural spanning item, with connections back to ‘sweet treats’
and forward to ‘dairy’; similarly, ‘eggs’ is placed within ‘dairy’ but there is
some elevated similarity to ‘meat/entrees’ and (as mentioned earlier) back to
the ‘breakfast’ grouping.

Endnotes for Chapter 5:

“IFor convenience, these program extensions will be referred to by replac-
ing the ‘D’ (for example, in DPCL1U) by an ‘H’ to indicate ‘heuristic’, e.g.,
HPCL1U.

42Within the cluster analysis framework there are four programs that allow
subsets of an object set to be analyzed or classes to be the basic objects ana-
lyzed. Three are direct extensions of DPCL1U, DPCL2U, and DPHI1U, and
are called respectively, HPCL1U, HPCL2U, and HPHI1U. A fourth, HPHI2U,
is an extension of the hierarchical clustering options of HPHI1U to two-mode
proximity data (and as noted in Section 3.2, would be provided at this point).
In the illustrations, HPCL1U and HPHI1U have been used on the matrix of
Table 5.1 for one representative heterogeneity (transition) measure available as
an option in each program.

“3Three of the programs discussed for the sequencing context (i.e., DPSE1U,
DPSE2U, and DPOP1U) have been extended to allow object classes to be op-
timally sequenced (to HPSE1U, HPSE2U, and HPOP1U); HPSE1U is used in
the numerical illustration.
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Table 5.1: A symmetric proximity matrix constructed for forty-five foods based
on the proportions of a group of (thirty-eight) subjects who did not place a pair
of foods together within a common category. (Data provided by Professors Greg

Murphy and Brian Ross.)

foods 1 2 3 4 5 6 7 8 9 1011 12 3 14 15
apple (1) x .00 .03 .05 .08 .66 .68 .71 .68 .74 .76 .87 .95 .92 .95
watermelon (2) .00 x .03 .05 .08 .66 .68 .71 .68 .74 .76 .87 .95 .92 .95
orange (3) .03.03 x .05.05.68 .71 .68 .71 .74 .74 .89 .92 .95 .95
banana (4) .05.05 .05 x .05 .66 .68 .68 .68 .68 .76 .89 .95 .95 .92
pineapple (5) .08 .08 .05 .05 x .66 .68 .66 .68 .71 .74 .89 .92 .95 .95
lettuce (6) .66 .66 .68 .66 .66 x .05 .08 .08 .10 .24 .74 .92 .92 .95
broccoli (7) .68 .68 .71 .68 .68 .05 x .03 .03 .10 .21 .71 .92 .92 .95
carrots (8) 7171 .68 .68 .66 .08 .03 x .05 .10 .18 .74 .89 .95 .95
corn (9) .68 .68 .71 .68 .68 .08 .03 .05 x .13 .18 .68 .92 .92 .95
onions (10) 74 .74 .74 .68 .71 .10 .10 .10 .13 x .21 .74 .87 .92 .89
potato (11) 76 .76 .74 .76 .74 .24 .21 .18 .18 .21 x .58 .79 .84 .84
rice (12) 87 .87 .89 .89 .89 .74 .71 .74 .68 .74 .58 x .42 .53 .53
bread (13) 95.95 .92 .95 .92 .92 .92 .89 .92 87 .79 42 x .29 45
bagel (14) 92 .92 .95 .95 .95 .92 .92 .95 .92 .92 .84 .53 .29 x .18
oatmeal (15) 95 .95 .95 .92 .95 .95 .95 .95 .95 .89 .84 .53 45 .18 x
cereal (16) 95 .95 .92 .95 .92 .95 .95 .92 .95 .92 .82 .55 .40 .16 .05
muffin (17) 97 .97 .97 .95 .97 .97 .97 .97 .97 .92 .87 .66 .45 .24 .29
pancake (18) 97 .97 .97 .95 .97 .97 .97 .97 .97 .95 .89 .66 .50 .26 .18
spaghetti (19) 92 .92 .95 .95 .95 .92 .92 .95 .92 .95 .87 .55 .55 .55 .63
crackers (20) 95 .95 .92 .95 .92 .95 .95 .92 .95 .92 .82 .61 .53 .58 .61
granola bar (21) .97 .97 .97 .95 .97 .97 .97 .97 .97 .95 .92 .74 .61 .50 .47
pretzels (22) 97 .97 .95 .97 .95 .97 .97 .95 .97 .97 .92 .74 .71 .76 .79
popcorn (23) 97 .97 1.0 1.0 1.0 .97 .97 1.0 .97 1.0 .97 .79 .84 .79 .79
nuts (24) .89 .89 .89 .84 .87 .89 .89 .89 .89 .87 .92 .87 .87 .92 .87
potato chips (25) .97 .97 .95 .97 .95 .95 .95 .92 .95 .95 .92 .87 .89 .92 .92
doughnuts (26) 1.0 1.0 1.0 .97 1.0 1.0 1.0 1.0 1.0 .97 1.0 .92 .76 .58 .55
cookies (27) 1.0 1.0 .97 1.0 .97 1.0 1.0 .97 1.0 1.0 .97 .97 .92 .95 .97
cake (28) 1.01.0 1.0 .97 1.0 1.0 1.0 1.0 1.0 .97 1.0 .97 .92 .92 .92
chocolate bar (29) 1.0 1.0 .97 1.0 .97 1.0 1.0 .97 1.0 1.0 .97 1.0 .97 1.0 1.0
pie (30) 1.01.010.971.01.01.01.01.0.97 1.0 1.0 1.0 1.0 .97
pizza (31) 95 .95 .97 .97 .97 .95 .95 .97 .95 .97 .95 .89 .95 .95 .97
ice cream (32) 97 .97 1.0 1.0 1.0 .97 .97 1.0 .97 1.0 1.0 .97 1.0 .97 1.0
yogurt (33) 95 .95 .95 .92 .95 .95 .95 .95 .95 .92 .95 .95 .95 .92 .89
butter (34) .95 .95 .97 .97 .97 .92 .92 .95 .92 .92 .95 .87 .89 .95 .97
cheese (35) 95 .95 .97 .97 .97 .92 .92 .95 .92 .92 .95 .89 .92 .95 .97
eggs (36) 97 .97 .97 .95 .97 .97 .97 .97 .97 .95 .97 .97 .92 .76 .66
milk (37) 1.0 1.0 .97 1.0 .97 1.0 1.0 .97 1.0 1.0 .97 1.0 .92 .95 .95
water (38) .92 .92 .89 .92 .89 .89 .89 .87 .89 .92 .89 .95 .92 .97 .97
soda (39) 1.0 1.0 .97 1.0 .97 .97 .97 .95 .97 .97 .95 1.0 .97 1.0 1.0
hamburger (40) .97 .97 1.0 1.0 1.0 .97 .97 1.0 .97 1.0 .97 .92 .97 .97 1.0
steak (41) 1.0 1.0 .97 1.0 .97 1.0 1.0 .97 1.0 1.0 .92 .95 .95 1.0 1.0
pork (42) 95 .95 .97 .97 .97 .95 .95 .97 .95 .97 .92 .89 .95 .95 .97
chicken (43) .95 .95 .97 .97 .97 .95 .95 .97 .95 .97 .92 .89 .95 .95 .97
lobster (44) 97 .97 .97 .95 .97 .97 .97 .97 .97 .95 .95 .95 .97 .97 .95
salmon (45) 97 .97 .97 .95 .97 .97 .97 .97 .97 .95 .95 .95 .97 .97 .95
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Table 5.2: Table 5.1 continued.

foods 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
apple (1) 95 .97 .97 .92 .95 .97 .97 .97 .89 .97 1.0 1.0 1.0 1.0 1.0
watermelon (2) 95 .97 .97 .92 .95 .97 .97 .97 .89 .97 1.0 1.0 1.0 1.0 1.0
orange (3) 92 .97 .97 .95 .92 .97 .95 1.0 .89 .95 1.0 .97 1.0 .97 1.0
banana (4) 95 .95 .95 .95 .95 .95 .97 1.0 .84 .97 .97 1.0 .97 1.0 .97
pineapple (5) 92 .97 .97 .95 .92 .97 .95 1.0 .87 .95 1.0 .97 1.0 .97 1.0
lettuce (6) 95 .97 .97 .92 .95 .97 .97 .97 .89 .95 1.0 1.0 1.0 1.0 1.0
broccoli (7) 95 .97 .97 .92 .95 .97 .97 .97 .89 .95 1.0 1.0 1.0 1.0 1.0
carrots (8) 92 .97 .97 .95 .92 .97 .95 1.0 .89 .92 1.0 .97 1.0 .97 1.0
corn (9) 95 .97 .97 .92 .95 .97 .97 .97 .89 .95 1.0 1.0 1.0 1.0 1.0
onions (10) 92 .92 .95 .95 .92 .95 .97 1.0 .87 .95 .97 1.0 .97 1.0 .97
potato (11) .82 .87 .89 .87 .82 .92 .92 .97 .92 .92 1.0 .97 1.0 .97 1.0
rice (12) .55 .66 .66 .55 .61 .74 .74 .79 .87 .87 .92 .97 .97 1.0 1.0
bread (13) .40 .45 .50 .55 .53 .61 .71 .84 .87 .89 .76 .92 .92 .97 1.0
bagel (14) .16 .24 .26 .55 .58 .50 .76 .79 .92 .92 .58 .95 .92 1.0 1.0
oatmeal (15) .05 .29 .18 .63 .61 .47 .79 .79 .87 .92 .55 .97 .92 1.0 .97
cereal (16) x .29 .18 .61 .55 .47 .74 .82 .92 .89 .55 .92 .92 .97 1.0
muffin (17) 29 x .16 .68 .58 .53 .74 .79 .89 .87 .45 .92 .87 1.0 .95
pancake (18) 18 .16 x .66 .66 .58 .79 .84 .92 .89 .42 .89 .84 .97 .92
spaghetti (19) .61 .68 .66 x .66 .71 .76 .79 .92 .95 .92 .95 .92 1.0 1.0
crackers (20) .55 .58 .66 .66 x .47 .24 .40 .58 .45 .89 .82 .92 .87 1.0
granola bar (21) .47 .53 .58 .71 .47 x .53 .50 .63 .66 .71 .74 .76 .76 .84
pretzels (22) 747479 .76 .24 53 x .26 .45 .24 .82 .76 .89 .82 .92
popcorn (23) .82.79 .84 .79 .40 .50 .26 x .42 .26 .87 .74 .84 .76 .89
nuts (24) .92 .89 .92 .92 .58 .63 45 42 x .45 .89 .84 .87 .84 .89

potato chips (25) .89 .87 .89 .95 .45 .66 .24 .26 .45 x .79 .66 .79 .63 .76
doughnuts (26) 55 .45 .42 .92 .89 .71 .82 .87 .89 .79 x .53 .53 .61 .55

cookies (27) 92 .92 .89 .95 .82 .74 .76 .74 .84 .66 .53 x .18 .16 .21
cake (28) 92 .87 .84 .92 .92 .76 .89 .84 .87 .79 .53 .18 x .26 .08
chocolate bar (29) .97 1.0 .97 1.0 .87 .76 .82 .76 .84 .63 .61 .16 .26 x .21
pie (30) 1.0 .95 .92 1.0 1.0 .84 .92 .89 .89 .76 .55 .21 .08 .21 x
pizza (31) 97 1.0 .97 .50 .89 .82 .79 .74 .79 .68 .76 .74 .76 .71 .68
ice cream (32) 1.0 1.0 .97 .97 .97 .92 .92 .87 .89 .82 .76 .50 .40 .47 .40
yogurt (33) 92 .87 .92 .92 .84 .82 .84 .84 .82 .89 .92 .89 .82 .87 .82
butter (34) 97 1.0 .97 .95 .97 .92 .89 .87 .89 .82 .84 .82 .82 .82 .82
cheese (35) 97 1.0 .97 .95 .95 .92 .92 .92 .87 .92 .95 .95 .95 .95 .95
eggs (36) .68 .79 .68 .95 .97 .79 .92 .95 .79 .97 .74 .97 .95 .97 .95
milk (37) 92 .95 .95 .97 .97 .92 .92 .95 .97 .95 .92 .95 .97 .95 .97
water (38) 95 .97 .97 .97 .92 .95 .95 .97 1.0 .95 .97 .92 .95 .89 .95
soda (39) 97 1.0 .97 1.0 .97 .92 .89 .92 .95 .82 .87 .79 .84 .76 .82
hamburger (40) 1.0 1.0 .97 .71 .97 .97 .95 .92 .87 .92 .95 .95 .95 .92 .92
steak (41) 97 1.0 .97 .76 .97 .97 .95 .97 .89 .92 .95 .92 .95 .92 .95
pork (42) 97 .97 .95 .71 .97 1.0 1.0 .97 .89 .97 .97 .97 .97 .97 .97
chicken (43) 97 .97 .97 .68 .97 .97 .97 .95 .92 1.0 1.0 1.0 1.0 1.0 1.0
lobster (44) 97 .95 .92 .76 .97 .97 1.0 1.0 .89 .97 .95 .97 .95 .97 .95

salmon (45) 97 .95 .95 .74 .97 .95 .97 .97 .92 1.0 .97 1.0 .97 1.0 .97
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Table 5.3: Table 5.1 continued.

foods 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
apple (1) 95 .97 .95 .95 .95 .97 1.0 .92 1.0 .97 1.0 .95 .95 .97 .97
watermelon (2) 95 .97 .95 .95 .95 .97 1.0 .92 1.0 .97 1.0 .95 .95 .97 .97
orange (3) 97 1.0 .95 .97 .97 .97 .97 .89 .97 1.0 .97 .97 .97 .97 .97
banana (4) 97 1.0 .92 .97 .97 .95 1.0 .92 1.0 1.0 1.0 .97 .97 .95 .95
pineapple (5) 97 1.0 .95 .97 .97 .97 .97 .89 .97 1.0 .97 .97 .97 .97 .97
lettuce (6) 95 .97 .95 .92 .92 .97 1.0 .89 .97 .97 1.0 .95 .95 .97 .97
brocceoli (7) 95 .97 .95 .92 .92 .97 1.0 .89 .97 .97 1.0 .95 .95 .97 .97
carrots (8) 97 1.0 .95 .95 .95 .97 .97 .87 .95 1.0 .97 .97 .97 .97 .97
corn (9) 95 .97 .95 .92 .92 .97 1.0 .89 .97 .97 1.0 .95 .95 .97 .97
onions (10) 97 1.0 .92 .92 .92 .95 1.0 .92 .97 1.0 1.0 .97 .97 .95 .95
potato (11) 95 1.0 .95 .95 .95 .97 .97 .89 .95 .97 .92 .92 .92 .95 .95
rice (12) .89 .97 .95 .87 .89 .97 1.0 .95 1.0 .92 .95 .89 .89 .95 .95
bread (13) 95 1.0 .95 .89 .92 .92 .92 .92 .97 .97 .95 .95 .95 .97 .97
bagel (14) 95 .97 .92 .95 .95 .76 .95 .97 1.0 .97 1.0 .95 .95 .97 .97
oatmeal (15) 97 1.0 .89 .97 .97 .66 .95 .97 1.0 1.0 1.0 .97 .97 .95 .95
cereal (16) 97 1.0 .92 .97 .97 .68 .92 .95 .97 1.0 .97 .97 .97 .97 .97
muffin (17) 1.0 1.0 .87 1.0 1.0 .79 .95 .97 1.0 1.0 1.0 .97 .97 .95 .95
pancake (18) 97 .97 .92 .97 .97 .68 .95 .97 .97 .97 .97 .95 .97 .92 .95
spaghetti (19) 5097 .92 .95 .95 .95 .97 .97 1.0 .71 .76 .71 .68 .76 .74
crackers (20) .89 .97 .84 .97 .95 .97 .97 .92 .97 .97 .97 .97 .97 .97 .97
granola bar (21) .82 .92 .82 .92 .92 .79 .92 .95 .92 .97 .97 1.0 .97 .97 .95
pretzels (22) .79 .92 .84 .89 .92 .92 .92 .95 .89 .95 .95 1.0 .97 1.0 .97
popcorn (23) 74 .87 .84 .87 .92 .95 .95 .97 .92 .92 .97 .97 .95 1.0 .97
nuts (24) .79 .89 .82 .89 .87 .79 .97 1.0 .95 .87 .89 .89 .92 .89 .92

potato chips (25) .68 .82 .89 .82 .92 .97 .95 .95 .82 .92 .92 .97 1.0 .97 1.0
doughnuts (26) .76 .76 .92 .84 .95 .74 .92 .97 .87 .95 .95 .97 1.0 .95 .97

cookies (27) .74 .50 .89 .82 .95 .97 .95 .92 .79 .95 .92 .97 1.0 .97 1.0
cake (28) 76 .40 .82 .82 .95 .95 .97 .95 .84 .95 .95 .97 1.0 .95 .97
chocolate bar (29) .71 .47 .87 .82 .95 .97 .95 .89 .76 .92 .92 .97 1.0 .97 1.0
pie (30) .68 .40 .82 .82 .95 .95 .97 .95 .82 .92 .95 .97 1.0 .95 .97
pizza (31) x .87 .92 .79 .89 .95 .97 .95 .87 .61 .71 .74 .76 .79 .82
ice cream (32) 87 x .50 .63 .61 .87 .68 1.0 .89 .92 .95 .95 .97 .97 1.0
yogurt (33) 92 .50 x .53 .42 .68 .53 .92 1.0 1.0 1.0 .97 .95 .95 .92
butter (34) 79 .63 .53 x .18 .74 .58 .97 .89 .92 .95 .95 .97 .97 1.0
cheese (35) .89 .61 42 .18 x .66 .45 .97 .95 .92 .95 .95 .97 .97 1.0
eggs (36) 95 87 .68 .74 .66 x .71 1.0.97 .74 .71 .71 .71 .74 .71
milk (37) 97 .68 .53 .58 45 .71 x .61 .63 .97 .95 1.0 .97 1.0 .97
water (38) 95 1.0 .92 .97 97 1.0 .61 x .16 1.0 .97 .97 .97 .97 .97
soda (39) .87 .89 1.0 .89 .95 .97 .63 .16 x .95 .92 .97 1.0 .97 1.0
hamburger (40) .61 .92 1.0 .92 .92 .74 .97 1.0 .95 x .13 .24 .29 .47 .50
steak (41) 7195 1.0 .95 .95 .71 .95 .97 .92 .13 x .16 .21 .45 47
pork (42) .74 .95 .97 .95 .95 .71 1.0 .97 .97 .24 .16 x .05 .34 .37
chicken (43) .76 .97 .95 .97 .97 .71 .97 .97 1.0 .29 .21 .05 x .34 .32
lobster (44) 79 .97 .95 .97 .97 .74 1.0 .97 .97 47 45 34 .34 x .03

salmon (45) .821.0 .92 1.0 1.0 .71 .97 .97 1.0 .50 .47 .37 .32 .03 x



Chapter 6

Extensions and
(Generalizations

6.1 Introduction

There are a variety of extensions for the topics introduced in the previous chap-
ters that could be pursued, several of which have been mentioned earlier along
with a comment that they would not be developed in any detail within the cur-
rent monograph. Among some of these possibilities are: (a) the development of
a mechanism for generating all the optimal solutions for a specific optimization
task when multiple optima may be present, and not just one representative ex-
emplar; (b) the incorporation of other loss or merit measures within the various
sequencing and partitioning contexts discussed; (c) extensions to the analysis
of arbitrary t-mode data, with possible (order) restrictions on some modes but
not others, or to a framework in which proximity is given on more than just
a pair of objects, e.g., proximity could be defined for all distinct object triples
(see Daws, 1996); (d) the generalization of the task of constructing optimal
ordered partitions to a two- or higher-mode context that may be hierarchical
and/or have various types of order or precedence constraints imposed; and (e)
the extension of object ordering constraints when they are to be imposed (e.g.,
in various partitioning and two-mode sequencing tasks) to the use of circular
object orders, and where optimal subsets or ordered sequences must now be
consistent with respect to a circular contiguity structure.

In this last chapter, we note four other general areas in which more work
could be pursued: (a) the incorporation of multiple sources of data about the
objects under study; (b) the identification of multiple structures for the rep-
resentation of a particular data set; (c) a suggestion that the information pro-
duced while carrying out a recursive process and stored for the entities in the
sets Q1,...,Qx may be of value both diagnostically and for obtaining a better
substantive understanding of the objects under study by identifying alternative
combinatorial structures that although not necessarily optimal, may neverthe-
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less be very close; and (d) the use of a priori nonnegative weights on the objects,
typically indicating identical replication, or dichotomous (0/1) weights on the
proximities specifying missing information. We will discuss, in turn, each of
these four topics briefly.

6.1.1 Multiple Data Sources

The various specializations of the GDPP introduced in the previous chapters all
had the characteristic that the data guiding the optimization process are given
as a single proximity matrix, whether symmetric, skew-symmetric, or two-mode.
If, instead, a collection of, say, N such proximity matrices are available (i.e., a
three-way data set, in the terminology of Tucker, 1964), and we seek to use all N
sources in finding an optimal structure, the attendant recursive processes could
easily be modified to do so. For example, in the clustering context, whether
hierarchical or not, the main computational aspects of the recursions involve
the calculation of the subset heterogeneity measures. For a given subset, these
could first be defined separately for each of the N proximity matrices, and an
aggregate of the latter (such as a simple average or a maximum, or alterna-
tively, some type of weighted average based either on a set of a priori weights
or those identified through a process of optimal scaling) could then be used to
obtain the heterogeneity measure needed in carrying out the recursive process.
Once an optimal result has been obtained based on the subset heterogeneity
measures aggregated over the N data sources, each of the latter could then be
evaluated individually against this common outcome. For example, the ade-
quacy of an overall clustering solution in explaining the patterning of the data
for each source could be assessed through the same type of measure of total cost
adopted for the recursive process, i.e., minimizing the sum or the maximum
heterogeneity measure over subsets. Depending on the particular heterogeneity
measure chosen, it even may be possible to bypass this more involved construc-
tion of the overall subset heterogeneity measures by the construction of a single
proximity matrix that itself is defined through a process of aggregation over the
N proximity matrices.

For example, suppose the diameter criterion (i.e., the measure in (iv) from
Section 3.1) is selected and subset heterogeneity is to be the maximum of the N
diameters over the data sources. A single proximity matrix in which an entry
for a specific object pair is itself the maximum of the IV proximities for that pair
would suffice in that case. Similarly, if the average of the average within-subset
proximities over the NV sources is taken as the measure of subset heterogeneity,
then only a single proximity matrix would be needed with entries defined by the
average proximity for each specific object pair over the N sources. Analogously,
all the various sequencing tasks could incorporate multiple data sources by find-
ing the contribution for the placement of an object (or for an object class when
constructing optimal ordered partitions) by aggregating the contributions over
the N data sources. Again, how well a final (common) order does with respect
to each of the separate data sources could be assessed using the same measure
optimized in finding the common order but now applied individually to each
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data source.

Although there may be no computational advantage in first reducing N data
sources to a single proximity matrix and then analyzing only the latter, there
are several nice theoretical observations we can make when this strategy may
be possible, particularly in one special case (which follows the work of Mirkin
by incorporating proximity thresholds in the clustering process, e.g., see Mirkin,
1979, Chapter 2, and the discussion in Hubert, Arabie, and Meulman, 1997b).
To be explicit, suppose the N data sources are (for now) N symmetric n X n
proximity matrices (i.e., a two-mode three-way matrix) where each contains
entries that lie between 0 and 1 (which could be strictly dichotomous and take
on only the values 0 or 1), and denoted by P®, ... PW). The optimization
task to be solved is one of finding a partition of the objects in S represented
by a (recovered) 0/1 proximity matrix, say P*) (where an entry of 0 indicates
an object pair within a class and 1 otherwise), such that a sum of N distances
defined between P*) and PV, .. . PV) is as small as possible, i.e., we minimize

N

Zd(P(h>,P(*>),

h=1

where the distance between P and P*) is defined by

AP Py =3 | pit) — pi) |
2,5

Note in particular that the number of object classes characterizing P*) is not
fixed in advance and is part of the optimization task being posed.

To obtain a solution to this latter optimization problem, a single proximity
matrix P is first constructed from the average proximity over the N matrices,
PM, ., P, each deviated from a threshold value of 1/2:

P = {pi} = () X8 — () (6.1)

This single dissimilarity matrix P is then used with the subset heterogeneity
measure defined by the sum of the within-class proximities (i.e., the measure
from Section 3.1 denoted as (i)) and with the optimization criterion of mini-
mizing the sum of subset heterogeneity measures over the classes of a partition.
If the minimum is found over all possible numbers of classes from 1 to n, an
optimal P®) is identified. Because an entry in P is simply the average for that
object pair over all N data sources minus the constant term of 1/2, this lat-
ter proximity matrix P together with the subset heterogeneity measure (and in
contrast with using only the average proximity without this subtractive term)
tends to guide P™) toward a set of classes that are both relatively disparate in
size and few in number.

As a brief illustration of how this process might be carried out, the original
sorting data for the 38 subjects who produced the food proximity matrix of Table
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5.1 could be interpreted as arising from 38 dissimilarity matrices each defining a

partition of the 45 foods, and the Table 5.1 proportions give {(1/N) Z” pgb)}

Thus, when 1/2 is first subtracted from each entry in Table 5.1, the process
of finding a partition P*) for the 45 foods minimizing ZhN:1 d(PM P™)) can
be carried out by minimizing the sum of within-class proximities defined by
(6.1). As a small example using only the last 16 foods listed in Table 5.1
(and thus, given the size of the object set, an optimal DP approach can be
applied), the optimal partition contains 7 classes (with a total cost index of
-7.894) defined as follows: {{ice cream, pie}, {eggs}, {milk}, {soda, water},
{cheese, butter, yogurt}, {pizza}, {chicken, salmon, steak, pork, hamburger,
lobster}}. All other optimal partitions with from 1 to 13 classes had total
cost indices larger than -7.894. (We note that if the original proximities of
Table 5.1 were used without the constant subtraction of 1/2, the sum of within-
class proximities would monotonically increase for those partitions identified as
optimal for 13 to 1 class(es).)

A second example of this general approach is the use of multiple proximity
matrices that represent degrees of dominance among the objects in some set S.
Specifically, suppose the N data sources are again nxn matrices, P, ..., P(V),
where each contains entries that lie between 0 and 1, but which are (typically)
not symmetric. The optimization task we now wish to solve is to find an ordered
partition for the objects in S represented by a nonsymmetric matrix with 0/1
entries, say PU*) (where each ordered object pair is indicated by a 0 when the
objects are either within a class of the partition or defined between two classes
of the partition where the first object in the pair belongs to a class that precedes
the class to which the second object belongs) that will minimize

N
> @™ P,
h=1

If the single matrix P is again obtained as in (6.1), and used to find optimal
ordered partitions that maximize the above-diagonal sums, the maximum over
all possible numbers of classes from 1 to n is the optimal P**). Here, the
incorporation of the negative 1/2 in (6.1) tends to guide P**) toward a set
of ordered classes that are relatively close to each other in size and many in
number.

An illustration of identifying an optimal ordered partition can be generated
from the data given in Table 1.2 on the proportions of school children who
rate one offense as more serious than another. Considering just the ‘after’ data
for convenience, each child could be assumed to have produced a matrix P,
where an entry is 1 if the column offense is rated more serious than the row
offense and 0 otherwise. Thus, the (lower-triangular) entries of Table 1.2 provide
the aggregate matrix, and if 1/2 is subtracted from each entry, the proximity
matrix P from (6.1) is skew-symmetric (and with entries that are one-half of
those provided in the lower-diagonal portion of Table 4.1, with the asterisks
showing those that are negative). Based on this latter skew-symmetric matrix
P, the ordered partition maximizing the above-diagonal sum over all ordered
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partitions from 1 to 13 classes, contains the maximum of 13 classes (and with
an index value of 23.71) with its classes ordered exactly as in Section 4.1.2, i.e.,
{9} < {7} < {10} < {4} < {11} < {3} < {2} < {6} < {5} < {13} < {1} <
{12} < {8}.

6.1.2 Multiple Structures

All the optimization tasks encountered in the earlier chapters were concerned
with the identification of one optimal structure intended to help interpret the
patterning of entries in a given proximity matrix, where this single structure
was possibly an object partition or a partition hierarchy, or some type of object
sequencing along a continuum. If some mechanism is adopted for obtaining a
set of residuals (i.e., differences between the original proximities and the corre-
sponding set of fitted proximities) based on the single optimal structure found
for the original proximity matrix, these residuals can be interpreted as forming
another proximity matrix. In turn, a second optimal structure can be identified
that may help us interpret the patterning present in the collection of residuals,
and thus a second set of fitted values now defined for these residuals. Together,
the two optimal structures and the fitted values each produces (one based on
the original proximity information and the second through the set of residuals
generated from the first optimal structure) serve to explain the initial proxim-
ity values additively. Obviously, this process of residualization could be carried
out more than once. Moreover, after some fixed number of optimal structures
has been identified using successive residuals, the whole process could then be
iterated, first by adding back to a last set of obtained residuals those predicted
values from the first optimal structure identified to see if an even better first
structure could now be obtained. Similarly, the procedure could be continued for
the second optimal structure identified by first adding back the predicted values
from this second optimal structure, and so on cyclically until hopefully some
type of convergence is attained, i.e., until the same set of optimal structures
reappears each time through the complete process.

The three main combinatorial structures emphasized in the preceding chap-
ters (i.e., partitions, partition hierarchies, and object sequences of various kinds)
all can be used to define appropriate collections of linear equality/inequality
constraints that a set of fitted values must satisfy, irrespective of the specific
choice of the L, loss function that might be minimized (e.g., the sum of ab-
solute differences, the sum of squared differences, or the maximum absolute
deviation). Using these constraints and an appropriate L, regression routine
(e.g., one of those given in Spath, 1991), the fitted values could be obtained for
either the original proximities or for a set of residuals generated from the use
of other identified structures. To be explicit about the constraints implied by
each of the three basic structures, we have for (a) an M-class partition: the
fitted values within each of the M separate classes must be equal, and all fitted
values between two specific classes must be equal; (b) a partition hierarchy: the
fitted values must satisfy the linear equality/inequality constraints implied by
the basic ultrametric matrix corresponding to the given partition hierarchy (as
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presented explicitly in Section 3.2.1); (c¢) an object sequencing: the fitted values
must satisfy the equality/inequality constraints within rows and columns char-
acterizing the gradient conditions given in Section 4.1.1 for an anti-Robinson
form.

As a very brief illustration of such residualization, we consider the data in
Table 1.1 for the pairwise dissimilarities of the ten digits and the residuals that
would be generated from the 4-group partition identified most often as optimal
(ie., {{0,1},{2,4,8}.{3,6,9},{5,7}}). The least-squares alternative is adopted
that would define the fitted values as arithmetic averages of the within- or the
between-subset proximities; these are provided below:

class {0,1} {2,4,8} {3,6,9} {5,7}
(0.1} 421 635 679 .733
248  x 224 464 615
(369} x X 286 481
{5,7} X X x  .400

If the residuals from the original proximity values are generated from these
fitted values and then used to obtain optimal partitions into 2 through 9 classes
using the sum of the within-class sums as the cost criterion, in each case the
classes of an optimal partition are defined by digits consecutive in magnitude.
Thus, the structural properties of the digits appear best-represented by the first
identified optimal partition constructed for the original proximities; however, at
least part of any unexplained patterning in the residuals appears interpretable
through numerical magnitude. We give below the optimal partitions (without
listing single object sets) having 2 though 9 classes (based on the residuals)
along with the cumulative sums of the within-class sums (which, as one might
expect, are all negative):

Number of Partition Cumulative
Classes Sum
2 {0,1,2,3,4,5}.{6,7.8.9}  —3.448
3 {1,2,3,4,5},{6,7,8,9} —3.646
4 {1,2,3,4,5},{6,7.8} —3.478
5 {1,2,3,4,5},{7,8} —3.122
6 {1,2,3,4,5} —2.692
7 {1,2,3},{7,8} —-2.018
8 {1,2,3} —1.588
9 {1,2} —.702

6.1.3 Uses for the Information in the Sets )y,... Qk

For all specializations of the GDPP presented in the previous chapters, the re-
cursive processes were defined over a collection of sets, €y,...,Qx, and an opti-
mal solution to the specific optimization task under consideration was identified
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from just one member contained in x. In carrying out a recursive strategy,
however, a substantial amount of additional information is generated for the
entities Ay, € Qp for 1 <k < K, and in particular, each quantity F(Ay) defines
an optimal value for A; that potentially varies in its substantive interpretation
depending on how the basic set €2, is characterized. These latter optimal values
may help suggest possible alternative solutions to the optimization task being
solved and be of general diagnostic assistance in explaining what the original
proximities tell us substantively about the objects in the set S. We discuss

briefly how this additional information stored for the sets €11, . .., Qx might be
used for several GDPP specializations we have developed.
In the construction of an optimal M-class partition, the sets Q1, ..., were

defined so each contained all subsets of an original object set S, and F(Ay,) for
Ay, € Qy, was specified to be an optimal value for the cost criterion if just those
objects in A;, were partitioned optimally into & classes. This last observation
was used to construct, in addition to a single optimal M-class partition identified
by F(Aur) for Apr = S € Qypr, the optimal partitions of S into 2 through M —1
classes using F(Ay) when Ap = S € Q for 2 < k < M — 1. By comparing
the stored values of F(Ay) for any set Ay € Qi to F(S) for S € Qp, a direct
assessment can be made as to which object(s) have the most ‘influence’ on the
total cost criterion in obtaining an optimal k-class partition of S, and thus
indirectly, as to which object(s) might be considered ‘outliers’ or which subsets
of S are particularly well-partitionable according to the chosen cost criterion.
Besides identifying potentially influential object(s), the values F(Ay) can also
suggest other good, but not necessarily optimal, solutions for the partitioning of
S into k+ 1 classes. Specifically, suppose we go back to the stored values F(Ay,)
and add to each the cost increments for transforming Ay directly to S (i.e., we
add the heterogeneity measures for the single subsets S — Aj,), and order from
smallest to largest the resultant sums (or alternatively, the maximum of the two
terms when the cost criterion is the maximum of the heterogeneity measures
over the classes of a partition). This ordered set of values identifies a collection
of (k + 1)-class partitions that may be competitive with the one identified as
optimal (the optimal value for F(S) for S € Q41 will appear as the smallest in
this ordered list at least & times, but those next in size reflect other (k+ 1)-class
partitions that might be almost as good).

A similar evaluation procedure is possible when allowing only M-class parti-
tions that are order-constrained or for constructing optimal ordered partitions.
In this latter case, for example, the values for F(Ay) provide information on
how well subsets of S can be partitioned into k ordered classes that are them-
selves sequenced along a continuum. Moreover, when the number of objects in
the subset of S and the number of ordered classes are constrained to be equal,
the assessment becomes one of how well the individual objects in that subset of
S can be sequenced along a continuum. If these latter values are compared to
the criterion obtained when the complete set S is optimally partitioned into n
ordered classes, a determination can again be made about which object(s) might
be considered ‘outliers’ or particularly difficult to sequence along a continuum
in the presence of the remaining objects in S. Also, one may be able to identify
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a collection of reasonably good (k + 1)-class ordered partitions (similarly to the
suggestion for finding (k + 1)-class [unordered] partitions) formed directly from
F(Ay) for any Ay € Q) and the additional contribution needed in transforming
Ay, directly to S.

In the specialization of the GDPP to a hierarchical clustering task, the set (),
contained (for the agglomerative interpretation) all partitions of the n objects
in S into n — k + 1 classes, and thus, F(Ay) for Ay € Qy is the optimal cost
criterion that can be achieved for a partial partition hierarchy that would begin
with the single trivial partition A; € 4, in which all objects are placed into
separate classes, and terminate with the specific partition represented by Ay.
This observation was used previously in Section 3.2 to generate an optimal
partial partition hierarchy up to n — k -+ 1 classes by finding the minimal value
for F(Ay) over all Ay € Q. Besides providing a mechanism for identifying
optimal partial partition hierarchies, the values for F(A},) can also be used to
assess directly how well subsets of S can be hierarchically partitioned, and in
turn, which object(s) may be particularly difficult to include in a good partition
hierarchy or which might be characterized as outliers. Specifically, an optimal
partition hierarchy restricted to a subset of S containing, say, h objects, can be
identified immediately from F(Ap,), where Ay, € €y, is defined by that partition
of S in which all h objects are in one class and the remaining n — I objects
are in n — h separate classes. These latter optimal values for subsets of S
can be compared to F(S) for S € Q,, to evaluate the effect of eliminating n — h
objects(s) on the construction of an optimal partition hierarchy for the complete
object set S.

Much as in the M-class partition context, the values stored for some entities
in the sets Q4,...,Q, may also be used more directly to identify alternative
partition hierarchies that may be good but not necessarily optimal. For example,
one could observe which partition hierarchies are attached to the better values
obtained for the entities A,,_1 € Q,_1 (i.e., partitions into two classes) that are
not part of the optimal hierarchy, or considering the specific entity A, _; that
is part of the optimal hierarchy whether those partitions 4,, o € £,, o that are
transformable into A,_; are attached to partition hierarchies (other than the
optimal one) that also might be good according to the total cost criterion.

For the task of sequencing objects along a continuum, which is a special
case of constructing optimal ordered partitions where the number of classes
in an ordered partition is now equal to the number of objects, we have already
noted above how the influence of particular object(s) might be evaluated. When
objects are ordered though the construction of optimal paths, we can also assess
how well any subset of S can be so sequenced merely by minimizing over those
entries F((Ag, Jx)) (where it should be recalled that (Ay, ji) € Q) is now defined
by an ordered pair involving a subset of S and a last-placed object from that
subset) in which the particular subset is the first member of the ordered pair
and one of its elements is the second. A comparison of these latter values to the
total optimal value achievable using all the objects in S provides a mechanism
for assessing the effect that particular object(s) may have on the total optimal
value.
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In sequencing objects along a continuum either through the construction
of optimal paths or using a measure of matrix patterning discussed in Section
4.1, the search for good but not necessarily optimal orderings might proceed
differently than in a clustering context. Here, we consider one-mode symmetric
proximity matrices and implicitly assume the use of a measure of matrix pat-
terning discussed in Section 4.1, but extensions of this general type of approach
could be developed for object sequencing based on optimal path construction
or for the inclusion of skew-symmetric matrices (in this latter case, some small
modification would be necessary for how incremental merit contributions are
defined when single objects are placed along a continuum). Explicitly, for one-
mode symmetric proximity matrices, the recursive process followed for obtaining
an optimal sequencing of S produces (along the way) the function values F(Ay)
associated with A; € Q) that show a contribution to the total merit measure if
the objects in Ay are placed in the first k positions (reading from left to right).
Given the structure of this optimization task and the merit measure being used,
these same function values F(Ay,) would also yield the contribution to the total
merit measure if the objects in A, appeared in the last & positions. Thus, the
sum of the stored values F(Ay) for Ay € Qi and F(S — Ay) for S — A, € Qp
defines an optimal value for an ordering of the objects in S when the objects in
the set Aj, appear somewhere in the first k positions and those in S — A, appear
somewhere in the last n — k positions. By ordering these sums from largest to
smallest for all combinations of A; and S — Ay, the optimal value achievable for
the complete set S will appear n — 1 times as the largest in the list, but there
may be other identified orderings that although not necessarily optimal might
still be reasonably good.*!

6.1.4 A Priori Weights for Objects and/or Proximities

Among the difficulties in using a specialization of the GDPP to obtain an op-
timal solution for some clustering or sequencing task is that we are severely
limited in the absolute size of problems that can be considered. There is a
context, however, in which object set sizes could be rather enormous, so long
as there are only a reasonable number of distinct object types available and
these object types define the set S to be studied. Specifically, for all the various
optimization tasks discussed, and assuming identical objects must be placed
together in whatever optimal combinatorial structure is being sought, all the
specializations of the GDPP discussed could be generalized to incorporate posi-
tive weights (say, w1, ..., w,) for each of the n object types constituting the set
S. For example, in the partitioning task and using the sum of within- subset
proximities as the measure of subset heterogeneity, the contribution for some
pair of objects, say O; and Oj;, placed within the same subset, S,, would be
w;w,p;;, Where p;; is the proximity between object types O; and O;, and the
overall heterogeneity index for S, is

E wiwjpij-

1,J€5a
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If the average within-subset proximity were instead used, the heterogeneity for

S, could be given as
S E W W, P;
iPij-
<Z i,jES, Wil J> iges,

Analogously, in a sequencing context using the gradient measure in equation
(4.1), the definitions for >} Irow(k) and Y_;_, I.oi(k) in implementing the
GDPP would be extended as

k—1 n
[row E wzwh wiwj)f(pikspij)v
i=1 j=k+1
and
k—1 n
Leot(k) = (wrw;) (wiw;) f (Pejs Pij)-
i=1 j=h+1

In the heuristic extensions for partitioning, sequencing, and hierarchical clus-
tering discussed in Chapter 5, a form of object weighting similar to that just
described would result as a special case when the classes to be analyzed (as the
basic objects) are defined according to having identical objects. In these in-
stances, the heuristic designation for the applications in Chapter 5 is no longer
appropriate; optimality is guaranteed at the level of the a priori classes being
analyzed, and these must be considered as indivisible entities. In general, how-
ever, it may be most efficient merely to incorporate object weights directly into
specializations of the GDPP; the heuristic programs in Chapter 5 require the de-
finition of the object classes on-line, and a complete proximity matrix must first
be input even between replicated objects. A direct inclusion of object weights
would require only the use of the proximity matrix between object types plus
the set of nonnegative weights wy, ..., w,.

A second form of weighting that might be developed for the various special-
izations of the GDPP would not be on the objects in a set S but rather for the
proximities defined between pairs of the objects in S. If P = {p,;} denotes (as
usual) the symmetric proximity matrix between the objects in S, a second ma-
trix, V = {v;;}, is also given having dichotomous (0/1) entries. Here, v;; = 0 if
pi; is not to be considered (i.e., the proximity value is missing) in the calculation
of whatever merit or cost measure is being optimized, and = 1 otherwise. For
example, in the partitioning task, if the average within subset proximity were
used as a heterogeneity measure for a subset, say S, it could be defined as

Z VijPijs
<21J€S ) 4,jE€8,

i.e., the average of all the within subset proximities in S, that are not missing.
Analogously, in a sequencing context and for a comparison using a gradient
measure, say, among three objects, O; < O; < Oy, the comparison between
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p;; and p;;, would be ignored if either v;; = 0 or v;; = 0, and not included
in the calculation of the overall merit measure. If we wish, a set of weights for
objects (indicating replication) and a set of weights identifying those proximities
that are missing could be combined into a single matrix, say {v;;w;w;}. Here,
vijw;w; = 0 if the proximity between the object (types) O; and O; is missing
and = w;w;, otherwise, indicating the number of replications that particular
proximity value should have in the calculation of whatever cost or merit measure
is being optimized.

There is one specific pattern of missing proximities that we have already
discussed implicitly in previous chapters whenever two-mode proximity matrices
were considered. In these instances, two disjoint sets, S4 and Spg, were given and
the proximity matrix P4# was defined on the combined set, S = S4 U Sg, but
with missing proximities within S4 and within Sg. This two-mode usage can
be rephrased through an indicator matrix {v;;}, where v;; = 0if O;,0; € S4 or
0;.0; € Sg, and = 1 otherwise. More generally, however, the incorporation of
other patternings of missing proximities is possible for all the specializations of
the GDPP considered, and most (but not all) measures of cost or merit could
be generalized to accommodate them. There are some exceptions, as in the
use of coordinate estimation for sequencing within a GDPP framework, where
such an accommodation is not possible. This fact was observed for the very
regular patterning of missing proximities in our discussion in Section 4.1.3 on
the difficulties of incorporating two-mode proximity data within a DP framework
when coordinate estimation was the means for constructing the measure of merit
to be maximized.

6.2 Prospects

This monograph has attempted, by example, to show the wide possibilities in-
herent in the general framework of dynamic programming (and for the general
dynamic programming paradigm [GDPP] in particular) for approaching a va-
riety of combinatorial data analysis (CDA) tasks. At one level, this extended
presentation gives a convenient archival source of reference for the range of
nontrivially-sized CDA tasks that can be handled by the GDPP, and all with
a guarantee of generating optimal solutions. At a different, more applied level,
and because our primary objective is to be didactic in our presentation of the
uses of the GDPP, we have given an individual interested in trying out these
methods a mechanism for doing so, and in turn, verifying for themselves how the
methods work as advertised. The Appendix presents how the various program
implementations may be obtained, and by following the documentation in the
Appendix, how they can be used. There is no other source we know of (com-
mercial or otherwise) that provides such an already implemented computational
possibility.

The GDPP is a very general strategy for approaching a variety of CDA
tasks, and because of this generality, there will be instances in which better
optimization methods for specific problems can be defined. Some of these cases
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have been mentioned in the course of our presentation (e.g., in the linear as-
signment task and the construction of optimal paths, among others). In those
cases, it is still relevant that we can construct benchmarks (generated from the
GDPP) that other optimization methods proposed for specific CDA tasks can
seek to better. For instances where the domain of search can be appropriately
restricted, and large-sized optimization tasks can be handled optimally by the
GDPP, it even may be that the GDPP is the optimization method of choice
(e.g., in partitioning tasks subject to order constraints on the defining clusters).

One aspect of the use of the GDPP introduced in Chapter 5 that seems very
promising is the adoption of the recursive principles heuristically for approaching
(very) large object sets. This usage obviously needs more evaluative study in
the future, but preliminary results suggest that such a heuristic strategy relying
on large “chunks” of the object set of interest (but with a way of investigating
and improving upon the formation of the “chunks”), may be much better than
the more typical local operation methods currently in widespread use. There
is also much more to be done in implementing the GDPP in the most efficient
ways possible for the specific tasks at hand (some of this work is ongoing at
present; for instance, see the Endnote to the Appendix). In short, the prospects
appear to be excellent for much further work in the CDA area that builds on
the presentation given in the current monograph. We hope that our readers
who have come this far, agree.

Endnote for Chapter 6:

44 Although we will not pursue the possibility in any great detail, we might
comment that the observation just made about F(Ay) providing the optimal
contribution to a total merit measure if the objects in Ay, either appear in the
first k or the last k positions suggests a mechanism for reducing the compu-
tational storage requirements for finding an optimal ordering in the first place.
Specifically, instead of defining a recursive process over a collection of n sets
Q,...,Q,, where Q;, contains all k-element subsets of S, it would be suffi-
cient to proceed with the recursion from Q; only to Qj¢,41)/2), where [x] de-
notes the greatest integer contained in x. Once completed, an optimal order
could be identified directly from the maximum of the sums of F(A[,41)/2)) for
Afn1)/2) € Qinr1)/2) and F(S = Ajniry ) for 5 — Aqni1)/2) € Qe fmr) 21
This process of ‘doubling-up’ computationally (i.e., proceeding with the recur-
sion only partially through a collection of sets 1, ...,Qk, and then identifying
an optimal solution though a search process on the information contained within
this partial collection) has analogues for the construction of optimal partitions
as well, whether ordered or not.
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Appendix A

Available Programs

The purpose of this appendix is to describe briefly the operation of the nineteen
programs mentioned in the endnotes throughout the monograph. A summary
listing is first given below that groups these nineteen programs into five gen-
eral task areas: (1) object partitioning, (2) hierarchical clustering, (3) object
sequencing /seriation, (4) object sequencing by constructing optimal paths, and
(5) constructing ordered partitions. The various program acronyms are given,
along with an indication of how the acronyms were constructed. Also. a brief
statement is provided as to what each program is intended to do. These short
summaries are elaborated upon in the five main sections of this appendix proper,
which discuss the operation of each program under its general task area. The
various options/alternatives offered are noted, and sample input/output pro-

vided.
A Listing of the Available Programs
(1) Object partitioning—

DPCL1U (Dynamic Programming CLustering 1-mode Unrestricted):

the primary partitioning program for a symmetric proximity matrix. There
are twelve options for defining subset heterogeneity, and two optimization cri-
teria of minimizing either the sum or the maximum heterogeneity measure over
the classes of a partition.

DPCLIR (Dynamic Programming CLustering 1-mode Restricted):

all the same options as DPCL1U for a symmetric proximity matrix, but with
the additional requirement that an object order be given; all subsets considered
contain objects consecutive with respect to this ordering.

DPCL2U (Dynamic Programming CLustering 2-mode Unrestricted):

the analogue of DPCL1U but now for two-mode data that are provided in
the form of a rectangular proximity matrix between two disjoint sets.

DPCL2R (Dynamic Programming CLustering 2-mode Restricted):

all the same options as DPCLI1R for a two-mode data matrix, but with the
additional requirement that separate row and column object orders be given;
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all subsets considered include row and column objects that are consecutive with
respect to these two orderings.

HPCL1U (Heuristic Programming CLustering 1-mode Unrestricted):

the extension of DPCL1U for symmetric proximity matrices to allow (a) the
entities to be partitioned to be subsets of the original object set, and (b) only
parts of the original object set to be partitioned.

HPCL2U (Heuristic Programming CLustering 2-mode Unrestricted):

the analogue of DPCL2U with all its same options for two-mode proximity
matrices, and allowing (a) the entities to be partitioned to be subsets of the
combined row and column object set, and (b) only parts of the combined row
and column object set to be partitioned.

(2) Hierarchical clustering—

DPHI1U (Dynamic Programming Hlerarchical clustering 1-mode Unrestrict-
ed):

the primary hierarchical clustering program for a symmetric proximity ma-
trix. There are fourteen options for defining subset heterogeneity, with twelve
identical to DPCL1U in the partitioning context, and two devoted to the least-
squares fitting of an ultrametric and the two admissibility criteria discussed in
the text. The sum of the heterogeneity measures is minimized over the new
classes formed; when appropriate, an additional partition hierarchy based on
the ‘greedy’ strategy is also given (that provides a computational bound in
obtaining the optimal hierarchy).

DPHIIR (Dynamic Programming Hlerarchical clustering 1-mode Restrict-
ed):

all the same options as DPHI1U for a symmetric proximity matrix, but with
the additional requirement that an object order be given; all new subsets formed
in the process of partition hierarchy construction contain objects consecutive
with respect to this ordering.

DPDI1U (Dynamic Programming Dlvisive clustering 1-mode Unrestricted):

all the same options as DPHI1U for a symmetric proximity matrix, but
the algorithm proceeds divisively. Thus, in using DPDI1, the optimal partial
partition hierarchies provided all begin with the all-inclusive set; in contrast,
for DPHI1U the optimal partial partition hierarchies all begin with each object
forming its own separate class.

HPHI1U (Heuristic Programming Hlerarchical clustering 1-mode Unrestrict-
ed):

the extension of DPHI1U for symmetric proximity matrices, but which allows
(a) the entities to be partitioned to be subsets of the original object set, and (b)
only parts of the original object set to be partitioned. The L; and L., options
are included, along with the construction of hierarchies based only on the order
properties of the proximities (i.e., using OTIs and OQ]s).

HPHI2U (Heuristic Programming Hlerarchical clustering 2-mode Unrestrict-

ed):
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the analogue of HPHI1U but now for two-mode data that are provided in
the form of a rectangular proximity matrix between two disjoint sets. Also, (a)
the entities to be partitioned can be subsets of the original object set, and (b)
only parts of the original object set need be partitioned.

(3) Object sequencing/seriation—

DPSE1U (Dynamic Programming SEriation 1-mode Unrestricted):

the primary sequencing/seriation program for a symmetric or skew-sym-
metric proximity matrix. There are eight options for defining the index of
matrix pattern, depending on whether the proximity matrix is symmetric or
skew-symmetric. In all cases, the index of matrix pattern is optimized over all
possible reorderings of the rows/columns of the proximity matrix). Precedence
constraints on the ordering can be imposed through an additional indicator
matrix that is read after the proximity matrix and is present in the same input
file. Also, the option of using only the within row or within column gradient
comparisons is provided when these indices of matrix pattern are chosen.

HPSE1U (Heuristic Programming SEriation 1-mode Unrestricted):

the extension of DPSE1U for symmetric or skew-symmetric proximity ma-
trices, but which allows (a) the entities to be sequenced to be subsets of the
original object set, and (b) only parts of the original object set to be sequenced.

DPSE2U (Dynamic Programming SEriation 2-mode Unrestricted):

the primary sequencing/seriation program for a two-mode proximity matrix,
where the row and column objects are treated as one combined set. There
are four options for defining the index of matrix pattern—the weighted and
unweighted gradient measures (to be maximized), plus the two that use only the
weighted or unweighted inconsistencies (which are minimized). The comparisons
can be restricted to be within only the rows or columns of the proximity matrix
for the combined object set, or only within the rows or the columns of the original
two-mode proximity matrix. Also, precedence constraints on the combined row
and column object set can be imposed through an additional indicator matrix
read in after the two-mode proximity matrix.

HPSE2U (Heuristic Programming SEriation 2-mode Unrestricted):

the extension of DPSE2U for two-mode proximity matrices that allows (a)
the entities to be sequenced to be subsets of the original combined row/column
object set, and (b) only parts of the combined row/column object set to be
sequenced.

DPSE2R (Dynamic Programming SEriation 2-mode Restricted):

all the same options as DPSE2U for a two-mode data matrix, but allowing
object orders to be given for the column objects only, or for both the row and
column objects. When both row and column orders are imposed, the DHG
measure of matrix pattern is an additional option.

(4) Object sequencing by constructing optimal paths—
DPSEPH (Dynamic Programming SEriation by constructing PatHs):
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the sole program for constructing either linear or circular paths based on a
given one-mode proximity matrix. The optimization task may be to find the
minimum or maximum path, or one that is minimax or maximin. Precedence
constraints can be imposed by the use of an indicator matrix read in after the
proximity matrix. If the proximity matrix is square but nonsymmetric, directed
linear or circular paths are identified that satisfy the optimization criteria cho-
sen.

(5) Constructing ordered partitions—

DPOP1U (Dynamic Programming Ordered Partitioning 1-mode Unrestrict-
ed):

for a symmetric or skew-symmetric proximity matrix, optimal ordered par-
titions are identified using one of five different options (three for symmetric
matrices and two for skew-symmetric matrices).

HPOP1U (Heuristic Programming Ordered Partitioning 1-mode Unrestrict-
ed):

the extension of DPOP1U for symmetric and skew-symmetric proximity ma-
trices to allow (a) the entities to be partitioned into ordered classes to be subsets
of the original object set, and (b) only parts of the original object set to be par-
titioned.

The nineteen programs summarized above are available in executable forms
(i.e., as *.exe files) that will run under 32 bit operating systems such as Windows
95 or Windows NT. These programs can be downloaded from the WWW site:

ftp://www.psych.uiuc.edu/pub/lhubert
There are four files maintained at that address:

PROG32.ZIP, which includes the nineteen *.exe files in ‘zipped’ form;

CODE32.ZIP, which includes the original Fortran90 source code for each of
the nineteen programs in ‘zipped’ form;

DATA.ZIP, which includes the various data files that have been used through-
out the monograph and in this appendix for all the various examples;

PKUNZIP.EXE, which will unzip the first three files.

Downloading all four files into a directory and then issuing the commands of
‘PKUNZIP’ plus the file name, will provide the executable files for all nineteen
programs, along with the various data sets that could be used to reproduce the
analyses given throughout the monograph, and the original Fortran90 source
code for the nineteen programs that were compiled to produce the *.exe files.
By default, all programs have been compiled under Microsoft Fortran Power-
station 4.0, and thus, require execution under a 32 bit operating system such as
Windows 95 or Windows NT.45
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A.1 Object Partitioning

The primary program for the partitioning task is DPCL1U; the five other pro-
grams that are devoted to partitioning (DPCL1R, DPCL2R, DPCL2U, HPCL1U,
HPCL2U) can be viewed as variants of DPCL1U in that they handle two-mode
proximity data, impose order restrictions, or allow heuristic extensions for larger
object sets. We will start with DPCL1U and go through the steps for one rep-
resentative application and include a listing of the output produced. Once this
example is given, the variations present within the other five programs in the
series will be noted, but representative applications will not be given explicitly
for the latter.

To begin, we will assume that the directory from which DPCL1U is run
has a file containing a proximity matrix in lower-triangular form without main
diagonal entries. The example we use is from the digit data in Table 1.1, where
the file is named ‘number.dat’, and has the (fixed) format (in the usual Fortran
form) for each of its lines of ‘(9F4.3)":

421

584 284

709 346 354

684 646 059 413

804 588 671 429 409

788 758 421 300 388 396

909 630 796 592 742 400 417

821 791 367 804 246 671 350 400

850 625 808 263 683 592 296 459 392

For an illustration, suppose we select as a heterogeneity measure the average
proximity within a subset (based on the number of object pairs), the opti-
mization criterion of minimizing the maximum heterogeneity measure over all
subsets, and then construct optimal partitions into 2 through 10 subsets (so
the maximum number of subsets selected will be 10, which will automatically
generate all optimal partitions into 2 through 10 subsets as well).

Running DPCL1U produces the prompts given in all capital letters below.
The responses provided by the user to effect the desired analysis are placed in
solid braces [-] (but note that these solid braces should not be part of the input),
and explanatory comments about what has been chosen and why are given in
curly braces.

MAIN MENU

1 AVERAGE PROXIMITY WITHIN SUBSET (USING TWICE
THE NUMBER OF OBJECTS)

2 AVERAGE PROXIMITY WITHIN SUBSET (USING THE

NUMBER OF OBJECT PAIRS)

SUM OF PROXIMITIES WITHIN SUBSET

MAXIMUM PROXIMITY WITH SUBSET

5 AVERAGE WITHIN MINUS AVERAGE BETWEEN

S w
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6 NUMBER OF PROXIMITIES WITHIN GREATER THAN BETWEEN

NORMALIZED OPTION 6

8 COMMON OBJECT INCONSISTENCIES WITHIN VERSUS
BETWEEN

9 NORMALIZED OPTION 8

10 NEGATIVE OF THE AVERAGE BETWEEN

11 MINIMUM CONNECTIVITY PROXIMITY

12 SPANNING TREE LENGTH

CHOICE?

(2]

{Each of the twelve subset heterogeneity options from Section 3.1 is rep-
resented in this list; the Roman numerals used in Section 3.1 correspond to
these numbered options as follows: 1:(iii); 2:(ii); 3:(i); 4:(iv); 5:(vi); 6:(viii);
7:(ix); 8:(x); 9:(xi); 10:(vii); 11(v); 12:(xii). Because we wish to use the aver-
age within-subset proximity based on the number of object pairs, option 2 is
chosen. }

~

OPTIMIZATION METHOD

1 MINIMUM OF THE SUM

2 MINIMUM OF THE MAXIMUM
CHOICE?

(2]

{We wish to minimize the maximum heterogeneity measure over all subsets,
so that option 2 is chosen.}

MAXIMUM NUMBER OF SUBSETS TO BE USED
[10]

{All optimal partitions into 2 through 10 subsets will be generated.}

NUMBER OF ROWS/COLUMNS FOR THE LOWER TRIANGULAR
MATRIX-- NO DIAGONAL
[10]

{Because the number of objects to be partitioned is 10, this number is pro-
vided as a response. If a number is given that is less than 3 or greater than
30, an error message appears, declaring that the ‘PROBLEM SIZE IS OUT OF
RANGE’, and the program would stop. Otherwise, the program tries to allocate
the necessary storage space required, and if enough RAM exists, will respond
with ‘ARRAY ALLOCATION SUCCESSFUL’ (twice); if not, the response will
be ‘ARRAY ALLOCATION ERROR’, and the program terminates.}

FILE NAME FOR THE INPUT MATRIX
[number.dat]
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{This file containing the lower-triangular proximity matrix must exist in the
directory, otherwise an error message will appear after the format is input below.
(Alternatively, a path could be given for where the input file can be found.)}

FILE NAME FOR THE OUTPUT MATRIX
[number . out]

{The output will appear in a new file named ‘number.out’; if a file by this
name already exists, an error message will be given after the format is input
below. (Alternatively, a path could be given for where the output file should be
written.) }

PROVIDE FORMAT FOR THE INPUT MATRIX
[(9F4.3)]

{The appropriate Fortran format statement is given for a line of the prox-
imity matrix.}

PROGRAM RUNNING
STAGE ONE PROCESSING SUBSETS OF SIZE 1

STAGE ONE PROCESSING SUBSETS OF SIZE 10
PROCESSING A STAGE 2

PROCESSING A STAGE 10

{No response is required; these are merely messages that indicate the process-
ing has begun and that it is completed when the phrase ‘PROCESSING A
STAGE 10’ appears.}

The contents of the file ‘number.out’ are given below (with some intermediate
output deleted), where the various items should be self-explanatory. There is
first a listing of which subset heterogeneity option and optimization criterion
was used, and a listing of the proximity matrix. Then, for partitions into 1 to 10
subsets, an indication is given for the heterogeneity indices of the classes within
each of the optimal partitions, and a cumulative index over all classes of that
partition.

HETEROGENEITY OPTION 2

MINIMIZATION OF THE MAXIMUM



132 APPENDIX A. AVAILABLE PROGRAMS

INPUT MATRIX
0.421
0.584 0.284
0.709 0.346 0.354
0.684 0.646 0.059 0.413
0.804 0.588 0.671 0.429 0.409
0.788 0.758 0.421 0.300 0.388 0.396
0.909 0.630 0.796 0.592 0.742 0.400 0.417
0.821 0.791 0.367 0.804 0.246 0.671 0.350 0.400

0.850 0.625 0.808 0.263 0.683 0.592 0.296 0.459 0.392

NUMBER OF SUBSETS 1

SUBSET ADDED 10 9 8 7 6 5 4 3 2 1

INDEX FOR SUBSET 0.5412 CUMULATIVE INDEX 0.5412
NUMBER OF SUBSETS 2

SUBSET ADDED 10 9 8
INDEX FOR SUBSET 0.4373 CUMULATIVE INDEX 0.4500

~
(2]

SUBSET ADDED 5 4 3 2 1
INDEX FOR SUBSET 0.4500 CUMULATIVE INDEX 0.4500

NUMBER OF SUBSETS 3

SUBSET ADDED 10 8 7 6 4

INDEX FOR SUBSET 0.4144 CUMULATIVE INDEX 0.4144
SUBSET ADDED 9 5 3 2

INDEX FOR SUBSET 0.3988 CUMULATIVE INDEX 0.3988
SUBSET ADDED 1

INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.0000

NUMBER OF SUBSETS 4

SUBSET ADDED 10 9 8 7
INDEX FOR SUBSET 0.3857  CUMULATIVE INDEX 0.3857

SUBSET ADDED 6

INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.3503
SUBSET ADDED 5 4 3 2

INDEX FOR SUBSET 0.3503 CUMULATIVE INDEX 0.3503
SUBSET ADDED 1

INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.0000

NUMBER OF SUBSETS 5

SUBSET ADDED 8



A.1. OBJECT PARTITIONING 133

INDEX FOR SUBSET 0.0000  CUMULATIVE INDEX 0.3503

SUBSET ADDED 10 9 7
INDEX FOR SUBSET 0.3460 CUMULATIVE INDEX 0.3503

SUBSET ADDED 6
INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.3503

SUBSET ADDED 5 4 3 2
INDEX FOR SUBSET 0.3503  CUMULATIVE INDEX 0.3503

SUBSET ADDED 1
INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.0000

{The remaining output for 6 to 10 subsets has not been printed.}

Program DPCL1R:

The program DPCLIR is an analogue of DPCL1U in that the same options are
offered, but it requires the additional imposition of an order constraint on which
objects can be defined within each subset of an optimal partition. (Also, much
larger proximity matrices are allowable than in DPCL1U.) After the input of
the format, we have:

O IF CONSTRAINED ORDER IS TO BE THE IDENTITY
1 IF IT IS TO BE INPUT
(1]

{A ‘0’ response imposes the order constraint that is the same as the index
order of the objects; a ‘1’ allows the order constraint to be supplied (which we
do in this example).}

ENTER ORDER SEPARATED BY BLANKS
[1234567289 10]

{The object order used here again provides the (identity) index order for the
objects (and could also have been indicated by the use of a ‘0’ in the previous
response). }

The output is the same as that for DPCL1U except that the subsets in any
optimal partition would now contain objects consecutive in the object order
imposed. For reference, a listing of the object ordering that is used for the
constraint is given in the output file immediately before the input matrix is
printed.

Program DPCL2U:

The program DPCL2U constructs optimal partitions based on two-mode data
and offers all the same options as DPCL1U. Thus, the data matrix to be input
must be in a rectangular form, and the format statement applies to each row of
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the latter. The prompt for the NUMBER OF OBJECTS FOR A LOWER TRI-
ANGULAR MATRIX- NO DIAGONAL’ is replaced by two separate prompts:

NUMBER OF ROWS
(7]

NUMBER OF COLUMNS
7]

where ‘7" is replaced by the appropriate number. The prompt for the ‘MAXI-
MUM NUMBER OF SUBSETS TO BE USED’ is augmented by a reminder:

NO LARGER THAN THE MINIMUM OF THE NUMBER OF
ROWS AND COLUMNS
7]

After the number or rows and columns are input, if this condition does not hold,
the program terminates with an error message.

In the output, the data matrix echoed is now rectangular; and in the pre-
sentation of the clustering results, the row and column objects are treated as
one joint set with the column objects labeled by the appropriate column index
plus the number of row objects (e.g., the first column object has a label of 1 +
number of row objects). A reminder of this particular column object labeling
convention is also given in the output.

Program DPCL2R:

The program DPCL2R is the analogue of DPCL1R but requires the imposition
of separate orders for the row objects and for the column objects. The prompts
that ask for these have the form

0 IF ROW CONSTRAINED ORDER IS TO BE THE IDENTITY
1 IF IT IS TO BE INPUT
(1]

ENTER ROW ORDER SEPARATED BY BLANKS
[...row order here...]

0 IF COLUMN CONSTRAINED ORDER IS TO BE THE IDENTITY
1 IF IT IS TO BE INPUT
(1]

ENTER COLUMN ORDER SEPARATED BY BLANKS
[...column order here...]

In the output file these two row and column constraint orders are provided
before the input matrix; in the listing of the subsets of an optimal partition, the
row objects and the column objects making up a subset are given separately.
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Program HPCL1U:

Program HPCL1U is the extension of DPCL1U that allows user-specified classes
of objects to form the entities to be partitioned. After the request for the ‘NUM-
BER OF ROWS/COLUMNS FOR THE LOWER TRIANGULAR MATRIX’,

the prompt is given

NUMBER OF INITIAL OBJECT CLASSES TO BE PARTITIONED?
7]

This question refers to the number of object classes that will be defined (in
response to a later prompt), and treated as the entities to be partitioned. The
next prompt of

MAXIMUM NUMBER OF SUBSETS TO BE USED
7]

now refers to the maximum number of subsets desired in an optimal partition
of the (to be defined below) entities to be partitioned. They are constructed
according to the response to

OBJECT CLASSES TO BE PARTITIONED?

1 THE SAME AS THE NUMBER OF OBJECTS

2 OBJECT CLASS MEMBERSHIP TO BE INPUT
(2]

A response of ‘1’ would define as many object classes as there are original objects
with the same integer labels (i.e., DPCLI1U is obtained as a special case); a
response of ‘2" allows the class membership to be constructed by producing the
prompt

INPUT CLASS MEMBERSHIP (SEPARATED BY BLANKS)
WITH ZERO INDICATING A DELETED OBJECT
[...integer class membership labels...]

The class membership labels use the integers from 1 to the number of entities
defined, or zero; all the initial objects that are given a common integer label
provide a class that is treated as a single entity in the partitioning process; if
an initial object is given a ‘0’, it appears in no such entity class. In the output,
a legend giving the ‘CLASS NUMBER / OBJECT MEMBERSHIP IN CLASS’

is provided; all the results are given using the class numbers from this legend.

Program HPCL2U:

Program HPCL2U is an extension of DPCL1U for a two-mode proximity matrix
and allows user-specified classes of objects to form the entities to be partitioned.
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In comparison with the earlier discussion of DPCL1U and HPCL1U, the only
prompt requiring further clarification is the one that defines the group member-
ship:

INPUT CLASS MEMBERSHIP (SEPARATED BY BLANKS)

WITH ZEROS INDICATING A DELETED OBJECT

THE ROW OBJECTS COME FIRST AND THEN THE COLUMN
[...integer class membership labels for rows...integer
class membership labels for

columns...]

The original object set is a joint set of the row and column objects, and the
class membership labels for the rows should be given first followed by the class
membership labels for the column objects (with a ‘0’ listed whenever an object
is to be deleted). Thus, the entities to be defined and partitioned could consist
of all row or all column objects, or be a mixture of the two. Again, as in
the output for HPCL1U, a legend indicating ‘CLASS NUMBER / OBJECT
MEMBERSHIP IN CLASS’ is provided, and all the results are given using the
class numbers from this legend.

A.2 Hierarchical Clustering

Analogous to the software for object partitioning, there is one primary pro-
gram, DPHI1U, for the hierarchical clustering task with four others (DPHIIR,
DPDI1U, HPHI1U, HPHI2U) as variants dealing with order restrictions on the
objects, a divisive approach to constructing the optimal hierarchy, and heuristic
extensions for larger object sets for both one- and two-mode proximity matrices.
We will illustrate explicitly the use of DPHI1U on the digit data of Table 1.1
(using the input file ‘number.dat’), and choose the average proximity within a
subset (based on the number of object pairs) to construct the optimal partition
hierarchy that minimizes the sum of these averages over all the new subsets
that are formed in a hierarchy. A copy of the output produced (in the file
‘numhi.out’) will be included below. After this example, the variations pro-
vided by the other four programs in this series will be noted, but no specific
applications will be given for them.

Running DPHI1U produces the following prompts in capital letters (we again
give the responses provided by the user in solid braces || and provide explana-
tory comments when necessary in curly braces).

MAIN MENU

1 AVERAGE PROXIMITY WITHIN SUBSET (USING TWICE
THE NUMBER OF OBJECTS)

2 AVERAGE PROXIMITY WITHIN SUBSET (USING THE
NUMBER OF OBJECT PAIRS)



A.2. HIERARCHICAL CLUSTERING 137

SUM OF PROXIMITIES WITHIN SUBSET

MAXIMUM PROXIMITY WITH SUBSET

AVERAGE WITHIN MINUS AVERAGE BETWEEN

NUMBER OF PROXIMITIES WITHIN GREATER THAN BETWEEN

NORMALIZED OPTION 6

COMMON OBJECT INCONSISTENCIES WITHIN VERSUS

BETWEEN

9 NORMALIZED OPTION 8

10 NEGATIVE OF THE AVERAGE BETWEEN

11 MINIMUM CONNECTIVITY PROXIMITY

12 SPANNING TREE LENGTH

13 BETWEEN SUM OF SQUARES FROM MEAN WITH ORDER
CONSTRAINTS PLUS LATER UNION CONSTRAINTS

14 BETWEEN SUM OF SQUARES FROM MEAN WITH ORDER
CONSTRAINTS ONLY

CHOICE?

(2]

0 N O O W

{In addition to the same options for the subset heterogeneity measure num-
bered 1 to 12, as for the partitioning task, the two options of 13 and 14 (as
discussed in the text) provide the least-squares fitting of an ultrametric using
either the possibly too lenient admissibility criterion (option 14) or the possibly
too strict admissibility criterion (option 13).}

IMPOSITION OF NEW SUBSET ORDER CONSTRAINTS
1 NO
2 YES
CHOICE?
(2]

{In options 1, 2, 3, 4, 11, and 12, where in an optimal solution the subset
heterogeneity measures must be monotonic, such a requirement can be imposed
in constructing the partition hierarchy so as to reduce the overall computational
effort required. In addition, for options other than 5, 10, 13, or 14, a greedy
partition is first constructed that provides a computational upper bound (as
noted in the text) on the value that an optimal hierarchy should achieve; this
bound is also used to reduce the computational effort in constructing the optimal
hierarchy and is indicated explicitly in the output as well.}

NUMBER OF ROWS/COLUMNS FOR THE LOWER TRIANGULAR
MATRIX-- NO DIAGONAL
[10]

{If a number is entered that is less than or equal to 3 or greater than 15, an
error message appears in the form ‘MATRIX OUT OF RANGE’ and the pro-
gram stops. Otherwise, the program attempts to allocate the necessary storage
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space, and if successful, the message ‘ARRAY ALLOCATION SUCCESSFUL’
will appear (three times); if not, a message of ‘ARRAY ALLOCATION ERROR’
occurs, and the program terminates.}

FILE NAME FOR THE INPUT MATRIX
[number.dat]

FILE NAME FOR THE OUTPUT MATRIX
[numhi.out]

PROVIDE FORMAT FOR THE INPUT MATRIX
[(9F4.3)]

PROGRAM RUNNING

{No additional prompts are given until the processing is completed.}

The contents of the output file ‘numhi.out’ are reproduced below, where the
various entries should be more or less self-explanatory. There are indications of
which subset heterogeneity measure (transition criterion) is being used; that we
are maximizing the sum of these in constructing the partition hierarchy; subset
order constraints are being imposed; a greedy algorithm is used to obtain a
computational bound; and a listing of the input proximity matrix. Thereafter,
the greedy partition hierarchy is provided along with the bound used; the cumu-
lative index up to the given number of subsets in the hierarchy; and a listing of
group membership for these subsets. Next, the optimal hierarchy is given plus
the optimal partial hierarchies that stop at 2 through 9 subsets. If either of the
least-squares options 13 or 14 had been used, the average proximity between
each pair of subsets at a given level is also provided directly before the listing
of subset membership.

TRANSITION CRITERION USED 2
MINIMIZATION OF THE SUM
SUBSET ORDER CONSTRAINTS IMPOSED
PRELIMINARY GREEDY ALGORITHM USED FOR A BOUND
INPUT MATRIX
0.421
0.584 0.284
0.709 0.346 0.354
0.684 0.646 0.059  0.413
0.804 0.588 0.671 0.429 0.409

0.788 0.758 0.421 0.300 0.388 0.396
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0.742

0.246

0.683
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0.821 0.791 0.367 0.804

0.850 0.625 0.808 0.263
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GREEDY PARTITION HIERARCHY TO OBTAIN THE BOUND
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OPTIMAL PARTITION HIERARCHY

SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS

2

W0 ~N® O W

10

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

OPTIMAL PARTITION HIERARCHY

SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS

3

0o ~N O

10

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

OPTIMAL PARTITION HIERARCHY

SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS
SUBSETS

4

0w ~N®O,

10

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

2
2
1
1
0.
o}
o}
0
0

2
1
1
o}
0.
o}
o}
o}

1
1
0
0.
o}
0
0

MEMBERSHIP

FRRPRRRPR PR

NNNNNNNNER-

NNNNNNNRE R

0.417

0.350

0.296

WWWwwWwwwNnNe= =

WWWwwowwwNnN =

STARTING WITH 2 SUBSETS

.51356
. 0450
.6240
.2202
8323
.5460
.2830
.0590
.0000

MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP

1

PRrRERRPRRPER

e

NNNNNDNNE

WWwowwwwwNnN

STARTING WITH 3 SUBSETS

.0249
.6105
.2117
.8323
5460
.2830
.0590
.0000

MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP

1

PR ERRRPR

2

NNNNNNDN

WWwwwwwNN

STARTING WITH 4 SUBSETS

.6105
.2117
.8323
5460
.2830
.0590
.0000

MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP
MEMBERSHIP

1

PR RERP R

2

NNNNNDN

WwwwwwN

[ N N S N Y P AR C N

[ N N S N N S A CIN

[ N N N S N Y [ N N O O N S

[ N N N N N

DwWwWwwwwnNER =

DwWwWwwwwwNN-

OwWwwwwwhN O wWwwwwwwNN

O wWwwwwwN

0.400

0.459

O ool oEWWN P

OO OO R WWw O 0T ooOWwNN U OO OTWNN -

OO o W

{The remaining output for hierarchies starting at 5 to 9 subsets
has not been printed.}
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Program DPHI1R:

The program DPHIIR is a direct analogue of DPHI1U in offering the same
options but requires the additional imposition of an order constraint on which
objects can be within a subset of a partition in the hierarchy. The prompt is
issued and responded to exactly as in DPCLI1R. (If the number of objects entered
is less than or equal to 3 or greater than or equal to 30, an error message is
generated that the ‘MATRIX IS OUT OF RANGE’; otherwise, the program
will attempt to allocate the storage space necessary to construct an optimal
partition hierarchy.)

Program DPDI1U:

The only difference between DPDI1U and DPHI1U is that the former con-
structs an optimal partition hierarchy divisively rather than agglomeratively.
The prompts in running both programs are identical. In the output for DPDI1U,
however, the optimal partial partition hierarchies that are provided begin with
the all-inclusive set and terminate at 2 through 9 subsets (if the given number
of the initial objects is 10, as in our example).

Program HPHI1U:

The program HPHI1U is an heuristic extension of DPHI1U that allows user-
defined classes of objects to be the entities that are hierarchically clustered.
The prompt to define such entities is exactly the same as given in HPCL1U.
In addition to the 14 menu items from DPHI1U, HPHI1U includes 6 additional
options:

MAIN MENU

15 ABSOLUTE SUM OF DEVIATIONS FROM MEDIAN WITH ORDER
CONSTRAINTS PLUS LATER UNION CONSTRAINTS

16 SAME AS 15 BUT NO LATER UNION CONSTRAINTS

17 LARGEST ABSOLUTE DEVIATION FROM THE AVERAGE OF
TWO EXTREMES PLUS LATER UNION CONSTRAINTS

18 SAME AS 17 BUT NO LATER UNION CONSTRAINTS

19 ULTRAMETRIC ORDER INCONSISTENCIES --- COMMON
OBJECTS ARE NECESSARY
20 ULTRAMETRIC ORDER INCONSISTENCIES --- COMMON

OBJECTS ARE UNNECESSARY
CHOICE?
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In contrast (but analogous) to the least-squares options 13 and 14, options
15 and 16 use an absolute sum of deviations from the median (an L; norm), and
17 and 18 use the largest absolute deviation from the average of the two extreme
proximities between a pair of subsets (an L., norm). The two options 19 and
20 are the loss functions based on triple inconsistencies (OTIs) and quadruple
inconsistencies (OQIs) to a base ultrametric, as discussed and illustrated in
some detail in Section 3.2.1.

Program HPHI2U:

The program HPHI2U is an extension of HPHI1U to two-mode proximity matri-
ces. The prompts to define the entities to be hierarchically clustered are exactly
as in HPCL2U, and the data are entered as a rectangular matrix, also as in

HPCL2U.

A.3 Object Sequencing/Seriation

The primary program for the sequencing of objects is DPSE1U with four oth-
ers (DPSE2U, DPSE2R, HPSE1U, HPSE2U) interpretable as variants dealing
with two-mode proximity data, the imposition of order restrictions on the rows
and/or columns of such a two-mode matrix, or those allowing heuristic exten-
sions for large object sets. We will illustrate explicitly the operation of DPSE1U
with the prompts needed and the resulting output from carrying out three sep-
arate analyses. Using the symmetric proximity data on the digits in the file
‘number.dat’, the ten objects will be sequenced using both unidimensional co-
ordinate estimation and the weighted gradient measure, and for the ‘after’ skew-
symmetric matrix of Table 4.1, the sum of proximities will be maximized above
the main diagonal of the reordered matrix. The latter skew-symmetric matrix
will be in a file called ‘tssa.dat’ with format ‘(13F6.2)’; the contents of this input
file are as follows:

00 -.68 -.86 -.90 -.34 -.40 -.96 .00 -1.00 -.88 -.94 .24 -.46
58 00 -.02 -.40 28 38 -.90 .64 -.92 -.46 -.28 .46 38
86 02 00 -.40 44 40 -.94 .74 -.96 -.36 -.24 68 40
90 40 40 .00 68 74 -.88 .78 -.92 -.34 06 84 68
34 -.28 -.44 -.68 00 00 -.96 .36 -.98 -.78 -.62 30 08
40 -.38 -.40 -.74 00 00 -.96 .46 -.96 -.80 -.562 40 02
96 90 94 88 96 96 00 .98 -.28 58 .88 96 96
00 -.64 -.74 -.78 -.36 -.46 -.98 00 -.98 -.88 -.78 -.24 -.32

88 46 .36 34 78 80 - -.74 00 .28 84 78
.94 .28 .24 -.06 .62 .62 -.88 .78 -.90 -.28 .00 .94 .52
-.24 -.46 -.68 -.84 -.30 -.40 -.96 .24 -.98 -.84 -.94 .00 -.28
.46 -.38 -.40 -.68 -.08 -.02 -.96 .32 -.96 -.78 -.b2 .28 .00

The three analyses would in practice be carried out separately by three distinct
runs of DPSE1U; however, we will indicate jointly what the responses to the
given prompts would be in the listing below with the option for coordinate
estimation given first, followed by the use of the weighted gradient measure,
and finally, by the responses required for the analysis of the skew-symmetric
proximity matrix.
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MAIN MENU
1 UNWEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
NUMBER OF STRICT CONSISTENCIES MINUS
INCONSISTENCIES ABOVE THE MAIN DIAGONAL
2 NUMBER OF CONSISTENCIES MINUS INCONSISTENCIES
WITHIN ROWS LEFT AND RIGHT OF MAIN DIAGONAL
3 DEFAYS CRITERION
SUM OF SQUARES OF PROXIMITY SUMS TO MAIN
DIAGONAL MINUS FROM MAIN DIAGONAL WITHIN ROWS
4 PROXIMITY SUM
ABOVE MAIN DIAGONAL
5 WEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
WEIGHTED BY POSITIVE OR NEGATIVE DIFFERENCES
6 GREENBERG PATTERN
SAME AS 1 BUT REVERSED WITHIN THE COLUMN
COMPARISONS
7 EQUALLY SPACED COORDINATES-- PROXIMITY SUMS
TO MAIN DIAGONAL MINUS FROM MAIN DIAGONAL
WITHIN ROWS WEIGHTED BY INTEGER CONSTANTS
8 GREENBERG PATTERN
SAME AS 5 BUT REVERSED WITHIN THE COLUMN
COMPARISONS
CHOICE?
[3] or
[5] or
[4]

{The options appropriate for a symmetric proximity matrix are 1 and 5
which provide the unweighted and weighted gradient measures, or 3 and 7 which
give coordinate estimates with option 7 restricted to those estimates that are
equally-spaced along a continuum. For historical reasons, option 3 is labeled
as the Defays criterion after the individual who first suggested how such an
optimization criterion could be used in the coordinate estimation context. For
a skew-symmetric matrix, option 4 will maximize the above-diagonal sum (and
as will be seen in the relevant output file; this option also provides automatically
the additional set of closed-form estimates for a set of coordinates); option 2 was
not explicitly discussed in the text but maximizes the number of consistencies
minus inconsistencies in the ordering of the proximities within the rows of a
reordered skew-symmetric matrix to the left and right of the main diagonal.
Finally, options 6 and 8 are the unweighted and weighted gradient measures for
the alternative Greenberg pattern.}

1 FOR WITHIN ROW COMPARISONS ONLY
2 FOR WITHIN COLUMN COMPARISONS ONLY,
3 FOR BOTH COMPARISONS



A.3. OBJECT SEQUENCING/SERIATION 143

(3]

{This prompt is only given for the unweighted and weighted gradient measures
in options 1 and 5; the comparisons could be restricted to be within the rows
only, within the columns only, or both within the rows and the columns. The
last option is chosen here in our illustration for the main menu option 5.}

NUMBER OF ROWS/COLUMNS IN THE INPUT MATRIX
[10] or

[10] or

[13]

0 FOR NO PRECEDENCE MATRIX TO BE READ IN AFTER THE DATA
1 IF A SQUARE PRECEDENCE MATRIX TO BE USED (20I2 FORMAT;
0/1 WHERE A 1 IF THE ROW OBJECT MUST COME AFTER THE

COLUMN OBJECT
[0] or
[0] or
(0]

{If the object sequencing is to be restricted according to specified precedence
constraints, an additional square matrix with 0/1 entries must appear after the
proximity matrix in the input file (2012 format for each row). If a 1 is placed at
a particular row/column position in this matrix, then that particular row object
would appear after the given column object in the object sequence generated.
If a precedence matrix is used in a particular problem, it is also printed after
the input matrix in the output file.}

{Given the size of the matrix that is to be input, the program at this point
attempts to allocate the storage space needed. If successful, the phrase ‘ARRAY
ALLOCATION SUCCESSFUL’ appears; if not, the phrase ‘ARRAY ALLOCA-
TION ERROR’ is given, and the program terminates.}

FILE NAME FOR THE INPUT MATRIX
[number.dat] or

[number.dat] or

[tssa.dat]

FILE NAME FOR THE OUTPUT
[numser.out] or
[numserwg.out] or
[numsersk.out]

IS THE INPUT MATRIX SYMMETRIC AND READ AS A LOWER
TRIANGULAR MATRIX WITHOUT DIAGONAL ENTRIES OR AS
A COMPLETE SQUARE MATRIX
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1 LOWER TRIANGULAR
2 COMPLETE SQUARE
3 COMPLETE SQUARE AND SKEW-SYMMETRIC
4 COMPLETE SQUARE AND SKEW-SYMMETRIC
BUT USE SIGN INFORMATION ONLY
CHOICE?
[1] or
[1] or
[3]

{Symmetric proximity matrices can be given either in lower-triangular form
or as a complete square matrix (options 1 and 2, respectively); a skew-symmetric
matrix is entered as a square matrix (option 3), or if only the £1 sign information
from the skew-symmetric matrix is to be used, option 4 can be issued.}

PROVIDE FORMAT FOR THE INPUT MATRIX
[(9F4.3)] or

[(9F4.3)] or

[(13F6.2)]

{The input file must exist in the directory from which DPSE1U is run, and
the given output file must not already exist in the directory. Otherwise, an error
message appears at this point, and the program terminates.}

PROGRAM RUNNING

{No additional prompts are given until the processing is complete. }
The contents of the three output files are given below.

The output file when the coordinate estimation option 3 is used for the
symmetric proximity matrix contained in ‘number.dat’ should be fairly self-
explanatory. There is an indication of the optimization menu option selected, a
listing of the input matrix, and the optimal sequence and cumulative objective
function given in reverse order. For this example, the optimal sequencing would
be: 8 109 76 4 53 2 1. The estimated coordinates are then given, along
with the correlation between the proximities and reconstructed distances; the
residual sum of squares is for the complete square matrix, and thus, each residual
is counted twice because the original proximity matrix is symmetric. Finally,
the proximity matrix is reprinted using the optimal object sequencing for the
ordering of its rows and columns.

file ‘numser.out’:

OPTIMIZATION MENU OPTION 3
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INPUT MATRIX

CUMULATIVE

COORDINATES
-0.56356
0.261

.421

.584

.709

.684

.804

.788

.909
.417

.821
.350

.850
.296

.284

.346

.646

.588

.758

.630

.791

.400

.625
.459

OBJECTIVE FUNCTION

130.
87.
69.
62.
60.
60.
59.
55.
44.
28.

BASED

797
632
595
794
568
247
538
586
972
569

0.354

0.059

0.671

0.421

0.796

0.367

0.808
0.392

.413

.429 0.
.300 0.
.592 0.
.804 0.
.263 0.

PERMUTATION IN REVERSE ORDER

ON DEFAYS CRITERION
-0.405
0.425

-0.326
0.657

-0.199

[y
MO O~ OWwNRE

-0.084

0.057

CORRELATION BETWEEN PROXIMITIES AND RECONSTRUCTED DISTANCES IS

RESIDUAL SUM OF SQUARES FOR SQUARE MATRIX

REORDERED M

0.
0.

ATRIX

000
742

.459
.683

.400
.246

.417
.388

.400
.409

.592
.413

.T742

.459
.796

.000
.808

.392
.367

.296
.421

.592
.671

.263
.3564

.683

0.400
0.630

0.392
0.625

0.000
0.791

0.350
0.758

0.671
0.588

0.804
0.346

0.246

3.9197

.417 0.
.909

.296 0.
.850

.350 0.
.821

.000 0.
.788

.396 0.
.804

.300 0.
.709

.388 0.

409

388

742

246

683

0.149

0.736

400

592

671

396

000

429

409

0.396

0.400

0.671

0.592

0.804

145
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0.000 0.0569 0.646 0.684
0.796 0.808 0.367 0.421 0.671 0.3564
0.059 0.000 0.284 0.584
0.630 0.625 0.791 0.758 0.588 0.346
0.646 0.284 0.000 0.421
0.909 0.850 0.821 0.788 0.804 0.709
0.684 0.584 0.421 0.000

In comparison with the previous output file, the use of the weighted gradient
option 5 includes an indication that both within row and column comparisons
are being used; the optimal index for the weighted gradient measure is provided
along with the component terms that define it.

file ‘numserwg.out’:

OPTIMIZATION MENU OPTION 5
BOTH WITHIN ROW AND COLUMN COMPARISONS USED

INPUT MATRIX

0.421
0.584 0.284
0.709 0.346 0.354
0.684 0.646 0.059 0.413
0.804 0.588 0.671 0.429 0.409
0.788 0.758 0.421 0.300 0.388 0.396
0.909 0.630 0.796 0.592 0.742 0.400
0.417
0.821 0.791 0.367 0.804 0.246 0.671
0.350 0.400
0.850 0.625 0.808 0.263 0.683 0.592
0.296 0.459 0.392
CUMULATIVE OBJECTIVE FUNCTION PERMUTATION IN REVERSE ORDER
41.822 1
41.822 2
37.560 3
30.690 5
23.595 4
16.067 6
12.802 7
5.153 9
1.591 10
0.000 8
INDEX OF GRADIENT COMPARISON IS 41.822
CONSISTENCIES 49.109 INCONSISTENCIES 7.287 DIFFERENCE 41.822 SUM 56.396

RATIO 0.742

REORDERED MATRIX
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{The reordered matrix has not been printed.}

For the analysis of the skew-symmetric matrix in the file ‘tssa.dat’, most
of the output file parallels that given above for the two other analyses. The
optimal index when maximizing the above-diagonal sum of proximities is given
in the form of the ‘average above-diagonal proximity’ for the reordered matrix.
In addition to these results and because a skew-symmetric matrix is being an-
alyzed, the closed-form coordinate estimates are given along with the object
ordering they would induce; for a restriction to equally-spaced coordinates, the
multiplicative constant (alpha) is provided. The correlations are listed between
the skew-symmetric proximities and the reconstructed distances, along with the
residual sum of squares for both the case of equally-spaced and estimated coor-
dinates; another reordered proximity matrix is given using the latter ordering
of the estimated coordinates.

file ‘numsersk.out’:
OPTIMIZATION MENU OPTION 4

INPUT MATRIX

0.000 -0.580 -0.860 -0.900 -0.340 -0.400
-0.960 0.000 -1.000 -0.880 -0.940 0.240
-0.460

0.580 0.000 -0.020 -0.400 0.280 0.380
-0.900 0.640 -0.920 -0.460 -0.280 0.460

0.380

0.860 0.020 0.000 -0.400 0.440 0.400
-0.940 0.740 -0.960 -0.360 -0.240 0.680

0.400

0.900 0.400 0.400 0.000 0.680 0.740
-0.880 0.780 -0.920 -0.340 0.060 0.840

0.680

0.340 -0.280 -0.440 -0.680 0.000 0.000
-0.960 0.360 -0.980 -0.780 -0.620 0.300

0.080

0.400 -0.380 -0.400 -0.740 0.000 0.000
-0.960 0.460 -0.960 -0.800 -0.520 0.400

0.020

0.960 0.900 0.940 0.880 0.960 0.960

0.000 0.980 -0.280 0.580 0.880 0.960

0.960

0.000 -0.640 -0.740 -0.780 -0.360 -0.460
-0.980 0.000 -0.980 -0.880 -0.780 -0.240
-0.320

1.000 0.920 0.960 0.920 0.980 0.960

0.280 0.980 0.000 0.740 0.900 0.980

0.960

0.880 0.460 0.360 0.340 0.780 0.800
-0.580 0.880 -0.740 0.000 0.280 0.840

0.780

0.940 0.280 0.240 -0.060 0.620 0.520
-0.880 0.780 -0.900 -0.280 0.000 0.940

0.520
-0.240 -0.460 -0.680 -0.840 -0.300 -0.400
-0.960 0.240 -0.980 -0.840 -0.940 0.000
-0.280

0.460 -0.380 -0.400 -0.680 -0.080 -0.020

-0.960 0.320 -0.960 -0.780 -0.520 0.280
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0.000
CUMULATIVE OBJECTIVE FUNCTION PERMUTATION IN REVERSE ORDER
47.420 8
40.260 12
33.340 1
26.020 13
21.240 5
16.500 6
11.740 2
8.760 3
5.860 11
3.740 4
1.600 10
0.280 7
0.000 9
AVERAGE ABOVE DIAGONAL PROXIMITY IS 0.608
AVERAGE BELOW DIAGONAL PROXIMITY IS -0.608

REORDERED MATRIX

0.000 0.280 0.740 0.920 0.900 0.960
0.920 0.960 0.980 0.960 1.000 0.980
0.980
-0.280 0.000 0.580 0.880 0.880 0.940
0.900 0.960 0.960 0.960 0.960 0.960
0.980
-0.740 -0.580 0.000 0.340 0.280 0.360
0.460 0.800 0.780 0.780 0.880 0.840
0.880
-0.920 -0.880 -0.340 0.000 0.060 0.400
0.400 0.740 0.680 0.680 0.900 0.840
0.780
-0.900 -0.880 -0.280 -0.060 0.000 0.240
0.280 0.520 0.620 0.520 0.940 0.940
0.780
-0.960 -0.940 -0.360 -0.400 -0.240 0.000
0.020 0.400 0.440 0.400 0.860 0.680
0.740
-0.920 -0.900 -0.460 -0.400 -0.280 -0.020
0.000 0.380 0.280 0.380 0.580 0.460
0.640
-0.960 -0.960 -0.800 -0.740 -0.520 -0.400
-0.380 0.000 0.000 0.020 0.400 0.400
0.460
-0.980 -0.960 -0.780 -0.680 -0.620 -0.440
-0.280 0.000 0.000 0.080 0.340 0.300
0.360
-0.960 -0.960 -0.780 -0.680 -0.520 -0.400
-0.380 -0.020 -0.080 0.000 0.460 0.280
0.320
-1.000 -0.960 -0.880 -0.900 -0.940 -0.860
-0.5680 -0.400 -0.340 -0.460 0.000 0.240
0.000
-0.980 -0.960 -0.840 -0.840 -0.940 -0.680
-0.460 -0.400 -0.300 -0.280 -0.240 0.000
0.240
-0.980 -0.980 -0.880 -0.780 -0.780 -0.740
-0.640 -0.460 -0.360 -0.320 0.000 -0.240
0.000

CLOSED FORM RESULTS FOR SKEW-SYMMETRIC MATRICES

OBJECT REORDERING
9 7 10 4 11 3 2 6 5 13 12 1 8
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COORDINATES
-0.814 -0.745 -0.391 -0.257 -0.209 -0.049 0.020 0.268 0.282 0.286
0.514 0.545 0.5651

MULTIPLICATIVE CONSTANT ALPHA 0.116

EQUALLY SPACED
CORRELATION BETWEEN PROXIMITIES AND RECONSTRUCTED DISTANCES IS 0.788
RESIDUAL SUM OF SQUARES FOR SQUARE MATRIX 7.7050

ESTIMATED COORDINATES
CORRELATION BETWEEN PROXIMITIES AND RECONSTRUCTED DISTANCES IS 0.896
RESIDUAL SUM OF SQUARES FOR SQUARE MATRIX 4.7380

REORDERED MATRIX

{reordered matrix not printed}

Program HPSE1U:

The program HPSE1U is an heuristic extension of DPSE1U with all the same
options but allows user-defined classes of objects to be the entities that are

sequenced. The prompt to define such entities is exactly the same as that given
by HPCL1U (and HPHI1U).

Program DPSE2U:

The program DPSE2U is a variant of DPSE1U to deal with two-mode proximity
data, which are entered as a rectangular matrix (as in HPHI2U or HPCL2U).
The main menu options are fewer than in DPSE1U because coordinate estima-
tion options or skew-symmetric matrices are not included. We give the beginning
prompts below in running DPSE2U.

MAIN MENU
1 UNWEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
NUMBER OF STRICT CONSISTENCIES MINUS
INCONSISTENCIES ABOUT THE MAIN DIAGONAL
2 WEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
WEIGHTED BY POSITIVE OR NEGATIVE DIFFERENCES
3 UNWEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
NUMBER OF INCONSISTENCIES TO BE MINIMIZED
4 WEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
WEIGHTED INCONSISTENCIES TO BE MINIMIZED
CHOICE?
7]

{The optimization options 1 and 2 are the unweighted and weighted gradient
measures and are analogous to those available in DPSE1U. Options 3 and 4 allow
the minimization of just the inconsistencies in the unweighted and weighted
gradient measures. }
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1 FOR WITHIN ROW COMPARISONS ONLY

2 FOR WITHIN COLUMN COMPARISONS ONLY

3 FOR BOTH COMPARISONS -- THESE CHOICES ARE
FOR THE SQUARE DERIVED MATRIX

7]

{This option allows comparisons to be restricted to the rows or to the
columns of the derived square proximity matrix; the given rectangular prox-
imity matrix is embedded in the upper-right and lower-left portions of the de-
rived square proximity matrix with missing entries between the row objects and
between the column objects.}

1 FOR WITHIN ROW COMPARISONS ONLY

2 FOR WITHIN COLUMN COMPARISONS ONLY

3 FOR BOTH COMPARISONS -- THESE CHOICES ARE
FOR THE ORIGINAL RECTANGULAR MATRIX

7]

{This option allows comparisons to be restricted to the rows or to the
columns of the original rectangular proximity matrix.}

NUMBER OF ROWS IN THE INPUT MATRIX
7]

NUMBER OF COLUMNS IN THE INPUT MATRIX
7]

O FOR NO PRECEDENCE MATRIX TO BE READ IN AFTER THE DATA
1 IF A SQUARE PRECEDENCE MATRIX TO BE USED (20I2 FORMAT;
0/1 WHERE A 1 IF THE ROW OBJECT MUST COME AFTER THE

COLUMN OBJECT
7]

{If selected, the precedence matrix that comes after the data matrix in the
input file is square and of size equal to the sum of the number of row and column
objects (thus, the column objects from the original rectangular proximity matrix
are labeled starting at 1 + number of row objects, and ending at number of
column objects + number of row objects). A 1 is placed in this square matrix
to indicate that the specific object that this row refers to, which may be a row
or column object in the original rectangular proximity matrix, must come after
the specific object that the column refers to, which may also be a row or column
object in the original rectangular proximity matrix.}
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Program HPSE2U:

The program HPSE2U is a heuristic extension of DPSE2U with the same options
that allow user-specified classes of objects to be the entities that are sequenced.
The prompts to define such entities are exactly the same as those given by

HPCL2U (or HPHI2U).

Program DPSE2R:

The program DPSE2R. is an extension of DPSE2U that allows order constraints
to be imposed on the column objects only, or on both the row objects and the
column objects. In addition, if order constraints are imposed on both the row
and the column objects, the one additional optimization option under the main
menu is allowed of minimizing the DHG sequence comparison measure, i.e.,

MAIN MENU

5 DHG SEQUENCE COMPARISON MEASURE TO BE
MINIMIZED -- ROW AND COLUMN ORDER CONSTRAINTS
7]

The constraints are imposed by response to the prompts:

ORDER RESTRICTIONS?

1 COLUMN ORDER RESTRICTIONS ONLY

2 ROW AND COLUMN ORDER RESTRICTIONS
(7]

COLUMN ORDER RESTRICTION
1 IDENTITY ORDER

2 TO BE READ IN

(7]

And if ‘2’ is the option used in the ‘order restrictions?’ prompt:

ROW ORDER RESTRICTION
1 IDENTITY ORDER

2 TO BE READ IN

7]

If the column order or the row order is to be input, prompts will appear of
the form:
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INPUT COLUMN ORDER IN INTEGER FORM SEPARATED BY BLANKS
[...integer labels for the column order...]

INPUT ROW ORDER IN INTEGER FORM SEPARATED BY BLANKS
[...integer label for the row order...]

A.4 Object Sequencing by Constructing Opti-
mal Paths

The program DPSEPH constructs an optimal path (either linear or circular)
among the objects in a given set based on a proximity matrix. We illustrate the
operation of DPSEPH with the prompts needed to find the minimum length
(linear) path for the symmetric proximity data on the digits in the file ‘num-
ber.dat’, and include below the relevant output matrix ‘numph.out’.

MAIN MENU
1 MINIMUM PATH
MINIMAX PATH
MAXIMUM PATH
MAXIMIN PATH
MINIMUM CIRCULAR PATH
MINIMAX CIRCULAR PATH
MAXIMUM CIRCULAR PATH
8 MAXIMIN CIRCULAR PATH
CHOICE?
(1]

~N O O W N

{In constructing either an optimal linear or circular path, the optimization
criterion for the path ‘length’ may be one of four types: the sum of proximities
on the edges can be either minimized or maximized, the maximum proximity
on an edge can be minimized, or the minimum proximity on an edge can be
maximized. In our example, we specify the sum of edges in the path to be at a
minimum, so option 1 is chosen.}

NUMBER OF ROWS/COLUMNS IN THE INPUT MATRIX
[10]

O FOR NO PRECEDENCE MATRIX TO BE READ IN AFTER THE DATA
1 IF A SQUARE PRECEDENCE MATRIX TO BE USED (20I2 FORMAT;
0/1 WHERE A 1 IF THE ROW OBJECT MUST COME AFTER THE

COLUMN OBJECT
(o]
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{At this point, the array allocation process is attempted with the usual
messages given if successful or unsuccessful. }

FILE NAME FOR THE INPUT MATRIX
[number.dat]

FILE NAME FOR THE OUTPUT
[numph. out]

IS THE INPUT MATRIX SYMMETRIC AND READ AS A LOWER
TRIANGULAR MATRIX WITHOUT DIAGONAL ENTRIES OR AS
A COMPLETE SQUARE MATRIX

1 LOWER TRIANGULAR

2 COMPLETE SQUARE
(1]

{As noted in the text, if the proximity matrix entered is square and not
symmetric, optimal directed linear or circular paths would be constructed.}

PROVIDE FORMAT FOR THE INPUT MATRIX
[(9F4.3)]

PROGRAM RUNNING

The contents of the output file ‘numph.out’ are given below, where the items
should be self-explanatory. The optimal linear path is in the order 8 6 4 10 7 9
53 2 1, with a sum of proximities on the edges equal to 2.748.

OPTIMIZATION MENU OPTION 1

INPUT MATRIX

0.421

0.584 0.284

0.709 0.346 0.354

0.684 0.646 0.059 0.413

0.804 0.588 0.671 0.429 0.409

0.788 0.758 0.421 0.300 0.388 0.396
0.909 0.630 0.796 0.592 0.742 0.400
0.417

0.821 0.791 0.367 0.804 0.246 0.671
0.350 0.400

0.850 0.625 0.808 0.263 0.683 0.592

0.296 0.459 0.392
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CUMULATIVE OBJECTIVE 2.748 LAST OBJECT 1

CUMULATIVE OBJECTIVE 2.327 LAST OBJECT 2

CUMULATIVE OBJECTIVE 2.043 LAST OBJECT 3

CUMULATIVE OBJECTIVE 1.984 LAST OBJECT 5

CUMULATIVE OBJECTIVE 1.738 LAST OBJECT 9

CUMULATIVE OBJECTIVE 1.388 LAST OBJECT 7

CUMULATIVE OBJECTIVE 1.092 LAST OBJECT 10

CUMULATIVE OBJECTIVE 0.829 LAST OBJECT 4

CUMULATIVE OBJECTIVE 0.400 LAST OBJECT 6

BEGINNING OBJECTIVE 0.000 FIRST OBJECT 8

REORDERED MATRIX

0.000 0.400 0.592 0.459 0.417 0.400
0.742 0.796 0.630 0.909
0.400 0.000 0.429 0.592 0.396 0.671
0.409 0.671 0.588 0.804
0.592 0.429 0.000 0.263 0.300 0.804
0.413 0.354 0.346 0.709
0.459 0.592 0.263 0.000 0.296 0.392
0.683 0.808 0.625 0.850
0.417 0.396 0.300 0.296 0.000 0.350
0.388 0.421 0.758 0.788
0.400 0.671 0.804 0.392 0.350 0.000
0.246 0.367 0.791 0.821
0.742 0.409 0.413 0.683 0.388 0.246
0.000 0.0569 0.646 0.684
0.796 0.671 0.3564 0.808 0.421 0.367
0.059 0.000 0.284 0.584
0.630 0.588 0.346 0.625 0.758 0.791
0.646 0.284 0.000 0.421
0.909 0.804 0.709 0.850 0.788 0.821
0.684 0.584 0.421 0.000

A.5 Constructing Ordered Partitions

The main program for constructing optimal ordered partitions is called DPOP1U.
A heuristic extension is available in HPOP1U with the same options as in
DPOP1U but which allows user-defined classes of objects to be the entities
that are partitioned and the resulting classes of these entities sequenced. The
prompt to define these entities is the same as given in HPCL2U, HPHI2U, or
HPSE2U. We will illustrate the use of DPOP1U and the various prompts given,
again with the digit data in the file ‘number.dat’, and will construct optimal or-
dered partitions into 2 through 10 classes based on coordinate estimation. The
output file ‘numop.out’ will be included below.

MAIN MENU
1 UNWEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
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2 WEIGHTED GRADIENT WITHIN ROWS AND COLUMNS
3 DEFAYS CRITERION
4 PROXIMITY SUM
5 SKEW-SYMMETRIC COORDINATES
CHOICE?
(3]

{As discussed in the text, options 1, 2, and 3 are for symmetric proximity
matrices; options 4 and 5 are for skew-symmetric matrices. }

MAXIMUM NUMBER OF SUBSETS TO BE USED
[10]

NUMBER OF ROWS/COLUMNS
[10]

{If this latter response is less than 3 or greater than 30, an error message
appears that the ‘PROGRAM SIZE IS OUT OF RANGE’, and the program
terminates. Otherwise, array allocation is attempted and the usual success or
error messages are given.

FILE NAME FOR THE INPUT MATRIX
[number.dat]

FILE NAME FOR THE OUTPUT MATRIX
[numop. out]

IS THE INPUT MATRIX SYMMETRIC AND READ A LOWER
TRIANGULAR MATRIX WITHOUT DIAGONAL ENTRIES OR AS
A COMPLETE SQUARE MATRIX

1 LOWER TRIANGULAR

2 COMPLETE SQUARE

3 COMPLETE SQUARE AND SKEW SYMMETRIC

4 COMPLETE SQUARE AND SKEW-SYMMETRIC

BUT USE SIGN INFORMATION ONLY

CHOICE?
(1]

PROVIDE FORMAT FOR THE INPUT MATRIX
[(9F4.3)]

PROGRAM RUNNING

{Again, no response to this last prompt is necessary.}
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The contents of the output file ‘numop.out’ are given below, where the var-
ious items should be self-explanatory for each of the optimal ordered partitions
listed.

OPTIMIZATION MENU OPTION 3

INPUT MATRIX

0.421

0.584 0.284

0.709 0.346 0.3564

0.684 0.646 0.059 0.413

0.804 0.588 0.671 0.429 0.409

0.788 0.758 0.421 0.300 0.388 0.396
0.909 0.630 0.796 0.592 0.742 0.400
0.417

0.821 0.791 0.367 0.804 0.246 0.671
0.350 0.400

0.850 0.625 0.808 0.263 0.683 0.592
0.296 0.459 0.392

NUMBER OF SUBSETS 1

SUBSET ADDED 10 9 8 7 6 5 4 3 2 1
INDEX FOR SUBSET 0.0000 CUMULATIVE INDEX 0.0000

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
1111111 111

COORDINATES FOR THE SUBSETS
0.000

RESIDUAL SUM OF SQUARES 30.079

NUMBER OF SUBSETS 2

SUBSET ADDED 5 4 3 2 1
INDEX FOR SUBSET 47,9447 CUMULATIVE INDEX 95.8893

SUBSET ADDED 10 9 8 7 6
INDEX FOR SUBSET 47.9447  CUMULATIVE INDEX 47.9447

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
222 2 211111

COORDINATES FOR THE SUBSETS
-0.310 0.310

RESIDUAL SUM OF SQUARES 10.901

NUMBER OF SUBSETS 3
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SUBSET ADDED 10 9 8 7
INDEX FOR SUBSET 53.5897 CUMULATIVE INDEX 115.7492

SUBSET ADDED 6 5 4 3
INDEX FOR SUBSET 3.6557  CUMULATIVE INDEX 62.1595

SUBSET ADDED 2 1
INDEX FOR SUBSET 58.5038 CUMULATIVE INDEX 58.5038

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
11 2 2 2 2 3 3 3 3

COORDINATES FOR THE SUBSETS
-0.541 -0.096 0.366

RESIDUAL SUM OF SQUARES 6.929

NUMBER OF SUBSETS 4

SUBSET ADDED 2 1
INDEX FOR SUBSET 58.5038 CUMULATIVE INDEX 123.1315

SUBSET ADDED 5 4 3
INDEX FOR SUBSET 7.2572 CUMULATIVE INDEX 64.6278

SUBSET ADDED 7 6
INDEX FOR SUBSET 4.0044  CUMULATIVE INDEX 57.3706

SUBSET ADDED 10 9 8
INDEX FOR SUBSET 53.3661 CUMULATIVE INDEX 53.3661

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
4 4 3 3 3 2 2 1 1 1

COORDINATES FOR THE SUBSETS
-0.422 -0.141 0.166  0.541

RESIDUAL SUM OF SQUARES 5.453

NUMBER OF SUBSETS 5

SUBSET ADDED 10 9 8
INDEX FOR SUBSET 53.3661 CUMULATIVE INDEX 126.1487

SUBSET ADDED 7 6
INDEX FOR SUBSET 4.0044 CUMULATIVE INDEX 72.7825

SUBSET ADDED 5 4
INDEX FOR SUBSET 2.1177  CUMULATIVE INDEX 68.7781

SUBSET ADDED 3 2
INDEX FOR SUBSET 23.49565 CUMULATIVE INDEX 66.6604

SUBSET ADDED 1
INDEX FOR SUBSET 43.1649 CUMULATIVE INDEX 43.1649

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
1 2 2 3 3 4 4 5 5 5

COORDINATES FOR THE SUBSETS
-0.657 -0.343 -0.103 0.141 0.422

RESIDUAL SUM OF SQUARES 4.849
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{The results for 6 to 9 subsets have not been printed.}

NUMBER OF SUBSETS 10

SUBSET ADDED 8
INDEX FOR SUBSET 28.5690  CUMULATIVE INDEX 130.7972

SUBSET ADDED 10
INDEX FOR SUBSET 16.4025 CUMULATIVE INDEX 102.2282

SUBSET ADDED 9
INDEX FOR SUBSET 10.6146  CUMULATIVE INDEX 86.8257

SUBSET ADDED 7
INDEX FOR SUBSET 3.95621 CUMULATIVE INDEX 75.2111

SUBSET ADDED 6
INDEX FOR SUBSET 0.7090 CUMULATIVE INDEX 71.2590

SUBSET ADDED 4
INDEX FOR SUBSET 0.3204 CUMULATIVE INDEX 70.5500

SUBSET ADDED b5
INDEX FOR SUBSET 2.2261 CUMULATIVE INDEX 70.2296

SUBSET ADDED 3
INDEX FOR SUBSET 6.8017  CUMULATIVE INDEX 68.0036

SUBSET ADDED 2
INDEX FOR SUBSET 18.0370 CUMULATIVE INDEX 61.2019

SUBSET ADDED 1
INDEX FOR SUBSET 43.1649 CUMULATIVE INDEX 43.1649

SUMMARY SUBSET MEMBERSHIP FOR THE OBJECTS
1 2 3 6 4 6 710 8 9

COORDINATES FOR THE SUBSETS
-0.657 -0.425 -0.261 -0.149 -0.057 0.084 0.199 0.326 0.405 0.535

RESIDUAL SUM OF SQUARES 3.920

Endnote for the Appendix:

45The programs discussed in this appendix are all written in what might be
referred to as a straightforward programming style and with a very transpar-
ent use of nested ‘DO’ loops. It is possible, however, to increase the speed of
computation dramatically by more elegant uses of the architecture of the combi-
natorial tasks under consideration and by considering how these relate to some
of the elemental operations available under Fortran90. Work along these lines
has been done by Bart Jan van Os from Leiden University and will be reported
on in the literature in the near future.
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additive tree, 38

anti-Robinson form, 23, 47, 54, 55,
63, 67, 69, 76, 89, 90, 100,
110

branch-and-bound, 2, 40

chain, 88
maximal, 88
cluster analysis, 2—4, 1749
heuristic, 94-99
combinatorial data analysis (CDA)
1, 3, 51
combinatorial optimization criteria,
see optimization criteria
combinatorial optimization methods,
see optimization methods
combinatorial optimization tasks, see
optimization tasks
complete enumeration, 1, 2, 7, 10,
14
computer programs, see programs,
computer
Confirmatory CDA, 3

Y

data array reordering, 75
data sources
multiple, 106
DHG measure, 80
diagnostic information
hierarchical clustering, use in,
112
partitioning, use in, 111
sequencing, use in, 112
diagnostics, evaluating solutions, 110
dominance data, 4, 53, 62, 108
dynamic programming, 2, 3
cluster analysis, 17-49
heuristic, 94-99
General Dynamic Programming
Paradigm (GDPP), 7-15
heuristic use, 91-101
hierarchical clustering, 29-49
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constrained, 4546
fitting ultrametrics, 39-43
heuristic, 97-99
two-mode matrices, 101
linear assignment, 8-15, 48
ordered partitions, 83-88
partitioning, 17-28
admissibility restrictions, 21—
25
heuristic, 95-97
ordered partitions, 91
two-mode matrices, 2528
sequencing, 51-91
heuristic, 99-101
one-mode skew-symmetric ma-
trices, 62—69
one-mode symmetric matri-
ces, 5462
path construction, 73-78
precedence constraints, 79-83,
90
two-mode matrices, 69-73
unidimensional unfolding
difficulty in coordinate esti-
mation, 71-73

enumeration
complete, 1, 2, 10, 14
linear assignment, 7
partial, 2, 40
Euclidean representation, 23, 54, 55,
69

General Dynamic Programming Par-
adigm (GDPP), 4
graph
additive tree, 38
circular path, 77
complete, 18
complete, weighted, 31
connected, 18
directed, 13, 14
acyclic, 14
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sink node, 13, 14
source node, 13, 14
directed path
circular, 78, 90
linear, 78, 90
interval, 90
proper, 90
maximal spanning tree, 35
minimum feedback arc sets, 64
minimum spanning tree, 19, 20,
31
ordered spanning tree, 35
path
linear, 74

Hasse diagram, 15
heuristic methods, 1, 2, 4, 30, 36,
91-101
hierarchical clustering, 2, 2949
agglomerative method, 30, 36,
49, 112
complete-link method, 95
computer programs for, 126, 136—
141
constrained, 31, 4546
divisive method, 36, 49
fitted values for, 109
greedy heuristic, use of, 32
heuristic, 97-99
ordered partitions, 88
partial partition hierarchies, 32,
36, 49
single-link method, 19, 20, 31,
35
two-mode matrices, 36, 101
ultrametric, fitting, 36—43
Hungarian algorithm, 13

influential objects, 111, 112
large data sets, 91-101

lattice, 88

linear assignment, 2, 4, 7-15, 48

linear programming, 13

maximal chain, 88

maximum likelihood paired compar-
ison ranking, 64
median relation, 107, 108
multidimensional scaling, 23
multiple data sources, 106
partitioning, 107
ordered partitions, 108
multiple structures, 109

norm
Ly, 38, 43, 109, 141
NP-completeness, 1
Numerical Algorithms Group (NAG),
3

optimization criteria

max,/min, 12, 14
circular path length, 77
path length, 75
sequencing, use in, 53

maximization, 8, 14
above-diagonal sum, 64, 85,

109

circular path length, 77

coordinate representation, equally

spaced, 59, 64, 88

coordinate representation, skew-

symmetric, 64

coordinate representation, use
of, 57, 84, 85, 99

Defays measure, 142

DHG measure, 80, 90, 127

gradient measures, 54, 63, 84,
90

gradient measures, Greenberg
form, 66

path length, 75

row or column gradient, 56,
88, 90

sequencing, use in, 53

unweighted gradient, 55, 69,
70, 90

weighted gradient, 55, 69, 70,
90

within row (column) gradient,
70, 90
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min/max, 12, 14
circular path length, 77
hierarchical clustering, use in,
30
path length, 75
sequencing, use in, 53
subset heterogeneity, 18
minimization, 12, 14
circular path length, 77
path length, 74
subset heterogeneity, 18
sum of transition costs in hi-
erarchical clustering, 29
ultrametric quadruple incon-
sistencies, 43
ultrametric triple inconsisten-
cies, 43
optimization methods
branch-and-bound, 2, 40
complete enumeration, 1, 2, 10,
14
dynamic programming, 2
greedy, 30, 32, 33, 95
heuristic, 1, 2, 30, 36, 91-101
Hungarian algorithm, 13
linear programming, 13
partial enumeration, 2, 40
simplex algorithm, 13
optimization tasks
cluster analysis, 17-49
heuristic, 94-99
hierarchical clustering, 2, 29—
49
constrained, 4546
heuristic, 97-99
two-mode matrices, 36, 101
linear assignment, 2, 7-15, 48
ordered partitions, 83-88, 91
partitioning, 2, 4, 17-28
admissibility restrictions, 21—
25
heuristic, 95-97
two-mode matrices, 2528
sequencing, 2, 51-91
heuristic, 99-101
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one-mode skew-symmetric ma-
trices, 62—69
one-mode symmetric matri-
ces, 5462
path construction, 73-78, 90
precedence constraints, 79-83
two-mode matrices, 69-73
unfolding, unidimensional, 2, 9,
46, 51, 63, 70
Greenberg form, 66—69, 88
order
simple, 88
total, 88
order inversion, 41
ordered partitions, see partitioning,
ordered partitions
outliers, 111, 112

partial enumeration, 2, 40
partial order, 88
partially ordered set (poset), 15
partitioning, 2, 17-28
t-mode matrices, 28, 105
admissibility restrictions, 21-25
t-mode matrices, 28
circular order(s), 25, 105
multiple linear orders, 25
two-mode matrices, 26
computer programs for, 125, 129—
136
fitted values for, 109
heuristic, 95-97
ordered partitions, 83—-88, 91
admissibility restrictions, 88
two-mode matrices, 88
two-mode matrices, 25-28
path
circular, 77
definition, 14
directed
circular, 78, 90
linear, 78, 90
length, 13
longest, 13
optimal, 54, 74
computer programs for, 127
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shortest, 13
personnel classification problem, 14
poset, 88
profile smoothing, 75
program, computer
HPHI1U, 49
HPHI2U, 49
programs, computer, 125-158
availability on the World Wide
Web, 128
DPCLIR, 5, 24, 48, 125, 129,
133, 134, 140
DPCL1U, 5, 47, 48, 101, 125,
126, 129, 133, 135, 136
DPCL2R, 28, 48, 125, 129, 134
DPCL2U, 27, 48, 101, 125, 129,
133
DPDI1U, 49, 126, 136, 140
DPHI1R, 46, 49, 126, 136, 140
DPHI1U, 5, 33-35, 41, 42, 48,
49, 101, 126, 136, 140
DPOP1U, 87, 90, 101, 128, 154

DPSE1U, 59, 61, 66, 88-90, 101,

127, 141, 144, 149
DPSE2R, 81, 90, 127, 141, 151
DPSE2U, 71, 81, 88, 90, 101,

127, 141, 149, 151
DPSEPH, 90, 127, 152
HPCL1U, 101, 126, 129, 135,

136, 140, 149
HPCL2U, 101, 126, 129, 135,

141, 149, 151, 154
HPHI1U, 44, 45, 101, 126, 127,

136, 140, 141, 149
HPHI2U, 101, 126, 136, 141,

149, 151, 154
HPOPI1U, 101, 128, 154
HPSE1U, 101, 127, 141, 149
HPSE2U, 101, 127, 141, 151,

154

pyramidal representation, 89

Q-form, 70, 71, 76
quasi-order, 90

Robinson form, 47, 89

sequence comparison, 82—-83
genetic, 82
string-correction, 82
time-warping, 82
sequencing, 2, 4, 51-91
computer programs for, 127, 141—
158
fitted values for, 110
heuristic, 99-101
one-mode skew-symmetric ma-
trices, 62-69
one-mode symmetric matrices,
54-62
path construction, 73-78
ordered partitions, 8388
precedence constraints, 79-83,
90
two-mode matrices, 69-73
column order constraint, 79
row and column order con-
straints, 80
seriation, see sequencing
simplex algorithm, 13
sublattice, 88
subset heterogeneity measures, 18—
20, 106
k-means criterion, 19, 22, 46
connectivity, 19
diameter, 19, 22
monotonicity thereof, 31
use in hierarchical clustering, 30

traveling salesman problem, 75, 77
triangulating input-output matrices,

64

ultrametric, 4, 36-43, 54, 55, 69
L, norm optimal, 38, 43, 141
admissibility
criteria in fitting, 4042
basic, 37
least-squares optimal, 30, 31, 38—
43
variance-accounted-for, 42
unfolding, unidimensional, 2, 9, 46,
51, 63, 70
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Greenberg form, 66-69, 88

least-squares optimal, 72
unidimensional scaling, 57

least-squares optimal, 57—62

weak order, 90
weights
object, 106, 113-115

proximity, indicating missing data,

106, 113-115
World Wide Web, 4, 5, 128
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