[Master Index]
[Index for PublicToolbox/regutools]
lsqr
(PublicToolbox/regutools/lsqr.m in BrainStorm 2.0 (Alpha))
Function Synopsis
[X,rho,eta,F] = lsqr(A,b,k,reorth,s)
Help Text
LSQR Solution of least squares problems by Lanczos bidiagonalization.
[X,rho,eta,F] = lsqr(A,b,k,reorth,s)
Performs k steps of the LSQR Lanczos bidiagonalization algorithm
applied to the system
min || A x - b || .
The routine returns all k solutions, stored as columns of
the matrix X. The solution norm and residual norm are returned
in eta and rho, respectively.
If the singular values s are also provided, lsqr computes the
filter factors associated with each step and stores them columnwise
in the matrix F.
Reorthogonalization is controlled by means of reorth:
reorth = 0 : no reorthogonalization (default),
reorth = 1 : reorthogonalization by means of MGS,
reorth = 2 : Householder-reorthogonalization.
Cross-Reference Information
This function calls
- app_hh C:\BrainStorm_2001\PublicToolbox\regutools\app_hh.m
- gen_hh C:\BrainStorm_2001\PublicToolbox\regutools\gen_hh.m
- pythag C:\BrainStorm_2001\PublicToolbox\regutools\pythag.m
This function is called by
- regudemo C:\BrainStorm_2001\PublicToolbox\regutools\regudemo.m
Listing of function C:\BrainStorm_2001\PublicToolbox\regutools\lsqr.m
function [X,rho,eta,F] = lsqr(A,b,k,reorth,s)
%LSQR Solution of least squares problems by Lanczos bidiagonalization.
%
% [X,rho,eta,F] = lsqr(A,b,k,reorth,s)
%
% Performs k steps of the LSQR Lanczos bidiagonalization algorithm
% applied to the system
% min || A x - b || .
% The routine returns all k solutions, stored as columns of
% the matrix X. The solution norm and residual norm are returned
% in eta and rho, respectively.
%
% If the singular values s are also provided, lsqr computes the
% filter factors associated with each step and stores them columnwise
% in the matrix F.
%
% Reorthogonalization is controlled by means of reorth:
% reorth = 0 : no reorthogonalization (default),
% reorth = 1 : reorthogonalization by means of MGS,
% reorth = 2 : Householder-reorthogonalization.
% Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for
% sparse linear equations and sparse least squares", ACM Trans.
% Math. Software 8 (1982), 43-71.
% Per Christian Hansen, UNI-C, 05/25/93.
% The fudge threshold is used to prevent filter factors from exploding.
fudge_thr = 1e-4;
% Initialization.
if (k < 1), error('Number of steps k must be positive'), end
if (nargin==3), reorth = 0; end
if (nargout==4 & nargin<5), error('Too few input arguments'), end
[m,n] = size(A); X = zeros(n,k);
if (reorth==0)
UV = 0;
elseif (reorth==1)
U = zeros(m,k); V = zeros(n,k); UV = 1;
elseif (reorth==2)
if (k>=n), error('No. of iterations must satisfy k < n'), end
UV = 0; HHU = zeros(m,k); HHV = zeros(n,k);
HHalpha = zeros(1,k); HHbeta = HHalpha;
else
error('Illegal reorth')
end
if (nargout > 1)
eta = zeros(k,1); rho = eta;
c2 = -1; s2 = 0; xnorm = 0; z = 0;
end
if (nargin==5)
ls = length(s);
F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;
s = s.^2;
end
% Prepare for LSQR iteration.
v = zeros(n,1); x = v; beta = norm(b);
if (beta==0), error('Right-hand side must be nonzero'), end
if (reorth==2)
[beta,HHbeta(1),HHU(:,1)] = gen_hh(b);
end
u = b/beta; if (UV), U(:,1) = u; end
r = A'*u; alpha = norm(r);
if (reorth==2)
[alpha,HHalpha(1),HHV(:,1)] = gen_hh(r);
end
v = r/alpha; if (UV), V(:,1) = v; end
phi_bar = beta; rho_bar = alpha; w = v;
if (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end
% Perform Lanczos bidiagonalization with/without reorthogonalization.
for i=2:k+1
alpha_old = alpha; beta_old = beta;
% Compute A*v - alpha*u.
p = A*v - alpha*u;
if (reorth==0)
beta = norm(p); u = p/beta;
elseif (reorth==1)
for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end
beta = norm(p); u = p/beta;
else
for j=1:i-1
p(j:m) = app_hh(p(j:m),HHbeta(j),HHU(j:m,j));
end
[beta,HHbeta(i),HHU(i:m,i)] = gen_hh(p(i:m));
u = zeros(m,1); u(i) = 1;
for j=i:-1:1
u(j:m) = app_hh(u(j:m),HHbeta(j),HHU(j:m,j));
end
end
% Compute A'*u - beta*v.
r = A'*u - beta*v;
if (reorth==0)
alpha = norm(r); v = r/alpha;
elseif (reorth==1)
for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end
alpha = norm(r); v = r/alpha;
else
for j=1:i-1
r(j:n) = app_hh(r(j:n),HHalpha(j),HHV(j:n,j));
end
[alpha,HHalpha(i),HHV(i:n,i)] = gen_hh(r(i:n));
v = zeros(n,1); v(i) = 1;
for j=i:-1:1
v(j:n) = app_hh(v(j:n),HHalpha(j),HHV(j:n,j));
end
end
% Store U and V if necessary.
if (UV), U(:,i) = u; V(:,i) = v; end
% Construct and apply orthogonal transformation.
rrho = pythag(rho_bar,beta); c1 = rho_bar/rrho;
s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;
phi = c1*phi_bar; phi_bar = s1*phi_bar;
% Compute solution norm and residual norm if necessary;
if (nargout > 1)
delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;
z_bar = rhs/gamma_bar; eta(i-1) = pythag(xnorm,z_bar);
gamma = pythag(gamma_bar,theta);
c2 = gamma_bar/gamma; s2 = theta/gamma;
z = rhs/gamma; xnorm = pythag(xnorm,z);
rho(i-1) = abs(phi_bar);
end
% If required, compute the filter factors.
if (nargin==5)
if (i==2)
Fv_old = Fv;
Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);
F(:,i-1) = (phi/rrho)*Fw;
else
tmp = Fv;
Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...
Fv_old*alpha_old*beta_old)/(alpha*beta);
Fv_old = tmp;
F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;
end
if (i > 3)
f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);
if (length(f) > 0), F(f,i-1) = ones(length(f),1); end
end
Fw = Fv - (theta/rrho)*Fw;
end
% Update the solution.
x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;
X(:,i-1) = x;
end
Produced by color_mat2html, a customized BrainStorm 2.0 (Alpha) version of mat2html on Tue Oct 12 12:05:14 2004
Cross-Directory links are: ON