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Abstract

This is the User�s Guide to the GTM Toolbox � a set of Matlab functions and
scripts that implements and demonstrates the generative topographic mapping� a
method for density modelling� dimensionality reduction and data visualisation�
This document gives a brief description of the GTM� the content of the toolbox
and what is required to use it� It describes how to use the toolbox and provides
a section of practical advice and tips� Finally� it contains a reference section for
the functions and scripts in the toolbox�
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Chapter �

Introduction

This section gives a brief introduction to the GTM� the content of this toolbox�
and what you need to use it� It is assumed that you have read at least one of the
papers on the GTM �Bishop� Svens�en� and Williams ����b� Bishop� Svens�en�
and Williams ����a� Bishop� Svens�en� and Williams ���
���

��� What is GTM

GTM� which stands for generative topographic mapping� is a mathematical
model for density modelling and visualisation �Bishop� Svens�en� and Williams
����b�� It generates a constrained mixture of Gaussians in the data space� which
is �tted to the data using a modi�ed form of the EM �expectationmaximisation�
algorithm �Dempster� Laird� and Rubin ����� Bishop ���	�� More speci�
cally� we constrain the model by con�ning the centres of the mixture to a low
dimensional manifold embedded in the data space� This is achieved by a latent
variable model approach� where we map a lowdimensional latent variable space
into the data space using a parametric nonlinear mapping�

Figure ��� shows an example where a discrete sample from a twodimensional
latent variable space� x� is mapped into a threedimensional data space by a
parameterised nonlinear mapping� y�x�W�� Each point in the latent space
maps to a corresponding point in the data space and treating each of these
points as a centre of a Gaussian� we get a mixture of Gaussians� As far as this
release of the toolbox is concerned� we only consider mixtures with equal mixing
coe�cients and a single variance parameter� common to all mixture components�
However� this could easily be extended to more general models�

Note that� although we work with a discrete latent variable sample� the map
ping is de�ned continuously over the latent space� sweeping out a corresponding
manifold in the data space� on which the centres of the Gaussians lie�

We alter the shape of the mixture by modifying the parameters of the map
ping�W� using an EM algorithm where the Mstep is modi�ed to suit our partic

�These papers are available from the GTM homepage� http���www�ncrg�aston�ac�uk�GTM�
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Figure ���� The basic idea of the GTM � points in the lowdimensional latent
space is mapped to corresponding centres of a Gaussians in the �potentially�
highdimensional data space�

ular choice of mapping� This toolbox uses a generalised linear regression model�
which uses a linear combination of �xed nonlinear basis functions� This gives
signi�cant computational advantages� since the corresponding Mstep reduces
to a matrix inversion� avoiding the iterative search procedures often associated
with the �tting of nonlinear models�

An important feature of the GTM is that it can be used for visualisation
of data� provided the latent space has no more than two or possibly three di
mensions� Since the GTM de�nes a probability distribution in the data space�
p�tjx�W�� �where t denotes a point in the data space and W� denotes parame
ters of the model �tted to training data�� we can use Bayes� theorem to compute
p�xjtn�W

��� for a data point tn� which then can be plotted against the latent
variable� You can think of it as reversing the mapping to go from data to latent
space� Remember� however� that a single data point in the data space will map
to a complete distribution over the latent space� not just a single point�

��� What does this toolbox contain�

This package provides a set of Matlab functions which together have all the
necessary machinery to generate GTMs and use them for visualisation of data�
It has been developed as a part of ongoing research� with the intention of being
modular to allow for easy extensions and changes� There are also functions
included which are designed to facilitate e�cient use and to lower the �threshold
of practicalities��

At the moment� it comes as aMatlab implementation accompanied by two
short C programs� it does not require any extra toolboxes etc� to run� If you
have a C compiler supported by Matlab� the C �les can be compiled into mex
�les which are called directly from Matlab �The MathWorks� Inc� ������ This

	



will give a speed up of the GTM training process� but the package can also be
used as a pure Matlab implementation� There is a demo provided �gtm demo��
which shows the GTM in action on a toy problem� The corresponding code
forms an example of how some of the other functions can be used�

In terms of documentation� there is this document� which provides a de
scription of the package and how to use it� It does not describe any of the
underlying theory� It is important that the users of this package understand its
theoretical foundations� which can be achieved by reading the papers published
on the GTM model �Bishop� Svens�en� and Williams ����b� Bishop� Svens�en�
and Williams ����a� Bishop� Svens�en� and Williams ���
�� This document is
written with the assumption that the readers are already familiar with the GTM
and its associated terminology� it is also assumed that the readers are familiar
with Matlab�

The second part of this document is the reference manual� describing all
functions and scripts in the toolbox� This reference documentation is also deliv
ered as a set of html�les� which can be displayed in htmlbrowsers like Netscape
and Mosaic�

����� What�s required to use the toolbox�

As has already been said� this package can be used as it is under Matlab v���
�or later�� There are� however� requirements in terms of hardware which may
impose restrictions on the size of problems you can tackle with the package�
In particular� the training algorithm requires signi�cant amounts of memory to
be allocated� This is largely due to the fact that the GTM training algorithm
provided with this version of the toolbox operates in batchmode only�� Some
of the matrices manipulated during training scale like the product of the size
of the set of training data and the number of the latent variable points� e�g�
with ���� training data points and ��� latent variable points� the distance and
responsibility matrices� will have ��� ��� elements� requiring over � megabytes
of storage each� with 
� bit �oating point representation� The algorithm is also
demanding in terms of CPU usage�

Consequently� you may experience problems if you try to tackle larger scale
problems on a machine with limited resources� Matlab is itself quite demand
ing in terms of memory and its memory management is geared towards speed of
execution rather than limited memory usage� the Matlab documentation �The
MathWorks� Inc� ����� gives some tips on how to tackle memory problems�

�This is an inherent problem with batch�algorithms� arising from the need of storing large
amounts of intermediate results� The same problem occurs also with other batch algorithms�
e�g� the batch version of the self�organizing map �Kohonen ������

�These matrices are generated during the training of a GTM� as described in section 	�
�






��� The rest of this document

In the next chapter� the �rst two sections ���� and ���� describe how to generate
and train a GTM� and how to use it for visualisation� The last section �����
describes how the toolbox works at a more detailed level� and can be omitted
until the methods described in sections ��� and ��� no longer su�ce for your
needs�

The last chapter gives some hints on the selection of parameters� thereafter
follows the reference section�
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Chapter �

How to use this toolbox

Every session using this package �from scratch� �i�e� starting with just a data set�
will involve two main steps� setup and training� Setup refers to the process of
generating an initial GTM model� made up by a set of components �Matlab

matrices�� Training refers to adapting the initial model to a data set� in order
to improve the �t to that data�

Both steps can be more or less automated� depending on which level of
detail you want to work� This package contains functions that automate what
is believed to be the most common usage procedures� All that these functions
do is to call other functions of the package� so by instead doing this by hand
you can exercise more control over the exact details of your model�

The �rst sections of this chapter describe how to set up and train a GTM�
and how to use it for visualisation of data� The following section take a look
under the bonnet� explaining the steps of setup and training in greater detail�
for convenience we �rst introduce some notation used in text� �gures� examples
and also in the Matlab code� most of it also conforms �more or less� to the
notation used in the papers on the GTM� A few selfexplanatory variable names
are omitted�

Notation

T denotes a matrix containing the data we want to model and visualise �stored
rowwise��

X denotes a matrix containing the latent variable sample points �stored row
wise��

MU denotes a matrix containing the positions of the basis functions in the latent
space �stored rowwise��

sigma denotes a scalar giving the relative width of the basis functions� the
absolute width is calculated as sigma times the distance between two
neighbouring basis function centres�

�



beta
W
FI

beta
W
FI
MU
X

T
noLatPts

sigma

noBasisFn

}or

Set-up

gtm_stp2)

(gtm_stp1

trndBeta
trdnW

lambda
noCycles
(mode)
(quiet)

T
{

Training
(gtm_trn)

Figure ���� The automated setup and training procedures for generating a
GTM� The components to the left and right of the boxes denotes input and
output arguments respectively� arguments within parentheses are optional�

FI denotes a matrix containing the output the basis functions corresponding to
the latent variable sample X�

W denotes the weight matrix mapping the output of the basis functions to the
data space�

Y denotes a matrix containing the centres of Gaussian mixture generated in the
data space� �Y � FI�W�

beta denotes a scalar giving the inverse variance of the components of the
Gaussian mixture that is generated in the data space�

lambda denotes a scalar giving the weight regularisation coe�cient used when
training the model�

mode denotes an integer that selects the mode of calculation �this is discussed
further in section �����

gtm � denotes functions of the GTM toolbox� where � is replaced by ��� letters
or digits� to form the name of the function�

��� Set�up and training

Figure ��� illustrates the procedure for automated setup and training� The
setup functions �gtm stp� or gtm stp�� take the data set we want to model�
along with parameters of the GTM� and generate the initial GTM components�
which are subsequently fed into the training function� gtm trn�

These components represent a default initial GTM� utilising a uniformly
gridded latent sample �X�� Gaussian basis functions �FI� uniformly gridded over
the space of the latent sample� weights �W� mapping the outputs of the basis
functions corresponding to the latent sample to the �rst principal component�s�
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of the data� and an accordingly chosen value for beta� The user chooses the size
of the latent sample and the number and relative width of the basis functions�

gtm trn iteratively adapts the parameters W and beta� each iteration im
proving the �t to the data� and returns the new values after a given number of
cycles� If desired� these new values can be used as input arguments in second
call to gtm trn� continuing the training from where it ended�

gtm trn also takes arguments that control the degree of weight regulari
sation� mode of calculation and echoing of diagnostic information � see the
reference section for details�

��� Visualisation

The GTM can be used for visualisation of either individual data points or whole
sets of data� In the former case� the result is a probability distribution over the
latent space� in the latter� we summarise the distributions by their corresponding
means or modes� This toolbox contains three corresponding functions� which
all return vectors or matrices suited for visualisation using Matlab�s graphics
routines�

gtm ppd computes and returns the posterior probability distribution induced
over the latent space given a single points in the data space� Depending on the
dimensionality of the latent space� it returns either two vectors that can be used
with plot or three mesh matrices that can be used with Matlab�s routines for
�D graphics� e�g� pcolor� mesh and surf� In the latter case� it assumed that
the latent sample was generated using gtm stp�� in order for the �D graphic
routines to work�

gtm pmn takes a whole set of data points� together with the components of a
�trained� GTM and returns� for each data point� the mean of the corresponding
distribution in the latent space� Using this form of visualisation� one should al
ways bear in mind that the mean might be a poor descriptor of the distribution�
e�g� in the case it is multimodal�

For a multimodal distribution� the mean is often signi�cantly di�erent from
the mode� so we may be able to detect such cases by comparing means and
modes� gtm pmd works just like gtm pmn� with the di�erence that it computes
the mode rather than the mean of the posterior distribution�

Example

The example in box ��� illustrates the use of the functions described in the
previous sections� A �le named Data�mat is present in the directory where
Matlab is started� containing a data set living in a highdimensional space�

Figure ��� shows the result from the calls to surfl and plot� Note that for
most meanmode pairs in the right plot� although there may be some discrep
ancies� these merely indicate that a few nearby mixture components share the
responsibility for the corresponding data point�
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Data
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�� noBasisFn � �� � ��by�� basis function grid

�� sigma � ����
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�

�� modes � gtm�pmd	Data� X� FI� trndW
�

�� plot	means	�������
� means	�������
� �o�� ���
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 � � plot only subset for clarity

�� for i � �����

plot	�means	i��
�modes	i��
�� �means	i��
� modes	i��
�� ���


end

��

Box ���� Transcript of theMatlab session that produced the plots in �gure ����
A Matlab workspace �le named Data�mat is present in the directory where
Matlab was started�
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Figure ���� Examples of visualisation with the GTM� The left plot shows the
posterior distribution over the latent space induced by the 	�th data point
�which in this case proved to be pretty interesting�� The right plot shows the
posterior mean ��� and mode ��� projection of a subset of the data set in the
latent space� with corresponding mean and mode points joined by a line�

��� Under the bonnet

Rather than using the automated setup functions� you can generate the neces
sary initial components �manually�� This gives you more detailed control over
the model� and lets you try out con�gurations not directly supported by the
automated setup�

Manual setup essentially means carrying out the steps of the automated
setup functions by hand� so an easy way to get an understanding of what to do
is to look at the inner workings of these functions� �gure ��� gives a pictorial
description of what is happening inside gtm stp�� �gtm stp� is very similar �
just slightly simpler��

The procedure consists of four steps�

�� Generate a latent variable sample� X�

�� Generate the centres of the basis functions� MU�

�� Compute the activations in the basis functions� FI� given the latent vari
able sample�

�� Compute an initial weight matrix� W� mapping from the output of the
basis functions to the data space� and an initial value for beta� the inverse
variance of the Gaussian mixture�

Steps � and � both generate sets of points in the latent space� and hence can
both be carried out in the same way� gtm stp� and gtm stp� both generate
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Figure ���� The inner workings of gtm stp�� illustrating the steps of creating
an initial GTM�

uniformly gridded samples over the latent space� this is trivial in the case of a
onedimensional space� For a twodimensional latent space� gtm rctg generates
a set of points taken from a regular� rectangular lattice over the latent space�
gtm hxg does the same thing� but instead uses a hexagonal lattice��

Alternatively� these steps could be accomplished using Matlab�s rand or
randn functions� which generate random samples from a uniform and normal
distribution respectively� This is generally not recommended� since GTMs gen
erated in exactly the same way could still give slightly di�erent results�� more
over� you would not be able to use a ��D� latent variable sample generated this
way withMatlab�s functions for �D visualisation �mesh� surf� pcolor� etc���
However� it does provide a fast way of generating GTMs with latent spaces of
higher dimension then two� be aware� though� that the number of points re
quired to provide an adequate sample grows exponentially with the number
of dimensions of the latent space � a phenomenon known as the curse of di�

mensionality �Bellman ��
�� Bishop ���	� � and therefore higher dimensional
models are computationally expensive�

Step � is carried out using gtm gbf� It returns the activations of a set of
spherical Gaussian basis functions whose centres were generated in step � and

�gtm hxg was developed as part of the study of the relationship between GTM and the self�
organizing map �Kohonen ������ For the case of the GTM� using a rectangular or hexagonal
lattice appears to have small impact on the resulting density model� although in visualisation�
the underlying lattice may �shine through� to some extent�

�This could be avoided by initialising the random generator each time before generating
an initial GTM�
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the width chosen by the user� given the latent sample generated in �� There is
also a function� gtm lbf� which returns the activations from linear basis func
tions� with a Gaussian latent distribution and linear basis functions� the GTM
will implement a constrained variant of factor analysis� However� the use of
linear basis functions is not considered further in this document�

For step �� �nally� gtm pci calculates a weight matrix which maps the L
dimensional latent variable to the plane spanned by the L �rst principal com
ponents of the target data� so as to match the mean and variance of the data
projected onto this plane� The corresponding value for beta is chosen so its
inverse equals larger of

� half the average distance from one component of the mixture to its nearest
neighbour� or

� the �L � ��th eigenvalue of the covariance matrix of the data� i�e� the
largest variance orthogonal to the Ldimensional hyperplane to which the
latent sample is mapped�

This is the initialisation used by gtm stp� and gtm stp��
Alternatively� gtm ri returns a weight matrix generated at random from

an axisaligned Gaussian distribution �in the weight space�� with parameters
chosen so that the mean and variance of the set of points generated in target
space �taken to be the centres in the Gaussian mixture� roughly match the mean
and variance of the data on each dimension� beta is set to the average distance
between each mixture component and its nearest data point�

����� The steps of training

Whereas it is reasonably likely that you might want to try set up GTM models
by hand� in order to try con�gurations not catered for by the automated set
up procedures� it is rather unlikely that you ever will want to do �manual�
training� This section is rather intended as additional documentation on the
implementation of training algorithm in this toolbox �gtm trn�� it should be
particularly useful when you want to experiment with� or change this code� The
whole training procedure is illustrated in �gure ���� details of the �gure are
explained in the following paragraphs�

The training procedure can� initially� be divided into the two steps of the
EMalgorithm� In the Estep we calculate a matrix� R� containing the responsi
bilities assumed by each Gaussian mixture component for each of the training
data points� These responsibilities are subsequently used in the Mstep� for cal
culating new parameters of the Gaussian mixture� by means of new values for
W and beta�

The Estep can� in turn� be broken down into two sub tasks� gtm dist

takes care of the �rst one� calculating the distances between all mixture com
ponents and all training data points� It takes the corresponding two matrices�
T and Y� as input arguments and returns a matrix with all the distances� DIST�
This is a computationally demanding step� the overall speed of the algorithm
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Figure ���� A simpli�ed illustration of the steps of training� Note a� how infor
mation is �owing down the �gure� b� how all Esteps but the �rst overlaps with
the preceding Mstep by reusing DIST�
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can be increased if this calculation is done using an external C or Fortran
implementation��

The DIST matrix is used as an argument to gtm resp which calculate re
sponsibilities from the distances� which are returned in a matrix� R�

There are optional argument for both gtm dist and gtm resp controlling
the mode of calculation � greater accuracy can be obtained at the expense of
more calculations� At the moment there are three modes of calculations� ��
� and �� in increasing order of accuracy and required number of operations�
No serious attempt has been made to quantify the di�erences in accuracy� but
experience so far point towards very marginal improvements in accuracy� and
that the relative largest gain is made going from mode � to mode �� �See code
for details��

As has already been said� the GTM training algorithm is quite demand
ing in terms of memory� a problem further worsened by the fact that output
arguments from functions are passed by value in Matlab� This leads to prob
lems with repeated calls to gtm dist and gtm resp� each call will allocate re
turn matrices from the memory heap� and if these matrices take sizes in or
der of megabytes� Matlab will run out of memory before long�� Therefore�
gtm dist and gtm resp have sibling functions� gtm dstg and gtm rspg which
utilise global variables to pass on their results� rather than normal output ar
guments� For these functions to work e�ciently� the necessary global variables
should have been preallocated� It is highly recommended that you use gtm dstg

and gtm rspg rather than gtm dist and gtm resp inside any kind of loop struc
tures �gtm trn indeed does so�� There is a C implementation of gtm dstg� note
that this has preallocated global variables of correct size as an absolute pre
requisite�

The Mstep can also be divided into two steps� �rst maximising with respect
to W� then with respect to beta� The �rst step corresponds to solving a system
of linear equations� i�e� a matrix inversion followed by a matrix multiplication�
As the matrix that is inverted is symmetric and often also positive de�nite�
it is worthwhile trying Cholesky decomposition� with the option of resorting
to the pseudoinverse if the matrix would prove to be singular� this normally
gives better performance both in terms of speed and accuracy� In �gure ��� this
is just represented by the line invA � inv	���
�� for the sake of simplicity�
Admittedly� the savings in CPUtime are normally marginal� as the matrix
inversion only accounts for a small part of total amount of calculations necessary
the determine W� Most of the time is spent calculating the factor 	FI��	R�T

�
note that the multiplication should be forced to go righttoleft� which normally
requires signi�cantly fewer operations��

�The dierence in speed between the C and Matlab implementations delivered in the
toolbox varies between platforms� but it appears as if the C implementation is faster �if only
slightly� in most cases�

�One would have hoped that Matlab would re�use allocated memory upon repeated func�
tions calls� but experience shows that this is not the case�

�This is due to the fact that these are not square matrices� �absorbing� the largest dimension
�rst� which is normally the number of training data points� will minimise the total number
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For the maximisation of beta� we simply apply the update formula from
the papers� Note� however� that the DIST matrix should be recalculated with
the new set of weights� This may seem to be a costly update formula� but
the new DIST matrix can be retained and used for calculating a new matrix of
responsibilities �using the updated beta� for the next iteration of training�

of operations required� Matlab does not seem to recognise this fact� but do the calculations
left�to�right� regardless of the shape of the matrices involved�
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Chapter �

Practical advice and tips

So far we have covered the procedures involved in building and experimenting
with GTMs� This section gives additional guidelines for the usage of GTMs
and can hopefully help you to some extent in tackling the problem of parameter
setting� The setting of parameters corresponds to choosing a prior distribution
over possible models� which generally is a di�cult task� However� reasonable
assumptions about the distributions we are trying to model give directions for
this choice� The GTM already prescribes a fairly restrictive prior� as the density
models that can be generated in the data space will necessarily take the shape
of lowdimensional manifolds� It also seems reasonable to assume that this
manifold is relatively smooth� which in turn means that we should choose a
smooth mapping from latent to data space�

The smoothness of the mapping is controlled both by the parameters we
choose at setup time and the ones we set during training� as will be explained
in the following two sections� As the choice of priors is inevitable in statistical
density modelling� it is an important advantage of the GTM that the relationship
between the model parameters and the corresponding prior distributions over
density models is relatively straightforward�

��� Parameters chosen at set�up time

During setup you are required to specify the number of latent points and ba
sis functions� together with a width parameter of the basis functions� The
smoothness of the mapping is largely determined by the properties of the basis
functions� Clearly� a limited number of basis functions will necessarily restrict
the possible forms that the mapping can take� Moreover� as basis functions
overlap� their response will be correlated � it is this correlation that causes the
smoothness of the mapping � which decreases the �e�ective� number of basis
functions� Hence� more or narrower basis functions will allow a more �exible
mapping� while fewer or broader basis functions will prescribe a smoother map
ping� Beware that very broad basis functions will cause the matrix of basis
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function activations� FI� to be illconditioned �gtm pci will warn of this�� while
on the other hand� very narrow basis functions will be close to uncorrelated so
the smoothness of the mapping is lost� The choice of parameters must be done
individually for each problem you try� experience so far has shown that sigma
� ��� is a good starting point� from were you can search by halving or doubling
subsequent values of sigma �i�e� searching on a log� scale��

As we are working with a �nite latent variable sample� the size of this will
also a�ect the �nal mapping� the e�ective measure of overlap between basis
functions is how many latent points they �share�� With too few points per basis
function � and even fewer shared between neighbouring basis functions � the
smoothness of the mapping is lost� Ideally� we would choose the latent variable
sample to be very large� but this is computationally prohibitive� A good rule of
thumb is to have O���L� number of latent points in the support of each basis
function� where L is the number of dimensions of the latent variable�

��� Parameters chosen for training

There is just one parameter to set for training� the weight regularisation factor�
lambda� It governs the degree of weight decay applied during training� While the
basis function parameters controls the smoothness of the manifold in the data
space� the weight regularisation parameter controls the scaling� by restricting
the magnitude of the weights�

In practice� because we work with �nite number of latent and data points�
a small degree of weight regularisation� say ����� is generally advisable as this
prevents the weights from growing very large� which otherwise could cause the
smoothness imposed by the basis function parameter to break down� �In par
ticular� this can be the case when using many broad basis functions��

In general� it is recommended that prior belief about the smoothness of the
mapping is primarily expressed in the choice of basis function parameters� while
the weight regularisation parameter is chosen to ensure that this smoothness is
maintained� while respecting the overall scale of the training data�

����� Local maxima

Like the general EMalgorithm� the training algorithm for the GTM su�ers
from the problem of local maxima� Empirical evidence shows that the PCA
initialisation performed by gtm pci �which is used by gtm stp� and gtm stp��
often yields good results� although not optimal� You will be well advised to also
try a few random initialisations� once a suitable model architecture has been
determined�
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Reference Manual

This part of the document contains reference information about all the func
tions included with the GTM toolbox� This information is also available via
Matlab�s online help and as htmldocuments�

As these reference pages have been generated automatically from the Mat�

lab help comments� please excuse any deviations and �glitches� in the typeset
ting� as compared to the �rst part of this document�
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gtm bi
Calculate an initial value for beta�

The value is calculated from the average distance between the nearest neigh
bours in Y� the centres of the constrained Gaussian mixture generated in the
target space from latent sample�

Synopsis

beta � gtm�bi	Y


Arguments

Y � a matrix containing the positions of the centres of the Gaussian mixture
induced in target space from the latent variable samples�

Return

beta � an initial value for the inverse variance of the Gaussian mixture
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gtm demo
Demonstrates the GTM with a �D target space and a �D latent space�

This script generates a simple data set in � dimensions� with an intrinsic
dimensionality of �� and trains a GTM with a �dimensional latent variable to
model this data set� visually illustrating the training process

Synopsis

gtm�demo

Notes

The script generates a number of variables which may overwrite variables al
ready existing in the workspace� The generated variables remain in the work
space after the script has �nished executing�
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gtm dist
Calculate the squared distances between two sets of data points�

This function calculates distances between all data points in the two data
sets T and Y and returns them in a matrix�

Synopsis

�DIST� minDist� maxDist� � gtm�dist	T� Y� m


�DIST� � gtm�dist	T� Y


Arguments

T� Y � data set matrices in which each row is a data point� dimensions NbyD
and KbyD respectively

m � mode of calculation� i� m � �� min and maxDist �below� are calculated�
the default mode is �

Return

DIST �matrix containing the calculated distances� dimension KbyN� DIST�k�n�
contains the squared distance between T�n��� and Y�k����

minDist� maxDist � vectors containing the minimum and maximum of each
column in DIST� respectively� �byN� required i� m � ��

Notes

This m�le provides this help comment and a MATLAB implementation of the
distance calculation� If� however� a mex�le with the same name is present in
the MATLABPATH� this will be called for doing the calculation� As this is a
computationally demanding step of the algorithm� an e�cient mex�le imple
mentation will improve the performance of the GTM training algorithm�

See also

gtm dstg
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gtm dstg
Calculate the squared distances between two sets of data points�

This function calculates distances between all data points in the two data
sets T and Y and returns them via the global variable matrix gtmGlobalDIST�

In addition� the minimum and maximum value of each column in gtmGlob
alDIST may be calculated and returned via the global variables gtmGlobal
MinDist and gtmGlobalMaxDist�

Synopsis

gtm�dstg	T� Y� m


gtm�dstg	T� Y


Arguments

T� Y � data set matrices in which each row is a data point� dimensions NbyD
and KbyD respectively

m �mode of calculation� the default mode is m � � �see gtmGlobalMinDist MaxDist
below�

Global variables

gtmGlobalDIST �Matrix containing the calculated distances� dimension Kby
N� DIST�k�n� contains the squared distance between T�n��� and Y�k����
This matrix is assumed to be preallocated� if this is not the case� perfor
mance deteriorates dramatically

gtmGlobalMinDist� gtmGlobalMaxDist � vectors containing the minimum
and maximum of each column in DIST� respectively� �byN� calculated
i� m � ��

Notes

This m�le provides this help comment and a MATLAB implementation of the
distance calculation� If� however� a mex�le with the same name is present in
the MATLABPATH� this will be called for doing the calculation� As this is
a computationally demanding step of the algorithm� an e�cient mex�le im
plementation will improve the performance of the GTM training algorithm� A
mex�le implementation will have preallocated global matrices as an absolute
requirement�

See also

gtm dist
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gtm gbf
Calculates the output of Gaussian basis functions for a given set of input

Synopsis

FI � gtm�gbf	MU� sigma� X


Arguments

MU � a MbyL matrix containing the centers of the basis functions

sigma � a scalar giving the standard deviation of the radiisymmetric Gaussian
basis functions�

X � the latent variable sample forming the set of inputs� KbyL

Return

FI � the matrix of basis functions output values� Kby�M���� !��! for a bias
basis function with a �xed value of ���

See also

gtm lbf
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gtm hxg
Produces a �D grid with points arranged in a hexagonal lattice�

The grid is centered on the origin and scaled so the dimension �X or Y� with
largest number of points ranges from � to ��

Synopsis

grid � gtm�hxg	xDim� yDim


Arguments

xDim� yDim � number of points along the X and Y dimensions� respectively�
must be ����

Return

grid � a �xDim"yDim�by� matrix of grid points with the �rst point being
the topleft corner and subsequent points following columnwise�

See also

gtm rctg
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gtm lbf
Calculates the output of linear basis functions for a given set of inputs

This simply amounts to returning the set of inputs with an extra bias column
of ones after the last column in the input set matrix�

Synopsis

FI � gtm�lbf	X


Arguments

X � the latent variable sample forming the set of inputs� KbyL

Return

FI � the matrix of basis functions output values� Kby�L���� !��! for the
bias basis function

See also

gtm gbf
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gtm m�r
Converts from a meshmatrix to vector representation

Returns a matrix in which each row corresponds to a point on the grid
de�ned by the meshmatrices X and Y� The enumeration of points goes from
the topleft corner of the mesh to the bottomright� columnwise�

Synopsis

cXcYcZ � gtm�m�r	X� Y� Z


cXcYcZ � gtm�m�r	X� Y


cXcYcZ � gtm�m�r	X


Arguments

X� Y� Z � meshmatrices for x� y and z coordinates respectively� MbyN�

Return

cXcYcZ � matrix of rows of tuples� �M"N�byk� where k is �� � or �

See also

gtm r�m
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gtm pca
Calculates the principal components of a data set�

The principal components equals the eigenvectors of the covariance matrix
of the data��

Synopsis

�eVts� eVls� � gtm�pca	T


Arguments

T � the data set for which the principal components are to be calculated� Every
row is assumed to be a data point� NbyD

Return

eVts � an DbyD matrix in which each column is a unit length eigenvector of
the covariance matrix of the data� sorted in descending order w�r�t� the
corresponding eigenvalues

eVls � a Ddimensional vector holding the eigen values of the covariance
matrix of the data� sorted in descending order
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gtm pci
Returns a weight matrix initialised using principal components�

The returned weight matrix maps the mean of the latent variable to the
mean of the target variable� and the Ldimensional latent variable variance to
the variance of the target data along its L �rst principal components�

An initial value for beta can also be calculated� based on the noise of the
data �the !L��!th eigenvalue� and the interdistances between Gaussian mixture
centres in the data space�

Synopsis

�W� beta� � gtm�pci	T� X� FI


W � gtm�pci	T� X� FI


Arguments

T � target distribution sample� one data point per row� NbyD

X � the latent distribution sample� KbyL

FI � basis functions� activation when fed the latent data� X� plus a bias� K
by�M���

Return

W � the initialised weight matrix� �K���byD

beta � the initial beta value� scalar� This is an optional output argument�
if ommitted� the corresponding �rather time consuming� calculations are
ommitted too�

Notes

The �rst dimension �column� of X will map to the �rst principal component� the
second dimension �column� of X will map to the second principal component�
and so on� This may be of importance for the choice of sampling density along
the di�erent dimensions of X� if it di�ers between di�erent dimensions

See also

gtm ri
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gtm pmd
Calculates the posterior mode projection of data into the latent space�

The posterior mode projection of a point from the target space� t� is the
mode of the correspondig posterior distribution induced in the latent space�

Synopsis

modes � gtm�pmn	T� X� FI� W


Arguments

T � data points representing the distribution in the target space� NbyD

X � data points forming a latent variable sample of the distribution in the
latent space� KbyL

FI � activations of the basis functions when fed X� Kby�M���

W � a matrix of trained weights

Return

modes � the posterior modes in latent space� NbyL

See also

gtm ppd� gtm pmn
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gtm pmn
Calculates the posterior mean projection of data into the latent space�

The posterior mean projection of a point from the target space� t� is the
mean of the correspondig posterior distribution induced in the latent space�

Synopsis

means � gtm�pmn	T� X� FI� W� b


Arguments

T � data points representing the distribution in the target space� NbyD

X � data points forming a latent variable sample of the distribution in the
latent space� KbyL

FI � activations of the basis functions when fed X� Kby�M���

W � a matrix of trained weights

b � the trained value for beta

Return

means � the posterior means in latent space� NbyL

See also

gtm ppd� gtm pmd
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gtm ppd
Latent space posterior probability distribution for a given data point�

This function calculates the posterior probability distribution induced in the
latent space of a trained GTM model for a given data point� and returns it in a
format suitable for MATLAB�s �D or �D graphic plotting routines� depending
on the latent space dimensionality�

Synopsis

�xl� yl� p� � gtm�ppd	t� Y� beta� X� xDim� yDim


�xl� p� � gtm�ppd	t� Y� beta� X


Arguments

t � a point in the data space� �byD

Y � centres of the Gaussian mixture generated by the GTM in the data space�
Y � FI"W� KbyD

beta � variance of Gaussian mixture� scalar

X � latent sample

xDim� yDim � number of points along the � dimensions of the latent space
meshgrid sample

Return

xl� yl � latent sample� if the latent space is �D� xl and yl are mesh matrices�
if it is �D� xl is identical to X

p � posterior distribution over latent space given data point t� if the latent
space is �D� p is a mesh matrix� otherwise it is a vector of same length as
xl

Notes

If the latent sample X is � dimensional� it is assumed to have been constructed
from a meshgrid� e�g� as if generated by gtm stp�

See also

gtm pmn� gtm pmd� gtm stp�
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gtm r�m
Convert data from column vector to a meshmatrix representation

The meshmatrices are �lled columnwise� starting from the top left corner�
with the elements from the corresponding column vectors� The exact �cX� cY�
cZ�  �X� Y� Z� relationship being�

X�i�j� � cX�meshRows"�i���j�
Y�i�j� � cY�meshRows"�i���j�
Z�i�j� � cZ�meshRows"�i���j�

Synopsis

�X� Y� Z� � gtm�r�m	cX� cY� cZ� meshRows� meshCols


�X� Y� � gtm�r�m	cX� cY� meshRows� meshCols


X � gtm�r�m	cX� meshRows� meshCols


Arguments

cX� cY� cZ � column vectors with x� y� and xdata respectively� Nby�

meshRows� meshCols � number of rows and colmuns of the mesh matrices�
meshRows"meshCols � N

Return

X� Y� Z � mesh matrices� meshRowsbymeshCols

See also

gtm m�r
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gtm rctg
Produces a �D grid with points arranged in a rectangular lattice�

The grid is centered on the origin and scaled so the dimension �X or Y� with
largest number of points ranges from � to ��

Synopsis

grid � gtm�rctg	xDim� yDim


Arguments

xDim� yDim � number of points along the X and Y dimensions� respectively�
must be ����

Return

grid � a �xDim"yDim�by� matrix of grid points with the �rst point being
the topleft corner and subsequent points following columnwise�

See also

gtm hxg
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gtm resp
Loglikelihood and component responsibilities under a Gaussian mixture

The responsibility R�k�n� is the probability of a particular component in the
Gaussian mixture� k� having generated a particular data point� n� It is calculated
from the distances between the data point n and the centres of the mixture
components� ���K� and the inverse variance� beta� common to all components�

Synopsis

�llh� R� � gtm�resp	DIST� minDist� maxDist� beta� D� mode


�llh� R� � gtm�resp	DIST� beta� D


Arguments

DIST � a KbyN matrix in which element �k�n� is the squared distance between
the centre of component k and the data point n�

minDist� maxDist � vectors containing the minimum and maximum of each
column in DIST� respectively� �byN� required i� m � ��

beta � a scalar value of the inverse variance common to all components of the
mixture�

D � dimensionality of space where the data and the Gaussian mixture lives�
necessary to calculate the correct loglikelihood�

mode � optional argument used to control the mode of calculation� it can be
set to �� � or � corresponding to increasingly elaborate measure taken to
reduce the amount of numerical errors� mode � � will be fast but less
accurate� mode � � will be slow but more accurate� the default mode is �

Return

llh � the loglikelihood of data under the Gaussian mixture

R � an KbyN responsibility matrix� R�k�n� is the responsibility takened by
mixture component k for data point n�

Notes

�llh� is put as the �rst output argument� as �R� is not of interest in the fairly
common task of calculating the loglikelihood of a data set under a given model�
This allows for calls like� llh � gtm resp������

See also

gtm dist� gtm rspg� gtm dstg
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gtm ri
Returns an initial random weight matrix�

Generates a weight matrix with the bias weights set to map to the mean of
the target distribution and remaining weights drawn at random from a Gaussian
distribution with zero mean and variances choosen so that the variances of the
generated distribution roughly match the variances of the target distribution�

In addition� an initial value for beta may be calculated as the inverse of
the average distance between each Gaussian centre� calculated with the random
mapping� and its nearest neighbours in the set of data points�

Synopsis

�W� beta� � gtm�ri	T� FI


W � gtm�ri	T� FI


Arguments

T � sample of target distribution� used for calculating the mean� one data point
per row� NbyD

FI � basis functions� activations when fed the latent data� X� plus a bias�
Kby�M���

Return

W � the initialised weight matrix� �M���byD

beta � the initial beta value� scalar� This is an optional output argument� if
omitted� the corresponding calculations are omitted too�

See also

gtm pci

��



gtm rspg
Loglikelihood and component responsibilities over a Gaussian mixture

The responsibilities are returned via the global variable matrix gtmGlobalR�
The responsibility gtmGlobalR�k�n� is the probability of a particular component
in the Gaussian mixture� k� having generated a particular data point� n� It
is calculated from the distances between the data point n and the centres of
the mixture components� ���K� and the inverse variance� beta� common to all
components�

Synopsis

llh � gtm�rspg	beta� D� mode


llh � gtm�rspg	beta� D


Arguments

beta � a scalar value of the inverse variance common to all components of the
mixture�

D � dimensionality of space where the data and the Gaussian mixture lives�
necessary to calculate the correct loglikelihood�

mode � optional argument used to control the mode of calculation� it can be
set to �� � or � corresponding to increasingly elaborate measure taken to
reduce the amount of numerical errors� mode � � will be fast but less
accurate� mode � � will be slow but more accurate� the default mode is �

Return

llh � the loglikelihood of data under a the Gaussian mixture�

Global variables

gtmGlobalR � an KbyN responsibility matrix� gtmGlobalR�k�n� is the responsa
bility takened by mixture component k for data point n�

gtmGlobalDIST � an KbyN matrix in which element �k�n� is the Euclidean
distance between the centre of component m and the data point n�

gtmGlobalMinDist� gtmGlobalMaxDist � vectors containing the minimum
and maximum of each column in DIST� respectively� �byN� required
i� m � ��

See also

gtm resp� gtm dstg� gtm dist
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gtm sort
Sorts the columns of argument matrix R in increasing order�

Synopsis

srtdR � gtm�sort	R


Arguments

R � an �unsorted� matrix

Return

srtdR � the corresponding sorted matrix

Notes

The m�le implementation is simply an alias for MATLAB�s builtin sort func
tion� However� if a corresponding mex�le exists� this will be used instead�
experience has shown that a Cimplementation of �e�g�� quicksort works much
faster�

��



gtm stp�
Generates the components of a GTM with a �D latent space�

Synopsis

�X� MU� FI� W� beta� � gtm�stp�	T� noLatVarSmpl� noBasFn� s


Arguments

T � target data� to be modelled by the GTM�

noLatVarSmpl � number of samples in the latent variable space

noBasFn � number of basis functions

s � the width of basis functions relative to the distance between two neighbour
ing basis function centres� i�e� if s � �� the basis functions will have widths
�std�dev� equal to �i�e� � times� the distance between two neighbouring
basis function centres�

Return

X � the grid of data points making up the latent variable sample� a vector of
length noLatVarSmpl� in which each row is a data point

MU � a noBasFnelement vector holding the coordinates of the centres of the
basis functions

FI � the activations of the basis functions when fed the latent variable sample
X� and a bias unit �xed to ���� a matrix with the same number of rows as
X and noBasFn�� columns ��� for the bias��

W � the initial matrix of weights� mapping the latent variable sample X linearly
onto the �rst principal component of the target data �T�

beta � the intial value for the inverse variance of the data space noise model

Notes

The latent variable sample is constructed as a uniform grid on the interval ���
��� Similarly the centres of the basis function are gridded uniformly over the
latent variable sample� with equal standard deviation� set relative to the distance
between two centres� The initial linear mapping maps mean and std�devs� ���
from the latent to the target sample along the principal component�

See also

gtm stp�

��



gtm stp�
Generates the components of a GTM with a �D latent space�

Synopsis

�X� MU� FI� W� beta� � gtm�stp�	T� noLatVarSmpl� noBasFn� s


Arguments

T � target data� to be modelled by the GTM�

noLatVarSmpl � number of samples in the latent variable space� must be an
integer��� e�g� �� �� �� �
� �	� �
� ��� ���

noBasFn � number of basis functions in the� must be an integer��

s � the width of basis functions relative to the distance between two neigh
bouring basis function centres� i�e� if s � �� the basis functions will have
widths �std�dev� equal to �� times� the distance between two neighbouring
basis function centres�

Return

X � the grid of data points making up the latent variable sample� a matrix of
size noLatVarSmplby�� in which each row is a data point

MU � a noBasFnby� matrix holding the coordinates of the centres of the basis
functions

FI � the activations of the basis functions when fed the latent variable sample
X� and a bias unit �xed to ���� a matrix with the same number of rows as
X and noBasFn�� columns ��� for the bias��

W � the initial matrix of weights� mapping the latent variable sample X linearly
onto the � �rst principal components of the target data �T�

Notes

The latent variable sample is constructed as a uniform grid in the square �� ��
� �� � �� � ��� Similarly the centres of the basis function are gridded uniformly
over the latent variable sample� with equal standard deviation� set relative to
the distance between neigh bouring centres�The initial linear mapping maps
the std�devs� ��� from the latent to the target sample

See also

gtm stp�

��



gtm trn

Optimize �train� the parameters of a GTM model� using an EM algorithm�

Synopsis

�W� beta� llhLog� � gtm�trn	T� FI� W� l� cycles� beta� m� q


�W� beta� � gtm�trn	T� FI� W� l� cycles� beta


Arguments

T � matrix containing a sample of the distribution to be modeled� NbyD

FI � matrix containing the output values from the basis functions� when fed
the latent variable sample� Kby�M���

W � an initial weight matrix� �M���byD

l � weight regularisation factor

cycles � no of training cycles

beta � an initial value for beta� the inverse variance of the Gaussian mixture
generated in the data space

m � mode of calculation� it can be set to �� � or � corresponding to increasingly
elaborate measure taken to reduce the amount of numerical errors� mode
� � will be fast but less accurate� mode � � will be slow but more accurate�
the default mode is �

q � quiet execution� if q equals the string �quiet�� the plottingand echoing of
the values of log likelihood and beta during traaining is supressed� This
argument is optional� if omitted the training is run nonquiet�

Return

W� beta � the corresponding weight matrix and inverse variance after training

llhLog � the loglikelihood after each cycle of training� optional output argu
ment
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