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HE g

PREFACE

This book has been written with a view to serving two
needs; that of biologists, economists, educators and psycholo-
gists, who know little of higher mathematics, possibly care less,
and who use statistical methods merely as a device to portray
the facts of their group investigations; and that of those in the
same fields who resort to mathematics to aid in the discovery
of new truths.

The elementary statistical needs in the four fields men-
tioned seem to me to be the same and it is my aim to meet
those needs and provide a foundation which will serve for ad-
vanced work in any one of them.

The approach to the essential principles developed is through
concrete problems, only varying from this where simplicity of
problems or the necessity for conserving space warrants.

In order to provide a rigorous foundation for further statis-
tical research — which would immediately take the economist,
educator, or psychologist as well as the biologist into the fer-
tile field developed by Karl Pearson and his co-workers — the
notation follows that of the English school, making such sim-
plifications as are possible for the immediate problems, but en- A
deavoring at no time to introduce a symbol, an approximation, '
or a lax proof which would have to be unlearned in undertak-
ing more advanced work. The statistician cannot fail to note
that the sheer visual weight of symbol, so appalling to the tyro,
has been genuinely reduced by the introduction of a few new
symbols in connection with multiple correlation.

The fields represented by various correlation and other
measures whose probable errors are unknown has been treated
very succinctly. I can see no value except at times a slightly
greater ease of manipulation, in using a measure whose prob-

able error cannot be calculated if one with a known probable
v
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vi PREFACE

error and serving the same purpose exists. I have, therefore,
simply included and defined such measures for those desirous
of using them, without deriving or attempting to justify them.

I particularly request the critical analysis by fellow statisti-
cians of my determinations of probable errors, and such char-
ity in reporting shortcomings as may be due one who has
acted upon the policy that as shrewd an estimate as possible
of the probable error of a statistical constant is better than no
estimate at all. The derivation of probable error formulas has
been one of the most difficult undertakings of this text and I
cannot expect that the results are faultless.

My statistical training has been rather desultory and it has
occasionally been impossible for me to give due credit to the
discoverers of well known formulas.

I would, however, say that my greatest inspiration has been
the product of that master analyst, Karl Pearson, and that
the English school entire has been most contributive. My
greatest indebtedness to men in America is to my teachers,
Henry Lewis Rietz and Charles C. Grove, for enlightenment
upon theoretical points and to Edward L. Thorndike for sug-
gestions as to problems in need of statistical analysis.

T. L. K.
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STATISTICAL METHOD

CHAPTER I

THE TABULATION AND PLOTTING OF SERIES

Section 1. INTRODUCTION

Two occasions for resort to statistical procedure, the one
dominated by a desire to prove a hypothesis, and the other by
a desire to invent one, have led to two schools of statisticians.

The first school is that represented by mathematicians who
start with certain elementary principles and deduce therefrom
facts of distribution, frequency and relationship. In so far as
observed situationsparallel these conclusionsthesameelementary
principles are supported as applying to the data in hand. One
weakness of this approach lies in the fact that a number of
causes — different sets of elementary principles —may result in
substantially the same net result. A still greater weakness is
that it is essentially a deductive procedure and relatively sterile
in suggesting new causes — in inspiring creative inferences. It
is fundamentally a method of proof and not one of invention; and
just because it is a method of proof, it has a permanent place in
statistical method. It must, however, if in the service of the
social and biologic sciences, be but a handmaid to the creative
genius of mathematical analysis and induction.

The second school is best represented by those biometricians
and economists who start with observed data and endeavor so
to group them and treat them that the constant features of the
data are made apparent. This is a process of statistical
analysis. It may at times be expected to be an involved process,
for social phenomena are complex. Data are frequently warped
to fit statistical convenience, but if statistics is to realize its
high destiny, procedure must be flexible, for only when the

method is mobile can it fit immobile data. The accurate
1



2 STATISTICAL METHOD

measurement of those features of phenomena which are excep-
tional is the unique province of statistical analysis.

The method of approach in this text is inductive, starting
with data and deriving constants, and will not give the nou-
menal satisfaction that comes from tossing coins, throwing
dice, and sorting cards, thus obtaining distributions which
approach an ideal standard.

Mathematical statistics form very much of a unit, and it
is impossible to treat fully of topics in an order which does
not call in earlier chapters for concepts developed later. The
genuine unity of statistics is made apparent by these inter-
relationships, and I have not attempted to avoid them. Terms
used in an earlier part of the text than that in which derived
are usually unambiguous on account of the context, but should
there be any difficulty in understanding, the reader is directed
to the bold face references given in the index and to the list
of mathematical terms and symbols given in the Appendix.

Section 2. STATISTICAL SERIES

The treatment of this and the succeeding section largely
follows that of Day (1919 and 1920).

A statistical series is a succession of facts having some
common characteristic. A series may be thought of as either
giving (1) a location in time, (2) a location in space, (3) an
indication of qualitative difference, or (4) of quantitative
differences.

(1) Trends in prices, rates of growth, fatigue, learning and
forgetting curves, diurnal changes, etc., are illustrations of
the magnitude of a variable with reference to time. Temporal
series have certain characteristics which necessitate a technique
in their interpretation which is peculiar to them. Any time
series of appreciable duration (in studying etheric vibrations
.0o1 of a second would be a very appreciable duration) may be
expected to show periodic fluctuations. As a consequence one
of two procedures is necessary, dependent upon whether (a)
it 1s desired to study the changes within a certain cyclical
period, or (b) to study trends independent of such periodic
changes. Illustrations will make the problem clear:
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(a) Let it be required to ascertain the nature of the load of
an electric power generating plant during a twenty-four-hour
period. The current consumed per hour for some one day
could be tabulated or plotted. The result would have only
such accuracy as would result from a single day’s sampling.
To obtain a more reliable picture, a number of days could be
combined and the tabulation made showing the average load
for each hour of the twenty-four. Obviously error might
creep in here, for the load on a Monday would be quite different
from that on a Saturday or Sunday and perhaps different from
that on the other days of the week. With due allowance for
holidays, probably a very satisfactory idea of the hourly
fluctuations of the Monday load could be obtained by pooling
results for several Mondays. Differences in daylight, tempera-
ture, etc., would make it unsound to combine all the Mondays
in the year. The problem cited is typical of temporal series
problems and the principle that should guide one in pooling
results should be to group as wide a range of data as are typical
with respect to the characteristic under investigation, but not
affected by other seasonal or systematic tendencies.

(b) Let it be required to ascertain the nature of the seasonal
fluctuations of the load. In this case a tabulation by weekly
units would be the best as this would completely suppress both
Saturday and Sunday and hourly idiosyncrasies. With this
in mind it is seen that a tabulation by six or eight day or
monthly periods would not be as satisfactory as weekly or
bi-weekly periods. The principle to follow is to use such a
temporal unit as equals or is an integral multiple of the period
within which occur the tendencies which it is desired to
suppress.

A second characteristic of a temporal series arises from the
general lack of significance of the absolute value of a function
at a given time. Interpretation depends upon the relation
of the function at one time to its magnitude at a second time.
This fact has led to the use of index numbers, or ratios of
magnitudes. The magnitude at a stipulated time is considered
basic and used as the denominator of all the ratios. The index
number is not limited to temporal series, but it is more char-
acteristic and more generally serviceable with them than with
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other series. Many considerations enter into the choice of
the base, but if there is one time, such as a certain year, which
more than any other shows a constant condition of the function,
or an ideal or desirable condition, it will have special value as
the base.

(2) Just as index and periodic concepts are fruitful in in-
terpreting temporal series, so is the map essential in portraying
spatial series. Many spatial series show both qualitative and
quantitative differences, in which case considerable ingenuity
is needed to devise a map with cross sectioning, or color scheme,
to portray the essential facts. Spatial series are intrinsically
more amenable to graphic treatment, and less to numerical
treatment, than temporal or quantitative series. The maps of
the U. S. Coast and Geodetic Survey, of the Weather Bureau,
and of the Census Bureau show the completeness, variety and
detail of portrayal possible. The groupings of territories in
spatial series and the subdivision of areas may follow conven-
tional procedure or the peculiar needs of the problem. The
order adopted by the Census Bureau in giving population
statistics is as follows:

TABLE 1
New England West North Central (continued)
Maine Missouri
New Hampshire North Dakcta
Vermont South Dakota
Massachusetts Nebraska
Rhode Island Kansas
Connecticut South Atlantic
Middle Atlantic Delaware
New York Maryland
New Jersey District of Columbia
Pennsylvania Virginia
East North Central West Virginia
Ohio North Carolina
Indiama South Carolina
Illinois Georgia
Michigan Florida
Wisconsin East South Central
West North Central Kentucky
Minnesota Tennessee

Jowa Alabama
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TABLE 1 (continued)

East South Central (continued) Mountain (continued)
Mississippi Colorado
West South Central New Mexico
Arkansas Arizona
Louisiana Utah
Oklahoma Nevada
Texas Pacific

Mountain Washington
Montana Oregon
Idaho California
Wyoming

(3) Qualitative series are those in which the classification
is based upon the presence or absence of certain qualities.
They lead to categorical distributions and are treated statisti-
cally by means of the probabilities of frequencies, and by
measures of relationship dependent upon the same — con-
tingency coefficients, etc. The variability of a frequency is
the basic concept in the statistics of qualitative series.

(4) Quantitative series are those in which the classification is
based upon the degree to which some measured trait is present.
They are the most amenable to numerical treatment and their
consideration comprises the bulk of this text. The variability
of a distribution is the most basic concept in the statistics of
quantitative series.

Life’s problems do not confine themselves to single series,
and certain methods have been developed for handling problems
which are complexes of two or more of the four types men-
tioned, but it is well to recognize that in general the problem
and the method are functions of a single series.

Section 3. CONSTRUCTION OF STATISTICAL TABLES

The chapter which follows this deals with graphic methods
and is concerned with charts, diagrams, graphs, etc., con-
stituting pictorial representations of statistical series. The
statistical table is quite different. Its purpose is not directly
to give a picture of a sequence, but to provide the basic data
from which such a picture, or at least the outstanding features
of such a picture, may be determined and visualized if desired.

"
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The statistical table is simply a shorthand statement of facts.
If a thousand or so facts of the sort, ‘' The population of Aaber
County is 4000;”" ‘The population of Anthony County is
3200;”" ‘“The population of Avery County is 4800;"” etc.,
etc., are to be presented, they can not only be more concisely
shown by tabulation, but several thousand additional facts,
such as *‘The population of Anthony County is 8oco larger than
that of Aaber County’’ are presented at the same time and in
an agreeably compact manner. The desire to accomplish
double, triple, or manifold presentation by a single tabular
arrangement is the desideratum which imposes conditions and
determines appropriateness of procedure.

The same facts in regard to population are shown in the
following five tables, and while not exhausting the possibilities
of presentation these will suffice to show the wide option which
exists in presenting very simple data.

TABLE 1II TABLE III

Populations and Areas of Counties Areas and Populations of Counties
PopruLa- AREA AREA PopuLAa-

CounTiES TION IN Sq. COUNTIES IN SqQ. TION

1920 MiLes MiLEs 1920

Aaber . .| 4,000 480 Aaber . . 480 4,000

Anthony . | 3,200 400 Anthony . 400 3,200

Avery . .| 4,800 800 Avery . . 800 4,800

Bascomb . | 16,000 700 Bascomb . 700 16,000

Brown . . | 3,000 600 Brown . . 600 3,000

TABLE 1V TABLE V TABLE VI
Counties arranged ac- Counties arranged ac- Counties arranged ac-

cording to Population  cording to Population cording to Population

PopuiLa- PoruLA- PoOPULA-
COUNTIES TION COUNTIES TION TION COUNTIBS
1920 1920 1920
Brown . . 3000 Bascomb . .16,000 16,000 Bascomb
Anthony . . 3,200 Avery . . . 4800 4,800 Avery
Aaber . . . 4000 Aaber . . . 4,000 4,000 Aaber
Avery . . . 4,800 Anthony . . 3,200 3,200 Anthony

Bascomb . .16,000 Brown . . 3,000 3,000 Brown
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As judged by a single purpose no two of the tables given
are equally meritorious. If the table is to be used more
frequently in abstracting information about various counties
than as a means of comparing counties, i.e., if it is a reference
table and not one pointing some conclusion, the items in the
stub (the first column) should be arranged alphabetically as
in Tables II and III in order to facilitate the finding of items
desired. If populations are more likely to be studied than
areas, Table II is preferable to Table III, as the Population
column holds a dominant position in Table II.

Should it be intended that the table be not primarily a refer-
ence table arranged to simplify the extraction of items of in-
formation, but, let us say, to point conclusions with reference to
populations, Tables IV, V, or VI are preferable to Tables II
or III. If counties of large population are the chief con-
sideration, Table V is preferable to Table IV, as the first row of
a table ranks higher in dominance than successive rows. Next
in importance is the last row. Totals or averages are, because
of their importance, frequently placed in the first row, but if
other items demand this position or if captions (headings of
columns) are less readily interpreted when separated from the
body of the table by a row of totals or averages, then the
bottom row may be used.

As a means of pointing conclusions dependent upon popula-
tions Table VI is to be preferred to Tables IV or V, as the popu-
lation data hold the dominant position in Table V1.

In general one should so draw up the table that the items in
the stub and the captions constitute the argument or informa-
tion with which the table is entered, and so that the column
and row next to the stub and captions contain the most impor-
tant items to he obtained from the table. Rows and columns
more removed from these dominant positions should contain
less important data, except that the last row and last column
may be given to data of first or second importance.

Such Tables as II and III are primary or general purpose
tables, since they contain the raw data without abridgment,
and may be used for various purposes. Such Tables as IV, V,
and VI are derived from primary tables, such as II and III,
and by emphasizing certain facts serve a special purpose.
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These two types of tables should be recognized. The special
purpose table is always published because it conveys the point
of the study. The general purpose table should always be
published also, as it provides the only means of checking the
author and of discovering if other or further conclusions can
be drawn. Several tables and many calculations may be in-
volved between the primary and the final derived table. If
full description of these intermediate steps be given it is not
essential that these intervening tables and calculations be
published.



CHAPTER 1II

GRAPHIC METHODS

Section 4. THE HistoGRaM AND FREQUENCY PoLYGON

The picturing of facts, when the nature of the data permits,
conveys a readier comprehension than is possible from any
array of figures. The accurate graphic portrayal of data is
therefore the problem of this chapter.

Since there are but two dimensions to the surface of a sheet
of paper, ordinarily but two series of facts are shown in a single
graph. Consider the accompanying data giving the maximum
temperatures recorded by the Weather Bureau for each day
in July and August, 1917, for New York City.

TABLE VII

Maximum Temperature for Each Day
July 1-Aug. 30, 1917

N. Y. City

July 1 80 July 17 87 Aug. 1 98 Aug. 17 83
2 88 18 8o 2 96 18 8o
3 74 19 77 3 83 19 81
4 78 20 83 4 8o 20 84
5 81 21 81 5 82 21 8j
6 8o 22 86 6 82 22 8o
7 79 23 86 7 88 23 76
8 70 24 86 8 78 24 83
9 75 25 84 9 83 25 82
10 65 26 8s 10 8o 26 74
11 66 27 90 11 82 27 82
12 71 28 8o 12 83 28 8o
13 81 29 81 13 83 29 83
14 81 30 95 14 78 30 81
15 75 3r 98 15 81 31 75
16 85 16 8o
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TABLE VIII
Tally Sheet

TEM- No. oF Days TEM- No. oF Davs
PERA- wiITH GIVEN PERA- wiTH GIVEN
TURES TEMPERATURE TURES TEMPERATURES
65 | 82 ==l
66 | 83 REREE
67 84 [
68 85 E)
69 86 Il
70 | 87 I
71 I 88 Ul
72 89
73 . 90 | -
74 | 91
75 ‘ I 92
76 93
77 I 94
78 ] 95
79 l 96 |
80 =11 = 97
81 === 98 Il

If it is desired to study diurnal changes in maximum tempera-
tures a graph could be made in which the abscissa (the hori-
zontal dimension) represents the days in order, July 1, July 2,
etc., and the ordinate (the vertical dimension) represents the
temperatures in order, o°, 1°, 2°, etc. For July 1 the ordinate
would be 8o, for July 2, 88, etc. A line connecting the suc-
cessive ordinates would give a picture of the changes in maxi-
mum temperature throughout the two months. Or, it may be
desired to disregard the sequence of the days and obtain a
general idea of what constitutes the maximum temperatures
for days in New York during July and August. In this case
the abscissa will represent temperatures and the ordinate the
number of days. To do this, Table VIII is first made out
from the data in Table VII and then plotted as shown in
Charts I or II.

Chart I is a histogram or a pictorial representation by means
of rectangles, telling precisely the same story as a table of
frequencies, such as Table VIII. Chart II is a frequency
polygon. It is not a series of discrete elements as are the raw,
gross, or original, measures, but a closed figure, each part of
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which is connected with the next, giving the idea of continuity
in the measures. Each of these graphic forms has its ad-
vantages; the histogram in case heights of rectangles are to
be accurately compared; and the frequency polygon if the
idea of continuity is desirable. Note that in drawing the
frequency polygon points @ and ¢ are connected and not
points b and ¢

CHART I
Histogpram showir? ma.ximum tempera.tures
E‘ for ays from uly 1-Aug 11917 HewYorKCH'y
1
o | <]
3
£ o,
2.+
£ s
-
Q4
_3 o %ls
O 2°UGRI@OHT T D W5 717790001 & 83 5 655657 06 1 % 51 32 93 34 35 % 3796 39
Temperatures
CHART II
a
-E Frequency Po\mon for same data.
b ‘
$e
s
£ i
2.4 ] \
4 \
‘5 3
2o

GACSLCICB QU TITITI MTISR 77 T6 9608182 0354056 T8 090N RN 5% 109
Tempered’ur‘es

Great care should be taken to insure that the graph agrees
with the labels of the coordinates. Note that the class index
““65"" designates the mid-point of the interval, the lower limit
of which is 64.5 and the upper limit 65.5; that in the polygon,
point ¢ is directly above the class index 65, and that in the
histogram the class index 65 designates the mid-point of the
horizontal dimension of the rectangle.
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It is allowable to label the beginning and end of the interval.
In such case the histogram or polygon would be drawn exactly
as given and point b would be labeled *“64.5” and under no
circumstances ‘‘65.”

It has become somewhat customary in educational fields
to speak of a child as solving 10 problems in a speed test,
meaning thereby that 10 problems were solved and the r1th
started but not finished when time was called. In plotting
the distribution of scores the designating number, 10, has been
placed at the beginning of the interval. No objection should
be made to this were the numerical computations in harmony
with this procedure, but very generally such scores have been
treated as exactly 10.0 in calculating arithmetical averages
with the result that the curve and the constants computed
from the data do not agree. Not uncommonly such scores
have been treated as 10.0 scores in calculating means and as
10.5 scores in calculating medians, with the result that a com-
parison of mean and median scores gives an entirely erroneous
impression as to the skewness of the data. This faulty pro-
cedure has probably been followed unwittingly, but unfortu-
nately with the sanction of teachers. The following is quoted
from page 50 of the Second Year Book — Division of Educa-
tional Research, Los Angeles, July 1919:

“LESSON SIX — THE ARITHMETIC MEAN
Method of Finding the Mean

No. PROBLEMS No. PuriLs
12

B & ¢

10

9
8

bt gy

N Jun
XXX XX
o0 O =N
Bouonn oy
- SN
AR OUN O

|

=
— NN nNWL

213

213 divided by 21 equals 10.14 the mean. The median in the
same distribution would be 10.64.” In this lesson problem
the mean is in error if 12 implies the interval 12.0 to 13.0 and
the median (see Section 12) is in error if it implies the interval
11.5 to 12.5. The error here cited probably grew out of an
error in labeling a distribution. Uniformity is needed, and
it would be in harmony with well-nigh universal procedure in
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the physical and biological fields to consider a score of 10 as
being also a class index, or mid-point of an interval. Should
this lower the grade of a few million school children by one half
a point no harm would be done and the great advantage of
having the recorded test score measures exactly those to be
used in calculating means, standard deviations, correlations,
etc., and of having the recorded measures also the class indexes
in graphs is attained. Throughout this text a score no matter
how derived originally is uniformly to be interpreted as cover-
ing an interval extending from half a unit below to half a unit
above. The accompanying data provide a nice problem in
plotting where the distribution is decidedly asymmetrical;
where a part of the distribution is lacking; where the class
intervals (i.e., range covered by successive groups) are unequal;
and where the existence of a few excessively extreme measures
makes it impossible to select coordinates (abscissas and ordi-
nates) which satisfactorily reveal the entire distribution.

TABLE IX TABLE X

British Income-tax Payers — 1914
American Consular Report, May, 1915

NoO. OF ASSESS- No. OF ASSESS-

INCOME MENTS INCOME MENTS
£ 160 to 200 257,499 £ oto 40 150,000
200 300 237,434 40 8o 750,000
300 400 85,557 8o 120 1,680,000
400 500 46,063 120 160 1,400,000
500 600 23,411 160 200 400,000
600 700 13,383 200 300 390,000
700 800 10,250 300 400 97,000
800 900 5,779 400 500 49,000
900 1,000 7,445 500 600 24,000
1,000 2,000 16,363 600 700 14,000
2,000 3,000 3,381 700 800 10,000
3,000 4,000 1,231 800 900 6,000
4,000 5,000 678 . 900 1,000 7,000
5,000 10,000 882 1,000 2,000 17,000
10,000 and over 390 2,000 3,000 3,000
3,000 4,000 1,000
709,746 4,000 5,000 700
5,000 10,000 900

1¢,000 and over 400

Notice that the first class interval covers a range of £40
while the next to the last extends over £5000 and that the last
interval. extends over an amount not recorded but probably

+
t
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as large as £100,000. No scale which will satisfactorily picture
the £40 class interval will be satisfactory for a £100,000
interval. The curve below (not the insert curve) pictures as
much of the distribution as possible. Even with an interval
of £1000 to a distance of one-half inch, space does not permit
of showing the last interval. Having omitted this class it is
necessary to make note of the fact as has been done in the
lower right hand corner of the chart.

CaARrT III

Distribution of Incomes in Great Britain

Large Curve-from Am.ConsularReport, 1915
W Ins:ir: Curve-Hypothetical,coverinqal lr‘ld:cqoméa

]

Na of assessmerﬂg in thousandsa

-3

3
8

;

§

:

IOSZI
=3
:
SR
300000

Income in Pounds

B

No of individuals havinq the Income indicatec!

8.
T

o

1000 Zooo 3000 4000 Sooo 6000
Income in Pounds

o

Since the first interval is £40, the second £100, the tenth
£1000 and the fourteenth £5000 it is impossible to plot ordinates
proportionate to the frequencies: 257,499; 237,434; 16,363;
and 882; and truly picture the situation. Some account must
be taken of the difference in size of intervals, for the ordinate
should represent the number of cases per unit interval. Ac-
cordingly 257,499 has been divided by the interval represented,
40, giving 6437, the number of persons per range of £1; 237,434
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divided by 100, giving 2374, etc., which quotients are the
heights of the ordinates representing the respective classes.

The ordinates have been joined by a smooth line to empha-
size, even more than does the frequency polygon, the idea of
continuity. A polygon or histogram is generally to be pre-
ferred, as it is less likely to be misleading.

Having the data of Table IX for incomes above £160 it is
possible to make a sufficiently close estimate of the total
distribution of wealth in Great Britain as to suggest what the
major features of the actual distribution would be. Let us
therefore assume the total distribution of wealth to be as
recorded in Table X and investigate its salient features.

The plot of the data of Table X is given in the insert. Since
the abscissa scale is much larger than before it has been impos-
sible to plot the entire distribution without breaks. These
breaks are indicated, as should always be the case, by prominent
pairs of zig-zag lines. Note that the ordinates, which were
obtained as before, are plotted at the mid-points of the intervals,
e.g., there are 390,000 individuals receiving incomes from
£200-£300, or 3900 per £1 of the range. This ordinate,
3900, is erected at £250, the class index and also the mid-
point of the interval.

The shape of the curve indicates that there were more than
3900 per £1 for incomes between £200 and £250 and less than
this number per £ for amounts between £250 and £300.

It may also be noted that since a curved line connects the
points, the area lying under the curve and between £200 and
£300 will not total exactly 390,000 as it should. In curves
smoothed by visual inspection such inaccuracy is practically
unavoidable. For these particular data a frequency polygon
would be still less satisfactory as it would indicate a mode at
£100 whereas, assuming the hypothetical data to be correct,
the mode is somewhat above that amount. A histogram would
give the most accurate presentation, but would be less satis-
factory in other respects. The total area in a given histogram
interval is accurate, but the rectangular distribution within
the interval indicated by the histogram may be quite inaccurate
if the interval is large.
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Section 5. THE TiIME CHART; RELATIVE TIME CHART; AND
CHART OF RaTIOS

Charts have been presented in which the ordinates were
frequencies and the abscissas amounts in a gross score. Such
graphs are ordinarily characterized by small frequencies at
either end of the distribution and a single mode somewhere in
between. If, however, frequencies are plotted as ordinates,
and periods of time as abscissas, a different type of curve
is found, for generally with the passage of time the function
continues to grow or at least persist. The following data and
chart are characteristic:

CHART IV
G rowth in Population

Legend 34 0
—  UnitedStates / 3z —%
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:B zc/ = el 4
a— \0 / ,r‘,/‘ 2 CE

it o'f/..—-:::_’_'.:::"/ °

®s0 1860 \870 1880 1830 1800 1910 1920

[

Note that the right hand axis is labeled from the bottom up.
Simplicity and clearness can frequently be obtained by labeling
the lines in a chart and omitting the legend.



GRAPHIC METHODS 17

TABLE XI
Population in Thousands

1850 | 1860 | 1870 | 1880 | 1890 | 1900 | 1910 | 1920

CALIF. . 93| 380 | s60 | 865 |1,213 (1,485 2,378 | 3,427
ORrRe. . . 13 52 91 175 318 414 673 783
gASSH. . 12 24 75 | 357 | 518 | 1,142 | 1,357

ENTIRE . {23,192 31,443| 38,558| 50,156| 62,948 75,995/ 91,972| 105,711

The graph shown illustrates the use of a single set of abscissas
and two sets of ordinates for the plotting of two kinds
of curves upon the same chart; (1) population of the United
States in millions and (2) population of States in hundred
thousands. This method is usually very misleading and the
present illustration is no exception. Double ordinate charts
can be used with less error if, going with changes in time
there are changes in the general direction of the curve, ie.,
if it rises and falls, for then if a second curve also showing such
fluctuations in direction of trend is plotted on the same chart
it is possible to compare the one with the other as to direction
of fluctuation, but it is not possible at all accurately to com-
pare them as to magnitude of fluctuation. The method should
be used with very great parsimony and precaution.

For the chart shown the comparisons which can validly be
made are those of absolute growth between state and state.
The curve for the entire United States confuses rather than
helps in the comparison. Absolute growth in the United
States cannot be compared with absolute growth in the states
as the scale is 1/50 that used for the states. Relative growth
in the United States and in the states cannot be determined
by comparing the slopes of the curves —e.g., the slope of
the curve for the United States between 1goo and 1910 is
steeper than that for Oregon for the same years, but the per-
centage growth for that period for the United States is

1 (9197 ;5;9;5995 X xoo) which is less than the percentage

growth for Oregon, 63 (g73—4:4—4—1—4 X IOO). Likewise it is ap-
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parent that relative growth of state and state is not shown by
these graphs.

The Relative Time Chart

Relative growth could be shown by plotting the populations
for the several years in terms of some one year as a base, or
“relative.”” For the data in hand this would be unsatisfactory
for no matter what year is taken as the relative (e.g., 1850, . . .
1910, 1920) the resulting graph would be difficult of accurate
and significant interpretation. If change over a short period
only is under consideration, relative curves reveal significant
tendencies, especially if the measures, in particular the base
measure, are large with respect to fluctuations.

The following data permit of portrayal in graphs, either in
terms of original scores or as ratios.

TABLE XII
Chicago Data *

U.S. ENTIRE | Ay, YEARLY UnioNn WaGe pER Hour
v D , l})ETAlL
EAR WH(';J:EZASLE Rg&.;li‘.) Painte Linotype C
PrICE INDEX STEAK anters Operators arpenters
1907 . . 107.264 14.3¢ 50¢ 50¢ 56 3¢
1908 . . 113.282 14.9 50 50 56.3
1909 . . I11.848 15.9 55 50 56.3
1910 . . 123.434 16.2 60 50 60
1911 . . 115.102 15.9 60 50 60
1912 . . 123.438 19.1 60 50 65
1913 . . 120.832 20.2 65 50 65
1914 . . 124.528 22.3 70 50 65
191§ . . 124.168 21.2 70 50 65
1916 . . 137.666 22.6 70 50 70

* U. S. Dept. of Labor, Bur. of Labor Statistics. Union Scale of Wages and Hours of
Labor, 1916.

Chart V is a graph of the data of Table XII and Chart VI
of Table XIIa. In Chart V there are various breaks in the
vertical scales permitting the use of three different sets of
values. The location of the word ‘“Date’ in Chart VI is
preferable to that in Chart V.
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TABLE XlIa
(Prices and wages expressed as ratios,* 1907 as base)
Chicago Dala
RETAIL
AVERAGE UNi1oN WaGE PER HOur RELATIVE
DunN's YEARLY PRrICE
R WHOLESALE| RETAIL
Year IPlucs I};mcx
NDEX \0UND . Ce¢
STEAK Painters (I)‘l;enl?:ty(ﬂ; Carpenters Jzﬁ[rt;i‘l:}:;on
1907 . 100 100 100 100 100 100
1908 . 106 104 100 100 100 105
1909 . 104 111 110 100 100 109
1910 . 11§ 113 120 100 107 13
1911 107 111 120 100 107 113
1912 115 134 120 100 115 121
1913 . 113 141 130 100 115 120
1914 . 116 156 140 100 115 124
1915 . 116 148 140 100 115 124
1916 . 128 158 140 100 124 138

* The decimal point is omitted, as usual, so that a ratio of ‘*106'' means a six per cent

increase.

increase in Wholesale Prices.

CHART V

Retail Prices, and Waqges
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CHART VI

Increase in Wholesale Prices,Retaul
Prices &W&ges ~ Relative +o 1907.

Logond.
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Neither of the accompanying graphic presentations is with-
out serious drawbacks. From Chart V it is possible to infer
that the retail price of round steak and wholesale prices of
food products both dropped from 1910 to 1911 but it is not
possible to judge which suffered the greatest relative decline.
Chart VI does show that relative to 19o7 wholesale prices
suffered most.

Chart VI gives the impression that painters are better off
than carpenters, — relative to condition in 19o7 they are,
but in no other sense as Table XII shows. A relative table
or chart shows facts relative to condition at date of base and
nothing else, which is a point that must be stressed or it will
be overlooked by the untrained reader. A gross measure-
ment table, or chart, reveals gross changes and directions of
relative changes but not the magnitude of relative changes.

Another inaccuracy which is commonly present in ratio
measures and accordingly in charts based upon them, is due
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to the fact that variations in ratios are frequently large with
respect to the base used. Prices may increase or cities grow
101, 200 ... 1000 per cent, but it is impossible for them to
decrease by such amounts. A change in ratio from 5o to 100
means more than a change from 100 to 150 though they show
up the same when plotted. Similarly in terms of genuine sig-
nificance; to pass from a ratio of 20 to one of 30 is greater than
to pass from one of 30 to one of 4o0.

To illustrate certain of the tricky features to be guarded
against in the use of ratios the following data and graphs are
given:

CuArT VII CHART VIl a
Percerrfage of Number of
Male Tedchers in Male Teachers in
the High Schools 200,000 the High Schools

70 175,000

&0 150,000

50 \ lzsomo

40 100,000

q 72000

(2o 690,000

10 'z.sooj

° 55 |g;o ° 1500 lélo
Ratio Chart Grose Frequency

Chart.
TABLE XIII

Number of Teachers in the Public High Schools of the U. S.
Report of the Commissioner of Education, 1913, v. 2, pp. 9—10

1900 1910
MeN . .| 10,172 = 50 per cent of total | 18,890 = 45 per cent of
49.931 more exactl total

WOMEN . | 10,200 = 50 per cent of tota. 45.336 more
exactly

ToTALS . | 20,372 22,777 = 55 per cent of
total

41,667
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From a casual glance at these charts it would be hard to
réalize that they are both accurate representations of the
same data. A few pertinent questions might be asked:

(1) If the tendency shown by the ratio chart (tendency
based upon the actual data for 19oo and 1910) continues,
what will be the proportion of male teachers in the year 2000?
Answer .03981.

(2) If the tendency shown by the gross frequency chart
(tendency based upon the same actual data) continues, how
many male high school teachers will there be in the year 2000?
Answer 97,352.

(3) With the proportion as shown in your answer to ques-
tion (1) and the number of male teachers as given in your
answer to question (2), how many women teachers would there
be in the high schools in the year 2000? Answer 2,348,064.

If the reader sees through this situation he appreciates one
of the fallacies likely to arise through the use of proportions.
Another occurs in combining ratios

Time Ratios

To average a number of ratios to obtain a single index, in
general leads to an error. This will be considered later, but
to illustrate the fact that ratios do not group themselves in
a symmetrical manner around their own mean, the following
data from Mitchell are given as quoted by Secrist. (1917,
p. 312.) They also provided the material for an important
problem in plotting.

It will be noticed that the class intervals extend over ranges
of two units, e.g., there are five class intervals in covering a rise
in prices from 10 per cent to (but not including) 20 per cent.
With no direction to the contrary it is to be presumed that the
class designated in the table by ‘““54 — 55.9"" includes all
measures with values between the limits 53.95 and 55.95;
that the next class includes measures between 51.95 and 53.95;
etc. This is to say that presumably the data have been recorded
to but one decimal place so that such measures as 53.86 and
53.92 are called 53.9 and a measure such as 53.96 is recorded
as 54.0. If the recorder encountered a measure 53.95 he had
to arbitrarily decide whether it would be called 53.9 or 54.0.
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TABLE XIV
Distribution of 5578 Cases of Change in the Wholesale Prices of Commodilties

from One Year to the Next

23

Per CENT oF CHANGE
FROM THE AVERAGE

PErR CENT OF CHANGE
FROM THE AVERAGE

NUMBER OF . HE NUMBER OF
Pnpgggl:g ;II}:;R Cases Pf:ééslsg \T(EAR Cases
(FALLING PRICES) (RISING PRICES)
54-55.9 1 14-15.9 106
— —_ 16-17.9 102
50—-51.9 1 18-19.9 73
48-49.9 1 20-21.9 65
46-47.9 I 22-23.9 45
44-45.9 2 24-25.9 47
42-43.9 4 26-27.9 29
40-41.9 5 28-29.9 30
38-39.9 S 30-31.9 22
36-379 7 32-33.9 17
34-35.9 10 34-359 18
32-33.9 7 36-37.9 I
30-31.9 16 38-39.9 17
28-29.9 27 40-41.9 14
26—-27.9 17 42—-43.9 6
24-25.9 32 44459 10
22-23.9 39 46-47.9 11
20-21.9 45 48-49.9 5
18-19.9 71 50~51.9 1
16~17.9 76 52-53.9 4
14-15.9 107 54-55.9 3
12-13.9 120 56-57.9 1
10-11.9 173 58-59.9 6
8- 9.9 200 60-61.9 4
6~ 7.9 238 — -
4- 59 329 66-67.9 4
2- 3.9 375 68-69.9 3
Under 2 405 70-71.9 I
No change 697 72-73.9 4
(R1SING PRICES) 74759 I
Under 2 410 80——8-1 0 —I
2- 3. .
+ 59 3% 82-83.9 1
6~ 7.9 261 84-8s5.9 I
8- 9.9 237 86-87.9 I
10-11.9 167 _ -
12-13.9 11§ 100—101.9 I
102-103.9 I
5,578

For the data in hand it is not known how such a case would
have been decided, but a very good rule to follow is to always
assign such a critical measure to the even instead of the odd
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value, i.e., the measures 53.95, 54.05, 54.15, 54.25, 54.35 and
54.45 would be assigned as 54.0, 54.0, 54.2, 54.2, 54.4 and 54.4
respectively. It will be noticed that in the long run this
introduces no systematic error for the } is thrown away as
often as it is added. It does result in a slight piling up of the
even measures, but that is generally inconsequential, whereas
the adding of a half every few measures would result in a
cumulative error which might be serious.

If the class intervals run in order from g3.95 to 55.95, 51.95
to 53.95, . . . 1.95 to 3.95 it is found that the next frequency,
in order to extend over the same range, would be from — .05 to
1.95, i.e., from an increase in price of .05 per cent to a decrease
of 1.95 per cent. This, however, cannot be the case, as a very
large frequency, 697, is recorded for ‘‘no change.” The way
the data are recorded would suggest a class interval correspond-
ing to ‘‘no change,” but this cannot be so, as the intervals on
either side preémpt the space. In plotting the data, therefore,
the ‘““no change’ interval must be squeezed out and its fre-
quency, 697, distributed between the neighboring classes. We
will assign 348 to the ‘““under 2 — Falling prices’’ interval, and
the remainder, 349, to the ““under 2 — Rising prices’’ interval.
There still is a slight discrepancy (.o5) in the ranges of these
two middle intervals; but as it cannot be positively accounted
for without recourse to the original data it is passed over.

For convenience in tabulation and plotting we will consider
the first class interval to extend from s4.00 to 56.00 and to
have its mid-point or class symbol 55.00, the second a mid-
point at 53.00, etc., and the frequencies as before.

The frequency polygon seems better suited to the data in
hand, as it gives the impression of a more pronounced mode
than would a histogram and in this case this feature should
be emphasized.

Three ways of connecting the points of a distribution have
been presented: (a) by drawing a histogram — Chart I;
(b) by drawing a frequency polygon — Chart II; (¢) by draw-
ing a smooth curve through or near all the points which fits
the data as nearly as can be determined visually — Chart
III. A fourth way (d) is to plot from smoothed data; and a
fifth (e) is by mathematically determining the equation of
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the curve which best fits the data and plotting the same.

This last method is discussed in Chapter VII.

Methods (a),

(b), and (e) preserve areas, i.e., the total area under the curve
1s equal to the population, or number of cases. Method (e)

also preserves other important features.

In using method

(c) there should be a definite attempt to preserve areas; that is,

TABLE XV
Per CENT Crass INTERVAL PER CENT CLaAss INTERVAL
oF CHANGE OF 4 PER CENT oF CHANGE OF 4 PER CENT
FROM THE | NuMBER FROM THE | NumMBER
AVERAGE oF AVERAGE OF
PRICE OF | Casgs | PER CENT| NUMBER || PRICE OF | (Caggs | PER CENT | NUMBER
THE PRE- OF OF THE PRE- OF OF
CEDING CHANGE CasEs CEDING CHANGE CasEs
YEAR YEAR
— 56 I =5 329
— 55 I - 4 704
- - -3 375
— 52 1 =1 753
— 51 1 0 1512
—4) I I 759
— 48 2 3 355
— 47 I 4 711
—45 2 5 356
— 44 6 7 261
—43 4 8 498
— 41 5 9 237
— 40 10 8¢ 167
— 39 5 12 282
— 37 7 13 113
— 36 17 15 106
— 35 10 16 208
—33 7 17 102
— 32 23 19 73
— 31 16 20 138
— 29 27 21 65
— 28 44 23 45
— 27 17 24 92
— 25 32 25 47
—24 71 27 29
- 23 39 28 59
— 21 45 29 30
— 20 116 31 22
— 19 71 32 39
— 17 76 33 17
— 16 183 35 18
— 15 107 36 29
— 13 120 37 I
—I2 293 39 17
— 11 173 40 31
-9 200 41 14
- 8 438 43 6
-7 238 44 16
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TABLE XV (continued)

PER CENT CrAss INTERVAL PeR CENT Crass INTERvVAL
oF CHANGE oF 4 PER CENT oF CHANGE OF 4 PER CEBNT
?\?&Igg NUMBER IXI\E’;IE: NuUMBER
f:;cgn(;l’ C.:):xs PER CENT| NUMBER E:écg;:; C,:):ES PER CENT| NUMBER
- oF OF - OF OF
CEDING CHANGE CAsSEs CEDING CHANGE CASEs
YEAR YEAR
45 10 73 4
47 11 75 1
48 16 — — 76 I
49 5 8o I
5I 1 81 I
52 S 83 I
53 4 84 2
55 3 85 I
56 4 87 I
57 I 88 1
59 6 — —
60 10 92 o
61 4 96 o
— — 100 I
64 o 101 1
67 4 103 I
68 7 104 1
69 3 — —
71 I 5,578 5,578
72 5
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if the curve as drawn lies above any point it should lie below
some other, or, more accurately, the sum of the vertical distances
which it lies above points in the actual distribution should
equal the sum of the distances which it lies below other points.
In drawing a free curve for incomes, Chart III, the preserva-
tion of total area is a difficult thing to insure, but for maximum
temperatures, Chart I, it can be accomplished with fair accuracy
and little trouble. The personal element which enters into
method (¢) generally makes it inadvisable for published work;
but for original, hasty and personal research it may well be
the one most frequently used.

Section 6. SMOOTHING DATA

The smoothing of data preparatory to plotting (Method c¢)
may be illustrated by the accompanying records of the U. S.
Weather Bureau for New York City:

TABLE XVI
Mean Monthly Temperatures for 1917

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
32.4 27.8 38.7 47.2 532 68.3 74.1 746 63.0 52.0 41.2 250

We have here a temporal series, and as is frequently the
case, periodic fluctuations are shown. To obtain a general
idea of variations within the year the curve at the end of
December should join on to the curve at the beginning of
January, as indicated below in Chart IX drawn by Method (c).

It will be noticed that in the 1917 data there is a minor mode
in January and a major mode in August. As such bi-modality
is not typical we will smooth by means of the moving average
method and plot the resulting series. The moving average
method consists of replacing original items by averages of a
certain number of class frequencies. In the present problem
we will average the frequencies for two neighboring class
intervals and assign the result to the point midway between
the two frequencies. If we consider the averages for each
month as belonging to the 15th day of the month, we can
take the average of the temperatures for January and February
and assign this average to the end of January or the first of
February. Next the February and March temperatures are
averaged and the result assigned to March 1. Continuing
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throughout the series, finally averaging the temperatures for
December and January, gives the data of Table XVI, indi-
cated on Chart IX by the X’s.

CHART IX
n Mean Morﬁ'hly Temperatures N.YCH’y Jan-Dec.
8o
1) Legend 1 =
70| [— 917 .
5 - a— 1971 Smothed y, s
5: ---- Avp-4TYrs. 5% N
—a % G
£as 2 R
:g “e \(\ 3
” o)
3 :d!'- ]
zs 2R
¥

Date
TABLE XVI-a
Mean Smoothed Temperatures for 1917

Ja.r For M.r A.r Mot J.1 J.1 A1 S.1 O.1 N.1 D.1
28.7 30.1 33.2 43.0 50.2 60.8 71.2 74.4 68.3 57.5 46.6 33.1

The reason this process is called that of taking a ‘‘moving
average’ would be better exemplified if groups of three or
more items were averaged, in which case each successive sum
is obtained from the preceding one by dropping one item and
adding a second. It will be noticed that this curve has but a
single mode, is much more regular than the curve from the
original data, and does not have as high a maximum or as low
a minimum, which fact is a necessary consequence of the
method of smoothing. Moreover, it represents the annual
fluctuations better than the curve from the original data, as is
shown by comparing it with the dotted line based upon the
records for the 47 years from 1871-1917, given herewith:

TABLE XVII
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
31.0 30.5 37.8 48.7 59.8 688 74.0 72.6 66.4 557 439 34.0
Since the average of two unequal numbers is never as large
as the larger or as small as the smaller of the two, the smoothing
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process tends to flatten a curve out and lower modes. If the
data are particularly irregular it is frequently desirable to do
this to reveal a general trend, but it should be borne in mind
that something of significance is always lost in the process of
smoothing. Numerical calculations should never be made from

TABLE XVIII
Distribution of Marks given to Women in 8 Elective College Subjects. Below
60 Failure; 60—74 Condilion

(Taken from Mary Theodora Whitley, A Statistical Study of College Marks
— Master’s Dissertation, Columbia, 1906)

GRADE (Fis- Av{ OF Av{or Av'.f OF [GRADE! (FrRe- | Av.OF | Av.OF | AV. OF
QUENCY) | THREE| FivE | FIFTEEN QUENCY)| THREE Five | FIFTEREN
43 .07 75 27 11.7 9.4 | IL.13
44 .06 76 7 15.0 12.4 | 13.47
45 .07 77 Il IL.3 15.4 | 14.33
46 .06 78 16 14.3 21.0 | 18.00
47 .07 79 16 29.0 20.0 | 20.00
48 .2 13 8o 55 24.3 20.4 | 22.80
49 .3 .2 14 81 2 23.4 24.6 | 26.07
50 1 4 .2 13 82 13 17.3 24.2 | 27.53
51 .3 .2 14 83 37 21.3 26.8 | 32.07
52 .2 .13 84 14 39.7 32.6 | 32.00
53 2 .53 85 | 68 | 37.7 | 38.6 | 34.73—
54 .3 .2 .54 86 31 47.3—| 41.2 | 37.00
55 1 -4 -2 -53 87 43 41.3 43.0 | 37.07
56 .3 .2 .53 88 50 38.7 48.4 | 37.60
57 .2 -54 89 23 56.0 43.4 | 39.00
58 1.2 -93 90 95 41.3 45.2 | 38.87
59 2.0 1.2 .93 91 6 51.0 45.2 | 36.73
60 6 |20 1.2 1.17 92 52 36.0 44.0 | 35.87
61 2.0 1.2 1.20 93 50 39.7 37. 31.33
62 1.2 1.27 94 17 43.3 41.0 | 29.26
63 1.4 2.07 95 63 34.4 32.8 | 26.40
64 2.3 1.4 2.13 96 23 32.3 23.8 | 23.07
65 7 124 1.8 2.20 97 II 13.0 20.6 | 21.53
66 3.0 2.2 2.27 98 5 5.7 8.0 | 15.20
67 2 1.3 2.4 2.33 99 1 2.0 3.4 | 14.80
68 2 |17 3.6 3.73 100 .3 1.2 | 11.33
69 1 5.3 3.8 4.20 | 101 2 8.00
70 13 | 5.0 3.6 4.93 102 6.87
71 1 |5.0 3.4 6.00 | 103 2.67
72 I 1.0 3.4 7.07 | 104 1.13
73 1 1.0 6.2 | 10.27 105 .40
74 I 9.7 7.4 | 10.40 106 .07
l 773- ‘ 773. 773. | 773.

smoothed data, as a spurious consistency in the findings may be
introduced and significance of the original data may be hidden.
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The possibilities and limitations of smoothing will be better
illustrated by application to the data of Table XVIII which
are decidedly multi-modal.

In the accompanying Chart X, the histogram represents
the original data; the smoothed average-of-three curve is not

CHART X

Distribution of School Grodes
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shown; the ordinates of the smoothed average-of-five curve
are represented by dots; and the ordinates of the smoothed
average-of-fifteen curve are represented by o’s.

The curve from the original data has fourteen modes, ten
of them located at grades divisible by five and four located
halfway between such grades. It seems that many teachers
do not grade on a percentile scale in units smaller than five
per cent, and that most of the remainder do not grade in units
less than two and one half per cent. An examination of the
frequencies in the average-of-three column shows that these
minor modes, which occurred about every 2} units, have been
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smoothed out by the process of averaging three neighboring
measures, but that all the major modes persist though they
occasionally are no longer exactly five units apart. It is
found, by reference to the plotted distributions, that it requires
the smoothed average-of-five curve (----) to smooth out
the modes periodically occurring every five units. It is also
apparent that the smoothed average-of-fifteen curve has
flattened the mode at go and spread out the extreme measures
altogether too much. It is therefore a desirable rule, when
smoothing must be resorted to, to average such a number of
neighboring groups as just cover the periodicity which it is
desired to smooth out. If the data show great irregularity,
rather than periodicity, it is better to average too small a num-
ber of groups than too large a number. In the case in hand
there 1s no doubt that the smoothing by averaging five class
frequencies 1s the preferable method, but even so, something
of significance, as is always the case, has been lost by the
smoothing: To illustrate; the percentage of failures shown by
the smoothed data, .57 per cent, is over twice as large as was
in reality the case, — .26 per cent.

Section 7. THE OcivE CURVE

When it is desired to determine the number of cases or per
cent of the population lying below a certain record, it can be
readily done if a curve is plotted showing sums of the fre-
quencies of all measures below designated amounts of the
trait. The method may be illustrated by the data of Table I.
The first two columns below repeat that table; the third column
1s obtained by cumulating the frequencies in column two.
The 1 in column three recorded opposite 65.5 means that one
day (out of the 62) had a temperature less than 65.5. It will
be noticed that two days had temperatures less than 66.s,
or 67.5, or 68.5, or 69.5. In such a case it is sounder to assign
the 2 to the point midway between the 65.5 and the 69.5 than
to any other point in this stretch. Accordingly it is recorded
in column three that 2 days had temperatures less than 68.o.
Continuing there are 3 days with temperatures less than 70.3;
4 with less than 72.5, etc. Finally it is to be noted that the
last point is indeterminate, i.e.,, 62 days had temperatures
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less than ¢8.5, or 99.5, or 100.5, etc. It is impossible to deter-
mine from finite data what is the maximum temperature below
which the temperatures for all days lie. It is of course also
impossible to determine what is the minimum temperature
above which the temperatures for all days lie. For this

TABLE XIX

Distribution of Daily Maximum Temperatures, July and August,
New York City, 1917

N5 | cwmonn | comuna. Nordr [cumua. | Cunmuna-
TEMPER- | WITH TIONS I Exposgp| TEMPER- | wiTH oS [ExprEssED
ATURES TGIVBN NFor | o Pancl|l Atures TGIVEN Noor | 1N PER-
EMPER- N MPER- . CENTAGES
Jrstiiy DAYs | CENTAGES AFI’UREER Davs
65 1 45 72.6
22.5 1 1.6 84 2 g
1 47 75.
66.5 85 4
67 51 82.3
68 2 3.2 86 3
69 54 87.1
70 I 87 1
3 4.8 55 88.7
71 ) 88 2
72
4 6.4 89 57 91.9
73
74 2 90 1
6 9.7 91
75 3 92
9 14.5 58 93.6
76 I 93
10 16.1 94
77 I 95 1
I 17.7 59 95.2
78 3 96 1
14 22.6 97 60 96.8
79 I 98 2
15 24.2 62?
8o 10 99
25 40.3 62?
81 8 100
33 53.2 62?
82 5 101
38 61.3
83 7

reason the zero and one hundred percentile points for this
ogive curve are not plotted. This should be the case for all
ogive curves — the common practice of plotting the lowest
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and highest recorded data as the o and 100 percentiles being
inaccurate and confusing.

Column four gives the same data as column three, expressed
in percentages of the total frequency. In the accompanying
graph the ordinates are the cumulative frequencies in per-
centages and the abscissas are the temperatures as shown:

CaarT X1

Daily Maximum Temperatures
July & Auqust 1917-New York City

g 8 8

Maximum Temperature
3,

IAA

g

o 2o % 40 3% e T 8o 80 100
Fl-m:erﬁaqe of days falling short of given temp.

It is interesting to note that the relatively irregular data
used has resulted in a fairly regular ogive curve, and that,
without any smoothing. The ogive curve facilitates interpre-
tation, e.g., it is immediately read from the curve that:

5 per cent of the days do not attam a temperature of 71

10 75°

20 " ‘“ e ‘e [ [ " [ [ 4 46 o
50 13 a“" o o " ‘““ 13 4 [y o " g?o
90 " " 4 13 [ “ “" i " " g 880
95 X [y " [ 13 [y [ 4 i [ “ o

“ " ‘“ “"

50

A ** have maximum temperatures between 79.5°
and 84.5°, etc., etc.

Or, interpolating the other way:

A temperature of 95 or more is reached on 5 per cent of the days

6 ‘“ 6 ““ 6 21 7] o 6 ‘“ o

" 4" “" 75 " “ “ “" “" 87i ‘“ “" “ “ “ etc.

The ogive curve may also be used to determine the mode,
for if a smooth curve (not a polygon as here shown) is drawn
through or near the points given and a ruler rotated so as to
be tangent to the curve at successive points, that point at



34 STATISTICAL METHOD

which the ruler ceases turning in one direction and starts to
turn in the other (called the point of inflection) is the modal
point, its value being read from the ordinate measures on the
margin. Applying this method to these particular data the
mode is found to be very close to 81°. The more important
measures revealed by the curve are the median, or so-percentile,
the semi-interquartile range more briefly called the quartile
deviation, or one half the distance between the upper and
lower quartiles, the 1o-percentile, the go-percentile and the
10—go-percentile range. For the data in hand these are re-

spectively 81° 79.5° 84.5°, 2.5° 75° 88° and 13°.

Section 8. THE GrowTH CURVE

The accompanying table gives smoothed scores in a reasoning
test as given by Kelley (1917). Plotted they give a typical
growth curve,

TABLE XX

ApuLTt
AGE. .7.0 8.3 9.4 105 11.8 130 14.1 153 16.5 17.8 19.2
SCORE ON
TRABUE

SCALE . 1.1 2.2 37 61 65 72 73 7.8 85 89 94

CHART XII

Girowth Curve in Rea.::omng Test Ability
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This particular curve is interesting in that it snows a flatten-
ing at ages 13 and 14, which is not at all characteristic of growth
curves of mental traits, but as the units of measurement,
instead of intrinsic ability, could conceivably account for the
phenomena the curve does not prove, but merely suggests,
that there is a pubertal disturbance. For the purpose of the
present statistical treatment no attention need be paid to the
double inflection of the curve,

Rotating the curve through go° and looking at it in a mirror
(as pictured in Chart XIII) shows its general resemblance to
an ogive curve. It was possible in the case of daily tempera-
tures to cumulate scores and obtain ogive curve data. By
the reverse process it is possible from the ogive data to obtain
the original distribution of temperatures. By parity of opera-
tion it is possible to obtain measures of growth increments
from an original growth curve. The growth curve may be
plotted as herewith:

CHARrRT XIII

Growth Curve-Reaeoning Ability
Score for Different Ages

1 i
6 ¥ & 30 4o 0 £ e
Teat Score

Thinking of the abscissas as sums of increments of reasoning
ability and recalling that the graph is for an average individual,
whose maximum development or accumulation is to g4 of such
increments (i.e., the total population of increments is g4) the
graph may be read: At age 7 the individual possesses 11
increments of reasoning ability; at age 10, so increments,
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etc. This may be an awkward way of interpreting growth,
but if it is desired to think of growth as a sum of increments it
immediately suggests the determination of the increments
added durine each year of life as follows:

TABLE XXI
Ac scons | VepuLy Srowm Acs
o o
0 .5 (from o-1)
I o
.5 — 1.5 (from 1-2)
.5+ 2.5 (from 2-3)
3 1
2 — 3.5 (from 3—4)
2+ 4.5 (from 4-5)
5 5
3- 5.5 (from §-6)
3+ 6.5 (from 6-7)
7 11
8 7.5 (from 7-8)
8 19
12 8.5, etc.
9 31
19 9.5
10 50
12 10.5
II 62
5 1.5
12 67
4 12.5
13 71
2 13.5
14 73
3 14.5
15 76
6 15.5
16 82
5 16.5
17 87
3 17.5
18 90
4 ? (from 18~adulthood)
Adult 94
94

These growth increments plotted in the form of an ordinary
frequency polygon give the following figure:
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CHART XIV

Distribution of Yearly Growth Increments in a Feasoning 7est
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The bi-modality of the growth increment curve is of course a
consequence of the double inflection of the growth curve. Since
the constants of this increment curve (mean, skewness, standard
deviation, etc.) can be readily calculated, the curve has certain
advantages over the growth curve. It should be a very con-
venient form in which to present data for purposes of studying
variability in rate of growth, variability in price changes, etc.
In dealing with functions in which there is a loss in a given
period, e.g., when an individual weighs less in one year than in
the preceding, negative frequencies arise. These need cause
no trouble if treated strictly algebraically and the negative sign
preserved.

Brown and Thomson (1921) have shown that the standard
deviations of the class frequencies of such a curve are not given
by the ordinary formula [Formula 25].

Section 9. THE GRAPHIC REPRESENTATION OF CATEGORICAL
MEASURES

The graphs thus far have pictured the frequencies or amounts
of a quantitative or temporal variable, but if the frequencies of
categorical measures are desired a different procedure is neces-
sary. For example, if desired to represent the number of
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days which lie in the following categories, (a) clear, (b) cloudy,
(¢) rainy, a large number of devices are possible. The signifi-
cant feature to be portrayed in this as in all qualitative series
is the magnitude of each category with reference to the others,
or the proportions which each bears to the whole. This may
be shown by appropriate lengths of lines constituting what is
called a ‘“bar diagram,” by heights of shaded rectangles, by
sectors of the required number of degrees, by appropriate
number of discrete objects, men, bushels, ships, etc. The
essence of an accurate portrayal lies in having the representa-
tions of the two or more items alike in every respect except one
and differing in that one by the required amounts.

If the population of Texas is 5 million and that of Georgia
3 million and if a man, representing Texas, is pictured beside
a child, three fifths as tall, representing Georgia, the impression
conveyed is entirely erroneous. The heights are in the ratio
of 5:3, but the areas covered by the figures are approximately
in the ratio of 25:9. However the situation is even worse than
this for the weight of a man as pictured is to the weight of a
child as pictured approximately as 125:27 and one is inclined,
in so far as the pictures mean a man and a child, to make just
such a comparison.

If three dimensional objects are pictured upon a two dimen-
sional surface to convey a one dimensional relation the objects
should be identical in size and differ only in number. In the
illustration mentioned, Texas could be represented by a row
of five men and Georgia by a row of three. The use of men in
picturing population, of sectors of a dollar in showing the items
of a budget, of bales of cotton in picturing cotton production,
etc., are conventional and expressive modes of presentation.
Accuracy of presentation is favored by the use of rectangles of
different lengths, but as independence of a heading may be
accomplished by a proper choice of object for picturization,
this method has certain indubitable advantages. However,
if a two or three dimensional object is pictured either (a) all
the dimensions except one should be kept constant and that
one vary in the proportions desired, or (b) all dimensions should
be the same and the number of objects vary. As an illustra-
tion of (a) the amount of paving in two cities could be repre-
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Accompanying is a block presentation of a complex series.
It conveys information as to three different things, (a) date,
(b) numbers of immigrants, and (¢) country of birth.

CHART XVI

IMMIGRATION
in thousands
5 year periods
1891 to 1910
from US Alien
Immigration Statistics

This information is fully presented in the figure, but it very
frequently is impossible clearly to present a three-dimensional
situation by a picturization of a three-dimensional figure, for
commonly a part of the figure would obscure other essential
parts. The large immigration from Germany in 1891-95 almost
hides the block showing the immigration from Germany in
1896-1900, but as it does not completely hide it the relation-
ships are readily. apprehended. However, if the immigration
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It is difficult to give a summary of the principles underlying
graphic portrayal as they differ with the number of dimensions
presented and with the continuous or discrete nature of the
data, but the recommendations contained in the preliminary
report of the joint committee on standards of graphic presenta-
tion are of broad applicability. This committee represented a
wide field of statistica' workers and was formed upon the invita-
tion of the American Society of Mechanical Engineers. Its
recommendations as given by Haskell (1919) are:

1. The general arrangement of a diagram should proceed
from left to right.

2. Where possible represent quantities by linear magnitude,
as areas or volumes are more likely to be misinterpreted.

3. For a curve the vertical scale, whenever practicable, should
be so selected that the zero line will appear in the diagram.

4. If the zero line of the vertical scale will not normally
appear in the curve diagram, the zero line should be shown by
the use of a horizontal break in the diagram.

5. The zero lines of the scales for a curve should be sharply
distinguished from the other coérdinate lines.

6. For curves having a scale representing percentages, it
is usually desirable to emphasize in some distinctive way the
1009, line or other line used as a basis of comparison.

7. When the scale of the diagram refers to dates, and the
period represented is not a complete unit, it is better not to
emphasize the first and last ordinates, since such a diagram
does not represent the beginning and end of time.

8. When curves are drawn on logarithmic codrdinates, the
limiting lines of the diagram should each be at some power of
10 on the logarithmic scale.

9. It is advisable not to show any more coordinate lines than
necessary to guide the eye in reading the diagram.

10. The curve lines of a diagram should be sharply dis-
tinguished from the ruling.

11. In curves representing a series of observations, it is
advisable, whenever possible, to indicate clearly on the diagram
all points representing the separate observations.

12. The horizontal scale for curves should usually read from
left to right and the vertical scale from bottom to top.
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13. Figures for the scale of a diagram should be placed at
the left and at the bottom or along the respective axes.

14. It is often desirable to include in the diagram the numeri-
cal data or formule represented.

15. If numerical data are not included in the diagram it is
desirable to give the data in tabular form accompanying the
diagram.

16. All lettering and all figures in a diagram should be placed
so as to be easily read from the base as the bottom, or from the
right-hand edge of the diagram as the bottom.

17. The title of a diagram should be made as clear and com-
plete as possible. Sub-titles or descriptions should be added
if necessary to insure clearness.

PROBLEMS

1. Smooth the temperature data by means of a moving average of three
class frequencies and plot. What is the modal value?

2. Express the populations of California, Oregon and Washington as
indexes with 1900 as base. Which state showed the greatest relative
growth in the decade 1900-1910?

3. Chart VI shows that relative to 1907 retail prices of steak in Chicago
did not advance as fast as wholesale prices. Choosing each year in turn
as base, determine the relative increase in the wholesale prices and the
retail prices of steak for the succeeding year, and answer the question,
“In how many years did retail price advances fail to keep pace with
wholesale price advances?’’ Using data in the last column of Table XII a
answer the same question with reference to Wholesale prices and Retail
prices of 22 common articles.

4. (a) Plot an Ogive curve for the raw data of Table XVIII and on the
same paper (b) an Ogive curve for the same data as smoothed by a moving
average of fifteen class frequencies.

5. Plot hypothetical data giving incomes in Great Britain in the form of
an Ogive curve. What is the mode? Fill out the following table:

Incomes Received by Successive Percentiles

PERCENTILES I 5 10 20 25 30 40 50 60 75 80 90 95 99
INcoMEs

6. Save work for future reference.



CHAPTER III
THE MEASUREMENT OF CENTRAL TENDENCIES

Section 10. AVERAGES

A tabulation of the data pertaining to a distribution pre-
sents all the facts, and a histogram or frequency polygon makes
possible the visualization of this detail. Ordinarily, however,
the detail is so great that it cannot be interpreted. In this
case certain measures of the total distribution are serviceable
in summarizing the data. The most important of these are
averages, or measures of central tendency. The most signifi-
cant averages are (a) the mean [more accurately the arithmetic
mean], (b) the median, (¢) the mode, (d) the geometric mean,
and (¢) the harmonic mean. Note that these are all averages.
The word ‘“‘average” is frequently used synonymously with
mean (arithmetic mean). It will occasionally be used in this
text in such expressions as ‘‘the average of the means,” in
order to avoid the more accurate but awkward expression
‘“the mean of the means.” Ordinarily “mean’ will be used
consistently to designate the arithmetic mean, and ‘“‘average”
as synonymous with ‘“‘measure of central tendency,” thus
meaning any one of the five measures listed above.

The most important single item of information to be known
about a distribution is what it is a distribution of.

The second in importance is the number of cases in the distri-
bution, or, as it is usually expressed, the population.

The third, is to know some measure of central tendency,
some average.

The fourth, to know some measure of the degree to which
the measures scatter, or lie above and below the average, i.e.
to know a measure of dispersion or deviation from the average.

The fifth, to know if the measures are symmetrically dis-
tributed with reference to the average, or if there is a bunching
of measures on one side of the average and a long tailing out
of measures on the other side; i.e., to know a measure of
skewness.
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The sixth, to know if the measures are exceptionally densely
grouped at the average, giving a high peak to the frequency
polygon (leptokurtic, i.e., 8; of section 36 is greater than 3.0)
or if the distribution is rather flat in the middle and contracted
at the ends, thus tending toward a rectangular shape; (pla-
tykurtic, i.e., B2 < 3.0) or if they show a mean between those
two conditions as does a normal distribution (mesokurtic,
B: = 3.0); in short, to know a measure of kurtosis.

These are all of the essential measures in the case of a uni-
modal distribution; the next important item would be a
measure of the tendency to have more than a single mode, or
place of dense frequency.

No treatment will be given in succeeding chapters of bi-modal
curves, but if it is noted that uni-modal curves include anti-
modal or U-shaped curves,— those having large frequencies
at the extremes and small frequencies in the middle, as well
as L-shaped curves, rectangular distributions, and all forms
of positive uni-modal curves, it will be seen that the great
majority of distributions found in biology, economics, and
psychology belong to the uni-modal type and that a knowledge
of the six items mentioned above is adequate for all but a small
number of distributions.

Measures of skewness and kurtosis are essential in mathe-
matically fitting curves to observations and are treated of in
Chapter VIII on Curve Fitting. The calculation of averages
is dealt with in this chapter and the relative excellence of the
different averages will be considered in connection with their
probable errors in the next chapter.

Section 11. THE ARITHMETIC MEAN

The mean may be defined as the sum of the separate measures
divided by the number of them. This definition immediately
suggests the method of calculation: add the measures and
divide by the population. If an adding machine is available
and other measures of the distribution are not desired, this
method is the most expeditious one to follow. Generally,
however, it is more economical of time first to group the
measures and arrange them according to magnitude, as was
done with the Temperature data, Table VIII. Repeating
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these data we have the first two columns of the accompanying

Table XXII. The third column illustrates one method of
TABLE XXII
Calculation of the Mean
DEevia- DEvia-
TIONS Groupgp| TIONS
TEMPER- | FRE- | pponucrs| FROM Probucts| Fre- FROM
ATURES |QUENCIES ﬁk&l; QUENCIES ;}RRAL:;
ORIGIN ORIGIN
X f X & ft F & Ft
65 1 65 — 15 — 15
66 1 66 — 14 — 14 2 -5 — 10
69 I -4 -4
70 1 70 — 10 — 10
71 I 71 -9 -9
72 I -3 - 3
74 2 148 — 6 — 12
75 3 22§ -5 — 15 6 -2 — 12
76 I 76 - 4 — 4
77 I 77 -3 -3
78 3 234 - 2 - 6 5 =1 - 5
79 1 79 -y =1 o
— 8y — 34
8o 10 800 o
81 8 648 I 8 23 0
82 5. 410 2 10
83 7 581 3 21
84 2 168 4 8 13 I 13
85 4 340 5 20
86 3 258 6 18
87 1 87 7 7 0 2 12
88 2 176 8 16
90 I 90 10 10 1 3 3
95 1 93 15 15
96 I 96 16 16 2 5 10
98 2 196 18 36
99 2 6 12
62 5,056 185 62 50
M=281.548 — 89 - 34
96 6
62 62
Correction = 1.548 Correction
Arbitrary =3 X .258
Origin = 80. Correction = .774
M = 81.548 Arbitrary
Origin = 81.00
M =81.774

* Greek alphabet given in appendix.
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calculating the mean; the fourth and fifth columns a briefer
method, in that it involves handling smaller numerical magni-
tudes; and the last three columns another method which is
still shorter in case the number of class intervals is large. For
a method of calculating the mean, standard deviation, and
higher moments by means of continued summations see Brown
and Thomson (1921) and Elderton (19os).

The headings of these columns are typical and will be
repeatedly used in subsequent examples:

X (or Y) will be used regularly, as here, to designate gross
scores.

f (F) designates class frequencies.

£* (¢) designates deviations of scores from an arbitrary
origin, or starting point. In column four, ¢ represents devia-
tions of the gross scores from the arbitrary origin 8o, while in
column seven { represents deviations of class intervals each
of which is three times as large as the class interval obtaining
in the gross scores, e.g., from o-1 in column seven is one { unit
but it is three X units.

x (or ) has not been used in any of the above columns since
it is reserved for a very definite purpose. It will consistently
mean a deviation from the true mean. In the case in hand,
if deviations from 81.548 had been recorded they would have
been designated as x measures. Throughout the rest of this
text x (or y) will mean a deviation from the mean or from an
origin so near to the mean that no attention need be paid to the
fact that it differs slightly from the true mean.

N. One further symbol is universally employed — N (n)
stands for the population. In the present example N = 62.
[# occasionally has other meanings, particularly when it ap-
pears as a subscript or a superscript.]

M 1s used to designate the mean.

2. The symbol T indicates not a measure but an operation.
When placed before a symbol standing for a measure it indi-
cates that the sum of all such measures is to be obtained,
e.g., 2f means the sum of the frequencies — in the illustration
Zf = 6a2.

With these definitions in mind it will he seen that the mean

* Greek alphabet given in appendix.
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may be calculated according to any one of the following
formulas: T X
M= N (The mean).... .[1]

This formula is used in case measures are not grouped or
arranged according to magnitude.

TfrX
M= Tff :
This is the method used in columns two and three. ZfX = 5056
and Zf = 62. These two formulas are really identical, for
2fX simply means that each X is taken as many times as it
occurs. There is no mathematical operation in use in which
the sum of the measures is taken irrespective of the frequencies
in the various classes, so that in subsequent examples ZX will
mean identically the same thing as ZfX and will frequently
be written for the latter as it is more concise. For similar
reasons Z¢ will be written for Zf¢; Zx for Zfx; Zx? for Zfa?; etc. -

M = Arbit. Orig. + =F.  (The mean).....[1 5]

This is the method illustrated in columns four and five. It is
called the method of moments, i.e., of tendencies to produce
rotation about a point. Moments may be taken about any
origin and if the positive exceed the negative it means that
the origin chosen is too small. Similarly if the negative exceed
the position moments the guessed mean, or arbitrary origin,
is too large and a negative correction is necessary. If the
guessed mean i1s 8o and calculation shows that there are g6
excess positive moments then, since there are 62 cases in all,
the moment corresponding to each measure should be
96/62 = 1.548 greater than it is in order to make the positive
exactly equal the negative moments. This point where the
moments exactly balance is the mean. Obviously if the guessed
origin is moved by 1.548 units, i.e., if 1.548 be added to 80, a
value will be determined such that if moments about it are
taken the negative and positive moments will exactly balance.
(Class interval) 3

N

This method is illustrated in the last three columns. It is a
moment method applied to data which have been grouped.
The guessed origin is here 81, the class interval 3, i.e., 3 of the

(The mean)....[1 a]

M = Arbit. Orig. + (The mean)|r1 ¢]
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gross measure units, and ¢ = 16. Solving M = 81.774. The
discrepancy between this value and that obtained before is
due to the grouping, — the true value being 81.548 and not
81.774. Such error may be either positive or negative, and,
unless very great precision is demanded, may be disregarded
when the data show no pronounced periodic disturbances and
when the number of class intervals is 12, or greater. (For
considerations leading to the number 12 see section 46.)

It will be noted that there are 11 class intervals in column ¢.
In the case of distributions which show peculiar local groupings
great care should be exercised in combining class frequencies.
In the case of the College Marks given in Table XVIII a
combining of measures into groups as follows: 50.0—54.9,
55.0 —59.9, 60.0 —64.9, etc., and a designating of the middle
points of the groups as lying at s2.5, 57.5, 62.5, etc., would
lead to substantial error in calculating the mean, since the
measures in the groups are not all evenly distributed. To
illustrate: if the 12 measures in the interval 65.0 — 69.9 are
grouped and assigned the value 67.5 an error of 1.33 has been
introduced, for calculation shows that the true mean of these
12 measures is 66.17. An error of 1.33 in a single group would
not be serious, but for the College Marks data the error is
typical of each group, so that a calculation of the mean from
data so grouped would lead to systematic raising of the mean
by an amount between 1 and 2 units. Whenever systematic
local tendencies are apparent in data and grouping is resorted
to, it should be endeavored to so group that the middle of each
group interval corresponds to a local mode; e.g., with the
College Marks the class intervals of the groups should be as
follows: 47.5-52.5, 52.5-57.5, etc., since the mid-points of these
intervals, 50, 55, etc., correspond to local modes and also approxi-
mately to the means of the measures in the group intervals.

The data in Table XXIII reported by the New York State
Industrial Commission and taken from the New York World
of Jan. 27, 1919, are so grouped as to make it impossible
accurately to determine any sort of an average wage. These
data show that 6 per cent of women factory workers receive
from $6-$7.99 a week, but certainly the mean wage of this
group is not $7.00, for in all probability a large number re-
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ceive exactly $6.00, another large group exactly $7.00. while
lesser groups receive wages of $6.50 and $7.50, and but very
occasionally would there be a wage such as $6.49 or $7.99.
Since one end of the interval, $6.00, has a large frequency that
is not balanced by the other end $7.99, the mean of the group
may be expected to lie below $7.00, possibly considerably
below. Similarly the 14 per cent receiving wages from $8.00
to $9.99 presumably receive a mean wage much below $9.00.
It is difficult to group data of this kind without introducing
large error, but if the intervals had run, $6.25-$6.75, $6.76—
$7.24, $7.25-$7.75, etc., probably the mid-point of each group
would be close to the mean of the group. An attempt to deter-
mine an average wage from the data as given might easily be
nearly 5o cents in error. The unequal distances covered by
successive intervals in the grouping proposed is a disadvantage
which is more than compensated by having the mid-points and
the means of the groups approximately coincide.

TABLE XXIII
Full-time Earnings of 20,507 Women in Factories and 23,203 in Mercantile

Establishments

FACTORIES STORES

Per CENT PErR CENT
Lessthan$6 . . . . . . . . I I
lLessthan 8 . . . . . . . . 7 7
Lessthan 10 . . . . . . . . 21 23
Lessthan 12 . . . . . . . . 42 44
Lessthan 14 . . . . . . . . 59 64
$r1gorover . . . . . . . . 41 36
$200rover . . . . . . . . I 9

In any research the question usually arises whether to group
at all, and, if so, what groupings to make. It has already been
suggested that groupings should not be made which result in
less than twelve classes. This is a lower limit. If the distribu-
tion is pronouncedly asymmetrical, as for example is that
showing incomes in Great Britain, twelve is far too small a
number of classes. The lower end of that curve could not be
at all satisfactorily represented if the income range covered
by each interval should be as large as £100, nor with such
grouping could the arithmetic mean be accurately determined.
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A range of £40 for the lower intervals will answer, though a
range of £10 or £20 would be much better. Since incomes
range from about £o to £200,000 there would be no less than
sooo classes needed to represent the distribution if the class
interval is £40.

The distribution of Wholesale Price Indexes is not as
markedly asymmetrical, but it has such a phenomenal peak
at ‘‘no change’ that a coarse grouping cannot be used, or this
characteristic is hidden. The plotted distribution has 41
classes and 38 of them have frequencies other than zero. As
plotted, the peak at ‘‘no change’ is less pronounced than it is
in reality and if the grouping were coarser it would be still less
apparent. A slightly coarser grouping would not have very
great effect upon the mean, but it would have decided effect
upon other constants, particularly those measuring kurtosis.
Forty classes is close to the minimum which would be satis-
factory for either graphic or numerical work with wholesale
price index measures.

For graphic presentation of College Marks a grouping into
classes of five units each, with interval limits chosen as already
indicated, would result in a graph nearly as satisfactory as
that based upon the moving average involving five neighboring
classes. Such a grouping leads to but 11 classes, which is too
small for very reliable results. However, groupings into units
of 4, 3, or 2 are not satisfactory, as they do not conform to the
local periodicity, which is five units. A grouping into units
of 2} would be excellent from the standpoint of statistical
accuracy, but as it would involve splitting the frequencies in
the gross score classes it would be uneconomical of time. All
things considered it would seem advisable to use the gross
score intervals, or, for rough work, a grouping of five gross
score intervals.

The situations presented by Incomes, Price Indexes, and
College Marks are not typical, but illustrative of the more
difficult grouping problems encountered.

Consider the Temperature data, Table XXII, and note that
if two gross score intervals had been grouped the frequencies
in Column F would have been for intervals whose mid-points
would be 65.5, 67.5, 69.5, etc., that when three gross score
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intervals are combined the mid-points are, as shown, 66, 69,
72, etc.; and that in general if an even number of gross score
intervals are combined the mid-points of the resulting intervals
do not coincide with the mid-points of any of the original
intervals but lie halfway between original measures. Ac-
cordingly if an even number of gross score intervals are com-
bined an entirely new table has to be made out. As this
involves work and an additional chance for error it is undesirable
if a grouping of an odd number of intervals will suffice.

As a general rule, applying to distributions not especially
asymmetrical (skew) nor peaked (leptokurtric), (1) an odd
number of gross score classes should be grouped, (2) the number
of classes resulting from grouping should not be less than 12,
and (3) the number of gross score intervals in a group should
equal the number involved in local periods, or divide into such
number without remainder, or be an integral multiple of such
number. Finally in case the distribution is markedly skew or
leptokurtic, conditions (1) and (3) remain the same but (2)
the number of classes should be greater than 12 and great
enough that significant portions of the distribution are revealed
in such detail as is commensurate with their importance.

In determining the number of gross score intervals to be
grouped in ordinary data a serviceable rule to follow is to
subtract the smallest from the largest measure and divide by
twelve. The nearest odd integer below the resulting quotient
is the proper number of gross score intervals to combine. E.g.,
in the case of maximum temperatures (g8 — 65)/12 = 2.75s.
The nearest odd integer below 2.75 is 1. Accordingly the
data are not grouped at all and the gross score intervals of 1°
kept as the proper steps. No material inaccuracy would have
been introduced by combining two of the gross score intervals,
but it would have been of questionable economy to do so.

Applying the rule to the College Marks data we have,
(99 — 50)/12 = 4.1. The nearest odd integer below is 3. It
would therefore be appropriate to group three intervals were it
not for the fact that there is a local periodicity extending over
5 gross score intervals. Applying to wholesale price indexes
[103 — ( — 55)]/12 = 13.2. Since the original scores were
recorded in 2 per cent steps the interval of 13.2 per cent is
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equivalent to 6.6 of the gross score intervals. The nearest
odd integer below 6.6 is 5, which would be the proper number
of gross score intervals to combine, were it not for the fact
that the data are very exceptional, having a phenomenal mode.

The proper labeling of class intervals is important in con-
nection with grouping. Class intervals of either grouped or
ungrouped scores should be labeled by recording the lower and
upper limits of the interval, e.g., 75.50-76.50, or by labeling
the mid-point of the interval, e.g., 76.0. If the successive class
intervals are the same the labeling of the mid-point is both
clear and concise. A great deal of needless confusion is caused
by improper labeling of intervals. The writer has found this
especially true with reference to age data, such as the following:

SCORE IN
AGE HEIGHT OR AGAIN, AGE ARITHMETIC
IN CMm. TEsT
12 140 12 18.324
13 150 13 20.002
14 155 14 20.980
15 160 15 23.545

With data such as these it is a matter of sheer guess whether
the scores correspond to mean ages of 12.0, 13.0, etc., or of 12.5,
13.5, etc. If a single score is recorded for a class interval it
should universally be that of the mid-point of the interval,
and in order to make it unambiguous the labeling figure should
be carried one decimal further than the unit representing the
class interval, e.g., if the above tables had read:

SCORE IN
AGE HEIGHT AGE ARITHMETIC
IN Cm. TEST
12.0 140 12.5 18.324
13.0 150 13.5 20.002
14.0 155 14.5 20.980
15.0 160 15.5 23.545

140 would have been taken as the mean height of individuals
exactly twelve years old, etc., and no uncertainty would arise.



54 STATISTICAL METHOD

Section 12. THE MEDIAN

The median of a series is the value of the mid-most measure,
hence half the measures composing the series lie above it and
half below.

We will proceed to calculate the median of the daily maximum
temperatures in New York City for July and August, 1917.
The raw data are given in Table VIII. A hasty inspection
shows that the lowest daily maximum temperature is 65° and
the highest ¢8° and, a priori, knowing of no reason to expect
that the distribution is skew it is assumed that the median
lies about halfway between these two extremes. We will,
therefore, make out a table of frequencies, as shown below:

f

NuUMBER OF DAys HAVING TEMPERATURES NOTED

Temperature below 80 —|-|-|-|- —|---|- -|-I-]-]- = 15}2
“of 8o b - - 10/

“ R L O o o e o I = 8

A s ns - s

* R - X B o o o N B = 7
“oe gy || I £

“ above8y ~lH-b- =i -l = 13

62

Adding up measures from both ends, it is found that the median
measure lies in the group with temperature 81°; or, since there
are 62 measures, it lies halfway between the values of the
31st and 32d measures. As all measures from the 26th to the
33d inclusive are recorded as 81° the 31st and 32d are so
recorded and 81° may be taken as a rough approximation to
the median. However, it is not to be presumed that the
maximum temperatures on all of the eight days for which
the temperature of 81° has been recorded were exactly 81.0°.
It is more reasonable to consider that the average of these
8 temperatures was 81 and that they ranged all the way from
80.5 to 81.5. Furthermore, since this interval is small with
reference to the entire range of temperatures, 34°, we may
with satisfactory warrant consider that these 8 measures are
evenly distributed over the interval 8o.5-81.5, as shown in
the diagram on page s5.
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26th | 27th | 28th | 29th |30th | 3lst | 32nd | 33rd
MEASURE | MEASURE |MEASURE [MEASURE [MEASURE [MEASURE |MEASURE | MEASURE

8 e 8 3 8
8 § S 3 s 3
TEMPERATURES

81,23
81.373

8
3

It is immediately seen that the temperature midway between
the 31st and 32d measures is 81.25°. This is therefore the
median sought.

This method is not the best possible, but gives a good
determination for all practical purposes. For other methods
see Bowley (1907). The best possible median is determined
by mathematically fitting a curve to the observations and then
integrating (or summing areas) from one end of the curve up
to the point giving one half the total area. As thus determined
the median is a function not only of position above or below
a certain class value, but also of the distances of the measures
above and below this median class, because the magnitude of
each of the measures from the lowest to highest enters into the
determination of the equation which fits the distribution.

Following in principle this integrating method, a median
may be determined mechanically from a carefully plotted
frequency polygon by the use of a planimeter. A guess is
made as to the median and a perpendicular erected. The
planimeter is run around the boundary of the area thus cut
off and the result noted. If the area recorded by the instru-
ment is not exactly one half the total area an adjusted guess
as to the median is made and the process repeated. This
may be continued until the desired degree of accuracy is ob-
tained. Continuing the preceding illustration: If 63 days
had been considered, and if the temperature of the added day
had been greater than 81° there would have been one measure,
the 32d, which would have had just as many measures below
it as above, and the temperature corresponding to the middle
of this mid measure, 81.3125°, would be the median. The
median, or mid measure, may therefore be defined as the value
of the (N + 1)/2 measure, but as the value of a measure is
the value of its mid-point, this is equivalent to saving that the
median is the limit of the range covered by N/2 measures
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counted either down from the top or up from the bottom. The
method pursued in the calculation of a median may be sum-
marized and expressed in a formula as follows:

1. Arrange the measures in order of magnitude and list the
frequencies for each class interval, grouping such intervals as
are well below, or well above the median interval.

2. Let N = the total number of cases, i.e., the sum of the
frequencies of all the classes.

3. Determine the class in which the (N + 1)/2 measure
lies. If it lies between two classes, as sometimes happens when
N is even, the common boundary of these two classes is the
median and no further calculation is necessary. (The infre-
quent case when these two classes do not have a common
boundary is treated in the next paragraph.)

4. Let f = the frequency of this class.

5. Let 1+ = the class interval, or range covered by the median
class. :

6. Let F = the sum of the frequencies of all the classes below
this class.

Let F’ = the sum of the frequencies of all the classes above
this class.

7. Let v = the value of the lower boundary of this class.

v’ = the value of the upper boundary of this class.

8. Let Mdn = the median value. Then

N_F
Mdn = v + 2 i (Median calculated
f from below up).. .. .|[2]
N 4
7 F
Mdn =v¢ — t (Median calculated
f from above down) (2 a]

These two values of the median will be identical.
Using the first of these formulas to calculate the median of
the maximum temperatures we have the following:

N = 62

f=8

1 =1 (i.e., 1°)

F = 25 (frequencies below the median class)

v = 80.5 (lower boundary)

31 — 23

Mdn = 805+ 3

1 = 81.25
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Or again, using the second of these formulas and calculating
from above down:

N, f, and i as above
F’ = 29 (frequencies above the median class
v’ = 81.5 (uprer boundary)

Mdn = 81.§ — ‘4%) 1 = 81.25

All cases have been covered by steps 1 to 8 except when the
median lies between two classes which do not have a common
boundary, as in the accompany-

mg illustration: . Here the FREQUENCIES| SCORES CLASSES
(N 4 1)/2 measure lies between

classes ¢ and e, but the upper limit I 9 g
of class ¢, 5.5, is not at the same 3 8 f
time the lower limit of class e, (l, Z, 3
6.5. ‘The median value might be 2 5 v
considered to lie anywhere be- 1 g a
tween 5 5 and 6.5, but the most -

reasonable procedure is to call it '

the average of these two values.

The median is therefore (5.5 4 6.5)/2 = 6.0. With this under-
standing every distribution yields a single value for the median.
If this value has been calculated from the bottom up it is well
to check by calculation from the top down.

Section 13. PERCENTILES

The median is the value below which so per cent of the
measures lie. It is, therefore, the so-percentile. Similarly
the 1o-percentile is the value below which 10 per cent of the
measures lie, etc. The derivation which gave the formula
for the calculation of the median may readily be generalized
so as to provide a formula for the calculation of any percentile.

Let N = the total population.

Let P, = the percentile, the value of which is to be calcu-
lated.

Let p = the proportion of cases having values smaller than
P,. Thus P, is the 100 p-percentile. For example, if the
15-percentile is being considered, p = .13, and P.;; is the
symbol standing for the value of the 1 s-percentile.
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Determine the class in which the 100 p-percentile, or the
(pN + }) measure, lies.

Let f, = the frequency in this class.

Let 7, = the interval or range covered by this class.

Let F,= the sum of the frequencies in all the classes below
this class.

Let v, = the value of the lower boundary of this class
interval.

Then:
P, =u, + pN — F, ; (Value of a percentile — calculate.
» » o P from belowup)..............[3]

This is the formula for the calculation of any percentile
proceeding from small values of the variable to large values.
If the calculation is from the other end of the distribution the

formula is:
(1 —p) N— Fp . (Valueof a percentile — calcu-

> =V~ fo t» lated from above down). ..{3 a]
in which,

v’, = the value of the upper boundary of this class interval

F’,= the sum of the frequencies in all the classes above this

class.
To insure accuracy it is well to calculate from below up and also
from above down.

The same procedure as in the case of the calculation of the
median is to be followed in the case of a percentile lying some-
where in a group with zero frequency.

For sake of illustration this formula will be used to calculate
(a) the so-percentile (the median), (b) the 25-percentile (the
lower quartile), and (c) the 75-percentile (the upper quartile),
for the temperature data.

(a) The Median (Mdn)

N = 62
p=.50
(.50) 62 + } = 31}
The 31} measure lies in the 81° class.

f.m = 8

tso = I

Fg = 25

v = 80.5

P = 80.5 + (5062 — 25 81.25

8
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Note that in calculating from the top down F’g= 29, and
v'_so = 815
(b) The lower quartile (L.Q.).
N =62
= .25
(.25) 62 + § = 16.
The 16th measure lies in the 80° class.

f» =10

g =1

Fyg=15

V.2 = 79.5

Pu=795+ 296215, _ o5

10
Note that in calculating from the other end F'.5 = 37, and
7’95 = 80.5.
(¢) The upper quartile (U.Q.).
N = 62
p=.75(75)62 + % = 47.

The 47th measure lies in 84° class.

f.n =2
i.n =1
Fun =45
v.s = 83.5
. P.n =835 +_(-7i)£2_;55 1 = 84.25

2

In calculating from above down F'.;; = 15, and v'.;s = 84.5.

The difference between the two quartiles is the interquartile
range and of necessity so per cent of the cases lie in this range.
In the problem in hand the interquartile range is 4.7° and indi-
cates that one half of the days studied had maximum tempera-
tures within 4.7° of each other.

The consideration of percentiles has been a diversion from
the main purpose of this chapter, the study of averages, oc-
casioned by their intimate connection with one of these aver-
ages, but we will here take up the main problem again in the
study of the mode.
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Section 14. THE MODE

The mode is the value in a series at which the greatest
frequency lies, or it is the place of densest frequency. In the
case of Price Indexes, Table XV, this greatest frequency lay
at ‘‘no change’ in price, which is accordingly the mode.

In the case of College Marks, Chart X, a pronounced mode
at go is shown by the raw data. However, such data have
several modes and it is correct to speak of the distribution as
multi-modal. If, from a priori consideration, it is thought
that the minor modes are due to causes either chance or irrele-
vant with reference to the main trend, it is desirable to smooth
them out and determine the one mode. In the case of College
Marks the minor modes at 85, 8o, 75, etc., are not due to chance
but to psychological causes lying in the minds of instructors
when called upon to grade individuals upon a finer scale than
parallels their competency to make judgments. These modes
at 8s, 8o, etc., would not be expected to vanish if the popula-
tion were increased many fold, but the minor modes in the
temperature data, Chart II at 83°, 85° 75°, etc., are probably
due to chance and would disappear if records for a number
of years were taken, but the mode at 80° would probably
remain, though it might shift slightly one way or the other.
If one is studying temperatures this latter mode only is signifi-
cant. If one is studying the distribution of talent of pupils,
the major mode only of the College Marks distribution is
wanted, while if one is studying the psychology of pedagogues
the minor modes are very significant.

Assuming that the major mode only is sought we will consider
its calculation. It is obvious that if the mode shown by the
raw data is taken it will be very unreliable, for usually a change
of but a measure or two will shift the mode, e.g., a shift of but
a single measure in the temperature data from 80° to 81°
would make it indeterminate whether the mode was 80° or 81°
while a shift of two measures from 80° to 83° would shift the
mode 3°. For this reason the mode is always determined from
smoothed data if the raw data show irregularitics in the vicinity
of the mode.

The College Marks data have been smoothed by the moving
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average method. (Sec. 6.) A perusal of Table XVIII shows
that an unquestioned mode is not established by the class
frequencies given by a moving average involving three classes.
In that case modes exist at 86, 89, 91 and g4 — the largest of
these being that at 8g. When five class frequencies are aver-
aged, modes appear at 88, go and g1 — the largest being at 88,
so that the mode is still undetermined. When fifteen frequen-
cies are averaged a single mode appears at 89, but the fre-
quency of the 89 class is only .13 larger than that of the go
class, out of a population of 773, so that the reliability of the
determination is obviously not very great.

The distribution of frequencies given by averaging ten classes
does establish the mode at 89.5 (the proof of this is left as an
exercise) and accordingly 89.5 is the correct value to adopt as
the mode.

The moving average method of determining the mode may
be summarized as follows: Calculate smoothed class frequen-
cies in the neighborhood of the mode, by means of a moving
average involving a small number of intervals. Repeat the
process, averaging greater and greater numbers of intervals,
until a major mode with no minor modes in close proximity
appears. The smallest grouping by which this major mode
is obtained, gives the best result.

Another method for determining the mode follows from the
relationship between the mean, median, and mode. . Pearson
has shown (1895) that in the case of his Type III curves the
following relation holds:

Let Mo = mode, Mdn = median, M = mean, and ¢ = the
standard deviation of the distribution (¢ defined in the next
chapter). Then

M — Mdn

Mo=M - — (The mode)... [4]

in which ¢ is a magnitude differing slightly for different distri-
butions and closely given by the equation

¢ = __ _.0846 (M — Mdn)? [
= ,3309 ot — o (M = Mdn)® ** e 4 a]

Therefore, knowing the mean, median and standard devia-
tion, the mode may be calculated. Pearson’s Type III curve
is a skew curve limited at one end and unlimited at the other.
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It is a very flexible curve and excellently represents a large
number of skew distributions. If by inspection, a curve seems
to approach a finite limit at one end, to be unlimited at the
other, and if its kurtosis (see Sections 10 and 36) is not extreme,
no serious error is likely to be introduced by assuming it to be
a Type III curve.

Since the mean and median can be very reliably determined,
the mode derived from them is a very much more stable measure
than that as determined in the last section.

In case the distribution has a pronounced mode near the end
at which it terminates, and a long and very thin tail at the
other end, e.g., of the type of the distribution of incomes, it
is well to use Formula [4 a], but for the great majority of
skew distributions it is quite accurate enough to use ¢ = .33.
The mode is then given by equation:

Mo =M — 303 (M — Mdn) (The mode) [4 b].

Applying this method to the College Marks data for which
89.5 has already been found to be the mode, as calculated by
means of a moving average, we have,

M = 86.495 Calculated by formula [1]
Mdn = 87.690 ‘ o “ 2]

M - Mdn = 1.195

Mo = 86.495 — 3.03 (— 1.195) = gO.12

Of the two values obtained the greater credence should be
given to go.12. Using, instead of .33, the value of ¢ as given
by the full formula [4 a], leads to go.13 as the mode; hence it is
evident that the short formula is satisfactory for such a distri-
bution as that of College Marks.

In handling distributions so decidedly skew that the skewness
approaches 1.0, in which case ¢ = 3(M — Mdn), neither of
the two formulas for calculating the mode from the mean
and median can be used.

The three methods given, (a) graphic method of Section 7,
(b) by smoothing the data, and (¢) by derivation from the
mean and median, are merely make-shifts if the student is
able to avail himself of the precise determination resulting
from mathematically fitting a curve to the data.



MEASUREMENT OF CENTRAL TENDENCIES 63

Section 15. THE HarMmoNic MEAN

Dunn’s Wholesale Price Index is the cost of a year's supplies
of a certain type. If the mean of the twelve of these indexes
for a given year is calculated, it gives the mean cost of that
year's supplies. But suppose instead of keeping the amount
of goods constant and noting variability in price, the total cost
had been kept constant and the variability in the amount of
goods purchasable had been noted; how would one then pro-
ceed to obtain the mean cost of a given amount of goods?
The following table, adapted from data given in Bradstreet’s
Journal, will serve to illustrate the problem:

Ruling Wholesale Prices, November 1

1913 1914 19I5 1916 1917 1918
PounDps SuUGAR
BoOuUGHT FOR $1 23.0 18.5 19.4 13.33 11.9 II.I1 (Designated as
X measures)

Let it be desired to determine the mean price of a pound of
sugar for the six years. We will first build up a table giving
the cost per pound at the successive dates, by taking the
reciprocals of the X measures as follows:

Ruling Wholesale Prices, November 1

1913 1914 1915 1916 1917 1918
CosT OF SUGAR
IN DOLLARS .0435 .0540 .05I5 .0750 .0840 .0900 (Designated as

I
— measures)

X

The mean of these measures is .06633 which accordingly is
the mean cost of a pound of sugar for the six years. It isto be
noted that if the mean of the X measures is found, 16.266, and
the reciprocal taken, 06148, the same value is not obtained.
The magnitude .06148 is not the mean price per pound — it is
the reciprocal of the arithmetic mean number of pounds bought
for $1, and a difficult measure to interpret, though not meaning-
less. The information of moment is the mean price per pound,
or the reciprocal of this, the number of pounds which could be
bought when paying the mean price per pound. This latter
is the harmonic mean. In the case in hand it is the reciprocal
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of .06633, or 15.08. Designating the harmonic mean by H.M.
and employing the usual notation it is defined by the equation:

HM=_—1

(Harmonic mean)... [s]
- Y

N°X

In words: The harmonic mean is equal to the reciprocal of
the mean of the reciprocals of the measures.

In deciding whether to use the arithmetic or the harmonic
mean one should first decide which is properly the magnitude
to remain constant (in the illustration, [a] the amount of sugar
bought, or [b] the amount of money spent). There is seldom
a doubt as to which should be the constant. If the data are
recorded in such a manner that this appropriate item is constant,
then the arithmetic meanisto be used. If the data, as recorded,
make this item the variable, then the harmonic mean should
be employed.

One further illustration may make this clearer. The fol-
lowing scores were made in a three-minute test in addition:

X : NUMBERS OF
PROBLEMS
COMPLETED O I 2 3 4 5 6 7 8 9 10 1I1I

f: NUMBERS OF
PupiLs MAK-
ING SCORES
DESIGNATED 0 0 I 0 4 710 8 3 2 2 o Total=37

The question should now be asked, Is the significant measure
(a) the rate at which a pupil works a problem, or (b) the number
of problems that he can work in a given time? The writer
would judge that the rate at which the pupil works, or the
number of minutes required to work one problem, is the more
straightforward, readily comprehended and generally mean-
ingful measure. Accepting this and noting that the data as
recorded make the time element constant and not the number
of problems worked, the harmonic mean is seen to be the proper
mean to use.

If in this problem the arithmetic mean is calculated, there
is a certain significance in it, but the reciprocal of this mean
should not be compared with rate measures in which the number
of problems is constant and the time allowed varies.

For discussion of the properties of an index number based
upon the harmonic mean, see Fisher (1921).
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Section 16. GEOMETRIC MEAN

If the items in a series are so related (usually a temporal
relationship) that the expression of each one in terms of the
preceding one, i.e., relative to the preceding one, is the informa-
tion required, then the averages thus far treated do not serve
the purpose. These measures are, of course, ratios and the
geometric mean is the significant average.

In Table XII, column two, are given the costs, on January 1
of successive years, of a year’s supplies of certain common
products. If the cost for each year is expressed in terms of
the cost the preceding year, we have the following Table:

TABLE XXIV

Dunn’s Wholesale Price Index for each Year Expressed as a Relative to the
Preceding Year

1908 e« « « .+ .+ . 1.0561
1909 e+ o+« + .« .+ .9882
1910 e« + « + .+ . 11036
1911 e+« +« .+« .« . .9325
1912 e+« « .« . . L0724
1913 .+« + +« .+« « .9789
1914 « « + .+ « .+ . LO306
1915 e+« < « < . 9971
1916 « + + « + <« . L1087
9)9.2681

1.02979

If the mean advance per year is desired and the arithmetical
mean, 1.02979, taken as the measure of it, serious error would
be involved. The ratio of the basal year, 1907, with reference
to itself is of course 1.00000, so that the mean advance as
given by the arithmetic mean is .02979 and nine times this
gives .2681, a measure for the advance over the entire period
of nine years. That this is an incorrect measure is shown by
the fact that the ratio of the prices in the last year to the
basal year (137.666 <+ 107.264) is 1.28343, showing that the
actual advance is .28343. The reason for this discrepancy is
that each advance is figured upon the preceding year as a base
and not as a proportion of the price in the basal year. Strictly
speaking 1go7 is basal for 1908 only; 1908 being basal for 19og,
etc. Accordingly 1.0561 X $107.264 gives the price for 19o8.
The price for 1908 times .9882 gives the price for 1gog, or
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.9882 X 1.0561 X $107.264; etc. Finally the products of all
the nine ratios, 1.28343 times $107.264, gives $137.666, the
price for 1916. In place of these nine different ratios whose
product gives the ratio of the last year to the basal year, may
be submitted a single mean ratio which, when multiplied by
itself nine times, gives the same product. This is the geometric
mean and, designating it by G.M. and the ratios for the separate
years by p1, ps, p3, . . . pa, it is defined by the equation:

G.M. =~/p1 X pz Xps X -+ X pn (Geometric mean) . .[6]

It may be readily calculated by means of a Log Log slide rule
or by means of logarithms as follows:

log G. M. =10gp1 + logp; + logps + -+ + log pn

. (Geometric mean) [6 a]

Using a slide rule the G. M. for the preceding data is found to
be 1.0281. Using six place logarithms it is found to be 1.0282.

A check on these values is possible by taking the gth root of
the ratio of the 1916 price to the 19o7 price. By logarithms
this is found to be 1.02811. This figure means that on the
average, wholesale prices increased 2.81 per cent each year,
from 1907 to 1916.

The Index of Means, or of Sums

Another problem arises in connection with indexes which
may be illustrated by the wage data in the last three columns
of Table XII. The essential portyons are copied below:

Chicago
UxioN WaGe PErR Hour
Painters Linotype Carpenters

Operators rpe
1907 . . . . . . . 50¢ 50¢ 56.3¢
1916 e e e e 70 50 70

Same data expressed as ratios — 19o7 as base

1907  « « o« o+ . . . 100 l 100 100

1916 e 140 ‘ 100 124.334
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Let us suppose that there are the same numbers employed

from each of the unions, and let us designate this number by

N. The question that concerns us is how to determine the
140 + 100 + 124.334

average increase in wages. Does 3 = 1.2144,

indicating an increase of 21.44 per cent, give it?
Bearing this in mind let us approach it by another method.

The mean hourly wage in 1go7 is (N so+ N;X{‘*‘ N 56.3) _
52.10 cents, and in 1916 it is Ngo+ ]\; ;5\? +N 7°) = 63.33

cents. Dividing 63.33 by 52.10 the ratio of the mean wage in
1916 to that in 19o7 is found to be 1.2156, giving an increase of
21.56 per cent. The two values found are not identical and
it can be easily proven that in general they will not be, for,
letting P, L and C equal the initial wages in the three unions
respectively, and p, /, and ¢ the ratios of the final wages to the
initial wages in the three cases; then p P, I L, and ¢ C equal
NP + NL 4+ NC

the final wages respectively; and, 3N = the"
mean initial wage; also, NpP + Nllé' +NeC = the mean final
pP+IL+cC

- This

wage; and the ratio of these two wages is
n? + : + ¢

P+L+C

is identical wit only in case P = L = C, which

in general is not the case. The fact that the initial wages
were so nearly equal in the illustration accounts for the small
difference in the two results.

We may therefore conclude that it is inaccurate to take the
mean of ratios as equivalent to the ratio of the means (or sums)
of final and initial scores.

Section 17. WEIGHTING

If the numbers of workers in the three trades had been the
same throughout and if because of considerations other than
population the trades possessed importances W, w, w, then it
would have been proper to multiply the wages by amounts
equal or proportionate to W, w, w. This is ‘weighting.”
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The multiplying of a score by the number of cases having it
has at times been called weighting, but in this text the term
will be used to mean the multiplying of scores by amounts
determined not at all, or not solely, by the population, but
from other evidences of importance. (See Section 91.)

It is generally a difficult problem to determine just what con-
stitutes proper weighting. When one is confronted with the
problem of weighting measures which are to be combined and
feels incompetent to accurately judge of their relative impor-
tances he is inclined to *solve”’ the problem by ‘‘not weighting at
all.” But the failure to assign weights is actually a very definite
weighting — that of calling the units involved in the various
measures of equal importance. This is not the same as saying
that the failure to assign weights results in giving equal impor-
tance to the different items. This latter is not the case if the
dispersions of the scores for the various items differ. This
point, together with others involved in weighting, is treated at
length in connection with partial correlation. It may cer-
tainly be said that, judging by the ordinary run of studies in
economics and psychology, much more error has been com-
mitted by ‘“not weighting at all” than by improper weighting.

PROBLEMS

1. Calculate the mode for the maximum temperature data of Table
VIII. Is the short formula, in which ¢ = .33, appropriate to use in this
case?

2. Calculate the L. Q., Mdn. and U. Q. for the hypothetical distribution
of incomes, comparing with graphic determinations (Problem s, Chapter
II).

Calculate the mean. Assume that the mean income for the highest
income group is £21,000. Since these data have very irregular class in-
tervals, in calculating the mean, great care must be taken in assigning
£ values to the different classes, no matter where the arbitrary origin is
chosen. For this reason it will be more accurate and almost as short if
the method given by Formula [1] is followed. The student may well
make the calculation both ways to become familiar with the handling of
irregularly grouped data.

Calculate the mode: (a) by finding the point of inflection in a smoothed
ogive curve, (b) by deriving from the values of the mean and median,
using ¢ = .33 and (c) the same, using the full formula for c¢. In doing this
take ¢ = § the interquartile range.
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3. The following three series are scores of individials in three tests.
They may be used as practice series for the calculation of M, Mdn., L. Q.
and of constants treated of in subsequent chapters.

Practice Series

Sc SS S OF SaM
Iowvipuas | SCORES grk Cuass | Scones onSae | Scongs on Sus
Series 1 Series 2 Series 3
A 151 132 148
B 147 132 143
C 145 130 153
D 138 128 148
E 134 121 135
F 124 103 134
G 120 105 138
H 118 122 138
I 116 99 128
] 114 124 129
K 113 109 131
L 107 99 136
M 106 103 124
N 105 98 126
0 104 108 133
P 101 104 122
Q 100 115 137
R 99 11 119
S 98 107 121
T 96 92 124
U 89 96 118
v 87 94 126

4. Calculate the sth, 10th, 15th, etc., percentiles for the scores in hand-
writing upon the Ayres and Thorndike scales, given in Table XXX,
Section 34, and check answers against columns 1 and 2, Table XXXII,
Section 3s.

Group the Ayres data in 3’s and the Thorndike data in §'s, calculate the

same percentiles and check against answers in columns 3 and 4 of Table
XXXII.



CHAPTER 1V
MEASURES OF DISPERSION

Section 18. THE MEgaN DEvIATION

Distributions having the same average may differ markedly
in the spread of the measures composing them. The following
two series of measures have the same mean, median and mode,
but the scatter of the measures is very different:

“»n 7 7. 8 8 8 8 8 9 9 9

1, 1, 1, 1, 3 8 13, 15, 15, 15, IS
The range in the first series is three, while in the second it is
fifteen. If deviations from the mean, 8, are calculated, they
run:

-1, -1, -1, o, o0 o0 o0 o0 I, I, 1 Sum= 6

-% -7 - -7 —5 ©o 5 7, 7, 7, 7 Sum =66
The means of these two series of deviations are of course zero if
taken algebraically, but if taken absolutely, i.e., irrespective of
sign, they are .545 and 6.0 respectively. These are the mean
deviations.

The mean deviation may be defined as the sum of the abso-
lute values of the deviations of the separate measures from
the mean, divided by the population.

It can be calculated by the method of moments. Referring
to Table XXII, columns four and five: If the deviations had
been from the mean, 81.548 (in which case they would have
been designated by x instead of by &) instead of from 8o, a
mere guess, the products f - x, would have been slightly different
from those recorded in column f - ¢, and their sum, irrespective
of sign, divided by their number, 62 would have been the
mean deviation. Since, however, the calculation of deviations
from the mean, 81.548, involves fractional or decimal magni-
tudes 1t i1s in practice inconvenient to determine the mean

70
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deviation in this manner. Deviations from 81.548 run as
given herewith in line (x):
(x): —16.548 —15.548 —14.548... —2.548 —1.548 —.548 .452 1.452...16.452
(£): —15 —14 —-13 ..—1 o I 2 3 ..8
For purposes of comparison, the corresponding deviations
from the arbitrary origin, 8o, are given in line (¢). It is seen
that algebraically each ¢ measure is 1.548 larger than the
corresponding x measure. In absolute value all the ¢ devia-
tions up to and including those for class 80° 25 in number,
are 1.548 too small; those in class 81°, 8 in number, are .452
too large; and those in classes 82° and on, 29 in number, are
1.548 too large. Tabulated, the data show:

25 measures 1.548 too small
29 measures 1.548 too large

Excess of 4 measures 1.548 too large = excess positive moment of
4 X 1.548 = 6.192
Excess of 8 measures .452 too large = excess positive moment of
8 X .452 = 3.616
Total excess positive moment = 9.808

The sum of the moments as calculated from 80° is 89 4+ 185 =
274, but this is too large by ¢.808. Accordingly the sum of
the deviations from the mean is 264.192 which, divided by 62,
gives 4.26, the mean deviation sought.

The calculation, as shown, is cumbersome. A simple
formula for the calculation of the mean deviation from the
first moment about zero as an arbitrary origin is herewith
derived.

Given the series 11, 12, 13, 13, 16. Mean = 13.0. The
deviations of the successive measures from the mean are,
— 2, — 1, 0, 0, 3 respectively, giving a mean deviation of 1.2,
These deviations are (11-13), (12-13), (13-13), (13-13), (16-13),
but since all are to be taken positively they must be written,
(13-11), (13-12), (13-13), (13-13), (16-13). Using the usual
notation we have:

. « - N

CXai+ X+ X - X - Xa+M+M-M-M-M
B N
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If F = the number of measures lying below the mean (here 2),
then it is seen that M enters in positively F times and nega-
tively (N-F) times and that the X's which are smaller than the
mean enter in negatively (the sum of these may be represented

F
by £X) and that those greater than the mean enter in posi-
I

N
tively (this sum may be represented by = X). Accordingly we

F+1
have:
N F
Fi X-ZX+FM-(N-FM
- - 1 1
A.D. N (7]
Since, however,
N F N F F N °~ 'F
ZX-ZX=2 X4+ZZX-2ZX=2ZX-2zZX
F+1 I F+1 I 1 I 4
and since,
N
X =NM
1

the formula becomes
F
A.D. = 1—2;’ (FM — £ X) (Average deviation from the mean) (7 a]
1

This is a very simple formula to use in connection with an
adding machine. If the entries are not arranged according to
magnitude add them on the machine and determine the mean,
at the same time determining the population, N. Then add
all the measures which are smaller than M, thus obtaining

F
Z X, at the same time determining the number of such measures,
I

F. Thus two listings on an adding machine will yield the
three important constants N, M and A.D.

If the measures are arranged according to magnitude a
single listing will suffice, it only being necessary to take sub-
totals for each of the group frequencies in the neighborhood
of the mean. For example the adding machine listing for the
preceding series would be as shown herewith:

* This formula, with empirical proof, was independently discovered by two of the
writer’s students, Miss Elva Wald and Mr. John P. Herring.
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II
12

2 23s
13
13

4 49 s
16

5 65¢

One would guess that the mean lay somewhere between 12
and 14 and would therefore take sub-totals after listing 12
and again after listing the 13’s. Having N= 5and the sum =
65, division gives the mean, 13.0. The listing shows that
there are two measures below the mean and that their sum is

F
23,1i.e., F = 2and £ X = 23. Thusimmediately
1

A.D.=%(2 X130 —23) =12

The peculiar expedition of this formula should make it service-
able in large studies where time of computation is an important
factor. It will shortly be shown that the probable error of
the average deviation is but slightly greater than that of the
standard deviation, so that unless the greatest accuracy is
demanded, and unless the standard deviation is needed for
such further purposes as use in correlation formulas, the aver-
age deviation will be found advantageous.

Returning to the Wald-Herring formula [7] it may be noted
that if deviations around some point, P, other than the mean,
be taken, and if F = the number of measures lying below this
point, the formula becomes:

1. N F
A.D.around pt. P = z—v[p?‘;xx —IX+(@F-N P]
(Average deviation around any point P) [8]

IfF = I—:—, then P 1s the median and the formula becomes:

X] (Average deviation from

A.D. =
around Mdn the median)......... (o]

+Mz
>
|

1
J_V[N

2

Note that if N is odd, g and (g + 1) are fractional. In this
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case it is necessary to add one half of the median measure in
each summation. For the series 11, 12, 13, 13, 16;

A. D. around Mdn = 3} [(6.5 + 13 +16) — (11 + 12 + 6.5)] = 1.20

This is the same as the average deviation from the mean for,
in this particular problem, if measures are taken at their face
value, the median and the mean coincide. Such measures as
usually occur may, with insignificant error, regularly be taken
at their face value in calculating the average deviation from
the median, but they should not be so taken in calculating the
median itself. The method already given in Section 12, based
upon the assumption that the measures spread themselves
evenly over the interval, is to be followed in calculating the
median.

The mean deviation, unless stipulated to the contrary, is
always calculated from the mean. It is at times desirable to
calculate it from the median, in which case it should be defi-

«nitely labeled ‘“mean deviation from the median.” A real
reason for calculating it from the median exists in the fact
that when so calculated it is smaller than when calculated
from any other point, as can readily be shown:

Let ¢{ = a deviation from the median. Then the

M. dev. from the Mdn = 2%—‘

Let ¢ = a deviation from a point P which is A distance
from the median; A < one class interval. Then § = ¢ + A.

Tl I+ FA-(n—F)A
n n

M. dev. from P =
Suppose A is positive, then P lies above the median and F >
(n — F) so that the above right hand member = §_|n§'_| +a
positive magnitude. If A is negative, P lies below the median
and F < (n — F), so that the right hand member still = Fi’l—f—l +

a positive magnitude. Therefore, whether point P lies above
or below the median the mean deviation from it is greater than

Elni—l, the mean deviation from the median. The proying of
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this same relation when A > one class interval can be readily
accomplished and is left as an exercise. Accordingly the mean
deviation is a minimum when taken from the median.

Section 19. THE QUARTILE DEVIATION

A measure of dispersion may be obtained by taking the
difference between any two percentiles. One such measure,
the difference between the upper and lower quartiles, or the
interquartile range, has already been mentioned. The most
customary measure, however, is one half this measure, the
semi-interquartile range, which for convenience and brevity
is called the quartile deviation, and is designated by “Q.”
Using the usual notation for the upper and lower quartiles,
we have:

_U.Q.—L.Q.

P (Quartile Deviation)...... [10]

Q

It is to be noted that the quartile deviation is not a deviation
from any of the averages thus far considered. It is simply a
measure indicative of dispersion. If thought of as a deviation
at all it should be as one from a point midway between the
upper and lower quartiles. A rather better way to interpret
it is as one half the interquartile range, a range within which
lie 50 per cent of the measures.

Section 20. THE 10-9o PERCENTILE RANGE

A range somewhat larger than the interquartile range has
advantages over it and the quartile measure derived from it,
as a measure of variability. I have shown (Kelley 1921 new)
that for a normal distribution the interpercentile range having
the minimal error is that between the 6.917 and the 93.083
percentiles. A range but slightly different from this and
having nearly as great reliability is that between the 1oth and
goth percentiles. This distance is called D and is given as
the most serviceable measure of dispersion based upon per-

centiles.
D =Py —Py (1090 pereentile range). .. .. [11]

Its calculation and interpretation are very simple, and as over
72 per cent more cases are required to secure as great reliability
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in the quartile deviation, this measure of dispersion is recom-
mended wherever percentiles are used. Its relationship, in
case of a normal distribution, with other measures of dispersion
is given in Section 31. For proof of the next ten formulas the
reader is referred to the reference cited.

The standard error of D is given by formula [16] which in
turn depends upon formulas [40], [43] and the following:

P q . (The correlation between any two
TPyPy = qp in which p < ¢’ percentiles Pp and Py’) ...... [12]

_ _|Npg + Np'q" 2 Npg" (Thestandard error of an inter-
TPy—Py — Ny (')? yy' percentile range).......... [13]
in which p < p’ and y is the ordinate of the curve at the per-
centile P,, and similarly for 3’ and P,.
Assuming normality, formula [13] becomes

- o / ?'¢’ 2 pq’ (Standard error of an interper-
Py—Py \/ N\ (z)z (2?22 centile range in a normal
distribution). .. ..........[14]

in which z and 2’ are ordinates as given in Table K-W for
arguments of ¢ and ¢’. If, further, percentiles equally distant
from the ends of the distribution are calculated, p = 1 — p'
and formula [14] becomes

(Standard error of a symmetrical

interpercentile range in a
normal distribution) . ... ... .[15]

"P‘,—P(l 9 = \/2 4 (q )

We now obtain for the standard error of the 10-go interper-
centile range

op = \%V2'279224 ...................... [16]

Entering Table K-W with ¢ = .1 we find that x = 1.281552.
Thus D = 2.563104 ¢ which gives

P.Ep= wzi()?v‘—l) (Probable error of D).[16 a]
This is a very convenient formula, as, for ordinary purposes, we
may take

.600 D
P.E-D= _“\Tj_‘v‘ ...................‘......[l6al

* On p. 744 of the reference cited (Kelley 1921 new) this value is incorrectly given as
6001
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Two other constants which are of value in determining the
type of a curve are Sk and Ku defined by the following equa-
tions:

Sk = Py — } (Pw + P.o) (A measure of skewness

based on percentiles) .[17]
The standard error of Sk is

(The standard error of the per-

D
sk = 59914 VN  centile measure of skewness) ..[18]

K Q (A measure of kurtosis based on
u= = .
D percentiles) ................. (19]
The standard error is
oo = 27779 (The standard error cor the per-
Ku vN centile measure of kurtosis) .. .[20]

For a symmetrical distribution Sk = o and for a mesokurtic
distribution Ku = .26315. If a given distribution has a
Ku > .26315 it is platykurtic and if < .26¢15 it is leptokurtic.

We thus see that the percentiles of a distribution may be
used to answer some of the important questions of curve type.
If populations are large, so that standard errors are small,
resort to the longer though generally more accurate (not always,
as it i1s dependent on curve type) methods of Chapter VII
may frequently be avoided.

Section 21. THE STANDARD DEVIATION

The standard deviation is far more universally significant
than are any of the preceding. It is based upon the squares
of the deviations from the mean, instead of upon the first
powers as is the mean deviation. The exceptional advantages
of this measure of dispersion will appear in connection with
subsequent work. The standard deviation is defined as the
square root of the mean of the squares of the deviations and is
regularly designated by ‘“¢.” Unless otherwise stipulated
deviations are always from the mean. Using the usual nota-
tion:

:‘.‘__—:f (The standard deviation

”n of a distribution). .. .[21]
This is a fundamental formula and should be recognized
whether written as

o =
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or as,

The calculation of the standard deviation for the temperature
data of Table VIII is as follows:

TABLE XXV
Calculation of o
Gross QI:TREI;.- FD"%‘; FIrsT Siz&m SECOND MOMENTS FROM MEAN
SCORE CIES 8‘::;.‘ MOMENTS| MENTS *

X | f 3 fE | f&? fx? A B c
65 1 [—15 [—15 225 | 1(—15—8)*= 1 (152—28[—15]+8?)
66 1 |—14 |—14 196 | 1 (—14—8)*= 1 (143—26[—14]+8?)
69
70 1 |[—10 |—10 100 | 1(—10—8)?= 1 (10?'—28[—10]+8?%)
71 1 —9|—-9 81| 1(— 9—8)*= 1(9'—25[— 9]+4?
72
74 2 |— 6 |—12 72 | 2(— 6=08)3= 2( 6*—25]— 6]+4?)
75 3 [—5|-15 75| 3(— 5—8)*= 3( 5?—246[— 5]+8?)
76 I |— 4 (— 4 16 | 1(— 4—98)= 1( 42—28[— 4]+8Y)
77 1 — 3 (-3 9| 1(— 3-8)= 1(3°—26[— 3]+8?)
78 3 |—2|— 6 12| 3(— 2-98)= 3(22—268[— 2]46?)
79 I — 1 |— 1 1| 1(— 1=8)= 1( 1?—28[— 1]+89)

——89
8o 10 o o|10( 0-8)2 =10( 0—26[ 0]+5?)
81 8 1 8 8! 8(1—08)* = 8( 12—26][ 1]4459)
82 5 2 10 20| 5( 2-8) = 5( 22—24][ 2]4+6?)
83 7 3 21 63 7(3—98)?2 = 7(3'—29) 3]+
84 2 4 8 32! 2(4—9)* = 2(42—25[ 4]+8?)
85 4 5 20 100 | 4(5—8)* = 4( 5*—248[ 5]+8%)
86 3 6 18 108 3(6—8)* = 3(62—25' 6]445?)
87 I 7 7 49 | 1(7-8* = 1(72—285 7]+
88 2 8 16 128 | 2( 8-8) = 2( 82—24][ 8]+8?)
90 I 10 10 100 | 1(10—8)? = 1(10*—25[10]45?)
95 I 15 15 225 | 1(15—8)* = 1(15?—245[15]+4?)
96 1 16 16 256 | 1(16—8) = 1(16*—25(16]+8?)
98 2 18 36 648 | 2(18-8)? = 2(182—25(18]45?)
” —_— —— —

62 185
96 2524
5=1.548 {40.710 ZE —262¢ 28

o = V40.710 — (1.548)? = 6.190
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If the arbitrary origin, 8o, had been the mean, the standard

deviation would be given by +/2524,/62, but as the arbitrary
origin is an amount §, (= Z{/N = 96/62 = 1.548), below the
mean, each ¢ deviation is algebraically too large by the amount
8. Accordingly, if, in place of Z§¥ we calculate (¢ — 6)® it
will lead to the appropriate sum from which to calculate o.
Magnitudes (¢ — 6)? are expanded and tabulated in the last
three columns of Table XXV. It is immediately seen from
the table, and is of course also apparent by squaring the bi-
nomial, that Zx2 = Z(¢ — §)2 = Z£ — T 26t + 26  Since
o is a constant and does not vary from class to class Z 2 6¢ =
2 62¢ and similarly Zé* = N§&* (here = 62 X 1.5482%). The
summation Z¢ has already been obtained in summing the first
moments and, from the definition of 4§, £f{ = Né. Accordingly
Zxt =322 - 2 N&® 4+ Né?, and

fj’ _ 5 (The standard deviation of a distribution
N N calculated from an arbitrary origin) . .[22]

The symbol §, usually standing for a small magnitude, should
not be so interpreted here, for the formula is rigorously exact
whether the arbitrary origin differs from the mean by a fraction
of a unit or a large number of units.

The square of the standard deviation, ¢2?, is frequently an
essential constant. It is designated by ., meaning the second
moment about the mean. Without further explanation the
meanings of the various moments, all taken from the mean,
will be understood from the following equations, in which x,
as usual, stands for a deviation from the mean:

The first moment, u; = §Nx =0 [23]
2
The second * ut =gt = % [23 a]
5 (Definition of the moments) |
The third “ p= [23 b)
The fourth “ e = gﬁx‘ [23 ¢]
etc

If deviations from an origin, P, § distance from the mean, O,



8o STATISTICAL METHOD

are calculated, then O — P =34, and x =§¢ - §, and the
following relationships hold:

Z(E—-9) _Z¢

m=TF— TN

- — 8)2 2
“2=:¥)___2_1$_62

z — )3 T s z z z# T g2
"’_LN_)—_N__36_~+362.1v‘§_63—_.1$__36__£+26'

T(E—0 _Tg 2o ¢ Tt
m—T—-——ﬁ 406 + 6 &2 N 45’N + o

4
=25 45 $+66’”E — 35

us = etc.

If uy, e, etc., stand for the moments around the arbitrary origin
the above equations may be more simply written:
Tt )

r

_ - — (The moments about the mean
M= g - ] ) [24 a]
L=, determined from those about < B
K3 = Hz = KA any arbitrary origin) 24
ps = M3 — 3 paiy + 2 uY [24 ¢].
M= By — 4 B3p + 6 pan? — 3wt L[24 d]

etc.

The following formulas give the same results and are usually
the more serviceable,

m=0 (Moments about the mean (25]
M2 = B2 — u? determined from the mo- | [25 4]
M3 = Mz — 3 pimy — RY ments about any arbitrary | [25 b]

origin)

B4 = M4 — 4 p3p1 — 6 pfu?) — B4y {25 ¢]

ete.

It is sometimes desirable to determine the moments from
some arbitrary origin knowing them from the mean. Solution
of the preceding formulas gives:

n(n—1) —
—T_ Mn—12 4%
nin—1)(n—2)
+ 3!
(Moments about an arbitrary origin deter-
mined from moments about the mean). . .[26]

Bn = pn + nun—y w1 +

TS ATILE SRR

In case the grouping is not fine a small correction to the u's as
given in formulas [68] is necessary.
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We may now investigate some of the properties of the
standard deviation. Let us compare the magnitudes of two
standard deviations; (a) taken from the mean, O, and (b)
from a point, P, § distance from the mean. O — P = §,
and x = § — 8. Let ¢ = the standard deviation from O and
s = the s@ndard deviation from P:

\/‘\\
12X
7 N
Tt T (x+8)?2 Zx? Zx I8 . Zx

2 = T2 = TN L = T —_ —_— —— ==

s N N N+26N+N,andsmceN 0
Hence

ST = 0l 82 e e e [27]
or

s = Vs + 5 (Standard deviation about an arbitrary origin deter-
mined from the standard deviation about the

Since 8, whether positive or negative, enters into this expres-
sion as a square, s? > ¢?; in other words, the standard devia-
tion is a minimum when taken from the mean. This is a very
important property of the mean.

Formula [24] for u, gives the standard deviation squared in
terms of the moments about an arbitrary origin. Formula [27]
for s? gives the standard deviation squared from an arbitrary
origin in terms of the second moment around the mean and
the distance between the mean and arbitrary origin. It should,
however, be noted that neither of these formulas gives the
standard deviation around a second arbitrary origin in terms
of the moments around a first arbitrary origin. This problem
may readily be solved; if P and (Q are the second and first
origins and if ¢ and ¢ are deviations and s and S standard
deviations around these origins respectively, we have:

P—-—Q=A
E=¢t-—-4A
TE (P —A)  Trr—2AI0+ Nar_ . -
SENT TN T N =St ar -z
(Relation between standard deviations
about two arbitrary origins) .. .. .[28]

Expressed in words: if moments around any two origins are
taken, the second moment around the second origin equals
the second moment around the first origin plus the square of
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the difference between the origins minus twice the product of
the difference (taking the second origin minus the first) and
the first moment around the first origin.

The formula as written is to be used in determining the
second moment around the ‘“‘second” origin when the moments
around the “‘first” origin are known.

Section 22. THE STANDARD ERROR oF THE MEAN

If it is desired to determine the reliability of the mean it is
necessary to have an estimate of how a number of equally
excellent, i.e., similarly derived, means distribute themselves —
that is, a new distribution is to be conceived with the means
themselves as the gross scores. The standard deviation of
these means is indicative of the precision of any one of them.
If this distribution of means has a very small spread, or standard
deviation, then any one of them is a good measure, good in
the sense that it is a close approximation to the mean of all
the means. We thus need oy, the standard deviation of the
means. If there are M sets of N measures each, and if the
mean of the MN (where MN equals a very large number)
measures, i.e., the mean of the means, is the true value, or
true origin, then x stands for a deviation of a measure from

this origin and 2t % _]*\_7 EERE.2. , the mean of one set of N

measures, is expressed as a deviation from this same origin.
The standard deviation of such means is o,, the standard
deviation sought. The standard deviation of the distribu-
tion of measures from the mean of the N measures will not be
identical with the standard deviation of the same measures
from the origin as here defined, but the difference may be ex-
pected to be negligibly small if N is larger than 25, which we
shall assume to be the case in this derivation. We will desig-
nate the standard deviation of the original measures by o.
We have: .
z(951 +xz; "'xN)
2 —_—
oty = i , or
MNo?y, =
xhtaty+- - xaf F2 a2 xnt 20yt 2 0t F2xy Xy
2 ( v )




MEASURES OF DISPERSION 83

xh+ah+ - afy
N

However,( ) = g3, and as X designates a

~ 2 2
X2+ ,;\; cex N) — M2,
Also 2 xx3 + 2 x1x3 + - - - may be rewritten, xix; + x1x3 + - - -
XN+ XXy + Xoxy + - Xy + 23w + X + XX+ - XXy
+ ---, which, if S,, S;, --- stand for summations of N — 1
terms each, is = x;:S1x + 2S¢ + - -+ xaSyx. Each of these
S summations is closely equal to zero. [Product theorem,
see Section 23.] Since these summations are at times small
positive and at other times small negative magnitudes and
since x; %, - - - are likewise both positive and negative and are
entirely independent of the S’s, it is clear that the whole ex-
pression, (xS; + x2S: + --- xxSx) does not vary from zero
by but a small amount and is negligible in comparison with
the sum of the square terms. The equation may then be
written:

summation of M such magnitudes, E(

VMa’M = M(Tz, or

(Standard error of the mean) [29]

M

Sl

This is a fundamental relation applicable when #n > 25 ---
Expressed in words: The standard deviation of the mean
equals that of the gross scores divided by the square root of
the population.

Any measure whatsoever may be thought of as one of a
distribution, the variability of the distribution being an indi-
cation of the error involved when any single measure of the
distribution, taken at random, is chosen as the value of the
thing measured. Thus when a measure is taken as the best
obtainable value the standard deviation of just such measures
as the one taken is the standard error. Thus the ‘‘standard
error”’ of a measure and the ‘‘standard deviation” of such
measures are synonymous expressions. The relation between
the standard error and the probable error as derived in Sec-
tion 28 is

Probable error = .6744898 standard error  [Formula 33 of Sec. 27].
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Section 23. THE STANDARD ERROR OF ANY MOMENT

The product theorem used in the preceding derivation may
be stated:

The sum of products of measures which are
independent of each other and whose
means are zero, equals zero. [Product theorem]
This theorem, only roughly proven above, will later, in con-
nection with the subject of correlation, be seen to be a necessary
consequence of independence between measures. By utilizing
it we may determine the standard deviation of any moment,
kx, in @ manner very similar to that in which we have determined
the standard deviation of the first moment, u;, the mean.
Consider a population composed of M sets of N measures
each. The n’th moment of the total population is, if £ indi-
cates a summation of M terms and S a summation of N terms:
_Z (Sxn)
Hn = "MN
The deviation from this value of a determination based upon
one set of N measures is:

S;c" z (S'x")] I:Sx" ] _ [S (x"}\;— [.ln)]

Thisisa small magnitude. The sum of M such would of course
be zero, but the sum of the squares would not, as there would
then be no negative terms. Accordingly the standard devia-
tion desired is:

S(x” - “n) (x”l - IJn) + - (an - I-"n) =8+ b+ - N
let us say. Then MN %, = A‘, X [Sé]? in which [Se]2 = Sé?
NN -1)

+ 2 5'6,5,, where S’ = a summation of —- ; terms which

approaches zero according to the theorem just stated. Ac-
cordingly,

MNo®,, = j'\—]z S8? = 7:,2'52,

in which ¥’ indicates a summation of MN terms.
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Replacing the &’s by the equivalent binomials, we have:
MNo%, = ILV I (xM— 2 unx® + u?p), which, since 2 un Z'x% = 2 MNu
- .rlv (MNuan — MNutn)

_
Oy, = -\I N (Standard error of any moment).......... [30]

It is thus seen that the standard error of any moment is de-
termined when that moment, the moment twice as large, and
the population are known. It is to be noted that this formula
is entirely general and does not depend upon having a sym-
metrical distribution. It only requires that the populations
dealt with shall not be small.

Applying this formula to the determination of the standard
deviation of the mean, n» = 1, and we have:

- L |m—

om = oy = N (Standard error of the mean) [29 a]
This is the general formula. It may be written more simply
for it has already been pointed out that uy = o, and u = g3,
so that the equation becomes:

g

= - N (Standard error of the mean). .[29]
2%

om
This, of course, is identical with that previously derived.
We may determine the standard error of the standard
deviation, but shall first need that of the standard deviation
squared, u,: By formula [30] we have

op, = \]‘“_;VJ‘:_’ (Standard error of the second moment). .{31]

It remains to determine what is the square root of a quantity
corresponding to a given deviation in the quantity itself.
Consider the magnitudes p» and (2 + A) and also V/ uz and
Ve + A or their equals ¢ and (62 + A) and also ¢ and

A A? . .
o+ — - — + ) - (This latter after expansion of the

20 83
radical by the binomial theorem.)
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It is seen that corresponding to a small error A in ¢?, there is

an error
A A?
(-0t )

in ¢. However, in all ordinary situations, A?/8 ¢ and higher
terms are negligible in comparison with A/2 ¢, so that we
have:

I By — p2?
Og = — - =

20 N

— ot
= 2—’ ’LN_" (Standard error of the standard deviation).[32]
ag
Utilizing formula [51] of Section 26 we have

o (Standard error of the standard deviation in a
Og = p—

V2 N normal distribution) . .. ............ ... ..... [32 a}

Section 24. THE STANDARD ERROR OF A CLAss FREQUENCY;
OF THE MEDIAN; AND OF A PERCENTILE

The deviation in the value of the median is a function of
the deviation in the frequencies below, or above it. Consider
the accompanying graph to represent the distribution of cer-
tain scores in the case of a very large population. If A fre-
quencies are transferred from below Mdn, the median point,
to above it, the median would te shifted up. The amount of
this shifting may be readily determined.

)
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Let f = the frequency in a small interval of range, 7, near the
center of which is the median.

Then the new median has been shifted an amount 7(A/f)
above the old median, assuming that the frequencies in the
interval ¢ distribute themselves in a rectangular manner. The
fact that this assumption is not the most reasonable which can
ordinarily be made has entirely insignificant influence in case
distributions do not show very exceptional rates of change in
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the vicinity of the median and in case populations are not small,
let us say not less than 25.

It is thus seen that corresponding to a change A in the number
of frequencies below the median, there is a definitely established
change in the median. The standard error of the median may
therefore be written,

It only remains to calculate the standard deviation of the
A’s and substitute in the above expression in place of o4 to
have the standard error of the median.

In drawing a sample of » measures from the total population,
in which the chance of each measure lying below the median
is one half, we will call those which lie below the median
successes and those above failures and we will let F equal the
number of successes. If two scores are drawn (n = 2) then
the chance of both being successes; of the first being a success
and the second a failure; of the first a failure and the second a
success or of both being failures is [(1/2) (1/2)]in each instance.
Each of these is equally likely to occur, so that if a large number,
N, of such samplings of two are made we have the following
distribution of successes, or of frequencies lying below the
median:

SUCCESSES FREQUENCIES

o NiX}=N}
I N2X}i{X3}=N1}
2 Nixi=N1

That is, one fourth of the samplings will show no measures in
this category (below the median), one half will show one
measure in it, and one fourth will show two measures in it.

If three scores are drawn at a time there is just one permu-
tation yielding three successes, three permutations yielding
two successes and one failure, three yielding one success and
two failures, and one yielding three failures, so that we have
the following distribution:

SUCCESSES FREQUENCIES
o NiXiX4=Ni}
I N3X3iXixXi=Ni
2 N3XiXiXi=N}
3 NiXiX}=N}
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That is, 1/8 of the samplings will show zero successes, 3/8 one
success, 3/8 two successes, and 1/8 three successes.

If four are drawn (# = 4) the frequencies will run N(1/16),
N(4/16), N(6/16), N(4/16), N(1/16), and in general, if n are
drawn at a time the frequencies will be given by the coefficients
of the successive terms of the binomial N(.5 4+ .5)*. Dropping
N, which is a constant throughout, the general distribution
may then be written:

SUCCESSES IN

DRAWINGS OF n FREQUENCIES
AT A TIME
o 1(H)n
1 n(})n»
2 ’ﬂ;—_ﬁ 4 n
nn—1)(n—2)

3 I X2X3 #) n
etc. ctc.

Starting with this distribution we could readily determine its
mean and standard deviation, but as it is just a special case
of the more general problem in which the chance of success
for any single drawing is p (p not necessarily 3) this latter
will be attacked.

Let p = the chance of success and ¢ that of failure. Then

Following the same argument as for p = ¢ = .5, the distribu-
tion of successes when » at a time are drawn becomes:

SUCCESSES IN

n DRAWINGS FREQUENCIES
o I gqn
I ngnlp
2 n(n - I) n—2 p2
ST
n(n—1)mn-—2) w3 1
etc. cte.

We will now proceed to calculate the standard deviation of
these numbers of successes by calculating the second moment
from the point ‘‘zero successes,” and then transferring to the
mean by the aid of formula [22].
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SUCCESSES IN

DRAWINGS OF n FREQUENCIES
AT A TIME
X f § . ¢
o ¢" o
1 npgn—! npgn—1
- 1) -
2 MU0 =) s np(n — 1)pgn=1
n(n—1)(n—-2) . pr-n (=2
3 1X2x3_'P3q ’ 1 X2 pre-?
nn—1n—-2)n—-3) ,  _, Bp(r—1)(n—-2)(n—3)
4 I X2X3X4 gt 1 X2X3 Pt
etc. etc. etc.
Zf=@+ar=1 ZX =np(p+r-'=mp
Therefore u; = ﬁle =np....[35]
X

o

np(n—1)pgn—2+np(n — 1) pgr—1

(n—1)(n—2)

np il DB =t mp (n — 1) (n = 2) pron
np("_—_li(; 2—;);" 3) pign—t 4 pp "= 1) (» )—(_EL(" = 3) pagm—1
etc.
TIXT=np b+ Qnt + npt(n— 1) (b + Q- = np + nipt — np? = By
Therefore us = npg, and ¢ = \/n}& ........ [36]

The third and fourth moments, derived by the same process,
are:
B =npq (@ — D) iv e (37]
pe=npgft +3Mm —-2)pql..............[38]
They are recorded here for future reference, but are not used
in the immediate problem, — the calculation of the standard
error of the median.

The magnitude p, is the standard deviation squared of the
sum of the frequencies in a category for which the chance of
each of the separate measures being in the category is . Thus
if N (instead of n as above) equals the size of the sample drawn,
F the frequency in a certain category, p the likelihood of the
measure lying without it, then

o = V' Npg (The standard deviation of the fre-
quency in a given category) . . .[39]
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If the proportion in a category instead of the gross frequency is
considered we have
I

F
?—ﬁando"—N

o, so that finally

g, = d %‘; (The standard deviation of a proportion). . [40]

This is the basic formula underlying the theory of contingency,
i.e., the statistics of categories.

We may use this general result in determining the standard
deviation of the frequencies below the median. In this case
p = q = }, so that

v'N

F= 2

This is the standard deviation of the A’s, required to determine
the standard error of the median. Substituting in [33]
OMdn = %ﬁ (The standard error of the median) .. .[41]
By parity of reasoning the standard error of any percentile
may be found. Using the same notation as in Section 13, it is
ip‘/IVP—Q

"P,, = 7 (The standard error of a percentile). ... ..[42]

Formula [42] is ordinarily the one needed, but for certain
problems the existence or assumption of normality permits
the use of the following (Kelley, 1921, new);

o Jp—q (The standard error of a percentile of a
P, T NN normal distribution).................[43]
in which ¢ is the standard deviation of the distribution and z
the ordinate corresponding to ¢ as given in Table K-W.

A precaution is necessary in using formulas [41] and [42] in
that, theoretically, f is the frequency in the interval ¢ in the
case of a very large population. A single class frequency for
ordinary finite populations is a quite unstable magnitude, so
that in determining the class frequency for f it is well to smooth
the curve in the neighborhood of the percentile by averaging
the three or five class frequencies nearest to it. The exact
number to be averaged depends upon local periodicity and the
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total population, but as a general rule for populations less than
200 it is advisable to average such a number as extend over
approximately 1,8 of the total range. For larger populations
a smaller number of intervals may be averaged. It is obvious
that the same result is accomplished if the frequencies in a
small number of neightoring intervals are added to give the f,
and the total range covered by these intervals taken as the 1,
used in the formulas.

The standard errors of the two most important averages
have been determined. That for the mode, except when cal-
culated by determining the equation of the curve which fits
the data, is known to be very high. No simple formula for
its determination is available.

In order to compare the reliabilities of different averages we
will calculate the standard errors of the mean and of the
median for the temperature data of Table VII.

M = 81.55; Mdn = 81.25; ¢ = 6.19, N = 62

6.19

oy=—== = .786.

M V62 7

To compare with this, the standard error of the median will be
calculated, using five different intervals in the neighborhood of
the median. o

. . ° o V62 _ 1
(a) t=1. fof interval, 80.5°-81.5°, =8. TMdn= " Xg =.493

Vb2 2

(b) i=12. f of interval, 80.5°-82.5°, =13. OMdn ="~ XE= .606

(c) i=3. f of interval, 79.5°-82.5° =23. oMdan =.514
(d) t=4. f of interval, 79.5°-83.5°, = 30. oMdn =.52§
(e) ¢=35. f of interval, 78.5°-80.5°, =3I. oMdn =.636

It is well-nigh impossible to say which of these five values is
the most reliable, but since the population is only 62, the last
value, .636, based upon an interval which is 1/7 of the range is
rather to be preferred to any of the others. Accepting it as
the best value it is seen that the median has a smaller standard
error than the mean. This means that, if this sample of 62
is truly representative of the distribution of temperatures, the
median of the distribution can be determined with greatcr
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accuracy than can the mean, and that accordingly the median
is preferable in this instance to the mean, as a measure of
central tendency. Other considerations may enter in, such
as, for example, the desirability of combining different sets of
data, calculating correlations, etc., in which case the mean
should always be used, as it permits of such statistical treatment
whereas the median does not; but if such considerations are
not present the proper average to use is the one which is the most
reliable. It is thus seen that the all too customary choice of
an average ‘‘because of the nature of the distribution” should
give way to a choice based upon rigorous statistical considera-
tions as to reliability. Having decided upon an average the
appropriate measure of dispersion follows as a consequence —
the quartile deviations or preferably D, the 10—go percentile
range, should be used with the median, and the standard
deviation with the mean. The standard deviation is much
the more reliable of these two measures of dispersion for all
ordinary uni-modal distributions, even though they be very
appreciably skew. Therefore, if, for a certain investigation,
the measure of dispersion is a more important measure than
that of central tendency, no error would ordinarily be made if
the mean and standard deviation are chosen, no matter what
the reliability of the median may be.

The reader will have noted that measures o reliability are
simply measures of dispersion. A#ny measure not infallibly
determined may be thought of as one of a population of such
measures. It then only remains to calculate a measure of
dispersion for this population to secure an index of the relia-
bility of the measure. The measure of dispersion most uni-
versally available and most reliable is the standard deviation.
The range though frequently available, is very unreliable and
should be used for rough or hasty determinations only. The
relationship of the five measures of dispersion — standard
deviation, mean deviation, 10-go percentile range, quartile
deviation, and the range, to each other will be considered in
Section 31 and Problem 1, Chapter V, for the normal distri-
bution, which is probably more typical of uni-modal distribu-
tions in general than any other single distribution.
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PROBLEMS

1. Calculate the first and second moments from ‘‘zero income’’ for the
data of Table X and by proper transformation (a) determine ug, the second
moment from the mean, and (b) determine the second moment from the
median by formula [28] and check by formula [27].

2. Calculate the standard errors of the (a¢) L. Q., () Mdn., (¢) U. Q,,
(d) M, for the hypothetical distribution of incomes, Table X. Which is
the more accurate average for these data, the mean or the median?

3. Using the grouped data giving changes in wholesale prices, Table XV,
determine which is the more reliable average, the mean or the median.

4. (@) Which is the more reliable average, the mean or the median, in
the case of College Marks, Table XVIII?
(b) In this case what is the proper number of class intervals to com-
bine in determining the standard error of the median? [Answer to (b):
The population, 773, is large and an interval of three units, g, the range,
would be reasonably satisfactory were it not for the fact that there is a
decided periodicity, which is irrelevant so far as pupils’ talents are con-
cerned, so that the proper interval is one of five units.]

5. (a) Determine the standard error of the second moment of the in-
come data, Table X.
(b) Determine the standard error of the standard deviation of the
same data.

6. Derive u3 and u4 for frequencies given by the terms of the binomial

(p + ¢)# in a manner similar to that illustrated for u; and x;. Much
scratch paper will be needed.

7. Prove that if ¢ is a constant and x a variable then

U(x = (O’x.

8. Devise a formula similar to [7 a] except that the sum of the measures
above the mean instead of the sum of those below is involved.



CHAPTER V
THE NORMAL PROBABILITY DISTRIBUTION

Section 25. DEeRivATION OF EQUATION OoF NORMAL
DisSTRIBUTION

Many frequency distributions are very similar in type.
These distributions are characterized by being symmetrical
with respect to the mean; by having a single mode which is
at the mean: i.e., the slope of the curve at the mean is zero;
by tapering off from the mean and in such a manner that the
slope again approaches zero as the frequencies or ordinates
of the curve approach zero. The symbol y will be used for
the ordinate unless N = 1.0, in which case z is used to conform
with certain tables in this text and with Sheppard’s tables.
Following Pearson, we may derive the simplest curve which
has these characteristics. It is necessary to use the calculus
in this derivation, so that one unfamiliar with it may simply
note the conclusions.

The differential equation dy/dx = Cxy is an equation, origin
at the mean, whose slope is zero both when «x is zero and when
y is zero. It is the most concise form imposing the required
slope conditions of any which has been noted by the writer or
any which he is able to conceive. Integrating this equation
gives: (All the integration formulas used in this chapter may
be found in Peirce, 1910.) ,

x
y=kFke ¢

If £ and C are both positive it is found, by plotting or by
more analytical means, that the curve has a minimum instead
of a maximum at x = o; also that y does not approach zero for
any real value of x. It is therefore necessary that C be negative

or setting C = — ¢ the differential equation may be written
dy/dx = — cxy and the integral
y = ke 2

94
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Let us investigate the moments of this curve. If N is the
total population or total area under the curve

Nuo fydx—k\/
Nm=f yxdx = NM =o
—
© _
Nuz=./'yx’dx=Nar=’i 2x
- c c

Solving the first and third of these equations for ¢ and k gives
c=1/etand k = N/o V2x
This gives as the final equation of the curve
N E
y=—— €32 (The Normal Probability Curve). ... .. (44]
2x

in which y is the frequency or ordinate corresponding to a
deviation x, N is the total frequency, ¢ the standard deviation
of the measures, r = 3.1416, and ¢ = 2.7183 — the Naperian
base of logarithms. This equation is identical with the fol-
lowing convergent series:

T oV2r [' - (a\fz) (.,‘32) -3 (,\x/;) + ] -las]

Section 26. CERTAIN PROPERTIES OF THE NORMAL
DisTRIBUTION

The first derivative of equation [44] is:

—x!
dy N 2o _ —7:\7= y=

a\/z g o’

EREY
Iy
>

and, as the mode of derivation necessitated, it has a maximum
at the mean (x = o) and a zero slope at the extremes (y = o).
The second derivative is:

—x?

djy _ N - o? (_ ’i’
- e (“541) l47]

a"\/21r

This is zero when x equals plus or minus o, so that the points of
inflection of the normal probability curve are at points one
standard deviation above and below the mean.
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The first moment, u,, for the entire curve is of necessity zero
as deviations are measured from the mean, but if the first

moment from the mean for half the curve, yloi 1s found it wall

give the average or mean deviation.

T=L Frdx= 22 = 79790 [48 a]
M1 ! 1! bf yx vz 79790  .........
2
It is thus found that the average or mean deviation is .7979

times the standard deviation.

M. Dev., or Av. Dev. = .7979 ¢ (Relation between average deviation
and standard deviation in case of
anormal distribution)........ .. (48]

It is frequently desirable to know how far out, in both
directions, it is necessary to go to secure one half the total
frequency. This distance is called the probable error because
of the fact that if the distribution is one of magnitudes varying
by chance from some one magnitude (the mean) then the
chances are one to one that any single measure will vary from
this magnitude by an amount as great as the probable error.

The area under the curve is given by the integral, f zdx.
Therefore if the equation

N2

x
=J ydx
—-X

could be solved for «x, it would give that distance which if
measured in each direction from the mean would include one
half the total population. The integral desired may be ex-
panded into the following convergent series:

N x 1 x I X

b;ydx=7;[-;;2:—ém ;72)3““‘57! (,,72')5
—7—f3—! (;\"/—5)7+] ....149]

Setting this equal to .25 N, the number of cases between the
mean and plus one probable error, and solving for x gives
.6744898 v, the value of the probable error.
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Section 27. KELLEY-Wo00D TABLE OF THE NORMAL
ProBABILITY INTEGRAL

The upper limit, x, of the integral, I = jf zdx, when N =1
0

and ¢ = 1, has been evaluated for values of the area, I, by
.oo1's, from .ooo to .499 and are tabled in the K-W table,*
given in the last pages of this text. The argument for the
table is either I, the area from the mean on to the stump of
the distribution, ¢, the area of the smaller portion cut off,

or p, the area of the larger portion. I in this table equals %
of Sheppard’s tables, but whereas the tabulated entry in
Sheppard’s most extensive table is% and the argument is x, here

the tabulated entry is x and the argument I. In both tables
the ordinate is a tabled entry. The two tables supplement
each other. Sheppard’s tables will be found the more con-
venient to use if deviates are known and either areas or ordinates
desired, while the K-W table will prove the more serviceable
if areas are known and deviates or ordinates desired. For
expressing a distribution composed of categories arranged in
a rank order and having varying frequencies, in terms of a
normal distribution, the K-W table is much the more service-
able. Continual reference to Table K-W is made in subsequent
chapters of this text and if the meaning of I, q, p, x and z are
definitely fixed in mind it will greatly assist in the understand-
ing of subsequent derivations and formulas (cf. pages 371-383).

* The table is called the Kelley-Wood, or K-W, table because Dr. Ben D. Wood calcu-
lated by interpolation, using third and fourth order differences, from Sheppard'’s tables,
values of the abscissa x corresponding to areas from I = .000 to I = .400; because my wife
calculated, by formula [49], values at decreasing intervals from I = .400 to I = .499, and
because I calculated by interpolation certain values of the deviate from I = .400to I = .499
and also calculated either by interpolation or by the aid of eight place logarithms, valucs
of the ordinate, 2. The labor has been substantial and I commend to the inquisitive the
calculation of the deviate for I = .300, which Mrs. Kelley determined to be equal to
30,0022850+.

Columns I, x and g constitute the basic table of the probability integral, but the added

columns z/q, 2/p and pq, also calculated by Mrs. Kelley, will be found serviceable in many
formulas.

The last figure of the entries in the basic table may be expected occasionally to be in
error by 1.—T. L. K.
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Section 28. FURTHER PROPERTIES OF THE NORMAL
DiISTRIBUTION

The probable error was found by means of formula [49].

P. E. = .6744898 ¢ (Probable error of any magnitude in terms

of the standard deviation or standard

error of the magnitude). ............ (50]
It is to be noted that the probable error is defined as a certain
fixed fraction of the standard deviation, or standard error.
The relationship that half the population lies between plus
and minus .67449 o, is strictly true only in case of a normal
distribution; however it is the customary measure to use
whenever thinking of chance variations, whether the distribu-
tion under consideration is normal or not. It must be defi-
nitely kept in mind that the P. E. has no status or means of
calculation independent of the standard error; it is simply a
measure of deviation .67449 times as large as the standard
deviation and should not be confused with the quartile devia-
tion which, regardless of the shape of the distribution, is one
half the distance from the lower to the upper quartile. From
the lower quartile to the upper quartile is always a distance of
2Q and i1s a range that always contains just one half the
measures, whereas from 1 P.E. below the mean to 1 P.E.
above is a range that contains exactly one half the measures
only in the special case when the distribution is normal. It is
to be expected that distributions of measures which are com-
posite measures based upon a large number of separate scores
will in general more closely approximate a normal distribution
than do the distributions of separate scores themselves,*
so that the error introduced in thinking of 5o per cent of the
cases as lying between + 1 P.E. and — 1 P. E. is very small,
if the P. E. under consideration is that of any average, of any
coefficient of correlation, of any measure of dispersion, or in
fact of any measure whatever derived from a large number of
other measures. Quite substantial error may, however, be
introduced if the P. E. of the distribution of original measures
is taken as such that 5o per cent of the cases lie between

* I have not proven this analytically but have found it to be true with many distribu-
tions with which I have had to deal. — T. L. K.
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4+ 1 P.E. and — 1 P. E. (See problems 2 and 3 at end of
chapter.)
Certain important relations between the moments of the

normal distribution exist. The third moment, u?® = 1\I/ S myx3dx,

of course, equals zero as the curve is symmetrical with respect
to its origin, the mean.
For the fourth moment we have:

1 o0
p4=nyr‘dx=3c4 ................. [51]
- o0

These last two relationships are important in that they provide
a means of determining how closely given data fit a normal
distribution. If p; = o and p, = 3 ¢* the fit is entirely satis-
factory and the normal curve will better fit the data than any
other uni-modal curve. If these two relationships do not
exactly hold, the significance of the discrepancy can be deter-
mined by the formulas giving probable errors of any moments,
given in the preceding chapter, or more nearly by determining
the values and probable errors of two constants g, and B,.
These are used in all curve fitting following Pearson’s method,
and are defined by the equations:

8, = B By = M [Formulas 69 and 70

ula »is of Sec. 36]

For a normal distribution 8, = o and 8, = 3. The probable
errors of B, and B; may be found from Tables 37 and 38 of
Pearson’s Tables. If for any distribution the obtained f’s
differ from o and 3 respectively by amounts which are small
with reference to their probable errors the data may be con-
sidered normal. The probable errors of these 8's will be found
to be large if the populations are small. This is simply indica-
tive of the fact that it is impossible to determine the type of a
distribution from a small population and it is scarcely worth
attempting unless the population is over 100.

Section 29. PROPERTIES or PORTIONS OF A NORMAL
DisTRIBUTION
The method followed in the calculation of the average
deviation is serviceable in determining the mean deviation of
any tail of a normal distribution. Let a ‘‘unit normal distribu-
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tion”’ be one of standard deviation and population each equal
to 1, then the mean deviation from the mean, of the tail of a
normal distribution covering the portion from x to o« is given
by the equation:

fwyx dx (Mean deviation of
M.Dev.of Tail =*— _ o*yx ozx the tail of a normal
o N: = Nz = ¢« distribution). . . ... [52]

in which y, is the ordinate per unit base at the point of trunca-
tion; N, is the number of cases lying beyond this point;
z. 1s the value of the ordinate of a unit normal curve at the
stump or point of truncation x, and ¢, is the number of cases
in the unit normal distribution from the point of truncation
x on to . In case of a unit normal distribution we have:

.4 _ 2 (Mean deviation of the tail of a unit
M. Dev. of Tail = ¢  normal distribution) .............. (53]

This magnitude, z/¢, is given in Table K-W. In case ¢ <.5
use column ““z/¢”’ and in case ¢ >.5 use column “z/p".

This relationship between ordinate and mean deviation of
tail is one of the unique and very interesting properties of the
normal distribution. It has many applications, one of which
is considered herewith. In case the tail is one half the curve

we have: .7979 0 = ?1\—; in which y, is the ordinate per unit

base interval at the mean. Solving for ¢ gives, approximately,

_ .4 N (Formula for roughly determining the standard deviation

7 Yo of a distribution which is approximately normal)......[54]

Accordingly, if a rough estimate of the standard deviation of
a distribution will suffice, it may be obtained by dividing .4
of the total population by an estimate of the height of the
ordinate, at the mean, of the normal curve which would best
fit the data.

A simple extension of the method followed in obtaining the
mean deviation of the tail will give the mecan deviation from
the mean of any part of the distribution. Consider the standard
deviation and area of the following figure to be 1 and let
it be required to find the mean deviation, from the mean of
the entire distribution, of that part of the distribution between
z1 and x;. Let the ordinates at these points be z; and z. Let
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¢ and ¢; be the proportions of the population lying above x,
and x; respectively. Let d = the required mean deviation;
d, = the mean deviation of the tail from x, on; ds = the mean
deviation of the tail from x; on. Then (¢ — ¢z) is the pro-

P

“— —
X, X

portion lying in the interval from x, to x,. The first moment
of the distribution beyond x, is equal to the first moment of
that part between x, and x: plus the first moment of that
part beyond x,, or

gd = (@1 — q:) d + qxd:
That 1s, solving

21 = (@1 — ¢2)d + 22
_ %1 — 22 (Mean deviation of a portion of
" @1 —g¢:  aunitnormal distribution). .. .[55]

The magnitudes ¢: and g: are the proportions lying beyond the
upper and lower limits respectively of the class involved, and
z1 and z are the ordinates for these proportions as given in
Table K-W.

As an illustration the following problem is given. Assuming
a normal distribution, express the following school marks as
deviations from the mean:

P B M Abe KW .
Magrks | RECEIVING Q ' ——
Magrk @ - qe

INDICATED 13 2
A 11.4 114 .000 .192900 .000000 1.692
B 34.7 461 114 .397034 .192900 .588
C 32.5 .786 461 291399 .397034 |— .325
D 10.2 .888 .786 .190478 291399 |— .989
E 9.0 .978 .888 .052485 .190478 |{—1.533
F 2.2 1.000 .978 .000000 .052485 |— 2.386
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The table informs us that a mark of A is equivalent to a posi-
tion 1.692 standard deviations above the mean of the group,
that a grade of B is .588 standard deviations above the mean,
a grade of C is .325 standard deviations below the mean, etc.

The standard deviation of a portion of a normal distribution
is developed in Section 60 in connection with another problem,
— see formula [188].

Section 30. THE ProBABILITY OF EXCEEDING A GIVEN
DIVERGENCE

The normal curve assists in establishing the degree of con-
fidence which may be placed in statistical findings. The
significance of any measure is to be judged by comparison
with its probable error. If a child makes a score of 8o on a
certain test and if the probable error of the score is 5, we may
estimate the chances of the child’s true ability being as much as
100. We assume that the distribution of the child’s perform-
ances would follow a normal curve. Note that the assumption
is not that the talents of children in general follow a normal
distribution. This latter might be less reasonable than the
one we are called upon to make. Moreover, so little differ-
ence in probabilities, except for extreme deviates, is ordinarily
consequent to differences in forms of distribution, that the
assumption of normality is little likely to result in serious
error for such problems as the present one. For extreme
deviates it generally does not matter so far as any practical
deductions are concerned whether the chances are 1 in rooo
or ten times as great. Nor for smaller deviates does it make
any particular difference whether the chances are 400 in 1000
or 410 in 1000. Should such differences as mentioned be
significant in any particular problem, no assumption should
be made, but the type of the curve should be experimentally
determined.

For the problem in hand: If the P. E. is 5 the standard error

is (—6-575 ) = 7.413. The difference between the scores that

we are concerned with is (100-80) = zo, which is (7 22 3) -



NORMAL PROBABILITY DISTRIBUTION 103

2.698 standard errors. The K-W Table, or more conveniently
for this problem Sheppard’s Tables, may be used to find the
area in the tail below the point which is 2.698 standard devia-
tions below the mean. The tables give .co3s5. To interpret
this we should postulate the person’s true ability as being 100
and his various performances distributing themselves in a
normal distribution, with standard deviation equal to 7.413
around this mean. Then .oo35 of the area of the curve will
lie below the point 8o0. Accordingly if his true ability is 100,
only 35 times in 10000, Or 3.5 times in 1000, would a score as
low or lower than 8o be expected. With such figures a person
could accept the proposition that the child’s ability was not
as great as 100 with about as much certainty as he can start
across a business street expecting not to be hit by an auto-
mobile. It is, in other words, just such a conclusion as one is
justified in acting upon.

Table K-W is built upon the basis of the standard deviation
as the unit of variability, instead of the probable error. If
probable errors instead of standard errors are known, the
following table may be used for rough work, thus avoiding the
labor of division by .6745:

TABLE XXVI
i The Likelihood of a Difference as Greal as this Obtained One
iffer-

Hez:lce is x| and in the same direction, | and in the same or the opposite
times its| is 100 p in 100, or 100 p direction, is 2 X 100 p 1n 100,
probable] chances of its occyrring or 200 p chances of its occur-
error to 100 g chances of its not ring to 100 (1-2 p) chances of

occurring its not occurring

x 100p in 100 100p to 100g 200pin 100 200p to 100(1-2p)

.5 37 in1oo 37 to 63 74 in1oo0 74 to 26
1.0 25 in100 25 to 7§ 50 InI00 50 to 50
1.5 16 in100 16 to 84 31 in100 31 to 69
2.0 9 in 100 9 to 91 18 in100 18 to 82
2.5 5 in 100 5 to 95 9 in1o0 9 to 91
3.0 2 in 100 2 to 98 4 in1o0 4 to g6
3.5 I in 100 I to 99 2 intoo 2 to 98
4.0 .3 in 100.0 .7 in 100.0
5.0 .02 in 100.00 .04 1in 100.00
6.0 .001 in 100.000 .003 in 100.000
7.0 .0001 in 100.0000 .0001 in 100.0000
8.0 .000001 in 100.000000 .000003 1N 100.000000

|
I
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Section 31. SumMARY OF Facts CONCERNING THE NORMAL
DiIsSTRIBUTION

A summary of the facts already discovered together with a
few determined later in regard to the normal probability curve
gives the following:

1. It is uni-modal, symmetrical with respect to the mean, and
is completely determined when N, the population, M, the mean,
and o, the standard deviation of the distribution, are known.

2. The mean, median, and mode coincide.

3. Measures of dispersion are related in the following
ways:
Q =P.E. = 84535 A. D. = 67449 0 = .26315 D

A D. =1.1829Q = 1.1829 P. E. = 79788 ¢ = .31129 D
o = 1.4826 Q = 1.4826 P. E. = 1.2533 A. D. = .39015 D
D = 3.8001 Q = 3.8001 P. E. = 3.2124 A. D. = 2.5631 ¢

.. .[56]

The range covered by the measures is approximately,
In case the total populationis 10, = 4¢

(3 (3 (X3 X3 (1} (4]

50, =50
‘“ 6 6 [ ] 6 200, = 6 o
¢ € Y 1] . ““ ¢ 1000, = 7 o

o = approximately .4 N + the height of the smoothed ordi-
nate at the mean, median, or mode.

4. The points of inflection of the curve are at distances 1 ¢
and — 1 o from the mean.

5. Every odd moment gy, u;, ps- - - of the curve is equal to o.
The even moments are given by

pa = o?

m=3u% =304

bmtsamm1ses (T [57]
Mg = 10§ “42 = 10§ o8

B = o0,and 3: = 3.

6. The mean deviation of a truncated portion of the curve,
taken from the mean of the entire distribution, is equal to the
square of the standard deviation of the entire distribution into
the height of the curve at the point of truncation, divided by
the number of cases in the tail.
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7. The most reliable constant of the distribution is the
standard deviation. Its probable error =

MS—E, or 7 of jts own magnitude. .......... [58]

V2 N VN

This follows from formulas [32-a] and [50].
The probable error of the average deviation =

.4066 o .510

\/_IV , or \/7/ of its own magnitude ........... [s9]
The probable error of D, the 10—go percentile range, =
%%%—a , or —:)/(;—% of its own magnitude......... {16 a]

The probable error of the quartile =

'53/(;“ , or \7781\7, of its own magnitude...........[60]
This follows from formulas [14] and [50].

It is thus seen that if N measures result in a certain relia-
bility in the standard deviation, it requires to obtain an equal
reliability, 1.14 N measures in the average deviation, 1.s8 N
measures in the 10-go percentile range, and 2.72 N measures
in the quartile deviation.

8. Measures of central tendency are less reliable than
measures of dispersion. Little, if any, significance attaches
to a measure of the unreliability of an average expressed in
terms of itself, and, furthermore, since in the normal distribu-
tion all measures of central tendency coincide, it will suffice for
purposes of comparison to give the probable error of each.
.6745 ¢  (Normal or any other distribu-

v'N tion) . ............ ... ..., {61]

P. E. of mean =

P. E. of median = .845;15 o (In case of normal distribution
vN only)...... ... ... ...... [62)

P. E. of the mode is unknown unless the mode is determined
from the equation which best fits the data, in which case its
probable error compares favorably with those of the mean
and median.

It is seen that if N measures result in a certain reliability in
the mean, it requires 1.57 N measures to obtain an equal
reliability in the median.
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9. If a distribution is normal the most reliable measure of
dispersion based upon percentiles is that between the 7th and
93d percentiles. Of almost as great reliability is the 10-go
percentile range.

10. The distributions of frequencies in the point binomial
(p + @)" closely approximates a normal distribution if # is
large and neither p nor ¢ very small. For » infinite and
neither p nor ¢ infinitesimal the point binomial distribution
becomes a point normal distribution.

11. The average deviation from the mean of any portion of
a normal distribution may be obtained from the equation:

21 — 22
s
in which the ¢’s are proportions of the population and the z's
are corresponding ordinates as given in Table K-W.

12. The standard deviation from the mean of any portion of
a normal distribution may be obtained from the equation:

d

X121 — X222
gy — g2
13. The equation of the normal distribution is

ey =1+ — d* [Section 63, Formula 188]

N 243
=a\/2_,,.e ........................................... [44)
or,
2 4 6
‘=a§2—,[‘ - («xz) +§(3x75) _ﬁ(ax;) +”']"[45]

PROBLEMS

1. Given a normal distribution with areas and deviations as indicated
in the accompanying figure, then (1 — a)/1 is the probability of a measure

Tota! Area =10

Areal= &

'y
» S

lying in the shaded portion or, in other words, of a measure deviating
from the mean by a distance greater than x. If the probability of a single
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measure lying beyond x is this small amount 1 — «, then the probability
of a measure, in case of a population of N measures, lying beyond this
point is N (1 — a). If this probability, N (1 — a), equals .5, then the
value x corresponding to the a is such a deviation that the chances that a
measure will lie beyond the point x is just equal to the chance that no
measure will lie beyond it. The distance x is therefore the most probable
maximum deviation which will be found in the case of a population of N.
As a sufficiently close approximation x may be taken as equal to one half

the range. Accordingly using Table K-W the following table is obtained:
N, SucH THAT

RANGE x I —a N(iIi—-a) =.5
kX4 1.50 .1336
40 2. o .0455 9
50 250 .01242 40
60 3 o .00270 185
70 3.50 .000465 1075
8a 4. o .0000634

Complete the table, determining values for 3 ¢ and 8 0. [Answer: If the
population is 4 (more exactly 3.75) the range of the measures is (providing
the total distribution from which the sample of 4 is drawn is normal) most
probably equal to 3 ¢; and if the population is 8660 the range is most
probably equal to 8 ¢.]

2. In the case of the distribution of incomes given in Table X calculate
the L. Q. and the U. Q. and the points corresponding to — P. E. and
+ P. E. Compare values found. What percentage of the cases lie be-
tween these + and — P. E. points?

3. Do the same for the distribution of Wholesale Price Indexes given
in Table XIV.

4. Estimate the standard deviation of the distribution of temperatures
given in Table VIII and Charts I and II by first estimating the height at
the mean of the normal curve which would seem to fit the data.

5. Do the same for the College Marks data given in Table XVIII.
Compare o found with the correct o.

6. Group the College Marks data in fives, 47-52 constituting one
group, 52-57, the next, etc. Plot and from height of the curve at the
mean, estimate the ¢. Compare with correct value. What adjustment
in estimating o by this short method is necessary in case the data are
grouped? [Answer: The obtained ¢ is in terms of intervals and must be
multiplied by the number of elementary units in each group to give the o
expressed in elementary units.]

7. Verify the calculation of equivalent scores given in Table XXXV,

8. If the plumage of certain fowl is either blue, splashed, or white,
and if the percentages in these categories are 28, 60, and 12, what numerical

values should be assigned to these colorations should it be desired to treat
them as color deviations in a normal distribution?
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9. Assuming normality of distribution in the temperature data, Table
VIII, and using 81.548 and 6.190, the values of the mean and standard
deviation already found, calculate the ordinate at + 1 P. E., 85.723, and
compare with the actual ordinate. [Answer: Theoretical 3.17, Actual with-
out smoothing 3.00.] Still assuming normality, what is the average devia-
tion from the mean of the truncated portion beyond this point? [Answer:
7.86.] Of the portion below this point? [Answer: —2.62.]

10. Verify all statements in paragraph 7, Section 31I.
11. Verify statement in last sentence of paragraph 8, Section 3I.

12. (a) Calculate B8; and B: for the point binomial when p = ¢ = 1/2
and # = 25. [Answer: §; = 0, 83 = 2.92.]
(b) Calculate 8, and B3 for the point binomial when p = .1,¢ = .9
and n = 25. [Answer: B8, = .2844, 82 = 3.204.]
(c) Calculate 8; and B; for the point binomial when p and ¢ are both
finite and n = . [Answer: §1 = 0, 82 = 3.]



CHAPTER VI
COMPARABLE MEASURES

Section 32. THE ConNpIiTIONS REQUISITE FOR COMPARISON

In many studies measures of the same, or nearly the same,
phenomena are obtained and it is desired to compare results.
Gross measures or scores can with validity be compared
directly only in case they are in the same units and have been
obtained under very similar conditions. There are four
methods in common use, the purpose of each of which is to
derive comparable measures from original scores obtained in
such manner as not to be directly comparable. Of these
four the first and the only one which is universally sound is
that based upon the complete equivalence of the scales of
measurement involved; a second is the ratio or index method;
a third may be called the equivalence of standard measures
method; and a fourth may be called the equivalence of suc-
cessive percentiles method.

The first method presupposes that the complete equivalence
between measures is known. If both are rectilinear scales
and two points of the one have been determined to be equivalent
to two points of the other, then for every point of the one an
equivalent point on the other may be immediately located.
As an illustration of this method may be considered the com-
parison of two heights, one expressed in centimeters and the
other in inches. In the case of inches and centimeters the
two points which have been determined as equal are:

0.0 centimeter = 0.0 inch
100.0 centimeters = 39.37 inches

This type of equating is common both in the physical sciences

and in the social sciences, but it should be noted that it is

entirely sound only in case the two scales measure identically
109
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the same thing in the same linear manner. Any number of
functions may be found which agree at two or more points,
but are not identical, such, for example, as, f' = sin’x; f" = 2—;—6;
etc. For each of these the function equals zero when x equals
zero and the function equals 1 when x equals 7/,, but in general
fl ” f”-

The minimum number of conditions which must be met
before two scales can be fully equated are three. The condi-
tions are, (a) one point of the first must be known to be equal
to a point of the second, (b) a second point of the first must
be known to be equal to a second point of the second, and
(c) the law establishing the relationship between successive
points on the first must be known to be the law underlying the
second. This third condition is the hardest to establish and
should be examined the most critically. Even in the physical
sciences it frequently can only be approximately established.
Compare, for example, the relation between temperature,
pressure and volume in the case of two gases. When these
three conditions are met the determining of equivalent scores
is simple and is just such a problem as that of finding equivalent
temperatures in the centigrade scale to those in the Fahrenheit
scale, knowing that o° and 100° centigrade correspond to 32°
and 212° Fahrenheit respectively and that both scales are
rectilinear.

It frequently happens that only two of the three conditions
mentioned are established, in which case a guess is sometimes
made as to the third and an equating attempted. The excel-
lence of the resulting system of equivalent measures is un-
certain, and all interpretations drawn should be with the reser-
vation that they are subject to the validity of the assumption
involved.

Section 33. THE Ratio METHOD
In case conditions (a) and (b) are met, and condition (a) is
‘““a score of zero on the one scale is equal to a score of zero on
the other,” condition (¢) is frequently assumed to be ‘‘the same
proportion between the units of the two scales maintains
throughout.” With these underlving conditions the ratio
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method is frequently used. Illustrations will show the hazards
involved. Given the following sets of data:

TABLE XXVII

HEIGHT IN CM. | WEIGHT IN LBs.

IndividualA . . . . . . . . . 138
Averageadult . . . . . . . . . 172

75
145

(Data for individual A are those given in Whipple for the average 12.0
year old boy.)

TABLE XXVIII

WEIGHT

Butterfily B . . . 2 grams

Elephant A . . . 4000 pounds
Average for species . 1 gram

Average for species . 3600 pounds

TABLE XXIX
United States Bureau of Labor Statistics — Average Aug. 15 Retail Prices

1018 Fresn Ecas POTATOES BrEAD TEA
53.6¢doz. | 3.9¢ pd. | 9.9¢ pd. | 65.8¢ pd.
Average 1913-17 . . 35.8 l 2.2 7.3 55.7

If one is attempting to secure a maturity measure based
upon height and another based upon weight one might start
with the following propositions:

(a) o cm. height indicates the same mount of maturity as o
pounds weight, (b) 172 cm. height indicates the same amount
of maturity as 145 pounds weight, (¢) the law of development
of height is the same as that for weight. Of these three state-
ments (a) is probable entirely sound, (b) probably tolerably
satisfactory, particularly if dealing with groups and averages,
while (¢) is probable quite absurd. Accepting these three
propositions is equivalent to saying that scores X, and X, in
the two measures, which satisfy the following equation, in
which M, and M, are the means of the two series, are equivalent:

X1 _ X
M, M,
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The ratio is often used with some other magnitude than the
mean as a base so that a more general statement of the equa-
tion connecting equivalent scores is:

X1 _ X1 (Equivalent scores upon the assumption

B, B of equality of ratios)............ .. [63]

B, and B; should be values of the variables which are known
with more than usual certainty to be comparable and reliable.
It is also desirable that they be not small with reference to the
scores involved. Due to the greater reliability of means than
of individual scores the use of the mean as a base has much to
recommend it. Letting ¢ and ¢ stand for the standard
deviations of the X, and X, scores, one criterion of the sound-
ness of the assumption of the equality of ratios is:

B: _ B: (Criterion to use in judging of the appro-

o1 o priateness of the ratio method).. . ... [64]
The use of this criterion is illustrated in the next section in a
problem in which the bases are the means.

The calculated ratio scores of Individual A are not equal, for
A stands (138/172 = ) .802 on the height maturity scale and
(75/145 = ) .517 on the weight maturity scale. Accepting
proposition (¢) one would conclude that individual A is a very
abnormal person, being some 28.5 per cent more developed in
height than in weight. In dealing with mental traits not
amenable to direct observation a conclusion equally as absurd
as that just drawn might pass for years without discovery.
In the case of height and weight the fallacy can be immediately
detected and a method followed which will be more reasonable,
though it is impossible to say that it is entirely sound, as the
proposition (¢) is still an assumption.

Height being a one-dimensional magnitude and weight ap-
proximately three-dimensional (a) and (b) stand as before and
the third becomes: (c) The law of development of height is
the same as that for the cube root of weight. The comparisons
then are: Maturity index based upon height = .803. Ma-
turity index based upon weight = V75/145 = .803. Upon the
basis of these two figures one would conclude that the individual
i1s equally developed in the two traits. This illustration is
given to show the material differences which result from
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different assumptions as to the laws connecting successive
scores of two scales and not to suggest that either of the two
methods followed is established as sound. At best, in the
problem in question, propositions (b) and (c¢) are questionable.
Logically proposition (a) seems sound, but there are many
situations in psychology and economics where a similar state-
ment would be very fallacious.

The hazards of the ratio method are not lessened when
dealing with the same sort of function of different things. For
example, the weight of one child expressed as a proportion of
the average adult weight in comparison with the weight of a
second similarly expressed may be very misleading. The two
children may have very different hereditary endowments, the
one becoming a normal adult of weight 120 pounds and the
other a normal adult of weight 145 pounds. The fallacy in
using indexes in the case just mentioned is the same as that
for Table XXVIII. Elephant A has a weight index of r1.11
and Butterfly B one of 2.00. This constitutes no proof that
as a butterfly B is more exceptional than is A as an elephant.
It might be true that 10 per cent of butterflies exceed 3 grams
in weight and but 5 per cent of elephants exceed 4000 pounds.
The indexes do not tell us, but in such case it would seem
reasonable to call A the more exceptional.

Using the Labor Bureau data of Table XXIX we find that
the 1918 August 15 price of fresh eggs is 150 per cent of the
average August 15 price for the years 1913-17; of potatoes
177 per cent; of bread 136 per cent; and of tea 118 per cent.
These four ratios tell an important story, but at the same time
they may be misleading and for the same reason that the weight
ratios of elephants and butterflies are misleading. The law
covering the fluctuation of potato prices is almost certainly
different from that covering the fluctuation of bread prices
and similarly for any two of the products which may be com-
pared. Conditions (a) and (b) may be fairly sound, but very
questionably so of condition (c):

(a) o ¢ per dozen eggs indicates the same sort of a price con-

dition as o ¢ per pound for potatoes.

(b) 35.8 ¢ per doz. eggs indicates the same sort of a price

condition as 2.2 ¢ per pound for potatoes.
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(c) The conditions determining the fluctuations in the prices
of eggs are proportional to those determining fluctua-
tions in potato prices.

Because of the peculiar difficulty of establishing condition (c)
the ratio method for economic and psychological problems
may be expected to be an artifact and not an exact quantitative
procedure.

A part of the error involved in combining price ratios of
separate items to obtain a general index may be eliminated by
weighting the separate ratios inversely as the squares of their
variabilities, as proven in Section 91 and illustrated in Sec-
tion go. This method, however, will not result in as great
accuracy as will one based upon the multiple correlation and
regression of the prices involved. Further considerations are
given in Chapter XIII.

Section 34. THE STANDARD MEASURE METHOD

This is an outgrowth of the method used by Francis Galton.
It has certain refinements in the measures involved, but rests
upon practically the same principle. Galton considered two
measures which attempted to measure the same function to
be comparable when each was expressed as a deviation from
the median of the group to which it belonged and when each
such deviation was divided by the quartile deviation of the
group. The three propositions essential to the soundness of
this procedure are:

(@) The median score of the first measure indicates the
same sort of a condition as the median score of the

second measure.

(b) A score of the first measure which deviates one quartile
from the median indicates the same sort of a condition
as a score of the second which deviates in the same
direction one quartile from its median.

(¢) In general, deviations of the two measures which are in
the same proportion as the quartile deviations are
indicative of the same sort of a condition.
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More briefly stated these propositions are.
(a) Median scores are comparable.
(b) Quartile deviations are comparable.

(¢) The same proportions as between quartiles holds for all
equivalent deviations from the medians.

Since the mean can generally be more reliably determined
than the median, and the standard deviation than the quartile
deviation, the Galton procedure has been dropped and the
following propositions taken as a basis:

(@) Mean scores are comparable.
(b) Standard deviations are comparable.

(c) The same proportion as between standard deviations
holds for all equivalent deviations from the mean.

Let

X ; M’, and 2z = Aia:—yi—’ (Standard measures). . .[65]
1 2

2, =

Then the measures to be compared are z; and z2.  Such measures
as these may be called ‘“standard measures’ as they are meas-
ures of deviation expressed in terms of standard dewviations.
The last proposition may then be stated:

(¢) Equal standard measures are comparable.

It should be noted that there is no implication that a zero
score in the first measure is equal to a zero score in the second
measure. Proposition (¢) always needs experimental verifica-
tion, but for the usual distributions found in the social sciences
it seems reasonable to expect that if the means of the distribu-
tions are set equal, and if points one standard deviation away
from the respective means be placed together, a better ap-
proximation to complete equivalence throughout the entire
scales will be obtained than if the means and zero points are
equated and other values taken in proportion. The following
data taken from Pintner (1914) and Kelley (1914 comp.) *
will illustrate the method and they also are such as do not

* A numerical error occurs in this reference, the figures herewith presented being the
correct ones.
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reveal without statistical analysis the inaccuracy of the ratio
method:

TABLE XXX
MEAN ScorEs GIVEN TO SAMPLES OF HANDWRITING UproN
No. oF SAMPLE
Ayres Scale Thorndike Scale
12 20.6 5.9
6 24.2 6.5
8 28.4 7.3
21 35.3 8.4
4 36.2 8.0
15 36.3 8.3
I 37.1 8.1
22 40.3 8.9
5 40.3 9.0
17 41.8 8.9
18 48.9 10.1
14 49.2 10.2
9 52.4 10.7
7 55.7 10.6
24 55.7 10.8
I 56.0 10.7
10 56.9 11.3
2 57.7 10.9
13 58.0 11.2
19 58.9 I1.5
20 64.2 11.8
23 74.2 13.8
3 8o.1 14.2
16 82.1 14.8

Calling the Ayres X, scores and the Thorndike X, scores and
calculating the required constants yields:

M, = 49.60 o1 = 15.93 M, = 10.08 o2 = 2.229

X1's and X,'s satisfying the following equation are comparable
measures:
X\, — M, _ X: — M, (Equivalent scores upon the assumption
a1 a2 of equality of standard measures) . . .[66]
Solving for certain values yields the equivalent scores given in
the first two columns of the following table, XXXI. Treat-
ing the same data by the index method gives the equation:
K Xe
49.60 10.08
Scores which are equivalent as derived from this equation are
given in the last two columns of the table.




COMPARABLE MEASURES 117

TABLE XXXI
Standard Measures Method Ratio Method
EQUIVALENT SCORES EQUIVALENT SCORES
Ayres Thorndike Ayres Thorndike
Xl Xg X] X:
— 22,4 0.0 0.0 0.0
0.0 3.1
20.5 6.0 29.5 6.0
49.6 10.1 49.6 10.1
70.0 12.9 70.0 14.2
84.8 15.0 73.8 15.0

The two methods lead to different results and a very brief
study of the original data shows that the equivalents obtained
by the standard measure method are much the more reasonable.
The fundamental error in this problem of the ratio method is
in the assumption of equality of zero scores. That this is an
error would not be self-evident to the user of the scales, as
samples of handwriting of less merit than 20 on the Ayres
scale or 6.0 on the Thorndike are seldom found, so that what
constitutes a sample of zero merit on either scale is quite
unknown. A similar observation applies to economic situa-
tions, for who has experience with, or knows the meaning of,
o ¢ as the cost of, let us say, a pound of bread?

Reference to the equations giving equivalent scores shows
that knowledge of the means, in case the means are the bases,
is all that is necessary to determine the equation giving equiva-
lent scores in the case of the ratio method; but that an added
item of information, the standard deviations, is required in
the case of the standard measure method. If equivalent
measures really are proportionate as assumed by the index
method, the equating of standard measures results in the same
set of equivalents as given by the ratio method. This special
case exists when

M _ M X, - M _X:— M X1 _ X,

2 e o e = ——
el for then . - reduces to M, M,

Accordingly the standard measure method is the more general
and contains the ratio method as one of its special cases.
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Section 35. THE EQUIVALENCE OF SUCCESSIVE PERCENTILES
METHOD

This method involves no assumption that the law covering
the relation between successive scores is of any particular type
other than that involved in the statement ‘‘the larger the
score the greater the trait, or characteristic, being measured!”
Otis (1916) and (1918) in dealing with paired measures, has
used a graphic method which gives a line of ‘“‘rank relation.”
His method, equivalent to setting the lowest score in series
one equal to the lowest score in series two, the next lowest in
series one equal to the next lowest in series two, etc., could
be called ‘“the equivalence of successive ranks’ method, but
the title here given is used as being the more general. The
method does not depend upon paired measures or upon having
two series of the same population, though if measures are
paired and high correlation exists between them the reliability
of equatings is greatly increased.
. Letting P stand for percentiles in the first series and P’ for
those in the second, the method assumes that equivalent
scores are P.o; and P’.g; P.» and P’.i; etc.; and in general

Pp is equivalent to P’y (Comparable percentiles). .. .[67]

No single one of these equivalents P.,, = P.y, etc., can be
determined with the reliability that appertains to M = M/,
or ¢ = ¢’, but, unless it has been experimentally determined
that relationships between the two series are rectilinear, or
curvilinear according to a known law, a more accurate total
set of equivalents may be expected from this method than from
either of the two preceding. Objections to the method are,
first, that no concise algebraic statement of relationship comes
from it and second, that it is responsive to chance oddities in
distributions. This second objection can be largely overcome
by smoothing graphically as does Otis or by a moving average,
as will be illustrated, using the data upon handwriting.

There are but 24 samples of handwriting so that a percentile
below the 4.1667th cannot be calculated except by an arbitrary
assumption as to what constitutes the lower limit of the interval
corresponding to the lowest score. We will therefore begin
with the sth percentile and, to shorten the work, proceed by
fives to the gsth.
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TABLE XXXII
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EQUIVALENT HANDWRITING SCORES

SMOOTHED EQUIVALENT SCORES

PERCENTILES
Ayres Scale Thorndike Scale Ayres Thorndike

5 23.18 6.34 23.1 6.35
10 28.52 7.20 26.7 7.30
15 34.19 7-89 324 7.90
20 36.15 8.17 34.2 8.20
25 36.70 8.35 36.0 8.50
30 38.935 8.68 37.8 8.80
35 40.145 8.86 39.6 9.10
40 43.65 9.31 42.3 9.40
45 48.31 10.03 46.8 9.80
50 50.80 10.40 49.5 10.25 -
55 54.23 10.66 54.15 10.45
60 55.31 10.72 55.05 10.65
65 56.21 10.81 55.95 10.85
70 57.13 11.01 56.85 11.05
75 57.85 11.25 57.75 11.25
8o 59.07 11.45 59.1 11.55
85 64.61 12.11 64.5 12.25
90 73-97 13.52 74-4 13.45
95 80.31 14.40 79. 14.35

Differences between Successive Five-Percentiles

TABLE XXXIII

RAW PERCENTILES SMOOTHED PERCENTILES
Ayres Thorndike Ayres Thorndike
5.34 .86 3.6 .95
5.67 .69 5.7 .6
1.96 .28 1.8 .3

.55 .18 1.8 .3
2.235 .33 1.8 .3
1.21 .18 1.8 .3
3.505 -45 2.7 -3
4.66 .72 4.5 4
2.49 -37 2.7 -45
3.43 .26 4.65 .2
1.08 .06 .9 .2

.90 .09 .9 .2

.92 .20 .9 .2

.72 .24 9 .2
1.22 .20 1.35 .3
5-54 .66 5-4 -7
9.36 1.41 9.9 1.2
6.34 .88 5.4 .9
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The smoothed percentile scores have been calculated from
the original series after grouping the Ayres data in 3’s (score
21, frequency 1; sc 24,f 1; sc 27, f 1; sc 30, f 0; sc 33, fo;
sc 36, f 4, etc.) and the Thorndike scores in 5's (sc 6o, f 1;
sc 6.5, f 1, etc.) A moving average would probably lead to
slightly better results, but would be laborious with the uneven
spacing here present in the scores.

We may judge of the excellence of the two sets of equivalent
scores, since the drawing up of a correlation table for the data
of Table XXX shows that the relationship between the two
scales is almost exactly rectilinear, so that differences between
the percentiles upon the one scale should be proportionate to
the differences upon the other scale. Columns 1 and 2 of Table
XXXIII give these differences for the raw data and columns
3 and 4 give the differences determined from the smoothed
data. Rather better results are obtained from the raw data
than from the grouped, as would be expected from data show-
ing the high degree of correlation here present. The small
fluctuations are, in material part, not random, but genuine,
and the grouping process has therefore distorted the facts.

This method of equating scores is thoroughly empirical and
therefore applicable to situations in which the law of relation-
ship between variables is unknown, or at least cannot be stated
in a simple algebraic formula, but in which sufficient reason
exists to warrant the equating.

If several series are to be equated a very serviceable modifi-
cation of the preceding method is to equate each series, not to
any one of them, but to a normal distribution. This can be
done, using formula [55], giving by the aid of Table K-W the
mean deviation of a portion of a normal distribution. An
illustration will make clear the steps involved:

It is frequently desired to compare the performances of pupils
receiving marks in different subjects. If the pupils have no
subjects and no teachers in common, this can only be done by
making some assumption. If there are threc teachers, each
with 5o pupils, it is more reasonable to assume that the mean
abilities of the three groups are equal than that similar literal
or percentage grades of the three teachers are equivalent. The
data of Table XXXIV present the problem.
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TABLE XXXIV
MARKS USED | PERCENTAGE | MARKS USED | PERCENTAGE | MARKS USED| PERCENTAGE
BY FIRST |GIVEN MARK|{ BY SECOND GIVEN MARK BY THIRD |GIVEN MARK
TEACHER INDICATED TEACHER INDICATED TEACHER INDICATED
A 2.0 A+ .7 I 4.3
B 17.1 A 13.9 2 37.7
C 31.3 A— 4.5 3 50.3
D 40.0 B + 4.6 4 7.7
E 7.7 B 29.4
F 1.9 B - 4.3
C + 4.7
C 22.7
D 9.2
E 6.0

It is obvious that a mark of A given by the first teacher indi-
cates greater merit than a mark of A given by the second teacher.
Equating each mark to a standard-measure score in a normal
distribution gives:

TABLE XXXV

MARKS USeD | EQUIVALENT | MaARKS USED | EQUIVALENT | MARKS UseD| EQUIVALENT
BY PIRST STANDARD BY SECOND STANDARD BY THIRD STANDARD
TEACHER MEASURE TEACHER MEASURE TEACHER MEASURE

A 2.4 A+ 2.8 I 2.1
B 1.3 A 1.5 2 .8
C 4 A — 1.0 3 —-.5
D - .6 B + .8 4 - 1.9
E — 1.6 B .3
F — 2.5 B — — I

C+ - .2

C - .6

D — 1.3

E — 2.0

The method requires little time, but were such equatings being
done for a large number of classes a still briefer method could
be followed. Instead of finding the mean standard deviation
score for the upper 2 per cent, we may find the median: 1/2
the percentage of A’s = 1.0, therefore from Table K-W 2.3 is
the standard deviation score which is equivalent to the mark of
A given by the first teacher. The percentage of A’s plus % the
percentage of B’s = 10.6, therefore 1.2 is the score equivalent
to B. Similarly, .4 is equivalent toC; — .5toD; —1.6t0E;
and — 2.4 to F.
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The marks given by the second teacher are typically those
of a careful grader and show more discrimination than do those
of either the first or third teacher, but nevertheless it is more
reasonable to assume a normal distribution of talent than
such a tri-modal distribution as is indicated by the second
teacher’s marks. The method may frequently be used for the
single purpose of warping data showing an extreme distribution
into a more reasonable mold.

The observation has been made that in order to be com-
parable the two series should be independent measures of the
same thing. It is shown in Section 56 how certain correlation
functions enable one to estimate whether two series of scores
are measures of the same thing. In general it is not necessary
that a raw correlation between the two series approaching 1.00
be found, but merely that a coefficient of correlation corrected
for attenuation of 1.00 be present.



CHAPTER VII
THE FITTING OF CURVES TO DISTRIBUTIONS

Section 36. METHODS OF FITTING CURVES TO OBSERVATIONS

The properties of the normal distribution as given in Chap-
ter V are such that if data fall approximately into this form their
interpretation and treatment are frequently greatly simplified.
As a practical matter it is often serviceable to treat data as
normal even though slight divergence from normality may be
known to exist. Probably, however, the majority of distribu-
tions cannot by any stretch of interpretation be considered
normal. In such case one may resort to one of two procedures,
(a) either warp data into a normal mold by transformation
devices, or (b) discard the concept of normality altogether and
endeavor to discover an equation which does describe the
data.

The equation of the normal curve is

—x?
e3?

y_dVZ‘l'

Not counting N, the population, which does not affect the
type of curve, there is only one degree of freedom in this curve
since ¢ is the only constant which is to be determined from
the data. To permit of greater freedom one could start as
did Edgeworth with an equation of the tvpe

in which f is some function of x. As f(x) is made more and

more general, greater and greater freedom is given. Other

variations of this approach have been followed by Edgeworth

(1904), Kapteyn (1903), Thiele (1903) and Charlier (19o6).

Pearson has criticized this method because the function built
123
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up is what he terms a ‘“‘shadow function,” something not
corresponding to any physical measurement, not representing
any relationship which is in itself capable of independent
interpretation; and as a procedure which tends to make a
fetish of the normal distribution. However, should this ghost
take on flesh and bone and be found, in certain important cases,
to be a measure of what would seem to be a causal force, the
method would be amply justified. Judgment may well te held
in abeyance pending further experimental treatment. Later
in this chapter the normal distribution will be shown to hold a
unique and peculiarly dominant position among all the Pearson
curves, but this is not an argument for arbitrarily forcing data
into this form. It is rather an argument for the study of the
features of a given distribution which diverges from this form.
The first four sections of this chapter are concerned with the
practical details of curve fitting while the theme of the last two
sections is the bearing of types of distributions upon problems
of stability and trends in evolution.

Section 37. THE PRrRINcCIPLE UNDERLYING PEARSON’S METHOD
orf Curve FITTING

Pearson imposes certain very broad conditions upon the
differential equation of the curve. These conditions are so
general that many varieties of non-bi-modal distributions are
represented. These include (@) curves with a maximum fre-
quency somewhere between the limits of the range, called
“i-shaped” curves, (b) such as have an anti-mode, or point
of minimum frequency between the limits of the range, called
“u-shaped” curves, and (¢) such as have no mode, called
‘““j-shaped” curves. The present treatment will describe the
calculation of a few of the more important of the fifteen Pearson
types, and will present such criteria as are necessary in determin-
ing the type of curve to which given data belong, so that one
may then go to Pearson’s Tables (1914 tables) and other sources,
Elderton (1906), Pearson (1894), (1890 and sup 19o1), (1902
sys), (1906 skew), (1915 cert) and (1916 app), and determine the
equation of the curves.

The fundamental proposition in Pearson’s method is that in
order to have a good fit the first four moments of the data
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should equal the first four moments of the derived equation
and second that formula [81] expresses the general differential
equation covering all uni-modal curves. The moments are
fundamental and may be obtained by aid of the accompanying
formulas.

Let the required moments be u;, ua, us, K.

Let the four moments from the mean, but uncorrected for
grouping be v, v, »;, v4.

Let the raw moments from the arbitrary origin be »;, v, v3, vs.
Then the following equations lead to the calculation of the u's:

S > QU > G ) ¢
MENMRTNBTNMTN
nm=v—¥9»n=0 (Moments from the
va = vy — ¥} mean, knowing them | [24]
v; = ¥y — 3 v + 2 ¥4 from an arbitrary| [21]
vy = l—u ot 47;;1 + 6 ilz;ﬂ -3 1—141 origin) .......... see.
Continuing
UL =¥ =0 (Sheppard’s correc- [68])
. | tions anplied [68 a, see
M2 =v2— ions applie also Sec. 47]
M3 = ¥ to moments [68 b)
N ¢ S &
Ba= vy =2 + 240 from the mean) (68 ]

Sheppard’s corrections are for an error in the moments due to
grouping. They are to be used in case of ‘“high contact’;
that is, when the curve approaches asymptotically the base
line, or x-axis, at both extremities. In case high contact at
both extremities is not present, corrections as given by Pair-
man and Pearson (1919) should be used.

It should be noticed that the ¥’s are here defined as were
the u's in Section 21, that the »'s here are the same as the p’s in
that section, and that the u’s here differ slightly from the »’s
(or the u’s of Section 21), being corrected for a grouping error.

Certain derived constants, B, B. and the criterion «, are also
needed in determining the type to which given data belong.
In earlier work in curve fitting a criterion x; was used and
though it is not as general a criterion as &, it has much theoretical
interest.



126 STATISTICAL METHOD

B = “—,' , (One measure of skewness)...[69]
uta

B: = ﬂ, (One measure of kurtosis). . .[70]
uls

xn=28:—3B —6 (Criterion x1) . . . .....[71]

— B (B2t 3)?
4(4Bs—381) (28— 381—6)
The connection between the 8’s and the type of curve may

be shown by the illustrative curves of Chart XIX and by

the following Chart XVIII which has in addition to the
lines of Diagram XXXV in Pearson’s Tables, certain lines and
points for more recently discovered types of curves, as well
as lines giving the finite limits of various moments. The
meaning of the (uy = o) lines in Chart XVIII will be clear by
an illustration. It is found by reference to the Chart that
the lines (u_g = «) and (uzo = ) approximately pass through
the point (81 = 1.45, B2 = 5.66). The equation of the curve
fitting a distribution yielding these B's has all of its moments
between u_g and us, finite, and moments outside these limits
are infinite. For the positive moments the mean, a finite
boundary, or any other finite point, may be taken as the origin,
while for the negative moments one of the boundaries of the
distribution is the origin. For a point above Type III no

positive moments are infinite and for a point below Type V

no negative moments (defined further in Section 40) are

infinite. Only certain of the breakdown lines, i.e., lines where
the moment becomes infinite, have been drawn, there being an

infinity of positive moment breakdown lines between (uyg = o)

and Type III and an infinity of negative moment breakdown

lines between (u—s = ©) and Type V. The discussion of the
significance of these lines will follow shortly.

After determining B; and 8; from the data, a corresponding
point on Chart XVIII may be located. Should this be a point
on a line the equation of the distribution will have two degrees
of freedom in addition to that based upon N, the population.
If the (B, Bz) point lies in a space between lines, the equation
of the curve has one more constant in it and one greater degree
of freedom. If the (81, B:) point falls on certain designated
spots on the lines, especially if it falls where two curves cross,

(Criterion «s) . . . .[72]

K2
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the equation of the curve simplifies and has but one constant.
In general the (818:) point will not lie exactly on a line or on a
unique point in a line, but if near such a place much labor in
fitting a curve may be saved by choosing the simpler equation.
This is frequently permissible, as may be decided from Charts
and Tables given in Pearson’s Tables, from which the probable
error of the location of the (8:8.) point may be determined.
It is therefore possible to tell how unreasonable it would be
to choose a type represented by the simpler form.

Section 38. DEscRIPTION OF Tyres or CURVES

We will first note points upon the lines which give the very
simple one-constant equations. Reference to the drawings of
Chart XIX will show the general form of the curves.

(M) The point of meeting of the line B, = o, along which
all distributions are symmetrical, and theline, 8; — 81 — 1 = o,
along which all distributions consist of frequencies in two
categories.

B1=0,82=1.0

At point (M) two equal categories constitute the distribution.
Pearson has not given a name to this point nor assigned a
type number to the line, B — B — 1 = o. Due to the im-
portance of the 1 : 1 ratio from the Mendelian point of view
I have called this point (M). The line might be called the
Mendelian line, but as it includes all two-category distributions
and not simply those having Mendelian significance, I will
call it the Two-Category Type Line.

(R) The point corresponding to a rectangular distribution.

B =0,8:2=1.8

This point is the juncture of many lines and may therefore be
considered a special case of any of the types which meet here,
ie., Types II-u, II, I-j, I, VIII, IX-1, XII. This point
shares with the exponential the distinction of being the conflux
of the greatest number of types of any point in the diagram,
not excepting the normal point. There is a point, not in the
field corresponding to real distributions (8 = — 4, B2 = — 3),
which is still more exceptional as judged by the number of
lines which pass through it.
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(N) The point corresponding to the normal distribution.
B1 =0, pBs = 3.0

This is the conflux of Types I-i, IT-i, I1I-1, IV-1i, V, VI and VII.
All of these are i-curves, that is, they are characterized by a
single positive mode and have zero frequencies and a slope of
zero at the upper and lower limits of the distribution. Further
unique characteristics of this point will be pointed out in con-
nection with reliability.

(P) The point corresponding to a parabola.

B =0, 82 = 24
This is simply a special point in the Type 1I-i line.

(A) The point corresponding to the symmetrical Type VII
distribution for which the mean and the median are equally
reliable averages. The point is not here located exactly, but
it is in the neighborhood of

81 =0, 11.0 < B3 < 12.0

Below this point the median is more reliable than the mean
and above this point less reliable. It should be noted that the
line
8B:— 15681 —36 =0

is far above this point. The probable error of the fourth
moment becomes infinity below this line. Accordingly the
equation of a curve, or any other function involving the
fourth moment, loses significance. The mean and the prob-
able error of the mean do not involve a higher moment than
the second, so that they remain significant for distributions
for which it is impossible to fit a curve. In other words, the
fourth moment breaks down as a significant feature of a
distribution long before the second moment or the standard
deviation; and these latter in turn break down before the first
moment, or mean; and for certain distributions (e.g., 81 = o,
P2 > 12.0) the mean breaks down not only when the median
does not, but when it is in fact rapidly improving as a measure
of central tendency. Were we to go in the other direction
into the Type 1I-u region we would find the median breaking
down while the mean remains very reliable. This point is
taken up later.
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(L) The point corresponding to the line distribution
B1 = .32, Ba = 2.4
This is a point of change of types. On the line to the left of
this point distributions are Type IX-1 and to the right Type

I1X-2.

(E) The point corresponding to the exponential distribution

B1 = 4.0, B2 = 9.0

This point, which is well off the chart as drawn, is at the inter-
section of Type IX-2 and Type III lines. Type IX-2 curves
become Type X curves at this point and Type XI curves
beyond it. Type I1I-i curves become Type X curves at this
point and Type III-j beyond it. The exponential is therefore
located at the juncture of Types I-i, I-j, III-, III-j, VI,
VI-j, 1X-2, XI.

There are at least five salient one-constant distributions,
three of them, (M), (R) and (N), representing symmetrical
distributions and two of them, (L) and (E), constituting
division points on the one line that divides i from j curves.

Excepting the special points noted, points upon any of the
lines in the diagram correspond to two-constant distributions.

Types II-u, II-i, VII. The line

fr=0
represents three types, II-u, II-i, VII, in addition to the
special points (M), (R), (B) and (N). Following Pearson, this
line would be a boundary of *“possible” distributions.

Two-Category Type. Another boundary would be the line

B2—B1—1 =0
Looking upon distributions along this line as limiting cases of
Type I-u distributions, it is seen that the equation representing
them involves evponents which are infinite. For this reason

no equation for this type is given.
Types VIII, IX-1, IX-2, XI. The line

Br(8B2—9B1 —12) (B2 + 3)2 = (102 — 128, — 18)2 (4 B2 — 3 B1)

represents Types VIII, IX-1, IX-2, XI in addition to the
special points (R), (L) and Type X, or (E). This bi-quadratic,
which we will call f, divides, on the one hand, the u-shaped
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curves from the j-shaped, and on the other hand, the j-shaped
from the i-shaped. All j-shaped curves lie within the arms of
this bi-quadratic.

Type XII. The line

582—6p1—9 =0

represents Type XII curves, which are j-shaped throughout
the entire length of the line. In addition the special point
(R) is on this line.

Types 111, I1I-j. The line

282 —3B—6=0

represents Type III-i between points (N) and (E) and Type
I1I-j beyond point (E£). Containing as it does the two impor-
tant points (N) and (E) and all points on the straight line
connecting them, it is a very important type and, considering
that it has but two parameters in addition to N, the popula-
tion, it fits in a quite remarkable manner a large number of
skew curves. Further characteristics of this type are pointed

out later.
Type V. Theline

4(4B2—3B81)(2B2—381—6) =p(B:+3)?
(Identical with xs = 0)

represents Type V, composed entirely of i-shaped curves, in
addition to the special point (N).

This completes the points and the lines. Points anywhere
in the regions between lines correspond to three-constant
distributions.

Type I-u. Composed entirely of u-shaped curves varying
all the way from the Two-Category type to Type VIII.

Type I§. Composed entirely of j-shaped curves. This
region might appropriately be divided into two types, I-j-r
and I-j-2, depending upon which side of the Type XII line the
point is located.

Type I-i. Composed entirely of i-shaped curves varying
from Type IX to Type III. This is the only type area which
is finite, as Type II, Type IX and Type III lines completely
bound this region.
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Types VI and VI-j. Type VI-i, composed entirely of
i-shaped curves, lies below the Type III line and also below
Type XI line. Type VI-j composed entirely of j-shaped
curves, lies below Type III line and above Type XI line.

Type IV, composed entirely of highly leptokurtic i-shaped
curves. This region lies below type V line. Below the line

8B — 158, —36 =0

is a region in which the probable error of the fourth moment is
infinite, but it is not uncommon to find data which yield a
(81, B2) point below this line. In such case one of the out-
standing: features of the distribution is this very fact of an
infinite eighth moment in the fitted curve, which is the cause
of the infinite probable error of the fourth moment. Other
significant features of the distribution may be determined
from lower moments than the fourth, which continue to have
finite probable errors for some distance below the critical line
given. Pearson has named the region below this critical line
the heterotypic region. As I understand the heterotypic to
include bi-modal distributions I consider the designation inapt,
as I can discover no evidence suggesting bi-modal temdencies
in Type IV distributions. At present it is a sort of no-man’s
land. Itisconceivable that there may be lines in it, correspond-
ing to two-constant distributions not involving the fourth
moment, and therefore determinable. There may also be
unique points not involving either the third or the fourth
moment. For one, the point (8 = o, B2 = g) may be con-
sidered such. The equation of this curve is

g N6 N\
gl 2

~ (5+2)
It is the Type VII curve having the smallest possible integral
exponent, and is completely determined by moments below
the third and fourth. Furthermore, the probable error of the
second moment, or standard deviation squared, 1is finite
although the point (8; = g) is exactly twice as far down the
Type VII line as the intercept (8: = 4.5) of Pearson’s critical
line with the Type VII line. That this curve is not exceptional
is obvious from the drawing of it given in Chart XIX, A.

e
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Section 39. THE FITTING OoF THE MosT IMpoORTANT TYPES OF
CURVES

The normal distribution. The equation of this curve from

the mean as origin is
N ==
= — , 207
y 4 21re

The constants involved have been defined. The population,
N, and the standard deviation of the distribution ¢, are all
that are needed to determine the normal curve which best
represents given data.

Type II. The equation from the mean as origin is

x¥\m
¥y =% 1—(—1—,) ................... (73]
in which
=5h1—9
” 6 — 2B
a = % the range = \’;—_'i’—%:

NT(2m+ 2)
a2am+1[I"(m+ 1)]?

yo = ordinate at the mean =

The T function may be evaluated without resorting to tables.
First, if x is greater than 1, the following equation holds,
I'(x + 1) = xTx (T f{unction reduction formula)........ [74]

Second, if x is an integer greater than 1,
F'(x+1) =x! (T function of an integer)............ {75]

Third (Forsyth, quoted by Pearson 1go1r supplement to 18gs),
as a close approximation to the value of the function, may be
given,

Vi+x+ x’)x-H (Forsyth evaluation

T'(x+1) =3 r( e of the I function) .[76]

To quote from the reference cited, “If x be large the error is
less than 1/(240 x%) of the whole.” Even for an x = 1.5 the
error is only in the neighborhood of 1 per cent. We may,
however, first use the T" reduction formula and then Forsyth’s,
for small values of x, resulting in as high a degree of accuracy
as may be desired. For example,

1.5 1.5 X25 1.§5X25X35 1.5X25X35X4.5

r1g=L25 ,PJ% _ Tg4s _ T's.s
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The evaluation of T 5.5 by means of Forsyth’s formula is
highly reliable so that T 1.5 is readily obtained.

With the determination of y, the general solution of the
Type II equation is completed.

Frequently, with immaterial loss in the excellence of fit,
m may be set equal to the integer most nearly equal to
(58: — 9)/(6 — 2 B2) and the resulting equation will be much
simpler to plot. The use of an integral value for the exponent
1s equally serviceable in other types of curves. Whatever
value of m is used as the exponent, is of course also to be used
in the equation giving y,.

Type VII. The equation from the mean as origin is,

y=_&n ............................. [77]
(2
a!
_5B2—9
m_2_62—6 25 <m<®
_ 2 42P
B2—3
NI'm
Yo =

oV2x I(m—=3)Vm—3
Note that u; is not involved in the solution of the equations of
Types IT and VII. Types III and V do not involve u,.

Type III. The equation from the mode as origin is,

—px

¥y = ye ¢ (I +§)p.........................[78]
P _2u
a M3

— P a
a""’(E)_(p)

_ N pp+1 _ P 1
Y= er re +1) N.aL(W + 1)

e—P pr

Mode = Mean — qp_

Pearson (quoted in Duffell 19og) has shown that

r 1 25°.62

1°g(?(‘-p741_>7) S

is a highly accurate equation for values of p > 2. It is ac-

cordingly a simple matter to determine y, by the4id of this
equation.

= .3990899 + } log p + .080929 sin ...[79]
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A fitting of the distribution, not involving us; may be ac-
complished by utilizing the fact that the difference between
the mean and the mode equals a/p. Determine this distance
by the use of formula [4] or [4-a], thus yielding a/p. The
constants a, p, y, are then found as above, completing the
solution.

Type V. The equation from the boundary as origin is,

y=yoe-zx—l’ ...................... (80]

B 8 , 4VBi +4 Plus sign of radical
P—4+B,+ B1 to be used
=o(p —2)Vp—3 Signofradical is the

same as that of u,.

- Ny
*Tre-n
Distance from origin to mean = ¢ Vp — 3
Mean — Mode = t—,—(EZ—z)

Section 40. THE BEARING OF CURVE TYPE UPON STABILITY
OF DISTRIBUTION

With the visual pictures of these curve types in mind we
may proceed to a discussion of the bearing of type upon
stability of distribution.

Mention has been made of the fact that the point (8; = — 4,
B = — 3) is a very unique point. The equation of every
significant line in the chart except the line B; = o, passes
through this point. Many interesting relationships are made
very clear by shifting the origin to this point.

The region enclosed within the Type II-VII and the Two-
Category lines correspond to ‘‘real” distributions. A real
distribution, as implied by the steps in the Pearson method, is
one having the first four moments finite in addition to a finite
total population. Other features, which one might insist
should be finite, are not infrequently lacking. All of the u-
shaped curves which are asymptotic to their upper or lower
limits have infinite ordinates at these limits, though their
areas are generally finite. One desirous of defining a real
distribution in narrower terms than has Pearson would prob-
ably exclude these.
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In speaking of infinite positive momernts, ordinates or popu-
lations, the reader will of course understand that no obtained
distribution can possess such a feature. Attempts to fit a
smooth curve to a distribution more frequently than otherwise
result in obtaining an equation with some infinite characteristic.
Accordingly a reference to a distribution with such an infinite
property is to the fitted curve, and though this infinite feature
is not characteristic of the specific data in hand, it may be
entirely descriptive of the total population of which the given
data are a sample. In dealing with data in which certain
reciprocal functions are infinite we will likewise be speaking of
the fitted curves.

Certain of the Pearson types have infinite characteristics,
ordinates, abscissas, and moments. As ‘real’ distributions
these might be looked upon as shortcomings. The point is,
simply, that different limits as to the extent of distributions
will exist dependent upon what is included in the concept
““distribution.” If negative frequencies are included, and it
is to be hoped that a satisfactory physical meaning can be
given to them so that they may be included,* then the limits
of distributions greatly exceed the region bounded by the
Type VII and the Two-Category lines. On the other hand,
were one to restrict his concept to curves having finite eighth
moments, the critical line (us = ) would be a limit. The
writer would think it logical either to restrict the concept to
such as have all their moments finite, or to throw the field wide
open and include everything which has as much as one de-
terminable feature, such as the population, any one ordinate,
any one moment, any one derivative, etc.

The acceptance of this broader definition of *“distribution”
immediately suggests the study of distributions for the purpose
of ascertaining the nature and number of features which are
finite, i.e. determinable. This has been done with reference
to the moments of the various types of curves with results as
shown in Chart XVIII. If a positive moment (fy x*dx) is
finite when taken about a certain point, it continues finite
when taken about any other point a finite distance from the

* Por a suggestion as to this see Chart XIV and discussion of Sec. 8.
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first. In dealing with negative, or inverse moments
(S y x—"dx), however, the point of reference determines whether
it be finite or infinite. The only natural point of reference seems
to be a limit of the distribution. It is found, for all the Pearson
curves, that if p_, = o, then u_+a), where A as well as n
1s positive, is of necessity also infinite, so that moments have
been taken around that end of the distribution which shows a
breakdown, or infinite value, in the lower inverse moment
(u-2 is called a lower, or smaller, negative or inverse moment
than u_3, etc.).

The method of determining which are infinite follows from
the fundamental differential equation, which is
gy __atax (Pearson’s differential equation for all
ydx ¢1 + cx + cx? types of uni-modal distributions)..[81]
If the roots of (¢ + cox + c#? = o) are imaginary the limits
of the curve are + 0, and if they are real the distribution lies
between the values given by the roots. We may illustrate
the method of determination of the moments by means of a
Type I curve, To determine the infinite negative moment we
will first shift the origin to the left extremity of the distribution.

Letesx 2 +cox + 1 = ¢ (x + &) (x—bz)

c = bl + b’
az = b C3
a1 — azby = ac;
g =x+b
Then the equation from the new origin is
dy _ a+bz
Jdz T Toa g [82]

and the limits are z = o, and z = ¢. Multiplying by z* and
clearing give
Sayzndz + fbymn+idz = f(— cant1 4 an+1 4 gnt2) dy
Integrating,
aMn + bMn41 = [(— cant1 + z"+2)zyﬂic— S —c(n+1)yndz
e — f(n + 2) yn+ads

[6—c(+1)] Ma+ ®+n+2) Mats = [(— contr + zn+2) y]. . [83]
[¢]

The M’s or moments of this equation differ from the usual
moments, u’s, only in that they are not divided by N, the
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population. The two terms in the left hand member are
functions of the entire distribution, while the right hand
member is a function of the limits only. Whenever the
coefficient (b + # + 2) equals zero, then M, 4, can vary at will
without affecting M,. Therefore that value of #» which makes
this coefficient zero locates the moment, M, ,, which becomes
infinite. This is the procedure that could be followed in
finding out where the positive moments break down, but in
dealing with negative moments M, becomes infinite before
My 4, so that [a —c(n + 1)] is then the coefficient that con-
cerns us. It remains to express @ and c¢ in terms of 8; and S..
Let —a/c = m;, and b = m; + m,, then the integral of the
differential equation [82] is
y=FkaM(C—2)M L. iiiieineneennn [84]
and the differential equation is,
—cmi+n+1)Mn+ (m +ma+n+2) Mnt:
= [(— can+1 4 zm+3) yj ..... [83 a]

If the origin is taken at the other boundary the differential
equation 1s the same as above with m; and m. interchanged.
The constants for any given distribution, s, and m.,are functions
of B, and B, (Pearson 18g5) and can be expressed concisely if
the following substitutions are made:

vy=06+4
A=8:1+43
t=44—-37
j=54—6v
E=3v—-2A
The two roots of the following equation give the two values of m,
9 8122 (A — )’ v)?
id AR BAT e [85]

For the determination of the first inverse moment which breaks
down we are concerned with the value found by using the minus
sign of the radical. Values of m along a ray through the

point (8; = — 4, B2 = — 3) may be readily determined. For
example, for Type I1I line, £ = o, and
B = 4

m 41
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For Type XII line, j = o, and

am?
1 — m?

B =

For the line 11y — 8 A = o,

40 (2m — 7)?

ﬁl=121(8—m)(m+1)

As the M, inverse moment breaks down when n = —m — 1,
we may write for the Type III line, 8, = — 4/#, substitute
-1, — 2, — 3, etc., values for n and ascertain the B8;'s or the
points along this line where the successive inverse moments
become infinite. A similar procedure for other rays enables
the plotting of the entire region, as shown in Chart XVIII.
Transferring the origin to the mean, so that positive moments
will not become infinite merely due to the boundary being an
infinite distance from the mean, and finding when the coeffi-
cient of M,4, equals zero, gives the limiting values for the
positive moments. These are more simple functions of B;
and B, all being straight lines passing through the point
(1= — 4, B2 = — 3). Going, on the chart, from below up,
these rays become more and more dense until the limiting
Type III ray is reached; just as, going from above down, the
negative moment-breakdown lines become more and more
dense until the limiting Type V line is reached. Special note
needs to be made of the lines for moments u,, 1, p2, u3, and u,.
The last three of these moments are incorporated in the very
axes, B; and 3, of the chart. Lines determined from the coeffi-
cient of M,4;, showing where these moments break down,
would show, as might have been anticipated, that the rays
for ps, u; and u,4 lie outside of the region described by Pearson
as that corresponding to real distributions. The line for
(o = o) when the coefficient of M,4; is used lies within the
Pearson possible region, and the line for (u; = «) lies at the
boundary of it. The population, u, is not necessary to the
calculation of B8; and B. so that the fact that it lies within this
region is not inconsistent with the definition of the axes.
However, u, and u; are smaller moments than those involved
in B; and B; and it may be necessary to determine their points
of breakdown from the coeflicient of A, and not of M, 4.
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Pending further study of Type I-u distributions I will not
attempt an answer to this question or a description of distribu-
tions having infinite zero and first moments.

If the coefficient of M, 4 is examined with reference to the
negative values of n for which it becomes zero, rays above
Type III are located and these become more and more dense
as Type III is approached. These have not been plotted, as
earlier points of breakdown of the negative moments are located
by dealing with the coefficient of M,, but it is worth while
noting that, judging by the cocflicient of M 541, Type III distribu-
tions are the only ones which do not possess certain infinite
positive or negative moments, i.e., certain elements of in-
stability. If these unplotted lines should prove of any signifi-
cance Type IIT distributions become unique not only because
of possessing finite positive moments, but also because of the
finite nature of whatever the inverse functions are whose
points of breakdown are given by the coefficient of M,4,.
If, then, finite positive moments are of most importance III
i1s the most stable of all the types; however, should finite
negative moments be of greater importance than positive,
Type V would be the most stable; and if the possession of
both finite positive and negative moments is material then the
normal distribution is the most stable curve within all the
types.

It has for some time been known (Pearson, 19os5), that if,
by means of the first four moments, a curve is fitted to a
distribution having a (8, f2) point in region VI or IV, certain
of the higher moments of the fitted curve are infinite. Pearson
and Rhind (1909, pp. 130 and 134) have apparently interpreted
this to mean that for such distributions moments higher
than the fourth are needed for an adequate description of the
data. This, however, hardly seems to me the most significant
point of view. We can adequately and completely describe
the sample collected by calculating and recording enough of
the higher moments, but as Pearson has himself pointed out,
this would scarcely yield valuable information as to the popula-
tion of which the data are a sample because the probable
errors of these higher moments become extreme. The really
important conclusion to draw is that data, such that the
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sample drawn gives a (81, B») point in the Type VI or IV
regions, are of such a nature as to have indeterminate higher
positive moments. The lines labeled pg = o, ug = o, -+ -u_g
= o0, u_3 = oo, etc., on Chart XVIII indicate where, judged
by the first four moments, these higher positive and negative
moments become infinite. Suppose that for a given (8;, 82) a
fitted distribution is obtained for which uz = . Such
analysis as I have been able to make leads me to infer that a
few added moments in the fitting of the curve would not be
expected to materially change this, and that some moment
not far from uye will break down in any case.

These phenomena of instability of certain types of distribu-
tions are not mere oddities of the equations representing the
types. Either coefficient of the difference equation connecting
the moments may be written in the form,

¢ (81, ﬂi) n +f (81, ﬁz) =0

in which ¢ and f are definite functions of the 8’s. Accordingly
the breakdown of a moment is a function only of the moments
involved in the 8’s. In other words, were we to fit a Tvpe [
curve and find that the #u-th positive or negative moment
became infinite, we could not improve the situation by fitting
a Type II curve to the same data. The breakdown is not a
function of the particular Pearson type chosen, but of the
data, or of the differential equation back of all the Pearson
types. That it is hardly the latter may be shown.

Had Pearson decided to use the first five moments in fitting
curves it would have involved, in addition to the usual £
and B, constants, a third which we may call y. A solid having
three axes, 8;, 8, and v, would represent all the types just as
the plane with axes B;, 8; now represents thetn all. The most
serviceable function to constitute the third variable ¥ is not
immediately obvious, but there would be certain advantages
in defining v as the difference between the B3 (85 = pau;/ut)
given by the data and that derived from moments lower than
the fifth by means of the present differential formula [81].
Wten so defined, if ¥ = o a distribution would be represented
by a point on the two-dimensional (), 8;) chart. It is barely
conceivable that there might be a (81, 82, v) line for which all
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the positive and negative moments are finite. If there is such
a line it cuts the (8, 82) plane in the Normal point and nowhere
else, so that the normal distribution loses none of its peculiar
stability. The existence of such a line seems unlikely in view
of the fact that there is no line (as opposed to point) in the
(81, B2) plane for which all the moments are finite. Otherwise
expressed, had two moments only been used to derive the
equations of curves, the special points on the chart could have
been found and the normal distribution would have been the
only one having all its moments finite. Had three moments
been used the special lines in the chart could have been found,
but no line would represent distributions having all their
moments finite, the single Normal point again possessing this
characteristic. Again, by the use of four moments, no area, no
line, but merely the one Normal point is found for which all
the positive and negative moments are finite. Accordingly it
seems unlikely that the addition of a fifth moment would result
in any extension of the distributions having all their moments
finite.

The preceding discussion suggests that it would be futile to
add an x; term in the denominator of the differential equation,

dy _ __atax

ydx 1 + cax + cax?
The addition of an x? term in the numerator introduces bi-
modality and carries the problem into an entirely different
field, corresponding, in all probability, to the operation of two
opposing trends, instead of a single one such as we are here
considering.

The only conclusion which seems to me to follow from the
situation as described is that the weakness in distributions,
evidenced by the existence of certain infinite moments in the
fitted curves, lies in the data. This far reaching conclusion
is supported by (1) the fact that an extension of the differential
equation to include additional moments will, apparently, some-
times change, but not materially better the situation; and (2)
by the known illustrations of instability which may be drawn
from economic, psychologic and biologic fields.
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Section 41. ILLUSTRATIONS OF UNSTABLE DISTRIBUTIONS

Two distributions have co.ne to my attention which are
difficult to interpret, except as being unstable Type VI distribu-
tions.

The first is of price ratios, see Chart VIII, each ratio
being the quotient of a price in a certain year divided by the
price of the same commodity the preceding year. The distribu-
tion is very peaked and somewhat skewed and gives a (81, 82)
point so far down the chart that the fourth moment has an
infinite probable error when the differential equation method
of determining it is followed. The apparently puzzling ques-
tion is how the curve fitting method can be so far wrong as to
positively describe this distribution as one having an infinite
feature. Recent study of similar price data shows that the
fitted curve was undoubtedly correct and that the data did
actually have such an infinite characteristic. Certain com-
modities for sale in 1917 were not purchasable at any price in
1918 and the series of 1918 ratios covered only such 1917
commodities as could be purchased in 1918. In other words,
such price ratios as were recorded were in truth but a part of
an unstable distribution, and being such they gave evidence
that an occasional infinite price ratio was to be expected.

The second series is such as may be collected by any experi-
menter. A certain student was a subject in a reaction time
experiment. The stimulus consisted of a spoken word and the
reagent was directed to reply with the first word coming to
mind. The series of reaction times revealed a Type VI distri-
bution with a fourth moment having an infinite probable error
when determined from the differential equation. This reagent
was not tested further, but other reagents have been, with the
result that a mental confusion or blocking has been found to
occasionally occur, and to be so pronounced that the reagent
has refused to react at all, i.e., the reaction time for that
particular stimulus has become infinite. I have no doubt that
were it possible, without changing the conditions, to continue
the experiment with the first subject, sooner or later a similar
blocking would be found, so that herc again the probability
is that the infinite higher moment is a true description of the
situation.
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According to Angell (1907), who points out that judgments
of equality between two differing stimuli cease to constitute a
homogeneous series if the stimuli differ by too great an amount,
the same sort of condition holds generally in psychological
threshold experiments. That is to say that reactions from such
widely differing stimuli will yield distributions having unstable
tails, or, what I would take as the statistical equivalent, Type
IV or Type VI distributions. The use of the curve fitting
method to determine the degree and nature of the instability
in threshold experiments is suggested, but it suffices for our
immediate purposes to note that psychologic as well as economic
data occasionally yield distributions actually possessed of un-
stable tail functions, or in other words, infinite positive moments.

These illustrations point the possibility of the existence of a
causal relationship which is determinable from a knowledge
of the positive, and probably also negative, moments which
become infinite. In fact, the order of the breakdown moments
may prove a touchstone to the discovery of causal relation-
ships. The method at present available for locating these
critical moments is that of utilizing the first four positive
moments from the actual data to determine a differential
equation connecting moments. Having this equation the
critical moments may be located immediately.

Slight shifting of the origin entirely changes the situation
with reference to the inverse moments, so that, (a) it is either
impossible to utilize inverse moments, (b) the conditions of
the problem must give the limit with absolute definiteness,
or (¢) more definite features, such as the positive moments,
must be used for the indirect determination of the limits and
of the inverse moments around these limits. That method
(¢) will result in determinations with relatively small probable
errors in case the lower negative moments are the critical
ones is apparent from the appreciable distances apart of the
p_» lines of Chart XVIII.

Though the laws controlling biologic phenomena have proven
less easily and definitely determinable than many of those of
physics, nevertheless the distributions of traits resulting from
biological forces can readily be determined and examined. Is
it not reasonable to think that, whatever else evolution may
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involve it certainly involves a trend toward stability? If it
is a development through laws represented by positive mo-
ments, its limit is a Type III distribution; and if through laws
represented by inverse moments, its limit is a Type V distri-
bution; and if both are involved, the only final limit is the
normal distribution. This approach may be peculiarly valu-
able in studying evolution and it should not be a difficult matter
to test it. Distributions of shell and skeletal structure of past
ages can be made. Should it prove a fact that forms existent
in the past giving distributions different from Types III and
V have disappeared, and that those close to these Types are
still represented by extant life, it would be complete support
of this point.

We may note that the peculiar stability of Type III as
judged by the existence of determinable positive moments is in
harmony with the unique facts of correlation which Pearson
has pointed out as belonging to this type. This is the only
type in which “each contributory cause group is of equal
valency and independent.” The writer may have overlooked,
but at least he has not found, in Pearson’s contributions a
satisfactory explanation and elaboration of ‘cause groups.”
He, however, interprets them as analogous to separate chromo-
somes, each of which may affect a single character, or to separate
climatic and economic conditions each of which may affect
a given food product, etc. If cause groups are not independent,
so that a measure of a certain magnitude implies other magni-
tudes positively correlated with it, we have a situation which,
from a priori considerations, one would expect to correspond
to a trend, or tendency operating to pull measures in a certain
direction, possibly entirely out of the distribution. It may be
that a sufficient number of counteracting pulls, or vectors,
could exactly balance each other, resulting in a condition
identical with one not involving any pulls whatsoever, so that
it seems equally reasonable to look upon Type III distributions
as those in which there is a perfect balance between positive
and negative correlation tendencies, thus revealing a zero
correlation, or as distributions in which the pulls between
elements are all zero. Whichever view is taken the significant
result remains the same; that distributions which differ from
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Type III thereby give evidence of the existence of uncompen-
sated correlation between cause groups, —and of lack of
stability since certain moments are indeterminate.

The determination of the specific nature of the correlation
between cause groups in Type V distributions is a promising
field of research. This type, holding as it does the same
position with reference to stability of negative moments that
Type III holds with reference to stability of positive moments,
may possess some equally unigue and stable characteristic
with reference to negative product-moments as that possessed
by Type III with reference to positive product-moments.

In the light of all the facts presented it would seem that
evolution must be a trend toward the normal distribution.
Also, dependent upon the causal forces operating, it would
seem that subsidiary trends would be toward the three lines
running into the normal point. If the causal forces can be
expressed as positive moments, changes in distributions below
Type III in the direction of Type III would mean ever greater
stability, i.e., evolution. If the causal forces can be expressed
as negative moments, changes in distributions above Type V
in the direction of Type V would mean evolution. Balanced
or symmetrical distributions show a peculiar stability in that
all odd moments are zero. If stability of this type is the goal
of a certain line of evolution, the trend would be toward Type
II or Type VII. Finally, a certain development (biologic,
economic, psychologic, or what not) having reached one of
the three subsidiary goals, Type II or VII, Type III, or Type V,
further advance, to insure stability of a still greater order,
would be along the line toward the normal point.

The possession by an individual of a trait of such magnitude
as to lie outside of the distribution given by the other members
of the species ordinarily carries with it the elimination by
death of the individual * hence stability in trait is intimately
connected with stability in species.

Only in case a trait is operated upon by such influences as
result in the measures of the trait falling into a normal distribu-
tion can it be said that there is complete stability, or that the

* Cf. the traits possessed by lethal drosophsia melanogaster,
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race or species possessing it gives evidence of a self-contained
permanence.

Clearly if this analysis is correct, the evolution of a bisexua’
type of life would be as follows: (1) two entirely distinct traits
which we may call male and female; (2) an occasional modifi-
cation of the two, each in the direction of the other, giving
a u-shaped distribution; (3) a building up of a common ground
between the extremes, giving a limited range Type II-i distri-
bution; and (4) a further weakening of the extreme character-
istics until they become of infinitesimal importance in com-
parison with the common ground between, resulting in a
normal distribution.

Following the lead of the argument we find the human species
much further developed in certain parts of its makeup than in
others. As illustrations of the four stages note (1) primary
sex characteristics; (2) secondary sex characteristics; (3) mus-
culature; (4) intelligence. In concluding this chapter let me
emphasize the promise that lies in an experimental study of
evolution, utilizing the facts of distribution types.



CHAPTER VIII
MEASURES OF RELATIONSHIP

Section 42. THE ProBLEM OF CONCOMITANT VARIATION IN
THE SCIENCES

The determination of the law underlying concomitant varia-
tion is a problem common to all the sciences. The physical
sciences have a great advantage over the social and biological
sciences in that (1) errors of observation and measurement are
usually very small in comparison with the measures involved
and (2) fewer factors are ordinarily present. In measuring
some intellectual capacity of a group of children, it usually
happens that the probable errors of the test scores obtained
are greater than half the standard deviation of the scores of
the group. Obviously any relationship between two capacities,
each measured with no greater reliability than this, will be
clouded bv the errors of measurement. This is serious enough,
but it is not the only difficulty. In measuring the effect of
gravity, physicists can ordinarily assume that ten pounds of
lead and ten pounds of iron will act in a similar manner. But
in measuring intellect, food prices, etc., to say that one reagent,
one commodity, etc., is equivalent to another with respect to
the function being examined. is usually questionable. Ac-
cordingly, where the investigations of physics lead to the estab-
lishment of ‘“‘laws,” those of the social sciences ordinarily lead
to the discovery of ‘‘tendencies.” Relationships between two
psychological, biological or social factors frequently depend
upon a number of causes, each more or less independent, and
no one of which is so important as to dominate the situation.
Under these conditions, the relationship tends to be rectilinear.
In other cases, where the true relationship is not rectilinear,
large errors of measurement will lessen the strength of the

IS51
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measurable relationship, thereby making it more difficult to
determine the exact nature of whatever curvilinear relation-
ship may exist. It is also true that relationships which are
intrinsically curvilinear when determined over a range of the
two variables from very low to very high, may show practically
rectilinear relationship throughout a short stretch of the range.
For all the reasons stated, a measure of relationship based upon
the assumption of rectilinearity is of great importance. Even
in the case of known non-rectilinear relationship it is of much
value as a point of departure. The balance of this chapter is
devoted to a discussion of Pearson’s product-moment coeffi-
cient of correlation, the ‘“best’’ measure of mutual implication,
if relationships are rectilinear.

The most fundamental properties of this measure of relation-
ship were discovered and presented graphically by Francis
Galton from 1877 to 1888. Galton’s investigations had to do
with the inheritance of traits, and certain of the terms which
he used would hardly have arisen if the development had
involved other data. For example, the symbol ‘7" was a
measure of the ‘‘reversion,” such, for example, as offspring
upon mid-parent (a mid-parent measure is the average of the
measures of father and mother). Later, Galton used the
terms “regression’’ and ‘“co-relation’ and called the measure
the ‘““Index of Co-relation.” Weldon very properly calls this
measure ‘‘Galton’s Function’ and Edgeworth in 1892 gave it
the name which has survived, ‘ Coefficient of Correlation.”
Pearson (1920 notes) has pointed out that the product-

~moment function of Bravais bears but a resemblance in form
to the product-moment coefficient of correlation. Whereas
Bravais started with observations which were assumed to be
independent, and in treating them obtained derived measures
whose product-moments did not equal zero, Galton started
with the epoch-making concept that the original measures
were dependent. The Bravais treatment leads nowhere so
far as correlation thcory is concerned, because the measures
which are correlated do not constitute original data, nor
functions the corrclations between which are of any moment
on their own account. Partial correlation analysis leads to
independent measures, having given related original scores:
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which is exactly the reverse of the Bravais or Gaussian develop-
ments. Galton alone seems deserving of being called the
father of correlation.

Section 43. FINDINGS RESULTING FROM GALTON’S
GRAPHIC TREATMENT

Galton s procedure, based upon medians and quartile devia-
tions, has given way to the more accurate one involving the
product-moment formula,

Zxy

~ Nao,
developed by Pearson.

We cannot do better than to use Galton’s data in deriving a
measure of correlation. Galton obtained the heights of parents
and the heights of children, and drew up a “‘correlation table”
or ‘“‘scatter diagram’ showing the relationship between the
two. All female heights were multiplied by 1.08 to make them
comparable with male heights. This procedure is not the
most sound, but in this problem leads to no material error.
Letting X;, X, represent male and female heights, o}, o=, their
standard deviations and M,, M, their means, it would have
been better to have reduced each female height to a com-
parable male height by the equation

Comparable male height = M, + (X: — M,) a1/02

The discussion which follows will assume that the more reliable
method of transmuting female into male heights was followed
and also that the mean was used throughout. Presumably
Galton used the median, but no fundamental difference in
treatment followed from such use, it simply being a slightly
less reliable procedure. Galton’s diagram contained the data
given in the accompanying correlation table or scatter diagram,
Chart XX. Deviations being measured from 681 inches, which
is a small fraction of an inch away from the true means, are
labeled ¢ and ¢ instead of x and y, but no account of this slight
difference is taken until the calculation of Section 45. From
just such data as given, in fact it is likely that these identical
data were involved, Galton inferred certain relationships which
we now know hold with every normal correlation surface
[Formula 87].
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(a) A plot of the means of the vertical arrays (columns) as
shown by the X's shows the ‘ reversion” of offspring upon height
of mid-parent. Thus if the mid-parent height is 2} inches
above the mean the average or most probable height of offspring
is 1} inches above the mean.

(b) The line connecting these means may be closely repre-
sented by a straight line through the origin or intersection of
the means of the two distributions. This is the line showing
the regression (or ‘‘reversion’’) of offspring upon mid-parent.

CHART XX

Correlation Between Heights of Mdparent and Offspring

HClthé of Adult Children “Expressed s devia-
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(c) There is a reversion or regression of mid-parent upon
offspring. This would be represented by a straight line pass-
ing approximately through the o’s. Thus for every correla-
tion table there are two regression lines.

(d) The slopes of these two lines are equal, provided the
standard deviations of the two distributions are equal.
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(e) If standard deviations are equal, this slope varies between
zero and one (Galton did not suggest the existence of negative
correlations), and may be represented by the symbol “r”.

(f) The standard deviations of the measures found in any
one array (row or column) are approximately equal and are
smaller than the standard deviations of the total distribution
so that if o2 equals the standard deviation of the heights of
offspring, and 2.1 the standard deviation of offspring correspond-
ing to given heights of mid-parent, then

0’1.1 = g%, (I — X)

where N\ is a positive quantity, also dealing with columns
instead of rows,
g2 =04 (1 — M)

in which X\ is the same as before, o, the standard deviation of
heights of mid-parents, and ¢,., the standard deviation of
heights of mid-parents corresponding to given heights of
offspring. The symbol ¢, will, in subsequent formulas, stand
for the standard deviation of an array around its own mean
and ;.2 (or ¢2.,) the standard deviation of an array around
the regression line, but as we are here dealing with homo-
scedastic rectilinear regression either symbol can be used, as
Og = 0O1.2.

(g) There is a simple relation between X and r.

Itis, A\ =2 so that
ot = o4 (1 — r?) (Standard deviation of arrays
and from regression line, see
o4, =04 (1 —1r?) also Section 48)......... (86]

(h) Each array is approximately a normal distribution if
the total distributions are normal.

(:) If contour lines for different frequencies are drawn in
the diagram they constitute a system of similar and similarly
placed ellipses, the conjugate diameters of which are the two
regression lines.

Galton made no claim to mathematical ability but through
sheer insight into the phenomena of mutual implication made
these penetrating observations. He carried his conclusions,
stated in probability terms, as to the nature of the correlation
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surface, to Mr. J. D. Hamilton Dickson (1886), a mathemati-
cian, who readily wrote down the normal correlation equation
involving two variables. In our present notation this is:

N il S (£’+ ¥ _ EQ‘_‘) (Normal correlation sur-
-2 (1= )\ Tat oo face: 2 variables). . ..

z =
270103 V1 — 12 [see 88]

Galton’s humility, after years of collection of data and subtle
analysis of the same, in the face of the neat but not involved
mathematical derivation, is worthy of note by the social
scientists of this day who scoff at mathematical analysis.
Upon receiving from Dr. Dickson the solution of his problem
he wrote (quoted in Pearson 1920 notes), ‘‘I may be permitted
to say that I never felt such a glow of loyalty and respect
towards the sovereignty and magnificent swayv of mathematical
analysis as when his answer reached me, confirming, by purely
mathematical reasoning, my various and laborious statistical
conclusions with far more minuteness than I had dared to hope,
for the original data ran somewhat roughly, and I had to
smooth them with tender caution.”

Section 44. ALGEBRAIC STATEMENT OF GALTON's GRAPHIC
FINDINGS AND DERIVATION OF CORRELATION FORMULAS

Let us consider these discoveries in more detail. Let x,
the first variable, stand for height of mid-parent, y height of
offspring, each expressed as a deviation from its respective
mean. The standard deviations are respectively o; and o,
while r is the slope of the regression line in the ‘‘reduced”
scatter diagram, — that is, in the correlation table, — in which
the measures entered are x/gy and y/o, respectively. Galton
reduced by dividing by the quartiles, leading to essentially
the same result as here. The slopes of the regression lines are
equal, and equal to . We will shortly obtain the numerical
value of 7 by other than the graphic method of Galton. Finally,
let y stand for an estimated height of offspring, knowing the
height of mid-parent, and x the estimated height of mid-parent
knowing height of offspring. With this notation, discoveries
(a) and (b) together are equivalent to the equation

¥ __ x (Fundamental form of regression

.23 gy equation). ............. [see 91]
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Propositions (¢) and (d) are equivalent to the addition of the
following equation to the preceding

These are the two fundamental regression equations char-
acteristic of every regression table, showing rectilinear regres-
sion.

Proposition (e) is liable to misinterpretation. If » = o, it
implies that there is no relationship, no reversion or regression
of one variable upon the other while an » = 1 means complete
mutual implication of the two variables. More loosely stated,
this latter situation will be described as one of complete mutual
dependence, or simply dependence of the two variables. The
student, however, should not postulate causal dependence.
So far as data are concerned there is no evidence that the
heights of the parents have any mote to do in causing the
heights of the offspring than do the heights of the offspring in
causing the heights of the parents. This is characteristic of
all measures of correlation. A situation exists and a correla-
tion coefficient measures the tendency of the pairs of measures
to be related but gives no evidence whether x is the cause of
y, ¥ the cause of x, or whether the cause is unknown and lies
back of both. We think of parents being causal agents in
determining the heights of offspring, but we do this for reasons
outside of the scatter diagram, namely, the parents have
existed earlier than the offspring in a time series.

Propositions (/) and (g) are of course the result of careful
collection and study of data, but Galton gave a very simple
proof of (g). The variability of the offspring generation is
determined by the variability of the arrays (rows) and the
variability of the means of these arrays. If A equals the
distance of the mean of an array from the mean of the distribu-
tion and, as before, g;., equals the standard deviation of the
array, and if # equals the number of measures found in an
array, then (no%., + nA?) equals the contribution of a single
array in the calculation of the standard deviation, of the
distribution, thus:

o2 = Zna,y + Tn At
N
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Since Z#n¢%.. = No%., and since for any array A equals the
estimated y corresponding to the given value of x,
A=y=r Ty
o
so that ZnA? = Zny? = Noj:, therefore
oy = a2y, + a% (Standard deviation of distribution
in terms of standard deviation
of arrays and of standard devia-

tion of means of arrays — recti-
linear regression)............ [87]

By proposition or discovery (f)

]LV Zno?y = 0% =02 (1 — )

and
Tnat_ LonZat_
N 0’1 N
Accordingly,
0% = 0% (1 — \) + riolg
and finally,

A=
so that the important proposition (g) is established even before
a formula for the arithmetical calculation of r is at hand.

(h) is an experimental finding which, coupled with (g) and
(a), (b), (c) and (d), immediately gives the equation of the
normal correlation surface. The equation, from the mean,
of the normal distribution is,

If the distribution of an array is normal, its standard dewvia-
tion = ¢.V'1 — 1%, and if its mean is A ( = 7 g5/01 x) from the
mean of the total population, then the equation of the normal
distribution representing the array, from the mean of the entire
distribution as origin, is,

—~(y — rox/o1 x)3

2! I e 2 ok (1 — r?)

T eaVi-rvais
The 5"’ corresponding to an assigned y is the probability of a
measure 1n this array having the value y. The probability of

a measure being in this particular x-array is

—x
y=—1_ad
gy \/2 w
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Therefore, the probability of a measure having the particular
value x and also the particular value y is the product of these
two probabilities, z = 2’2",

=% —(y® — 2xyror/a1 + x¥3h/oh)

2 = I 2%, 20% (1 — 1Y)
270102 VI — r?
which simplifies to,
1 (P _2rxy
z = 1 2= \eh ok qin

270102 V1 — 72
(Normal Correlation surface — 2 variables) . .[88]
This is the equation of the normal probability correlation
surface of two variables and of a total population of one. If
the right hand member is multiplied by N, we have the equa-
tion in case the total population is N. The quantity r has to
this point been defined as the slope of the regression line in
case standard measures [see formula 65] are the measures
entered in the correlation table. We will now prove that in
any scatter diagram, the two ‘““‘best fit”’ rectilinear regression
lines are

in which the two r's are identical and given by the equation,

— __ Zxy _ Zxy

vV x? \/272 Noos
The term “‘best fit"’ is used as in the method of least squares.
A “best fit” determination is one in which the sum of the
squares or the errors of estimate is a minimum, that is, the
standard error of estimate is a minimum. Determinations
can be made resulting in the sum of the dewviations; of the
cubes of deviations; of their fourth powers, etc., being a
minimum, but since the days of Gauss, it has been known
that in the case of a normal distribution, none of these deter-
minations will result in as small a median error as one in which
the sum of the squares of the errors of estimate is made a
minimum. The constants of distributions which are widely
divergent from the normal, so determined that the standard
error of estimate is a minimum, are undoubtedly very excellent
determinations, but it is no longer possible to say that con-

r
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stants so calculated have smaller median errors than would
others derived upon a different principle. In all of the follow-
ing treatment of simple and multiple correlation, the principle
of least squares is involved and the standard errors are minimal,
and because of this fact the determinations are called *best
'fit” determinations. They are ‘“best” if the principle of least
squares is the proper principle but they may not be so if some
other principle is more sound, though in all cases we certainly
can describe the least square as a highly excellent determination.
Referring to Chart XX, if the slope of the line drawn which
is the regression of ““y upon x,” or the reversion of y toward x,
is by (the numerical value of b, is equal to tan ¢) then having
given a value x, the best estimate of the corresponding y
value is y. y = bux. In general y will not be identical with
the actual or experimentally obtained value of y, so that
(¥ — ¥) indicates an error of estimate. The standard error
of estimate g,.; is given by the equation,

The regression line which makes this magnitude a minimum is
the regression line sought. Yule (1912) derives it without the
use of calculus, but the calculus derivation is so much more
simple that it is here given. See also in this connection
problem 6 at end of this chapter.

_Zz (y —baux)* _ZTy* —2byZxy + bnZTx?

s N N
ﬂ _ - 22:xy+2b212x_3 —
dby N N
bay = Zxy _Zxy (Regression coefficient of variable 2 upon vari-
T Txr Nop? able 1, or the regression of the dependent
variable, 2, upon the independent vari-
able1) ... ... [89]

This is the desired value of the regression coefficient. If
standard measures are used the regression equation,
becomes

Y _(Zxy\«x

o (m a1
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and the coefficient Sxy/(Nay02) is the coefficient of correlation,
r, or the measure of mutual implication, for a derivation
similar to the preceding and involving the other regression
line gives

b Zxy Xaxy (Regression of variable 1
12 = S0 & ar

=y? Nos? upon variable 2) ..... (89]
so that
X _(Zxy\vy
o1 ?\WZ&Z) o2

Thus the coefficient of correlation is given by

le,i

_ _ _ Zxy --  (Pearson product moment co-
C VExtvzyt Nows

r = Vbisby efficient of correlation). . ..[g0]

and the regression equation may be written,

x _ , Y (Fundamental form of regression equation
o, a3 between two variables) .............. [91]

The other regression is

e ’?n ....................................... [o1]
Formula [g1] may be written

- _ o 5,91

x-rd’y, and y rdlx .................... [91 a]
or as

x=bny and y=bax ....................... [g1 b]

It is to be especially noted that whereas r;; always equals 7y,
the regression coefficient by, equals b, only in case the two
variables have equal standard deviations.

Section 45. THE DETAILED STEPS IN THE CALCULATION OF
CORRELATION AND REGRESsION CONSTANTS

The steps necessary to the calculation of 2x?, £3* and Zxy
are shown below and to the right of the diagram. (Chart XX.)
The origin taken is 68} inches, but as shown by the sum of the
fy row (— 20) and the sum of the fx column (38) the exact
means are slightly different. We will calculate the correlation
and regression coefficients without correcting for these slight
discrepancies. They are taken into account in the calculation
at the close of this section. To avoid working with fractions,
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deviations from the means have been expressed in terms of
one-half inch intervals. Thus a y-value of — ¢ means, ¢ one-
half inches below the mean. In terms of these units we have,

X ¢? = 6320
S £ = 2740
StE = 1618

This last summation has heen calculated in two ways so as to
provide a check upon the arithmetical accuracy of the work.
The first entry in the Sff row is — 17. This is the sum of the
products of the frequencies of the ¢'s for the single array for
which £ = — 9. The notation, Sff, is used to designate a
summation for an array, whereas Zf¢, or more simply, Z¢, is
the summation for the entire table. Similarly for Sft¢ and
Z¢e. We have,

1618
r = \7(;_32_;\/2_7?;) = .3888
by = 1618 _ .5905 (Slope of regression line drawn)
2740
by = 1618 _ .2560 (Slope of other regression line)
6320
o = 2377":2 = 2.908 (In one-halt inch intervals)

= 1.454 (In inch intervals)

gy = \}63@22—49 = 4.417 (In one-half inch intervals)
= 2,203 (In inch intervals)
The regression of height of offspring upon mid-parent, in

inch units, and measured from an origin of 681 inches, is,

or,
¢ = .5905 ¢

Having the equation in this fundamental form it is but a step
to express it in terms of gross scores. Letting M’ = the
arbitrary origin or approximate mean, we have

- M,
- M,

I
>l

£
£
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Accordingly, _
] ¢ = but
may be written _
Y- M':=by (X - M)
or _
Y =bu X + (M2 — by M)

X =b ¥V + (M) — biaM's)

To illustrate the use of this equation let us estimate the
most probable height of male offspring if the mid-parent
height is 64 inches.

Y = .5905 X + [68.25 — (.5905) (68.25)]
= .5905 X + 27.95

Solving, when X = 64, gives, Y = 65.74, as the most probable
height of offspring, or the mean height of many such offspring.

The calculation of the constants involved in the regression
equation as shown assumes that deviations are from the means
of the two distributions. In case origins other than means
are used corrections may be applied to secure the product
moment and standard deviations from the means. The cor-
rections for the standard deviations have already been given,
formula [22].

Let A, = M', — M,, the distance from the arbitrary origin
to the mean of the X's, and let A, = M’; — M,;. Then,

Ty T2

=Ty T N A
Ty ZT¢*
Txy = (£ +a) (¢ + 4

STEF AN+ A2 (84 A)
SE A4 AZE+HAZ(E+A)

and since Z(¢ + A)) = Zx = o and Zf = — NA,, therefore,

Sxy = S&¢ — NAA;  (Formula for correction of product —
moment due to use of arbitrary
OrigINs) ....... ..., l92]
Accordingly r may be calculated from any origins whatever
by the formula
TE — NaA, (Pearson product — moment

- VI — NAaL Ve — N;\z: coefficient of correlation
calculated from any origin).[93]

1 4
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When zero is, for each variable, the arbitrary origin the
above formula is equivalent to

, = XY -CX)ETV)/N (r calculated from
VEXTZEX))/NVZIY:— (2 Y)N ze'ro.a.sarbitra.ry
o origin) ........ fo4]
Another variation is
TXY - NM\M. (r calculated from zero as
r=———_""—t——— T —— . ..
VEX: - NM;HZVZEI Vi— NM?, arbitrary origin)...... [95]
Similarly,
bre = Z_XY - IYM'M’- bar = 2&%’ — NM\ M,
T IV NML M T X1 NMY
(Regression coefficients calculated from zero
asarbitraryorigin).................... [96]

Thus, for Galton’s data, the correct values for the requisite
constants are
- 1618 — (38) (— 20)/324
V2740 — (38)?/324 V6320 — (— 20)*/324
ba = .5923
M, = 68.25 + 38/324 = 68.37
M, = 68.25 — 20/324 = 68.19
o, = 2.906
o1 = 4.416
Thus the corrected regression equation from the actual means
as origins is

r = .3897

¥y =.5923x
which differs but slightly from that obtained neglecting A, and A,,

§ = .5905 &
and the corrected regression equation from zero inches as
origins is

Y = 5923 X + 27.69
which in turn differs but slightly from that obtained neglecting
A, and A,.

Section 46. THE ERROR INVOLVED IN CERTAIN
APPROXIMATIONS

It is desirable to know how large an error in the means may
safely be neglected. We have, letting s; = (Z£2)/N and s,
= (Z¢%)/N,

Z g — Naids

' = —— = _— - ———
N \/Slz — A2 \/Sa" — At
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and we wish to ascertain how greatly this differs from the

approximate value,
p= 28
Nsis3

- 2
Setting the expressions 1/v/s? — A? equal to 1/ s\, 1 — (—? ) and

expanding the radical by the binomial theorem, discarding
powers in A/s greater than the second as being negligible in
comparison with the second powers, gives, after certain simple
reductions,

r=r’+r'[

=7 4 e

1 (A;)'-’ I (z{z)’] Ay (Showing error in r from use
5

2 \s, 2 \s2 $152 of approximate means) [97]

in which ¢ is the error introduced in case 7’ is taken as the
value of r. Note that if ' is positive, less error is introduced
if A; and A; have the same sign than if they are of opposite
sign. Let us assume the two magnitudes (A/s) are equal.

Then,
e=("—1) (%)’

In this case e is negative, i.e., if approximate means which are
in error in the same sense are used, the obtained correlation,
7', is larger than the correct value, r. We may solve the pre-
ceding equation for A/s for assigned values of 7 and e. The
following tables give certain solutions:

Ir ERRORS IN MEANS ARE EqQuaL Ir ErRrRORS IN MEANS ARE EQuUAL
AND OF THE SAME SIGN AND OF OPPOSITE SIGN

€ r | A/s A = approximately e r | A/s A = approximately
— .00l | .0]|.032| 1/158 of range .001 | .0 | .032 | 1/158 of range
— .005 | .0 | .071 i/ 71 .005 | .0 | .071 1/ 71
— .00 |.0|.1€0| 1/ 50 * " o010} .0|.100| 1/ 50 *
—.00I [.7]|.088| 1/ 87 ‘" .001 | .7|.024}| 1/207 " “
—.005 |.7]|.129| 1/ 42 ‘" “ .005|.7|.054| 1/ 92" *“
—.o10|.7|.183| 1/ 27 “ “ .o10|.7|.077] 1/ 65 "
—.00I |.9|.100| 1/ 50 ‘" “ 001 |.9|.023| 1/218 ** *“
—.005 {.9|.224| 1/ 22" “ .005 | .9 | .051 1/103
—.010 | .9|.316| 1/ 16 *“ “ .o10|.9.073| 1/ 69 *“

Since for A’s of a given size, there is much greater error in the
correlation coefficient if they are of opposite sign than if of
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the same sign, therefore in choosing arbitrary means, it is
frequently desirable to so choose that A;, A; have the same
sign. For example: suppose o1 = 02 = 3, M; = 12.56 and
M, = 9.30, then better results will be obtained, if correction for
arbitrary means is not made, by choosing 12.0 and 9.0 (A; = .56
and A; = .30) than by choosing 13.0 and 9.0 (A; = — .44
and As = .30). For many investigations, an error of 1 per
cent is not material so that, as a practical procedure subject
to refinement if low correlations are involved or if a 1 per cent
error is serious, it is safe to forego correcting for arbitrary
means if the error in each of the means is less than 1/27 of the
range and if they are of the same sign. This requirement
is more easily met than one imposing the condition that the
standard deviation should not be in error by more than 1 per
cent. As standard deviations are usually features of a distribu-
tion which it is desirable to know, it seems better to forego
correction for an arbitrary mean only in case the error intro-
duced in the standard deviation is less than 1 per cent. We
" have

A? . .
g =Vs? —A? =5 — é? + higher powers in (%)

The error introduced by using s in place of o is

s A? (Showing error in ¢ from use of approximate
—a =

T2 072X ¢ ) 1 [98]
and the proportionate error is
s—o _ A%
s 252
If an error of 1 per cent is permissible, we may write
A!
2—52 = .01
A 141
S = 1414

or A is approximately 1/35 of the range. If there are 18 or
more intervals in the range covered by the measures and if
the arbitrary mean is chosen as the middle of the interval
nearest the correct mean, then the error will be less than 1 the
interval or less than 1/36 of the range, so that the error in the
resulting standard deviation will be less than 1 per cent

The correction just considered is on account of displacement
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of the mean. Sheppard’'s correction, formula [68 a], is for
grouping. If ¢ equals the correct standard dewviation and
S the standard deviation obtained from coarsely grouped data,
Sheppard’s correction gives

ot =5 —1/12

o =S — 1/24 S + higher powers in (1/12 S5)

‘E—;—f = 1/24 5* (Showing error in ¢ due to grouping) . .[99]

and if this equals .01, we have

S = 2.041
If the standard deviation is 2 or a trifle greater, the range is
in the neighborhood of 10 or 12, so that if we have as many
as 12 steps, the error of the standard deviation due to grouping
is less than 1 per cent. The most exacting condition is there-
fore the one preceding this.

Accordingly, if there are 12 or more intervals in the ranges
of both variables, and if the origins are so taken, by resorting
to 4 or } steps if necessary, as not to differ from the correct
means by more than 1/25 of the range if the correlation is
above .70, or 1/50 if near .0o; and if the origins taken lie either
both above or below the correct means; the error introduced
in either the standard deviations or the coefficient of correlation
by not correcting for grouping or for approximate means, is
less than 1 per cent. In case intervals are of necessity so
broad that a material error in correlation results, the raw
correlation coefficient requires a correction for broad categories.

Section 47. THE BEARING OF BrRoAD CATEGORIES UPON
CORRELATION

Writing pn for the product moment Zxy/N, as in Section 48,
we have

Ordinarily o; and ¢, will be taken as the standard deviations
of the class indexes, but more accurate values are obtained by
first applving Sheppard’s corrections, formula [68 ¢]. Thus if
h and k are the group intervals, s; and s; the standard devia-
tions before applying Sheppard’s corrections, we have,



168 STATISTICAL METHOD

To a first approximation there is no correction for grouping
to be made to the product moment, py, so that we have

Z xy

et " W 3
JS’I—’_%SH__ NJS’V———JS%——
12 12 12 12

(Coefficient o1 correlation after applying
Sheppard's corrections)............. (100]

If the grouping is very coarse and irregular we may assume
a normal distribution and determine the mean of each class;
calculate the correlation, using these mean class values as our
variates, and correct for grouping. The correction for grouping
is different from Sheppard’s because here our correction is on
account of using mean-class-values in place of the continuous
variate, whereas Sheppard’s correction is on account of using
mid-class-values in place of the continuous variate. To point
the distinction the following hypothetical problem involving
trade ratings and general intelligence ratings is given.

é’an % — |8, — ORDI- lf{ —
R el ENT RO~ NATE AT EAN
MENTAL ABiLITY Encn |Above| Liwer | conss
CLass | CLass | oF CLASS
Dull Average Bright 00 |-
Expert.| 1 4 5 (10| 10 1.755
Journey- 10| -175498
man . 4 10 16 30 30 -703
Appren- .40 | .386342
t?c e . 4 II [ 20 20 000
Novice -— .60 | .386342
11 25 4 40 40 — .966
720‘7 50 7 30 100 1.00 .000000
g’ .000000 .279962 .347693 .000000
y — 1.400 —.I35 1.159

ox = V80.40968/100 = .806714
V'82.95276/100 = .910784

.. 2857438
100 X 89671 X Q10784 =-34987

oy
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The symbols ¢, z and x have the meanings of Section 27.
Formula [55] is used in determining x from ¢ and z. Treating
x and y as the values of the deviates from the means, the
correlation coefficient is, by the usual process, found to equal
.34987. This value, however, suffers from a large grouping
error. We cannot apply Sheppard’s corrections because we
do not have equal class intervals and because we have not
dealt with class indexes, but class means. Whereas s, the
standard deviation of class indexes, is greater than o, the
standard deviation of the continuous variates: s’, the standard
deviation of class means, is less than o. If class intervals are
equal and equal to the unit used, we have,

gt = s? — 2 (Sheppard’s correction) .[68 a)
also
1= gy I (Pearson’s correction to
om =S 12 the standard deviation
of class means) ...... [ro1}

This second formula, as well as subsequent ones in this section,
was derived by Pearson (1913 meas.). We thus see that an
entirely different correction is needed. This last correction is
not of general utility, as the problems in which we use class
means instead of class indexes are usually such that we do not
know that the class intervals are equal. We may, however,
determine the correction by aid of the correlation between the
variate and the class means of the classes into which the
variates are placed.

Let x be the value of the continuous variate, and x the value
of the means of the classes into which the x measures are placed.
Then the regression of the x’s upon the x's is

- Ox
X =Trxx X
Ox

but x is the mean of all the variates in the class of which r is
the class mean, or simply x = x. Substituting in the preceding
equation we have

oo = 9% (Correlation between a variate and the means
X7 ax of the classes in which it is recorded) ... . .[102]

The standard deviation of the class means o, is obtained by
calculation, and o, is known if the form of distribution is
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known. For the problem given ¢, = .896714 and o, = 1.0
since a normal distribution of standard deviation equal to 1.0
was assumed, so that r,, = .8967/1.0 = .8967, and if ¥ stands
for the continuous variate in the case of the second variable,
thenr,, = .9108/1.0 = .g108.

Continuing we may find the correlation between two con-
tinuous variates when each is recorded in broad categories.
The following simple derivation depends upon principles of
partial correlation discussed in Chapter XI. The reader should
therefore be familiar with that chapter before attempting to
follow this proof. The symbol r,,,, stands for the correla-
tion between class means for constant values of the graduated
variates x and y. Clearly when x and v are constant the
corresponding class means x and y do not vary, so that
Tryxy = O. This partial correlation coefficient, r,,,, is equal
to a numerator determinant divided by the square root of the
product of two others. The divisor is easily shown to be
intrinsically positive so that the quotient becomes zero with
the dividend. Accordingly we have

Txy I'xy Tvyy

rxx I ryxyy|=0

rxy T'xy I

in which r,, is the corrected value sought, and 7., is the value
calculated, using the means of the broad categories. It has
just been shown that r,, is equal to ¢,/c,, and r,, equal to
o./0,. We need to know r,, and r,,. The partial correla-
tion r,,, 1s that between the variate x for a given value of
the second variate v, and the class mean y for a given value of
the second variate y. The class mean for a given value of the
variate is invariable, so that y for constant v 1s constant and
accordingly r,,, = o. This partial coefficient can be zero
only when the numerator of the quotient which is equal to it
is zero; that 1s
I'xy — I'xyTyy = O

or

xy = IxyTyy
Similarly

Txy = I'xy'xx
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Substituting in the determinant and solving for r,, gives, if
we let p7y = 7xy
Txy _ TxyOx0Oy (Giving the correction to 7 on ac-
rxxTyy ox0y count of use of class means). . .[103]
In case a normal distribution of standard deviation 1 is assumed
to fit the distributions of the two variables, and the means of
categories calculated upon this assumption, ¢, and o, each
equal 1 so that we have
rey _ _Zxy (Correction to r on account of use
oxoy Nolols of class means, upon assumption
of a unit normal distribution) . .[104]

The correction here derived for broad categories is equally
serviceable when determining correlation ratios or contingency
coefficients as described in Section 68.

Note that there are two corrections; one, Sheppard’s, to be
applied on account of broad equal intervals when class indexes
are taken as the variates; and the second, the one here given,
to be applied when the class means of broad equal or unequal
intervals are taken as the variates. No correction is as yet
worked out for application when class indexes are used and
the intervals are broad and unequal, though in such case good
results may be expected by empirically setting k in Sheppard’s
formula [68 a] equal to the mean of the several intervals
involved.

We may return to the numerical problem and apply the
correction to obtain the correlation corrected for broad cate-
gories between trade ratings and estimates of intelligence. It
yields

mlzy =

mfzy =

-34987 -
.896714 X .910784 4284

In this calculation it has been assumed that x is the same for
the first cell (expert-dull), the second cell (expert-average),
and the third cell (expert-bright), and similarly throughout
the rest of the table. This is only approximately true, and in
case the categories are very broad and the correlation high it
is far from true. The method should not be used with a four-
fold table and it is of doubtful validity for the table given.
It may be applied with good results if no class contains more
than 25 or 30 per cent of the cases and if the correlation is not
greater than .g.
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Section 48. PROPERTIES OF CORRELATION SURFACES

With the scatter diagram of Chart XX before us, the mean-
ings of certain terms will be readily grasped. If the standard
deviation of the successive x arrays are equal, the distribution
is homoscedastic in the x variable and if, in addition, the
standard deviations of the y arrays are equal, the correlation
surface is homoscedastic in both senses. If the slope of the
distribution in an array a given distance above the mean of
the array, is equal to the slope the same distance below, and if
this is true of all arrays, the total distribution is called homo-
clitic; thus, a distribution composed of symmetrical arrays is
homoclitic. If means of successive arrays lie in a straight
line, the regression is rectilinear or, by some writers, is termed
linear. In case a regression table is homoscedastic, homoclitic,
and has two rectilinear regression lines, the most probable
value of one variable when estimated from a knowledge of the
other, is that given by the regression equation. The regression
determination in the case of distributions showing moderate
divergence from these three conditions will still be very nearly
the most probable. Scatter diagrams showing extreme di-
vergence should be treated by some other method. Lack of
substantial rectilinearity in regression is the most readily de-
tected featurc of a correlation surface which vitiates the use
of the product moment coefficient of correlation. For most
problems, the establishment of rectilinearity is sufficient to
completely justify the use of the Pearson product moment
coefficient of correlation. Note that this is a much easier
requirement to meet than that the correlation surface be
normal, that is, capable of accurate representation by means
of equation [89]. Accurate correlation results may regularly
be expected from distributions showing rectilinear regression
lines, but otherwise widely divergent from the normal cor-
relation surface. Due to the fact that Pearson’s early de-
velopment of the product moment coefficient of correlation
was based upon the assumption of a normal correlation sur-
face, it has frequently been assumed that such a surface is
prerequisite to the sound use of the coefficient, but this is not
at all true.
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Having the means at hand of estimating a second variable,
knowing a first, it is desirable to ascertain the probable error
of such determinations. Obviously if arrays are homoscedastic,
the standard deviation of any array is the standard error of
any single estimate.

01.1 = 02 V1 — ¥ = gk (The standard deviation of an array or
the standard error of estimate of a
or.a=0 VI — 1 =gk second variable, knowing the first) . .[86]

The quantity & of the above equations is defined in the next
paragraph.

With the data of Chart XX in hand, 0s.; = 2.208V1 — (.3888)?
= 2.034. That is to say, that if the correlation between height
of mid-parent and offspring is .3888 and if the standard devia-
tion of heights of offspring is 2.208 inches, then the standard
error of estimate of a child’s height, determined from the
mid-parent height, is 2.034 inches. A guess that the height
of every offspring is 68} inches would have a standard error of
2.204 inches so that the increased accuracy of estimate due to
utilizing the correlation of .3888 between mid-parent and
offspring reduces the standard error of estimate to 2.034
inches, or about 8 per cent reduction. It is thus seen that no
very great improvement in estimate results from a correlation
no higher than .3888. The proportionate reduction is given
by the factor V'1 — 2. This factor measures the lack of rela-
tionship between two variables just as r measures presence
of relationship. I have elsewhere (Kelley, 1919) described
certain of its properties and have termed it a coefficient of
alienation. The coefficient of alienation may be interpreted
in a positive sense for if a criterion, x,, correlates to the extent
r with a given measure, x;, and if there exists some other meas-
ure, x;, independent of x, but which together with it com-
pletely determines %, then the correlation between x, and x.
is k. Its immediate determination, having any value of 7,
is given by

k= V1 —r? (Coefficient of alienation). .[86 a]

and the calculation may readily be made by the aid of the small
alignment chart given in the appendix or the large chart which
is a supplement to (Kelley, 1921). To secure an idea of the
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improvement of estimate with increase in correlation, the
following table is given:

COEFFICIENT OF COEFFICIENT OF CORFFICIENT OF COEFFICIENT OF
CORRELATION ALIENATION CORRELATION ALIENATION
r k r k
.00 1.0000 .80 .6000
.10 .9950 .8660 .5000
.30 9539 .90 4359
.50 .8660 .95 3122
.60 .8000 .98 .1990
.70 7141 .99 1411
.7071 .7071 1.00 .0000

Notice that a correlation of .866 is necessary before the error
of estimate has been reduced a half, and that even with a
correlation of .gg, the error of estimate is still 1/7 as great as a
sheer random guess. It should be obvious from these facts
that if individual estimates are to be made, it is necessary
that very high correlation be present in order to secure even
moderately reliable results. '

It 1s sometimes convenient to work with probable errors
instead of standard deviations, in which case we have

P.E.,.+ = P.E.; & (Probable errcr of estimate of the second
variable, knowing the first) ..........[86 b]

The calculation of the formula for the probable error of the
coefficient of correlation is involved and has several times
been given (Sheppard, 1898), (Pearson, 1913, freq.), and is
not repeated here, but the formulas upon which it is based
have general value. Not only the probable error of the coeffi-
cient of correlation, but many other probable errors as well,
depend upon certain higher product moments and upon the
correlation between product moments. The notation and
meaning of product moments may be made clear by certain

1llustrations.
XY

N

and is a second order product moment,

TXY?
P12 = N
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and is a third order product moment,

> X3y
Pu = WN—_'
and is a seventh order product moment, etc., and in general,
, T Xy
p qq = N

gives a product moment of the (¢ + ¢’) order around some
fixed point. Following Pearson we would use the symbol
Do’ to represent the same product moment around the mean
as origin, but as moments around the mean are the only ones
here concerning us, we will drop the superior bar and use pg,
in place of p,’. The meaning of the notation may be il-
lustrated by a few examples involving familiar constants.

pa = Eﬁy =0
po2 = u’s = g3* (The prime designating the second variable)
Pu = %;y = r130103.

Section 49. STANDARD DEVIATIONS AND CORRELATIONS OF
VaRrious CONSTANTS

The standard error of any product moment is given by the
equation (Pearson, 1913, freq.),

Nty o =bPr020 = Pad ¢ pw PPa—1.¢ + ¢ por PP ¢ -
+2q9¢Pube-1.d Paa-1 — 29 P+ 1.0 Pa—1.¢— 29 Pa. ¢ +1 P2 ¢’ 1
(Standard error of any product moment from the means). . .[105]
The correlation between any two product moments is given by

Na’q.q’ % pun’ g qbusw T Da+ug+w — Pe.o Puw +qupnpg—1.¢ Pu—1.w
+@uW PP d—1bu v — 1+ qu b pe—1.¢ Pu. w1+ qu by Po. ¢ —1 Pu—1.0
—upgt1.q pu—r.uw — U Do g +1bu -1 — qQPu+1, w Pg—1. ¢
— q'bu W +1bq. ¢~

(Correlation between any two product moments taken from the means) .{106]

These two equations provide the basic relationships which

lead to the following special probable errors and correlations.
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As will be noted the formulas greatly simplify if homoscedasti-
city and rectilinearity are assumed, and simplify still further
if normality of correlation surface is assumed.

Standard error of the mean,

o

T R R PR REPEPERTS [29]

Standard error of the standard dewviation,
gg = 7:—77 (Assuming a mesokurtic distribution). .[32 a]

Standard error of the regression coefficient,

_ o1 1 —r o1k (Assuming homoclisy and
% = o, \NT N eaVN  rectilinearity). .. ..... [107]

Standard error of the correlation coefficient,

02'xy__!7 Pn-?’n_*_g«o‘—ﬂgo_i_ﬁ — Pl | P12 — P Do
rixy N ?%n 4 P’ 4 p%s 2 P2 Doz
_ b1 — pupn P — pu Poa)
Pn P P por

(No assumptions except that [error/N] to second and higher
powers are negligible in comparison with first powers). .. .[108]

This complete formula was first given by Sheppard (18¢8)
- F(-lete-op)
VN 3 2 2 B
(Assuming rectilinearity of regression. This assumption
carries with it the necessity of equal kurtosis, if arrays
are homoscedastic) ................ .. ... ... [108 a]

ar

This formula, as well as others in this section, is given by
Pearson (1913, freq.). The constants, 8; and B';, are the 8y’s
for the two distributions.
k?  (From preceding formula, assuming mesokurtosis,

T VN dnaddition).. ... ... (108 B]
This standard error was first derived by Filon and Pearson
(1898), upon the assumption of normality, but note that the
formula is in fact more gencral than this. Also note that if r
is high and the kurtosis small, the formula gives too small a
value; and that if the correlation and kurtosis are high, the
formula gives too large a value.

1 —p* (1 4o 11 p? (Standard error of r to a second

T VNZI 4N —1) approximation)............. [108 ¢]



MEASURES OF RELATIONSHIP 177

In the derivation of this formula, squares of the magnitudes
[error/N] were kept and normality of correlation surface
assumed. (Soper, 1913.) The magnitude p is the true cor-
relation and for such small populations as this formula is
intended it may lead to substantial error to use r, the obtained
correlation, in its place. This is particularly true if r is very
large. However, the use of r in place of the unknown value,
p, if r < .95 and calculation of the standard error of » by the
above formula in case N < 25, should give better results than
formulas [108 a] or [108 b]. If formulas [108 a] or [108 b] are
used for these small populations an improved result may be
expected by multiplying the standard error given by them by

4 G485/ @N)) e (108 d]

As a practical matter, r determined from samples < 5 may be
considered meaningless and nearly so if determined from
samples < 7.

Standard error of the constant term (M, — buM,) of the
regression equation. Let ¢ = (M, — bM,). Then,

o, = 0y,YM? + ¢’ (Assuming homnclisy and
rectilinearity) . ....... [109]

Standard error of the estimated mean of an array, . (the
mean ¥ score of the x-array).

o. =23 k x? (Assuming homoclisy and
x N a?y rectilinearity)........ [110]

Note the decrease in the accuracy of the means of the arrays
as we go further and further from the mean of the total distri-
bution. A further important consequence of this equation
is that for certain situations it gives the standard error of the
mean of a total population [see formula 111] since the esti-
mated mean of the array for x = ois the mean of the total
y-distribution.
o2k (Standard error of a second mean in case a first mean

a = — . . .
M: /N is known with zero error, and in case the correla-
tion between the two series of measures isr)....[111]

Certain correlations between the constants of a correlation
surface are at times needed. Let #n; = the frequency in row



178 STATISTICAL METHOD

s; #n/ in column s’; and #,’ in the compartment or cell
given by the intersection of the s row and the s’ column. Then,

Nss’
o, = n, (! TN [112]
n ’ ’
IRy Ty THog My = — —’—’Nﬂ ............................... [113)
’ ns’
on On, rmm, = Nss — EN_S ............................ [114]
nsnys’
IR Onm,y fns,,“, = — ’TV" ................................ [I 15]
’ ns
in on . TR.m ., = Mss (l TN e [116]
, = M (Correlation between the mean
M Tngg "Mingg = NS and the frequency of a cell). ... .[117]
q Yy
My My = T (Correlation between means)... .. [118]
P22 — P poa
r = =
T Vo — P20V Pu — Pl
- Pun—pws
Vi — pt V' —u'a?
(Correlation between standard deviations) . .[119]
P -1 =B )
B 3
(Assumption that both distributions are ho-
moscedastic and regressions rectilinear). . .[120]
Thus, ‘
roies = r?  (Assumption of rectilinearity, homoscedasticity and
equal kurtosis) . . ............ ... {121}
P13 = roy1a2? 8’s  (Assumption ot rectilinearity)............ . [122]
r =y = \(—@'—- (No assumptions) [123]
Mo M 5, —1 (Noassumptions)............... 3
If 8: = o, then Tafygy = O (123 a]
, _ r(v B —r _\/ 81) (Assuming rectilinearity and meso-
M 2 k2 kurtosis) .... .. ... ........ (124]
T, =© (Assuming rectilincarity mesokurtosis and ho-
moclisy) ... . (124 a]
r pr—— T Oa——
Tro, = /:(\/dz—l —72\/I32— 1)
2 orV N
(Assuming rectilinearity and homoscedasticity). . [125]
rro, = I (Assuming mesokurtosis in addition to above) ...[125 a]

V2
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Let ¢ = (M1 - blgMz). Then

_ Mw2|k2
Na’wcab”
Let Bia.3, Bia.g, etc., be defined as in Section 8o. Then,

rebyy = (Assuming rectilinearity and homoclisy) . .[126]

Youra = ;;_ (r12813.2 + 713812.3) (Assumption of normality)....[127]
2
frion = § (Bu-2Bu.3 + Bu.aBs2.1 + BisaaBirr + Bu. 281 4)
(Assumption of normality)........ [128]
, = pog — 17 13 (k%23 — 112 =’y + 2 rafiern)
i 23 2 k:mkzu
(Assumption of normality)............ [129]

The last three equations were first given by Filon and Pearson
(1898). Formulas for a number of the preceding standard
errors and correlations, not involving the assumption of
normality, are given by Isserlis (1916). He also gives reduc-
tion formulas for higher product moments, such for example
as for pyys.

Section 50. FOorRMULAS POR THE CALCULATION OF THE PRoDUCT-
MoMENT CoOEFFICIENT OF CORRELATION
There are a number of useful variations of form in the
product-moment formula. The equivalence of all the follow-
ing statements should be immediately recognized by the
student:
X2

(@) ria= ?12‘%2_2' in which z, = ﬂ, and z; = =°

g1 age
_ z X1X3
®) ra= N‘O’ﬂI:
© ra= Txy (Pearson product-
Noos moment coefficient
(d) Zxy = Nris0i03 of correlation) [90]

P
e = F12010y, OF Fj3 = ~——
(e) pu 120102, =

[ £] g1
(f) ri2 = bz — = by — .
gy a2

In case a table of squares is employed it is simpler to work

with sums and differences than with products: Let d = the

difference between two deviations, each taken from its mean.

We have

=2(x—y)’=2x’—27}2xy+2y’
N N

o3 = g% 4+ 0% — 2 roi02




180 STATISTICAL METHOD

or,
_oh+al—o%  (Difference formula for r, based upon

2 0103 deviations from means)............ [130]

in case x and y are equally variable, so that ¢; = ¢, we have,

o2 (Difference formula for r in case of equal vari-
203 ability, based upon deviations from means). .[131]

Utilizing the usual relationship between a standard deviation
around a mean and that around an arbitrary origin we may
express the last two equations in terms of gross scores. Let
2, = the standard deviation of the gross scores X around the
origin, X = o; I, that of the Y’s, and =, that of the quanti-
ties (X — Y), and let M, and M, stand for the means, then
the following formulas are easily derived from the preceding
two.
2% + 3% — 2 My M: — 2% (Difference formula for r based
"= aVvEy - MY VEL — MY upon gross scores) . ... ....[132]

In case the means, and standard deviations, are equal, — such
a case as would arise if two similar forms of a test are correlated,
the formula becomes

e —— 2?4 (Difference formula for r based upon
r= 2 (3 - MY gross scores and in case means and
standard deviations are equal)....... [133]

The difference formula based upon gross scores may be trans-
formed into one involving summations instead of averages.
Let S, =NZ4, S, =NZ%, Sqg= N2% ZX = NM,, ZY = NM,.
Then, we have,

N Difference formula for
LS+ S —S) - (EX)E (Di
2 (1 + 5 ) — ¢ )(_,Y? r based upon sums of

r = —_ -— -0 T T LZ
VNS, — (ZX)? VNS: — (2 V)2 gross scores)........ [134]

Formulas such as [134] involving gross scores only are advanta-
geous in that they lend themselves readily to mechanical and
routine calculation. The numerical figures involved frequently
become large but this is not much of a handicap, if a table
of squares is used, and if an adding machine is available.
Formulas similar to certain of the preceding, based upon
sums instead of differences, are as follows: Let o; stand for
the standard deviation of the sums of the deviations from the
mean (x + y), and Z; for the standard deviation from zero
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of the sums of gross scores (X + Y), and let other symbols be
as above, then
g% — % —o% (Sum formula for 7 based upon deviations

y =

20102 frommeans)......................... (135]
_ 9% (Sum formula for r based upon deviations from
20t means in case of equal variability)........... [136]

Eliminating ¢* from formulas [131] and [136] gives
_ o% — ¢% (Sum and difference formula for r based upon devia-

T ok + 0% tions from means in case of equal variability) . [137]

If gross scores are used and if means, and standard deviations,

are equal, formula [137] may be transformed into the following:
_Z% — 2% — 4 M* (Sum and difference formula for r based
23+ 3% — 4 M? upon gross scores in case means, and

standard deviations, are equal).......[138]

A general formula based upon the standard deviations of
sums may be readily derived and is sometimes useful, as is
also one based upon summations of sums.

In general; if, for a given problem, certain relationships are
known to hold ahead of calculation, such, for example, as
equal means, equal standard deviations, proportionate means,
proportionate standard deviations, means or standard dewia-
tions having known values, etc., a simpler formula than the
general one may be derived. If inexperienced help is doing
the work, a mechanical routine method not involving such
mental operations as multiplying three times seven, but rather
such operations as copying 197244 and adding on an adding
machine, is serviceable. If multiplication as high as twelve
times twelve, and good judgment in selecting approximate
means can be counted upon, the method used upon Galton’s
data is probably the most expeditious.

Section 51. THE INTERPRETATION OF REGRESSION
COEFFICIENTS

The derivation of the correlation coefficient shows it to be
the regression coefficient in the case of standard measures.
The regression coefficient is statistically the more fundamental
and in all actual problems involving the estimate of one variable
knowing a second, the regression coefficient and not the cor-
relation coefficient is the essential measure. A wider use of
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regression coefficients in place of correlation coefficients would
lead to a more accurate and detailed understanding of the
situations portrayed. We may illustrate this by the data
of Chart XXI, but will first need to know the standard error
of a difference. This 1s readily derived. Let d equal the
difference between two measures X and Y, whose means are
M, and M, and let x and y be defined by the equations x =
X—-M, y=Y - M, then
d=X—-Y=(x-9)+ (M — M)
If any constant is added to or subtracted from d, the standard
deviation around the mean is not altered so that
93 = 9 (d + M2 — M)
and since
d+ M, — M =x—y
we have
93 T 0 (x -~y
but ¢ x — 4 is simply ¢4 of formula [130]. Solving [130] for
g4 we have
0d = Voo + 0% — 2 2102 (Standard error of the difference be-
tween 2 corrclated measures). .. . [139]
in which o, is the standard error of the first measure, o, of the
second measure, and r;; is the correlation between the two
measures. In case the measures are not correlated we have
od = Va2, + o2 (Standard error of the difference between two in-
dependent measures). .. ...................[140]
The constants calculated from this chart, including the cor-
relation ratio 9 and the test for linearity ¢, described in Section
68, are as given in Table XXXVI, in which variable one is
the percentage of men voting for Thompson, and variable two,
the percentage of women.

TABLE XXXVI
Standard errors of

M, = 60.768 M, = 60.558 M, .374 M, .441

o1 = 14.707 o2 = 17.354 g, .264 9o, .312

by = .73527 by = 1.02377 bis, .0107 ba, .0149
ri3 = 867()1 T2, 0063

m: = .86942 nn = .87112 M2, .0001 91, .0062

f12 = nhis — rip S = nly — rin {12, .0040 {31, .0028

= .000611 =.00314
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The method of calculating the standard error of ¢ is given
later, but since its probable error is nearly as large as itself,
rectilinearity is shown to be a sound assumption. Let us,
therefore, consider the other constants and attempt to answer
the following questions:

(1) Is there a sex difference in regard to the mean tendency:
that is, is the difference (M, — M;) which equals .210, one fifth
of one per cent, a significant difference?

CaArT XXI*

CORRELATION BETWEEN SEX AND VOTING TENDENCIES
PERCENTASE OF MEN VOTING FOR THOMPSON

2 |7 [18]i17]22|27|52 |37|a2|a7|52 |57 |[e2] 67|72 [77] a2 |67 92 [ o7 [rome
2 )
7] [Nz 3
2] [2[Ns[i+ N\ | 10
17 2\ 3 [2\ 4 ) 12
Eu N 7N ] ] 21
8|27 1| N9 Ne[s[4] 35
Fle 2 |NeWsle2[s] [ ][ [ 46
§37 I b |3 INEN\24]9 |1 |2 ) 85
%43 ) 22 8 pN\|14]6[la]2 77
47 12 NN 13 []6] 3 2 101
z[%2 Vo (2 [zsNelle]5 [2 [a ] 142
gw ' 2 9 |2 57/15 | 3 1 ) 134
w|6Z T[22 [13]33|\q3&[10[3 z 148 | ™
le7 4|5 10][s2Ned 22 2 193
gn IRRRIEANEE 163
En RRIEIED) 163
& 2 [{z[13{35 [\l & 139
87 I 30 1|6 [ N3\ %6
92 4|4\ 2 [\ 14
97 N 2 3
M 2|7 |8|6{23]|36|5 |835(120/16i {143 l|95 223/ 214]175|68 |22 9 1546
M,

* Correlation of percentage of men's votes cast for Thompson (abscissa) and percentage
of women's votes cast for Thompson (ordinate) in 1546 precincts in the Chicago municipal
election of April 6, 1915. Percentages are of votes cast for the two leading candidates only.
Class intervals run from 4.5010 to 9.5000, etc., per cents. The middle of the class intervals
are 7.0005, 12.0005, 17.0005, etc. The .0005 has been dropped in the calculations, and the
class symbols are given as 7, 12, 17, etc. The number of votes per precinct did not differ
greatly and ran about 400 per precinct, about 35 per cent being votes of women. The data
were gathered from official returns by Professor J. W. Canning.
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(2) Is there a sex difference in regard to the variability of
mean precinct votes: that is, is o2 — o1 = 2.647 a significant
difference?

(3) Is there a sex difference in regression of mean precinct
votes: that is, is by — b = .28850 a significant difference?
We can answer these questions by using formula [139] if we
know (1) the correlation between means, (2) that between
standard deviations, (3) that between regression coefficients.
By formula [118] '

'L!;Mz =113 = 8676

by formula [12]
ro,e, = 112t = .7527
We have no formula for the direct calculation of the correlation
between b’s, but we do not need one. If the difference by, — by
is significant, then the quotient, by/bs, is significantly different
from 1.00, but by ’'be; = 0%/0%. Therefore if b12/b, is signifi-
cantly different from 1.00, 01/0; is also, but if this is so, then the
difference (o, — o2) 1s significant. Accordingly if we prove
that there is a significant difference between the two standard
deviations, we have with the same certainty proven that
there is a significant difference in the two regressions.
Letting o4 stand for the difference of the measure under
discussion, we have
M, — M: = .210
o4 = V(374) + (441)* — 2 (8676) (.374) (441) = .219
o2 — oy = 2.647
aq = V(263)* + (312)? — 2 (.7527) (-264) (.312) = .207
As the standard error of the difference between the means is
equal to the difference, we cannot conclude that the difference
is significant, but as the standard error of the difference between
the standard deviations is but 1/r2 of the difference, the point
is definitely established that there is a sex difference resulting
in difference in the standard deviations and in the regressions.
In other words, on the average, throughout the city, men and
women voted for Thompson to about the same extent, but
judging by the precincts, the women tended to vote in blocks
to a greater extent than -men. If the precinct was a “ Thomp-
son precinct”’ the majority given to Thompson by the women
was greater than that given by the men, and if it was an “‘anti-
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TABLE XXXVII

Per CENT WHITE | PEr CaAPITA INSUR- Per CENT WHITE PER CAPITA INSUR-
PopuLATION ANCE IN Force PopPULATION ANCE IN ForcE
99 341 95 304
99 285 95 251
99 270 95 237
99 219 94 140
99 192 93 103
99 190 90 167
99 170 88 142
99 — 224 87 10§
98 321 84 254
98 290 83 207
98 272 82 227
98 269 82 101
98 253 78 133
98 244 *71 *347
98 241 71 — 96
98 182 68 121
98 171 67 158
97 272 58 133
97 234 57 105
97 204 56 126
97 197 54 147
97 182 44 132
96 237 43 84
96 202
96 190
96 176

Let X stand for the per capita insurance in force, and Y for
the per cent population, then calculation gives

712 = .6430
M2 = .7955
Corrected for fineness of grouping error
ma = .7310 (Calculation given in Section 68)
71 = .8019

Corrected, nu = .7394
$12 = 7tz — e = (.7955)% — (.6430)* = .2193

o, = .1202  (Calculation by formula...... {197])
{12

“— = 1.82

oy 3

so that (from Table K-W), the chances are 34 in 1000 that the
true regression is rectilinear. The small population makes it
impossible to prove the appropriateness of a certain regression
line, rectilinear or otherwise, but with only one chance in 30
of the regression being rectilinear, we will proceed on the
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assumption that it is definitely non-rectilinear. Since the
populations in the successive arrays are very small, the regres-
sion line following all the chance fluctuations of the means of
the arrays leads to a measure of correlation which is too large
to represent the truth. Accordingly .64 is too small and .80
too large, and the true regression is neither a straight line nor
one following all the means of the arrays. A value in the
neighborhood of .7394 1s more trustworthy than either of these.
As an empirical procedure, which will result in a more reason-
able regression line, and a measure of correlation between
.64 and .80, we may use a coarser and coarser grouping of
percentages as the data deviate more and more from the
mode, assign interval values to grouped data, and calculate a
Pearson product-moment coefficient as shown in Chart XXIII.
Percentage scores are transformed into auxiliary scores accord-
ing to the following table:

1 | ] ‘I
PER CENT OF WHITE | 43 | 54 | 64 | 73 | 81 | 88 | 94 f \ :

POPULATION AS |[to [to | to | to to|to, to! 97|98 ! g9

FoLrows . . ./ 53|63 | 72| 80| 87|93 | 96

AssiGN FoLLOWING

SCORES . . . .| 1 2 3 4 5|6 7 8 9 | Io
{

This transformation scheme is empirical but it should be
noted that it has not been so drawn up as to capitalize chance
fluctuations, thus giving a spuriously high measure of cor-
relation. We are not endeavoring to secure a high measure
of correlation such, for example, as the raw correlation ratio,
but rather a reasonable measure; and second, we desire a
procedure which permits estimating one variable, knowing
the second, which the correlation ratio method does not permit.
We may judge of the excellence of our transformation scheme
by the approach of the resulting product-moment coefficient
of correlation to the mean of the values of the two corrected
correlation ratios (.7310 + .7304)/2 = .7352. With this auxil-
iary score which bears a 1 to 1 relation with percentage of
white population, the regression is practically rectilinear. The
means of the arrays vary from a position on a straight line
only to a degree which we may reasonably attribute to chance.
Since there is a 1 to 1 relation between the auxiliary variable

—_—
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and per cent o1 white population, an estimation of the auxiliary
variable is equivalent to an estimate of the per cent of white
population. The Pearson product-moment coefficient of cor-
relation found between the auxiliary score and insurance in
force is .7146 which, though it is not quite = .7352, the most
reasonable value, is certainly an improvement upon either
the straight correlation coefficient or the raw correlation ratio.

In addition to enabling an estimate of one variable from a
second, and to providing a reasonable measure of correlation,
a reduction of one variable so as to yield a rectilinear regression
with a second makes possible an investigation of multiple
correlation tendencies which otherwise would be very laborious
or altogether impossible.

If we have three variables, Xo, X, X, and desire to know
all the interrelations, we require information as to six regres-
sion lines which we may call loy, lLio, loz, ko, li2, I1. Let us sup-
pose that the correlation table involving variables o and 1,
shows 2 rectilinear regressions, lo; and l,0, and that the regres-
sion lg is curvilinear, and that the nature of the others has not
been determined. Let us suppose that a simple transforma-
tion of X, scores into auxiliary X' scores results in a rectilinear
lp; regression line. Then as proven by Isserlis (1914), the
additional regression lines ly, /12, and Iy are also rectilinear.
The proposition may be stated in the words of Isserlis, who
uses the word “‘linear’’ as we have used rectilinear: ‘“ We may
conclude then that in general the linearity of any three of the
six regression lines involves that of the remaining three.” . ..
(Isserlis’ theorem.)

Obviously the principle can be extended to any number of
variables. Let X, be the dependent variable or the criterion,
and let X,, X, X;...X. be independent variables which
are combined into a single score for the purpose of estimating
the criterion. Then, if each independent variable showing
curvilinear regression with X, is transformed into auxiliary
scores having rectilinear regression, not only every correlation
with the criterion but every intercorrelation between the inde-
pendent variables as well will be rectilinear. For example,
given the four variables Xo, X, X, X3 Let us suppose that
none of the regressions are rectilinear. In this case the first
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investigation to make would be to see if a simple transformation
of Xo may not result in making all the regressions involving
Xy rectilinear. If no such transformation is possible, we may
transform the scores of the independent variables. We have
the curvilinear regression lines loy, Lo} loz, bo; loa, l30; bhe, lu;
hs, la1; Ls, l. Probably a transformation of some one of the
independent variables can be made so that both regression
lines involving it and the criterion, that is loy, Lo, or L, ko, or
loa, 130, become rectilinear. This is probably always possible
in case of single valued functions. Rietz (1919) has shown
the impossibility of accomplishing this in the case of multiple
valued functions. Let us then so transform X,;, X3 and X,
that the following regression lines, !’o1, I10, I'02 and I3 are recti-
linear. Since Vo1, I'10 and Uy are rectilinear, we know, by Isser-
lis' theorem, that l'p, I’;2 and k; must also be rectilinear, and
since Vo, I'10 and U3 are rectilinear, 3o, /13 and I'3; are also, and
since l'w, U'20 and l'e3 are rectilinear, l's; and l'3 are also, com-
pleting the list. An extension of the method to # variables
shows that for the practical purpose of estimating X scores we
may make empirical single valued transformations of the de-
pendent variables, wherever necessary to bring about rectilinear
regression, and then proceed to calculate the multiple regres-
sion equation as described in the next chapter. Thus for
single valued functions a lack of rectilinearity ordinarily con-
stitutes no bar to multiple regression procedure.

We have, to this point, considered the significance of corre-
lation as a measure of mutual implication and as a measure
derived from the regression coefficient. This interpretation
is to be looked upon as basic in correlation treatment. There
are, however, other ways of interpreting it, which may oc-
casionally be of value. Weldon (see Brown 1911) has related
the correlation coefficient to the percentage of elements which
are common to the two series of measures involved. Suppose
standing in trait X depends upon the presence or absence of
A + C independent elemental factors, and that standing in Y
depends upon the presence of B + C independent elemental
factors. The C factors are common to both X and Y. The
A factors influence X alone and the B factors, Y alone. Further,
suppose each factor is as likely to be present as absent, i.e.,
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p =q = %, and when present, to add one half to the trait
score, and when absent, to subtract one half from it. Then
x=A+4+C; y=B+C,; and in the long run, ZA = ZB =
ZC = o. Let n, equal the number of A factors, #, of B and
n. of C factors, then

o = Vi ba=Vnid=14Vn,

”B=*‘/”—b
oc =4Vn,
o4 1B=1Vn, +n,
og+c=iVn, +n
Nrowos=Zxy=2A+C)(B+C) =ZAB+ZAC+ZBC+3C?
=ZX C*= No?2%

since, by supposition, all the elements are independent, all
summations of products equal zero. Accordingly
Nne
"= Ve +ne Vs + ne
If the number of elements determining the score in X equals
the number determining that in Y, n, = #, and we have
g =N
na + nc
or, the correlation coefficient is the proportion of elements
common to the two traits.
Again, suppose trait X is determined by #. elements and that
trait Y is determined by these plus #, additional ones, that is,
#ns = o, then

nc

"= Vne Vot ne

and
, oo N
no + nc

or, the square of the correlation coefficient is the proportion of
elements determining X which are involved in Y. We of course
do not know that traits or scores are due to summations of
independent elements, so that these results at best have rather
doubtful interpretive value, whereas, the interpretation of cor-
relation in terms of regression never fails. Thomson (1919)
and Brown and Thomson (1921) deal very fully with this

subject.
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It has been assumed that the limits of the coefficient of
correlation are — 1 and 1. This may easily be proven. Let

X
% =—,andz,=z
gy g3

then o5, = 1.00 and o;, = 1.00

(2 —z)>0
T:lz(’" — 22 =Z2z'+ 322 —2Zziz3=14+1—27
but
Z(z—2z)*>0
therefore

2(r—r)>0 orr<i1
Thus the upper limit of r is + 1.
Tz +z)=2(+r)>00rr> —1

Thus the lower limit of r is —1. Accordingly all values of 7 lie
between — 1 and 1.

Section 53. THE RANK MEeTHOD OoF CALCULATING
CORRELATION

The product-moment method of calculating correlation may
be used when differences in merit are expressed in ranks and
not in graded scores. Formula [130] is the most convenient
to use in deriving the expression for the coefficient of correla-
tion when ranks are used.

The standard deviation of the ranks in the one trait equals oy,
and of course equals the standard deviation in the other trait,
a2, as the number of ranks is the same in the two cases. It
should, however, be noted that if scores such as

95 94 90 90 8 8 8 85 81 8 75
are assigned ranks

1 2 3% 33 s 7 7 7 9 10 11

the standard deviation of these pseudo ranks is not identical
with that of ranks 1, 2, 3, 4,5, 6, 78, 9, 10, 11. Only slight
error is introduced in case ranks are but occasionally divided
between two paired measures, but if there are many individuals
all given the same rank decided error is present.
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Since the standard deviations are equal the equation becomes,
using p in place of r as is customary when dealing with ranks:

z d?
P=r =1 T Ne?
The =d? is to be determined by recording the differences in
ranks of the individuals in the two traits, squaring and sum-
ming. The common standard deviation, ¢, may be found from
the number of ranks, which is also N, the population. It

is only necessary, therefore, to determine the standard devia-

tion of the series 1, 2, 3,...N around its own mean. We
have

— 14+424+34+---N_ N+1

o= N T2

— _14+4+4+9:---N* 4N*4+6N+42

o N B 12

This value for u, may be obtained by first determining the
second moment, m., in case the distribution consists of fre-
quencies evenly spread over the class intervals, as indicated
in the accompanying figure, instead of being concentrated at
the class indexes or mid-points as is the case when measures

[TITTl. - - 0.0

------

012349 M n

of rank position are used. The frequency distribution drawn
is represented by the line y = 1 and extends from x = } up
tox = N + 4. The second moment from o of any one rank,
let us say the k’th, is k%, whereas the second moment of the
distribution y = 1 from (¢ — }) to (k + }) is given by the
equation
k4§ x3Fk+14
Sy e = 5]):—4 =k

The moment of the frequency y = 1 corresponding to this
k’'th rank, 1/N of the population, is 1/12 too large, as is of
course the case for every other rank; hence the second moment
of the equation y = 1 from x = } to x = N + 3 will be larger
than the desired second moment by

_I(J_V
N \12
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That is

my = u2 + 7
_ 1 pN+i _4N*4+6N+3
m:—Nj; yxidx = 12

4N?*+6N+2

Therefore B = -

— - Nt — 1 (The second moment of
g1 = pr— m? = ———

12 Nranks)............ [141]
. _ 6= d? (Spearman’s formula for the
Finally P=2T NINT D) coefficient of correlation
calculated from ranks) ...[142]

This formula should not be confused with Spearman’s foot
rule formula for correlation
R=1-— 6XZG  (Spcarman’s foot rule formula for
N — 1 correlation based upon the sum
of the gainsinrank)........ [143]

which has a large, though, except in the case of zero corre-
lation, not definitely known probable error; does not vary
between — 1 and 4+ 1; is not at all comparable in meaning
with a product-moment coefficient; and in general has none
of the merits except brevity, of the formula based on the
squares of differences in rank. The coefficient calculated by
formula [142] is usually designated by p, but it should be noted
that it is identical with r if ranks constitute the scores.

Pearson has shown that if scores in the two traits which are
in truth normal in form are assigned ranks and p calculated,
it will differ slightly from the r obtained directly from the
scores. To allow for this discrepancy, p’s may be turned into
r's by the formula,

r = 2sin % p (Pearson's correction to Spearman'’s p) . .[144]

That the correction is of small magnitude is shown by the
accompanying table:

TABLE XXXVIII

P r P r
.00 .000 .60 .618
.Io .105 .70 717
.20 .209 .80 813
.30 313 .90 .908
-40 416 95 954
.50 .518 1.00 1.000
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The formula for p is the best of the rank formulas, but in case
scores constitute the basic data there is always some loss in
accuracy from warping the data into ranks. The probable
error of p as determined by Pearson (1907 further) is

— 2
P.E., = .7063 l—\/ivi (Probable error of p)..[145]

or approximately 5 per cent greater than the probable error
of .

In case one of the variables is given in terms of ranks and
the other in terms of variates, we may assign rank values to
the variates and use formula [142]. If the grouping in the
variate series is coarse, ranks cannot be assigned without
losing much of the refinement of the variate data, and if the
average of a number of ranks is assigned to all the measures in
one class there is a further error if formula [142] is used as
this formula presupposes serial ranks from 1 to N.

To obviate these difficulties it is better to calculate the
product-moment coefficient of correlation between the ranks
on the one hand and the variates on the other. Let us call
this p’, and let r be the correlation if the two series could each
be expressed in terms of variates and if they constitute a normal
correlation surface. Then Pearson (1914, ext.) has shown

that, B
y = JI , (To deduce r from p’, the product-moment

3 correlation between a variate series and
arank series). ........oviiiiennnnnnn. [146]
or
r = 1.0233 p’
PROBLEMS

1. Plot the correlation table giving the correlation between the Thorn-
dike and Ayres scores in handwriting given in Table XXX, Section 34, and
answer the question, ‘‘Is the relationship between the two variables rec-
tilinear?” Ans. Itis.

2. Calculate the correlation between series 1 and 2, between series 1
and 3, and also between series 2 and 3 of the paired practice series given in
problem 3, Chapter IIl.

3. Calculate the standard error of r,2, the correlation between series 1
and series 2 (a) by formula [108 b], (b) by formula [108 a], (¢) by formula
[108 ¢] and finally, as the most accurate method of all, (d) by formula
[108 a] using in addition [108 d].
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4. Rank the measures in these three series and calculate the correla-
tions pi2, p13 and p2; by formula [142).

5. Determine for the first two of these three series the regression equa-
tion for estimating variable 1 from variable 2 and calculate thc standard
errors of the two constants, b;; and ¢, involved.

6. In the derivation of by, it was assumed that the regression line passed
through the means of the two distributions. Derive the same value as
ba, without making this assumpticn.



CHAPTER IX
FUNCTIONS INVOLVING CORRELATED MEASURES

Section 54. CORRELATIONS OF SUMS OR AVERAGES

If the basic means and standard deviations of several series
of measures and the correlations between series are known, the
means, standard deviations and correlation of any weighted
average or sum of these measures with a second weighted sum
may be determined (Spearman, 1913). Given the several
series (@ + b) in number, X;, X, ... Xs, Xay1, Xatz...
Xa+b, with means M,, M,, ... M., standard deviations o,
o2...0s+b, and intercorrelations 72, 713. . . 71 @+b), T23. . .
let the standard measures for these variables be, as usual,

Xi— M _ _X:i— M,
X\ - M _Xs

o1 (4]

g = , etc.

If a of the measures are combined by adding into a single
score, and if the remaining b measures are also combined, the
correlation between the two composites is

Z (a1 + o2 + - 'Za)_(zx 'LG + - )

r 1 S D e L
a0 @I+ D) T T ) VE (g oy 2

The product of the two terms in parentheses in the numerator
gives a binomial of ab terms each of which is a sum of the sort
zz21, but

Z 2121 = Nryy, Zz2izu = Ny, ete.

ab ab
Accordingly the numerator equals an rp0. The symbol S
1

stands for a double summation, p taking in turn the values in

the series from 1 to @, and Q in turn the values from I to b.

The square of the first {olynomial in the radical in the de-
196
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nominator gives a polynomial of a? terms, a of them being of
the sort Zz% and the balance (a®> — a) of the sort Zz;2;. But

z 321 = N, z 222 = N. etc.

T 2123 = Nrys, Zz23 = Nry;, etc.
Further

22123 = Z 33
and as both of these occur in the summation, there are but
(a2 — a)/2 different product sums involved, though each of
these 1s found twice. Accordingly the magnitude under the
first radical equals

(a? — a)

a
NS1 + NS Tp
1 1 (@—a)

a a
in which St is simply 1 added a times so that St = a: S rp
1 1 1

is a double summation in which p takes all values from 1 to a,
and ¢ all values other than p from 1 to a. Thus again each
r occurs twice, once as 7y, and once as 7. But an r with
repeated subscript, such as 7y, is not found in the summation.
The summation under the second radical is similar in type, so

that
ab

Sr
;0

(@’ — a) (b3 - b)
a+ .IS "pq b+ ?‘ TpPQ

(Correlation between sums or averages of scores).[147]
The preceding formula may readily be generalized so as to
apply when gross weighted scores are combined. Let w, be
the weight of X, w; of X,, etc. Then we desire the correlation

between (w1 X; + weXo + ... weXs) and (wiX;+ wnXu+...
wpX») which may be represented by the symbol

’(1+2+...a)(l+ll+...b)=4/

T(SwpX ) (SwpXp)

In calculating the correlation, each variable must be expressed
as a deviation from its own mean. Accordingly (w,M; +
weM,y + . . . wsM ;) must be subtracted from the first summa-
tion variable. This leaves (wix1 + wex2 + ... Waxs). Simi-
larly for the second summation variable. Proceeding as before
we have in place of Zz% the expression

Z (wx))?
and in place of Zz,2; the expression

Z WX wexs
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so that finally we obtain
'ig“' 2Xp) (%,w pXp)

ab
;S wpﬂ'PwOﬂorpQ

= 4/41 (a3 — a) /b (b — b)
fw’ba’, + }9 W 0y WeT T g .fw’Pa’P +}9 Wpa pWo T po
(Correlation between the sums or averages
of weighted scores)........ e [148]

Note that there is nothing in the derivation to prevent certain
of the weights being negative. If the correlation between two
series is 7, this is not changed when all the measures in the first
series are divided by a certain quantity and all those in the
second by another. Thus in the preceding, division of the
first series by a and of the second by b, leading to averages,
will not change the correlation. The formula given is there-
fore equally applicable whether dealing with sums or with
averages.

In case a single score is correlated with the weighted average
of a number of others we have a situation represented by one

of the two sums having but one item in it. Then the summa-
b b21—p

tion S has but a single term and S  has no terms. Further,
1 1

wyoy cancels from numerator and denominator of the right
hand member. This is the very common situation where one
variable, which we may call the criterion and represent by X,
is taken as a standard and all the others are combined so as to
giv: a high correlation with this one. Under these conditions
formula [148] becomes:

§ (Correlation between a

,wp"prop criterion and the

Tx (SwpXp) = /7' e —a weighted sum or
fw’pa’p +§ wpapwqaqrqp average of a number

of scores)........ [149]

Since this formula gives the correlation whatever the ow
products, or the effective weights, may be, one may frequently
by successive trials hit upon a weighting which gives a fairly
satisfactory correlation. If two independent variables are in-
volved and the nominal weight of the first independent variable
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is arbitrarily set equal to 1.0 while that of the second is in-
determinate and called w we have

a1\rn + Worre

ool Xs+wXs) = \7;;2 +mﬁt;rna,z;; ........... [150]
The multiple correlation 7x(x,4+wx:) and the weight w are
the only unknowns in this equation, so it may be plotted on
two axes, w the abscissa and r the ordinate, throwing into clear
relief the effect of approximate weightings. Thurstone (1919)
has shown the value of this procedure. A plot of the following
data will illustrate the falling off in the multiple correlation

obtained as w varies from - .g310, which is the ratio of the

regression coefficients boe.1/bo1.2. Given roy = .4, 762 = — .3,
712 = 12,07y = 02 = 1.0
| !
If w=| —® | —20| —15 | —L0 | —.93101 — .9
Thenr, x, +wxy=| -300 .620 706 ‘ .7826 .7846 | .7842
w= -.8 ‘ —.5 .0 1.0 ‘ 1.333 2.0. @
TrXi+wXn =| 770 ‘ 682 -400 .056 E 000 | — .074 "—-300

Returning to [149], in case all of the series summated or
averaged have equal standard deviations and are given equal
weight, we have:

W =wW3 = "W =W
0L =03 = * a3 =0

a a
{wpa,rop = wo ‘?’op =awor,

where 7. is the average correlation of the various series with the
criterion x,.

a

fwzpa’p = gqw?s?

al—aga a'—a

= op2m? = wlg? (a2 — i
?‘ Wy0 WO T po wa?‘ Tpg = Wl (a a)r;

where 7; is the average intercorrelation between the several
original series so that, finally,

ar,

4 = =
T SopXp) = Tn(SXy) = e @ = a) T,
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or,
, _ Te (Correlation between a cri-
% (SwpX p) -7, terion and the sum or
+r; average of a number of

@ equally weighted scores) . .[151]

If the tests are comparable the several correlations with the
criterion differ but little and any one of them may be taken asa
first approximation to r., and the intercorrelations differ but
little and any one of them is a first approximation to r;; also
Swy,X) = af as defined in the next section (55), so that we
have

ro(af) = ——— Te _ (Correlation between a criterion
Jl —r.1 and the sum or average of a
o T number of equally weighted

similar test scores).......... [152]

The effective weight given a test is not w,, the nominal
weight, but w,op, the product of the nominal weight and the
standard deviation of the scores. Accordingly equally weighted
scores are those in which the products of the nominal weights
and the standard deviations are equal; that is, if wio1 = wso,
= wzo3 = - -+, etc., the X,, X, X3, etc., series or scores are
actually weighted equally. This is the condition that must
hold if the immediately preceding formula is to remain true.

Section 55. THE RELIABILITY COEFFICIENT

Let us suppose that the scores combined are those of com-
parable tests of some single function. If the tests are strictly
comparable, then in addition to the means, and standard
deviations being equal '

fn =fo2 = -+* =7,
and

iz = T3 = -+ = T3 = Ty
the correlation between one form or test and a second similar
form. Let us define a “‘true score’’ as the average score on
an infinite number of strictly comparable tests. Then the cor-
relation between the criterion and such a true score, which
can be obtained by letting a of formula [150] become infinite,

may be written as
ro  (Correlation between a fallible

Too = V1 criterion and a true score). . .[153]
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in which o« designates the infinite summation. If the relia-
bility coefficient of the criterion 7o is known, we have, as the
same sort of formula as [153]

o = 01 (Correlation between a true
12 7 Vieo criterion and a fallible score) (153 a]

The correlation 7y is that between a test and a criterion, and
iz is that between two comparable tests and is called a relia-
bility coefficient. That the notation may be entirely clear, the
meanings of several symbols as they will be used are here
listed. 747,45 is the correlation between the sum, or average,
of a measures of a certain sort and A others of the same sort.
Capital A is used in the second subscript instead of small a to
indicate that the second series of tests (the same in number
as in the first series) is different, though similar to the a tests
averaged or summated in the first series. Whenever a is
greater than one, the f is kept in the subscript, but when a
single test is correlated with a single other test, it is dropped,
and the subscript designates the variable. Thus 7y, 1y means
that an average or sum of two forms of the test (or average or
sum of two comparable measures of whatever sort they may
be) are correlated with the average or sum of two other com-
parable forms and 7,; means that one form of the test 2 is
correlated with a second similar form of the same test. In this
latter case 2 refers to the variable, whereas in the former case
(2 f) the 2 refers to the number of forms averaged or summed.
The symbol 7, represents the correlation between retestings
with the same form. If the variable X, is a test score the only
reason r;; does not equal 1.0 is that there is a time interval
between the two answers, which an individual gives to the
same question. Similarly 74, o+ means the correlation between
average scores upon re-testing with the same a forms.
Certain very specific conditions need to hold before two
tests may be considered comparable, and therefore before a
correlation between two tests can be considered a reasonable
reliability coefficient. In educational and psychological test-
ing the first of two similar tests frequently calls forth a response
which is different from the second. The greater familiarity
with the form of the test or the difference in interest aroused
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may make the second test quite different from the first. This
would be especially true if certain elements in the first were so
similar to elements in the second as to lead to what may be
called a memory transference from the first test to the second.
For example, suppose the following questions occur in the first
and second tests respectively:

‘““(a) John is taller than James and James is as tall as Joe.
Joe is shorter than Jack. How do John and Jack compare in
height?”

‘‘(b) Bessie is brighter than Bertha, and Bertha is just as
bright as Beula. Beula is not quite as bright as Beatrice.
Which is the brighter, Beatrice or Bessie?”’

One would cxpzct memory transference, and a tendency to
solve the second in the same way as the first. We may call
such a situation one in which there is a correlation between
errors, meaning that, whatever elements of uncertainty or
chance operated in the solution of the first question, they
would tend to operate in the same manner in the solution of
the second. This situation would tend to make 7)1 too high
as a true measure of reliability. There are other, and usually
more important, factors which operate in the other direction.
Let us suppose the two following questions occur in two forms
and that they are intended to be comgparable: ‘“(a) Who was
the first president of the United States?” and “(b) Who was
the leading batter in the American League in 1920?"" Passing
over the possibility of some other question than (a) in the first
test being comparable to (b) and some other than (b) in the
second test being comparable to (a), let us consider the com-
parability of the two questions given. There is certainly no
memory transference which would help or hinder in answering
(b) after having answered (a), but the ability to answer (a)
probably tests special capacity or knowledge which is quite
different from that demanded for the correct answering of (b).
In other words (a) and (b) are not samplings of the same
capacity and two tests made up of questions no more similar
than (a) and (b) can hardly be considered comparable, and as
a consequence they would lead to an 7y which would be too
small. This is the situation which is the more likely and the
more serious as rox in this case becomes too large. The
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errors of interpretation due to a too large estimated correlation
between a test score and a criterion are probably in general
more serious than those due to a too small estimated correlation.
The following rule for the construction of two comparable
tests may be laid down: (1) sufficient fore-exercise should be
provided to establish an attitude or set, thus lessening the
likelihood of the second test being different from the first, due
to a new level of familiarity with the mechanical features, etc.;
(2) the elements of the first test should be as similar in difficulty
and type to those in the second, pair by pair, as possible;
but, (3) should not be so identical in word or form as to com-
monly lead to a memory transfer or correlation between errors.
It is obvious that condition (3) is not met if a test is merely
repeated. Only in case the repetition be at so remote a time
from the first test that no memory of the earlier response could
influence the later would there be no correlation between
errors — in fact even were there no conscious memory of the
earlier situation there might be a subconscious influence result-
ing in correlation between the errors. Accordingly the repeti-
tion of a test to secure a reliability coefficient is to be deprecated.
However, the repetition of a test to secure an upper limit or
maximum value above which the true reliability coefficient
will not lie may be considered to be a sound procedure.
Spearman (1go4 and 1907), who introduced the term *‘relia-
bility coefficient,’’ used it as here to designate ry1, the correla-
tion between comparable tests, and Brown (1911) used the
term to mean ry,, the correlation between repeated tests. This
is an unfortunate vitiating of the Spearman concept. Particu-
larly in view of the fact that a reliability coefficient in the
Spearman, and not in the Brown, sense, is the one needed in
all the formulas leading to an estimation of true correlation.*
It has been pointed out that the correlation between repeated
tests constitutes an upper limit of the reliability coefficient,
while the correlation between two forms meeting condition (3),
but not fully meeting condition (2), would constitute a lower
limit. Should these two correlations lie close together prob-
* The unfortunate use of ri1 as a reliability coefficient given in Brown (1011) is corrected

in the later edition as Brown and Thomson (1921) define r11 as here used to be the reliability
coefficient.
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ably an average of them would constitute a close approximation
to the true reliability coefficient. We may expect in most
mental and educational test work that the true reliability
coefficient will be less than the obtained r,;, and greater than
the obtained r;;. The lack of fulfillment of condition (1) for
certain age groups and with certain tests probably at times
leads to too high a reliability coefficient and at other times to
one which is too low.

Section 56. CORRECTION FOR ATTENUATION

Let us return to formula [147] and write 7, for the average
of all the rpo’'s. Then we have

by =S
. a fpo = > fm.
Similarly
_ a’—ga
(@ —a) 7y, = S "o
and
bt — b) 57"
—_ y = r
- - ( PO 1 Po
This gives

ab7t p0

Ta+a2+...a)dA+114+...0) = Va + (@ — a) ;ﬂq\/b F &° —b) ;PO

(Correlation between sums or averages of
equally weighted scores) ............[154]
If we make both a and b infinite, we obtain an estimate of the
correlation between a true criterion and a true test score, which
Spearman calls the value corrected for the attenuation in the
raw 7,0 value due to chance errors. Let us designate the
scores which enter into the criterion as X;, X3, X;, etc., and
those entering into the composite test score as X,, X,, X, etc.

Then from [154] we have
, _ 712 (Correlation between a true
®%® " VrsVra  criterion and true test score,
Spearman’s formula for cor-
rection for attenuation)...[155]
or in the previous notation where 7y, is the correlation between
two different measures, 1 the reliability coefficient of the first
measure, and 711 of the second, we have

Fopoo = 57— = [155 a]
00 00 \/711 \/r;_I_I .......................



CORRELATED MEASURES 205

The observations as to comparable tests apply equally to the
securing of comparable criterion scores. In particular if the
criteria are teachers’ judgments there may be high correlation
between errors in judgments if teachers have discussed certain
pupils with each other.

Section 57. RELIABILITY OF AVERAGES

Formula [147] for the correlation between sums enables us to
determine the reliability of the sum or average of a number
of similar tests, knowing the reliability of a single test. If
the tests are similar, we may call the successive tests different
forms of the same test. Then the standard deviations are

equal; if a straight average is taken all weights equal one;
a

and further, if the forms in the S average are similar to those
1
b
in the S average, then every r,o = every r,, = every rpg
1
= r;1 — the correlation between one form and a second similar
one. Let ry s be an abridged notation for 7,  ; that is,
o g
for the situation which holds when the scores in both of the
summations are upon similar tests or forms. This is the cor-
relation between the average or sum of a forms and the aver-
age or sum of b others. It is given by

abr, |
G Yy e TRV = T

(Correlation between the average score
upon a forms and the average upon

bothers) ............ ... ... [156]
If a equals b we have:
ar g (The correlation between the average
Tof, Af = T F (@a—1)r,; Scoreona forms of a test and a
other similar forms)............... {157]

This formula given by Brown (1gr1) has frequently becn
called “Brown’s formula.” It is, however, but a special
case of Sp-rarman’s carlier formula [147]. If but a single
form of a test is available it may be possible to divide it into
two comparable halves; for example, one half composed of the
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odd and the other half composed of the even exercises, and

calculate the reliability coefficient of the half form, 7: 1,01
7o

more simply, 7: 1 and then by formula [157] obtain the relia-
2 II

bility coefficient of the single test.

2711 (Reliability of a test determined

1
= I+_:rII_ from the scores on the two
I halves) ................... (158]

I
211
A second use to which formula [157] may be put is in the de-
termination of the number of forms required to secure a desired
or essential reliability coefficient. Solving for a we obtain

_ repap (1 — ':I_) (Number of forms required to se-

= ol = Tor Af) cure a given reliability ?af, Af) ..[159]

The use of this equation frequently enables one to determine
whether it i1s worth while to attempt to improve a correlation
with a criterion by increasing the length of the test. If we
have a problem requiring a correlation of not less than .go with
a certain criterion, and not permitting a test program extending
over more than two hours, and if we find experimentally that
the reliability of a certain 1o minute test is .20 we may deter-
mine whether it is of any use continuing with this test. The
test cannot, except as a matter of chance, correlate with any
criterion to a greater extent than it correlates with a “true”
score of the particular function which it measures. Thus if
the criterion is the true score in formula [153] then 7o » becomes
N1« and 7o becomes 71, so that we have

niw = Vr;; (Correlation between one form of a test and a true
score of the function measured by the test)...... [160]

Thus in our present problem .9o =V'74, a5 OF 7af as = .81.
That is, even if the criterion is no different in its essential
nature from that which is measured by the test, it is still
necessary to have a test with a reliability of .81 in order to
obtain a correlation of .go with the criterion. Using formula

[159] we have
_ .81 (1 — .20) _

“z200—.8n Y
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Thus a test at least seventeen times as long as the one with
reliability .20 is needed. This would require 170 minutes
testing time, which according to conditions laid down is out
of the question, so that there is no use continuing with this
particular test. This very practical answer is obtained with-
out any knowledge of the criterion or of the test correlation
with the criterion.

Formula [152] aids in determining the fitness of a test for a
given purpose. Let us suppose that we have three 10 minute
tests, the first with reliability .80, the second with reliability .40,
and that these two correlate with a criterion to the extent of
.30, and that the third test has a reliability of .20 correlating
with the criterion to the extent of .24. How much will these
correlations be raised by lengthening and thereby making
the tests more reliable? Using formula [152] we obtain the
accompanying table.

TABLE XXXIX

CORRELATION OF ScORES OF TESTS OF
TiME RE- DIFFERENT LENGTHS WITH THE CRITERION
LeENGTH oF TEsT UIRED IN
INUTES Test X Test Y Test Z
[Reliability .8} | [Reliability .2] | [Reliability .2]

‘of test . . . 2.5 .24 .18 13
doftest . . . 5 .27 .24 .17
Single test . . . 10 .30 .30 .24
Sum of 2 tests . 20 .32 .36 .30
Sum of 3 tests . 30 .32 .39 .34
Sum of 5 tests . 50 .33 42 .39
Sum of 10 tests . 100 .33 44 44
Sum of 20 tests . 200 .33 .46 48
Sum of o tests . .34 47 .52

From this table it is apparent that the relative excellence of a
test in comparison with others is a matter of reliability, cor-
relation with the criterion, and possibility of increasing or
decreasing the length of the test without changing its essential
nature. If the three tests can be lengthened or shortened
without changing their essential nature then 2.5 or 5 minutes
testing with test X would yield a higher correlation with the
criterion than the same amount of time with either test Y or
Z. Thus if the testing time is less than ten minutes test X is
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the most valuable. If the testing time lies between ten min-
utes and 100 minutes test Y is the most valuable, and if the
testing time is over 1oo minutes test Z is the most significant.
The principle here involved may frequently be used in making
the original selection of one or more tests and before correla-
tion with a criterion is known. If the testing time is of neces-
sity brief, give prime consideration to reliability of test; and
if the testing time is long, give prime consideration to ‘‘validity,”
to use a term recently employed in psychological literature,
i.e., to the accuracy and detail with which the test parallels the
criterion function, and but secondary attention to the reliability
of the test. If the reliability of the criterion is known the
correlations of the tests with a true criterion may be obtained
from the coefficients in Table XXXIX by dividing each by
the square root of the reliability coefficient of the criterion.
The resulting table will show even more strikingly than does
Table XXXIX the relative merits of the three tests.

Section 58. THE PrRoBABLE ERROR OF A COEFFICIENT
CORRECTED FOR ATTENUATION

The student should carefully note that the coefficient of
correlation obtained by the use of the Spearman formula for
correction for attenuation should never be used for the estima-
tion of one actual measure from a second. This ‘“‘corrected”
coefficient is a promise of the correlation that one might expect
to find between the variables if one had perfectly reliable
measures. To use this corrected coefficient in a regression
equation would lead to a less close fit of the regression line and
to a larger standard error of estimate of the criterion, knowing
the independent variable, than occurs when the ‘“raw’ cor-
relation coefficient is used. The corrected coefficient of cor-
relation is mainly of value in theoretical discussions and in
serving this purpose its divergence from 1.00 is usually material.
The derivation of a formula for the standard error of a cor-
rected coefficient is as follows, in which the subscripts have
the meanings stated at the beginning of Section 56.

712

Yoo = —(F—5—
V'u\/fu
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Taking logarithmic differentials, we have

@rwe _driz _ dris _ dru

7 o oo Tis 271 2rn

Squaring, summing, dividing by N, we have

?’ru 0’7" o, o — rri130r120r1a _ Trirudrdr Triraudridry
Moo T @ 4 @ 47 713713 risru 2y
We may obtain r,,, and 7, by formula [129), 7., by

formula [128], and all of the ¢,’s by formula [108 b]. Doing so,
collecting terms and simplifying yields,

o ~Tom gk‘_n ks ki _ k’l_a [ - ra _ f’n
oo VN (rha  4r%a  41r’u ri 2 141y,
_kia(l £ r’s )+ n(l—'fu)(l—fu)zi
ru 2 1471y 713734
In the notation of this chapter this is
Orwe — 'ww rl + f__]z . ._I_ -1
\/N % 4 f’ 4 T 713

1 fzzq I ]
itz 500

(Standard error of a coefficient of correlation calculated by formula
155 @)« v vt oe et e e e e e e e (161]

If we let A1 stand for the first parentheses and A, for the
second we have

7

)
Orww = \/N roow? + +AII +A2H)

The quantities 1/7> and A are tabled for different values of 7,
in Table XL.

When the corrected coefficient of correlation is calculated by
formula [161 ¢], or by

r
f 0w = \/'u :/'—;; ................ [161 a]

in which 7 = (rie + 73 + 732 + 731)/4, the standard error of
Two oo 1S smaller than given by [161]. Before calculating this
standard error let us note that r may be expeditiously obtained
by calculating the correlation between the sum of the two
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tests in the first trait and the sum of the two in the second trait.

We have:

Tt x) (k2 tx) _ riz + ru+ras+ru

VE(@ + ) VI@E+x)? 4V +ra)/2V (1 +ra)/2
r

- v+ rna/2vV (1 + ru)_/;

ra+s @ +0 =

so that

r=ra+0a+oVYUFru)/2Va+ru)/2z ......[1618]

Thus r may be easily obtained from a knowledge of the relia-
bility coefficients and of the correlation between the two sums.
Assuming that the arithmetic average is as reliable as the
geometric average, then 7, o0 calculated by [161 @] has the
same reliability as 7. oo Obtained from

, _ (narursrs)t  (Yule's form of Spearman's formula
@0 = Vi Vgt for correction for attenuation).. {161 ]

The standard error of ro oo calculated by this formula may be
obtained in a manner very similar to that given in [161). It is,
however, a lengthy procedure and will not be recorded here.
In brief it involves taking logarithmic differentials, squaring,
summing, dividing by N, substituting values as given by
formulas [108 4], [128] and [129], collecting terms after assuming
that 712 = 714 = r52 = 734 = r. The answer is

_Twox 2 I I+rs+ra , 1T | T
Trmo = (4' ) +"z°°°° + o +',"+r,“
_i_i_a*
Tizs Tu
(Standard error of a coefficient of correlation cal-
culated by formula 161 a or formula 161 ¢)....[161 d]

Magnitudes 1/7? are given in Table XL. Study of this formula
shows that the error in the corrected coefficient is very fre-
quently not at all large, being in fact much smaller than given
by Spearman (1910). The disagreement in derivation above
[161 d] and that given by Spearman (1910, equation 24, p. 294),
lies in the fact that Spearman, following Filon, to whom part
of the derivation is credited, used formula [128] throughout,
whereas formula [129] should at times have been used. The
realization that this standard error is smaller than previously
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recognized should throw much new light upon the question of
the specific or general nature of intellectual functions.

TABLE XL

r 1/r2 A r 1/rt A r 1/r8 A
.01 |10000. 2389. 36| 7.716 | — 1.521 71| 1.984 |—1.329
.02 | 2500. 574. .37 | 7.305| — 1.541 .72 | 1.929 [—1.316
.03 | IIIL. 243. .38 | 6.925 | —1.556 | .73 | 1.877 |— 1.304
.04 | 625. 130. 39| 6.575| —1.568 | .74 | 1.826 |— 1.291
.05 | 400. 79. .40 | 6.250| —1.578 | .75 | 1.778 |— 1.280
.06 | 277.78 51.84 [ .41 | 5949 | —1.584 | .76 | 1.731 [— 1.267
.07 204.08 35.80 .42 | 5669 —1.588 | .77 | 1.687 [— 1.255
.08 156.25 25.64 §.43| 5.408| —1.590 | .78 | 1.644 |— 1.243
.09 123.46 1884 .44 5.165| —1.590 | .79 | 1.602 |— 1.231
.10 100.00 14.10 | .45 | 4.938 | — 1.588 | .80 | 1.563 |— 1.219
a1 82.645 10.68 | .46 | 4.726 | —1.585 | .81 | 1.524 [— 1.208
a2 69.444 8.14 | .47 | 4.527 | — 1.581 .82 | 1.487 |—1.196
.13 59.172 6.23 (.48 ] 4.340( —1.576 | .83 | 1.452 {— 1.184
.14 §1.020 4.75 | -49 | 4.165 | —1.570 | .84 | 1.417 [— 1.173
.15 44.444 3.59 {.50| 4.000| —1.563 | .85 | 1.384 |— 1.161
.16 39.062 2.6691 .51 | 3.845| —1.555( .86 1.352 |— I.150
a7 34.602 1.931.52 | 3.698 | —1.546 | .87 | 1.321 |—1.138
.18 30.864 1.332] .53 | 3.560 | —1.537 { .88 | 1.291 |— 1.127
.19 27.701 8431 .54 | 3429 | —1.527 | .89 | 1.262 |—1.116
.20 25.000 .440) .55 | 3.306 | —1.517 | .90 | 1.23§5 [— I.10§
.21 22.676 .106|[ .56 | 3.189 | —1.507 | .91 | 1.208 '— 1.004
.22 20.661| — .172|.57| 3.078 | —1.496 | .92 | 1.181 |—1.083
.23 18904 | — .405( .58 | 2.973 | —1.485 | .93 | 1.156 |— 1.072
.24 17.368| — .601) .59 | 2.873 | —1.474 | .94 | 1.132 |— 1.062
.25 16.000f — .766f .60 | 2.778 | —1.462 | .95 | I1.108 |— I1.051
.26 14.793| — .9o5| .61 ! 2.687 | — 1.451 .96 | 1.085 |— 1.041
.27 13.717| — 1.023).62| 2.601 | —1.439 | .97 | 1.063 [— 1.030
.28 12.7585| — 1.122}.63 | 2.520 | — 1.427 .98 | 1.041 |— 1.020
.29 11.891| — 1.207(.64 | 2.441 | —1.415 | .99 | 1.020 |— 1.0I0
.30 I1.111| —1.278) .65 | 2.367 | —1.402 | 1.00 | 1.000 [— I1.000
.31 10.406 | — 1.338) .66 [ 2.296 | — 1.390

.32 9.766| —1.389] .67 | 2.228 | — 1.378

.33 9.183| —r1.432(.68 | 2.163 | — 1.366

.34 8.651| — 1.467| .69 | 2.100 | — 1.353

.35 8.163| — 1.497( .70 | 2.041 | — 1.341

With probable errors available there is no excuse for the

indiscriminate averaging of corrected coefficients having values
above and below 1.00, yielding possibly an average nearly
If we have a corrected coefficient equal to .go

equal to one.
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with probable error of .02, and a second equal to 1.10 with a
probable error of .02, w2 may conclude that neither coefficient
is a chance variation from 1.00, and further that the funda-
mental hypotheses of similar tests, lack of correlation between
errors, etc., underlying the idea of a reliability coefficient,
must be absent in the case of the data yielding the corrected
coefficient 1.10. A corrected coefficient greater than 1.00 is
just as absurd as a “raw’’ coefficient greater than 1.00, and if
positively found, as for example, 1.10 & .02, it demands a
reéxamining of hypotheses as truly as would the latter were
it found to be greater than 1.00. Only in case corrected
coefficients differ from 1.00 by such small amounts that the
value 1.00 is well within the likelihood of occurrence, judged
by the probable errors of the corrected coefficients, is it sound
to average several such corrected coefficients to secure a measure
of general tendency?’

Section 59. EsTIMATES OF TRUE SCORES AND THE PROBABLE
ERRORS OoF THESE ESTIMATES

Formula [153 a] has value for very practical reasons. For
example, suppose we know that the reliability of foremen'’s
judgments of the expertness of mechanicians is .36, and sup-
pose we have a trade test the score upon which correlates with
the judgments of one foreman to the extent of .48, then, letting
the foreman’s judgments equal X, and the trade test score
equal X, we have

ro _ 48

fio = \—/r; = \/:36 = .80

Thus the correlation between a single test score and an average
of the judgments of an infinite number of foremen would be .8.
If the hiring of a mechanician is not so much for the purpose
of satisfying a particular foreman as it is to secure expert
workmen the correlation .80 is not only the one of theoretical
importance, but is, in fact, the correct one to use in regression
equations estimating expertness from trade test score. We
would have, letting x = the foreman’s true judgment of
expertness and x« the best estimate of it.

T = 1 92« (Regression of a true criterion upon a
®© 10 g, fallible score) .. ................. (162]
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The correlation 71 is given above and ¢, is immediately
available, for we have, letting s bscripts here indicate scores
on successive comparable trade tests,

¢,a=z(x|+xz+"'xa)’
N

a a2—-a
=Sao+S rpgopog ..[163]
1 1

And if the ¢’s are equal and 7 stands for the average of all the
inter-correlations between the tests this reduces to
oa = oVa + (a* — a)r (Standard deviation of the sums
of a comparable tests).......[164]
or, dividing by a and now letting ¢, stand for the standard
deviation of the average of a such tests we have,

d I —7r +r (Standard deviation of the aver-
a

%= ages of a comparable tests) ..[165]

g

And finally if a approaches

0 = oVr (Standard deviation of the averages of an
infinite number of comparable tests) ..[166]

Since ¢,< o, the standard deviation of the true ability of a
group is less than the standard deviation of the group upon a
single fallible measurement. Accordingly measures of dis-
persion based upon single tests are too great to represent the
true distribution. Estimates of true dispersion are given by
formula [166]. As is obvious from the derivation, ¢ and 7 in
the right hand member should be determined from the same
population, or at least from two populations which one would
expect to be equally homogeneous. I have elsewhere (Kelley,
1919 meas.), used formula [166] in the process of obtaining a
measure of true overlapping in ability of two groups.

Returning to formula [162] we obtain

. 71600 Voo =y (Regression of a true
= 1 =T - X tor
o Vree o1 o criterion upon a
fallible score) .. ... [162 a]

The reader will of course notice that the right-hand member of
this equation is the same as that of formula [g1 ¢] which gives
the regression of a fallible criterion upon a fallible score. We
thus have,

X = bux: (Regression of a true criterion upon
a fallible score)................. 162 b]

’
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and
Xo = box (Regression of a fallible criterion upon
a fallible score).................. 91 b)
or the estimated true score is the same as the estimated single
score. This is, of course, as it should be, and further it leads
to the interesting fact that the standard errors of estimate in
the two cases are different. We have
go.1= dokn = oo V1 — 1y
(Standard error of estimate of a fallible cri-
terion by means of a fallible score). . ... [86]

_ "0[ S —
Too1= 0aokoo1 = a0 Vro \/1 Tt a0 Voo — 1ty
00

(Standard error of estimate of a true cri-

terion by means of a fallible score) ..[167]
Thus we are able to estimate the true criterion score with
smaller error than the fallible criterion. This is very satis-
fying. It means that in general, trade tests, intelligence tests,
etc., actually accomplish a more accurate classification of those
examined than indicated by the correlation with the criterion,
since the criteria used are regularly fallible. The reliability
coefficient 7o is of necessity greater than r%;, but with excellent
tests and poor criteria it may not be very much greater, so that
errors of estimate in placement may be small, and in fact much
smaller than usually conceived. As a practical consequence
it is seen that a systematic error in a criterion is very vicious,
but that the chance error has no consequence whatever except
in the requiring of a larger population in order to establish
results with equal certainty.

Section 60. Accuracy oF PLACEMENT ON BasisS OoF A SINGLE
SCORE

If in formula [162 a] we make X the average of many
such scores as X,;, we have

x =rx

o0 1 1

or
Xoo = rny X, + (1 —r,;) M, (Regression of a true score upon a

fallible score of the same function) . [168]

The reason the correlation coefficient has replaced the regres-

sion coefficient of equation [162 ] is because we are here dealing
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with similar scores, implying equal standard deviations, so that
ri1 = bii. The accuracy of this estimate of a true score is
given by

J0 "1 = al\/'ll -’
(Standard error of estimate of a true score by means of
a single score of the same function)............... [169]

This formula is very valuable as it enables a judgment as to
the accuracy of placement. Let us be given an elementary
school reading test, having a reliability coefficient of .8 and a
standard deviation of 10 on test scores covering the same range
of talent as that from which the reliability coefficient was deter-
mined. If the sixth grade norm, or average score, equals 3o,
the seventh grade norm 38, and the eighth grade norm 46,
let us determine the standard error of placement of a pupil
as classified on the basis of the test score. We will first esti-
mate the pupil’s true score by formula [168]. The standard
error of the estimated true scores, X, is given by formula
[169].
0.1 = 10 V.80 — .64 = 5.0 —

The standard error of placement of the child is 5§ and the prob-
able error of placement 3%, or 42 per cent of the difference
between grade means. The question raised and answered has
not involved a criterion outside of the test itself. With refer-
ence to that capacity which is measured by the test, we can
say that the error of classification is a certain percentage of
the difference between norms; or, if the difference between
grade norms is called a year’s growth, a certain percentage .of
a year’s growth. Much may thus be determined without a
criterion and this procedure is generally to be preferred to
dependence upon a criterion having a systematic error, such,
for example, as would be the case were a teacher to systemati-
cally judge pulchritude, vivacity, or mere industry, as evidence
of reading ability. In addition to the simplicity of the method
just described it may be recommended from the standpoint of
reliability. The standard deviation of estimated true scores
(estimated by means of the regression equation) is o .1, and
the standard deviation of test scores is g;. Accordingly oo .1/07
is a measure of the proportionate reduction of error in the
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placement of an individual having a given test score, over
random placement. Th: smaller this ratio the greater the
reduction. This quantity has a very small probable error as
will immediately be shown so that the proportionate improve-
ment due to the use of a test can be very accurately determined.

Let 0o .1/01 = ¢ = the measure of improvement due to the
use of the test. Noting that the correlation between r and
r2 equals 1.0 we have

=r—rt=r(1—7r)

taking logarithmic differentials,

12 r I —r

Squaring, summing, and dividing by N,

4 0% _o_’y+ o _ 2 ot
2 =12 r(-—r1)
027(1 —27)’
u’l-_—_ﬁ*;
=L Enilt—2r|
i =
2r VN

(Standard error of the measure of improvement, over
random classification, resulting from the use of a score
of reliability r[=r ). ... L [170]

Note that if r; = .5 this standard error becomes zero. In
the derivation of the formula second and higher powers of
errors have as usual been discarded. Their inclusion would
show that the standard error of this ratio is a trifle above
zero when 71 = .5. If the error in 7y is of the order .02 the
square is .0oo4, which is the order of the discarded portion,
so that no material error is introduced in the formula by the
omission of second and higher powers of the errors in 7y if N
is greater than 25. In fact, for ordinary values of r;1 we have a
remarkably small ;. We need not hesitate to place confidence
in an obtained value of i, even though the probable error of
the obtained ry1 is rather disconcertingly large.
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Section 61. AVERAGE INTERCORRELATION

The correlation r;1 has occurred in several of the preceding
formulas. If but two series of comparable scores are available
this correlation may be calculated in but one way, but if there
are several comparable series or forms of a test, which have
been given, there are many ways of calculating the reliability
coefficient. Having five comparable series of measures x,, xs,
x3, %4, %5 there are 10 possible pairings of series from which to
calculate a reliability coefficient. This would in itself be a
rather laborious task, but if the standard deviations of the
several series are equal, or approximately so, the average of
these 10 correlations may be calculated in a single operation
since formula [163] may be solved for r, giving

"_’2 e (Average intercorrelation between
a? a series, whose means, and
at—a standard deviations, are equal).[171]

The magnitude a is the number of series combined, so that it
only remains to calculate o, and ¢. If scores for each indi-
vidual on the a forms are added, a series of N scores is obtained
whose standard deviation is ¢,. Further the (aN) separate
scores may all be entered into a single distribution and the
standard deviation, ¢, calculated. Thus whenever the means
and the standard deviations of several series are equal, it is
practically as simple to calculate the average intercorrelation
as to determine a single correlation. It will now be shown that
when ranks instead of scores are involved the calculation of the
intercorrelation is still more simple. We need o% and o. It
has already been determined in Section 53 that if there are
N ranks, 1, 2, 3,...N, their mean equals (N + 1)/2 and
their standard deviation

=

N =1

Accordingly

12
Let S equal the sum of the a ranks for a given individual, then

BS o (V1)
N 2

and

n=2E [0
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Substituting the obtained values for ¢% and ¢% and simplifying
gives

a(4N+2) 12 = §5?
TG-DW=-DTaG@=-DNNN =T,
(Average intercorrelation between a series of N ranks). . [172]

fI=I

This formula may be illustrated by a problem drawn from the
writer's material. Six judges, K, T, U, B, L, H, rank ac-
cording to merit 12 answers to a given problem as follows:

Ranks Given by Judges

ANSWERS K T U B L H S St
A 1 5 7 10 2 5 30 900
B 2.5 6 4 6 3 9 30.5 930.25
C 2.5 3 1 4 I 2 13.5 182.25
D 4 2 2 I 8 3 30 900
E 5 12 3 I 4 10 35 1,225
F 6 I 8 2 5 1 23 529
G 7 I 10 8 12 4 52 2,704
H 8 9 5 7 6 11 46 2,116
I 9 4 9 12 7 6 | 47 2,209
J 10 7 I 5 9 8 50 2,500
K I 10 12 9 10 12 64 4,096
L 12 8 6 3 11 7 47 2,209
20,500.50
a=6, N=12 XS8?=20500.50
therefore, by formula [172], ro1 = -3241

Such a problem as finding the average intercorrelation between
the ranks of English compositions when so0 compositions are
ranked by 100 judges would require the calculation of 4950
correlation coefficients, if no short-cut were available. But
by the method illustrated the work could be done after the
tabulation sheet is available in the time that might be required
for four or five coefficients of correlation.

Suppose for the data just given it is desired to find out who
is the best judge. The data are, of course, too scant to answer
the question but they will illustrate the method. We might
find correlations rxs, r1s, rus, etc., and consider that judge the
best who agrees most closely with the composite ranking.
These correlations would enable a ranking of the judges, but
they would be spuriously high because the rank of the judge
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himself is included in the S composite. We therefore desire
either rx(s—x) the correlation of the judge with the composite,
omitting himself, or (rkr+ rxkv+ - - rku)/5 the average of all
the correlations of each judge with the others. If judgments
are expressed in the form of rankings, standard deviations are
equal. The formula derived below will apply not only when
ranks are used, but to any case in which standard deviations are
equal. Let ¢ = the.common standard deviation of the rank-
ings. Let 75 represent the correlation between the ranking
of one judge and the sum of the rankings of all the judges,
including himself. Let 7, (s - 1y be the correlation between the
ranking of one judge and the sum of all the rankings of the
other judges. Let

_ ratra+ -+,

1o = @—1)

represent the average correlation between rankings of judge
(1) and the other judges, and let r,, equal the average of all
the intercorrelations between the ranks of the judges. Then

§—I
r
I 1y

-
i = 4 =

where p takes all values from 1 to a except the value 1.
1 -

'W=a’—a? Tpa

where p takes all values from 1 to a, and g takes all values
except the value p.

Zxmtxtotx) ot (@—1)7 el

Trs = Noo, T e Vaol + (af = a) 7ppat
1+ @—-1r,
oy ———————————— ...............................[I ]
s \/a+ (@* - a) ;pq 73

Solving for 7,, we have

r.sVa + (a? —a) 7y — 1 (Mean correlation between
Tip = a—1 one series and (@ — 1)
others, in case standard

deviations are equal). . .[174)

The requirement that means shall be equal is necessary in case
formula [171] is used for the calculation of r,. The notation
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ri was used upon the assumption that the several series were
similar, but note that 71 of formula [171] and 7, in formula
[174] are identical in derivation. The average intercorrela-
tion 7, is to be calculated once for all by formula [171] or [172]
and rs calculated by the ordinary formulas [go], [93], [94],
[95] or [142] for each successive series.
Sxy (%1 + x2 +---x, — x1)
NotVa + (a?—a)rpy —1—2(a— 1),
@—-17,
Vie—1)+ (@ —a)rpe —2(a — I);l_p
(Correlation between one series and the com-

posite of (a — 1) others in case standard devia-
tionsareequal) ........ ... ... i, (175]

i(S—-1 =

i Ss-n=

Formula [175] involves 71, which is already given by formula
[174]. Substituting we obtain

—(llr'lSVa+(a’—a);M)
vV +a+(a=—a)?pq+2(l —rls\/a+ (a’—a)?")

(Correlation between one series and a sum or
average of (a — 1) others if standard deviations
areequal) . ... .. ... [176]

"' S-n~

To illustrate these formulas we may study the rankings of the
six judges K, T, U, B, L, H to answer the question; which
judge agrees most closely with the composite rankings of the
others: We have

Y .= i
UK—G'T d 12 3'4521

_ . [20500.5 [6(12 + 1)7?* _
og = ¢ 12 [ 2 ] = 13.6885

T xS = (30 + 7625 + -++) — 12 [12:— 1] [6 (122+ 1)]

= 454.00
ekl S
"ks = J_VoKaS o

A similar determination of the other correlations gives the

table
rxs = .8006 rgs = .3086

rTS = .6604 ’Ls = .8006
rys = -7504 rps = 6437
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These coefficients establish the order of agreement of each
judge with the others, but they are spuriously high in that S
includes the record of each judge himself. We will, therefore,
knowing by previous calculating, 7y, = .3241, use formula
[176] to calculate rx(s—x) and other similar coefficients. We
obtain

'K(S—K) = .6752 rB(S—B) = .0592
rrs—1) = 4777 rLs—r) = 6752
rU(S—'U) = .60[9 "H(S_H) = .4554

These correlations may be taken at their face value. It is
seen that judges K and L agree most highly with the other
judges, while judge B agrees scarcely at all with the average
opinion of the others.

Section 62. THE ErrECT oF DIFFERENT RANGES UPON
CORRELATION OF SIMILAR MEASURES

I have elsewhere pointed out (Kelley, 1921 rel.) that a
coefficient of correlation should be interpreted in the light of
the ranges of the traits measured. This is true of all correla-
tions, but it may be most readily proven when dealing with
reliability coefficients. To quote from the reference cited,
making such slight changes as are necessary to conform to
the present notation:

“The reliability coefficient is, however, not an entirely satis-
factory measure of reliability, for it is affected by the distribu-
tion, in the trait measured, of the particular group studied.
To secure a reliability coefficient of .40 from a group composed
of children in a single grade is probably indicative of greater,
not .less, reliability than to secure a reliability coefficient of
.go from a group composed of children from the second to
twelfth grades. If it is reasonable to assume that in terms of
true ability the spread of talent is four times as great in the
eleven grades as in a single grade, the correlation in the second
case would need to be .g14 in order to indicate as close a rela-
tionship as that shown by a reliability coefficient of .40 in the
single grade. The following formula gives the relationship:

0o Vri1(1 — R, 1) (Relation between ranges in true
To \/RF;-'_—’;—I)‘ ability and reliability coefficients).[177]
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0w and Z, are the standard deviations of the two groups in
terms of true ability, and 7,1 and Ry are the reliability coeffi-
cients of the two groups. Solving this equation for the case
in which 2o = 40, and ri1 = .40, gives Ry = .14

‘“ If the standard deviations of scores in two groups are known,
it is not necessary to make any assumption; for then the
following formula applies:

s VI -— RTI (Relation between ranges in obtained
zZ Vi- ’Y;I_ scores and reliability coefficients)..[178]

In this formula ¢ and Z are the standard deviations of the
scores in the two groups and ri1 and Ry the reliability coeffi-
cients respectively. In passing, it may be noted that this
equation is an excellent criterion for determining whether a
test is equally effective in a range £ as in another range o;
for, if the relationship just given does not hold within the
probable error of the determination, it is evidence that higher
correlation is found in one part of the range than in another.”

The proof of the above formulas is simple. Let ¢1..0 = the
standard deviation of an array of single test scores correspond-
ing to a given true score for the one range of talent and 2.,
the standard deviation for the second range of talent. By
formula [86]

Oi.00 = 01 \/l - Yzlw

but by formula [160], 10 = 711 so that,

Ol.00 = 01 \/I — "1I
Similarly
E].w =2 \/I - RII
but if the test is equally as effective in one range as in. the
other the standard deviations of the divergences of the single
scores from the true scores are equal, i.e.,
O1.00 = El.w *
so that
o1 _ V1 — R (Relation between standard deviations and
2 Vi-—gs reliability coefficients obtained from two
different ranges when the measure is
equally reliable throughout the two
TANEES) . . ot ot et e [178

* The validity of this equation is briefly discussed by Holzinger (1921).
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Formula [165] enables us to express the same relationship
dealing with true standard deviations instead of those obtained
from single tests. Substituting for ¢, and Z,, we have

0 _ Jr (1t — R) (Relation between true measures of

o NR (1 —7r)  dispersion and reliability coefficients
obtained in two different ranges,
when the measure is equally reliable
throughout the two ranges)........ [179]

The fact that correlation changes with range makes comparison
between reliability coefficients difficult. If one worker reports
a test as having a reliability coefficient of .40 and a second
reports a reliability coefficient of .go for a test purporting to
measure the same function we are not warranted in concluding
without further data that the second test is the more reliable.
For this reason the reporting of standard errors of estimate of
true scores is to be recommended, for these will not change with
the range if the test is equally effective throughout the range.
Knowing the standard errors of estimate we would still be
unable to compare two tests, if there is no equating of the units
of the one test in terms of the units of the other. If the first
worker reports a standard error of estimate for his test of 10
units, and the second a standard error of 2 units, and if some
method of equating the scores (see Chapter VI) enables one
to say that 6 units in the first test are equivalent in range
covered to one unit in the second, then we can definitely say
that the first test is the more reliable, for 10/6 < 2/1. More
extended discussion of this point is given in (Kelley, 1921 rel.).

Section 63. THE Errect oF DIFFERENT RANGES UPON
CORRELATION OF DIFFERENT MEASURES

In case two different series of measures are correlated it is
usually not known just what is the nature of the curtailment or
extension of the ranges of the two series which has been brought
about by some selective agency. In illustration; individuals
of one race are probably less variable with reference to general
intelligence and also less variable with reference to memory
ability than humanity in general. But how much the decrease
in variability is, or whether it is the same in the two functions
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is not known. The correlation between general intelligence
and memory ability determined from a random sampling of
one range would probably be smaller than the same correlation
calculated from humanity in general, but a priori considerations
would give but a poor estimate of how great the difference is.
In such a case and without additional data a correction of the
correlation as found in the one range to enable a comparison
with a similar correlation as found in the second range is
impossible. If, however, the nature of the curtailment is
known and is upon the basis of one trait only we may derive a
formula enabling a comparison of correlation coefficients ob-
tained from different ranges. Note that one trait is arbitrarily
curtailed (or extended) and that the other is affected only in a
consequential manner. Let x be the variable, the distribution
of which is curtailed, and let y be the other variable. In the
non-curtailed, scatter diagram let us suppose the y arrays are
homoscedastic and show rectilinear regression. The dropping
out of certain of these arrays, or of random parts of certain of
them, will not change the slope of the regression line nor the
homoscedasticity of the y-arrays, but it may be expected to
change both the slope of the other regression line and the
scedasticity of the x-arrays. Thus, designating the constants
of the uncurtailed distribution by capital letters and of the
curtailed by small letters, we have

021 = Zaa and bn = Bn ......... [180] and [ISI]
but
o117 Z1a bis # Bia
o1 7£ 21 [-£] 75 22
and
ri2 # Rz

By formula [56] we have

021 =220 =03 VI —ri3 =2Z3VI — R,
or
ok = Z;K,2 (Relation hetween correlations and y-standard

deviations when x-ranges have been changed).[182]
Note that formula [178] is but a special case of [182] for by
letting the first variable be a true score and the second variable
a score upon a single test of the same function, formula [182]
becomes formula [178]. We may relate the y-standard devia-
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tions to the x-standard deviations and obtain a relationship
between the correlation and the standard deviation of the
curtailed distribution. By formulas [87] and [180] we have

also

Squaring, summing and dividing [184] by the population gives,
for the uncurtailed distribution,
2"' r?1s0’s E—:
g%

Substituting in [183]

I = 02, + riaoYy ( ) = g% [(l — 1) + 12, ( ) ] ..[185]

Substituting this value of 2% in formula [182], dividing by o,
and solving for R, yields

r12 —
gl

VI — 13 + riys (21/01)?

which is the result obtained by Pearson (1903, inf.).
This may be written in the form
Ris _ n2  (Relation between correlations de-
K 32, ko termined from ranges whose
standard deviations in the case of
the curtailed measure are in the
ratio Zy/o1) ... [187]
The only assumptions underlying this derivation have been
rectilinearity and homoscedasticity in the curtailed trait. The
standard error in R when thus determined is given in formula
[300]. The accompanying table is presented to give a concrete
idea of the differences in correlation that may be expected due
to differences in range:

Rl: =

TABLE XLI
a1 IFr =1 r = .2 r =.3 r =.4 r =.6 r =.8 r = .95
3, |THENR = R = R = R = R = R = R =
.75 133 .263 .387 .503 .707 872 971
.50 197 .378 .532 .658 832 .936 .987
.25 373 632 .783 .868 .949 .983 .997
.10 709 .898 953 975 -991 997 9995
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A situation in which the ratio of the standard deviations may
be determined is when the curtailed distribution is a part of
a normal distribution. We have already noted [181], that

110_1:3' = _R;;_;l_—z? = bil = B!l

It is necessary to remember that the first variable x is the one
upon the basis of which there has been a curtailment of distri-
bution; that is, whatever difference there may be between o,
and Z, is consequential to an imposed difference in ¢, and Z,.
This equation should be valuable in determining which of
two functions is the more influential in causing selection.
Suppose that for a narrow and a wide range we find by = ap-
proximately Bg, but that b does not = By,. This suggests
that trait (1) is the causal trait in bringing about the selection
and trait (2) the consequential trait, or more accurately stated,
that trait (1) is more closely related to whatever is the cause
of the selection than is trait (2). Here again the regression
coefficient is the significant constant for purposes of interpre-
tation.

Brown (Brown, Carl — see Yerkes, 1921, pp. 629-632) has
utilized certain properties of the normal distribution in deter-
mining the ratios of the standard deviations and therefore in
determining the correlations in the two ranges. The Division
of Psychology of the Surgeon General’s Office found that many
of its intelligence tests showed evidence of a ‘‘jam’ at one or
the other extreme; that is, the test was too difficult, resulting
in large numbers of zero scores, or too easy, resulting in large
numbers of perfect scores. Except for the extreme scores
most of the tests gave approximately normal distributions.
Accordingly the extremes of each test distribution were cut off
and the correlation for the resulting scatter diagram calculated.
This is an r from a curtailed distribution. If the ratio ¢,/3,
can be determined, formula [186] will give the correlation R
that would maintain throughout the entire distribution if the
undistributed extreme scores could be replaced by scores as
discriminative as those in the middle region of the distribution.
We can obtain a,/Z;.

Let us be given a normal distribution of standard deviation
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Z, and cut off a proportion p, at the lower end and a proportion
g: at the upper end, leaving a population of (1 — p — qa),
which is the same as (¢ — ¢;) in the usual notation as given in
Sections 24 and 27, from which the correlation r is obtained.
No curtailment, except consequential, is made in variable 2.
Let us suppose that the standard deviation of the non-trun-
cated normal distribution Z, is equal to 1.0. Then o, as a
proportion of Z, is the only constant needed in order to use
formula [186]). The standard deviation of that portion of the
distribution, as shown in the accompanying diagram, lying

P Z 1el0
. Qe

x xe

between the ordinates x; and x, is required. If the equation
of the total normal distribution is

—x

z2=2¢g4e 3

the standard deviation of the truncated portion is given by

j:’zx’dx

oy =2 g

d1 — q2

j:'zx’dx

integrated by parts and evaluated at the limits gives
%121 — X222 + (@1 — g2)

while d, the distance from the mean of the portion to the mean
of the total normal distribution, is given by formula [55] so that

AR X121 — X1Z2 _ [z, — z,:l2 (Standard deviation squared of

z?, Q1 — ¢z @1 — g2 a portion of a normal distri-
bution of standard deviation,
Tiequaltor1.0)............[188]

Brown has called the right hand member 1 4+ J and introduced
J into the equation giving r. We will, however, leave formula
[186] as it is and expect o1/Z, to be calculated by the present
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formula [188] in case of truncation at one or both ends of a
normal distribution and the resulting value introduced into
formula [186]. Many very neat illustrations of the aid in
interpretation resulting from the use of this formula are given
in Yerkes (1921). One word of caution is offered. If multiple
correlation coefficients are being calculated it is absolutely
necessary that all the data be consistent. Otherwise such
absurdities as imaginary correlation coefficients may result.
Presumably if there are several variables, and every time a
variable enters a correlation table its distribution is curtailed
in one certain manner, not only would the r’s, or the correla-
tion from these truncated distributions be cons’stent with each
other, but also the R’s, or the enlarged correlations found by
correcting for limited ranges. I have not proven this state-
ment, but the converse is certainly obvious, that if the cut
occurs in several places in the several scatter diagrams involving
a certain variable there is no statistical imposition making
the 7’s consistent, so that both the r’s and the R’s may be
inconsistent. On page 633 of Yerkes (1921) occurs a table
showing that army intelligence test Alpha, was cut between
scores one and two in one scatter diagram and not cut at all
in the other correlation tables. There is no evidence that for
these particular data any inconsistency has been introduced
by this procedure, but if the correlation had run high,
.990—.999, instead of being less than .98 the lack of a neces-
sary consistency in the original data would be serious.

Section 64. THE ErreECT OF DOUBLE SELECTION UPON
CORRELATION OF DIFFERENT MEASURES

A correction formula is available in case there has been
selection in both variables. For example, consider a correla-
tion between heights of brothers and sisters when brothers
between heights a and b are used and when sisters between
heights ¢ and d, thus dropping out all pairings in which the
brother's height lies outside of ab, irrespective of sister’s
height, and also all pairings in which the sister’s height lies -
outside of cd irrespective of the brother’s height. Here there
is selection both in the x trait and in the y trait. Let ¢, and o
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be the standard deviations in the unselected distribution and
let the selection in x alone be such as to change o, to s;, and
let the selection in y alone be such as to change o; to s;. Let
Z, be the standard deviation of the x’s and X, the standard
deviation of the §’s in the doubly selected distribution. To
point the relation between s, and =, we may write

Z, = the standard deviation consequent to the direct selec-
tion of the x’s and also due to the indirect effect of
selection of the y’s.

s1 = the standard deviation consequent to the direct selec-
tion of the «'s.

Thus s, is not a standard deviation determined either from the
original or the doubly selected population. It may, however,
be determined by formula [188] or otherwise, if the nature of
the selective agency operating upon the x’s is known. The
symbols s; and 2, have similar meanings when dealing with
the y’s. Pearson (1908, inf.), starting with an original, normal
correlation surface has given formulas showing the effect of
double selection upon means, standard deviations, and correla-
tion. Letting & = s1/01, f2 = s»/02 and letting small letters
represent constants in the unselected distribution and capital
letters in the selected, his formulas may be expressed:

Zy =f(oy, ty, ta, 7) Given by Pearson (1908 inf.) [189]
Zs = f (o3 b2 b, 1) Given by Pearson (1908 inf.) {189 a]
m, = ¢ (01, 02, My, ma, 1), by, r)  Given by Pearson (1908 inf.) [189 5]
ms = ¢ (o2, a1, ms, my, l3, 4, r) Given by Pearson (1908 inf.) [189 ¢]
ta
Ris = s VI -1 (1 — ) VI — 2, (1 — t2)
(Relation between r in a normal correlation

surface and R in the surface obtained
from the preceding by double selection). .[190]

Theoretically one could solve equations [18¢] and [189 a] for
t, and t, in terms of oy, g9, Z;, 22 and r; substitute in formula
[190] and thus relate R with 7 knowing the unselected and
selected standard deviations. However, a solution of the t's
in terms of the other constants runs into a bi-quadratic which
apparently does not simplify so that the symbolic solution
is not here attempted. The numerical solution for a given
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problem is however possible, so that knowing Z; and Z; the
ratios ) and & may be determined from equations [18¢] and
[189 a] or more simply, if the necessary facts as to curtailment
are known, by formula [188], and substituted in formula [190]
to obtain R.

Standard deviations may be either increased or decreased by
selection due to increasing or decreasing certain arrays. Ac-
cordingly there is no necessity that ¢ or t, be less than one, nor
that R be less than r. Whereas both the regression lines in
the correlation surface or scatter diagram giving r are recti-
linear since normality of surface was assumed, in general
neither regression in the scatter diagram giving R will be
rectilinear. As a consequence formula [19o] is not symmetrical
with reference to R and r. Selection could conceivably be of
such sort that both the selected and unselected surfaces were
normal, in which case the appropriate formula would of neces-
sity be symmetrical with respect to R and r. The nature of
the selection which would lead to this result is worthy of
investigation.



CHAPTER X
FURTHER METHODS OF MEASURING RELATIONSHIP

Section 65. THE VArIous WAYS OF MEASURING RELATIONSHIP

The treatment of the preceding two chapters has shown
something of the extent and detail of analysis of inter-relation-
ship between two quantitative variables which are related in a
rectilinear manner, or at least in such a manner that a simple
transformation will bring about rectilinear regression. If
quantitative data are not of this nature, or if the data are
qualitative, a number of accessory methods of measuring
relationship are available, none of them, however, permitting
the detail of interpretation and flexibility of treatment possible
with rectilinearly related quantitative variables. Three gen-
eral lines have been followed in developing accessory methods
of measuring relationship: (1) leading to measures of relation-
ship which would be identical with the product-moment cor-
relation coefficient, provided data were (a) recorded in a
quantitative instead of in a qualitative form and (b) related in
a rectilinear instead of a curvilinear manner; (2) devising other
measures of relationship; and (3) interpreting relationship in
terms of probability.

The only method of the second and third groups which has,
beyond cavil, demonstrated itself to be generally serviceable is
the ‘‘goodness of fit” method developed by Pearson (1goo,
crit.). However, before treating of these methods we may
concern ourselves with (1) the measures of relationship which
are equivalent in meaning to the product-moment coefficient
of correlation.

Section 66. THE MEDIAN RaTio CORRELATION COEFFICIENT

A method has been proposed by Thorndike (1913), which

has not as yet been studied sufficiently to establish its compara-
231
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bility with the product-moment coefficient for a variety of

types of scatter diagrams. In the usual notation

x/a1 y/oa (Thorndike’s median

y/or' x/ay ratio coefficient of
correlation)....... [191]

In using this method some convention must be adopted with
reference to x/o, y/o, and o/o ratios. In case grouping is
fine, so that there is the possibility of few such ratios, the point
1s not important; but if there are large numbers of measures
in the intervals having the means as their class indexes, then
x/0, y/o and o/o combinations will make for uncertainty in
results. Calling 1/2 of these equal to « and the other half
equal to — o will throw the burden of determining r upon the
remaining ratios and, at least in the case of a normal correla-
tion surface, this would not introduce a systematic error. If
the grouping is fine so that the x = o and y = o frequencies
are lacking or negligible in number, and if the correlation
surface is normal, then the median ratio for any array is equal
to the product-moment correlation coefficient, and, of course,
the median of the ratios for the entire table equals the product-
moment coefficient. We thus see that for this important cor-
relation surface, and with fine grouping, Thorndike’s median
ratio coefficient has the same value as the product-moment
coefficient. Further investigation of this coefficient is needed
and, pending it, the method should not be used indiscriminately
as a substitute for the product-moment method.

The distribution of ratios is very peculiar and the standard
deviation of such distribution will generally be infinite, so that
it is futile to calculate the standard error of the median ratio
coefficient of correlation. The quartile deviation of these
ratios, however, is not infinite, and we may take as a first
approximation to the probable error,
quartile deviation of ratios

VN
(Approximate quartile error of the median
ratio coefficient of correlation) ........ [192]
Noting that /o1 y'/e2 _ X" y”
y/or x''for ¥ x”
the median of the [x_/g y/g]
y/o1' x/o

7 (mdn ratio) = Median of ( ) ratios

P. E. of rmdn ratio =
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ratios will be closely equal to

v/ (indn of x/y ratios) (mdn of y/x ratios)
Thus, we will write, as a very much simpler formula to use,
rmdn ratio = V (mdn of x/y ratios) (mdn of y/x ratios)

(Thorndike’s median ratio coefficient of correlation)..[191 a]

There is a certain directness in interpretation which com-
mends this coefficient, but even in the form [191 a] it will hardly
prove more expeditious to use than the regular product-moment
method, while its probable error will, for usual surfaces, always be
larger than the probable error of the product-moment coefficient.
Let us try this method upon the very curvilinear insurance
data of Chart XXVII. We will use £ and { as though they were
x and y, deviations from the actual means, for comparison with
our other calculations in which they were so used. We have
the ratios listed below taking the measures by rows beginning
at the top row. The calculation has been made by a slide rule,
so that one need not expect an exact check upon every figure.

TABLE XLII
¢ ¢ 4 ¢

! ¢ ¢ f e 4

I 12.9 .078 I — 3.0 —.333

1 12.2 .082 I - 2.7 — .3750

1 14.0 o071 | 2 — 2.4 — 417

1 9.8 .102 I — 2.2 — .458

I 8.3 .120 I 1.6 616

2 7-5 33 001 2.74 .365 +

2 6.8 d47 || 2 —17.3 — .058

1 |—83 | —.120 1 1.6 .628

1 7.1 140 || 2 2.2 457 —

3 5.0 200 || 1 3.7 271

1 [—5.2 —.193 1 11. .086

1 4-4 .226 I 3.0 .330

I 3.9 .258 1 5.10 .196

1 3.4 .290 I 16.2 .062

2 2.8 .355 2 — 32.3 .031

1 3 3.000 I 2.61 .383

2 |— .2§5|—4.000 §

— .2 |—4.500 s

i —_ 2 |- ggOO \ Produ-ts 52;2)::?

1 {—8.0 |— .125% L.Q.—r1.215, —.159 —.193 +—.4395
Mdn 2.675 11 .297 ‘ .545 +
U.Q. 5.95 .2045 1.573 | 1.255

. . _ 847 _
fmdn ratio = .545 Quartile error of r = = .122

V48
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This result, r = .55 & .12, may be compared with the
product-moment correlation, r = .64 % .06, and the corrected
correlation ratios, m2 = .73 & .05 and 72 = .74 & .05. Thus
for this particular surface in which the regression lines
do not pass through the intersection of the means, the median
ratio correlation is less than the product-moment correlation.
Thorndike (1913) gives an illustration in which the median
ratio coefficient is 1.00 and the product-moment coefficient less
than 1.00. No general rule for the relation between these
two correlations for non-rectilinear and non-homoclitic surfaces
1s offered.

Section 67. CORRELATION DETERMINED FROM A CURVE OF
CORRESPONDENCE BY RANK

This method, which may, more briefly, be described as the
rank relation method, is proposed by Otis (1916). It prob-
ably has no essential advantages for rectilinear data, but offers
promise if regressions are curvilinear. Having a scatter dia-
gram, a line is to be drawn which will equate scores of the two
variables. If regressions are rectilinear this line is given by
the equation x/g; = y/a, (see Section 43), but if not rectilinear
some other device must be followed. Otis writes (1916, p.
720): “In order to get a better idea where to draw the curve
of relation an auxiliary plot may be made . . . on the assump-
tion that the true correspondence of the scores of the two
tests would be more nearly approximated by that of two scores
having the same rank than by those of the same child.” Otis
does this graphically, smoothing slight irregularities. Having
this curve of correspondence by rank we may locate a value
on the x-scale for each value of y (or vice versa) and call the
obtained value y'; that is, 3’ is, in terms of the x-scale, the
equivalent of y. Thus 3’ measures and x measures have the
same variability and the same mean. Let us designate the
difference (x — ') by the symbol d. and designate (y — x')
by dy. This enables us to use formula [131] in the calculation
of the correlation. Otis notes that ¢q4,/0r is approximately

equal to
mdn of the |dx's |

mdn deviation of |x's|
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so that, in our notation,
' __ (mdnof [dx's])?

2 (mdn dev. of | x's|)?
or, if x-values have been transformed into equivalent y-scores,
__ (mdnof |dy's|)?

2 (mdn dev. of | y's|)3
These two formulas are minor modifications of formula [131],
but Otis’ manner of determining the d’s 1s unique. These are
not (X —Y)’s nor even (x — y)’s, but differences when (a)
unequal variability has been allowed for, and (b) when one
variable is transformed into a second by means of a curvilinear
relation line. Thus the so-called r obtained is in reality more
closely related to a correlation ratio n than to the correlation
coefficient r, but it has an advantage over 7, in that not only
is the strength of the relationship measured, but the nature
of it graphically established. The method suffers with all
graphic methods in not enabling a concise algebraic statement
of the relations which hold. We may expect the values ob-
tained by its use to more nearly approach corrected 4 [200 b]
than the product-moment r.

The insurance data of Chart XXVII may be used to illustrate
the method, but to make it a little more algebraic than graphic
we will equate measures by the method of Section 35, that is,
we will call equal percentile values equivalent and will not
resort to smoothing.

(Otis’ deviation formula
for correlation)...... [193]

r=1

r=1

TABLE XLIII

PEr CENT INSURANCE
CORRESPONDENCE OF WHITE IN Force
MEASURES BY RANK p c }{)OPULﬁTlON RaANk EqQuiv-
ER CENT ANK Equiv- ALENT OF
WHITE ALENT OF IPLS‘#OANCE PAIRED
Per G PopPULATION | PAIRED IN- | ! RCE P!aar CENT
er Cent SURANCE IN HITE
Ii’;‘“‘l’,\';ag‘ée White FORCE POPULATION
Population MEASURE MEASURE
(a) ) (c) (d) () (§)]
(341 99 99 99 341 294
321 99 99 99 285 294
304 99 99 99 270 294
Mean| 290 99 99 97 219 294
294 | 285 99 99 96 192 204
272 99 99 95.5 I90 294
272 99 99 90 170 294
270 99 99 97 224 204
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TABLE XLIII — Continued
PE“)} Ce~NT INstguncn
CORRESPONDENCE OF HITE IN YORCE
Miasonss v BANK | pgg con |Ronchmon] | |REEe
WHITE ALENT OF N P PAIRED
per C POPULATION | PAIRED INn- | 1N TORCE Pl%ié CENT
Insurance er Cent SURANC_E IN HITE .
inForee | po o Mrasuns Maasine
(a) ®» © @ Q] n
(269 98 98 99 321 247
254 98 98 98 290 247
253 98 98 99 272 247
251 98 98 98 269 247
247 1 244 98 98 98 253 247
241 98 98 98 244 247
237 98 98 98 241 247
237 98 98 95 182 247
\ 234 98 98 93 171 247
(227 97 97 99 272 216
224 97 97 98 234 216
216 § 219 97 97 97 204 216
207 97 97 96 197 216
204 97 97 95 182 216
202 96 96 98 237 195
1 197 96 96 96 202 195
951 192 96 96 95.5 190 195
190 {96 96 94 176 195
95-5
190 95 95 99 304 185
185 { 182 95 95 98 251 185
182 95 95 98 237 185
176 94 9 82 140 176
171 33 93 56 103 171
170 90 90 88 167 170
167 88 88 83 142 167
158 87 87 57.5 105 158
147 84 84 98
142 83 83 97 254 147
207 142
126 { 140 82 82 97 227 140
3 133 {82 82 54 101 133
80 133 133
133 7 78 8o
132 71 71 44 96 132
*26 68 68 67 121 126
121 67 67 87 158 121
105 {58 58 80 133 105
105 |57:3\57 57 57-5 105 105
103 56 56 68
101 54 54 84 126 103
96 44 44 71 147 101
84 43 43 43 132 96
84 84
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The measures in column (a) are insurance in force scores
arranged according to magnitude, and the measures in column
(b) per cent white population scores arranged according to
magnitude. Column (c¢) is the same as column (b) and is
obtained from the first column of Table XXXVII. The first
entry, g9, in column (d) is the column (b) equivalent of 341
column (a), which is the measure paired with the first g9 in
Table XXXVII. As a second illustration; the fifth g9, first
column, Table XXXVII, is paired with 192. The value 192,
column (a), is equivalent to g6, column (b), which is accordingly
the value recorded in column (d) opposite the fifth g9 in column
(¢). The mean of column (d) is equal to that of column (¢)
and except for the slight grouping error in replacing 96 and
95 by 95.5 and 95.5, the replacing of 82 and 78 by 8o and 80, and
the replacing of 58 and 57 by 57.5 and 57.5 the standard devia-
tions are equal, so that we may use formula [131] in calculating
the correlation. This gives r = .70.

A similar calculation, interchanging the variables, gives
columns (¢) and (f) and the final correlation r = .65. Com-
pare this with r = .64, 712 = .73 and 72, = .74 of Section j52.
These two correlation coefficients, or correlation ratios as they
are more closely related to n than to r, should be differently
labeled. Otis did not point out the fact that there are two
for each table and that in general they will not be equal. The
method is still in the elementary stage and needs (a) relating
with r and with 5, (b) an algebraic method (such as here used
in equating percentiles, or still better a method resulting in the
equation of the line of rank relation) for determining the curve
of relation by rank, (¢) determination of the types of correla-
tion surfaces to which applicable, (d) utilization of coefficient
and relation line obtained to estimate one variable knowing
the second, and (¢) determination of the probable errors of
the constants involved. The most interesting feature of the
method is that but a single relation line is used. However,
the physical significance of this line will probably not be found
to be as definite or serviceable as the regression lines of a cor-
relation table.

——
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Section 68. CORRELATION RaTio METHOD

Formula [86] gives the relationship between standard devia-
tions of arrays and total standard deviation, and the coeffi-
cient of correlation in the case of rectilinear regression. Solv-
ing this for 7? we have

- — g2
r’=¢71 0g%1.2

oy
Formula [87] shows that, ¢% — ¢%.; = a’;y , leading to

o=
=2

(3}
and also

That is, if the regression is rectilinear the correlation coeffi-
cient is the ratio of the standard deviation of the means of
the x-arrays to the standard deviation of the x’s; or it is the
ratio of the standard deviation of the means of the y-arrays
to the standard deviation of the y’s. This form suggests the
use of these ratios when regressions are not rectilinear. The
resulting values are called correlation ratios and are repre-
sented by the symbol 5, eta, and note that there are two for
each scatter diagram.

Txy \{ a2gx (Correlation ratio of

mr =T PN x upon y).......[194]
_ T _ !1 __a%y (Correlation ratio
s, T o? of y upon x) . . .[194 a]

The correlation ratio is of necessity greater than zero and less
than one. The proof of this is left as an exercise. Further,
oax 1S the standard deviation of the x-arrays around their
means, whereas o;.; is the standard deviation of the x-arrays
around the best fit straight line. The contribution of each
array to o;.2 will be greater than the contribution to g4 in
case the mean of the array is not exactly upon the regression
line. Therefore g, < 012 and as a consequence 4 > ||, and
72 > r2.  The difference between 5* and r? 1s ¢ and is a measure
of non-rectilinearity of regression. Therefore the test for
linearity is

¢ =9 —r? (Test for linearity of regression).......... [195]
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We need the standard error of this magnitude. Blakeman
(1905) gives it as

(Standard error of the

_ 2 22 — y2)2 %
= :/—W(r (=) (=) + Il\ test for linearity)..[196]

or approximately,

if n and r are not very different.

The calculation of oz, offers no difficulties. The mean for
each array is calculated and the standard deviation of these
found, taking each mean as many times as there are measures
in the array. If the population is small the data should be
grouped so that at least two measures are found in each array.
The scatter diagram on page 241 shows the grouping that
may be employed for the insurance data of Section 52. The
class marks to the nearest $1.00 in the insurance in force data,
and to the nearest 1 per cent in per cent of white population,
are the means, not the mid-points of intervals, of the measures
grouped. The origins are, to the nearest $1.00 and 1 per cent,
the means of the total population. Neglecting the slight error
due to not keeping fractional parts of the $1.00 or parts of
1 per cent gives the table and calculation on page 241.

The coarseness of grouping affects the size of 5. With
grouping so fine that but a single measure is found in any
array, 7 would then = 1.0 and of course would have no real
significance. In order to obtain a reasonable value for 7
grouping should be sufficiently coarse to result in a fairly
regular, although not necessarily straight regression line.
Pearson (1911 cor) has pointed out that the significance of
n should be judged not by its difference from zero, but by its
difference from the value that is the most probable in case of
zero correlation between the two variables. Or in other words
he has pointed out that a correction to the raw eta is necessary.
Since the standard deviation of means of arrays are of necessity
positive, this value for finite populations is as a matter of chance
greater than zero, and if the population dealt with is small
and the grouping fine it may be very much greater. The
chances are, not only in the case of the zero relation, but

———
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whatever the relation, that the obtained 5 is larger than it
would be from an infinite population. Let n be the obtained
correlation ratio yn# the most probable ratio from an infinite
population. And let « equal the number of arrays; then,
when the frequencies in the arrays do not differ in a very
extreme manner from each other we have, as given by Pearson,
. (xk—1)
N

[ — (« — 1) (Eta corrected for too
N fine a grouping) . . .[198]

m=

Coarse grouping was resorted to in the calculation of 7 just
given for the purpose of eliminating as much as possible of
the error coming from too fine a grouping. But even so the
correction is not negligible, since

(7955)* = .5
Mmha = —g = -5344, or gz = .7310
I — ——
48
(.8019) —%
oru=——g or mn = 7394
T

The correlation ratio does not enable an estimation of one
variable, knowing a second, as does the regression equation.
Its value lies in giving a sort of upper limit to correlation.
The use of some curvilinear regression line or transformation
line, as in the case of the insurance and per cent white popula-
tion data of Section 52, may lead to an actual means of esti-
mating one variable knowing a second. The correlation ratio
is also valuable as used with the data just mentioned in leading
to ¢, and to the standard error of ¢, thus determining the likeli-
hood of violation of data by the assumption of a rectilinear or
other definite regression line. The standard error of 7 is usually

taken as
1 — n? (Standard error of the
v N correlation ratio) . . . .[199]

on =

but if # is large, due to too fine a grouping and small population,
thé standard error as given by this formula is too small and a
corrective factor is necessary.
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The usual calculation gives oy = 64.4611 and o2 =
As calculated in the accompanying table o7 = s1.2760 and

= .8019.

51.2760
64.4611

=.7955 and na =

TABLE XLIV
Y
PEr CENT WHITE PoPuLaTION r o)?
FlE g 1)
44 [ 56 | 60 [ 82 | o1 | 05 | 96 | 97 | 98 | 99
341 1 1 142 }21
= —|— | —|—|— | ——] = —— 2| 220.
32v | | e | ra2 |2 5
17
297 I 1 2 [+] 2 144.5
§;——_———— U L TN T s
S 74 1 2 2 5 75 _S 520.2
R | R R e I 31
X g | 249 1 I 3 5 so | 2| 102.2
el |- {—(—)—F 1 ] | S
: o
21 230 1 1 1 1 2 6 31 o 266.67
E|l—— | — | —
107 I 2| 2 2| 7| -2 _—570 357.14
D e O e e e - _—“'
175 I 1 1 2 1 6 ks Ny 433.5
147 1|1 2 a4 | —s2 :—45 506.25
120 | 1 2 1 1 5 | —70 :%3 3537.8
TN S N I O LT:__:_:LE:}'&
841 1 1 |=ts || | 150417
48 48 7682.93
~ hed ~ wy v ~ hcd w o - -]
[ P S R S P R P DR R 160.061
oF
wl 3| selelm|r]=lo|e] e = 126515
| | | |
- U T T T %% = 51.2760
1 ?iu%'v%’w%'walm:::imm!-r‘?ilm?;':i‘:o
o | ot
-
- b ~ 0 o ) B P " Q o
S flg Elsls g sl2l2]88
w2 2825 % sl ETELS R
g - a - ~ - ~ - -
3|
I |

15.7778.

12.6515

15.7778
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The correction in 7 for too fine a grouping grows smaller as
the number of categories decreases and this is as it should be,
but an improved result is not obtained by a very coarse group-
ing, as then a correction for too coarse a grouping becomes
important. This is based on formula [102] and is the same
sort of a correction as given in formula [103] for a correlation
coefficient, calculated from the means of the classes. Letting
Mxy be the value of n corrected for use of class means it may
be readily shown, as has been done by Student (1913), that,

_ "xy (Correlation ratio corrected

Txy = Yy for coarse grouping)... .. {200}
and
Nyx
Myx = r— ....................... [200 G]

xx
To apply the correction we need to know r., and r,,. The
correlation between the class means and the deviates is
rx = 0x/0y, and for the second variable r,, = ¢y/0,. Thestandard
deviations o and o, have already been determined in the
calculation of 7:y and 75,. respectively. Were a normal dis-
tribution assumed /gy could be determined as in the last
chapter, but, though practically it might lead to good results,
it is theoretically unsound for most distributions from which
n is calculated. For the ungrouped data here given ¢, may be
determined from the raw data. Calculation without grouping
from Table XXXVII gives oy = 64.6746 and o, = 15.8646.
Accordingly

_ 64.4611 _ = 157778
ryx = 64.6746 .99670 and ryy 15.8646 .99453.

Thus for the corrected correlation ratio we have

ﬂxy 7310
Ney = 2= =~ ——— = .7350
CEY 1y, 99453
Nyx 7394
= YE o 0% o o418
cTyx Tex 99070 74

The values calculated as o, and ¢, have not been entirely
freed from a grouping error, particularly ¢,, since percentages
recorded in the fundamental table are to the nearest 1 per cent
only. To correct further it would be necessary to make some
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assumption as to the form of distribution. Plainly the assump-
tion of a normal distribution for the percentages of white
population will not be sound. On the assumption that the
distribution may be represented by a series of trapeziums of
equal base, Student (1913) shows that the corrective factor is
V1 + k?/(12 ¢?) in which k is the unit of grouping and o the
standard deviation of x in the case of 5y, and ¥ in the case of
7zy. Applying this further correction to 7., we have

ey = .7350J1 + izx_:gm = .7352
This correction is merely a re-application of the r,, division
and is warranted due to the fact that division by .99453, the
ry, obtained, allowed only for the grouping of several per-
centages and not for the error introduced by entering values
in the original table to the nearest per cent only. For the
data in hand the only correction really worth while was the
first, formula [198], that for too fine grouping. The second,
that for too coarse grouping, willamount to 1 percent if k = o/ 2,
or in the case of a normal distribution if there are some 10 or
12 steps, or intervals. This result is obtained by solving the

equation
J ¥
1 +12 priad 2

A correction for grouping by means of Sheppard’s formula
[68 a] applied to the standard deviation in the divisor of the
formula giving the raw », is appropriate, but no such correction
for the standard deviation in the dividend is to be made for
this is a standard deviation of means, or points, and should
not be corrected by Sheppard’s formula which applies to con-
tinuous variates.

As there are so many corrections which apply to n the fol-
lowing summary is given,

Let oz, = the standard deviation of the means of the x-
arrays.

Let ¢, = the standard deviation of the x’s.

Then letting 7.y equal the raw correlation ratio of the x's
upon the y’s we have
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Letting <.y equal the value after applying Sheppard’s
correction for grouping of the x's we have, if h equals the
number of units per group,

Ui 0'_

sTxy = _—:——yThz—— - I+ —— 12 o" = Mgy (1 + ) . [194 B}
0’x¢ I — -lm

Letting x stand for the number of y categories, N the total

number of cases and s,y the preceding value of n corrected for
too fine grouping of the y's, we have,

. My — (k — 1)/N

£ °xy =f‘l S = 2)/NT e

Letting r,, equal oy/0,, i.e., the correlation between the

class means of the §’s and the y variates back of the grouped

data (note that oy is the standard deviation of the class means,

but that ox above [194 {] is the standard deviation of class

indexes), and letting ..y, equal the preceding n corrected
for too coarse a grouping of the y's we have

S5y

.. b
Tyy (200 ]

fslxy =

In the case of equal intervals in y which are not too large

7Y g2 g2 ( _h”
(saynot> 2),0., o\ 1+ 127,
standard deviation of means of y classes and h’ the number of

units per group of y’s, so that 1/r,, then equals
h'?
( '+, 240° ))
hf2

dsnxy fsﬂxy ( + 24 ot L) [200 C]

In [200 ¢] we mav substitute the standard deviation of class
indexes for gy, the standard deviation of class means, without
appreciable error, but we cannot make this substitution in
the general formula, ry, = g,/0, [102], which is the formula
which must be used in case the grouping of y’s is in very broad
and unequal intervals, and especially if the classes are cate-
gories not related in a numerical manner.

These corrections to 7.y are not equally demanded in the
case of any given data. Correction [198] is likely to be the
most necessary. The finer the y grouping, that is, the larger

)in which gy is as before the

and we have
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the number of y-categories and the smaller the total population
the more important is this correction. Correction [194 b] is
important if the x-grouping is coarse and correction [200] if the
y-grouping is coarse. All of these observations apply to 7.y and
of course similar statements will hold with reference to nys, if
in the statements y and x are interchanged throughout.

The student should note that the value of n used in the
calculation of ¢{, the test for linearity, and in the calculation
of the standard error of {, is the raw value and not the cor-
rected value. Although the corrected value of n should not
be used in these formulas [195], [196], [197] as it was not in-
volved in the derivation of {, nevertheless the formula for
¢ calculated from raw n may be expected to give a value which
is materially too large, and a value for its standard error which
is relatively too small, if grouping is fine and population small.
Accordingly the { test for linearity is too rigorous if grouping
is fine and population small.

Section 69. METHOD OF ParABOLIC REGRESSION

Many scatter diagrams are characterized by regular curvi-
linear regression lines. If a single positive or negative curva-
ture is present the regression line may sometimes be closely
represented by a parabola, y = a + bx + ¢x?; and if the re-
gression line shows a single inflection the cubic parabola,

y=a + bx + cx? + dx?
may give a good fit. Pearson (1905) has developed the theory
of parabolic regression and illustrated the procedure with
certain data. It is too involved to give here, but must needs
be resorted to if the specific nature of the curvilinear regres-
sion line and the numerical values of the constants involved
constitute the crux of the problem.

Section 70. BI1-SEriAL r METHOD

In case one series consists of variates, or graduated measures,
and the other is dichotomous we may determine the correlation
that maintains if we assume that the trait represented by the
dichotomic distribution is in reality a continuous trait, normal
in distribution, for which we have only categorical information.
Such a situation is well represented by the following, taken

|

i
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from the army psychological test data (Yerkes, 1921, p. 748).
We may proceed with the steps involved in obtaining the
numerical value of bi-serial r and consider the general formula

afterward.
TABLE XLV

NuMBER OF MEN WHno LEFT ScnooL

SCORE IN ARMY ALPHA
INTELLIGENCE TEST Below the gth Grade Above the 8th Grade

205-212 I
200—-204 3
195-199 14
190194 17
185189 1 49
180-184 2 54
175-179 8 78
170-174 12 126
165-169 18 149
160164 15 200
155-159 20 244
150-154 45 305
145-149 58 352
140144 74 338
135-139 101 407
130-134 145 507
125-129 190 528
120—124 216 530
115~119 317 643
110114 393 674
105-109 507 682
100—-104 582 691
95~ 99 761 12
90— 94 908 725
85- 89 993 769
80— 84 1,181 693
75~ 79 1,371 642
70- 74 1,604 648
65- 79 1,709 567
60— 64 1,962 581
55~ 59 2,249 430
50— 54 2,272 346
45~ 49 2,429 305
40- 44 2,455 229
35— 39 2,473 200
30— 34 2,490 154
25~ 29 2,213 106
20~ 24 1,835 60
15— 19 1,511 42
10— I4 545 13
5- 9 432 5
o 4 183 3
34,280 13,822

13,822

48,102
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M, and M, are the means of the first and second categories
respectively, and ¢ is the standard deviation of the total
distribution (48,102) of measures. Calculation by methods
already given yield
M, = 54.987, M, = 98.758
o = 36.606

and finally

Mi— M
1= B = 3.

4 2z

With this concrete calculation in mind we may turn to the
more general statement of the problem. The army Alpha
series is a variate series, and the graduation or non-graduation
from the elementary school a categorical series, not correspond-
ing to a true dichotomy in talent of any sort whatever. Even
in terms of schooling the two classes are not homogeneous
within themselves. In the non-graduation class are indi-

viduals who have been in school variously o, 1, 2, ... 8 years,
while the completion of the elementary school class comprises
those who have been in school g, 10,...years. Thus the

dichotomy has been arbitrarily imposed upon a continuous
trait. Let X equal the scores in the variate trait and Y those

in the dichotomous trait, then r = by :—2- The regression line
1

Y
Ist Category

" Variate

>3
lue of.

Vo

RN IllllillI‘lH i
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with slope by, passes through the means of the x-arrays, x;, s,
of the distribution of cases in the two y-categories. Therefore,
referring to the diagram on page 247,

_X:_x _xetx and r = (xz+x1)/(y:+y|)
Y N yn+n o1 o3

Now (x: + ) is simply (M, — M,) the difference between the
means of the x-scores in the two categories, and oy, or simply o,
is the standard deviation of the total distribution of x-scores.
It therefore only remains to obtain

(:1= + z_n)

ags g2

Let p be the proportion of cases in the first y-category and q the
proportion in the second. The distance y is simply the mean
deviate of the tail of a normal distribution and is given by
formula [83]. If z is the ordinate, as given in Table K-W,
at the point of truncation of the normal distribution, cutting
off p proportion of cases we have

M, — M,

o

+

z_|=_z_ and 3—,?=§ sothatr=
o2 g

o1 P

LY
L=NE3]

which may be written

, = (M: — M)) pq (Bi-serial coefficient of correla-

o3z tion) .. ....... .. [201]

This formula differs somewhat from, and is more simple to
use than Pearson’s (1909), but is identical in the principle
underlying its derivation. The coefficient as derived has been
called ‘“ bi-serial r,”’ and must be distinguished from ‘‘ bi-serial ,”
described in the next section.

In case the grouping of x’s is coarse, Sheppard’s correction
should be applied in determining ¢. In case the population is
small there is a chance correlation greater than or less than
zero dependent upon the point of dichotomy, so that a cor-
rection of the value just given is necessary. Soper (1914
bi-ser) gives the following correction formula in which .7 is the
corrected value, r the value given by formula [201), x the
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deviate given in Table K-W corresponding to area g, the pro-
portion g being the smaller of the two proportions p and q.

= rfr, g _(, _#¢* g\ , I
cr—r;1+N[4+2z, 1 z)(l+z)+2'2]§

(Bi-serial r corrected for small population)........ [202]

Note that for moderate dichotomies and populations greater
than 100 this correction may generally be considered negli-
gible. The square of the standard error of bi-serial r as given
by Soper is

- [2 (-2) (4]

(Square of standard error of bi-serial r)...........[203]

For dichotomies wherein g is not less than .05 a close approxi-
mation to the preceding formula is

Vg _ )

z (Standard error of

v N bi-serial 7). ..... [204]
Even for extreme dichotomies this last formula which gives a
slightly larger value for o, than formula [203] may well be
preferred, for the assumption of normality of distribution
underlying formula [203] is generally less safe in the case of
extreme than of moderate dichotomies, so that an increase in
the size of the standard error due to the extra hazard of the
assumption of normality is desired and this is given by formula
[204]. Certain of the functions involved in formulas [202]
and [203] have been tabled by Soper in the reference cited.
The evaluation of these formulas is also readily accomplished by
the aid of Table K-W.

oy =

Section 71. Bi-seriaL ETa

The title of the original contribution by Pearson (1gr1o,
new) describes the data to which this method applies: *“On
a new method of determining correlation where one variable is
given by alternative and the other by multiple categories.”
To quote further from Pearson (1917 bi-ser.): ““Let x be the
alternative, y the multiple variate, x, the distance from the
division between the alternative categories of the mean of the
array of x's corresponding to a given value of y, yo, its standard
deviation and #u, its frequency. Let x, ¢x and N be the cor-
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responding quantities for the marginal totals.” To utilize the
notation of Table K-W, let
X oxy = —, and K? = S(ny x%y)
Ox y%x
In the notation of Table K-W, «x, is the deviate corresponding
to gy, the proportion of cases lying above the point of dichotomy
of the y-category, and x without subscript is simply the deviate
corresponding to ¢, the proportion of cases constituting the
smaller of the two x-categories. The number of cases in a
y-category is #, and S is a summation covering all the cate-
gories in the multiple category variate. Thus
Mey = ‘%_—‘Ki:]' (Bi-serial €ta) .. ............... [205]
There is no correction to be made to this formula on account
of the x-variate, but correction formula [198 a] should be used
if x, the number of y-categories, is large and the population, N,
small; and correction [200 b] or [100 ¢] should be made if the
number of y-categories is small. If n is small, so that higher
powers are relatively unimportant with reference to n and #?,
the standard error of 7 is given by
S Sl (pq + 2 px? )% (The standard error of a bi-serial
(1 + x2)2 n which isequal too)........ [206]
The magmtudes ?, q, 2, x are constants of the alternative cate-
gory distribution having the usual meanings and are avail-
able from Table K-W when q i1s known. If 5 is greater than .5
the full formula for its standard error as given and fully de-
scribed by Pearson (1917 bi-ser.), is needed.

We may use data comparing southern and northern negroes
collected by the Division of Psychology of the Surgeon Gen-
eral's Office to illustrate the method. In general the army
Alpha test was given to literate individuals of greater than
feeble-minded intelligence, and army Beta or an individual
test was given to illiterate individuals or to literate persons of
very limited intelligence. Accordingly a division of individuals
upon the basis of whether they were tested by means of army
Alpha alone; or by means of army Alpha and Beta, or army
Beta, or army individual, will constitute a dichotomy closely
related to literacy. Table 4, pages 55960 of Yerkes (1921),
enables us to determine whether there is a correlation between

x =
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negro literacy and domicile as represented by State of the

union.

used in the calculation of bi-serial 5 follows:

TABLE XLVI

Negro Draft — Pro-rated by Statles

The table together with the supplementary columns

ExAMINATION TAKEN
- n =-Ta x nyx?
StaTE Alpha A};E?: y Na+ng y >y
Only Beta, or
Individual

Alabama 271 1,088 | 1,359 .1994 .8452 970.82
Arizona 3 4 7 .4286 .1789 .22
Arkansas 192 706 898 .2136 .7926 564.14
California 31 28 59 .5254 |—.0627 .23
Colorado 18 12 30 .6000 |—.2533 1.92
Connecticut 17 28 45 .3778 .3107 4.34
Delaware . 40 44 84 .4762 .0602 .30
Dist. of Col. 30 180 210 .1429 1.0669 239.04
Florida . 499 122 621 .8035+|~—.8560 455.03
Georgia 416 1,969 | 2,385 1744 .9385 2,100.67
Idaho 4 8 12 .3333 .4316 2.24
Illinois . 137 114 251 .5458 |—.1156 3.35
Indiana 74 SI 125§ .5920 |—.2327 6.77
Iowa 23 13 36 .6389 |—.3558 4.56
Kansas . 87 30 117 .7436 |—.6557 50.30
Kentucky 191 341 532 .3652 .3451 63.36
Louisiana * . 538 1,147 1,685 .3193 .4705 373.01
Maine . o o o

Maryland 146 379 525 .2781 .5888 182.01
Massachusetts 54 39 93 .5806 |—.2045 3-89
Michigan 17 25 42 .4048 .2404 2.43
Minnesota . 9 I 20 .4500 1257 .32
Mississippi 773 967 | 1,740 | .4443 .1408 34.49
Missour 196 182 378 .5185+|—.0476 .86
Montana 2 2 4 .5000 .0000 .00
Nebraska 13 13 26 .5000 .0000 .00
Nevada . o 3* 3*

New Hampshire o 1* *

New Jersey 105 72 177 .5932 |—.2353 9.80
New Mexico 3 I 4 .7500 |[—.6745 1.82
New York . 197 107 304 .6480 |—.3799 43.87
North Carolina | 211 1,168 1,379 .1530 1.0237 1,445.14
North Dakota . 2 1 3 6667 [—.4316 .56
Ohio . . .| 163 88 251 6493 |—.3826 36.74
Oklahoma . 98 211 309 .3172 .4761 70.04
Oregon . 3 3 6 .5000 .0000 .00
Pennsylvania 183 236 419 .4368 .1586 10.54
Rhode Island 9 9 18 .5000 .0000 .00
South Carolina | 334 1,303 1,637 .2040 8274 1,120.68
South Dakota . I 15 16 .0625 1.5382 37.86
Tennessee 504 433 937 -5379 | —-0954 8.53

* Omitted in totals.
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TABLE XLVI — Continued
Negro Draft — Pro-rated by States — Continued

EXAMINATION TAKEN
Na
St Alpha- ” = x nyx?
ATE Alpha Bgt:. v Na+ng i’ e
Only Beta, or
Individual
Texas . . . 786 1,048 1,834 .4286 .1789 58.70
Utah . . . 4 5 9 4545+ .1130 .11
Vermont . . o o o
Virginia . . 56 1,148 | 1,204 .0465+| 1.6747 3,376.76
Washington . 7 9 16 4375 .1560 .39
West Virginia .| 67 101 168 .3988 .2559 11.00
Wisconsin . . 2 [ 7 .2857 .5651 2.24
Wyoming . . 4 2 6 6667 |—.4316 I.12
6,520 13,468 | 19,988=N 11,300.20
q=.32620, x =.450431
z = .360457 K? = .565349
s — .362461 x? = .202888
" 1.565349 .362461
n = .481199
op = .006184

The bi-serial correlation ratio is less than .50 so that we may
obtain a satisfactory idea of its probable error by using formula
[206]. This gives a standard error of .00618 which is so small
with reference to 5 as to establish the fact that there 1s a moder-
ate correlation of about .48 between literacy of the negro and
domicile. The obtained value should theoretically be corrected
by applying formulas [198 a] and [200 ] or [200 ¢]. They
are entirely inconsequential in this problem, but will be used
to show the method. The number of categories in the y-variate
is 45 (number of states yielding frequencies) so that we have,
applying correction [198 a],

s _ (-481199)* — 44/19988
Mxy I — 43/19988
from which
ey = 479423

This correction (.4812-.4794 = .0018) is not large, but even
so it is probably somewhat too great as the 45 y-categories have
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such extremely varying frequencies that the hypotheses under-
lying the correction are not closely met. The states constitute
a geographical series and no assumption with reference to
numerical relationship between them seems warranted, nor
any assumption as to total distribution on a one dimensional
scale. However, some correction for coarseness of grouping
is appropriate. We will assume a rectangular distribution of
states of equal populations and will not attempt to justify the
assumption further than to say that the correction that it
leads to 1s probably conservative, i.e., too small rather than
too large, so that our procedure is an improvement over one
not involving a correction. The standard deviation of a
rectangular distribution of 45 ranks equals

V(= 1)/12 = V2024/12

so that since the unit of grouping is the state, correction
[200 (] 1s as follows: making ' = 1.0:

ey = -479423 (1 + ;(;—8 = .479541

The reader will understand that the number of figures to which
the work has here been carried and the corrections made are
for illustrative purposes only and that to meet practical
demands the raw result, 7,y = .481, would be adequate for
these particular data. We may now turn to a consideration
of the correlation between two series, the measures of each
of which lie in alternative categories.

Section 72. TETRACHORIC CORRELATION

In case we have a 2 X 2 fold table such, for example, as is
given by indicating the presence or absence of two traits we
may calculate r, the tetrachoric coefficient of correlation.
The assumption underlying the method is that both traits are
really continuous and normal in distribution and that the
dichotomies have forced the data for each trait into two
alternative categories. The procedure was developed by
Pearson (19oo cor.), and tables of ‘‘Tetrachoric Functions”
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have been calculated by Everitt (1910 — also given in Pearson'’s
Tables 1914 t). Pearson started with the 2 X 2 fold table,

TABLE XLVII

a b a+bd
c d c+d
a—+c b+d N

so arranged, as is obviously always possible, thata + b > ¢ 4+ d
and a + ¢ > b+ d. We will start with a table of the same
sort dealing with proportions instead of gross numbers. Let

a b c d
a-—ﬁ' ﬁ"”Nr T_Nr o

N
—otb _ctd , _atc ,_b+d
P = N y @ = N ’ P - N » q = N
Then our table becomes

TABLE XLVIII

a B P

¥ ) | q

p q 1.0

Let x and z be the usual quantities obtained from Table K-W,
knowing ¢ and let x’ and 2z’ be the values obtained knowing ¢'.
Then, letting r be an abridged notation for 7;; the tetrachoric
coefficient of correlation, or the correlation as found from a
four-fold table assuming a normal correlation surface, is given
by

6——2;?1' =r +n';—z! + (x* —1) (x'* — 1)5+(x’ — 3%) (x"—3x')%
+ A= 6w+ 3) - 6w+ 3)
+ (x* —10x* 4 15x) (x® — 102" + 15x’):5—.!
+ (x* —15x* +45x2 — 15) (x"* — 15%" + 452" — xs);—:+~--

(Equation giving r,, the tetrachoric coefficient of correlation)..[207]

To express the law governing successive coefficients of powers
of 7 let v,ws/n be the coefficient of 7", v, be a function of x, and
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wy a function of x’; then v, may be expressed in terms of v's
of a lower order:

On = XUn—; — (B — 1) vy—zand similarlywy = x'wn—y — (n — 1) wn—»
w=1v=x and similarly we = 1, w; = x’ [208]
Thus the equation as written to the »’ term may be continued
to any number of additional terms desired should it not con-
verge rapidly enough to make terms above the r’th negligible.
For small values of r some slight simplification of the work will
result from using Everitt’s tables (1910). For values of 7
equal to or greater in absolute value than .80, tables (Everitt,
1912 and Lee, 1917) giving the & for certain assigned r’s and
for various dichotomies are of great assistance, as they enable
a determination of r by interpolation without the extensive
labor involved in formula [207], or in Everitt’s form of the
same formula which utilizes his tables. The solution of equa-
tion [207] for » may follow the usual methods employed in the
solution of a parabolic equation of higher degree than the
second, but the method pursued in the following example is
more expeditious for usual values of r. The data are extracted
from the findings of the Division of Psychology of the Surgeon
General’s Office (Yerkes 1021, page 507).

TABLE XLIX
SCORE ON ARMY INTELLI-
GENCE ALPHA TEST
Aor B Below B
Departments other than
PIRST Medical . . . . 2940 431 3371
LIEUTENANTS

’ Medical Department . 1799 590 2389
4739 1021 5760

Same, expressed as proportions

5104 = a .0748 = B .5852 = p

3123 = v 1025 = a 4148 = ¢

’

q 1.0000

8227 = p’ 1773
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Entering Table K-W with ¢ we find
X = .215215

z = .389809
Entering with ¢’ we find
x’ = .925705
g’ = .259914

Substituting these values in equation [207] we have

.1025 — .0735440

= 2 3 —
1013168 r + .099613 r? 4+ .022741 r® + .05255 r* — .03195 r*

+ .0288 7% 4 --

Solving the quadratic given by neglecting the last four terms,
gives r = .2781. It is obvious by inspection of the signs of
the terms neglected that this value is slightly too large. Let
us therefore assume the value .2770, substitute it for r in the
last five terms of the equation and solve for 7 to the first power
for which we have not substituted. Doing so gives r=.2773998.
The assumed value for r was too small. Let us therefore repeat
the process, assuming r = .2774. This gives r = .2773741.
We thus have the following table:

' TABLE L

ASSUMING FOR TERMS INVOLVING POWERS

OTHER THAN THE PIRST THAT r = LeAps TO 7 =

.2770 2773998
2774 2773741

Interpolating between these two pairs of values so as to find
that value starting with which leads to itself as result, we
find r = .2773757. Expressed as an equation this value of
r is given by

r — .2770

2773998 — 1
2774 — 2770 2773998 — .2773741°

The work has been carried to seven figures merely to show the
method, not because such refinement in calculation is neces-
sary in order to obtain a three or four figure result.

It will be noted that for this low correlation an excellent ap-
proximation, r = .2781 to the final answer, is obtained by keep-
ing the first and second power terms only. We thus find the
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correlation between being a lieutenant in the medical corps,
as opposed to being one in some other corps, and low intelli-
gence test standing to be .2774. We desire to know the prob-
able error of this result. The full formula (Pearson 1900 cor.),
is laborious to use and Pearson (1913 coef.) has given an
equation which constitutes a close approximation to the full
formula. We may give certain preliminary formulas. The first
is Sheppard’s:

r = cos (2 x8) (Tetrachoric correlation in case both
dichotomic lines are the medians) . [209]

If the categories (a + b) and (a + ¢) correspond to positive
deviations in the traits, then the measures represented by the
a cell are (+ +) measures, those by d (- —), those by b
(+ =), and those by ¢ (— +) measures. Furthermore b
must equal ¢ so that 28 = 8 4+ v, ~ the proportion of unlike
sign pairs. We may call this proportion % and write the
preceding formula.

Y =COS (FU) i e {209 a]

This very simple formula will give good results if the dichot-
omies differ slightly from the medians, but it should hardly
be used if both p and p’ are greater than .55, or if one is equal
to .5 and the other greater than .6. The standard error of
tetrachoric r when the dichotomies are at the medians is

Vi —r? Va3 (The standard error of tetrachoric r when
= —— 27 Vap . . g .
v N dichotomic lines are at the medians). . .{210)

In case the true correlation is zero then no matter what the
position of the dichotomic lines

_ Vpgp'q’ (The standard error of tetrachoric r when the real
T VN valueof r =.00) ................ . ... (211]

Finally when the true value of r is not zero, and when dicho-
tomic lines are not at the medians, we have as a close approxi-

mation
o= AL - () J 0 -7

(The general formula for the standard error of tetrachoric r). .[212]




258 STATISTICAL METHOD

In tne reference cited are to be found tables of V' pq/z and of
the radical function of r, which will expedite the calculation
of the standard error. For the probable error of r we have

P.E.; = ;.6457 J (1 — r’)[l _ (S“;;'l)z]z \g%

(General formula for the probable error of tetrachoric r). .[213]

The term in braces is tabled herewith.

TABLE LI
Functions Involved in Calculating the Probable Error of Tetrachoric r
r FUNCTION OF 7 r FUNCTION OF r r FUNCTION OF r
.00 674 .60 .492 8o .327
.10 .670 .61 .486 .81 .316
.20 .655 .62 479 .82 .305
.25 645 .63 472 .83 .204
.30 631 .64 .465 .84 .283
.35 .615 .65 .458 .85 271
.40 -597 .66 .450 .86 .259
.42 .588 .67 443 .87 .246
.44 .580 .68 435 .88 .233
.46 .570 .69 .427 .89 .220
.48 .561 .70 419 .90 .206
.50 .551 .71 411 .91 .192
.51 -545 .72 .402 .92 177
.52 .540 .73 .393 .93 161
53 -535 74 -385 -94 -144
-54 -529 75 .376 95 127
.55 .523 .7 .366 .96 .108
.56 517 .77 357 .97 .088
.57 511 .78 347 .98 .066
.58 -505 79 -337 99 -039
.59 .499 1.00 .000

We may use the preceding formula to calculate the probable
error of the correlation between being a first lieutenant in the
medical corps and low Army Alpha standing.

P.E.,= — 6378 = ,0156.
V5760 X .9397 X .6661 X 1.4656 X .3158

The item .6378 comes from Table LI; 5760 is the population;
and the other items come from z/p and z/q columns of Table
K-W.
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Section 73. CORRELATION IN A Four-roLD POINT
SURFACE

In case the categories in a 2 X 2 fold table cannot reasonably
be thought of as indicating different quantitative values of the
variate, but of necessity as being indicative of qualitative
differences, we may consider the distribution to be a point
distribution, i.e., that the p frequencies are all concentrated at a
single point and not spread over an interval, and similarly for
g, ' and ¢'. It will make no difference what the numerical
value of the difference between the two points of the distn-
bution is, or in fact whether the value is, in the mathematical
sense, real or imaginary. So we will call the distance between
the p and q points j, and that between p’ and ¢’ points k, and
calculate a regular product-moment coefficient of correlation
using formula [¢3] and taking moments around the intersection
of the p and p’ category point values.

r=_,_ YE-G@@h ___ s-a
Vi = @) VR — (@R VpeVp'd

Algebraic transformation enables the writing of this formula

in the form

ad — By
¢ = rhk = —z=- _"__;
Vg p'q
{Product-moment correlation between two point distributions.
Pearson’s r,,; or ¢, Yule's theoretical valueof r) ....... [214]

Pearson and Heron have called this coefficient the Boas-
Yulean ¢. For a discussion of it see Boas (Science, May 1,
1909, page 824), Yule (1912 meth.), and Pearson and Heron
(1913). This formula may safely be used if the point nature
of the distribution can be established. It would seem to be
the appropriate formula in calculating the correlation between
unit traits; possibly that, for example, between sex and
albinism. The statistical criteria establishing the point nature
of the value of a variate are still to be devised. They would
constitute an important supplement to experimental and bio-
logical work. Pearson has shown (19oo, con.) that ry (in the
notation of this chapter and of Table K-W this is r,) is the
correlation between the means, if measured in terms of the
standard deviations of their distributions, of two variates of a
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2 X 2 fold normal correlation surface and that it is also (1904
theory), ¢, the square root of the mean square contingency
of a 2 X 2 fold table without any assumption of normality.

It is necessary to distinguish between 7a and rasas, of Sec-
tion 49. This latter was found to equal 7, [formula 118].
But since

Mx M_ﬂ

h=—"and k =~—
g1 o2

it will be seen that only when division of the means by the
standard deviations has no effect upon the correlation, would
e = r2. This is not the case for continuous variates, so
that ¢ or rx should not be taken as the correlation between
continuous variates even if they are recorded in a two-category
manner. The coefficient ¢ is a product-moment coefficient as
concerns h and k or discrete variables, but with reference to
continuous variables it belongs to group (2) which we will
now consider.

Section 74. MEASURES OF CORRELATION NOT EQUIVALENT TO
THE PropucT-MoMENT COEFFICIENT; YULE's COEFFI-
CIENTS OF ASSOCIATION AND OF COLLIGATION

Two coefficients developed by Yule may be considered in
connection with ¢. Using the same notation they are

ad — b , . . L.
Q= od - be (Yule’s coefficient of association).[215]
o= Viad — Vbc  (Yule's coefficient of colliga-
Vad + Ve tion) .. ... [216]

Yule (1912) points out that Q is not changed by multiplying
the frequencies in the various categories. Thus the Q’'s for
the two following tables, the second of which has been obtained
from the first by multiplying the frequencies in the (a + b)
category by ten and those in the (b + d) category by five, are
identical.

a b 10a s0b

c d c ‘ sd

Yule claims this as a peculiar advantage of the coefficient, but
for a coefficient to be stable under such violent treatment may
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be looked upon as a detriment, as Pearson and Heron (1913)
have shown. The coefficient of colligation has the value that
¢ takes when the 4-fold table is ‘‘equalized’” and when the
classes are given equal or their ‘‘natural” percentages to
employ the term used by Yule. Thus given the 4-fold

let us multiply the first row, second row, first column and
second column respectively by the fourth roots of the quanti-
ties

d o W

ab’ a’ ac’ bd’

This gives the ‘‘equalized’’ 4-fold
va | VE
vee | vad

in which plainly p = ¢ = p' = ¢’ = .5. The correlation ¢
may be calculated from this, noting that
so that
o= cd-b _Ved—Vi
vV (Vad + View Vad + Vi

Thus Yule’s coefficient of colligation constitutes a ¢ calculated
from the equalized table. Conditions which would warrant
its use as a measure equivalent to a product-moment coefficient
of correlation are seldom present. They are (a) point distribu-
tion in the traits and (&) warrant for equalization of the table.
Warrant for equalizing may occasionally be present; as for
example, if ten men and 100 women are measured and it is
desired to find the correlation when the population of men
and women are equal, but it is difficult to think of a reasonable
problem in which there would he warrant for equalizing in
the case of both traits. If w has peculiar value, not as a
product-moment coefficient, but as some other kind of a cor-
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relation coefficient, its physical meaning is still to be demon-
strated and meanwhile it would seem the part of wisdom to
limit its use to the narrow field in which conditions (a) and (b)
are met. A still narrower range of utility for the association
coefficient Q seems indicated. The great ease with which Q
and w can be calculated, as compared with r, and C, the con-
tingency coefficient, will tempt one to use them for situations
for which they are not applicable. Yule has derived the
standard error of ¢ (see Pearson and Heron, 1913). Itis

e Galemo (e )V VIV~ ¥

_fii’(g 13._2)(_9_' 11_2)}‘
ral VR g
(Standard error of ¢ from a 4-fold table)....... f217]

Although w is a special case of ¢, the multiplication of the fre-
quencies to obtain the equalized 4-fold table introduces another
factor so that we cannot in general take ¢, as being equal to og.

The contingency method developed by Pearson leads to two
constants. One is P, the probability of a situation as extreme,
as that found, arising as a matter of chance if the two variables
are in truth uncorrelated; hence if P is small it argues for a
correlation. The second is C, the coefficient of contingency,
which under certain conditions is equal to the coefficient of
correlation which would be obtained from the same data.
The coefficient of contingency belongs to the first group of
measures of relationship, but as it is derived in connection
with P we will consider it here.

Section 75. MEASURES OF RELATIONSHIP INTERPRETED IN
TERMS OF PROBABILITY

The product theorem in probabilities is that if p is the
probability of occurrence of a certain event and p’ of a second
unrelated event, then pp’ is the probability of the joint occur-
rence of the two events. Thus if 30 per cent of a given popula-
tion have blue eyes and if 50 per cent are males and if eye color
and sex are uncorrelated, then the likelihood, in making a
random selection of obtaining a blue-eyved male, is .15 ( = .30
X .50) or, in the long run, 15 per cent of the random selections
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will be blue-eyed males. If, then, a large drawing results in a
proportion sufficiently different from .15 to preclude the pos-
sibility of chance, the existence of correlation between eye
color and sex is established. We need to know P, as defined
in the last paragraph of Section 74, and we desire a measure
based upon P which is comparable in its general meaning to a
product-moment coefficient of correlation. Let us be given
the manifold table.

TABLE LII
Mia nh Nic n)
N2a nab N2c ns
nsa N3 b N3¢ 73 designated ns
Nia nad Nic ny
na nb ne N

designated ns

in which # is the number of cases in a category of the first
variable, n, in a category of the second, and n, the number
in the cell given by the intersection of the #; and n, categories.
There are as many #; frequencies as there are categories in the
first variable, as many #, frequencies as categories in the second
variable and as many #,e frequencies as the product of the
number of categories in the first variable times the number in
the second. If a chance situation maintains, the proportion
of the whole found in a cell will, by the product theorem, be
given by

Nss’ ns ns’ or n NsNs’
— =55 S8 S T i e i e e e e
N N N N

In general this situation will not maintain, so that the actual
number in a compartment minus the chance or theoretical
number, measures the divergence of the situation from chance.
This magnitude will be designated by dsy and will be called

the cell divergence
nsns'  (Cell divergence from chance

dss' = s’ — N situation) . .............. [219]

The cell divergence is the divergence of a cell frequency from
a chance frequency when it is desired to compare the obtained
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situation with the uncorrelated or chance situation; but if it
is desired to test out some theoretical cell frequencies (my),
then the cell divergence becomes the divergence of an actual
cell frequency from the theoretical frequency, or (n;y — myy).
Therefore we have for the general case

dss’ = nss — mss  (The cell divergence) .. ....... {220]

The square of the cell divergence divided by the theoretical
frequency (which is usually the chance frequency) will be
called the cell square contingency, while the sum of all such
cell square contingencies has been termed by Pearson (19oo,
crit.) the square contingency, and given the symbol x2 Thus
x*=S (dzi) _— (M) (The square con-

Mss’ mss’ tingency)..... [221]
Obviously

Sdss =
A measure of total contingency can be built upon the absolute
values of the cell divergencies, | ds» | (Pearson, 1904), but the
measure of square contingency has superior advantages.

The square contingency cannot be directly interpreted
because two factors are involved in it, the number of cells and
the strength of the contingency. To eliminate the number of
cells from consideration, Pearson has given the two equations

p=‘/§ ® ‘/z—-,(; X,
rj; e—¥xdx + _re ix l+1'3+1'3'5

+o -x-"-,_(n’ _3)) if n’ be even..[222]
Y P I I SR )
P =e-ix (:+2+2_4+2'4_6+ Ty

ifn beodd............ [222 a]

in which #’ is the number of cells and P the probability that
random sampling would lead to as large or larger divergence
between theory and observation. Elderton (1902 tables, and
also, Pearson’s Tables) has tabled P for various numbers of
cells and values of x%. It is thus a simple matter to determine
the probability of a situation as extreme as the one observed
(note that this is not equivalent to saying * the probability of
the observed situation ') arising as a matter of chance. There
is no assumption of normality in the determination of x%, but



METHODS OF MEASURING RELATIONSHIP 265

in deriving the equation giving P from x? it is assumed that
the frequencies in a cell resulting from successive samplings
form a normal system of variates. This is entirely different
from the assumption that the categories are classes in reality
constituting a normal distribution. It is because of avoiding
any such assumption that the contingency method has its
chief value. The assumption that, within a single cell, the
results of successive samplings will constitute a normal distri-
bution of frequencies, may regularly be expected to hold,
provided p, the probability of a measure being in a cell, is not
so small but that (p + ¢)* can be approximately represented
by a normal distribution. As a practical matter (p N) the
theoretical number of cases in the cell should not be less than
1.00. If the categories are such that the theoretical frequency
in any cell is less than 1.00, two or more categories should be
combined so as to give cells with theoretical frequencies
greater than 1.00. As a very minimum, not to be approached
if avoidable, the smallest theoretical frequencies should not
be less than .7.

Section 76. EQUI-PROBABLE 7

In case p is very small, its meaning is difficult to interpret.
Pearson (1912 novel) has pointed out that the improbability
of the obtained 4-fold arising as a matter of chance is equal to
the improbability of a tetrachoric coefficient of correlation of
a certain magnitude based upon the same number of cases,
and Pearson and Bell have provided tables (see Pearson’s
tables) whereby a P calculated from a 4-fold table may be
used to determine an equally improbable tetrachoric coeffi-
cient of correlation. Pearson does not recommend this method
of interpreting P in case of extreme dichotomies, or in any case
as being preferable to tetrachoric r.

Section 77. MEAN SQUARE CONTINGENCY AND COEFFICIENT
oF CONTINGENCY

We have obtained a measure of probability, P, from the
square contingency x®. We may also interpret the results by
means of a coefficient of contingency. The most valuable
form is that derived by Pearson which he has called C; and
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which we will here call C. We will first need the mean square
contingency. Designating it by ¢? we have

2
¢t = XF (Mean square contingency) .[223]

The magnitude ¢ as thus defined is identical in the case of a
4-fold table with ¢ of formula [214]. As here defined it is
obtained from a manifold of any number of cells. As has been
pointed out in the case of a 4-fold table, ¢ is not a coefficient
of correlation of a graduated or continuous variate, nor is
the function

C= ¢ _ ‘) x? (Coefficient of

I+ ¢? N + x3 contingency) . [224]
but the latter is comparable with it. In fact, if for each vari-
able the categories are successive values of a gréduated variate,
and if the population is large and the number of categories
great so that there is not a grouping error, and if the correla-
tion surface is normal, then C is identical with the product-
- moment coefficient of correlation.

As a measure of relationship between continuous variates
there are two corrections which should be applied to C, one due
to number of cells and the other a correction for class index.
(Pearson and Heron 1913, page 217.)

If xk = number of rows and A = the number of columns and
if the frequencies in the categories do not differ one from
another in an extreme manner, the corrected mean square
contingency, ,¢?, is given by

s _ X2 = (k—1) (A —1) (Value of ¢? corrected
@’ = N for number of cells). [225]

In case broad categories are used there are wide differences in
the measures within a category and these may be differently
grouped for the successive cells of a single category, so that
there is a correction for class index needed (Pearson 1913,
meas., page 130). This correction does not apply to ¢ which
is, in the case of a 4-fold, the correlation between points and
may be thought of as a similar sort of a function in the case
of a manifold of a greater number of cells; but it does apply
to C, the coefficient of contingency, which aims to measure the
relationship between continuous or graduated variates. Thus
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we will consider the uncorrected C as the correlation between
class means and correct by formula [103]) where 7,, and ., have
the meanings defined by formula [102]. The student must
not confuse x of formulas [192], [103], [226] and [226 a] with
the mean square contingency, x* of formula [224]. They are
entirely unrelated. Applying the correction, we have

C (Coefficient of contingency cor-
rxx’yy rected for class means).....[226]

mC =

We must now obtain values for the correlation between the
variates and the class means, r,, and r,,. The preceding
formula may be written in a form similar to formula [103].

mC = C [226 b}

rrxay

Note that the assumption of normality implies that the cor-
rective factor 1,/(ox0y) 1s as great for the problem in hand as it
would be were the distribution of the two traits normal. In
other words we assume normality only in the problem of
determining the corrective factor and not in the determining
of C. Wide divergencies from normality would probably
amount to very little so far as the corrective factor is con-
cerned, and as it is necessary to make some assumption in
order to determine this factor we can do no better than assume
normality of distribution. Doing this we find o, and oy as was
done in Section 47. Should we not wish to make the assump-
tion of normality we may assume a rectangular distribution
and find the correlation between class means and varniates. A
rectangular distribution of x units length has a standard devia-
tion of Vx%/12 and the standard deviation of the means of a
rectangular distribution x units in length divided into x equal
intervals is Vk(x — 1)/12. Thus the corrective factor is

determined from
=Tx _ ‘/ X
Txx g, xk— I

(Correlation between class means and variates assuming
a rectangular distribution of x equal sub-ranges) ... ..[227]

If x is the number of categories in the first variable and X\ the
number in the second, the total corrective factor is

xN
v —(K_——l‘)_(_)\—:—l_)‘ .................. [228]




268 STATISTICAL METHOD

This correction is larger than the one based upon the assump-
tion of normality and probably is in general less sound. The
following table is given to show the magnitude of the corrective
factors upon various assumptions and to provide 7, when
certain assumptions are reasonable without entailing the

detailed calculation.
TABLE LIII

Value of ryx, the Correlation between the Class Means and Variates for
Different Groupings

EQuUAL RANGEs. EQUAL SUB- | poyaL RaNGES. | EQUAL RANGES.
Mg | NomarDe | REGPER: | Srene | A B
TRIBUTION
2 .798 .798 .707 .589
3 872 891 .816 .842
4 923 928 .866 9I§
5 ‘949 ‘947 -894 -946
6 -964 959 913 963
8 -979 972 -935 979
10 -986 -979 -949 -987
15 993 .988 -966 994
20 996 -992 975 997

The values in the last column have been derived upon the
assumption that a parabola would well represent the frequency
surface of any three neighboring classes. In the calculation
of the first and last columns of this table it has been assumed
that the total range was equal to 5.6 standard deviations which
would approximately be the case in a normal distribution if
the total population is 100 (see prob. 1, Chapter V). Pearson
(1913 inf.) gives a table containing in part similar information
upon the assumption that the total range equals 6.0 standard
deviations which is approximately the case if the total popula-
tion is 185. The corrective factors given in the 1st, 2d, and
4th columns are nearly equal to each other if the number of
classes is greater than three, so it makes little difference which
of these three hypotheses is assumed in determining this cor-
rective factor. The assumption of a rectangular distribution
leads to quite different results throughout the entire length
of the table.

We have considered two corrections, one the correction of ¢
for number of cells and the second a correction of C for use of
class means instead of variates in the classes. One further
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important item is the probable error of the contingency coeffi-
cient. Much study of this point has been made (Blakeman
and Pearson 1906 and Pearson 1915, prob.) and certain of the
methods obtained are involved. The method here given, de-
rived by Pearson (1915 prob.), is fairly simple, involving the
calculation of but a single additional constant y3. Let the
cell ¥* function be defined by the equation
(mss)?
and let ¢? be the sum of such functions for the entire table
divided by the population, thus
¢ = Ig ( (dss’)*\ (¥? function required in finding the
N™ \(mss')? probable error of ¢ and of C)...[230]
Having ¢? and ¢?® we may obtain the standard error of ¢ from
the formula
gy = I v +1 - 4:’)‘ (Standard error of ¢) ..... [231]
VN \¢*
Further, having C we obtain

¥? 41— g } (Standard error of the co-
_ 1 (¢ ¢ ) efficient of mean square
VvVN\ 1+ ¢

contingency)........... [232]
We may illustrate the calculation of ¢, C, o, and the corrections
to ¢ and C by the following data taken from the army psycho-
logical findings (Yerkes, 1921, page 825).

Cell ¢ 2 function =

Oc

TABLE LIV
BAKER Mg;'\llz‘ll)AN BARBER K%‘é?,:; BuUTCHER
294. 289. 275. 450. 370. 1678
323.5 262.9 321.8 390.9 378.9
Tested by |— 29.5 26.1 — 46.8 59.1 — 8.9
Army 2.690 2.591 6.821 8.935 .209
Alpha — .245 .257 — .992 1.351 — .005
8s. 19. 102. 8. 74. 288
55.5 45.1 55.2 67.1 65.1
Tested by 29.5 — 26.1 46.8 — 59.1 8.9
Army 15 680 15.104 39.678 52.054 1.217
Beta 8.334 | — 8.741 33.640 | — 45.848 .167
379 308 377 458 444 1966
x* = 144.979 Ny® = — 12.082
ot = 07374 ¥ = — .006145
c = .2621 gc = 01861
P.E. = 0126
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The 5 entries in each cell are, in order, as follows:
Nss’ The frequency found in the cell
msy  The theoretical cell frequency
dss’ The cell divergence

)2
@ss)®  Tpe cell square contingency
mss’
(dss’)? X d"_" The cell 3 function
mss’ Mmss’

It should be noted that the ¢? used in the calculation of ¢. is
not the corrected value. We may, however, with insignificant
error consider o, to be either the standard error of the raw or
the corrected coefficient of contingency. The mean square
contingency corrected for too fine grouping, ¢? is, by formula

(225}, k=1 —1)
. — _
‘¢2 = ¢1 p— __—YV-__

X1
= .07374 — ‘119—“7 = .o7171

The corrected coefficient of contingency deperds upon the
correlation between class means and variates. Let r,. stand
for this correlation in the case of the test series and let r,, be
this correlation for the vocation series. It is very difficult to
make an assumption as to the distribution of the variates
within the vocational categories. However, assuming ‘‘equal
ranges any type of frequency’” we find from Table LIII that
7.y = .946, for a five category series. The assumption of a
normal distribution for the other variable is reasonable though
we cannot expect the most reasonable of assumptions to give
a very reliable corrective factor from a two category distribu-
tion. Wehave

TABLE LV
NUMBER Per CENT g MEAN :F CLAsS
Test by Army Alpha 1678 85.36 .257
.2294
Test by Army Beta 288 \ 14.64 — 1.567

ox = V8536 (.257)* + .1464 (— 1.567)% = .6449 —
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and since o,, = 1.00 We have

.6
rxx = 1_14_5 = .645
Thus finally
#?
1+ ¢°
mC = < 2587 = .4240

rextyy 6449 X .946

P.E. of »C = approximately .0204 as determined from the
proportion
.2621 _ _ -4240
0126 P.E.of mC

This completes the solution, and for the problem in hand we
may conclude that there is a small correlation of .424 between
trades considered and literacy and that this is established
with a very satisfactory degree of certainty.

The reader should note that the corrected value of ¢ differs
materially from the raw value.

Section 78. VARIATE DIFFERENCE METHOD

The variate difference method was first used by Miss F. E.
Cave, in 1904, in a study of the correlation of barometric
heights, published in the proceedings of the Royal Society of
London, v. 74, pp. 407. The object of this study was to get
rid of seasonal change by correlating first differences of readings
as obtained at two stations. Later, Hooker (1905, Jour. of
the Roy. Soc., v. 68), Student (1914), Anderson (1914),
Beatrice M. Cave and Pearson (1914) and Ritchie-Scott (1915)
have further developed the theory and illustrated its use,
and Persons (1916), (1917) has noted certain of its shortcomings.
There is still much to be done in establishing its degree of
applicability to short series such as are usually available in
material influenced by spurious time and space factors.

If barometric heights constitute the data and a large number
of measures are available, there is little doubt but that the
method will give the correlation between the readings at two
stations independent of spurious space or time factors; but
if two series of yearly price indexes, extending over » years,
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where # is small, are correlated by the variate difference
method; (a) the probable error of the correlation obtained is
not definitely known, (b) the number of differences which it
is desirable to use is uncertain, and (c) the relation between
the applicability of the method and the size of # is not estab-
lished. Cave and Pearson (1914) consider good results to be
obtained by going to fifth or sixth order differences when
dealing with eleven commercial indexes, each extending over
28 years, but this point is not indubitably established. The
problem shortly to be presented to illustrate the method is
equally extensive in time, but the real relationship between
the variables, independent of time, can hardly be said to be
apparent. The treatment of the following sections will be in
the order, (a) notation, and tests of applicability, [1] by com-
parison of standard deviations of successive difference series
and [2] by the stability of the successively obtained correla-
tions; and (b) illustration by a problem.

(a) Given two series, x1, %2, - *%» and 31, %2, -¥» between
which there is an organic correlation, R, and a spurious cor-
relation due to a time or location factor such that the two
phenomena together result in an apparent, i.e., an obtained
correlation, of r. The problem is to determine R. Student
(1914) has shown that if

Xy = X1 + btx + Ctzl + dt'l + etc.
X2 =Xg+b!:+ct=g+dt’:+etc. .[233]
etc.
and if
»

o

Y] + Bl] + Ct’l + Dt'n + etc.l
Yz + Blz + Clzg + Dl'z + etc.
etc.

in which X,, X,, etc., Y1. Vs, etc., are independent of time or .
location, then, if the parabolic equations in ¢ terminate with
some power ¢*, the correlation rxy is given by the corrclation
between A, and 8, the two series of n-th order differences,
A, standing for the measures (x; — x3), (%2 — x3)...
(xn—1 — xn); A for the measures [(x; — x3) — (%2 — x3)],
[(r2 —x3) — (xs — x)], .. [(¥n—2 — %u1) = (Fnoy — xs)]; and
similarly A; for third order differences; A, for fourth order
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differences; etc.; the §'s having comparable meanings in the
case of the y-series. Cave and Pearson have noted that in
this equation the ratio

and that, therefore, starting with a series in which measures
are not independent but influenced by a time factor which
can be expressed, as suggested, by a terminating parabolic
series, taking successive differences and calculating the standard
deviations of the difference series, one should obtain, as soon
as sufficient differences have been taken to eliminate the
spurious time factor, standard deviations bearing the ratio
indicated. This accordingly constitutes a test in a single
series of the number of differences which are required to eli-
minate a time or space factor. Cave and Pearson applied this
test to the eleven series with which they worked, but did not
succeed in establishing the number of differences necessary to
eliminate the time factor. They attribute their failure to the
small period studied. However, 28 years is, as economic
data run, a fairly long period. Some method, — partial cor-
relation, variate difference, or what not, — to eliminate an
annoying time factor, for data covering such or a shorter
period, is greatly needed.

The approach of the ratio of successive standard deviations
of the difference series of the single variable to 4 — 2/(m <+ 1)
is the first test of the possibility of eliminating a time or space
factor by dealing with differences.

The second test lies in the stability of successive correlations
between differences, of equal order, of the two series. Thus,
if 7ey # rasm # 7as, but, very approximately, ras = 7as
= 7,4, it would be concluded that the time or space factor
had been eliminated by the resort to second differences and that
the correlation then found, rss was in truth rxy, the desired
correlation between the two traits independent of the spurious
element.

The data in Table LVI, p. 274, kindly supplied by Mr.
Willis H. Rich, have all the characteristics expected in series to
be treated by this method. That the conclusions will be found
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to be somewhat doubtful points the weakness of the method in
its present state of development.

TABLE LVI
Chinook Salmon — Columbia River

) Hartcugry OuTt-
DATE oF PAck P"g’: '(?A;ggo S | pur I‘I;F ng:.‘:.loss F&"g;:::g‘gfn

189 . . . . . . 265
1890 . . . . . . 335
189r . . . . . . 353
1892 . . . . . . 344
1893 . . . . . . 288 2.77 1890
1894 . . . . . . 351 4.90 1891
1895 . . . . . . 444 1.33 1892
186 . . . . . . 370 4.10 1893
1897 . . . . . . 442 .21 1894
1898 . . . . . . 346 .00 1895
1899 . . . . . . 286 3.39 1896
Igoo . . . . . . 294 6.59 1897
1Igo1 . . . . . . 334 (1) 21.94 1898
1902 . . . . . . 375 12.87 1899
1903 . . . . . . 469 11.00 1900
1904 . . . . . . 547 10.04 1901
1905 . . . . . . 572 24.10 1902
Igo6 . . . . . . §5II 20.44 1903
I907 . . . . . . 410 23.56 1904
1908 . . . . . . 334 9.15 1905
1900 . . . . . . 300 17.13 1906
f9g1o . . . . . . 442 9.10 1907
1911 . . . . . . 609 16.44 1908
912 . . . . . . 365 15.43 1909
1913 . . . . . . 335 12.54 1910
1914 . . . . . . 419 13.97 (2) 1911
1915 . . . . . . 508 15.41 1912
I9t6 . . . . . . 511 26.10 1913
917 . . . . . . 450 41.58 1914
918 . . . . . . 445 44.45 1915
1919 . . . . . . 475 53.24 1916
1920 . . . . . . 477 25.03 1917

56.80 1918

22.57 1919

25.00 (3) 1920

(1) 3341s an estimate based upon the total pack for the year.
(2) 13.97 is an estimate based on the total hatchery output.
(3) 25.00 is a sheer estimate.
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The problem is to ascertain if there is positive correlation
between the number of fry liberated from the hatcheries and
the run of salmon later, particularly three years later, when the
fry are grown and return to spawn. It is known that the
salmon returns to the same river in which liberated and that
roughly 8 per cent (these 8 per cent are small fish and would
be equivalent to some 5 per cent in weight of pack) return to
spawn one year after liberation, 20 per cent (or 15 per cent of
the pack) return in two years, 50 per cent (or 50 per cent of
the pack) return in three years, 20 per cent (or 25 per cent of
the pack) return in four years, and 2 per cent (or 5 per cent of
the pack) return in five years. Accordingly if there is positive
correlation between number of fry liberated and size of pack
independent of time, it should be greatest when correlating
size of pack with number of fry liberated three years earlier.

The means and squared standard deviations are given in the
first two columns of accompanying Table LVII.

TABLE LVII
RaTtios
Meaxs S;?g:;\glgﬁ:‘»::- w41 2 RﬁrA]‘?xsog ¥
02, 4= m + I
Z: 1167;:(1)2 %3;:3 971 2.000 .486
A —2.35 14,552.54 e 3.000 -643
4y  2.35 38,704.94 o 3-3g(3) .gg
Ay 5.58 119,100.91 3'227 3-200 . (7)%
4y 24.00 389,056.35 3 27 3'66 .90
As 56.18 1,294,512.40 3-327 3.667 .907

The last column of the table shows the approach of the ratios
of the standard deviations squared to a random situation, i.e.,
a situation from which the time or space factor has been elimi-
nated. There is seen to be some approach to the value
4 — 2/(m + 1), but the approach is not sufficiently close to
say that this test supports the contention that a resort to
fourth, fifth, or sixth differences frees the data of the spurious
factor.

More promising results are obtained from the ‘‘hatchery
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output” data. Keeping the data to the nearest .1 and shifting
the decimal point one place to the right it yields

TABLE LVIII

RaTIOS
STANDARD DEVIA- RaTIO OF
TIONS SQUARED o, +1 2 Rar10s
: 4 —
ot m + 1
Yy 159.50 17,131.96
& — 8.22 8,231.07 2"}20 2‘% 240
2 — 11.65 17,507.46 2 OZ, 3 .gog
b 1252 50,770.33 o 3333 1007
& — 2296 178,983.22 3'565 3'200 .oog
& 1587 674,219.57 377 3 o0 104
3 —66.64 | 2,509,756 51 365 3667 1.052

We may conclude that so far as this test permits us to form a
judgment we will succeed in eliminating the spurious factor by
resorting to fourth or higher differences.

Calculation of the product-moment coefficients of correlation
between similar difference series gives the values recorded in
the following table:

TABLE LIX

rxy = .3802 + .1275
rad = .0003 + .1580
TA%: = .0145 t+ .1826
rass; = — .0258 + .2023
rAd = — .0247 t .2196
rass = — .0005 t .2354
TAsds = .0525 1 .2503

The probable errors have been calculated by the following
tormulas, which are due to Anderson (1914): Let rxy be, as be-
fore, the correlation between the two variables independent of
the time or location factor; let oo be th2 standard error of 7.y;
o the standard error of 7a.s; o2 the standard error of rag, etc.
Then,

I —rivy (Standard errors of variate difference
Two = VN correlation coefficients) ......... [236]
=I_72X}'J3N—4
on N —1 2

_ L=y J3s N =88
o N -2 I8
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I —riyy J231 N — 843
on N-3 100

I_’2XYJ;rEWN—6m
TN 490

1 —rlyy 46189 N — 270635

g5 = N — s ‘ 15876
_ I —rixy 676039 N — 4696566
o= "N—¢ Y 213444
1 —r r .
e (R IR
k(k—1) 2
vew—k-2[ et

kk—1)(k —2) 2 %
+"‘N""'3)[(k+x)’<k+z)(k+3)] +)

The N throughout the formulas is the original population and
not the reduced number of differences. The final correlation,
rxy, which maintains after elimination of the spurious factor,
enters into all of these formulas. This correlation is of
course not known, but if successive difference correlations
remain approximately equal one may take this constant
value as the value of rxy and determine approximate prob-
able errors. For the problem in hand we see that the first,
second, third, fourth, fifth and sixth difference correlations are
closely equal to zero. Accordingly, taking zero as the value of
rxy and using formula [236] we obtain the probable errors
listed. Note that the standard error of r,, is given as
(1 — xy)/VN and not the usual value (1 — 7%,)/VN.
That is to sav, 7.y, could it be assumed to be a measure of ryy,
has the standard error (1 — r2xy)/V'N, bhut as a measure not
distinct from the space or time factor it has the usual standard
error. Inour present problem, since r,/r5s does not approxi-
mately = 1.00 we should not assume it to be a measure of ryy.

The conclusion which this treatment suggests is that there
is no relation between planting of fry and run of salmon three
years later, but this is in no sense established. due to the large
probable errors. It is of course unfortunate that, with the
very type of datil for which large populations cannot be secured,
the probahs errors should be larger than for straight correla-
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tions. This is a weakness of the method in the field for which
it would otherwise be most serviceable.

It would be valuable to compare at length results obtained
by the variate difference method with those from a partial
correlation or partial correlation ratio method. The data in
hand do not warrant too detailed an analysis, but it may be
stated that, assuming either a rectilinear or a single flexion
curvilinear regression line between time and each of the other
two variables, the partial correlation between number of fry
liberated and run three years later is positive and slightly
greater than its probable error. Thus, for these data, the
two methods do not point in the same direction.

Calculating variate difference correlation coefficients between
number of fry liberated and run two, and again four, years
later yield equally inconclusive results with those reported.



CHAPTER XI
MULTIPLE CORRELATION

Section 79. THE PROBLEM

The fundamental problem of multiple correlation is the
estimation, with minimal error, of one variable knowing several
others. Thus if X, is the dependent variable, or the one to
be estirllated, and X;, X.---, X, the independent variables,
and if X, is the value of the dependent variable as estimated
from the known X, X,,--- X variables, we may write

Xo = f (X1, Xz, -+ Xn)
and we will say that that function which makes

z (Xo — Xo)?

~ = a minimum ...............[237]

is the best function. Since (X, — X,) is an error of estimate,
this is identical with imposing the condition that the sum of
the squares of the errors of estimate shall be a minimum.
Just as we have found that there are many methods of measur-
ing correlation, so there are many ways of measuring multiple
correlation. The five following are important, but not inclu-
sive of all possible methods.

(@) When f(X, X' - -X4) is a linear function of the variables
we have the usual multiple correlation problem, and the
method to be used is both the simplest and the most readily
interpreted.

(b) When f is a known, but non-rectilinear function of the
X’s, appropriate transformations as suggested in Section 52
will ordinarily enable the treatment of this problem by methods
applicable to (a).

The complete problem of simple or multiple correlation
involves, as has been stated, (1) a measure of the strength of

279
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relationship between a dependent variable and one or more
independent variables, and also (2) an algebraic means of
estimating the dependent variable knowing the independent
variable, or variables. Whereas methods (a) and (b) preceding
give solutions of both (1) and (2), methods (¢), (d) and (e) fol-
lowing provide a solution of (1) only.

(¢) A multiple and partial correlation ratio method enabling
an estimation of the magnitudes of the multiple and partial
correlations between graduated variables which are not related
to each other by means of rectilinear regression lines. Also, a

(d) Multiple and partial contingency method accomplishing
the same result as multiple and partial correlation ratios, and
particularly applicable to data recorded in a categorical manner.
This method also leads to interpretation in terms of probability.

(e) The variate difference correlation method. This method
is of service when a time or space factor not showing rectilinear
relation with the other two variables involved hides or clouds
the partial relationships between the two variables. This
method has been presented in the preceding section and is very
different from (a), (b) and (d). The treatment of the next
five sections is confined to method (@) and covers the 3 or 4
variable problem in Sections 8o, 81, 82, the 4, 5, or 6-variable
problem in Section 83, and the many variable problem in
Section 84.

Section 80. THEORETICAL TREATMENT — 3 VARIABLES

A simple three variable problem, so chosen that the interpre-
Lation is not complicated by unequal variabilities of the three
cries, will show the concrete and tangible significance of the

'rtial and multiple correlation coefficients.

We shall use the following notation.

X = a gross score.
x = X — M = a score as a deviation from the mean.
o = g = ox = the standard deviation of either the x’s

or the X's
= ’;C = X ; M = a standard measure

R Tx?
0% = -5 = 1.0
g
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Symbols with subscript zero as X,, xo, 00, -0, designate the
criterion or dependent variable. Symbols with subscript 1
designate the first independent variable, with subscript 2 the
second independent variable. The following symbols with
superior bars Xo, xo, Zo, designate gross criterion scores esti-
mated from a knowledge of the independent variables, devia-
tion scores estimated from such a knowledge, and standard
scores estimated from such a knowledge, respectively. The
statistical problem is to determine the two constants Bo;..
and By.; (the significance of the subscripts is explained later)
in the equation

Zo = Po1.121 + Bo212s (Fundamental regression equation connecting
standard measures — 3 variables)......... {238]

so that the standard error of estimate kg.12 is a minimum.

(zo — Z¢) (Error of estimate or residual of
a standard criterion measure) [239]

is the difference between the actual standard criterion score and
the criterion standard score estimated from the independent
variables. It is thus an error of estimate and the standard
error of estimate is

Bos = ‘/E (20 ;T.j’ (Standard error of estimate of the
012 N standard criterion measures) . . [240]

If z, and 2z are worthless in shedding light upon the value of 2z
then Bo.2 and Be.1, the weights appropriate to the 2’s, will be
zero, and zo will equal zero for every individual. In this case
ko.12 = 0; = 1.0.

This is the maximum value that k can ever take and means
that the error of estimate has not been reduced at all by the
use of z; and z; over what it would be were sheer random guesses
resorted to. If zo can be perfectly estimated from z; and 2
then every (20 — zo) equals zero and k... = .0o. This is the
minimum value that k& can take and corresponds to perfect
estimation, or zero errors of estirate throughout. In the
symbol k.2 the subscript before the point designates the
variable estimated and the subscripts after the point designate
the variables from which the estimate has been made. The
problem has been stated to determine the 8’s so that k shall be
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a minimum. The constant k.12 i1s the standard deviation of
the errors of estimate when scores are expressed in terms of
standard measures. Its meaning is thus easily grasped and
obviously very important for the magnitude of the error in-
volved in estimating one variable knowing all the others is the
first item of information needed in interpreting the significance
of the relation between variables. It will later be shown that
ko.12 varies directly as o¢.12, the standard error of estimate of
the x,’s, or the X,'s, so that establishing the minimal error
condition with reference to the standard measures also estab-
lishes it with reference to the gross scores.

The following derivation of the values of the #’s is brief and
simple, but involves an understanding of calculus. For those
unfamiliar with calculus a numerical illustration showing the
concrete significance of the constants involved is given in the
next section.

It is required to so choose Bo.2 and Pee. that the standard
error of estimate shall be a minimum; that is,

’ Z (20 — 20)® = Z (20 — Bor.221 — Po1.122)?
is to be a minimum. Differentiating first with respect to

Bor.2, and second with respect to Se.1, gives the two following
equations

Z 2 (20 — Bor.221 — Po2a3s) (— 1) = 0

Z 2 (20 — Porsz1 — Boraza) (— 23) = 0
Dividing by — 2 N, summing the several parts, and remember-
ing that

z Z’l z 212
N =N — o
that
2 202 _
N ™
that
Z 2023 _
N Tos
and that
Z 2122 =
N 12
we obtain
701 ~ Bor.2 — 128021 = O

Yos — 7198012 — Bozy = O (Normal equations). . .[241]
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Solving simultaneously

Bors = To1 — To2l1s
or I —r%i2  (Regression coefficients between standard
ros — roir1a  Measures — 3 variables)............ [242]
Bor1 = T,

This completes the solution of the 3-variable regression equa-
tion involving standard measures. We will make the usual

transformations,
_X-M

g

z

and express the result in terms of gross scores, giving

Xo — M, = Bo12 (—Xl :1 Ml) + Bosa (X’ — M’)

oo (4]

which, upon simplification, becomes,
Xo = Bor 1" X1 + Bor1 = X3 + (Mo — Bor1 2 My — Boas = Mg) . [243]
gy o3 g1 ags
Defining bo1.2, bez.1, and ¢ by the following equations
bor2 = ﬁm-z:—;’, boz1 = ﬁo“?” ............... (244]

c=Mo—bora My —boaMy .............. [245]
equation [243] may be written
Xo = bor2 X1 + boz1 X2 + ¢ (Regression equation involving
gross scores — 3 variables).[246]
Very simple algebraic derivation will show that in the case

of n independent variables we have

(4]
bo].n...n = Bo].u...n—
(4}

ao

bo’.“...n = Bog.u...na—’ .................. [247]

in which Bo1.23. . . #, Bos-13- - - =, €tc., are defined by formula [264 b]
c = MO - bol-ﬂ o n Ml - boz.la-~~nM: -

—bomrg...ona Mn ... [248]
Xo=bon..n X1+ bors. .n Xa+ «--
bon.“,..n_l Xn e [249]

Equation [246] is ordinarily the most convenient form to use.
The constants bei.2, bee.1 and ¢ have numerical values which do
not change for the entire population, and it only remains to
substitute the gross scores, X; and X,, to secure an estimate
of the dependent gross score X,.
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We have determined the value of 8.2 in terms of total cor-
relation coefficients rq;, 702, and 7y, and its use in the regression
equation, but have still to discover the property which has led
to the subscript notation. Let us find the regression of that
part of z, which is independent of z, upon that part of 2, which
is independent of z. Since the regression equation connecting
%0 with z; is B

20 = fos22
That part of 2o which cannot be estimated from a knowledge
of z, or that part which is independent of 2,, is (20 — 7m22).
This magnitude we will designate by z,.;, which may be read
““the residual in z, after estimation of z, by aid of z" or “that
part of z, which is independent of z;.”
20.2 = (20 — roaz2) (An error of estimate, i.e.,

aresidual) .......... {239 a]

Obviously the N residuals, zo.; cannot be estimated at all by
means of z, since 2 has already been used for all that it avails.
This is merely equivalent to saving that the regression of 2.
upon 2z, is equal to zero. The proof is simple:

Z 20.222
Tz

Zcpas2 = Z (S0 — r03%1) 22 = T 2¢23 — ro2 Z 2% = Nrogs — Nroa =0

bo.g,x =

accordingly bo.., » = 0. We may, however, estimate these resid-
uals by means of variable 1 which is a new source of data. Since
0.2 has zero regression upon z, it of course has zero regression
upon that part of z; which can be estimated by means of 2z,.
To estimate z, from 2z, we have 2; = 7132
so that
T (s0-2) (r1aza) _ 12 Z zo222 _

Z (r12%9)? S (r1222)®
It is therefore clear that only z1.2(= 21 — 722), that part of z
which 1s independent of z,, is of service in estimating 2.2, that
part of zo which is independent of z,. The regression of 2.,
upon 2.2 is

b(zo.1) (risza) =

2 20.271.2 _ Z (20 — 70232) (21 — 'ﬂzl)
Z 2%, Z (51 — rizca)?
_ oL — roariz — rqar12 + fofna
I — 27159 4+ ria?
Tor — To2’12
=——— = o

1 — r¥,
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We now see the meaning of the notation Bo.2. It is the regres-
sion of that part of 2z, which is independent of 2 upon that
part of z which is independent of z. For this reason Bo.2 1s
called a partial regression coefficient and, to recapitulate, it
has the two following important properties:

(a) It is the regression of that part of zo which is independent
of z; upon that part of z; which is independent of z.

(b) Iiis the weight or multiplying factor of z; when z and 2
are both used to estimate z,.

Of course Be2.; is the comparable partial regression coefficient
when variables z, and 2 are interchanged. We will now illus-
trate this by a numerical example.

Section 81. THREE-VARIABLE PROBLEM ILLUSTRATING
MEeANINGS OF CONSTANTS

The first three columns of Table LX constitute the se-
ries to be correlated and the subsequent columns are derived
calculations.

TABLE LX

o ' z2 ros23 Zo.3 rias2 z1.9 Bor.2z1.2 Ze.12 )

1.75/ 1.00] .25 .1237| 1.6263|—.0638 1.0638 .8667| .7596/ .9904
1.2§5 .25 1.00| .4948| .7552|—.2552| .5052| .4116) .3436| .9064
1.000 .00 1.00{ .4948| .5082|—.2552| .2552| .2079| .2973  .7027
.78l 1.50 .00 .0000| .7500( .0000| 1.§000| 1.2221/—.4721] 1.2221
.25 — .75/ 2.000 .9 — .7396|—.5104|— .2396|— .1952|—.S5444| .7944
.25 1.25/— .501—.2474] .4974 .1276 1.1224 .QI45|—.4171] .6671
— .25/ .75|—1.25| .6185, .3685 .3190] .4310( .3512] .0173 —
— .50(—1.00f .00| .0000|— .5000{ .0000{—1.0000— .8148/ .3148— .8148
— .75 .00|—1.00/—.4948 — .2§552| .2552|— .2552|— .2079|—.0473—

—1.00(—1.00/ .00{ .0000—1.0000| .0000(—1.0000|— .8148|—.1852— .8148
—1.25 .00{— 1.75/—.8659 — .3841| .4466|— .4466|— .3639/—.0202 —1.2298
—1.501—2. .25' .1237'—1.6237 —.0638|—1.9362| —1.5775|—.0462| —1.4538

Z 202 = 7.6250, ro = .63542

for — 7

Tama= 59375, re= AMI9 Bua= 'y i = 81476

Tzoa= — 30625, ri=—.2552, Boa= g = .70272
T 203212 = 9 14030, 2o = Bun.1%1 + Bo2123 = .81476 21 + .70272 z,

Zza= 1121842 o

_ 9.14030 _ - ‘/1.6l504 _
Bor2 = 1121813 842 81476 o013 2 .36686

= 1.61504
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These serles have been so chosen that the means equal zero
and the standard deviations equal one. We are thus dealing
with standard measures, or z’s and not with x’s or X’s.
Straightforward calculation gives

Z 202, - 7.625 -6

Tr1 = N1o0 X 1.0 12 3542
ror = .49479
f12 = — .25521

We can estimate 2z, by means of 2 by the following equation:

Zo = ToaZz = .49479 22

These estimated values are recorded in the column rgz. The
- residuals (20 — r,2), or parts of zo which are independent of z,
are recorded in the column 2,... We can estimate z by means
of z by the equation

21 = ri22 = — .25521 33

These estimated values are recorded in column r2. The
residuals (z; — r1222), or parts of z; independent of z,, are recorded
in the column z... That part of z which is independent of 2,
namely z;.2, may be used to estimate z,... Straightforward
calculation of the regression equation gives

z £0.22).2 . - 9.14030
Z24., T 11.21842

Zoa = 21.2= .81476 212

The constant .81476 (= Ba.2) is here seen to be a regression
coefficient, being just as real and definite in its meaning as
those found in any other two-variable problem. Finally taking
(20.2 — Bor.221.2) We obtain 2o.12, the final residuals that are left
after having utilized both z; and z to the utmost in estimating
2. These magnitudes are our final errors of estimate. Cal-
culating their standard deviation in the usual manner we
obtain

Eo1s = .36686

The residuals 2.2 could have been obtained more directly
without the calculation of 2. and z,.; by the regression equa-
tion involving the two variables. We have

Z0.12 = 2o — PBo1-221 — Por122
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in which
o To1 = Toshir _
Bor.2 = T =1, .81476
Bory = 2= ToN1z .70272

I — 1%
The more lengthy procedure has been followed for the purpose
of showing the exact significance of the 8 constants and of the
residuals, and not because it is the most practical method for
purposes of estimation. If we add the measures in the two
columns reze and Bo1.221.2 Or if we use equation

2o = Bo1.221 + Boz.122

we obtain the best estimates of z, which it is possible to secure
from z and 2, assuming a rectilinear relationship. Such esti-
mates are here recorded in column z,. The correlation between
%o and 2z, is the multiple correlation coefficient and will be
designated by the symbol 79.;2. As multiplying every term in
a series by a constant, or adding a constant amount to every
term, does not change the correlation with a second variable,
the correlation between z, and z, is identical with that between
xo and X, or between X, and X,. The multiple correlation
coefficient is the maximum correlation obtainable between
dependent variable and a weighted composite of the inde-
pendent variables. We may therefore read 7¢.12 as ‘“the cor-
relation between the variable o and the best weighted linear
combination of variables 1 and 2.”” Straightforward calcula-
tion of the correlation between columns z, and z, yields 7¢.12
= .93028, but a much shorter method of calculation is available.
We have in a two-variable problem

g2 =01 VI — r?

Since 2, and 2z, are simply two variables and since the standard
deviation of zy = 1.0, and the standard deviation of the resid-
uals in z, after estimation by aid of z; and z is k¢.12 we have
. ko-l! = 1.0 \/[ - fzo.lz
from which A
roa2 = VI — k3.2 (Value of the multiple correlation
coefficient — 3 variables) . .. .[250]
The relation between kg.;2 and 7¢.12 is the same as that between
k12 and 7, of Formula [86 a], section 48, hence k¢.;; is a coeffi-
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cient of alienation in the case of three variables. We now need
a simple procedure for the calculation of ke.2. Since kg.j2 is
the standard deviation of the residuals we have

I
k% = NE (20 — Bor.221 — Po2122)?

Squaring, summing, and collecting terms we will find that the
factor (1 — r?;;) enters into numerator and denominator.
Wherever this factor occurs we will write k%,. Remembering
that
Zx) =23 =22 =N
and that
2051 = Nroy, £2022 = Nroa, Z2122= Nrya

we nave

k%42 = 1 + B%1 2 + B21 — 2 Bor.vor — 2 Bos1Tos

+ 2 Bo1-2802.1712

1
= k2, (1 — 7200 — 722 — 123 -+ 2 roy7osr12)
1

(Coefficient of alienation — 3 variables)..[251]

The general solution of the coefficient of alienation in the
case of n variables is well accomplished by the aid of determi-
nants, and we may here note this form of solution for the case
of three variables. If we write the major determinant
I for Toz

To1 I 712
To2 T2 I

A=

and call the minor obtained by deleting the first row and the
first column Ago, we have

I T2

A =
00 13 I

Evaluating these determinants we obtain the numerator and
denominator respectively of the fraction giving k%.;2 so that
we may write

oy = ‘} A (Multiple coefficient of alienation as
1 VA the quotient of determinants) ...[254]

This is here proven for the case of three variables, but we will
later find that the equation holds generally for any number of
variables. If we are concerned only with the value of the
multiple correlation coefficient, and not with the constants of
the regression equation, the simplest way to find it is to first
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determine k.12 and then ro.12. If we have the regression coeffi-
cients we may obtain k.12 and thus7,.;; from it. We have called
ko.12 the multiple alienation coefficient. It is the measure of
independence of variable x, from variables x; and x,. We will
define ko2 as the partial alienation coefficient. It is the
measure of independence of x, and x; for a constant value of x».
Thus, by definition, if rq.. is the partial correlation between
xo and x; for a constant value of z;, we have

k.2 + r*.2 = 1.0 (Relation between partial coefficients
of correlation and of alienation) ... [255]

This is the equation for three variables comparable to formula
[86 a], k%2 + 7% = 1.0, found for two variables. We thus find
that whether k£ has one primary subscript (a subscript occurring
before the point is termed a primary and one after the point a
secondary subscript), k.12, Or too primary subscripts, k.2 the
type equation, k* 4+ 72 = 1.0, holds. Thus far we have found
the total, multiple, and partial relationships as follows, respec-
tively.

ko +r1ra =1

ka2 +ras =1

k13 + r2pa2 =1

The same relation will be found to hold when » variables are
involved, so that universally, provided the subscripts are the
same,
k241t =1 (General relation between

kandr) .............[256]
We do not have a k with three primary subscripts, but kg
and k., may be shown to be identical. Dealing with z's we
have found ko = V1 — %y and k., = the standard deviation
of the arrays of z's, i.e.. ko = 05 VI — 1l = VI — 12y,
since, when dealing with z's the standard deviation o, is equal
to 1. Accordingly

ko.1 = ko;. .................. [257]

Equations [251] and [254] have expressed ko.;; in terms of
the total correlation coefficients. We may also evaluate this
multiple alienation coefficient in terms of other total and partial
coefficients, but will first need to determine a partial coefficient
of correlation. Having shown that Bo.. is the regression of
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Z0.2 upon 2z, and since by parity Bo.2 1s the regression of zj.2
upon zo.2, we immediately have, since every condition leading to
712 = Vbpby formula [go] is exactly paralleled when dealing
with Zo.z’S and 21.2'5,

ror.2 = V Bor.3810.3

(Partial coefficient of correlation in terms of partial
regression coefficients — 3 variables) ......... [258]

The partial coefficient 7o1.2 is identical with 7.2 but custom
places first the numerically smaller of the subscripts before the
point.

1 —rig — rla — r2i2 + 2 roroanis
k%13 = 1 — Bor.2afror =
012 Bo1.2B10.2 FERTm
I —ri — ris — 7212 + 2 rorrosnia
k22k?01.2 = e = k%.11
that is
ko2 = koskor.a  (Multiple coefficient of alienation in terms of
or total and partial coefficients of alienation
ko2 = koakoan  — 3 variables) ............. .. ... .. ... [259]

We may now outline the most expeditious manner of calculating
all of the constants ordinarily desired in the solution of a
multiple correlation problem. These constants recorded in the
proper order of calculation are:

the means, Mo, M,, and M,

the standard deviations, oo, 01, and a9

the total correlations, 7o, 702z and 7y

the squares of the total alienation coefficients k%, k% and
k.

the B regression coefficients

_ Tor — Tolr2 _Tor —Toli2 _To2 — Toi"1e
Bnz =——5—"", Pz Bora = ——53——
k%1

ke ke

the square of the partial correlation coefficient
%12 = Bor.2 Pro-2
the square of the partial alienation coefficient
Flo12 = 1 — %1
the square of the multiple alienation coefficient
k20-12 = k20‘2k201-2

the multiple alienation coefficient, kg.y
the multiple correlation coefficient, ro.;2 = V'1 — k.12
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the b regression coefficients
bor2 = Bor.2 @, bz = Bee1 ok
gy o3
the constant ¢
c = Mo—- b01.2 M1 -_ b02-l Mz
giving the regression equation
Xo = bora X1 + bee1 Xo + ¢
the standard error of estimate, or the standard deviation
of the Xo-arrays from the regression line
go12 = 0o ko.x2
Excepting the probable errors of the constants (see formulas
[278], [279] and [280]) the solution is complete.

Section 82. THE USe oF THE ALIGNMENT CHART

The calculation of the 8 constants may be easily accomplished
by the aid of an alignment chart. The following directions
apply to the small chart in the appendix and described in
detail and with explanatory problems in (Kelley, 121, chart),
and also to a large chart devised upon the same principle
(Kelley, 1921, align). Items (z) and (j) and the four-variable
problem illustration should be read after the treatment of
the n variable problem, Section 83, of this text. The accuracy
of the chart in the appendix is very slightly less than that
of a 10-inch slide rule, while the large chart gives results
of the same degree of accuracy as a 20-inch slide rule.

The scales for 73 and r; are graduated according to the
logarithms of numbers from 10 to 100, and the product scale
is so graduated as to indicate the products of any two numbers
on scales 73 and r;; when connected by a straight line. Ac-
cordingly all products and quotients, including squares and
square roots, may be obtained. In all these operations the
simplest way to keep track of the decimal point is to roughly
carry the operation through in one’s head and then place the
point where it belongs. A strip of transparent celluloid with a
straight line scratched upon it, or a silk thread drawn taut,
constitute serviceable straight edges.

Scale 1/k is graduated according to the logarithms of
1/V1 —r* and scale 1/k? according to the logarithms of
1/1 — % Scale 1/K? is a continuation of scale 1/k%. When
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values on scale 1/K? are used, place a straight edge through
this value and parallel to the base line [as explained in example
(c)] and locate a point on scale 1/k%. Then continue the cal-
culation using the point so located on scale 1,%? in lieu of the
point on scale 1,/K>.
The following magnitudes are needed in multiple correlation

work:

(a) Products, such as 73723

(b) Quotients, such as g:

(¢) Square roots, such as VvV Bi2.5821.3

(d) Factors km( Vaw ; rzl--s) which enter into partial

coefficients of correlation
(e) Coefficients of alienation such as k3 (= Vi - r%13)

Factors 01_ = which enter into regression
ka3 I — 7223 gre

coefficients

(g) Squares of coefficients of alienation, such as k%;
(=1 — 1)

(h) Partial regression coefficients, such as

Bi2.3 ( = 712_;3_-_2_2135;7'23) [247]

(s) Partial correlation coefficients, such as
T12.3 (= tgﬁ = \/ﬂlg.aﬁzl.a = \/bm.3b21.3)
(j) Partial regression coefficients involving four variables
_ ﬁl‘l-4 - 613-433‘2_-_4 _ 612-3 - BN-SB£3)
ﬂ12'3“ (— k223-4 - k224-3
Since k%3, = 1 — Ba3.482:.4, and since the calculation
which leads to fB:.4 is changed in but one simple
respect to obtain Bs:.4 1t 1s convenient to write:

ﬁl" - 61‘4’@’2_4

2.34 = 6
Fre-a I — B23.4832.4 [264 d]
(k) Partial regression coefficients involving more than four
variables
Blz--i---n—613-4---n332-4---n
ceen = 264 b
Brz.u I —Besa...nBxs...n (264 8]

The same pro.edure as in (y) is followed, but in this
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case the calculation which leads to Bss.s...n does
not, by one simple change, lead to 8.4 . . . n.
Examples:
(@) .2 X .4 Place a straight edge on 20, scale 73, and
upon 4o, scale 7,3, and read the product, .08, on the
product scale.

(b) % Place a straight edge upon 20, pr:duct scale, and

upon 4o, scale 73, and read the quotient, 5.0, on
scale 7,3.

(¢) V.25 Place a straight edge on 25, product scale, and
parallel to the base line of the chart (this can be
done by rotating the straight edge until the readings
on scales 73 and 7,3 are identical) and read the square
root, .50, on either scale 7,3 or 7es.

(@) S S— Find 60 on scale 1/k and read the answer,
Vi — .60

1.25, from the same point on scale 7.

(¢) V1 — .60 Place a straight edge through 6o, scale
1/k, and 100, product scale, and read the answer,
.80, on scale rq3.

(f) I- ——_I 601 Find 60 on scale I/k2 and read the answer,

1.5625, from the same point on scale r,3.
(g) 1 — .60 Place a straight edge through 60, scale 1/k2,

and 100, product scale, and read the answer, .64,

on scale 7;3.

.78 — .60 X .80

(k) 1 — 80
(@). On a separate scratch paper subtract this from
.78, obtaining .30. Place a straight edge between
30, scale 713, and 8o, scale 1.'k?, and read the answer,
.833, on the product scale.

Find the product of .60 and .80 by

. 78 — .60 X .80 . 4.78 — .60 X .80
O T Zei Vi - T e Y ()
Find 187—1’-'_“62(2 80 by (k). Multiply and extract

the square root by (a) and (¢), yielding the answer
.625.
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(]) Given: 312.4 = .70, 513.4 = 60; 632.4 = .80; Bza.; = 5469
.70 — .60 X .80
1 — .80 X .5469
ator as in (#) and the denominator in the same
manner. Then divide as in (b). This gives
.2200 _
5625
If, as is frequently the case, 8.4 and Bss.4 are nearly
equal, k%.4 1s closely given by:

Blyy =1 — (éﬁi;ZJﬁagf)

In this case the procedure may be as follows:
.70~ .60 X .80
1 — .80 X .76
Find the numerator, .2200, as before. On scratch
paper determine .78, the arithmetic average of .80
and .76. Place a straight edge between .78, scale
1/k?, and .22. scale r3, and read the answer, .5618,
on the product scale. This answer is in error by
.0006, which is of the same order of magnitude as the
error attendant upon the use of the large chart.
As a sample problem in three variables the following

data are given:

Required: Bis.3¢ = Find the numer-

.3911.

TABLE LXI
Table of Correlations, Means and Standard Deviations
VARIABLES
I 2 3
2 .225
3 274 .404

Means 68.15 43.60  52.20
a's 10.50 12.24 9.63

Solving
B2z = 1366
B2y = .1236
Bz 2 = .2200
k*. = .9093
r12 = .3011
oy = 10.01
Ty = .1360 22 + .2200 23

X, = 1172 X2 + .2399 X3 + 50.52
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As a sample problem in four variables the following
data are given:

TABLE LXII
VARIABLES

I 2 3 4
2 .225

3 274 404
4 134 .060 .231
Means 68.15 43.60 52.20 45.40
a's 10.50 12.24 9.63 14.25
Solving
Bia = .1398
Baim = .1270
Bz = .1991I
Buxn = -?796
k* a0 = .9033
124 = .3109
o1 234 = 9.980

21 = .1398 z2 + .1991I z; + .0796 2z
X: = .1199 X2 + .2171 X5 + .0587 X, + 48.92

Section 83. THE GENERAL TREATMENT OF THE n-VARIABLE
ProBLEM

We will now attack the general problem. The reader will
need an elementary knowledge of determinants to follow the
discussion. We are given a criterion variabie, Xo, and the
independent variables, X, X,,- -+, X, (the population will be
designated by N, which symbol must not be confused with #,
the number of independent variables). Expressing every
variable in terms of standard measures by the transformations

X-M

[ 8

it is required to determine the B constants in the following
equation in the best fit manner.
20=Pfoun...n2+ Boru...n22+ - + Bom.aa...n12n ...[260]

(z0 — 30) s an error of estimate and will be designed by z¢.13. . . p.
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The B's are to be so determined that the standard error of these
errors of estimate, kg.j2...s, shall be a minimum.

I
k’o.u...n = I_szzo 12...m
I

= Nz(zu — Botn...n2 — Borrs...n 22 — -+ — Bon.12...n-1)?

Differentiating with respect to the first 8 and setting the deriva-
tive equal to zero, gives

;vz (2o — Borzs...n 21 — Boziz...n 22 — =+ — Bomaz..n12n] (— 21) =0

Summing, expressing square sums in terms of standard dewia-
tions and product sums in terms of correlations, yields,

roo — Borzs...n — N12Bo218...n — - — rmBomar...n-1 = O

Differentiating successively with respect to the other 8's gives

ro2 — 1201 2s...n — Bo21s...w — - — rmPBon.13...n~1 = O
etc. to
fom — rinBorza...n — rmPoas...n — -+ — Bonaz...n-1 = O

(Normal equations). . .[261]

This gives # linear equations from which to determine the same
number of § constants. The determinantal solution is readily
written. Let the major determinant be A.

I for Tos s Ton
To1 I T2 e Nn
A= |re2 1 I S £ T [262])
fon Tin T e I

and let A, be the minor obtained by crossing out the p’th
row and ¢'th column of the major determinant. The p’th
row is that row having p as one of the subscripts of the r's
throughout and the gth column is that column having g as one
of the subscripts throughout. Then

— (= 1)?Aop (The regression coefficient as the

Bop1a.-O)eeom = Aoo quotient of two determinants). .[263]

The quantity — (— 1)? is merely a sign factor. The column
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crossed out is the o’th for all the 8's so that ¢ = o. To illus-
trate in detail we have

To1 T2 [} e Iim
To2 I Ty e I3
ros ra ) ¢ e I3n
8 An Yon Tan Tan s 1
0128...8 = - = 7 T
Ago I ri2 713 A 4t ]
ri2 1 ra vee TIan
141 ra I cer Ianm
Tin T Tin e I
rm I 73 T - Nim
Toz Ti2 Fas 724 *°° TI2n
o3 13 I 1y - I
Ton Tin Tsm Tim *°° I
8 - [264])
0213...% = =
Aoo AOO
Am
Buau...n = —
Aoo
—Aos
n =  ——
Bos- 1215 200
etc. to
— (= 1) Am
Boﬁ.]’...ﬂ—] = -
Aogo

Algebraic manipulation (see Kelley, 1921, chart) enables the
expressing of a partial regression coefficient in terms of partial
regression coefficients of one lower order, thus, ‘

_ Bi124 — BusaBaza _ Br23 — BusBara
. I — Buabirq I — Puafas [264 a]

and in general

_ Bise...n — Bud.. nBsre...n [254 b]

Brzu...n I = Boa.mBoram e

Note that if the variables are designated by subscripts 1, 2,
3, -+ - instead of as here, by o, 1, 2- - the sign factor is given
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by — (- 1)?*? in which ¢ always equals 1. Probably the
simplest way to keep track of the sign is to note that the
denominator determinant is always positive and that the
numerator determinants alternate in sign beginning with plus
for the first 8. Let us define

Bpa1z-- (Voo ()eeem '
and (Conjugate g's) . . . .[265]
Bapazee-()era)enem
as conjugate regression coefficients. Then
_ = (—1nrtaay
ﬂﬁq-'n...()...()...n Aop
and
—(—1)tra
Bapageei(Veea()eeen = ( A) 2 ¢
{4

Since the major determinant is symmetrical Ap, = Ay and
the signs of the two are alike; thus the partial correlation
coefficient is given by the square root of the product.

, _ — (=1)p+taAp; (Determinantal expression
pga2--- O ()eem Vapp Vg for the par‘tial coefficient
of correlation) . ... ... .. [266])

The partial correlations that are of most interest and value are
generally those involving the criterion and required in the
calculation of the multiple alienation coefficient.

, _ An €A partial correlation coefficient
BT A VAL of the (n — 1)th order). .. .. (267]

This may be written (Kelley, 1921, chart) .

ormom = VBora . om Blomeme e (267 a]
The order is determined by the number of secondary subscripts,
thus 7o;1.2345 1s a partial coefficient of the 4th order, r¢ .2 of the
first order and rq of the zero order.
_ _ Ao,12 (Determinantal expression for
VAo, o1 VA2 8 partial correlation coef-

: ficient of the n—2 order). . .[268]
The magnitude Ag, 12 indicates the minor obtained by crossing
out the o and 1 row and the 1 and 2 column. Note that the
sign factor is positive. This is clearly the case, since we are
now really dealing with a major determinant of an order one
lower in which row and column 2 have taken the place of row
and column 1, row and column 3 the place of row and column
2, ete.

To2.3¢...n
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Continuing
ot = Apis, 11
Vaas, o2V Az, 123
etc. to

Aoi2...n — 1,13, ..m Ton

om = Vaos...n — Iy 012..m — 1 \/1-31”---», 1m...n IXI

(Partial coefficient of zero order, or a total correlation coefficient) . .,269]
The various minors needed in the solution of this series of
partial coefficients of correlation may be obtained incidentally
in the process of obtaining the first minor if the determinant is
evaluated in a certain manner which, however, may not always
be the most convenient way for other needs. Having the
various partial correlation coefficients we may determine the
partial alienation coefficients by the equation 2 = V1 — 7%
These will prove serviceable in obtaining the multiple corre-
lation coefficient, but we shall first need to establish the value
of an alienation coefficient of a certain order in terms of an
order one less. In dealing with zo and z; between which the
correlation is ro; we have found, formula [257]

k% = a% (1 — ri) = 1 (1 — rin) = kn
If we deal with magnitudes z,.2, residuals in 2o, after estimation
by 2z, and z., residuals in z after estimation by 2z between
which the correlation is ry.2. we have, following the identical
reasoning that led to the preceding equation, '
k.02 = k%.2 (1 — r%0.2) = k%.2R%;1.2 = k%2 k%1.2

Obviously the principle can be applied to residuals of any
order so that, in general,

kzo.u. son = kzo.u. .-n k’ol.u...u
k’o.u. on = kzo.n.. -n kzoz.n...n
etc. to
k%.2...n = R%.2... n—1 R2on.12...n—1
(The n ways of expressing a multiple alienation coefficient of the

n-th order, in terms of multiple alienation coefficients of the
(n-1)th order and of partial alienation coefficients of the (n-1)th
Order) . . .. [270]

Expressing k%.23 . . . yas equal to k%35 . . . » k%2.34 . . . nand con-
tinuing the process for every k, until finally k%., = k%, we have,
taking the square root,

kora...n = kor.2a...nkozas..nBoyas...n X ... X kon
(One of the many ways of expressing a multiple alienation co-
efficient of the n-th order in terms of partial alienation
coefficients of lower order) ........................... [271]
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Having the multiple alienation coeTcient we obtain -
o12...n = V1 —-k%.13...n (The multiple correlation coefficient). .[272]
and also . '
Go.12...n = goRo.12...n (Standard error 6f estimate).. ...... [273]

This completes the solution, but it is sometimes easier to obtain
ro.12 . . . » by the direct evaluation of the major determinant A
and the minor Age. That we can obtain the multiple correla-
tion coefficient in this manner will now be shown. If 2 is the
criterion and z, the estimate of it, the correlation between them
is the multiple correlation coefficient, and, if we let o_ repre-
sent the standard deviation of the z, measures, it is given by

L.

Nogo _
The standard deviation of the g, measures is the standard
deviation of the points upon the regression line passing as
closely as possible to the zo measures. Thus, just'as in the
case of two variables where ¢% = o%.. + 0% [formula 87] in
which o, is the standard deviation of the means of the arrays,
so here with (n + 1) variables.
g% =0%.12...n + 02—
Dealing with z measures oo = 1 and go.12...n = ko2 ... SO
that
a?_ =1 — k% 2...n
As we have already found that this is equal to %12 . . . » [formula
272] we have ‘ '
o = roaz2...n (Standard deviation of estimated standard scores

is equal to the multiple correlation coefficient) .[274]
since ro.2...n is of necessity positive. Total and partial
correlation coefficients may be positive or negative; multiple
correlation coefficients can only be positive. Thus con-
tinuing we have:

I -
rzo.n. .on = 'NE 2020

= %,E zo (Borzs.. .nZ1 + Bozas...n22 + ... + Bomra...n—12n)
= roBor2...n + ro2Boz1s...n + ... + ronBona2...n—1

1
= A [ro1do1 — r03hos + TosBbos — ... (— I)%rom Aon).
00

-
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Referring to the major determinant, we see that, expanding it
in terms of the elements of the first column, it is given by

A = Ag — raidor + ro2doa — <+ (— 1)%ren Ao
thus
2 =Y A —A) =1 =&
7%0.12.. .8 Boo (Aoo A) I Ao
or
, _ Jl _ 4 (Determinantal solution of the multi-
o12.--m = Ao ple correlation coefficient) .. ...... [275]
and further
k _ JI (Determinantal solution of the multiple
012 % = ¥ Avo alienation coefficient) .. ...-.........[276]

As a corollary to the two derivations [formulas 271 and 276]
we have

J‘?A‘ =ku|.u...n ko:.u. e X ... X kon ................ [277]
ou

The preferable method for calculating k¢.12 . . . » depends upon
the order and whether the partial alienation and correlation
coefficients are needed in the solution of the particular problem.

The theoretical solution of the n-variable problem is now
complete except for the probable errors of the constants in-
volved. The standard errors of certain constants may be
immediately written down by analogy with the usual two
variable situations, simply noting, e.g., that x¢.. replaces x,
and x,.; replaces x;, etc. Thus we have by parity with formula
[108 b)

ﬂlg (Standard error of a partial coefficient of
= VN correlation, 3 variables).............[278]
- ’i"j} (Standard error of a multiple coefficient
arone VN of correlation, 3 variables).......... .[279]

By parity with formula [107]

- _ 902 kor.a  oonz (Standard error of a b regres-
bs = L VN @12 VN sion coefficient, — 3 varia-
bles). ................[280]

Plainly we may, in the case of # independent variables, deal
with residuals of higher order just as we have with residuals
of first and zero order and obtain:

’Eforu;; n  (Standard error of a partial coefficient

‘-m"”""f = VN of correlation) . .................. (281]
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k%012...n (Standard error of a multiple coef-

o =

roan...n v'N ficient of correlation)............. (282,
_ doam...m (Standard error of a regression co-
Thoim.n = VN efficient) . . ................l. [283]

Section 84. THE METHOD OF SUCCESSIVE APPROXIMATIONS

With more than five variables either of the preceding methods
is laborious, and to meet this situation I have developed and
herewith present a method of successive approximations to
the values of the regression coefficients and to the multiple
correlation coefficient. I have not as yet developed other than
empirical tests of convergency. The method -may be best
presented in connection with a numerical illustration.

If given all the regression coefficients except the first, we
may write

20 = W12 + Bo2.13. . .n32 + 303-124-”"3! + KR + Bon.12...n—12n. [284]

in which w, is unknown, but all the 8’s are known. We may
now determine w,. Designating the right-hand member, i.e.,
the total right-hand composite inclusive of w; z; by ¢ and the
right-hand composite exclusive of w; z; by (¢ — 1) [to be read,
‘““the composite exclusive of variable 1’’] we have

Zo=wnh +(€—1)............... ...[284 a]

The problem is now a simple three variable problem, the
variables being 2, z; and (¢ — 1) the correlations between which
we will designate as ro1, ro(c—1) and ry-1). Two of these cor-
relations have to be determined. Both r¢,-1) and 71 are
correlations between one variable and a weighted sum and are
given by formula [149]. Thus we immediately have the regres-
sion coefficient of zo upon z;:

w, = Tor — Yoflc—1)"1(c—1)
k2 (c-1)

and the regression coefficient zo upon (¢ — 1) equals

To(c—1) — Toif1(c—1)

S i DL TP PERTRPRTRPES
The weight w, as thus determined must be identical with
Boi.23 . . . » and the regression coefficient of (¢ — 1) as thus
determined must equal 1.0 else a better fit than the regression
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equation fit has been obtained, which we know is impossible.
We therefore see that if we know all of the regression coeffi-
cients except one, we can determine that one without resorting
to the evaluation of two lengthy determinants.

The thought occurred to me that with reasonable weightings,
guesses, or weightings somehow derived from a priori con-
siderations, for a large number of variables no one of which
was of greater importance than all the rest combined, it was to
be expected that the closeness of estimate of the weighted sum
of all the variables but one, which I shall call (¢ — 1), would
vary less than the weight guessed for the one. Thus if the
guessed weights are wy, we, ws- - -wy, and if ¢ is the weighted
sum (w2 + wezs + wszs + - - -wazn), the calculation of the
regression coefficient of o upon gz, i.e. the calculation of
Bor.(c—1) would result in a closer approach to Boi.2s ... s than,
in all likelihood, was w,. We will call this regression coefficient
wy and take it as a second approximation to Bor2s...a A
similar procedure using w;, ws, ws, . . Wy (NOt Wiy, W3, W4, * W)
will result in a second approximation ws to the correct weight
for z, etc., for each of the other variables. We then have
weights wy, we, wss- + -Was and may repeat the process obtain-
ing third approximation values wp, Wee, Waiss, - Wunn and
still other approximations should they be needed. Just as soon
as the repetition of the process results in new weights which
are identical with those used in obtaining them we have the
proof that the regression coefficients have been found, since as
pointed out (following formula 286) this is the unique property
of the regression coefficients. Therefore if repeating the
process a fourth time should give win = win, weee = wa, etc.,
we know that Win = 301.23 ce.my W = 302.13 ey etc., and
the problem is solved. We will not expect identical agreement,
but such agreement as is needed for practical purposes, say
within .1 per cent, .or per cent, or whatever other limit is
self-imposed. Presumably the larger the number of variables
the more rapidly convergent are the successive approximations,
but I am not able to supply the theoretical proof that the con-
vergence must take place under all circumstances. A second
check upon the general approximation to regression equation
weightings may be found in the size of the multiple correlation
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obtained. For convergence to be present this must increase
for every step.

The following example which has only six variables, and
therefore constitutes a more severe test than would a problem
‘having a larger number of variables, is given. The variables
are: o, the criterion, being a measure of general scholastic
success of school children in two successive elementary school
grades (population about 300); the remaining variables are
the scores made by the children in the five tests comprising
one of the forms of the National Intelligence tests.

(1) A test in arithmetical reasoning
(2) A test in sentence completion
(3) A test in logical selections of reasons for conduct.
(4) A test in naming synonyms and antonyms.
(5) A test in substituting digits for symbols.
The correlations between scores are

TABLE LXIII

Variables
o I 2 3 4
1 .4017
;. 2 .6003 .2332
Varb 13| 23 1986 1747
4 .6807 .2569 .4520 .2628
5 -3553 -1064 2139 -0033 -2989

The symbol ¢ will stand for the composite score according to
whatever weightings are used upon the five tests; the symbols
(¢ — 1), (¢ — 2), etc., stand for the composite scores upon all
five tests, except test one, except test two, etc. The problem
is to make 7o, a maximum. Treating one of the five variables
as unique and obtaining a composite score on the other four,
gives us a three variable problem, the variables being o, #,
(¢ —u) in which u stands for the unique variable, being in
turn 1, 2, 3, 4, 5, and the regression equation being

Zo = Bou-(c—w) Zu + Boc—wu{c —u) ............ [287]

The value of the second regression coefficient will ordinarily
be in the neighborhood of 1.00, but it does not enter into our
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present treatment. The first regression coeffcient is the new
weight w,,, determined for z, and is given by
Tow Zrole—wlule=w) ... ... [288]
k2w (c—w
Let s stand for the sum of the products of the correlations of
the independent variables with the criterion into the weights
of the independent variables, i.e.,
s =wro + waros + Wires + Weros + Weros .. .. .. ....[289]
Let S stand for twice the sum of all product terms of the sort
Wy Ty, i.€., S in our present problem is a summation of
2 X 10 terms as follows:
S = 2 (wwirs + wwsry + YW + WiWer s + Walsrs + WaWrn
+ wawirss + waWers + Wswirss + WaWsra) . oL [290]
Let 2 S, stand for the sum of those terms in S (2 X 4 in number
in our present problem) which involve w,. Thus S is equal to
the sum of the S,, or in the present problein,
S=8S14+8S+S+Sc+Ss.............. [290 a]
and finally let Suw? stand for the sum of the squares of the
weights. That is,
Sw=wh +wh +wh +wi+wh ... [291]
We readily obtain by formulas [163] and [149]
o, = VSw + S (Standard deviation of the ¢ composite

Wuu =

SCOTE) e v vt ot e e et e i [292]
, =3 (Correlation of criterion with the ¢ composite
® g SCOT) e\ v it e e et et [293]
Ty = VSuw + S —wiy — 2 S, (Standard deviation of the
¢—u composite score) . . .[294]
, _ S — wureu (Correlation of the criterion with the c—u
0 (c—m) O COmMpOSite SCOTe). . ..., . (295]
, _ ,,:,9,’,‘_ (Corrclation of the test treated uniquely
wle=1 " we,_, with the ¢—u composite score)......... [296]

It will be noted that if we have a problem involving one
dependent variable and » independent variables that there are
n terms in s, n(n — 1) terms in S, (n — 1) terms in S,. We
now have all the requisite formulas and may proceed with the
calculation. For our first series of weights we will take uwy = 2,
w, = 4, w3 =1, wy = 5 and w;, = 2, which are roughly pro-
portional to the total correlation coeff cients of the tests with
the criterion. In the accompanying table p stands for the
variable designated in the stub.
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Tabulating the results thus far obtained, we have

TABLE LXVI
WEIGHTS WEIGHTS
WEIGHTS
- S T
VARIABLES First GuEss APPROXIMATION APPROXIMATION
I 2 .19 .1940
2 4 33 -3240
3 I .03 .0294
4 5 43 -4358
5 2 .14 .1352
Muttiple correla-
tion resulting .7877 .79005

The first weights give a multiple correlation of .7877 and lead
to the determination of the second approximation weights.
The second weights give a multiple correlation of .79005 and
lead to the determination of the third approximation weights.
The third weights differ so slightly from the second that for
ordinary purposes one would stop the calculation here, use the
third weights as final and take the multiple correlation as equal
to .7901 since it will be a trifle above .79oo5. The method
of calculation of the weights here shown involves but a frac-
tion of the time necessary to evaluate the determinants neces-
sary to a solution. This is true for three reasons:

(@) Number of operations is much smaller.

(b) No checking for inaccuracies in any of the calculations,
except that for the last weights derived, need be made, as a
small error leading to a wrong approximate weight wili be
corrected in the next step.

(¢) Partial regression coefficients Bou.(c—u), €xcept for the
last step where greater accuracy may be desired, may be made
by the aid of the alignment chart.

A further device which is serviceable is to compare ro. with
each of the 7y -4 values in the same calculation. Should
any one of the 7o correlations be larger than r, it indi-
cates that the weight used for the test in question is worse than
would be a weight of zero. Referring to the first of the cal-
culations above, we find that r,. = .7877 and that roc-3
= .7882. This means that the weight which was assumed for
test 3, namely 1.00, is a worse weight than would be the weight
zero. Thus if the problem is such that only positive weights
have been used as the first approximations, any variables
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which should have negative weights will probably be discovered
in the first calculation by the correlation roc—4 turning out
higher than 7.

The solution by determinants of the above problem correct
to seven decimal places has been kindly supplied to me by
Miss Ella Woodyard.

W, = .19412341 wi = .43693997
wy = .32392693 w; = .13466545
wy = .02748474 To.12345 = .79009053

It will be seen that the maximum error in the third approxi-
mation weights is .oo19, which is the error for w;. This would
probably be considered a negligible error. Should, however,
greater accuracy be required, a determination of fourth order
approximation weights will give it. Actually such calculation
gives weights, no one of which is in error by more than .ooor.
I have also made a fifth calculation resulting in the multiple
correlation 7¢.12345 = .79009038 which is seen to be in error by
.00000015. Thus for these data there can be no doubt that
rapid convergence actually exists. One desiring to practice
the method is referred to Yerkes (1921), where abundant
multiple correlation equation material already worked out by
the determinantal method is to be found. I have used this
method upon a variety of problems and have always found
convergence. Much time will be saved if the original guess
as to the final weights are excellent, but the method does not
require approximate accuracy in the original weights. To il-
lustrate this, let us work the present problem, starting with
weights o, 1, 2, — 2, — 1, which are about as unreasonable
as it is possible to assume. The calculation gives

TABLE LXVII

WEIGHTS WEIGHTS

WEIGHTS
VARIABLES - SECOND THIRD
First Gugss APPROXIMATION APPROXIMATION
I o .4 .188
2 I .5 .332
3 2 .2 .031
4 —2 7 437
5 -1 .3 51
Multiple corre- [
lation resultin — .23 | 784
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Evidence of convergence is not clearly apparent from these
three series of weights, but it of course is apparent by com-
parison of the third weights with the correct values. The very
poor choice of original weights has increased the number of
calculations necessary to establish convergence, but it has had
no other effect.

A possible difficulty in the calculation of the Bou.(—w cO-
efficients in case one of the approximate weights is zero may be
mentioned. In case w, = o,

u (o]
Tu(c—u) = b— = 6 ................. [296 a]
To avoid this indeterminate form we may write
S
Tu(c—u) = Werup T 1+ 4 |
Oc—u

instead of the preceding, which is generally shorter to use.
As an illustration of this situation it may be noted that w, was
chosen equal to o in Table LXVII. Thus S, = o and 71—y

= g by formula [296]. Using formula [297] we have

_ Waria + Wsr 13 + W14 + WsT 15 _ 0102 _
Fife-n = oc—1 T 2.7465 -0037

This is no longer indeterminate. Except in this calculation
of 7uc—w no special procedure will be necessary on account of
a zero weight. The introduction of zero weights where reason-
able leads to a simplification of the numerical work. For
the problem in hand, if the first e§timated weights had been
2, 4, 0, 5, 2 instead of 2, 4, 1, 5, 2 it would have simplified the
first calculation and led to rapid convergence. It is well to esti-
mate a zero weight whenever in doubt. The regression weights
as just determined are of course 8 coefficients, w1 = Bo1.23 . . . n,
wp = Bozas . . .4 €tc., pertaining to the equation [260]

20 = Borm...n21 + Bozs...n 52+ -+ Bon.12...m-12n
Making the substitutions of equations [247] and [248] immedi-
ately gives the regression equation involving gross scores

Xo=bon..n X1 +bozs...nXo+ -+ +bon.12...001Xn+¢

The regression coefficients and the multiple correlation co-

efficient are given by this successive approximation method.
The partial alienation and correlation coefficients, as well
as the important standard errors, may all be obtained by for-
mulas given earlier in this chapter.




CHAPTER XII

STATISTICAL TREATMENT OF SUNDRY SPECIAL
PROBLEMS

Section 85. StATISTICAL CONSTANTS DETERMINED FROM
MuTiLATED DISTRIBUTIONS

If a portion only of a distribution is available it is possible
to reconstruct the entire distribution when a reasonable assump-
tion of the form of the entire distribution can be made. The
principle is applicable to any form, but only in case the assumed
form is normal are the constants enabling a ready calculation
available in tables. Let us assume that data for the tail of
a sharply truncated distribution, which is in truth normal,
are available. The “tail’’ may be greater or less than one-half
of the total or untruncated distribution. The distance from
the stump to the mean of the tail bears a ratio to the standard
deviation of the tail which changes as the point of truncation
changes; conversely, the value of this ratio determines the
proportion of the total distribution which is represented by the
tail. This is the property utilized by Pearson and Lee (19o8),
and by Lee (1914), in reconstructing the total distribution from
a sharply truncated portion. Tables facilitating this process
are to be found in the references cited.

There are other properties, such as the ratio between the
median deviation and the mean deviation of the tail measured
from the point of truncation, which can be utilized to the same
purpose, and it is not at all evident that the error of such
determination is greater than that of the Pearson and Lee
determination. The probable errors which establish the relia-
bility of either method are at present unavailable. The ac-
companying Table, LXVIII, gives the ratio of the median
deviation from the stump, to the mean deviation, for successive
percentages of a total normal distribution.

311
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TABLE LXVIII

MEDIAN MEDIAN MEDIAN
7 MEAN a MEAN 7 "MEAN
.01 .7363 34 8143 67 8833
2 .7425 35 .8162 68 .8858
3 .7470 36 8181 69 .8884
4 .7508 37 -8199 70 -8909
S .7541 38 .8218 71 8935
6 7571 39 .8237 72 .8962
7 -7599 40 .8256 73 .8988
8 .7625 41 .8276 74 .9016
9 .7650 42 -8295 75 9043
10 .7674 43 .8314 76 .9071
I .7697 44 8334 77 9100
12 7719 45 8353 78 9129
13 7741 46 .8373 79 9159
14 .7762 47 .8393 8o 9189
15 7782 48 8413 81 .9220
16 .7803 49 .8433 82 .9252
17 .7823 50 .8453 83 .9284
18 -7843 51 8474 84 9317
19 .7862 52 .8495 85 .9350
20 .7881 53 .8516 86 .9384
21 .7901 54 .8537 87 .9420
22 . .7920 55 .8558 88 9456
23 .7938 56 .8580 89 .9492
24 -7957 57 .8601 90 9530
25 .7976 58 8623 91 -9569
26 .7995 59 .8646 92 .9610
27 .8o13 60 .8668 93 9651
28 .8032 61 .8691 94 .9694
29 .8050 62 8714 95 .9738
30 .8069 63 .8737 96 .9785
31 .8087 64 .8761 97 .9833
32 .8106 65 .878s 98 .9884
33 8125 66 .8809 99 -9939

Entering Table LXVIII with the ratio given by the data
leads to g, the proportion in the tail, and thus to N, the popula-
tion of the total untruncated distribution. The further steps
in the solution will be obvious from the problem discussed in
the next paragraph.
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It not unfrequently happens that the total population is
known, so that the items available are (a) ¢, the proportion in
the tail, (b) the point of truncation, and (¢) the distribution
of the tail measures. In this case the fitting of an assumed
normal distribution is very simple. Let m = the mean of
the tail measured from the stump; let D = the distance from
the mean of the total distribution to the stump; let ¢ = the
standard deviation of the total distribution; and let x and z
have the values of Table K-W when entered with the argu-
ment g. We then have, from formula [53]

QI aly

x ,orD=xo .. ..................[298]

M M
— or o =
c

+

viieen...[299]

2

Q|

——x
q9

Solving these two equations for ¢ and D completes the problem.

As an illustration of the use of Table LXVIII we may calcu-
late, from the data of Table LXIX, the constants of the total
grade distribution of 15-year olds knowing the grade distri-
bution of the portion found in the elementary school. The
children represented range from 13.5 to 14.5 years of age.
We will assume that the total grade distribution is normal and
that the elementary school portion i1s a sharply truncated tail,
though in case the compulsory school attendance law applies
only to the elementary school this assumption is undoubtedly
in error, leading to a larger estimate of the number in the
high school than would actually be found there. In the grade
scale used, 3.0 means the beginning of the third grade, 3.25
the middle of the low third, 3.75 the middle of the high third,
etc.

TABLE LXIX

Grade Distribution of 14-Year Olds Obtained from Certain Virginia
Survey Data

GRADE 3.25 3-75 4.25 4-75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 Total
NUMBER

oFPupiLs 1 2 4 7 13 11 61 60 82 96 40 34 411
The point of truncation is g.0o. Calculation gives

Mdn measured from 9.00 = — 1.685
M measured from 9.00 = — 1.835
Mdn

M = .9181
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From Table LXVIII, q¢ = .7975. This proportion is repre-
sented by 411 pupils, so that the number in the untruncated or
total distribution is 515 pupils. The standard deviation of
the total distribution is, by formula [299], equal to 1.521 grades,
and D, the distance from the stump to the mean of the total
distribution, is found by formula [298] to equal 1.266 grades.
Accordingly the constants of the untruncated distribution of
fourteen-year olds are

Mean grade = 7.734
Standard deviation = 1.521 grades
Population = 515 pupils

Section 86. CORRELATION DETERMINED FROM MUTILATED
DISTRIBUTIONS

The ability to determine the constants of a total distribution
from a known fraction of it may be turned to practical account
in decreasing the size of populations necessary for an assigned
accuracy. The procedure may be illustrated by a problem,
the data for which have been kindly supplied by Miss Mar-

garet V. Cobb.
TABLE LXX

Numbers of Pupils Obtaining Designated Scores upon a Symbol-Digit
Substitution Test

ScHooL GRADES
TEST SCORES
4.25 4.75 8.25 8.75
105 4 6
100 4 S
95 I 1 3
90 I 7 3
85 5 I
8o I 3
75 3 I 2
70 1 I
65 1
60 3 I
55 4 3 I
50 3 2
45 4 2
40 3 1
35 2
30 2
25 1
20 1
28 14 25 21 N = 88
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The problem which we will set is, in outline, to (a) calculate r
from this mutilated table, (b) determine R, the correlation to
be expected in a range of two grades, let us say the fifth and
sixth, (¢) determine the probable error of R as thus found,
(d) determine the probable error of an R of the same size (desig-
nated R’) if found from a population of the same size in grades
s and 6, and (¢) by comparing the reliability of R and R’
endeavor to ascertain whether an artificial selection of original
data will decrease the populations necessary to secure a desired
reliability.

Letting school grade be the first variable, and test score the
second, we find r;; = .827.

If we can determine Z,/qy, where Z, is the standard deviation
of the 5 and 6 grade distribution, and ¢, that of the 4 and 8
grade distribution, we may use formula [86] to obtain R.
Assuming that there are the same number, f, of pupils in each
grade we have the two following distributions:

4 and 8 grade (Grades 4.25 4.75 8.25 8.75§ .. _

distribution gFrequencies f f f f giving 0% = 4.0625 grades
5 and 6 grade ;Grades 5.25 5.75 6.25 6.75% . 2 —

distribution {Frequencies f f f f giving 2% 3125 grades

from which the ratio Z;/0y = .27735. Having this ratio and
riz we find by formula [186] that R = .378. Thus the correla-
tion in a two grade range is rather low.

By formula [108 8], o, = .317/V N, but this is too small a
value, as the distributions with which we are working are far
from mesokurtic. Estimating the 8;'s for the school grade and
the test score distributions to be 1.06 and 1.94 respectively
gives by formula [108 d], ¢, = .515VN, which is the prefer-
able value in the case of this platykurtic correlation surface.

If the assumption of form of grade distribution can be made
with great certainty, so that we may consider no error to enter
into the ratio Z,/0, we may obtain the standard error of R
knowing thatr. Starting with formula [187] and taking loga-
rithmic differentials we have,

dr _dk _ 4R _ dX
r E R K
dk=d\/1—r’=:;‘d—r,and dK = —ﬁdR
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Substituting these values for dk and dK, squaring, summing,
dividing by the population, and extracting the square root,
gives

% _ R
rk* ~ RK?
or

_ _ RK? (Standard error of the correlation coeffi-

TR T r g cient inferred from a coefficient obtained
in a different range) ................ [300]
Using this formula we find for the data in hand,

op = 123870, = 638/ VN ... .. ... ... (a)

Had the correlation been directly determined from the 5 and
6 grade distribution, its value would presumably be about the
same R, = .378, but its standard error would have been
different. Estimating the B:’s to be 2.1 and 3.0, instead of
1.06 and 1.94, as above, the standard error by formula [108 d] is

oR’ = . 73/\/1V ...................................... (b)

Choosing such an N for formula (b) as to result in the same
standard error as given by formula (a) shows that 1.87 N are
needed in the narrow 5 and 6 grade calculation to obtain an
equally reliable result to that deduced for these grades by the
4 and 8 grade calculation based on N.

One cannot generalize and say that, given equal populations,
more reliable results are always obtained from the wider range
determination, but this is true if correlations are low, in the
narrow range and not very high in the wide range — say
under .40 in the former and not over .70 in the latter. If
entire freedom in choosing the range of talent to be examined
is present, excellent results may be expected if a fairly meso-
kurtic distribution, yielding a correlation between .60 and .70,
can be selected, and then estimating the correlation for greater
and lesser ranges by formula [186].

Section 87. THE PROBABLE ERROR OF PERCENTAGE MEASURES
OF OVERLAPPING

The probable error of the proportion in one distribution
which exceeds or falls short of a certain percentile in a second
distribution is a function of both distributions. Let the con-
stants of the first distribution (to the right in the accompany-
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ing figure) be designated by lower case letters and those of the
second distribution by capitals. Let p = the proportion of
the first distribution falling short of the percentile X, of the

second distribution. A change in p may be produced either
by a change in X, or by a change in the proportion in the first
distribution below an assigned point.

Let 6 = a small change in the proportion p due to fluctua-
tion in the second distribution.
Let d = a small change in the proportion p due to fluctua-
tion in the first distribution.
Let A = a small change in the proportion p due to fluctua-
tions in both distributions.
Then A = 8 + d, and o¢,, identical with ), is the standard
error desired.
ZA? = 3% + Zd* + 2 24d
Since § and d are functions of two independent distributions
they are uncorrelated and Zéd = o, so that

o4 is the standard deviation of the proportion of measures in
the first distribution below the point X and by formula [40]
0s = Vpg/n.

If the ordinate of the first distribution per unit base at the
point X is f and if the distribution is assumed sufficiently flat at
this point that a small change to the right in X would pass over
approximately the same number of cases as an equal change
to the left, then a small change D in X causes a change of fD
in the number of cases, np, of the first distribution lying below
the point X. Dealing with proportions, p is affected to the
extent fD/n. In consequence,

ab:afi)
n
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In this equation f and » are constants, for we are considering
fluctuation due to variability in the second distribution, so that

oy = f; op (See problem 7, Chapter 4)

op is simply the standard error of a percentile. We have by
formula [42]; letting P = the proportion of the second distri-
bution determining the point X; Q = 1 — P; ip = the num-
ber of units in the class interval in which X lies; fp the fre-
quency of this class; and N the population of the second
distribution; )
oty = i’p NPQ
fp
Making the proper substitutions in [301] results in

- (5[] + (®)

(Square of the standard error of the proportion of a dis-
tribution falling short of or exceeding an assigned
percentile of a se-ond distribution) ................ [302]

Note that in this formula the constants in ( ) refer to the first
distribution and those in the [ ] to the second distribution.

If the proportion exceeding the median of the second distrni-
bution is being determined, P = Q = }; and if, further, the
second distribution is normal, fp/ip = .3989N/Z, in which =
is the standard deviation of the second distribution, so that

fo
Nn’+n

o*, = 1.57080 2?

(Square of the standard error of the proportion of a dis-
tribution falling short of or exceeding the median
of a second and normal distribution) .............. (303]

In case both distributions are normal and have the same
populations and standard deviations, Table LXXI when multi-
plied by 1/ v'N gives the standard errors, in the second column,
and the probable errors, in the third column, for different values
of p.

In illustration of the use of Table LXXI the following prob-
lem is given: In a certain fifth grade only 40 per cent of the
pupils exceed in a reading test 5o per cent of the fourth grade.
We will assume the same number of pupils, 36, in each grade.
What are the chances that the true test ability of the fifth
grade is above that of the fourth grade? Referring to Table
LXXI we find that the standard error of the proportion, .40, is
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(.689/\/3_6 =) .115. Thus the difference between the ob-
tained proportion and the proportion in case of equally able
classes, namely .101is (.10/.115 = ) .87 standard errors. Enter-
ing Table K-W with x = .87 we obtain ¢ = .19, or, in other
words, the chances are 19 in 100 that the fifth grade ability is
in truth as great as that of the fourth grade.

TABLE LXXI
V'N X THE STANDARD ER-
PROPORTION LYING BELOW RORS OF THE PROPOR-
OR ABOVE MEDIAN OF TIONS OF ONE DISTRIBU- VN X tHE P.E.'s
SECOND DISTRIBUTION TION BELOW, OR ABOVE,
THE MEDIAN OF A SECOND
.001 032 .022
.01 .10§ .071
.02 .153 .103
.05 .252 .170
.10 .372 .251
.I5 .462 311
.20 .532 .359
.25 .588 .396
.30 622 426
.35 .666 449
.40 .689 .465
-45 -703 474
.50 707 477

If, for this same problem, fourth and fifth grade means are
calculated and the probable error of the difference between
means found by formula [140] we will finally obtain the result
that there are 14.4 chances in 100 that the fifth grade ability
is in truth as great as that of the fourth grade. Thus slightly
more definite results may be obtained by finding the differences
between means instead of the percentage of overlapping.
Formula [166] of Section 59 provides the correction for the
error in a measure of overlapping due not as here to size of
population but to inaccuracy in the instrument of measurement.

Section 88. A CRITERION FOR THE ADDITION OR ELIMINATION
oF ELEMENTS HaviNg Fixt WEIGHTINGS

In many trade, education, and intelligence tests, and in
combining stock quotations to determine general trends, it is
frequently required, because of the necessity for maintaining
simplicity of procedure, to include an item in a composite at a
