
Linear Unidimensional Scaling in the L2-Norm:
Basic Optimization Methods Using MATLAB

L. J. Hubert
University of Illinois

P. Arabie
Rutgers University

J. J. Meulman
Leiden University

The research reported here has been partially supported by the National
Science Foundation through Grant No. SES-981407 (to Hubert) and by the
Netherlands Organization for Scientific Research (NWO) through Grant No.
575-67-053 for the ‘PIONEER’ project ‘Subject Oriented Multivariate Anal-
ysis’ (to Meulman).

Authors’ Addresses: L. J. Hubert, Department of Psychology, University
of Illinois, 603 East Daniel Street, Champaign, Illinois 61820, USA; P. Arabie,
Faculty of Management, Rutgers University, 180 University Avenue, Newark,
NJ 07102-1895, USA; J. J. Meulman, Department of Education, Data Theory
Group, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands.

1

Abstract: A comparison is made among four different optimization
strategies for the linear unidimensional scaling task in the L2-norm: (1)
dynamic programming; (2) an iterative quadratic assignment improvement
heuristic; (3) the Guttman update strategy as modified by Pliner’s technique
of smoothing; (4) a nonlinear programming reformulation by Lau, Leung, and
Tse. The methods are all implemented through (freely downloadable) MAT-
LAB m-files; their use is illustrated by a common data set carried through-
out. For the computationally intensive dynamic programming formulation
that can guarantee a globally optimal solution, several possible computa-
tional improvements are discussed and evaluated using (a) a transformation
of a given m-function with the MATLAB Compiler into C code and com-
piling the latter; (b) rewriting an m-function and a mandatory MATLAB
gateway directly in Fortran and compiling into a MATLAB callable file; (c)
comparisons of the acceleration of raw m-files implemented under the most
recent release of MATLAB Version 6.5 (and compared to the absence of
such acceleration under the previous MATLAB Version 6.1). Finally, and in
contrast to the combinatorial optimization task of identifying a best unidi-
mensional scaling for a given proximity matrix, an approach is given for the
confirmatory fitting of a given unidimensional scaling based only on a fixed
object ordering, and to nonmetric unidimensional scaling that incorporates
an additional optimal monotonic transformation of the proximities.

Keywords: Combinatorial Data Analysis; Linear Unidimensional Scal-
ing; MATLAB; Nonlinear Programming; Dynamic Programming; Quadratic
Assignment.

1 Introduction

The task of linear unidimensional scaling (LUS) can be characterized as a
specific data analysis problem: given a set of n objects, S = {O1, ..., On}, and
an n × n symmetric proximity matrix P = {pij}, arrange the objects along
a single dimension such that the induced n(n− 1)/2 interpoint distances be-
tween the objects reflect the proximities in P. The term “proximity” refers
to any symmetric numerical measure of relationship between each object pair
(pij = pji for 1 ≤ i, j ≤ n) and for which all self-proximities are considered
irrelevant and set equal to zero (pii = 0 for 1 ≤ i ≤ n). As a technical con-

2

venience, proximities are assumed nonnegative and are given a dissimilarity
interpretation, so that large proximities refer to dissimilar objects.

As a starting point to be developed exclusively in this paper, we con-
sider the most common formalization of measuring how close the interpoint
distances are to the given proximities by the sum of squared discrepancies.
Specifically, we wish to find the n coordinates, x1, x2, . . . , xn, such that the
least-squares (or L2) criterion∑

i<j

(pij − |xj − xi|)2 (1)

is minimized. Although there is some arbitrariness in the selection of this
measure of goodness-of-fit for metric scaling, the choice is traditional and has
been discussed in some detail in the literature by Guttman (1968), Defays
(1978), de Leeuw and Heiser (1977), and Hubert and Arabie (1986), among
others. In the various sections that follow, several functions are presented
within a MATLAB environment for this L2 task based on a number of dif-
ferent optimization strategies: dynamic programming; the iterative use of a
quadratic assignment improvement heuristic; Pliner’s technique of smoothing
as implemented within a Guttman update method; and a nonlinear program-
ming reformulation by Lau, Leung, and Tse (1998).

Besides making available the basic MATLAB m-functions for carrying out
these various approaches to the unidimensional scaling task, several impor-
tant computational improvements are also discussed and compared for the
computationally intensive dynamic programming formulation that can guar-
antee a globally optimal solution. These involve either transforming a given
m-function with the MATLAB Compiler into C code that can in turn be
submitted to a C/C++ compiler, or alternatively, rewriting an m-function
and the mandatory MATLAB gateway directly in Fortran and then com-
piling into a MATLAB callable *.dll file (within a windows environment).
In some cases studied, the computational improvements are very dramatic
when the use of an external Fortran coded *.dll is compared either to one
generated through C by use of the MATLAB Compiler, or as might be more
expected, to the original interpreted m-function directly within a MATLAB
environment.1

1In the presentation throughout the paper, reference is made continually to the m-
files available in an Appendix A. This appendix (in pdf format) called lus appendix.pdf
is available at the ftp site: (ftp://www.psych.uiuc.edu/pub/cda). The m-files themselves

3

In addition to developing the combinatorial optimization task of actually
identifying a best unidimensional scaling, Section 4 introduces two addi-
tional problems within the LUS context: (a) the confirmatory fitting of a
unidimensional scale (through coordinate estimation) based on a fixed (and
given) object ordering; (b) the extension to nonmetric unidimensional scaling
incorporating an additional optimal monotonic transformation of the prox-
imities. Both of these optimization tasks are formulated through the L2 norm
and carried out through applications of what is called the Dykstra-Kaczmarz
method of solving linear (in)equality constrained least-squares tasks. The
latter strategy is reviewed briefly in a short Appendix B to this paper.

2 LUS in the L2 Norm

As a reformulation of the L2 unidimensional scaling task that will prove
very convenient as a point of departure in our development of computa-
tional routines, the optimization suggested by (1) can be subdivided into
two separate problems to be solved simultaneously: find a set of n numbers,
x1 ≤ x2 ≤ · · · ≤ xn, and a permutation on the first n integers, ρ(·) ≡ ρ, for
which ∑

i<j

(pρ(i)ρ(j) − (xj − xi))
2 (2)

is minimized. Thus, a set of locations (coordinates) is defined along a con-
tinuum as represented in ascending order by the sequence x1, x2, . . . , xn; the
n objects are allocated to these locations by the permutation ρ, so object
Oρ(i) is placed at location i. Without loss of generality we will impose the
one additional constraint that

∑
i xi = 0, i.e., any set of values, x1, x2, . . . , xn,

can be replaced by x1− x̄, x2− x̄, . . . , xn− x̄, where x̄ = (1/n)
∑

i xi, without
altering the value of (1) or (2). Formally, if ρ∗ and x∗1 ≤ x∗2 ≤ · · · ≤ x∗n define
a global minimum of (2), and Ω denotes the set of all permutations of the
first n integers, then ∑

i<j

(pρ∗(i)ρ∗(j) − (x∗j − x∗i))
2 =

min[
∑
i<j

(pρ(i)ρ(j) − (xj − xi))
2 | ρ ∈ Ω; x1 ≤ · · · ≤ xn;

∑
i

xi = 0].

(plus all other files mentioned throughout the paper) are in the ‘zipped’ file, lus files.zip,
at this same address.

4

The measure of loss in (2) can be reduced algebraically:∑
i<j

p2
ij + n(

∑
i

x2
i − 2

∑
i

xit
(ρ)
i), (3)

subject to the constraints that x1 ≤ · · · ≤ xn and
∑

i xi = 0, and letting

t
(ρ)
i = (u

(ρ)
i − v

(ρ)
i)/n,

where

u
(ρ)
i =

i−1∑
j=1

pρ(i)ρ(j) for i ≥ 2;

v
(ρ)
i =

n∑
j=i+1

pρ(i)ρ(j) for i < n,

and
u

(ρ)
1 = v(ρ)

n = 0.

In words, u
(ρ)
i is the sum of the entries within row ρ(i) of {pρ(i)ρ(j)} from the

extreme left up to the main diagonal; v
(ρ)
i is the sum from the main diagonal

to the extreme right. Or, we might rewrite (3) as

∑
i<j

p2
ij + n

(∑
i

(xi − t
(ρ)
i)2 −

∑
i

(t
(ρ)
i)2

)
. (4)

In (4), the two terms
∑

i(xi − t
(ρ)
i)2 and

∑
i(t

(ρ)
i)2 control the size of the dis-

crepancy index since
∑

i<j p2
ij is constant for any given data matrix. Thus,

to minimize the original index in (2), we should simultaneously minimize∑
i(xi− t

(ρ)
i)2 and maximize

∑
i(t

(ρ)
i)2. If the equivalent form of (3) is consid-

ered, our concern would be in minimizing
∑

i x
2
i and maximizing

∑
i xit

(ρ)
i .

As noted first by Defays (1978), the minimization of (4) can be carried

out directly by the maximization of the single term,
∑

i(t
(ρ)
i)2 (under the mild

regularity condition that all off-diagonal proximities in P are positive and
not merely nonnegative). Explicitly, if ρ∗ is a permutation that maximizes∑

i(t
(ρ)
i)2, then we can let xi = t

(ρ∗)
i , which eliminates the term

∑
i(xi− t

(ρ∗)
i)2

from (4). In short, because the order induced by t
(ρ∗)
1 , . . . , t(ρ

∗)
n is consistent

with the constraint x1 ≤ x2 ≤ · · · ≤ xn, the minimization of (4) reduces to

the maximization of the single term
∑

i(t
(ρ)
i)2, with the coordinate estimation

completed as an automatic byproduct.

5

Table 1: The number.dat data file from Shepard, Kilpatric, and Cunningham
(1975)

.000 .421 .584 .709 .684 .804 .788 .909 .821 .850

.421 .000 .284 .346 .646 .588 .758 .630 .791 .625

.584 .284 .000 .354 .059 .671 .421 .796 .367 .808

.709 .346 .354 .000 .413 .429 .300 .592 .804 .263

.684 .646 .059 .413 .000 .409 .388 .742 .246 .683

.804 .588 .671 .429 .409 .000 .396 .400 .671 .592

.788 .758 .421 .300 .388 .396 .000 .417 .350 .296

.909 .630 .796 .592 .742 .400 .417 .000 .400 .459

.821 .791 .367 .804 .246 .671 .350 .400 .000 .392

.850 .625 .808 .263 .683 .592 .296 .459 .392 .000

It is convenient to have a small numerical example available as we discuss
the various optimization strategies in the unidimensional scaling context. To
this end we list a data file in Table 1, called ‘number.dat’, that contains a
dissimilarity matrix taken from Shepard, Kilpatric, and Cunningham (1975).
The stimulus domain is the first ten single-digits {0,1,2, . . . , 9} considered as
abstract concepts; the 10× 10 proximity matrix (with an ith row or column
corresponding to the i − 1 digit) was constructed by averaging dissimilar-
ity ratings for distinct pairs of those integers over a number of subjects and
conditions. Given the various analyses of this proximity matrix that have
appeared in the literature (e.g., see Hubert, Arabie, and Meulman, 2001),
the data reflect two types of very regular patterning based on absolute digit
magnitude and the structural characteristics of the digits (e.g., the powers
of 2 or of 3, the salience of the two additive/multiplicative identities [0/1],
oddness/evenness). These data will be relied on to provide concrete numer-
ical illustrations of the various MATLAB functions we introduce, and will
be loaded as a proximity matrix (and importantly, as one that is symmetric
and has zero values along the main diagonal) in the MATLAB environment
by the command ‘load number.dat’. As we will see in the various applica-
tions, the dominant single unidimensional scale found for these data is most
consistent with digit magnitude.

6

3 L2 Norm Optimization Methods

The subsections below emphasize four distinct optimization strategies for
LUS in the L2 norm. We begin in Section 3.1 with the discussion of a
dynamic programming strategy for the maximization of

∑
i(t

(ρ)
i)2 proposed

by Hubert and Arabie (1986) that will produce globally optimal solutions
for proximity matrices of sizes up to, say, the low twenties (within a MAT-

LAB environment). The maximization of
∑

i(t
(ρ)
i)2 over all permutations

is a prototypical combinatorial optimization task, and unfortunately, rep-
resentative of the class of so-called NP-hard problems (e.g., see Garey and
Johnson, 1979); thus, any procedure yielding verifiably globally optimal so-
lutions will be severely limited by the size of the matrices that could be
realistically processed. In providing MATLAB functions that carry out the
dynamic programming optimization, mechanisms will also be discussed and
evaluated for possibly speeding up the optimization process by the use of
the MATLAB C/C++ Compiler and/or external Fortran subroutines and
their gateways to allow externally generated functions to be callable from
MATLAB. Section 3.2 shows how another well-known combinatorial opti-
mization task, called quadratic assignment, can be used iteratively for LUS
in the L2 norm. Based on the reformulation in (3), we concentrate on max-

imizing
∑

i xit
(ρ)
i , with iterative re-estimation of the coordinates x1, . . . , xn.

Various function implementations within MATLAB are given both for the
basic quadratic assignment task as well as for how it is used for LUS. Section
3.3 presents gradient-based update strategies for LUS based on Guttman’s
original update strategy as modified by a smoothing technique due to Pliner
(1996); and finally, Section 3.4 implements a (reformulated) nonlinear pro-
gramming heuristic from Lau, Leung, and Tse (1998) that relies on the MAT-
LAB Optimization Toolbox (and, in particular, its function fmincon.m) for
the MATLAB implementation that we give.

3.1 Dynamic Programming

To maximize
∑

i(t
(ρ)
i)2 over all permutations, we construct a function, F(·),

by recursion for all possible subsets of the first n integers, {1, 2, . . . , n}:
a) F(�) = 0, where � is the empty set;

b) F(R′) = max[F(R)+d(R, i)], where R′ and R are subsets of size k +1
and k, respectively; the maximum is taken over all subsets R and indices

7

i such that R′ = R ∪ {i}; and d(R, i) is the incremental value that would
be added to the criterion if the objects in R had formed the first k values
assigned by the optimal permutation and i had been the next assignment
made, i.e., ρ(k + 1) = i. Explicitly,

d(R, i) = [(1/n){
∑
j∈R

pij −
∑

j(6=i)/∈R

pij}]2;

c) the optimal value of the criterion, F({1, 2, . . . , n}), is obtained for
R = {1, 2, . . . , n} and the optimal permutation, ρ∗, identified by working
backwards through the recursion to identify the sequence of successive subsets
of decreasing size that led to the value attained for F({1, 2, . . . , n}).

This type of dynamic programming strategy is a very general one and
can be used for any criterion for which the incremental value in identifying
the index to be assigned to ρ(k + 1) does not depend on the particular order
of the assigned values in the set {ρ(1), . . . , ρ(k)}. The reader might refer to
Hubert, Arabie, and Meulman (2001) for many more applications of dynamic
programming in the combinatorial data analysis context.

In the three subsections that immediately follow, comparisons will be
given between the execution times for four different implementations of the
same dynamic programming strategy: the use of a raw m-file both under
MATLAB Version 6.1 and Version 6.5, with the latter release now optimized
for the execution of “loops”; an m-function transformed to C code by the
MATLAB C/C++ Compiler that is in turn compiled to produce a callable
*.dll file within MATLAB; the use of a Fortran produced *.dll that is called
upon to do the computationally intensive recursion within a MATLAB m-file.

3.1.1 The MATLAB function uniscaldp.m

The MATLAB function m-file, uniscaldp.m, given in Section A.1 of Ap-
pendix A, carries out a unidimensional scaling of a symmetric proximity
matrix (with a zero main diagonal and a dissimilarity interpretation) using
the dynamic programming recursion just described. The usage syntax has
the form

[coord permut cumobfun diff] = uniscaldp(prox)

where PROX is the input proximity matrix; COORD is the set of coordinates
of the optimal unidimensional scaling in ascending order; PERMUT is the or-
der of the objects in the optimal permutation (say, ρ∗); CUMOBFUN gives the

8

cumulative values of the objective function for successive placements of the
objects in the optimal permutation:

∑k
i=1(t

(ρ∗)
i)2 for k = 1, . . . , n; DIFF is

the value of the least-squares loss function for the optimal coordinates and
object permutation.

A recording of a MATLAB session using the number.dat data file follows
(note that a semicolon is placed after the invocation of the m-function to
initially suppress the output; transposes (’) are then used on the output
vectors to conserve space by only using row vectors in the listed output;
also, to conserve space, blank lines are always deleted in any output given
throughout the paper). The three crucial outputs are:

(1) the optimal coordinates given as a response to listing coord’:
-.6570, -4247, -.2608, -.1492, -.0566, .0842, .1988, .3258, .4050, .5345
(2) the optimal permutation given as a response to listing permut’:
1 2 3 5 4 6 7 9 10 8
(3) the minimum value of the least-squares loss function in (1) given as

a response to listing diff:
1.959

>> load number.dat

>> [coord permut cumobfun diff] = uniscaldp(number);

>> coord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

>> permut’

ans =

1 2 3 5 4 6 7 9 10 8

>> cumobfun’

ans =

Columns 1 through 6

43.1649 61.2019 68.0036 70.2296 70.5500 71.2590

Columns 7 through 10

75.2111 85.8257 102.2282 130.7972

>> diff

diff =

1.9599

9

The second column of Table 2 provides some time comparisons (in sec-
onds) for the use of uniscaldp.m over randomly constructed proximity ma-
trices of size n× n for n = 10 to 25. The matrices were randomly generated
using the utility program ransymat.m given in Section A.8 of Appendix A
(the usage syntax of ransymat.m can be seen from its header comments).
The computer on which these times were obtained is a laptop with a 1.7GHz
Pentium processor and 1.0 GB of RAM; for matrices larger than size 25×25,
an “insufficient memory” message was consistently obtained so the largest
matrix size possible in Table 2 is 25 for the available RAM. The execution
times (obtained using the tic toc command pair in MATLAB) range from
.05 seconds for n = 10 to 3450.4 seconds for n = 25. As can be seen from
the timings given, there is a fairly regular proportional increase in execution
time of about 2.1 for each unit increase in n.

3.1.2 The MATLAB C/C++ Compiler

One of the separate add-on components that can be obtained with MATLAB
is a C/C++ Compiler that when applied to an m-file, such as uniscaldp.m,
produces C or C++ code. The latter can itself then be compiled by a separate
C/C++ compiler to produce (in a windows environment) a *.dll file that can
be called within MATLAB just like a *.m function. As an example, we
first renamed a version of uniscaldp.m to uniscaldpc.m and then applied
in MATLAB 6.5 the C/C++ Compiler Version 3.0 with all the possible
optimization options selected; the resulting code was compiled with the built-
in C compiler (called lcc) to produce uniscaldpc.dll

We give the timings for the use of uniscaldpc.dll in the fourth column
of Table 2. As n increases by 1, the execution times increase by a little more
than twice, just as for uniscaldp.m; but overall (and rather incredibly, we
might add) the compiled uniscaldpc.dll executes at about 7 to 8 times
slower than the interpreted file uniscaldp.m. The times are given for run-
ning uniscaldp.m under MATLAB 6.1 in the third column of Table 1 (but
with the same computer). Here, the execution times are a little less than four
times slower than for the compiled C code. So, it is pretty obvious that the
accelerations provided in the new release of MATLAB (in 6.5) are working
as promised, with a decrease in execution rate generally between 20 and 30
times for our recursive-intensive m-function. At least for speed of execution
considerations, these results more-or-less obviate the value of ever using the
MATLAB C/C++ Compiler when MATLAB version 6.5 is available.

10

3.1.3 External Fortran subroutines

One strategy for decreasing the execution time of an m-file would replace
part of the code that may be slow (usually nonvectorizable “for” loops, for
example) by a call to a *.dll that is produced from a Fortran subroutine imple-
menting the code in its own language. As an example, the m-function listed
in Appendix A.2, uniscaldpf.m, is a parallel of uniscaldp.m except that
the actual recursion constructing the two crucial vectors (and from which the
optimal solution is eventually identified by working backwards) is replaced
by a call to uscalfor.dll. This latter file (called a Fortran MEX-file in
MATLAB) was produced using the MATLAB Application Program Inter-
face (API) through the Compaq Digital Visual Fortran (6.6) Compiler and
with the central computational Fortran subroutine uscalfor.for in Ap-
pendix Section A.2.1 and the second necessary gateway Fortran subroutine
uscalforgw.for in Appendix Section A.2.2. These two subroutines are com-
piled together to produce uscalfor.dll that is then called in uniscaldpf.m

to do “the heavy lifting”.
In comparison to the other times listed in Table 2, the speedup provided

by using the routine uniscaldpf.m is rather spectacular. There is gener-
ally the same type of proportional increase in time that is slightly greater
than twice for each unit change in n. In comparison to the basic m-function,
uniscaldp.m, running under MATLAB 6.5, there is a 20/25 increase in ex-
ecution speed for uniscaldpf.m.

3.2 Iterative Quadratic Assignment

Because of the manner in which the discrepancy index for the unidimensional
scaling task can be rephrased as in (3) and (4), the two optimization sub-
problems to be solved simultaneously of identifying an optimal permutation
and a set of coordinates can be separated:

(a) assuming that an ordering of the objects is known (and denoted,
say, as ρ0 for the moment), find those values x0

1 ≤ · · · ≤ x0
n to minimize∑

i(x
0
i − t

(ρ0)
i)2. If the permutation ρ0 produces a monotonic form for the

matrix {pρ0(i)ρ0(j)} in the sense that t
(ρ0)
1 ≤ t

(ρ0)
2 ≤ · · · ≤ t(ρ

0)
n , the coordinate

estimation is immediate by letting x0
i = t

(ρ0)
i , in which case

∑
i(x

0
i − t

(ρ0)
i)2 is

zero.

(b) assuming that the locations x0
1 ≤ · · · ≤ x0

n are known, find the permu-

11

Table 2: Time comparisons in seconds for the various implementations of
unidimensional scaling through dynamic programming. The three entries
marked by an asterisk are estimated values.

matrix uniscaldp.m uniscaldp.m uniscaldpc.dll uniscaldpf.m
size (Version 6.5) (Version 6.1)

10 .05 .85 .28 .00
11 .11 1.86 .54 .00
12 .23 4.14 1.14 .00
13 .46 9.29 2.50 .02
14 .89 20.85 5.49 .04
15 1.81 46.50 12.43 .08
16 3.85 103.65 27.65 .19
17 8.23 228.84 61.30 .39
18 17.59 503.88 135.84 .84
19 37.62 1107.3 300.06 1.99
20 80.10 2473.2 648.26 3.87
21 170.60 5267.8 1421.1 8.15
22 362.19 11420. 3097.7 18.30
23 767.93 24845. 6772.0 40.40
24 1625.3 54052.∗ 14985. 85.99
25 3450.4 117595.∗ 33158.∗ 185.93

12

tation ρ0 to maximize
∑

i xit
(ρ0)
i . We note from the work of Hubert and Arabie

(1986, p. 189) that any such permutation which even only locally maximizes∑
i xit

(ρ0)
i , in the sense that no adjacently placed pair of objects in ρ0 could

be interchanged to increase the index, will produce a monotonic form for the
non-negative matrix {pρ0(i)ρ0(j)}. Also, the task of finding the permutation

ρ0 to maximize
∑

i xit
(ρ0)
i is actually a quadratic assignment (QA) task which

has been discussed extensively in the literature of operations research, e.g.,
see Francis and White (1974), Lawler (1975), Hubert and Schultz (1976),
among others. As usually defined, a QA problem involves two n×n matrices
A = {aij} and B = {bij}, and we seek a permutation ρ to maximize

Γ(ρ) =
∑
i,j

aρ(i)ρ(j)bij. (5)

If we define bij = |xi − xj| and let aij = pij, then

Γ(ρ) =
∑
i,j

pρ(i)ρ(j)|xi − xj| = 2n
∑

i

xit
(ρ)
i ,

and thus, the permutation that maximizes Γ(ρ) also maximizes
∑

xit
(ρ)
i .

The QA optimization task as formulated through (5) has an enormous
literature attached to it, and the reader is referred to Pardalos and Wolkowicz
(1994) for an up-to-date and comprehensive review. For current purposes and
as provided in three general m-functions of the next section (pairwiseqa.m,
rotateqa.m, and insertqa.m), one might consider the optimization of (5)
through simple object interchange/rearrangement heuristics. Based on given
matrices A and B, and beginning with some permutation (possibly chosen
at random), local interchanges/rearrangements of a particular type are im-
plemented until no improvement in the index can be made. By repeatedly
initializing such a process randomly, a distribution over a set of local optima
can be achieved. At least within the context of some common data analysis
applications, such a distribution may be highly relevant diagnostically for
explaining whatever structure might be inherent in the matrix A.

In a subsequent subsection below, we introduce the main m-function
(uniscalqa.m) for unidimensional scaling based on these earlier QA op-
timization strategies. In effect, we begin with an equally-spaced set of
fixed coordinates with their interpoint distances defining the B matrix of
the general QA index in (5) and a random object permutation; a locally-
optimal permutation is then identified through a collection of local inter-

13

changes/rearrangements; the coordinates are re-estimated based on this iden-
tified permutation, and the whole process repeated until no change can be
made in either the identified permutation or coordinate collection.

3.2.1 The QA interchange/rearrangement heuristics

The three m-functions of Appendix A.9 that carry out general QA inter-
change/rearrangement heuristics all have the same general usage syntax (note
the use of three dots to denote a statement continuation in MATLAB):

[outperm rawindex allperms index] = pairwiseqa(prox,targ,inperm)

[outperm rawindex allperms index] = ...

rotateqa(prox,targ,inperm,kblock)

[outperm rawindex allperms index] = ...

insertqa(prox,targ,inperm,kblock)

pairwiseqa.m carries out an iterative QA maximization task using the pair-
wise interchanges of objects in the current permutation defining the row and
column order of the data matrix. All possible such interchanges are generated
and considered in turn, and whenever an increase in the cross-product in-
dex would result from a particular interchange, it is made immediately. The
process continues until the current permutation cannot be improved upon by
any such pairwise object interchange; this final locally optimal permutation is
OUTPERM. The input beginning permutation is INPERM (a permutation of the
first n integers); PROX is the n×n input proximity matrix and TARG is the n×n
input target matrix (which are respective analogues of the matrices A and B
of (5)); the final OUTPERM row and column permutation of PROX has the cross-
product index RAWINDEX with respect to TARG. The cell array ALLPERMS con-
tains INDEX entries corresponding to all the permutations identified in the op-
timization, from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.
(Note that within a MATLAB environment, entries of a cell array must be
accessed through the curly braces, { }.) rotateqa.m carries out a similar
iterative QA maximization task but now uses the rotation (or inversion) of
from 2 to KBLOCK (which is less than or equal to n−1) consecutive objects in

14

the current permutation defining the row and column order of the data ma-
trix. insertqa.m relies on the (re-)insertion of from 1 to KBLOCK consecutive
objects somewhere in the permutation defining the current row and column
order of the data matrix.

3.2.2 The MATLAB function uniscalqa.m

The MATLAB function m-file in Section A.3 of Appendix A, uniscalqa.m,
carries out a unidimensional scaling of a symmetric dissimilarity matrix (with
a zero main diagonal) using an iterative quadratic assignment strategy. We
begin with an equally-spaced target, a (random) starting permutation, and
use a sequential combination of the pairwise interchange/rotation/insertion
heuristics; the target matrix is re-estimated based on the identified (locally
optimal) permutation. The whole process is repeated until no changes can
be made in the target or the identified (locally optimal) permutation. The
explicit usage syntax is

[outperm rawindex allperms index coord diff] = ...

uniscalqa(prox,targ,inperm,kblock)

where all terms are present either in uniscaldp.m or in the three QA heuristic
m-functions of the previous subsection. A recording of a MATLAB session
using number.dat follows with results completely consistent with what was
identified using uniscaldp.m. Note the application of the built-in MATLAB
function randperm(10) to obtain a random input permutation of the first
10 digits, and the use of the utility m-function from the Appendix A.8.1,
ransymat(10), to generate a target matrix targlin based on an equally
(and unit) spaced set of coordinates. Also, the optimal permutation given in
response to outperm is the (equivalent) reversal of that given earlier using
uniscaldp.m; thus, the optimal coordinates given in response to coord’ are
listed in the reverse order as well.

>> load number.dat

>> [prox10 targlin targcir] = ransymat(10);

>> inperm = randperm(10);

>> kblock = 2;

>> [outperm rawindex allperms index coord diff] = ...

uniscalqa(number,targlin,inperm,kblock);

>> outperm

15

outperm =

8 10 9 7 6 4 5 3 2 1

>> coord’

ans =

Columns 1 through 6

-0.5345 -0.4050 -0.3258 -0.1988 -0.0842 0.0566

Columns 7 through 10

0.1492 0.2608 0.4247 0.6570

>> diff

diff =

1.9599

3.3 Gradient-Based Optimization with Pliner’s Smooth-
ing Strategy

In Guttman’s 1968 paper on multidimensional scaling, the optimization task
in (1) is treated as a special case of a general iterative algorithm based on
the partial derivatives of (1) with respect to the unknown locations. For
one dimension, Guttman’s multidimensional scaling algorithm reduces to a
simple updating procedure:

x
(t+1)
i =

1

n

n∑
j=1

pijsign(x
(t)
i − x

(t)
j), (6)

where t is the index of iteration. As pointed out by de Leeuw and Heiser
(1977), convergence of (6) is guaranteed because x

(t+1)
i only depends on the

rank order of x
(t)
1 , . . . , x(t)

n , there are a finite number of different rank orders,
and no rank order can be repeated with intermediate different rank orders.
In fact, the stationary points of (6) are defined by all possible orderings of P
that lead to monotonic forms. Specifically, if x1, . . . , xn is a stationary point
of (6) and ρ is the permutation for which xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n), then

{pρ(i)ρ(j)} is monotonic, i.e., t
(ρ)
1 ≤ · · · ≤ t(ρ)

n , and t
(ρ)
i = xρ(i) for 1 ≤ i ≤ n.

Conversely, if {pij} is monotonic, then (6) converges in one step if we let the
initial value of xi be, say, i for 1 ≤ i ≤ n.

Guttman’s updating algorithm is in reality a procedure for finding mono-
tonic forms for a proximity matrix and only very indirectly can it even be
characterized as a strategy for unidimensional scaling. From a somewhat
wider perspective, the general weakness of the monotonic forms for a given

16

matrix may indicate why multidimensional scaling methods generally have
such difficulties with local optima when restricted to a single dimension (e.g.,
see Shepard, 1974, pp. 378–379). As can be seen in the way the index of
goodness-of-fit is rewritten in (4), the crucial quantity for distinguishing

among different monotonic forms is
∑

i(t
(ρ)
i)2. Consideration of this latter

term disappears in Guttman’s update method because of the algorithm’s re-
liance on a gradient approach; but as we will see in Section 3.3.2, there is a
method for improving upon the basic update strategy enormously through a
smoothing strategy.

3.3.1 The MATLAB function guttorder.m

The MATLAB m-function in Section A.4 of Appendix A, guttorder.m, car-
ries out a unidimensional scaling of a symmetric proximity matrix based on
the Guttman update formula in (6). The usage syntax is

[gcoordsort gperm] = guttorder(prox,inperm)

where PROX and INPERM are as before, and the output vector GCOORDSORT con-
tains the coordinates ordered from the most negative to most positive; GPERM
is the object permutation indicating where the objects are placed at the or-
dered coordinates in GCOORDSORT. One easy exercise for the reader would be
to call guttorder with inperm as randperm(10) and prox as number and
merely use the ‘up arrow’ key to retrieve the call to guttorder and rerun
the routine with a new random starting permutation. One will quickly see
the weakest of the update procedure in (6) in finding anything that isn’t just
another local optimum.

3.3.2 Pliner’s smoothing strategy and the MATLAB
function plinorder.m

Although the use of the basic Guttman update formula is severely prone to
finding only local optima, a smoothing strategy applied to (6) seems to allevi-
ate this problem (almost) completely. Very simply, Pliner’s (1996) smoothing
strategy for the sign function would replace sign(t) in (6) with

(t/ε)(2− [|t|/ε]) if |t| ≤ ε;
sign (t) if |t| > ε,

17

for ε > 0. Beginning with a randomly generated set of initial coordinate val-
ues and a sufficiently large value of ε (e.g., in the m-function plinorder.m

introduced below, we use Pliner’s suggestion of an initial value of ε equal
to twice the maximum of the row (or column) averages of the input prox-
imity matrix), the update in (6) (with the replacement smoother) would be
applied until convergence. The parameter ε (given as ep in the m-function)
is then reduced (e.g., we use ep = ep*(100-k+1)/100 for k = 2:100), and
beginning with the coordinates from the previous solution, the update in (6)
is again applied until convergence. The process continues until ε has been
effectively reduced to zero.

Pliner’s strategy is a relatively simple modification in the use of the iter-
ative update in (6), and although it is still a heuristic strategy in the sense
that a globally optimal solution is not guaranteed, the authors’ experience
with it suggests that it works incredibly well. (We might also add that be-
cause of its computational simplicity and speed of execution, it may be the
key to scaling huge proximity matrices.) The m-function plinorder.m in
Section A.5 of the appendix has the usage syntax as follows:

[pcoordsort pperm gcoordsort gperm gdiff pdiff] = ...

plinorder(prox,inperm)

where some of the terms are the same as in guttorder.m since that update
method is initially repeated with the invocation of plinorder.m; PCOORDSORT
and PPERM are analogues of GCOORDSORT and GPERM but using the smoother,
and PDIFF and GDIFF are the least-squares loss function values for using the
Pliner smoother and the Guttman update, respectively. The pattern illus-
trated by the single call of plinorder.m to follow is expected: the smoothing
strategy identifies a globally optimal solution and the Guttman update pro-
vides one that is only locally optimal.

>> load number.dat

>> inperm = randperm(10);

>> [pcoordsort pperm gcoordsort gperm gdiff pdiff] = ...

plinorder(number,inperm);

>> pcoordsort’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

18

0.1988 0.3258 0.4050 0.5345

>> pperm

pperm =

1 2 3 5 4 6 7 9 10 8

>> gcoordsort’

ans =

Columns 1 through 6

-0.5089 -0.3784 -0.2160 -0.1426 -0.1110 0.1316

Columns 7 through 10

0.1735 0.2902 0.3502 0.4114

>> gperm

gperm =

2 6 5 9 1 10 8 4 3 7

>> gdiff

gdiff =

5.9895

>> pdiff

pdiff =

1.9599

3.4 A Nonlinear Programming Heuristic

In considering the unidimensional scaling task in (1), Lau, Leung, and Tse
(1998) note the equivalence to the minimization over x1, x2, . . . , xn of∑

i<j

min{[pij − (xi − xj)]
2, [pij − (xj − xi)]

2}. (7)

Two zero/one variables can then be defined, w1ij and w2ij, and (7) rewritten
as the mathematical program

minimize
∑
i<j

{w1ij(e1ij)
2 + w2ij(e2ij)

2} (8)

subject to
pij = xi − xj + e1ij;

pij = xj − xi + e2ij;

w1ij + w2ij = 1;

19

w1ij, w2ij ≥ 0,

where e1ij is the error if xi > xj and e2ij is the error if xi < xj. These
authors observe that the binary restriction on w1ij and w2ij can be removed
since they will automatically be forced to zero or one. In short, what initially
appears as a combinatorial optimization task in (2) has now been replaced
by a nonlinear programming model in (8).

3.4.1 The MATLAB function unifitl2nlp.m

The m-function unifitl2nlp.m given in Section A.6 carries out the opti-
mization task specified in (8) by a call to a very general m-function from
the MATLAB Optimization Toolbox, fmincon.m. The latter is an extremely
general routine for the minimization of a constrained multivariable function,
and requires in our case a separate m-function, objfunl2.m, that we give
in Section A.6.1 to evaluate the objective function in (8). So, to use the
function unifitl2nlp.m, the user needs to have the Optimization Toolbox
installed. The usage syntax for unifitl2nlp.m has the form

[startcoord begval outcoord endval exitflag] = ...

unifitl2nlp(prox,inperm)

An input permutation INPERM is used to obtain a set of starting coordinates
(STARTCOORD) that would lead to an initial least-squares loss value (BEGVAL).

The starting coordinates are obtained from the usual t
(ρ)
i formula of (3) ir-

respective of whether INPERM provides a monotonic form for the reordered
matrix PROX(INPERM,INPERM) or not. The ending coordinates (OUTCOORD)
at the end of the process leads to a final least-squares loss value (ENDVAL).
The EXITFLAG variable gives the success of the optimization (greater than
0 indicates convergence; 0 implies that the maximum number of function
evaluations or iterations were reached; less than 0 denotes nonconvergence).

An example of the use of unifitl2nlp.m is given below for two starting
permutations — the identity ordering and the second one random. Given
these results and others that the reader can replicate given the availability
of the m-function, it appears in general that “the apple is not allowed to fall
very far from the tree”. The end result is very close to where one starts, which
is very similar to the disappointing performance of an unmodified Guttman
update strategy. The need to have such a good initial permutation to start
with, pretty much defeats the use of the nonlinear programming reformula-
tion as a search technique. Both iterative QA and Pliner’s smoother, which

20

can begin just with random permutations and usually end up with very good
final permutations, would appear thus far to be the heuristic methods of
choice.

>> load number.dat

>> inperm = [1 2 3 4 5 6 7 8 9 10];

>> [startcoord begval outcoord endval exitflag] = ...

unifitl2nlp(number,inperm);

>> outcoord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1392 -0.0666 0.0842

Columns 7 through 10

0.1988 0.3627 0.4058 0.4968

>> endval

endval =

2.1046

>> inperm = randperm(10);

>> [startcoord begval outcoord endval exitflag] = ...

unifitl2nlp(number,inperm);

>> outcoord’

ans =

Columns 1 through 6

0.2094 -0.0955 0.2728 0.0100 -0.3778 0.2434

Columns 7 through 10

0.0312 -0.3061 -0.4842 0.4968

>> endval

endval =

5.9856

4 The Implementation of Nonmetric and Con-

firmatory LUS

In developing linear unidimensional scaling (as well as other types of) repre-
sentations for a proximity matrix, it is convenient to have a general mecha-
nism available for solving linear (in)equality constrained least-squares tasks.
The two such instances discussed in this section involve (a) the confirmatory

21

fitting of a given object order to a proximity matrix (through an m-file called
linfit.m), and (b) the construction of an optimal monotonic transformation
of a proximity matrix in relation to a given unidimensional ordering (through
an m-file called proxmon.m). In both of these cases, we rely on what can be
called the Dykstra-Kaczmarz method. An equality constrained least-squares
task may be rephrased as a linear system of equations, with the later solvable
through a strategy of iterative projection as attributed to Kaczmarz (1937;
see Bodewig, 1956, pp. 163–164); a more general inequality constrained least-
squares task can also be approached through iterative projection as developed
by Dykstra (1983). The Kaczmarz and Dykstra strategies are reviewed very
briefly in Appendix B, and implemented within the two m-files, linfit.m
and proxmon.m, discussed below.

4.1 The confirmatory fitting of a given order using the
MATLAB function linfit.m

The MATLAB m-function in Section A.7, linfit.m, fits a set of coordinates
to a given proximity matrix based on some given input permutation, say, ρ(0).
Specifically, we seek x1 ≤ x2 ≤ · · · ≤ xn such that

∑
i<j(pρ0(i)ρ0(j)−|xj−xi|)2

is minimized (and where the permutation ρ(0) may not even put the matrix
{pρ0(i)ρ0(j)} into a monotonic form). Using the syntax

[fit diff coord] = linfit(prox,inperm)

the matrix {|xj − xi|} is referred to as the fitted matrix (FIT); COORD gives
the ordered coordinates; and DIFF is the value of the least-squares criterion.
The fitted matrix is found through the Dykstra-Kaczmarz method where the
equality constraints defined by distances along a continuum are imposed to
find the fitted matrix, i.e., if i < j < k, then |xi − xj|+ |xj − xk| = |xi − xk|.
Once found, the actual ordered coordinates are retrieved by the usual t

(ρ0)
i

formula in (3) but computed on FIT.
The example below of the use of linfit.m fits two separate orders: the

identity permutation and the one that we know is least-squares optimal. The
consistency of the results can be compared to those given earlier.

>> load number.dat

>> inperm = [1 2 3 4 5 6 7 8 9 10];

>> [fit diff coord] = linfit(number,inperm);

22

>> coord’

ans =

Columns 1 through 6

-0.5345 -0.4050 -0.3258 -0.1988 -0.0842 0.0566

Columns 7 through 10

0.1492 0.2608 0.4247 0.6570

>> diff

diff =

2.1046

>> inperm = [1 2 3 5 4 6 7 9 10 8];

>> [fit diff coord] = linfit(number,inperm);

>> coord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

>> diff

diff =

1.9599

4.2 The monotonic transformation of a proximity ma-
trix using the MATLAB function proxmon.m

The MATLAB function, proxmon.m, given in Section A.10, provides a mono-
tonically transformed proximity matrix that is close in a least-squares sense
to a given input matrix. The syntax is

[monproxpermut vaf diff] = proxmon(proxpermut,fitted)

Here, PROXPERMUT is the input proximity matrix (which may have been sub-
jected to an initial row/column permutation, hence the suffix ‘PERMUT’) and
FITTED is a given target matrix; the output matrix MONPROXPERMUT is closest
to FITTED in a least-squares sense and obeys the order constraints obtained
from each pair of entries in (the upper-triangular portion of) PROXPERMUT

(and where the inequality constrained optimization is carried out using the
Dykstra-Kaczmarz iterative projection strategy); VAF denotes ‘variance-ac-
counted-for’ and indicates how much variance in MONPROXPERMUT can be ac-
counted for by FITTED; finally DIFF is the value of the least-squares loss

23

function and is (one-half) the sum of squared differences between the entries
in FITTED and MONPROXPERMUT.

In the notation of the previous section when fitting a given order, FITTED
would correspond to the matrix {|xj−xi|}, where x1 ≤ x2 ≤ · · · ≤ xn; the in-
put PROXPERMUT would be {pρ0(i)ρ0(j)}; MONPROXPERMUT would be {f(pρ0(i)ρ0(j))},
where the function f(·) satisfies the monotonicity constraints, i.e., if pρ0(i)ρ0(j) <
pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and 1 ≤ i′ < j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤
f(pρ0(i′)ρ0(j′)). The transformed proximity matrix {f(pρ0(i)ρ0(j))} minimizes
the least-squares criterion (DIFF) of∑

i<j

(f(pρ0(i)ρ0(j))− |xj − xi|)2,

over all functions f(·) that satisfy the monotonicity constraints. The VAF is
a normalization of this loss value by the sum of squared deviations of the
transformed proximities from their mean:

VAF = 1−
∑

i<j(f(pρ0(i)ρ0(j))− |xj − xi|)2∑
i<j(f(pρ0(i)ρ0(j))− f̄)2

,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.

4.2.1 An application incorporating proxmon.m

The script m-file listed below gives an application of proxmon.m using the
globally optimal permutation found previously for our number.dat matrix.
First, linfit.m is invoked to obtain a fitted matrix (fit); proxmon.m then
generates the monotonically transformed proximity matrix (monproxpermut)
with vaf = .5821 and diff = 1.0623. The strategy is then repeated cycli-
cally (i.e., finding a fitted matrix based on the monotonically transformed
proximity matrix, finding a new monotonically transformed matrix, and so
on). To avoid degeneracy (where all matrices would converge to zeros), the
sum of squares of the fitted matrix is kept the same as it was initially; con-
vergence is based on observing a minimal change (less than 1.0e-006) in
the vaf. As indicated in the output below, the final vaf is .6672 with a
diff of .9718. (Although the globally optimal permutation found earlier for
number.dat remains the same throughout the construction of the optimal
monotonic transformation, in this particular example it would also remain
optimal with the same vaf if the unidimensional scaling was repeated with

24

monproxpermut now considered the input proximity matrix. Even though
probably rare, other data sets might not have such an invariance, and it may
be desirable to initiate an iterative routine that finds both a unidimensional
scaling [i.e., an object ordering] in addition to monotonically transforming
the proximity matrix.)

load number.dat

inperm = [8 10 9 7 6 4 5 3 2 1];

[fit diff coord] = linfit(number,inperm);

[monproxpermut vaf diff] = ...

proxmon(number(inperm,inperm),fit);

sumfitsq = sum(sum(fit.^2));

prevvaf = 2;

while (abs(prevvaf-vaf) >= 1.0e-006)

prevvaf = vaf;

[fit diff coord] = linfit(monproxpermut,1:10);

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));

[monproxpermut vaf diff] = proxmon(number(inperm,inperm), fit);

end

fit

diff

coord’

monproxpermut

vaf

fit =

Columns 1 through 6

0 0.0824 0.1451 0.3257 0.4123 0.5582

0.0824 0 0.0627 0.2432 0.3298 0.4758

0.1451 0.0627 0 0.1806 0.2672 0.4131

0.3257 0.2432 0.1806 0 0.0866 0.2325

0.4123 0.3298 0.2672 0.0866 0 0.1459

0.5582 0.4758 0.4131 0.2325 0.1459 0

0.5834 0.5010 0.4383 0.2578 0.1711 0.0252

0.7244 0.6419 0.5793 0.3987 0.3121 0.1662

0.8696 0.7872 0.7245 0.5440 0.4573 0.3114

25

1.2231 1.1406 1.0780 0.8974 0.8108 0.6649

Columns 7 through 10

0.5834 0.7244 0.8696 1.2231

0.5010 0.6419 0.7872 1.1406

0.4383 0.5793 0.7245 1.0780

0.2578 0.3987 0.5440 0.8974

0.1711 0.3121 0.4573 0.8108

0.0252 0.1662 0.3114 0.6649

0 0.1410 0.2862 0.6397

0.1410 0 0.1452 0.4987

0.2862 0.1452 0 0.3535

0.6397 0.4987 0.3535 0

diff =

0.9718

ans =

Columns 1 through 6

-0.4558 -0.3795 -0.3215 -0.1544 -0.0742 0.0609

Columns 7 through 10

0.0842 0.2147 0.3492 0.6764

monproxpermut =

Columns 1 through 6

0 0.2612 0.2458 0.2612 0.2458 0.5116

0.2612 0 0.2458 0.2458 0.4286 0.2458

0.2458 0.2458 0 0.2458 0.5116 0.6899

0.2612 0.2458 0.2458 0 0.2458 0.2458

0.2458 0.4286 0.5116 0.2458 0 0.2612

0.5116 0.2458 0.6899 0.2458 0.2612 0

0.6080 0.5116 0.2458 0.2458 0.2458 0.2458

0.6899 0.7264 0.2458 0.2612 0.5116 0.2458

0.5116 0.5116 0.6899 0.6080 0.4286 0.2458

1.2231 1.1406 1.0780 0.6899 0.7264 0.6080

Columns 7 through 10

0.6080 0.6899 0.5116 1.2231

0.5116 0.7264 0.5116 1.1406

0.2458 0.2458 0.6899 1.0780

0.2458 0.2612 0.6080 0.6899

0.2458 0.5116 0.4286 0.7264

0.2458 0.2458 0.2458 0.6080

26

0 0.1410 0.5116 0.6080

0.1410 0 0.2458 0.4286

0.5116 0.2458 0 0.2612

0.6080 0.4286 0.2612 0

vaf =

0.6672

5 Some Concluding Comments

The computational results presented in this paper suggest that for proximity
matrices up to, say, 20×20, guaranteed optimal linear unidimensional scalings
are easily done using just an interpreted m-file as long as one is working under
Version 6.5 of MATLAB. For matrices up to 25× 25, the Fortran enhanced
routine would provide the computational strategy of choice. Beyond matrices
of size 25, either iterative QA or Pliner’s smoothing strategy should lead to
optimal solutions (although not verifiably so) upon the use of some number of
random starts. Generally, both the original Guttman (1968) update strategy
or the nonlinear programming reformulation of Lau, Lam, and Tse (1998)
are problematic, and should be avoided.

With respect to broader computational issues, there are four observations
that might be made: (1) the optimization of “loops” incorporated in MAT-
LAB Version 6.5 (and in contrast to Version 6.1) is performing extremely
well, and may in fact allow the simple use of raw m-files for situations where
before, a formal search might have been undertaken to find more computa-
tionally efficient alternatives; (2) compiling the type of C code that is con-
structed by the MATLAB C/C++ Compiler seems to lead to particularly
inefficient routines, even as compared to just using the raw m-files under the
new MATLAB Version 6.5; for questions of execution speed, the MATLAB
Compiler has very questionable utility. The issue then arises as to whether it
is the C language/compiler per se, or the initial code generation that leads to
these particularly inefficient routines; (3) the use of Fortran subroutines (and
their respective gateways) to carry out computationally intensive subtasks,
can be extremely advantageous; for example, we can now construct verifi-
ably optimal linear unidimensional scalings for fairly large problems (up to
25× 25) within reasonable computation times.

Based on what we have learned computationally in this paper, the next
logical steps would be to extend the presented MATLAB routines to multiple

27

linear unidimensional scales, and thus, to implement city-block multidimen-
sional scaling. These generalizations could include the movement away from
the reliance on just the L2 norm (say, to the L1 norm as well), and to the
automatic incorporation of optimal (monotonic) transformations of the given
proximity matrix. Included in these extensions would be an option for an “in-
dividual differences model” in which the “group space” would consist solely
of object orders along the given axes, and the “private spaces” defined by
individually specified coordinates for each of the separate sources that are
consistent with respect to these group-space orders. These extensions are
now being prepared for eventual publication.

References

[1] Bodewig, E. (1956). Matrix calculus. Amsterdam: North-Holland.

[2] Defays, D. (1978). A short note on a method of seriation. British Journal
of Mathematical and Statistical Psychology, 3, 49–53.

[3] de Leeuw, J., & Heiser, W. (1977). Convergence of correction-matrix
algorithms for multidimensional scaling. In J. C. Lingoes, E. E. Roskam,
& I. Borg (Eds.), Geometric representations of relational data (pp. 735–
752). Ann Arbor, MI: Mathesis Press.

[4] Dykstra, R. L. (1983). An algorithm for restricted least squares regres-
sion. Journal of the American Statistical Association, 78, 837–842.

[5] Francis, R. L., & White, J. A. (1974). Facility layout and location: An
analytical approach. Englewood Cliffs, NJ: Prentice-Hall.

[6] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability.
San Francisco: W. H. Freeman.

[7] Guttman, L. (1968). A general nonmetric technique for finding the small-
est coordinate space for a configuration of points. Psychometrika, 33,
469–506.

[8] Hubert, L. J., & Arabie, P. (1986). Unidimensional scaling and com-
binatorial optimization. In J. de Leeuw, W. Heiser, J. Meulman, & F.
Critchely (Eds.), Multidimensional data analysis (pp. 181–196). Leiden,
The Netherlands: DSWO Press.

28

[9] Hubert, L. J., Arabie, P., & Meulman, J. (2001). Combinatorial data
analysis: Optimization by dynamic programming. Philadelphia: SIAM.

[10] Hubert, L. J., & Schultz, J. W. (1976). Quadratic assignment as a gen-
eral data analysis strategy. British Journal of Mathematical and Statis-
tical Psychology, 29, 190–241.

[11] Kaczmarz, S. (1937). Angenäherte Auflösung von Systemen linearer Gle-
ichungen. Bulletin of the Polish Academy of Sciences, A35, 355–357.

[12] Lawler, E. L. (1975). The quadratic assignment problem: A brief review.
In R. Roy (Ed.), Combinatorial programming: Methods and applications
(pp. 351–360). Dordrecht, The Netherlands: Reidel.

[13] Lau, Kin-nam, Leung, Pui Lam, & Tse, Ka-kit (1998). A nonlinear pro-
gramming approach to metric unidimensional scaling. Journal of Clas-
sification, 15, 3–14.

[14] Pardalos, P. M., & Wolkowicz, H. (Eds.). (1994). Quadratic assignment
and related problems. DIMACS Series on Discrete Mathematics and The-
oretical Computer Science. Providence, RI: American Mathematical So-
ciety.

[15] Pliner, V. (1996). Metric unidimensional scaling and global optimiza-
tion. Journal of Classification, 13, 3–18.

[16] Shepard, R. N. (1974). Representation of structure in similarity data:
Problems and prospects. Psychometrika, 39, 373–421.

[17] Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The
internal representation of numbers. Cognitive Psychology, 7, 82–138.

29

Appendix B: The Dykstra-Kaczmarz Method

for Solving Linear (In)equality Constrained Least-

Squares Tasks

Kaczmarz’s method can be characterized as follows:
Given A = {aij} of order m × n, x′ = {x1, . . . , xn}, b′ = {b1, . . . , bm},

and assuming the linear system Ax = b is consistent, define the set Ci =
{x | aijxj = bi}, for 1 ≤ i ≤ m. The projection of any n × 1 vector y onto
Ci is simply y − (a′iy − bi)ai(a

′
iai)

−1, where a′i = {ai1, . . . , ain}. Beginning
with a vector x0, and successively projecting x0 onto C1, and that result
onto C2, and so on, and cyclically and repeatedly reconsidering projections
onto the sets C1, . . . , Cm, leads at convergence to a vector x∗

0 that is closest
to x0 (in vector 2-norm, so

∑n
i=1(x0i − x∗0i)

2 is minimized) and Ax∗
0 = b. In

short, Kaczmarz’s method provides an iterative way to solve least-squares
tasks subject to equality restrictions.

Dykstra’s method can be characterized as follows:
Given A = {aij} of order m × n, x′

0 = {x01, . . . , x0n}, b′ = {b1, . . . , bm},
and w′ = {w1, . . . , wn}, where wj > 0 for all j, find x∗

0 such that a′ix
∗
0 ≤ bi

for 1 ≤ i ≤ m and
∑n

i=1 wi(x0i − x∗0i)
2 is minimized. Again, (re)define the

(closed convex) sets Ci = {x | aijxj ≤ bi} and when a vector y /∈ Ci,
its projection onto Ci (in the metric defined by the weight vector w) is
y − (a′iy − bi)aiW

−1(a′iW
−1ai)

−1, where W−1 = diag{w−1
1 , . . . , w−1

n }. We
again initialize the process with the vector x0 and each set C1, . . . , Cm is
considered in turn. If the vector being carried forward to this point when Ci

is (re)considered does not satisfy the constraint defining Ci, a projection onto
Ci occurs. The sets C1, . . . , Cm are cyclically and repeatedly considered but
with one difference from the operation of Kaczmarz’s method — each time
a constraint set Ci is revisited, any changes from the previous time Ci was
reached are first “added back”. This last process ensures convergence to an
optimal solution x∗

0 (see Dykstra, 1983). Thus, Dykstra’s method generalizes
the equality restrictions that can be handled by Kaczmarz’s strategy to the
use of inequality constraints.

30

