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Introduction. The New York Times major headline for Saturday, July 2, 2005, read
as follows: “O’Connor to Retire, Touching Off Battle Over Court”. The lead story that
was attached to this headline, by Richard W. Stevenson, began — “Justice Sandra Day
O’Connor, the first woman to serve on the United States Supreme Court and a critical
swing vote on abortion and a host of other divisive social issues, announced Friday that
she is retiring, setting up a tumultuous fight over her successor.” Our purpose here is not
to expand on this particular statement, because most would agree, irrespective of political
sentiments, that “tumultuous” may end up being quite a gross adjectival understatement.
Our interests are in the particular data set that the Times also provided on that same day,
quantifying the (dis)agreement among the Supreme Court Justices over the decade they were
together. We will provide two analysis of these data, and invite others to contribute their
particular insights with whatever methodology is uppermost in their repertoires for dealing
with square and symmetric proximity matrices. And I’d expect we will also invite all of
our future Multivariate Statistical Analysis classes to do the same for some of their applied
homework projects.

The information in the data set given by the Times is provided as Table 1 in the form of
the percentages with which the justices disagreed in non-unanimous cases from the 1994/95
term through 2003/4. The dissimilarity matrix (where large entries reflect less similar jus-
tices) is given in the same row and column order as did the Times, obviously ordered from
“liberal” to “conservative”:

1: St: John Paul Stevens
2: Br: Stephen G. Breyer
3: Gi: Ruth Bader Ginsberg
4: So: David Souter
5: Oc: Sandra Day O’Connor
6: Ke: Anthony M. Kennedy
7: Re: William H. Rehnquist
8: Sc: Antonin Scalia
9: Th: Clarence Thomas
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Table 1: Dissimilarities Among the Nine Current Supreme Court Justices

St Br Gi So Oc Ke Re Sc Th
1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .38 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .34 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .67 .45 .53 .45 .00 .33 .29 .46 .46
6 Ke .64 .53 .51 .50 .33 .00 .23 .42 .41
7 Re .75 .57 .57 .56 .29 .23 .00 .34 .32
8 Sc .86 .75 .72 .69 .46 .42 .34 .00 .21
9 Th .85 .76 .74 .71 .46 .41 .32 .21 .00

We present two analyses of the proximity data of Table 1: (a) a unidimensional scal-
ing of the Justices including the estimation of an additive constant that we can apply to
the proximities as an augmentation; (b) a hierarchical (or categorical) classification through
what is called an ultrametric, also obtained through a least-squares search strategy. Both
of these representations as a best-fitting unidimensional scale and a best-fitting ultrametric,
are generated from methods presented in a forthcoming monograph by Hubert, Arabie, and
Meulman (2006), and using the available open-source M-files (within a MATLAB environ-
ment) that come with this text. This monograph is scheduled to appear within the joint
ASA-SIAM Series on Statistics and Applied Probability (The Structural Representation of
Proximity Matrices With MATLAB).

Unidimensional Scaling. The unidimensional scaling task can be formally phrased as
follows: given the n × n (in this case, a 9 × 9) proximity matrix P = {pij} from Table 1,
we wish to find an additive constant, c, and a set of coordinates x1, . . . , xn to minimize the
least-squares criterion ∑

i 6=j

(pij + c− |xj − xi|)2.

The best-fitting result was obtained for the set of coordinates we give below, with a “caret”
( ˆ ) generally used in the sequel to indicate the best estimate. The additive constant ĉ
= −.218, Note that the coordinates are ordered in exactly the same way that the Times
ordered the Justices in Table 1 (and without loss of generality, the sum of the estimated
coordinate values is set to zero): x̂St = −.346; x̂Br = −.216; x̂Gi = −.200; x̂So = −.177;
x̂Oc = .062; x̂Ke = .113; x̂Re = .160; x̂Sc = .302; x̂Th = .302;

If we normalize the least-squares criterion to provide what is usually called a “variance-
accounted-for” (VAF) measure as follows:

VAF = 1−
∑

i 6=j(pij − [|x̂j − x̂i| − ĉ])2∑
i 6=j(pij − p̄)2

,

where p̂ is the mean off-diagonal proximity measure in P, the value we observe is 98.0%,
and pretty close to a perfect 100%. In other words, the unidimensional scaling provides a
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very good representation for the data of Table 1, with the O’Connor coordinate being .062
— this is the coordinate nearest to zero and obviously the median of the nine coordinate
values over the Justices. If we wished, a table could be provided for the reconstruction of
the dissimilarities among the Justices using the values, {|x̂j− x̂i|− ĉ}; a comparison directly
to Table 1 would reflect the high quality of reconstruction.

Although the O’Connor coordinate is the median value among the nine locations, a
graphical representation in Figure 1 clearly shows that she groups very closely with Kennedy
and Rehnquist; the gap between O’Connor and Souter, her closest colleague to her immediate
left is rather large indeed. So, in choosing the next Justice, an equivalence would be more
toward a Kennedy/Rehnquist conservative rather than to a Scalia/Thomas conservative.

Hierarchical Classification (Clustering). Instead of relying on a set of coordinates
(and their absolute differences) as in unidimensional scaling to represent the elements in a
proximity matrix, a best-fitting ultrametric tries to give a representation by constructing a
second matrix to approximate P (say, U = {ûij}) minimizing the least-squares criterion∑

i 6=j

(pij − ûij)
2,

where the entries in U satisfy the ultrametric inequality: ûij ≤ max{ûik, ûkj} for all i, j,
and k. In the case of the data of Table 1, the best-fitting ultrametric is defined by the
eight nonzero distinct values that indicate how the hierarchical sequence of partitions is
constructed:

Partition Level Formed
{Sc, Th, Oc, Ke, Re, St, Br, Gi, So} .641
{Sc, Th, Oc, Ke, Re}, {St, Br, Gi, So} .402
{Sc, Th}, {Oc, Ke, Re}, {St, Br, Gi, So} .363
{Sc, Th}, {Oc, Ke, Re}, {St}, {Br, Gi, So} .310
{Sc, Th}, {Oc}, {Ke, Re}, {St}, {Br, Gi, So} .285
{Sc, Th}, {Oc}, {Ke, Re}, {St}, {Br}, {Gi, So} .230
{Sc, Th}, {Oc}, {Ke}, {Re}, {St}, {Br}, {Gi, So} .220
{Sc, Th}, {Oc}, {Ke}, {Re}, {St}, {Br}, {Gi}, {So} .210

The ultrametric representation has a less-adequate VAF (of 73.7%) than does the unidimen-
sional scale. Figure 2 gives what is called a dendrogram for this best-fitting ultrametric. Note
that the Justices are not ordered according to the unidimensional scaling in this particular
graphical presentation. Although in this instance, the ordering of the justices in Figure 2
could have been given according to the unidimensional scaling, we did not do so to emphasize
the basic “unorderedness” of the clusters implied by the construction of the ultrametric.

Conclusion. As a general summary, it appears that agreement among the Supreme Court
Justices is better represented as a unidimensional scaling than as a categorical structure
defined by a hierarchy of partitions through an associated ultrametric. Also, in terms of
the identified Justice O’Connor, although she is placed in the middle of the scaling, there
is a major tilt toward the conservative end in having a coordinate value very close to those
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Figure 1: Unidimensional Scaling of the Justices Based on the Coordinates Given in the
Text
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for Kennedy and Rehnquist, and very discrepant from that for Souter, the colleague to her
immediate left.

No other dissimilarity matrices were analyzed that might have resulted from different
disaggregations, such as the type of case under consideration or the plurality of vote (e.g.,
in 5 to 4 resolutions). Also, we make no particular psychological interpretation of the strong
unidimensionality observed in our aggregate analyses, or speculate about the underlying
decision mechanisms. We obviously invite others to pursue these different analyses and
interpretations.

Lawrence Hubert is Professor of Psychology and of Statistics, University of Illinois, Cham-
paign, Illinois; Douglas Steinley is Assistant Professor of Psychological Sciences, University
of Missouri, Columbia, Missouri.
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Figure 2: Dendrogram Representation for the Best-Fitting Ultrametric Discussed in the Text
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