[Master Index]
[Index for PublicToolbox/regutools]
mtsvd
(PublicToolbox/regutools/mtsvd.m in BrainStorm 2.0 (Alpha))
Function Synopsis
x_k = mtsvd(U,s,V,b,k,L)
Help Text
MTSVD Modified truncated SVD regularization.
x_k = mtsvd(U,s,V,b,k,L)
Computes the modified TSVD solution:
x_k = V*[ xi_k ] .
[ xi_0 ]
Here, xi_k defines the usual TSVD solution
xi_k = inv(diag(s(1:k)))*U(:,1:k)'*b ,
and xi_0 is chosen so as to minimize the seminorm || L x_k ||.
This leads to choosing xi_0 as follows:
xi_0 = -pinv(L*V(:,k+1:n))*L*V(:,1:k)*xi_k .
The truncation parameter must satisfy k > n-p.
If k is a vector, then x_k is a matrix such that
x_k = [ x_k(1), x_k(2), ... ] .
Listing of function C:\BrainStorm_2001\PublicToolbox\regutools\mtsvd.m
function x_k = mtsvd(U,s,V,b,k,L)
%MTSVD Modified truncated SVD regularization.
%
% x_k = mtsvd(U,s,V,b,k,L)
%
% Computes the modified TSVD solution:
% x_k = V*[ xi_k ] .
% [ xi_0 ]
% Here, xi_k defines the usual TSVD solution
% xi_k = inv(diag(s(1:k)))*U(:,1:k)'*b ,
% and xi_0 is chosen so as to minimize the seminorm || L x_k ||.
% This leads to choosing xi_0 as follows:
% xi_0 = -pinv(L*V(:,k+1:n))*L*V(:,1:k)*xi_k .
%
% The truncation parameter must satisfy k > n-p.
%
% If k is a vector, then x_k is a matrix such that
% x_k = [ x_k(1), x_k(2), ... ] .
% Reference: P. C. Hansen, T. Sekii & H. Shibahashi, "The modified
% truncated-SVD method for regularization in general form", SIAM J.
% Sci. Stat. Comput. 13 (1992), 1142-1150.
% Per Christian Hansen, UNI-C, 05/26/93.
% Initialization.
[m,n1] = size(U); [p,n] = size(L);
lk = length(k); kmin = min(k);
if (kmin<n-p+1 | max(k)>n)
error('Illegal truncation parameter k')
end
x_k = zeros(n,lk); xi = (U(:,1:n)'*b)./s;
% Compute large enough QR factorization.
[Q,R] = qr(L*V(:,n:-1:kmin+1));
% Treat each k separately.
for j=1:lk
kj = k(j); tmp = V(:,1:kj)*xi(1:kj);
if (kj==n)
x_k(:,j) = tmp;
else
z = R(1:n-kj,1:n-kj)\(Q(:,1:n-kj)'*(L*tmp));
z = z(n-kj:-1:1);
x_k(:,j) = tmp - V(:,kj+1:n)*z;
end
if (m > n)
beta = U(:,1:n)'*b;
beta2 = b'*b - beta'*beta;
if (beta2 > 0), rho = sqrt(rho.^2 + beta2); end
end
end
Produced by color_mat2html, a customized BrainStorm 2.0 (Alpha) version of mat2html on Tue Oct 12 12:05:14 2004
Cross-Directory links are: ON