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Abstract

The ISOMAP nonlinear dimensionality reduction method of
Tenenbaum, de Silva and Langford, was originally implemented
in MATLAB by the developers of the algorithm. One of the
issues involved with ISOMAP is the need to determine the num-
ber of reduced dimensions that best represents the original data.
For this purpose, Tenenbaum, de Silva and Langford provide a
plot similar to the scree plot in principal component analysis,
where the elbow in the curve represents an estimate of the intrin-
sic dimensionality. However, for many data sets, the elbow is
sometimes difficult to see. Thus, it would be useful to have a
Graphical User Interface (GUI) that allows one to explore the
results of ISOMAP via scatterplots, parallel coordinates,
Andrews curves, and other EDA methods to better understand the
effects of dimensionality reduction and to determine the mini-
mum number of dimensions to use. This paper is tutorial in nature
and demonstrates a MATLAB GUI for the graphical exploratory
analysis of the results of ISOMAP.

1. Introduction

Say we have a set of p-dimensional data, where each observation
is of the form (X, X)) Dimensionality reduction is the pro-

cess of reducing the p dimensions to some number d < p. Tech-
niques for accomplishing this include principal component
analysis, factor analysis, and multidimensional scaling [Jackson,
1991; Cox & Cox, 2001]. Several recent nonlinear methods have
been developed that have interesting properties. These are ISO-
MAP [Tenenbaum, et al., 2000], local linecar embedding [Roweis
& Saul, 2000], and Hessian eigenmaps [Donoho & Grimes,
2003]. We focus on the output from ISOMARP in this paper, but
the ideas are appropriate for any method.

The motivation for this GUI arose from the work of Martinez
[2002], where one of the goals was to cluster unstructured text
documents. In this case, the true topic labels for the documents
were available, so that information could be used in the process.
In conducting this research, Martinez had to evaluate the results
from over 100 experiments, where different parameters were
changed (e.g., text pre-processing, measure of semantic similar-
ity, k values, etc.) before dimensionality reduction using ISO-
MAP.

The results of these experiments had to be processed and the
best set of reduced features extracted for further analysis (cluster-

ing and classification). Martinez used techniques from graphical
exploratory data analysis to help in the selection. These tech-
niques include scree plots of residuals, scatterplots, parallel coor-
dinate plots and Andrews curves. His goal was to find a reduced
set of features where the topics were readily visible in the reduced
space. Processing the output from these experiments would be
tedious using a command line interface, so a GUI was developed.
The GUI tool described in this paper is an extension of the one in
Martinez [2002].

In this paper, we first provide a brief description of the ISO-
MAP nonlinear dimensionality reduction procedure. This is fol-
lowed by a discussion of the capabilities included in the GUI,
along with screen shots showing some of the options. We con-
clude with a summary and some future directions.

2. ISOMAP

The goal of ISOMAP is to find a set of d-dimensional coordinates
for data that lie on a manifold that is embedded in a p-dimen-
sional space. These coordinates should preserve the topological
structure of the data, meaning that Euclidean distances in the d-
dimensional space should correspond to distances between the
points along the manifold [Tenenbaum, et al., 2000]. The basic
steps of the algorithm consist of the following: 1) construct a
neighborhood graph using the interpoint distances, 2) calculate
the graph distance (the smallest path between the points, where
the length of the path is the sum of its edges), 3) apply multi-
dimensional scaling using the geodesic or graph distances. The
last step yields a lower dimensional embedding such that the
neighborhood structure is preserved.

We illustrate this idea with a small example. We generated
data along a surface, which is shown in Figure 1. Note that the
color of the patches is matched to the height of the surface. While
this is really a 3-D structure, we will reduce it to 2-D using ISO-
MAP. The points are shown in a 2-D scatterplot in Figure 2,
where we can see that the neighborhood relationships are mostly
preserved.

The ISOMAP method was implemented in MATLAB by the
creators and is available for download at http://isomap.stan-
ford.edu/. The usual input to the ISOMAP function is the inter-
point distance matrix, along with a value for £ (number of nearest
neighbors) or an epsilon neighborhood. The output from the func-
tion consists of a MATLAB structure with two fields (the coordi-
nates in lower dimensional space for several values of d and an
index of the embedded points), a vector of residuals, and a matrix
for the neighborhood graph. We note that different lower-dimen-
sional embeddings are obtained when the value of k& or epsilon is
changed.
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Figure 1. Points were randomly generated along this surface. The color is mapped to the
height of the surface.
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Figure 2. Here is the 2-D embedding from ISOMAP. The color of the points is the same
as in Figure 1. Note that for the most part, points that are close together on the surface are
near each other in the 2-D plot.

3. Graphical User Interface

As stated before, the purpose of this GUI tool is to provide a way
of rapidly assessing the results of ISOMAP using graphical
exploratory data analysis techniques [Wegman & Carr, 1993]. Of
course, these methods are applicable to more areas than the one
described here. In the case of ISOMAP, the analyst needs to
answer such questions as: What is a good value for k and d? Are
groups readily visible in the d-dimensional space?

The GUI tool has the following capabilities:

* Load ISOMAP output interactively

* Includes default colors for classes (if known)
* Change color for classes

* Various residual plots to determine d

* Scatterplots and scatterplot matrices

* Parallel coordinate plots

* Andrews curves

* Permutation tours

The GUI is activated by typing in isomapeda at the command
line. A screen shot of the GUI is given in Figure 3, where a data
set has already been loaded. The steps to load the data are given
sequentially in the interface, and it assumes that all of the output
from ISOMAP is saved in the same .mat file.
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Figure 3. Screen capture of the GUI tool after data has been loaded.
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Figure 4. Screen capture of the interface to the high-dimensional plots.




In this initial GUI interface, one can obtain the residual
plots, a scatterplot matrix, a 2-D scatterplot and a 3-D scatterplot.
A separate GUI interface is provided to construct the higher-
dimensional plots such as Andrews curves and parallel coordinate
plots. We now provide several examples of these plots using
some data from Martinez [2002], recalling that in this case we are
looking for groups or clusters in the lower dimensional space that
correspond to topics. We see in Figure 3 that we have 16 topics or
classes, each with a different color.

First, to help us determine the best value for d, we can make
use of a scree-like plot [Jackson,1991]. This plots the residual
variance as a function of the ISOMAP dimensionality, d. To
determine the ‘best’ value for d, we look for an elbow in the
curve. In this example, d = 3 looks like a good value. Other resid-
ual plots are available through the pop-up menu. The residual plot
for our example is shown in Figure 5.
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Figure 5. Residual plot for the ISOMAP embeddings.

We provide the capability of constructing 2-D and 3-D scat-
terplots. The 2-D scatterplot is shown in Figure 6, and the 3-D
scatterplot is given in Figure 7. These plots can be rotated using
the MATLAB rotation toolbar button, if better views are needed
for discovering structure or groups. We can also construct a scat-
terplot matrix, which is shown in Figure 8. One of the options in
MATLAB for this type of plot shows histograms of the individual
dimensions along the diagonal elements of the plot matrix. Thus,
a histogram for d; is shown in the upper left corner, d, is in the
middle and dj is in the lower right. The scatterplot matrix pro-

vided with this GUI tool has an additional capability. The user
can click on one of the scatterplots, and the corresponding plot
will appear in its own figure window. This is useful when the user
wants to see greater detail.

We now move on to the higher-dimensional plots that can be
constructed with this interface. As stated before, these include
parallel coordinate plots and Andrews curves. For more informa-
tion on these types of plots, please see Wegman and Carr [1993].

A0 in exp&2D. mat

Figure 6. 2-D scatterplot.

Y10 in exps20. mat

Figure 7. 3-D scatterplot.

A parallel coordinates plot showing all 16 color-coded topics
is shown in Figure 9. We do not get a lot of information from this
plot, because of overplottting. We have a similar situation with
the Andrews curves plot shown in Figure 10. To help alleviate the
situation and to facilitate exploring the results of ISOMAP, we
also provide a plot matrix, where each plot shows the observa-
tions for one of the topics. The plots can either be parallel coordi-
nates or Andrews curves.

An example of the parallel coordinate plot matrix is shown in
Figure 11 at the end of the paper. Several things can be noted in
this plot. First, we see that several of the topics (4, 5, 6, 8, 9) look
distinctive and different from others. On the other hand, we see



that some of the topics look very similar (21 and 22) or are rather
incoherent pattern (15 and 18). So, we might conclude that some
groups or topics are separable from others, but some might be dif-
ficult to distinguish. A plot matrix of Andrews curves is given in
Figure 12 at the end of the paper. We see the same type of situa-
tion here. Some groups look like cohesive and separable topics,
while others do not.

WA in exps2D mat

Figure 8. Scatterplot matrix for 3 dimensions.
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Figure 9. Parallel coordinate plot showing all 16 topics.

Andrews curves and parallel coordinate plots are sensitive to
the ordering of the variables. In the case of Andrews curves, the
initial variables have more effect on the shape of the curves, and
parallel coordinates show pairwise relationships only. To alleviate
this situation, we provide a permutation tour. These tours run
through all permutations of the variables and replots them after

each permutation. This is not the smart permutation tour of Weg-
man [1990], where the minimum number of permutations needed
to cover all pairs of variables is outlined (along with a procedure
for obtaining them).

Andrews Curves for 3 Dimensions
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Figure 10. Andrews curves showing all 16 topics.

4. Summary

The GUI tool presented in this paper is a work in progress. We
would like to implement linking and brushing [Wegman and Carr,
1993] for those applications where the true class labels are not
known. We also have plans to implement the grand tour, both 2-D
and d-dimensional [Asimov, 1985; Wegman, 1991].

The ideas and visualization capabilities included in the GUI
tool are not unique to this application or to the output from ISO-
MAP. The tool is available for download at the Carnegie Mellon
STATLIB website: http://lib.stat.cmu.edu/.
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Andrews Curves for 4 Dimensions

Figure 12. Plot matrix showing Andrews curves for each topic.



