
Model-Based Clustering Toolbox for MATLAB

Angel R. Martinez
Naval Surface Warfare Center, Dahlgren Division

Wendy L. Martinez1

Office of Naval Research

January 2003

Abstract: This documentation describes various functions for performing model-based clustering and
associated tasks. These are written in MATLAB, version 6.5, but users should be able to run these in older
versions of MATLAB. The MATLAB Statistics Toolbox is not required, except for displaying the
dendrogram. This documentation includes a description of the model-based clustering methodology and
detailed step-by-step instructions for using the MATLAB Model-Based Clustering Toolbox. We assume
that the user has a basic understanding of how to use MATLAB.

Disclaimer: This software and documentation are distributed in the hope that they will be useful, but they
are distributed without any warranty and without even the implied warranty of correctness or fitness for a
particular purpose.

The federal government, in particular the Department of the Navy and the Office of Naval Research,
disclaims all responsibility for this software and any outcome from its use. In addition, this software and
documentation does not reflect the views of and is not endorsed by the federal government nor the
Department of the Navy.

The code has been tested with care, but is not guaranteed to be free of defects and is not guaranteed for
any particular purpose. Bug reports and suggestions for improvements are always welcome at the address
given below.

Acknowledgements: We would like to acknowledge the following people for their assistance in this
effort: Chris Fraley and Adrian Raftery (University of Washington), and Jeffrey L. Solka (Naval Surface
Warfare Center, Dahlgren, VA). Wendy Martinez is also grateful for the support of the ONR ROPO
program.

1. 800 North Quincy Street, BCT1, Code 311, Arlington, VA 22217-5660, Wendy_Martinez@onr.navy.mil

Documentation January 2003

2

Table of Contents

1. Background Information on Model-Based Clustering ...3
1.1 Model-Based Clustering in Detail ..3
1.2. The EM Algorithm ..5
1.3. Model-Based Clustering - Continued ...6

2. Generating Data From a Finite Mixture ..9
3. Agglomerative Model-Based Clustering ...13
4. Model-Based Clustering ..16

4.1 The EM for Finite Mixtures ...16
4.2 Model-Based Clustering Process ...17

5. Visualizing the Results ..18
5.1. Plotting the BICs ...18
5.2. Rectangle Plots ...18
5.3. ReClus Plots ..22

6. Future Improvements ...25
7. Installation Instructions ..25
8. Function Reference ..27

agmbclust ...27
genmix ..27
mbcfinmix ...27
mbclust ..28
mixclass ...29
plotbic ..29
reclus ..29
rectplot ...30

References ...31

Documentation January 2003

3

1. Background Information on Model-Based Clustering

For information on model-based clustering, see the following references:

Jeffrey D. Banfield and Adrian E. Raftery (1993).” Model-based Gaussian and non-
Gaussian clustering.” Biometrics 49:803-821.

Chris Fraley and Adrian E. Raftery, (1998). “How many clusters? Which clustering
method? Answers via model-based cluster analysis,” Computer Journal 41:578-588.

The model-based clustering method is based on finite mixtures, where the output model is
a weighted sum of c multivariate normals:

. (1)

We describe model-based clustering in more detail later, but the general idea is to generate
estimates based on Equation 1, where constraints are imposed on the covariance matrices. The best
estimate and model (i.e., number of components, parameter estimates, and form of the covariance
matrices) is chosen based on the model that yields the highest value of the Bayesian Information
Criterion (BIC).

1.1 Model-Based Clustering in Detail

A foundational assumption of model-based clustering is that the data are generated by a mixture of
probability distributions in which each component represents a different group or cluster. That is,
in the general case, given d-dimensional observations , let be the density of

an observation from the k-th component, where is a vector containing the parameters for the
component. One way to model the composite of the clusters is via the mixture likelihood given by

, (2)

where c is the number of components in the mixture, and is the probability that an observation
belongs to the k-th component.

f x() pkφ x µk Σk,;()
k 1=

c

∑=

x1 … xn, , f xi θk()

xi θk

L θ1 … θG τ1 … τG x, ,;, ,() τkfk xi θk()
k 1=

c

∑
i 1=

n

∏=

τk

Documentation January 2003

4

In model-based clustering, the multivariate normal is used as the density for ,

with consisting of a vector of means and a covariance matrix . Thus, the density has the
form

. (3)

Key to this method is the fact that the covariance matrix determines important geometric
characteristics of the clusters. Banfield and Raftery [1993] developed a model-based clustering
framework by parameterizing the covariance matrix in terms of eigenvalue decomposition, as
follows

, (4)

where is the orthogonal matrix of eigenvectors, is a diagonal matrix whose elements are

proportional to the eigenvalues of , and is a scalar. By means of this decomposition of the

covariance matrix , geometric characteristics of the distributions can be imposed and a suitable
model can be generated.

Orientation, volume and shape can be specified by using the models given in Table 1. The
determination of the component parameters for each of the models is done via the Expectation-
Maximization algorithm (EM), which is described in the following section [Dempster, Laird, and
Rubin, 1977].

fk xi θk()

θk µk Σk

fk xi µk Σk,()

1
2
--- xi µk–()TΣk xi µk–()–

exp

2π()d 2⁄ Σk
1 2⁄

--=

Σk

Σk λkDkAkDk
T=

Dk Ak

Σk λk

Σk

Documentation January 2003

5

1.2. The EM Algorithm

The EM algorithm is an iterative procedure that is started with an estimate of the number of
components and an initial guess of the component parameters. In general, the following are the
steps of the procedure. [Note that the update equation for the covariance matrices (Equation 9)
will change in the model-based clustering case, depending on the constraints imposed on the
components.]

Step 1: This is the E step, where we determine the posterior probability for each component:

, (5)

where c is the number of components (or clusters), n is the number of observations, is the

estimated posterior probability that the j-th point belongs to the k-th component, is
the multivariate normal density for the k-th component evaluated at the j-th point, and

(6)

Table 1 Parameterizations for Model-Based Clustering

Distribution Volume Shape Orientation

Spherical Equal Equal NA

Spherical Variable Equal NA

Ellipsoidal Equal Equal Equal

Ellipsoidal Variable Variable Variable

Ellipsoidal Equal Equal Variable

Ellipsoidal Variable Equal Variable

Σk

λI

λkI

λDADT

λkDkAkDk
T

λDkADk
T

λkDkADk
T

τ̂kj
p̂kφ xj µ̂k Σ

ˆ
k,;()

f̂ xj()
------------------------------------;= k 1 … c j;, , 1 … n, ,= =

τ̂kj

φ xj µ̂k Σ
ˆ

k,;()

f̂ xj() p̂kφ xj µ̂k Σ
ˆ

k,;()
k 1=

c

∑=

Documentation January 2003

6

is the finite mixture estimate at point . The mixing coefficient or weight is given by .The
estimate of the posterior probability is used in the following step to compute estimates of the
parameters for each component and the mixing coefficients.

Step 2: This is the maximization or M step. The following equations update the component
mixing coefficients, the means and the covariances in each iteration. The mixing coefficient is
updated using

. (7)

The component means are updated next as follows:

. (8)

Finally, the update for the covariance matrix (in the general, unconstrained case) is given by

. (9)

The next iteration begins with an updating of the estimate of the posterior probability for
each datum and component using Equation 5, followed by updates using Equations 7 to 9.
Iterations stop when a predefined tolerance is met, i.e., until the estimates for the parameters stop
changing within the tolerance specified.

1.3. Model-Based Clustering - Continued

Before we outline the steps of model-based clustering, we return to the issue of the constraints
imposed on the covariance matrices that give rise to the various models (see Table 1). Our
implementation of Banfield and Raftery’s method uses four of the possible models. These are
outlined and described in Table 2. The update equations for these models can be found in Celeux
and Govaert [1995].

Recall that the EM algorithm requires an initial guess at the component parameters, the
mixing coefficients and knowledge of the number of components in the mixture. The same

xj p̂k

p̂k
1
n
--- τ̂kj

j 1=

n

∑=

µ̂k
1
n
--- τ̂kj

p̂k

j 1=

n

∑=

Σ
ˆ

k
1
n

τ̂kj xj µ̂k–() xj µ̂k–()
T

p̂k

j 1=

n

∑=

Documentation January 2003

7

information is needed for model-based clustering. In this method, we get an initialization of the
EM algorithm by partitioning the data based on agglomerative clustering.

In the typical application of agglomerative clustering [Everitt, 1993], each data point starts
out in its own cluster. At each step of the algorithm, the two closest (in terms of some distance)
clusters are merged. The definition of how clusters are determined to be close gives rise to the
various flavors of agglomerative clustering (e.g., single linkage, complete linkage, etc.).

In model-based clustering, we use a similar paradigm, where in this case the clusters are

merged such that the likelihood is maximized, rather than the usual distance metric. Fraley [1998]
describes the agglomerative model-based clustering algorithms for the four models described in
Table 2. In our implementation, we use the unconstrained model of agglomerative model-based
clustering to initialize all models. Fraley and Raftery [1998] show that this seems to be adequate as
an initialization procedure for all models.

The last piece that we need is a way to determine which estimate (number of components
and covariance model) fits the data the best. As previously mentioned, the choice of the best
model is made via the BIC, given by

, (10)

Table 2 Description of the Four Models Used in This Toolbox

Model Number
(M) Covariance Model Description

1 Spherical and equal • Diagonal covariance matrices
• Same value in diagonal elements
• Covariance matrices are equal

2 Spherical and
unequal

• Diagonal covariance matrices
• Covariances are allowed to vary

between components
• Same value in each diagonal element

of individual covariance matrix

3 Ellipsoidal and
equal

• Covariance matrices can have non-
zero off-diagonal elements

• Covariance matrices are equal

4 Ellipsoidal and
unequal

• Unconstrained model described in
Equation 9.

• Covariance matrices can have non-
zero off-diagonal elements

• Covariance matrices can vary among
components

Σ
ˆ

k σ2I=

Σ
ˆ

k σk
2I=

Σ
ˆ

k Σ=

Σ
ˆ

k Σk=

BIC 2LM x θ̂,() mM n()log–≡

Documentation January 2003

8

where is the number of parameters in model M and is the log likelihood. The final model
and estimate deemed the best will be the one that corresponds to the highest value of the BIC.

We now pull all of this together and list the steps of model-based clustering used in this
program.

1. Apply the unconstrained agglomerative model-based clustering procedure to the data.
This provides a partition of the data given a desired number of clusters.

2. Choose a model: M = 1, 2, 3, and 4 (see Table 2).
3. Choose a number of clusters or component densities, c.
4. Find the partition given by the agglomerative model-based clustering (step 1) for the

given value of c.
5. Using this partition, find the mixing coefficients, means and covariances (based on the

model from step 2) for each cluster.
6. Using the chosen c (step 3) and the initial values (step 5), apply the EM algorithm to

obtain the final estimates.
7. Calculate the value of the BIC for this value of c and M.
8. Go to step 3 to choose another value of c.
9. Go to step 2 to choose another model M.

These steps are shown in Figure 1.

Figure 1. This flowchart illustrates the MBC procedure.

mM LM

Agglomerative
Model-Based
Clustering

Initialization for EM:
1. Initial number of components
2. Initial values for parameters

EM
Algorithm

BIC
Final Result – Estimated Model:
1. Number of components, c
2. Best model: M1 – M4
3. Parameter estimates

dendrogram

Data

Chosen
Model

Highest
BIC

Documentation January 2003

9

2. Generating Data From a Finite Mixture

A useful tool to have is one that generates data from a given finite mixture, and one is provided
with the Model-Based Clustering Toolbox. Because the input arguments for this function
(weights, means and covariances) can be tedious to create on a command line interface, we
provide this tool in a GUI format. The GUI is invoked by typing genmix at the command line
and is shown in Figure 2.

The steps for entering the required information are listed on the left-side of the GUI
window. We outline them below, and briefly describe how they work:

Step 1: Choose the number of dimensions.

Figure 2. This shows the GUI that is invoked with genmix. The various steps that must be taken are
shown on the left side of the window.

Documentation January 2003

10

This is a pop-up menu. Simply select the number of dimensions for the data.

Step 2: Enter the number of observations.
Type the number of points in the data set, i.e., the sample size n.

Step 3: Choose the number of components.
This is the number of terms or component densities in the mixture. Using the notation in Equation
1, this is the value for c.

Step 4: Choose the model.
Select the model for generating the data. The model numbers correspond to those described in
Table 2.

Step 5: Enter the component weights, separated by commas or
blanks.
Enter the corresponding weights for each term. These are the pk in Equation 1. These must be
separated by commas or spaces and sum to 1.

Step 6: Enter the means for each component - push button.
Click on the button Enter means... to bring up a window for entering means, as shown
below in Figure 3. There will be a different number of text boxes, depending on the number of
components selected in Step 3. Note that you must have the right number of values in each text
box; i.e., if you have dimensionality d = 3 (Step 1), then each mean needs 3 values.

If you need to check the means that were used, then you can click on the View Current Means
button. The means will be reflected in the MATLAB command window as shown here.

HIT ANY KEY TO CONTINUE...
The mean for component 1 is:

1 1

Figure 3. This shows the pop-up window that is activated when the Enter means button is clicked on.
There will be a text box for each of the component densities.

Documentation January 2003

11

HIT ANY KEY TO CONTINUE...
The mean for component 2 is:

2 2

Step 7. Enter the covariance matrices for each component - push
button.
Click on the button Enter covariance matrices... to activate a pop-up window. You will get a
different window, depending on the model that was chosen in Step 4.

Model 1: If you choose Model 1, then you only have to enter one variance as shown in Figure 4.

Model 2: For Model 2, you must enter a variance for each component. The window for this one is
shown in Figure 5.

Model 3: The component densities have equal covariances, where the covariances can have non-
zero off-diagonal elements. If this option is selected in Step 4, the full covariance must be entered
in the pop-up window. Enter the row of the covariance matrix in the corresponding text box in the
window. An example of this window is shown in Figure 6.

Figure 4. This is the pop-up window for Model 1. Since the component densities have equal variances, you
only have to enter one value.

Figure 5. This is the pop-up window for Model 2. The component densities have unequal variances, so you
have to enter a variance for each component.

Documentation January 2003

12

Model 4: In this case the covariance matrices are allowed to vary across component densities, and
the off-diagonal elements can be non-zero. The same type of pop-up window as seen for Model 3
will be provided for each component (see Figure 7). So, if there are 4 components or terms in the
mixture model, then 4 separate windows will be shown for the user to enter each covariance
matrix.

Similar to before, the user can push the View Current Covariances button to view the
covariance matrices in the MATLAB command window.

Figure 6. The user must enter each row of the covariance matrix in the corresponding text box. Note that
each row must have the d elements.

Figure 7. Here are the windows to enter the covariance matrices for a 2-component mixture, with d = 2.

Documentation January 2003

13

Step 8. Push the button to generate random variables.
After all of the values have been entered, push the button labeled Generate RVs... to
generate the data set.

Once the variables have been generated, the user has several options. They can be saved to
the workspace using the button Save to Workspace. When this is activated, the window
shown in Figure 8 appears. The data are now saved in the workspace using that variable name.
The data can also be saved to a text file by clicking on the button Save to File. This brings up
the usual window for saving files.

The user can also view the data in a scatterplot matrix by pushing the button
Plot Data. For the data generated using the default values, we have the picture shown in
Figure 9.

3. Agglomerative Model-Based Clustering

As we stated in Section 2, agglomerative model-based clustering is used to initialize the EM
algorithm. This is a variant of agglomerative clustering where the clusters are merged such that
they maximize the likelihood function, given the chosen model (see Table 2) rather than merging
clusters that are close together in terms of a distance. See Everitt [1993] for a discussion on
agglomerative clustering methods.

The Model-Based Clustering Toolbox includes a stand-alone function for doing
agglomerative model-based clustering. It is not necessary to use this function separately as part of
the model-based clustering procedure (i.e., this step is done automatically when the model-based
clustering function is used). This function is called agmbclust. It can be invoked from the
command line as follows:

>> Z = agmbclust(data);

Figure 8. When the Save to Workspace button is pushed, this box appears. Enter the desired variable
name in the text box.

Documentation January 2003

14

The input variable data is an matrix, where each row corresponds to a d-
dimensional observation. The output variable Z is a matrix containing the cluster information that
can be used in MATLAB’s dendrogram function (available in the Statistics Toolbox) or the
rectplot function (available in this toolbox, see Section 5.2).

To illustrate these ideas, we generate some data for a finite mixture. The parameters of the
mixture are:

Weights:

Dimensionality: 4

n = 50

Means: [2, 2, 2, 2], [-2, -2, -2, -2], [-2, 2, -2, 2], [2, -2, 2, -2]

Covariances: 1.5I, I, .75I, I

Figure 9. If we generate random variables according to the default values, we get a scatterplot matrix similar
to this one.

n d×

pk 0.2 0.2 0.1 0.5, , ,=

Documentation January 2003

15

This data set is included with the Model-Based Clustering Toolbox and is called data.mat. It
can be loaded with the command:

>> load data

We first perform the agglomerative model-based clustering and then produce the dendrogram as
follows

>> Z = agmbclust(data);
>> dendrogram(Z);

The resulting dendrogram is given in Figure 10.

The output matrix Z can also be used in the MATLAB function called cluster. This is
available in the Statistics Toolbox, and it returns a vector T of n indices indicating cluster
membership for each observation. This function contains several input options:

Figure 10. This is the dendrogram showing the results of the agglomerative model-based clustering. The
vertical axis represents the value of the objective function at each link. Note that some of the numbers on the
leaf nodes do not correspond to the observation number; they might include several of the observations.

Documentation January 2003

16

While we have not thoroughly tested the results of the agglomerative model-based clustering with
these options, they should work with the output Z, especially the second one. The reader should
consult the MATLAB documentation for information on inconsistent values. It is not clear
whether inconsistent makes sense when used with agglomerative model-based clustering.

One thing to note regarding the dendrogram function is that it displays the top 30 nodes
as the default. Thus, the leaf nodes that are displayed might correspond to multiple observations.
For example in Figure 10, we have 50 observations, but only 30 nodes showing in the dendrogram.
To find out which observations are contained in a leaf node k, use the following syntax

>> find(T == k);

4. Model-Based Clustering

In this section, we describe various functions for running the EM algorithm based on the four basic
models (Section 4.1), as well as a general model-based clustering function that implements the
entire process (Section 4.2).

4.1 The EM for Finite Mixtures

Recall from Section 1 that the partitions from agglomerative model-based clustering are used to
initialize the EM algorithm. The estimates for the component parameters are further refined
through this process. As with the agglomerative model-based clustering function described in the
previous section, this does not need to be implemented separately.

The Model-Based Clustering Toolbox includes a function called mbcfinmix that
implements the EM algorithm for the four basic models described in Section 1.3 and Table 2. The
basic syntax for this function is

>> [wts,mus,vars] = mbcfinmix(data,muin,varin,wtsin,model);

T = cluster(Z,'cutoff',c) c is a threshold for cutting Z into clusters,
where clusters are formed when inconsistent
values are less than c.

T = cluster(Z,'maxclust',n) Returns n clusters.

T =
cluster(...,'criterion','crit')

Uses the specified criterion for forming clus-
ters. The argument crit is either 'incon-
sistent' or 'distance'.

T = cluster(...,'depth',d) Evaluates inconsistent values to a depth of d
in the tree.

Documentation January 2003

17

The function returns estimates of the model parameters: weights, means, and covariances.
The wts argument is a vector containing the c weights, one for each term. The variable mus is a
d x c matrix, where each column corresponds to a component mean. Recall that c is the number
of components in the mixture, and d is the dimensionality of the data. The variable vars is a 3-D
array, where each page (i.e., third dimension) corresponds to a covariance matrix. Thus, the
dimensions of vars is d x d x c.

The input arguments muin, varin, and wtsin are similar in form and contain the initial
values for these parameters. In the case of model-based clustering, these are obtained from the
partitions from agglomerative clustering part of the process. However, in general, these initial
values can be from any reasonable source. The input variable data is an n x d matrix containing
the observations, and model is a number indicating one of the 4 basic models (see Table 2).

4.2 Model-Based Clustering Process

We provide a function called mbclust that implements the entire model-based clustering
procedure, including the initialization, the EM, and the selection of the best model. The basic
syntax for this function is

>>[bics,bestmodel,allmodels,Z,clabs]=mbclust(data,maxclus);

As before, the input variable data is an n x d matrix containing the observations. The
variable maxclus is the maximum allowable number of clusters or component densities in the
mixture (i.e., the maximum allowed value for c).

The output variable bics is a matrix that contains all of the BIC values for each model
and number of clusters. The variable bics contains 4 rows and maxclus columns, where each
row corresponds to a model and each column corresponds to the number of terms or clusters.

The variable bestmodel is a MATLAB structure that contains the parameters for the best
model, as indicated by the highest BIC value. The structure has the following fields:

bestmodel.pies
bestmodel.mus
bestmodel.vars

The variable allmodels is a MATLAB structure that contains information on all of the models.
Each record (there are 4) of allmodels contains information for one of the models. The field
clus is another structure where each record (there are maxclus of them) contains the parameter
estimates for the model. Finally, the structure clus contains 3 fields: pies, mus, vars. For
example,

allmodels(2).clus(5).pies

has the weights for Model 2, 5 clusters. The structure clus is actually a sub-structure (or field)
under the main structure called allmodels.

Documentation January 2003

18

The variable Z is the same matrix as described in Section 3. The output variable clabs
contains cluster labels for the n observations, as given by the bestmodel.

5. Visualizing the Results

In this section, we describe various methods for visualizing the results from clustering. These
include methods for showing the clusters and plotting the values of the BIC (Section 5.1). In
Section 3, we described the dendrogram method of visualizing the results of hierarchical
clustering, whereas Section 5.2 presents an alternative way of viewing the hierarchical structures
from clustering. Finally, in Section 5.3, we describe a new way of displaying the results of
clustering high-dimensional data called ReClus plots.

5.1. Plotting the BICs

As discussed before, the model one chooses is the one that corresponds to the highest BIC value.
So, it would be useful to plot all of the BIC values for all models under consideration. We include
the function called plotbic that will provide such a display. It uses the output variable bics
from mbclust, and the basic syntax is

>> plotbic(bics,varname)

The input argument varname is optional. It is a character array containing the variable name to
be included in the title.

Using the results of the function mbclust as applied to the data set in data.mat, we
have the plot of the BIC values in Figure 11. Note that in this case, we did not use the optional
input argument varname.

5.2. Rectangle Plots

The treemap display of Johnson and Shneiderman [Johnson and Shneiderman, 1991],
[Shneiderman, 1990] is an alternative to the dendrogram as a display for hierarchical clustering or
other hierarchical arrangements of data (e.g., directory structures for computer files). This takes
the output from agglomerative clustering [Everitt, 1993] and shows it in a space-filling display.
Recall that in agglomerative clustering, one starts with each observation in an individual cluster.
At each stage of the algorithm, the two closest clusters are merged, where close is determined by
the distance used (e.g., Euclidean, Mahalanobis, city block, etc.) and the type of linkage (e.g.,
single, complete, etc.).

The output of agglomerative clustering can be viewed in a tree or dendrogram (see Figure
10). A dendrogram can be shown vertically or horizontally, but it essentially consists of many U-

Documentation January 2003

19

shaped lines that show the hierarchical structure of the clustering algorithm. The treemap method
displays this in a series of nested rectangles (or ellipses). The parent rectangle (or root of the tree)
is given by entire display area. The treemap is obtained by recursively subdividing this parent
rectangle, where the size of each sub-rectangle is proportional to the size of the node. The
rectangles are further subdivided horizontally, vertically, horizontally, etc., until a given (based on
the number of desired clusters) leaf configuration is obtained.

Note that in the dendrogram shown in Figure 10 the user can specify a distance or
dissimilarity value along the vertical axis. Different clusters are obtained depending on what value
is specified. For example, if the user specifies a value of 120, then 3 clusters are obtained. In the
treemap method, these 3 clusters would be shown as nested rectangles, with the whole display area
representing the parent rectangle. In some applications, the user might have the treemap display
the entire hierarchical structure.

To display a treemap, the user must specify the number of clusters. If the user wants to
explore other cluster configurations (by specifying a different number of clusters), then the display
is re-drawn. It should also be noted that in the treemap display, there is no measure of distance (or
dissimilarity) associated with the clusters as there is in the dendrogram. A further drawback to the
treemap method is the lack of information about the original data, because the rectangles are just

Figure 11. This shows the BIC values resulting from model-based clustering for the data set described in
Section 3. Note that for Models 3 and 4, we display only 3 points. This indicates that for , the covari-
ance matrices for one or more terms were singular.

c 4≥

Documentation January 2003

20

given labels. That is, the data are not displayed as glyphs; instead they have labels such as: C1,
C2, C3. The treemap as developed by Johnson and Shneiderman [1991] has not been
implemented in this toolbox. We provide the information here as background for rectangle plots
and ReClus.

To address some of the issues, Wills [1998] developed the rectangle visualization method,
based on the treemap display. This method also works with the output of hierarchical clustering,
but displays the points as glyphs. The layout of the glyphs is determined by the hierarchical
structure given by the clustering. The rectangle plots of Wills split the rectangles along the longest
side, rather than alternating vertical and horizontal splits as in treemap. They keep splitting until it
reaches a leaf node or until the cutoff distance is reached. If a rectangle does not have to be split
because it reaches this cutoff point, but there is more than one observation in the rectangle, the
algorithm continues to split until it reaches a leaf node. However, it does not draw the rectangles.
It uses this information to determine the layout of the points as glyphs, where each point is now in
its own rectangle. The advantage to this method is that other configurations (i.e., number of
clusters) can be shown without re-displaying the glyphs; only the boundaries of the rectangles are
redrawn.

The rectangle method of Wills is suitable for linking and brushing applications, where one
can highlight an observation in one plot (e.g., a scatterplot) and see the same observation
highlighted in another (e.g., a rectangle plot). Some of the other advantages include

• the ability to specify the dissimilarity cutoff value that would in turn determine the
number of clusters,

• the display layout (i.,e., position of the glyphs) does not need to change if the user
specifies a different cluster configuration, only the lines delineating the rectangles
change

• the linkage with the original data points is retained

A disadvantage is that some of the nesting structure seen in treemaps is lost in the display.
Rectangle plots are shown in Figures 12 and 13, showing the output from agmbclust. Note that
this is an alternative to the dendrogram of the data set shown in Figure 10. However, in comparing
the two plots, keep in mind that the dendrogram shows the top 30 observations, not the full 50.

The rectangle plot method is included in this toolbox as the function rectplot. The basic
syntax for this is

>> rectplot(Z,nc,clabs)

This uses the familiar matrix Z that is used to create the dendrogram. The input variable nc
represents the number of clusters or rectangles to include in the plot. There is a third optional
argument clabs, which is an n-dimensional vector containing the true class labels for the
observations, if known. If this is included, then each observation is plotted using the class label.
Otherwise, the observation number is used.

Documentation January 2003

21

Figure 12. This is an example of the function rectplot with the output from agmbclust. The observa-
tion numbers are used as the glyphs. This can be compared with the dendrogram in Figure 10, keeping in
mind that the Figure 10 shows 30 points rather than all 50 observations.

Figure 13. If we call rectplot asking for 50 clusters (each observation is its own cluster), then this is the
result. Note that the numbers are displayed in the same place as in Figure 12

Documentation January 2003

22

5.3. ReClus Plots

Another disadvantage of the treemap and rectangle method is that they are both suitable for
displaying the results of agglomerative clustering only. In many cases, the analyst might want to
use some other clustering method such as model-based clustering or k-means and view the results.
ReClus is a way to extend the ideas of the rectangle method to display configurations from other
cluster methods [Martinez, 2002; Martinez & Wegman, 2002].

As in the previous methods (treemap and rectangle plots), ReClus uses the entire display
area as the parent rectangle. This is then partitioned into rectangles, where the area is proportional
to the number of observations that belong to that cluster. The pseudo-code is given here.

Step 0. Set up the parent rectangle. Note that we will split on the longer side of the rect-
angle according to the proportion of observations that are in each group.
Step 1. Find all of the points in each cluster and the corresponding proportion.
Step 2. Order the proportions - ascending.
Step 3. Find all of the rectangles. Partition the proportions into 2 groups. If there are an
odd number of clusters, then put more of the clusters into the 'left/lower' group.
Step 4. Based on the total proportion in each group, split the longer side of the parent rect-
angle. We now have two children. Note that we have to normalize the proportions based
on the parent.
Step 5. Repeat steps 3 through 4 until all rectangles represent only one cluster.
Step 6. Find the observations in each cluster and plot, either as the case or observation
label or the true class label (if known).

Before we can call the function that displays ReClus plots, we need to first get the cluster
labels as given by the cluster scheme. If model-based clustering was used to cluster the
observations, then the following will obtain the desired information:

>>[clabs,errdata] = ...
mixclass(data,bestmodel.pies,bestmodel.mus,bestmodel.vars);

Note that the clabs variable is the same one obtained when mbclust is called, and we are using
the same data set as before. This function can be used with any finite mixture, not just the output
from mbclust. We can now call reclus, as described below.

ReClus (reclus) has several views. The first is to plot the observations using the case
label as the glyph. See Figure 14 for an example of this layout. The syntax is

>> reclus(clabs);

If we know the true class labels, then we can show those numbers instead. This will give us a
visual picture of how jumbled the clusters are according to the true class information. Since we do
not have the true class labels for this data set, we will just assign some labels, so we can give an
example of this type of ReClus plot. The following MATLAB statement assigns some arbitrary
class labels:

Documentation January 2003

23

>> trulabs = [ones(1,6),2*ones(1,14),3*ones(1,8),4*ones(1,22)];

We can now call reclus as follows:

>> reclus(clabs,trulabs,errdata)

This layout is shown in Figure 15. Sometimes, the color is difficult to distinguish, and we might
be interested in seeing what observations have a high probability of belonging to the cluster. We
can call reclus with a threshold as follows:

>> reclus(clabs,trulabs,errdata,.999)

Observations that have a posterior probability higher than the threshold are shown in black and are
bolded.

To summarize, the treemap and rectangle plots [Wills, 1998] can be used to visualize
 hierarchical clustering. The ReClus plot is used for other clustering methods, such as model-based
clustering or k means. Both ReClus and rectangle plots are suitable for linking and brushing.

Figure 14. This shows the output from model-based clustering using the results from the best model. These
results make sense, given the model that was used to generate the data. Here we see the basic use of
reclus, where case or observation numbers are displayed in each cluster.

Documentation January 2003

24

Figure 15. This Reclus plot shows the observations using their true class labels. We see that some of the
observations should not be clustered together (recall they were arbitrary labels). The color bar indicates the
posterior probability that the observation belongs to the cluster.

Figure 16. This ReClus plot shows the observations with a posterior probability higher than 0.999 in black,
bold font.

Documentation January 2003

25

6. Future Improvements

In the coming year, we plan on making the following improvements to the Model-Based
Clustering Toolbox:

• We intend to add more of the models to the agglomerative model-based clustering part
of the procedure. While previous work [Fraley and Raftery, 1996] showed that the
unconstrained version of agglomerative model-based clustering was adequate as an
initialization for the EM, including the other models would allow one to use this type
of agglomerative clustering as a stand-alone method.

• We will implement the rest of the models in the finite mixture EM function to produce
more options for the ‘optimal’ model.

• Initialization of the agglomerative model-based clustering using adaptive mixtures
[Priebe, 1994; Solka, 2001].

• Improvements will be made to the function that displays Wills’ rectangle plots to
allow the user to specify the ‘distance’ rather than the number of clusters.

• We will make some improvements to the ReClus display method to allow brushing
and highlighting of points.

Finally, we plan on creating a stand-alone GUI for clustering, which will include model-based
clustering and other clustering methods (e.g., agglomerative, k-means, etc.).

We welcome any suggestions for improvements, changes, fixes, etc. to the Model-Based
Clustering Toolbox and the ideas mentioned above. Please send them to the contact person given
at the beginning of this documentation.

7. Installation Instructions

The following installation instructions are for Windows versions of MATLAB. This toolbox can
also be used with Unix and Linux operating systems, with suitable changes to the directory
structure for toolboxes and paths.

1. First download the required MBCToolbox.zip from the website and save it in a
temporary directory. This file contains this documentation in .pdf form, as well
as the .m files described in the Reference Section.

2. Make a new directory under your current MATLAB toolbox installation. In most
cases, this would be:

C:\MATLAB6p5\toolbox\mbctool

Documentation January 2003

26

3. Double click on the MBCToolbox.zip file and extract files to the above direc-
tory. Note that you could also create this new directory in the unzipping pro-
cess.

4. The MATLAB search path must be updated for you to use the toolbox files from
any directory. The search path is kept in the pathdef.m file. By default, it is
stored in the following directory:

C:\MATLAB6p5\toolbox\local

Before starting MATLAB, open the file pathdef.m using any text editor. One way
to do this is to double-click on the file from Windows Explorer. This will open the file
in the MATLAB text editor. Add the new directory

matlabroot, '\toolbox\mbctool;',...

to the path.

5. Close and save the file. Start MATLAB. Type helpwin at the command line to
bring up the Help Browser. Click on mbctool for a list of the available func-
tions in the Model-Based Clustering Toolbox.

Alternative to Step 4:

a. Start MATLAB.
b. Start the Set Path dialog box from the File menu in the MATLAB Command

Window.
c. Add the new directory for the Model-Based Clustering Toolbox to the path. Hit the

Save button to permanently save your changes to the pathdef.m file.
d. Close MATLAB and restart it to see the changes in the Help files.

Documentation January 2003

27

8. Function Reference

%%%
agmbclust
%%%

AGGLOMERATIVE MODEL BASED CLUSTERING - NO INITIAL PARTITION

This function does the agglomerative model-based clustering
of Fraley [1998]. NOTE that this one does the MB agglomerative
clustering from the FULL data set (rather than some other
initialization such as minimal spanning trees).

Z = AGMBCLUST(X)

The output Z contains the cluster array that MATLAB expects.
This can be used in the DENDROGRAM or the RECTPLOT plotting
functions.

%%%
genmix
%%%

GUI FOR GENERATING MULTIVARIATE RANDOM VARIABLES FROM MIXTURE

GENMIX

This GUI will generate random variables using a
finite mixture model. The user can pick between
several models:

1: COV = sigma^2*I (equal, diagonal covariances)
2: COV = sigma_k^2*I (unequal, diagonal covariances)
3: COV = SIGMA_hat (equal, full covariance matrix)
4. COV = SIGMA_k_hat (unconstrained covariances)

The user can save the random variables to a text file (saved in
row (observations) and column (variables) format. The data can also
be saved to the MATLAB Workspace with a user-assigned variable name.

%%%
mbcfinmix
%%%

MODEL-BASED FINITE MIXTURES USING THE EM ALGORITHM

This is written for MBCLUST. Note that at this time it will do
multivariate only. This uses relative differences between

Documentation January 2003

28

log-likelihoods to check for convergence. If the estimated covariance
matrices become close to singular, the function
returns empty arrays for the model.

[WTS,MUS,VARS] = MBCFINMIX(DATA,MUIN,VARIN,WTSIN,MODEL)

INPUTS:DATA is a matrix of observations, one on each row.
MUIN is an array of means, each column corresponding to a mean.
VARIN is a vector of variances in the univariate case. In the

multivariate case, it is a 3-D array of covariance matrix,
one page per component density.

WTSIN is a vector of weights.
MODEL is one of the 4 models:

1: COV = sigma^2*I (equal, diagonal covariances)
2: COV = sigma_k^2*I (unequal, diagonal covariances)
3: COV = SIGMA_hat (equal, full covariance matrix)
4. COV = SIGMA_k_hat (unconstrained covariances)

%%%
mbclust
%%%

Model-based clustering - entire process

[BICS,BESTMODEL,ALLMODELS,Z,CLABS] = MBCLUST(DATA,MAXCLUS);

This does the entire MB Clustering given a set of data.
It only does the 4 basic models, unequal-unknown priors. It
returns the BESTMODEL based on the highest BIC.

The output variable BICS contains the values of the BIC for
each model (row) and number of clusters (col). The output variable
CLABS contains the class labels for the input data according to the
optimal clustering given by BIC.

The output variable Z contains the cluster structure from the
agglomerative model-based clustering. The matrix Z can be used
in the DENDROGRAM function or the RECTPLOT plotting function.

The output variable ALLMODELS is a structure containing all of the
models. ALLMODElS(I) indicates the I-th model type (1-4) and CLUS(J)
indicates the model for J clusters.

The input variable MAXCLUS denotes the maximum number of clusters to
check for.

Documentation January 2003

29

%%%
mixclass
%%%

MIXCLASS Gets the classification from a mixture model.

[CLABS,ERR] = MIXCLASS(DATA,WGTS,MUS,VARS)

For a given set of DATA (nxd) and a mixture model given by
WGTS (weights), MUS (component means), and VARS (component
variances), returns the cluster labels in CLABS, along with
the associated classification error in ERR.

%%%
plotbic
%%%

Plots the values of the BIC for model-based clustering

PLOTBIC(BICS,VARNAME)
This takes the results of MBCLUST and plots the values
of the BIC for the various models.

You can plot the variable name in the title via the optional
argument VARNAME.

%%%
reclus
%%%

Rectangle cluster plot - any clustering method - any dimensionality of
the data.

RECLUS(CLABS,TRULABS,ERR,THRESH)

This can be used to plot the results of any clustering algorithm
(k-means, agglomerative, model-based clustering), where the
input is the cluster labels for each data point.

RECLUS(CLABS) plots the rectangles, where the area of each
rectangle represents the proportion of points falling into that
cluster. The data are plotted using their observation number.

RECLUS(CLABS,TRULABS) plots the rectangles as before, but the
position of the symbols as case labels matches the same position when
the true class labels are used as the plotting symbol - see the
options below for 3 or 4 arguments. This allows the user to see which
cases correspond to specific symbols plotted with the true class

Documentation January 2003

30

label.

RECLUS(CLABS,TRULABS,ERR) plots the rectangles as above, where
each symbol color represents the probability that the point belongs
to the cluster; i.e., 1 - ERR. Note that this can be used only when
the clustering is done using model-based clustering (MBCLUST) or
finite mixtures (MBCFINMIX). The classification ERR is obtained using
MIXCLASS. Note also that if one wants to plot the 'uncertainty' in the
clustering, then 1 - ERR should be used as the input argument. A
colorbar is included to indicate the color scale.

RECLUS(CLABS,TRULABS,ERR,THRESH) plots the points as above.
The value THRESH is used to indicate which observations have a
classification certainty greater than THRESH; these values are plotted
in bold. Thus, the color indicates the probability that it belongs to
the cluster on a continuous scale, and the bold indicates a binary
value - above or below THRESH.

%%%
rectplot
%%%

Rectangle cluster plot for Agglomerative Clustering Output

RECTPLOT(Z,NC,CLABS)

This plots NC clusters based on the cluster scheme given by Z
in a rectangle plot. Each rectangle corresponds to a cluster
of observations.

If the optional input argument CLABS is given, then the points
are plotted according to their true class labels given in CLABS.
Thus, all class 1 points will plot with the '1' symbol, all
class 2 points will plot with the '2' symbol, etc. If CLABS is
not used, then the observation numbers are used as symbols.

Documentation January 2003

31

References

Banfield, Jeffrey D. and Adrian E. Raftery (1993). “Model-based Gaussian and non-Gaussian
clustering,” Biometrics 49:803-821.

Celeux, G. and G. Govaert, (1995). “Gaussian Parsimonious clustering models.” Pattern
Recognition, 28:781-793.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977. ‘Maximum likelihood from incomplete data
via the EM algorithm,’ Journal of the Royal Statistical Society, B., 39:1-38.

Everitt, Brian S., 1993. Cluster Analysis, Edward Arnold Publishers, New York.

Fraley, Chris and Adrian E. Raftery, (1998). “How many clusters? Which clustering method?
Answers via model-based cluster analysis,” Computer Journal, 41:578-588.

Fraley, Chris, (1998). “Algorithms for model-based Gaussian hierarchical clustering,” SIAM
Journal on Scientific Computing, 20:270-281.

Johnson, B., and B. Shneiderman, 1991, ‘Treemaps: a space-filling approach to the visualization
of hierarchical information structures,’ Proceedings of the 2nd International IEEE Visualization
Conference, pp. 284 - 291.

Martinez, Angel R., 2002. A Framework for the Representation of Semantics, Ph.D. Dissertation,
George Mason University.

Martinez, Angel R. and Edward J. Wegman, 2002, ‘A text stream transformation for
semantic-based clustering,’ Proceedings of the Interface, Montreal, Canada.

Priebe, Carey L., (1994), “Adaptive Mixtures,” Journal of the American Statistical Association,
89:796-806.

Shneiderman, B., 1990, ‘Tree visualization with tree-maps: a 2D space-filling approach,’ ACM
Transactions on Graphics, 11, pp. 92 - 99.

Solka, Jeffrey L., (2001), Private communication.

Wills, G. J., 1998, ‘An interactive view for hierarchical clustering,’ Proceedings of Information
Visualization ‘98, pp. 26 - 31.

