
Multidimensional Scaling in the City-Block Metric: L1

and L2-Norm Optimization Methods Using MATLAB

L. J. Hubert
University of Illinois

P. Arabie
Rutgers University

J. J. Meulman
Leiden University

The research reported here has been partially supported by the National
Science Foundation through Grant No. SES-981407 (to Hubert) and by the
Netherlands Organization for Scientific Research (NWO) through Grant No.
575-67-053 for the ‘PIONEER’ project ‘Subject Oriented Multivariate Anal-
ysis’ (to Meulman).

Authors’ Addresses: L. J. Hubert, Department of Psychology, University
of Illinois, 603 East Daniel Street, Champaign, Illinois 61820, USA; P. Arabie,
Faculty of Management, Rutgers University, 180 University Avenue, Newark,
NJ 07102-1895, USA; J. J. Meulman, Department of Education, Data Theory
Group, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands.

1

Abstract: This paper is a companion to Hubert, Arabie, and Meulman
(2002; and published in this same journal). The latter provides a number
of different least-squares (L2) optimization strategies for linear unidimen-
sional scaling (LUS) within a MATLAB environment. The current paper
develops extensions, again within a MATLAB context, to multidimensional
scaling in the city-block metric using both an L2 and an L1 (least sum-of-
absolute-deviations) loss function. Although L1 is an alternative to the use
of L2, it doesn’t appear to give any salient advantages; also, it is very ex-
pensive computationally to implement when formulated through its linear
programming subtasks. A final generalization is given in the L2 context that
incorporates optimal monotonic transformations of the original proximities,
thus providing a readily available, computationally reasonable strategy for
nonmetric multidimensional scaling in the city-block metric (in two and three
dimensions) based on the given MATLAB functions provided.

Keywords: Multidimensional Scaling; Linear Unidimensional Scaling;
City-Block Metric; L1-Norm; L2-Norm; MATLAB.

1 Introduction

In a previous paper in this journal (Hubert, Arabie, and Meulman, 2002;
hereafter, referred to as HAM2002), a comparison is made among several
different optimization strategies for the linear unidimensional scaling (LUS)
task in the L2-norm, with all implementations carried out within a MATLAB
computational environment. The central LUS task involves arranging the n
objects in a set S = {O1, O2, . . . , On} along a single dimension, defined by
coordinates x1, x2, . . . , xn, based on an n× n symmetric proximity matrix P
= {pij}, whose nonnegative entries are given a dissimilarity interpretation
(pij = pji for 1 ≤ i, j ≤ n; pii = 0 for 1 ≤ i ≤ n). The L2 criterion∑

i<j

(pij − |xj − xi|)2, (1)

is minimized by the choice of the coordinates. The present paper can be
considered a close companion to this earlier piece, with extensions now given
to multidimensional scaling in the city-block metric for both the L1 and L2

norms. The computational routines to be discussed and illustrated are again

2

freely available as MATLAB m-files.1 We also note that most of the references
given in this earlier paper would also be relevant here as background material
on the basic LUS task, but that review will not be repeated here. Also, we
will not discuss (in this paper) comparisons to other methods (or strategies)
for multidimensional scaling in the city-block metric — for the development
of some of these alternatives, see Brusco (2001), Brusco and Stahl (in press),
Groenen, Heiser, and Meulman (1999), Hubert, Arabie, and Meulman (1997),
and Hubert, Arabie, and Hesson-McInnis (1992).

In the extensions to city-block multidimensional scaling being pursued,
a slight generalization to the basic unidimensional task that incorporates an
additional additive constant will prove extremely convenient. So, in Section
2 we emphasize the more general least-squares loss function of the form∑

i<j

(pij − {|xj − xi| − c})2, (2)

where c is some constant to be estimated along with the coordinates x1, . . . , xn;
also, in Section 2, the least sum-of-absolute-deviations (the L1 loss function)
is considered as a variant for estimating c and the coordinates:∑

i<j

|pij − {|xj − xi| − c}|. (3)

Sections 3 and 4 remove the restriction to fitting only a single unidimensional
structure to a symmetric proximity matrix, and rely on the type of compu-
tational approaches developed in Section 2 that include the augmentation by
estimated additive constants. Based on these latter strategies, extensions are
given to the use of multiple unidimensional structures through a procedure
of successive residualization of the original proximity matrix (even though in
this process, negative residuals are encountered and need to be fitted). For
example, the fitting of two LUS structures to a proximity matrix {pij} could
be rephrased as the minimization of an L2 loss function generalizing (2) to
the form ∑

i<j

(pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2])
2, (4)

1In the presentation throughout the paper, reference is made to the m-files available
in an Appendix A. This appendix (in pdf format) called cbs appendix.pdf is available at
the ftp site: (ftp://www.psych.uiuc.edu/pub/cda). The m-files themselves (plus all other
files mentioned throughout the paper) are in the ‘zipped’ file, cbs files.zip, at this same
address. The ‘cbs’ acronym stands for ‘city-block scaling’.

3

or by extending (3) to the use of an L1 loss function:∑
i<j

|pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2]|. (5)

The attempt to minimize (4) or (5) could proceed with the fitting of a
single LUS structure to {pij}, [|xj1 − xi1| − c1], and once obtained, fitting a
second LUS structure, [|xj2 − xi2| − c2], to the residual matrix, {pij − [|xj1 −
xi1| − c1]}. The process would then cycle by repetitively fitting the residuals
from the second linear structure by the first, and the residuals from the first
linear structure by the second, until the sequence converges. In any case,
obvious extensions would also exist to (4) and (5) for the inclusion of more
than two LUS structures.

The explicit inclusion of two constants, c1 and c2, in (4) and (5) rather
than adding these two together and including a single additive constant c,
deserves some additional introductory explanation. As would be the case
in fitting a single LUS structure using the loss functions in (2) and (3),
two interpretations exist for the role of the additive constant c. We could
consider {|xj − xi|} to be fitted to the translated proximities {pij + c}, or
alternatively, {|xj − xi| − c} to be fitted to the original proximities {pij},
where the constant c becomes part of the actual model. Although these two
interpretations do not lead to any algorithmic differences in how we would
proceed with minimizing the loss functions in (2) and (3), a consistent use
of the second interpretation suggests that we frame extensions to the use
of multiple LUS structures as we did in (4) and (5), where it is explicit
that the constants c1 and c2 are part of the actual models to be fitted to
the (untransformed) proximities {pij}. Once c1 and c2 are obtained, they
could be summed as c = c1 + c2, and an interpretation made that we have
attempted to fit a transformed set of proximities {pij +c} by the sum {|xj1−
xi1| + |xj2 − xi2|} (and in this latter case, a more usual terminology would
be one of a two-dimensional scaling (MDS) based on the city-block distance
function). However, such a further interpretation is unnecessary and could
lead to at least some small terminological confusion in further extensions that
we might wish to pursue. For instance, if some type of (optimal nonlinear)
transformation, say f(·), of the proximities is also sought (e.g., a monotonic
function of some form as we do in Section 5) in addition to fitting multiple
LUS structures, and where pij in (4) or (5) is replaced by f(pij), and f(·) is
to be constructed, the first interpretation would require the use of a ‘doubly
transformed’ set of proximities {f(pij) + c} to be fitted by the sum {|xj1 −

4

xi1|+ |xj2 − xi2|}. In general, it seems best to avoid the need to incorporate
the notion of a double transformation in this context, and instead merely
consider the constants c1 and c2 to be part of the models being fitted to a
transformed set of proximities f(pij).

Although L1 norms are possible to use within both the unidimensional
and multidimensional contexts, and we give MATLAB m-files to do so, our
general conclusion after experimentation is that they might be best avoided
because of their generally needed much greater computationally expensive
implementation without any particularly clear advantage. Given this lack
of any prominent reason to use L1 as opposed to L2, the extension to a
nonmetric multidimensional scaling in the city-block metric given in Section
5 will be limited to the L2 context.

2 The Incorporation of Additive Constants

in LUS

In Section 2.1.1 below, we present and illustrate a MATLAB m-function,
linfitac.m, that fits in L2 a given single unidimensional scale (by provid-
ing the coordinates x1, . . . , xn) and the additive constant (c) for some fixed
input object ordering along the continuum defined by a permutation ρ(0).
This parallels directly the m-function given in HAM2002 called linfit.m,
but now with an included additive constant estimation. The computational
mechanisms implemented in linfitac.m are reviewed in Section 2.1. Two
additional MATLAB m-functions, linfitl1.m and linfitl1ac.m, are pre-
sented in Section 2.2.1 that fit within L1 a given single unidimensional scale
defined by a fixed object ordering ρ(0) without and with an additional ad-
ditive constant respectively. The computational basis for these functions
is reviewed in Section 2.2. Finally, Section 2.3 presents two m-functions,
uniscallp.m and uniscallpac.m, that rely on an iterative linear program-
ming strategy to actually identify best-fitting object orderings within the L1

norm. For the L2 context, a comparable general purpose method for finding
an object order was made available in HAM2002 based on iterative quadratic
assignment (the m-function uniscalqa.m).

5

2.1 The L2 Fitting of a Single Unidimensional Scale
(with an Additive Constant)

Given a fixed object permutation, ρ(0), we denote the set of all n×n matrices
that are additive translations of the off-diagonal entries in the reordered
symmetric proximity matrix {pρ(0)(i)ρ(0)(j)} by ∆ρ(0) , and let Ξ be the set of
all n × n matrices that represent the interpoint distances between all pairs
of n coordinate locations along a line. Explicitly,

∆ρ(0) ≡ {{qij}}, where qij = pρ(0)(i)ρ(0)(j) + c, for some constant c, i 6=
j; qii = 0, 1 ≤ i, j ≤ n;

Ξ ≡ {{rij}}, where rij = |xj − xi| for some set of n coordinates, x1 ≤
· · · ≤ xn;

∑
i xi = 0.

Alternatively, we could define Ξ through a set of linear inequality (for non-
negativity restrictions) and equality constraints (to represent the additive
nature of distances along a line – as we did in linfit.m in HAM2002). In any
case, both ∆ρ(0) and Ξ are closed convex sets (in a Hilbert space), and thus,
given any n× n symmetric matrix with a zero main diagonal, its projection
onto either ∆ρ(0) or Ξ exists, i.e., there is a (unique) member of ∆ρ(0) or Ξ
at a closest (Euclidean) distance to the given matrix (e.g., see Cheney and
Goldstein, 1959). Moreover, if a procedure of alternating projections onto
∆ρ(0) and Ξ is carried out (where a given matrix is first projected onto one
of the sets, and that result is then projected onto the second which result is
in turn projected back onto the first, and so on), the process is convergent
and generates members of ∆ρ(0) and Ξ that are closest to each other (again,
this last statement is justified in Cheney and Goldstein, 1959, Theorems 2
and 4).

Given any n×n symmetric matrix with a main diagonal of all zeros, which
we denote arbitrarily as U = {uij}, its projection onto ∆ρ(0) may be obtained
by a simple formula for the sought constant c. Explicitly, the minimum over
c of ∑

i<j

({pρ(0)(i)ρ(0)(j)}+ c− uij)
2,

is obtained for

ĉ = (2/n(n− 1))
∑
i<j

(uij − pρ(0)(i)ρ(0)(j)),

and thus, this last value defines a constant translation of the proximities
necessary to generate that member of ∆ρ(0) closest to U = {uij}. For the

6

second necessary projection and given any n×n symmetric matrix (again with
a main diagonal of all zeros), that we denote arbitrarily as V = {vij} (but
which in our applications will generally have the form vij = pρ(0)(i)ρ(0)(j) + c
for i 6= j and some constant c), its projection onto Ξ is somewhat more
involved and requires minimizing∑

i<j

(vij − rij)
2,

over rij, where {rij} is subject to the linear inequality nonnegativity con-
straints, and the linear equality constraints of representing distances along
a line (of the set Ξ). Although this is a (classic) quadratic programming
problem for which a wide variety of optimization techniques has been pub-
lished, we adopt (as we did in fitting a LUS without an additive constant in
linfit.m), the Dykstra-Kaczmarz iterative projection strategy reviewed in
the appendix to HAM2002.

2.1.1 The MATLAB function linfitac.m

As discussed above, the MATLAB m-function in Section A.1 of the Appendix
A, linfitac.m, fits a set of coordinates to a given proximity matrix based
on some given input permutation, say, ρ(0), plus an additive constant, c. The
usage syntax of

[fit vaf coord addcon] = linfitac(prox,inperm)

is similar to that of linfit.m (of HAM2002) except for the inclusion (as
output) of the additive constant ADDCON, and the replacement of the least-
squares criterion of DIFF by the variance-accounted-for (VAF) given by the
general formula

vaf = 1−
∑

i<j(pρ(0)(i)ρ(0)(j) + c− |xj − xi|)2∑
i<j(pij − p̄)2

,

where p̄ is the mean of the proximity values being used.
To illustrate the invariance of VAF to the use of linear transformations

of the proximity matrix (although COORD and ADDCON obviously will change
depending on the transformation used), we fit the permutation found optimal
in the HAM2002 companion paper to two different matrices: the original
proximity matrix for number.dat, and one standardized to mean zero and

7

variance one. The latter matrix is obtained with the utility proxstd.m, given
in Appendix A.11, with usage explained in its m-file header comments.

In the recording below, semicolons are placed after the invocation of the
m-functions to initially suppress the output; transposes(’) are then used on
the output vectors to conserve space by only using row (as opposed to col-
umn) vectors in the listing; also, to conserve space, blank lines are always
deleted in any output given throughout the paper. Note that for the two
proximity matrices used, the vaf values are the same (.5612) but the coor-
dinates and additive constants differ; a listing of the standardized proximity
matrix is given in the output to explicitly show how negative proximities pose
no problem for the fitting process that allows the incorporation of additive
constants within the fitted model.

>> load number.dat

>> inperm = [1 2 3 5 4 6 7 9 10 8];

>> [fit vaf coord addcon] = linfitac(number,inperm);

>> vaf

vaf =

0.5612

>> coord’

ans =

Columns 1 through 5

-0.3790 -0.2085 -0.1064 -0.0565 -0.0257

Columns 6 through 10

0.0533 0.1061 0.1714 0.1888 0.2565

>> addcon

addcon =

-0.3089

>> numberstan = proxstd(number,0.0)

numberstan =

Columns 1 through 5

0 -0.5919 0.2105 0.8258 0.7027

-0.5919 0 -1.2663 -0.9611 0.5157

0.2105 -1.2663 0 -0.9217 -2.3739

0.8258 -0.9611 -0.9217 0 -0.6313

0.7027 0.5157 -2.3739 -0.6313 0

1.2934 0.2302 0.6387 -0.5525 -0.6510

1.2147 1.0670 -0.5919 -1.1876 -0.7544

8

1.8103 0.4369 1.2541 0.2498 0.9882

1.3771 1.2294 -0.8577 1.2934 -1.4534

1.5199 0.4123 1.3131 -1.3697 0.6978

Columns 6 through 10

1.2934 1.2147 1.8103 1.3771 1.5199

0.2302 1.0670 0.4369 1.2294 0.4123

0.6387 -0.5919 1.2541 -0.8577 1.3131

-0.5525 -1.1876 0.2498 1.2934 -1.3697

-0.6510 -0.7544 0.9882 -1.4534 0.6978

0 -0.7150 -0.6953 0.6387 0.2498

-0.7150 0 -0.6116 -0.9414 -1.2072

-0.6953 -0.6116 0 -0.6953 -0.4049

0.6387 -0.9414 -0.6953 0 -0.7347

0.2498 -1.2072 -0.4049 -0.7347 0

>> [fit vaf coord addcon] = linfitac(numberstan,inperm);

>> vaf

vaf =

0.5612

>> coord’

ans =

Columns 1 through 5

-1.8656 -1.0262 -0.5235 -0.2783 -0.1266

Columns 6 through 10

0.2624 0.5224 0.8435 0.9292 1.2626

>> addcon

addcon =

1.1437

2.2 The L1 Fitting of a Single Unidimensional Scale
(with an Additive Constant)

The linear unidimensional scaling task in the L1 norm can be phrased as one
of finding a set of coordinates x1, . . . , xn such that the L1 criterion∑

i<j

|pij − (|xj − xi| − c)| (6)

is minimized, where we now immediately include the possibility of an addi-
tive constant in the model (in what follows, c can just be set to 0 for the

9

more elemental model without an additive constant). As an alternative re-
formulation of the optimization task in (6) that will prove convenient as a
point of departure in our development of computational routines (much as
what we did within the L2 norm), we subdivide (6) into the two separate
problems of finding a set of n numbers, x1 ≤ · · · ≤ xn, and a permutation
on the first n integers, ρ(·) ≡ ρ, for which∑

i<j

|pρ(i)ρ(j) − ((xj − xi)− c)| (7)

is minimized. Again, we can impose the additional constraint that
∑n

i=1 xi =
0.

Assuming for now that the permutation ρ is given, the task of finding
x1 ≤ · · · ≤ xn to minimize (7) is a linear programming problem. Without
loss of generality, we let ρ be the identity permutation and first rewrite∑

i<j |pij − (|xj − xi| − c)| as the loss criterion
∑

i<j(z
+
ij + z−ij), where

z+
ij =

1

2
{|pij − (|xj − xi| − c)| − (pij − (|xj − xi| − c))};

z−ij =
1

2
{|pij − (|xj − xi| − c)|+ (pij − (|xj − xi| − c))},

for 1 ≤ i < j ≤ n. The unknowns are c, x1, . . . , xn, and for 1 ≤ i < j ≤ n,
z+

ij , z−ij , and yij (≡ |xj − xi|). The constraints of the linear program take the
form:

−z+
ij + z−ij + yij − c = pij;

−xj + xi + yij = 0;

z+
ij ≥ 0, z−ij ≥ 0, yij ≥ 0,

for 1 ≤ i < j ≤ n, and
x1 + · · ·+ xn = 0.

2.2.1 The MATLAB functions linfitl1.m and linfitl1ac.m

Based on the linear programming reformulation just given for finding a set
of ordered coordinates for a fixed object permutation, Appendices A.2 and
A.3 give the m-functions, linfitl1.m and linfitl1ac.m, where the latter
includes an additive constant in the model and the former does not. Both
of these m-functions serve to setup the relevant (constraint) matrices for the

10

associated linear programming task; the actual linear programming optimiza-
tion is carried out by invoking linprog.m from the MATLAB Optimization
Toolbox.

The syntax for linfitl1.m is

[fit diff coord exitflag] = linfitl1(prox,inperm)

where if we denote the given permutation as ρ0(·) (INPERM), we seek a set of
coordinates x1 ≤ · · · ≤ xn (COORD) to minimize (at a value of DIFF)∑

i<j

|pρ0(i)ρ0(j) − |xj − xi||;

FIT refers to the matrix {|xj − xi|}, and EXITFLAG describes the exit con-
dition of the linear program optimization (greater than 0 for convergence;
0 denotes the maximum number of function evaluations or iterations was
exceeded; less than 0 indicates a failure of convergence to a solution). For
using linfitl1ac.m, the syntax is

[fit dev coord addcon exitflag] = linfitl1ac(prox,inperm)

Here, we minimize ∑
i<j

|pρ0(i)ρ0(j) − (|xj − xi| − c)|

where c is given by ADDCON and DEV refers to the deviance(-accounted-for)
defined by the normalized L1 loss value:

DEV = 1−
∑

i<j |pρ0(i)ρ0(j) − (|xj − xi| − c)|∑
i<j |pij − pmed|

,

where pmed is the median of the off-diagonal proximity values.
We illustrate the use of linfitl1.m and linfitl1ac.m on the number.dat

proximity matrix using the identity permutation as the input object order.
To conserve space, the FIT matrices are not listed below.

>> load number.dat

>> inperm = 1:10;

>> [fit diff coord exitflag] = linfitl1(number,inperm);

Optimization terminated successfully.

>> diff

diff =

11

8.2120

>> coord’

ans =

Columns 1 through 6

-0.7260 -0.4780 -0.2205 -0.1320 -0.1046 0.0780

Columns 7 through 10

0.2005 0.4022 0.4022 0.5784

>> exitflag

exitflag =

1

>> [fit dev coord addcon exitflag] = linfitl1ac(number,inperm);

Optimization terminated successfully.

>> dev

dev =

0.4252

>> coord’

ans =

Columns 1 through 6

-0.3511 -0.1956 -0.1129 -0.0809 -0.0137 0.0466

Columns 7 through 10

0.0930 0.1643 0.2020 0.2482

>> addcon

addcon =

-0.3458

>> exitflag

exitflag =

1

2.3 Iterative Linear Programming

Given the availability of the two linear programming based m-functions (dis-
cussed in the previous Section 2.2.1) for fitting given unidimensional scales
defined by specific input object permutations, it is possible to embed these
two routines in a search strategy for actually finding the (at least hope-
fully) best such permutations in the first place. This embedding is analo-
gous to adopting iterative quadratic assignment in uniscalqa.m (as given in
HAM2002) and attempting to locate good unidimensional scalings in the L2

norm. Here, we have an iterative use of linear programming in uniscallp.m

12

(in Appendix A.4) and uniscallpac.m (in Appendix A.5) to identifying the
good unidimensional scales in the L1 norm, without and with, respectively, an
additive constant in the fitted model. The usage syntax of both m-functions
are as follows:

[outperm coord diff fit] = uniscallp(prox,inperm)

[outperm coord dev fit addcon] = uniscallpac(prox,inperm)

Both m-functions begin with a given object ordering (INPERM) and evaluate
the effect of pairwise object interchanges on the current permutation carried
forward to that point. If an object interchange is identified that improves
the L1 loss value, that interchange is made and the changed permutation be-
comes the current one. When no pairwise object interchange can reduce DIFF
in uniscallp.m, or increase DEV in uniscallpac.m over its current value,
that ending permutation is provided as OUTPERM along with its coordinates
(COORD) and the matrix FIT (the absolute differences of the ordered coordi-
nates). In uniscallpac.m, the additive constant (ADDCON) is also given.

The numerical example that follows relies on number.dat to provide the
proximity matrix, and initializes both the m-functions with the identity per-
mutation (1:10). From other random starts that we have tried in addition to
this very rational starting permutation, the resulting scales we give below are
(almost undoubtedly) L1-norm optimal. We might note that the (optimal)
object orderings differ depending on whether or not an additive constant is
included in the model.

>> load number.dat

>> [outperm coord diff fit] = uniscallp(number,1:10);

>> outperm

outperm =

1 2 3 5 4 9 7 6 10 8

>> coord’

ans =

Columns 1 through 6

-0.7129 -0.3762 -0.2451 -0.1861 -0.0302 0.1081

Columns 7 through 10

0.1838 0.2229 0.4798 0.5559

>> diff

diff =

7.0430

13

>> [outperm coord dev fit addcon] = uniscallpac(number,1:10);

>> outperm

outperm =

1 2 3 4 5 7 6 9 10 8

>> coord’

ans =

Columns 1 through 6

-0.3807 -0.1647 -0.1087 -0.0637 0.0143 0.0903

Columns 7 through 10

0.1113 0.1283 0.1573 0.2163

>> dev

dev =

0.4479

>> addcon

addcon =

-0.3120

Although the m-functions are provided to either fit or find the best unidi-
mensional scalings in the L1 norm, we do not suggest their routine use. The
finding of the best unidimensional scales in L1 is extremely expensive compu-
tationally (given the use of the repetitive linear programming subtasks), and
without any obvious advantage over L2, it is not clear why the L1 approach
should be pursued. This same set of conclusions exist as well for the L1

finding and fitting of multidimensional unidimensional scales illustrated in
Section 4. (We might also mention a possible issue with ill-conditioning for
some uses of linfitl1.m and linfitl1ac.m if the simplex option is chosen
[and not the default interior-point algorithm] for the optimization method
implemented in linprog.m (from the Optimization Toolbox for MATLAB
6.5). The end results appear generally to be fine, but the intermediate warn-
ings in either the finding or fitting of these unidimensional scales within L1

is disconcerting. So the use of the default interior-point strategy is recom-
mended whenever linprog.m is called.)

14

3 The L2 Finding and Fitting of Multiple Uni-

dimensional Scales

As reviewed in the Introduction, the fitting of multiple unidimensional struc-
tures will be done by (repetitive) successive residualization, along with a re-
liance on the m-function, linfitac.m, to fit each separate unidimensional
structure, including its associated additive constant. The m-function in Ap-
pendix Section A.6, biscalqa.m, is a two-(or bi-)dimensional scaling strategy
for the L2 loss function of (4). It has the syntax

[outpermone outpermtwo coordone coordtwo fitone fittwo ...

addconone addcontwo vaf] = biscalqa(prox,...

targone,targtwo,inpermone,inpermtwo,kblock,nopt)

where the variables are similar to linfitac.m, but with a suffix of ONE or TWO
to indicate which one of the two unidimensional structures is being referenced.
The new variable NOPT controls the confirmatory or exploratory fitting of the
two unidimensional scales; a value of NOPT = 0 will fit in a confirmatory
manner the two scales indicated by INPERMONE and INPERMTWO; if NOPT = 1,
iterative quadratic assignment (QA) (as discussed in HAM2002) is used to
locate the better permutations to fit.

In the example given below, the input PROX is the standardized (to a mean
of zero and a standard deviation of one) 10× 10 proximity matrix based on
number.dat (referred to as STANNUMBER); TARGONE and TARGTWO are identi-
cal 10 × 10 equally-spaced target matrices; INPERMONE and INPERMTWO are
different random permutations of the first 10 integers; KBLOCK is set at 2 (for
the iterative QA subfunctions). In the output, OUTPERMONE and OUTPERMTWO

refer to the object orders; COORDONE and COORDTWO give the coordinates;
FITONE and FITTWO are based on the absolute coordinate differences for the
two unidimensional structures; ADDCONONE and ADDCONTWO are the two asso-
ciated additive constraints; and finally, VAF is the variance-accounted-for in
PROX by the two-dimensional structure.

>> load number.dat

>> stannumber = proxstd(number,0.0);

>> inpermone = randperm(10);

>> inpermtwo = randperm(10);

>> kblock = 2;

15

>> nopt = 1;

>> [prox10,targone,targcir] = ransymat(10);

>> targtwo = targone;

>> [outpermone outpermtwo coordone coordtwo fitone fittwo...

addconone addcontwo vaf] = biscalqa(stannumber,targone,...

targtwo,inpermone,inpermtwo,kblock,nopt);

>> outpermone

outpermone =

Columns 1 through 10

1 2 3 4 5 6 7 9 8 10

>> outpermtwo

outpermtwo =

Columns 1 through 10

5 9 3 1 7 4 10 2 8 6

>> coordone’

ans =

Columns 1 through 5

-2.1786 -1.2363 -0.5418 -0.2915 0.0009

Columns 6 through 10

0.0858 0.6805 1.0310 1.0310 1.4191

>> coordtwo’

ans =

Columns 1 through 5

-0.8791 -0.8791 -0.8791 -0.2629 -0.1151

Columns 6 through 10

0.2472 0.2472 0.3639 0.9885 1.1688

>> addconone

addconone =

1.3137

>> addcontwo

addcontwo =

0.8803

>> vaf

vaf =

0.8243

Although we have used the proximity matrix in number.dat primarily as
a convenient numerical example to illustrate the various m-functions provided

16

in the appendix, the substantive interpretation (as noted in more detail in
HAM2002) for this particular two-dimensional structure is rather remarkable
and worth pointing out. The first dimension reflects number magnitude
perfectly (in its coordinate order) with two objects (the actual digits 7 8)
at the same (tied) coordinate value. The second axis reflects the structural
characteristics perfectly, with the coordinates split into the odd and even
numbers (the digits 4 8 2 0 6 in the first five positions; 3 9 1 7 5 in the second
five); there is a grouping of 4 8 2 at the same coordinates (reflecting powers
of 2); a grouping of 6 3 9 (reflecting multiples of three) and of 3 9 at the
same coordinates (reflecting the powers of 3); the odd numbers 7 5 that are
not powers of 3 are at the extreme two coordinates of this second dimension.

Although we will not explicitly illustrate its use here, a tridimensional
m-function, triscalqa.m, is given in Appendix A.7 that is an obvious gen-
eralization of biscalqa.m. The pattern of programming that this shows
could be used directly as a pattern for extensions beyond three unidimen-
sional structures.

4 The L1 Finding and Fitting of Multiple Uni-

dimensional Scales

In analogy to the L2 fitting of multiple unidimensional structures, the use
of the L1 norm can again be done by (repetitive) successive residualization,
but now with a reliance on the m-function, linfitl1ac.m, to fit each sep-
arate unidimensional structure with its additive constant. The m-function,
biscallp.m, given in the Appendix Section A.8 is a two-(or bi-)dimensional
scaling strategy for the L1 loss-function∑

i<j

|pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2]|, (8)

with syntax (and all variables) similar to biscalqa.m of Section 3, including
a provision for the confirmatory fitting of two given input orders (by setting
NOPT = 0).

In the example given below, the two beginning permutations used were
the ones identified with the L2 norm. Compared to the input permuta-
tions, there are no changes in the output permuations. The final deviance-
accounted-for (DEV) of this solution is .6787.

17

>>load number.dat

>>stannumber = proxstd(number,0.0);

>>nopt = 1;

>>inpermone = [1 2 3 4 5 6 7 9 8 10];

>>inpermtwo = [5 3 9 1 7 4 10 2 8 6];

>>[outpermone outpermtwo coordone coordtwo fitone fittwo ...

addconone addcontwo dev] = biscallp(stannumber,inpermone,inpermtwo,nopt);

>> outpermone

outpermone =

1 2 3 4 5 6 7 9 8 10

>> outpermtwo

outpermtwo =

5 3 9 1 7 4 10 2 8 6

>> coordone’

ans =

Columns 1 through 6

-1.9927 -1.1377 -0.4443 -0.3343 0.0611 0.1170

Columns 7 through 10

0.4919 0.7986 1.1162 1.3243

>> coordtwo’

ans =

Columns 1 through 6

-0.9351 -0.9351 -0.8721 -0.1714 -0.0055 0.1462

Columns 7 through 10

0.1462 0.4965 0.8732 1.2571

>> addconone

addconone =

1.2366

>> addcontwo

addcontwo =

0.8781

>> dev

dev =

0.6787

As noted earlier, in principle one can use the L1 norm in city-block scaling,
but given the increased computational expense of doing so with no apparent
advantage over L2, it is suggested that the use of L1 generally be avoided in

18

favor of L2.

5 Incorporating Monotonic Transformation of

a Proximity Matrix in Fitting Multiple Uni-

dimensional Scales: L2 Nonmetric Multidi-

mensional Scaling in the City-Block Metric

As a direct extension of the m-function biscalqa.m discussed in the last sec-
tion, Appendix A.9 gives bimonscalqa.m which provides an optimal mono-
tonic transformation (by incorporating the use of proxmon.m discussed in
HAM2002) of the original proximity matrix given as input in addition to
the later’s bidimensional scaling. To prevent degeneracy, the sum-of-squares
value for the initial input proximity matrix is maintained in the optimally
transformed proximities; the overall strategy is iterative with termination
again dependent on a change in the variance-accounted-for being less than
1.0e-005. The usage syntax is almost identical to that of biscalqa.m except
for the inclusion of the monotonically transformed proximity matrix MONPROX

as an output matrix:

[... monprox] = bimonscalqa(...)

The ellipses indicate that the same items should be used as in biscalqa.m. If
bimonscalqa would have been used in the numerical example of the previous
section, the same results given would have been provided initially plus the re-
sults for the optimally transformed proximity matrix. We give this additional
output below, which shows that the incorporation of an optimal monotonic
transformation provides an increase in the VAF from .8243 to .9362; the order-
ings on the two dimensions remain the same as well as the nice substantive
explanation of the previous section.

>> outpermone

outpermone =

1 2 3 4 5 6 7 9 8 10

>> outpermtwo

outpermtwo =

9 5 3 1 7 4 10 2 8 6

>> coordone’

19

ans =

Columns 1 through 6

-2.3514 -1.3290 -0.6409 -0.3565 0.0775 0.1216

Columns 7 through 10

0.5857 1.1342 1.1342 1.6247

>> coordtwo’

ans =

Columns 1 through 6

-0.7793 -0.7793 -0.7793 -0.3891 -0.1196 0.3242

Columns 7 through 10

0.3242 0.3480 0.8467 1.0035

>> addconone

addconone =

1.4394

>> addcontwo

addcontwo =

0.7922

>> vaf

vaf =

0.9362

>> monprox

monprox =

Columns 1 through 6

0 -0.7387 -0.1667 0.5067 0.5067 1.4791

-0.7387 0 -0.8218 -0.8218 0.5067 -0.1667

-0.1667 -0.8218 0 -0.8218 -1.6174 0.5067

0.5067 -0.8218 -0.8218 0 -0.7387 -0.7387

0.5067 0.5067 -1.6174 -0.7387 0 -0.7387

1.4791 -0.1667 0.5067 -0.7387 -0.7387 0

1.0321 0.5067 -0.7387 -0.8218 -0.8218 -0.8218

2.6590 0.5067 1.0321 -0.1667 0.5067 -0.8218

1.7609 1.0321 -0.8218 1.0321 -1.2541 0.5067

2.6231 0.5067 1.4791 -0.8218 0.5067 -0.0534

Columns 7 through 10

1.0321 2.6590 1.7609 2.6231

0.5067 0.5067 1.0321 0.5067

-0.7387 1.0321 -0.8218 1.4791

-0.8218 -0.1667 1.0321 -0.8218

20

-0.8218 0.5067 -1.2541 0.5067

-0.8218 -0.8218 0.5067 -0.0534

0 -0.7387 -0.8218 -0.8218

-0.7387 0 -0.7387 -0.7387

-0.8218 -0.7387 0 -0.8218

-0.8218 -0.7387 -0.8218 0

Although we will not provide an example of its use here, Appendix A.10
gives trimonscalqa.m, which extends triscalqa.m (listed in A.7) to include
an optimal monotonic transformation of whatever is given as the original
input proximity matrix.

6 Concluding Comments

An obvious conclusion to this manuscript is that if one is interested in (non-
metric) city-block scaling in two or three dimensions within L2, the MATLAB
routines, biscalqa.m and bimonscalqa.m; triscalqa.m and trimonscalqa.m,
would be natural alternatives to consider. The L1 metric is not a compu-
tationally competitive alternative, and appears to be without any particular
discernible advantage to make up for its greater expense. In any case, one as-
pect of all of these given m-files that we have not emphasized but will in these
concluding comments, is their possible usage in the confirmatory context (by
setting the NOPT switch to 0), and fitting various fixed object orderings in
multiple dimensions. One possible application of this type of confirmatory
fitting would be in an individual differences scaling context. Explicitly, we
begin with a collection of, say, K proximity matrices, P1, . . . ,PK , obtained
from K separate sources, and through some weighting and averaging pro-
cess construct a single aggregate proximity matrix, PA. On the basis of
PA, suppose a two-dimensional city-block scaling is constructed (using, say,
biscalqa.m); we label the latter the “common space” in consistency with
what is usually done in the weighted Euclidean model (e.g., see the IND-
SCAL model of Carroll and Chang, 1970, or the PROXSCAL program in
the Categories Module of SPSS — Busing, Commandeur, and Heiser, 1997).
Each of the K proximity matrices then can be used in a confirmatory fitting
of the object orders along the two axes. Thus, a very general “private space”
is generated for each source and where the actually coordinates along both
axes are unique to that source, subject only to the object order constraints

21

of the group space. This strategy provides an individual differences model
generalization over the usual weighted Euclidean model where the latter al-
lows only differential axes scaling (stretching or shrinking) in generating the
private spaces. The authors are continuing to work on these kinds of individ-
ual difference generalizations both for multiple unidimensional scalings in L2

and for other types of proximity matrix representations such as ultrametrics
or additive trees.

References

[1] Brusco, M. J. (2001). A simulated annealing heuristic for unidimen-
sional and multidimensional (city-block) scaling of symmetric proximity
matrices. Journal of Classification, 18, 3–33.

[2] Brusco, M. J., & Stahl, S. (in press). Optimal least-squares unidimen-
sional scaling: Improved branch-and-bound procedures and comparison
to dynamic programming. Psychometrika, in press.

[3] Busing, F. M. T. A., Commandeur, J. J. F., & Heiser, W. J. (1997).
PROXSCAL: A multidimensional scaling program for individual differ-
ences scaling with constraints. In W. Bandilla & F. Faulbaum (Eds.),
Softstat ’97: Advances in Statistical Software, Volume 6 (pp. 67–74).
Stuttgart: Lucius & Lucius.

[4] Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in
multidimensional scaling via an N-way generalization of Eckart-Young
decomposition. Psychometrika, 35, 283–319.

[5] Cheney, W., & Goldstein, A. (1959). Proximity maps for convex sets.
Proceedings of the American Mathematical Society, 10, 448–450.

[6] Groenen, P. J. F., Heiser, W. J., & Meulman, J. J. (1999). Global opti-
mization in least-squares multidimensional scaling by distance smooth-
ing. Journal of Classification, 16, 225–254.

[7] Hubert, L. J., Arabie, R., & Hesson-McInnis, M. (1992). Multidimen-
sional scaling in the city-block metric: A combinatorial approach. Jour-
nal of Classification, 9, 211–236.

22

[8] Hubert, L. J., Arabie, R., & Meulman, J. J. (1997). Linear and cir-
cular unidimensional scaling for symmetric proximity matrices. British
Journal of Mathematical and Statitical Psychology, 50, 253–284.

[9] Hubert, L. J., Arabie, R., & Meulman, J. J. (2002). Linear unidimen-
sional scaling in the L2-norm: Basic optimization methods using MAT-
LAB. Journal of Classification, 19, 303–328.

23

