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Abstract

Self-Organizing Map is an unsupervised neural network which com-
bines vector quantization and vector projection. This makes it a pow-
erful visualization tool. SOM Toolbox implements the SOM in the
Matlab 5 computing environment. In this paper, computational com-
plexity of SOM and the applicability of the Toolbox are investigated.
It is seen that the Toolbox is easily applicable to small data sets (un-
der 10000 records) but can also be applied in case of medium sized
data sets. The prime limiting factor is map size: the Toolbox is mainly
suitable for training maps with 1000 map units or less.
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Note: This is a corrected version of the paper. In the published version, the
ny; term was missing from the denominator of Equation 5, the corresponding
term vn was missing from the C-code of the batch training algorithm, and
in both C-codes the operator ~ (which is actually bitwise XOR) has been
changed to two commands which square the argument.



1 Introduction

The SOM Toolbox, hereafter simply called the Toolbox, is a function library
for Matlab 5 computing environment implementing the Self-Organizing Map
(SOM) algorithm, a popular neural network method based on unsupervised
learning [2]. The Toolbox contains functions for the creation, visualization
and analysis of Self-Organizing Maps.

In this paper, the SOM Toolbox (version 2) [6] is shortly presented and its
scalability to data size is considered.

2 SOM Toolbox

The Toolbox is available free of charge under the GNU General Public License
from the web site listed in the title part. However, to use it, one has to
have Matlab (version 5.2 at least), by MathWorks, Inc. Matlab is a widely
used programming environment for technical computing. It features a high-
level programming language, powerful visualization, graphical user interface
tools and a very efficient implementation of matrix calculus. These are major
advantages in the data mining research because they allow fast prototyping,
testing and customizing of the algorithms.

The Toolbox can be used to preprocess data, initialize and train SOMs using
a range of different kinds of topologies, visualize SOMs in various ways, and
analyze the properties of the SOMs and data, e.g. SOM quality, clusters on
the map and correlations between variables.

The kind of data that can be handled with the Toolbox is so-called spread-
sheet or table data. Each row of the table is one data sample. The items on
the row are the variables, or components, of the data set. The table format
is a very common data representation. The variables might be the properties
of an object, or a set of measurements measured at a specific time.

An important benefit is that the data may contain missing values indicated
with special NaN values in the Matlab matrix. In the SOM training algorithms
missing components are handled by simply excluding them from the distance
calculations. This is a valid approach since the same data sample is compared
with all prototype vectors of the SOM, and thus the same components are
always ignored.

The Toolbox can handle both numerical and symbolic data (ie. strings), but
only the former is utilized in the SOM algorithm. Symbolic data can be
inserted into string labels associated with each data sample. They can con-
sidered as post-it notes attached to each sample. One can check on them later



to see what was the meaning of some specific sample, but the algorithm ig-
nores them. If the symbolic variables need to be utilized in training the SOM,
one can try converting them into numerical variables using, e.g., mapping or
1-of-n coding [5].

A deficiency of SOM Toolbox, and Matlab in general, is that the data must
fit in the main memory. Also, Matlab has not been built to be conservative
with respect to memory. For example, function parameters are always copied
to the memory space of the function, thus creating an additional copy of
the parameter. With very large matrices this wastes considerable amounts of
memory.

3 SOM algorithms

The SOM is essentially a combined vector quantization and vector projec-
tion algorithm. It consists of neurons organized on a regular low-dimensional
grid. Each neuron is represented by a d-dimensional weight vector m; =
[mi1, ..., mig], where d is equal to the dimension of the input vectors. The
neurons are connected to adjacent neurons by a neighborhood relation, which
dictates the topology, or structure, of the map. Typically the neurons are
positioned on a 2-dimensional plane in a regular rectangular or hexagonal
lattice.

3.1 Sequential training algorithm

The SOM is trained iteratively. In each training step, one sample vector x
from the input data set is chosen randomly and the distance between it and
all the weight vectors of the SOM is calculated using some distance measure.
The neuron whose weight vector is closest to the input vector x is called the
Best-Matching Unit (BMU):

[Ix = m.|| = min{|}x —mj|}, (1)

where || -]| is the distance measure, typically Euclidian distance. After finding
the BMU, the weight vectors of the SOM are updated so that the BMU is
moved closer to the input vector in the input space. The topological neighbors
of the BMU are treated similarly. The update rule for the weight vector of
the 7 is:

m (¢ + 1) = m;(t) + at)he(t)[x(1) — my(t)], (2)
x(t) is an input vector randomly drawn from the input data set , function

«(t) is learning rate and ¢t denotes time. The function h.;(¢) is neighborhood
kernel around the winner unit c.



3.2 Batch training algorithm

Batch Map is a variant of SOM. Instead of using a single data vector at a
time, the whole data set is presented to the map before any adjustments
are made — hence the name “batch”. In each training step, the data set is
partitioned according to the Voronoi regions of the map weight vectors, ie.
each data vector belongs to the data set of the map unit to which it is closest.
After this, the new weight vectors are calculated as:

21 hea(D)X;
Z;‘L:I P (t) ,

where n is the number of data samples and ¢ = argming{||x; — my||} is the
index of the BMU of data sample x;. The new weight vector is a weighted
average of the data samples, where the weight of each data sample is the
neighborhood function value h;(t) at its BMU ¢. Alternatively, one can first
calculate the sum of the vectors in each Voronoi set:

(3)

i) = >, o

where ny; is the number of samples in the Voronoi set. Then, the new values
of the weight vectors can be calculated simply as:

> e hij(t)s;(t)
Z;nﬂ ny;hij(t) |

where m is the number of map units. This is the way batch algorithm has
been implemented in the Toolbox, because it uses much less memory.

(5)

3.3 Training parameters

There are a number of training parameters that need to be decided before the
training: map size (ie. the number of map units) and shape, neighborhood
kernel function, neighborhood radius, learning rate and the length of training.
The user can freely specify all of these, but to minimize user effort, the
Toolbox also provides default values for them. The default values are:

e The number of map units is (approximately) m = 5y/n, where n is the
number of data samples.

e Map shape is rectangular sheet with hexagonal lattice. The ratio of
sidelengths corresponds to the ratio between two greatest eigenvalues
of the covariance matrix of the data.
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e Neighborhood function is gaussian h.(t) = e 2®”, where d.; is the
distance between units ¢ and i on the map grid and r(¢) is the neigh-
borhood radius at time ¢.

e Radius, as well as learning rate, is a monotonically decreasing function
of time. The starting radius depends on map size, but the final radius
is one. Learning rate starts from 0.5 and ends to (almost) zero.

e Training length is measured in epochs: one epochs corresponds to one
pass through the data. The number of epochs is directly proportional
to the ratio between number of map units and number of data samples
m/n.

By default, the training is divided to two phases: rough training and fine-

tuning. The first phase is performed using bigger neighborhood radius and
learning rate than the second phase. It is also shorter than the second phase.

3.4 Computational complexity

As C-code, the sequential training algorithm can be implemented as:

for (j=0; j<n; j++) { /* go through the data */
bmu=-1; min=1000000;
for (i=0; i<m; i++) { /* find the BMU */
dist=0;

for (k=0; k<d; k++) {diff = X[j][k] - M[i][k]; dist += diff*xdiff; }
if (dist<min) { min=dist; bmu=i; }
}
for (i=0; i<m; i++) { /* update */
h = alpha*exp(delta(bmu,i)/r);
for (k=0; k<d; k++) M[i]l[k] -= h+x(M[i][k] - X[j1[k1);
}

where X[j] [k] is the kth component of jth data sample, M[i] [k] is the
kth component of map unit ¢ and delta is a table of squared map grid
distances between map units calculated beforehand. The radius r corresponds
to —2r(t)? above. Correspondingly, the batch training algorithm is:

for (i=0; i<m; i++) { vn[i] = 0; for (k=0; k<d; k++) S[il[k] = 0; }

for (j=0; j<n; j++) { /* go through the data */
bmu=-1; min=1000000;
for (i=0; i<m; i++) { /* find the BMU */



dist=0;
for (k=0; k<d; k++) { diff = X[jl[k] - M[i] [k]; dist += diffxdiff; }
if (dist<min) { min=dist; bmu=i; vn[bmu]++; }
}
for (k=0; k<d; k++) S[bmul [k] += X[jl[k]; /* Voronoi region sum */
}
for (i=0; i<m; i++) for (k=0; k<d; k++) M[i] [k] = 0;
for (il1=0; il<m; il++) { /* update */
htot = 0;
for (i2=0; i2<m; i2++) {
h = exp(deltali1][i2]/r);
for (k=0; k<d; k++) M[i1][k] += h*S[i2] [k];
htot += h*vn[i2];
}
for (k=0; k<d; k++) M[i1][k] /= htot;
}

Thus, there are 6nmd + 2nm floating point operations (additions, substrac-
tions, multiplications, divisions or exponents) in the sequential algorithm and
3nmd + (2d + 5)m? + (n + m)d operations in the batch training algorithm.
If n > m this means that the computational complexity of one epoch of
sequential training is about O(nmd) and that the computational complexity
of batch training is about half of the sequential one.

The memory consumption of sequential algorithm is (n +m)d floating points
for data and map prototype vector matrices. For batch algorithm, memory
consumption is (n 4 2m)d floating points for data, prototype and sum vector
matrices. In addition, in both cases there is the interunit distances calculated
beforehand, which is a matrix of m? elements, although this can be reduced to
m(m — 1) /2 floating points since the matrix is symmetric. Here it is assumed
that the data is in the main memory. This need not be so. For example
SOM_PAK [3] can use buffered data.

In the Toolbox, things are a bit different from the above C-code. First of
all, the distance metric is slightly different from Euclidian: the distance cal-
culation must take possible missing values into account, and the Euclidian
distance is weighted:

[Ix — m||{ = (x — m)"A(x — m), (6)

where A is a diagonal matrix. This way the different variables can be weighted
according to their importance. Both operations increase the computational
complexity somewhat, but the algorithm still remains essentially O(nmd) in
complexity.



If default parameter values listed in the previous section are used, one can
also calculate the complexity of the whole training process in the Toolbox.
The number of map units is about m = 5/n and the number of epochs
is proportional to m/n. Thus the total complexity is n(5y/n)d(5y/n)/n or
O(nd). Of course, in some cases the number of map units needs to be selected
differently, e.g. m = 0.1n in which case the complexity is O(n?d).

There are also some faster variants of the SOM, for example the TS-SOM [4].
These are basically based on speeding up the winner search from O(md) to
O(log(m)d) by investigating only a small number of prototypes.

4 Experiments

While investigation of the number of operations in the algorithms gives useful
insight to the compulational load, it does not give information of the actual
computation times of the Toolbox. In order to get an idea of how efficient the
Toolbox implementation is, and how the map size and length of data effect
the computing time, some performance tests were made. The purpose was
only to evaluate the computational load of the algorithms. No attempt was
made to compare the quality of the resulting mappings, primarily because
there is no uniformly recognized “correct” method to evaluate it.

4.1 Test set-up

The tests were run in a machine with 3 GBs of memory and 16 250 MHz
R10000 64-bit CPUs (one of which was used by the test process) running
IRIX 6.5 operating system. The Matlab version was 5.3. The different pa-
rameters of the test (data size, training length, etc.) are listed in Table 1. The
test parameters included different data set and map sizes and three training
functions: som_batchtrain, som_seqtrain and vsom, the last of which is part
of the SOM_PAK package [3]. The training length, 10 epochs, is fairly standard,
although with very large data sets it is perhaps excessive.

The computing times measured for vsom do not include the time needed
for writing and reading the files from Matlab. This took between 0.2 and 50
seconds, depending primarily on the size of the data set. Especially with large
maps, this is irrelevantly small time when compared with overall training
time. However, the measured times do contain the time used by vsom itself
for file I/O. Thus, there is some small overhead in the computing times for
vsom with respect to computing times of som_batchtrain and som_seqtrain.



Table 1: Performance test parameters.

parameter different values used in the test
data dimension 10, 30, 50, 100
data length 300, 1000, 3000, 10000, 30000
number of map units 30, 100, 300, 1000
training function som_batchtrain
som_seqtrain
vsom
neighborhood function gaussian
training length 10 epochs

4.2 Results

Figure 1 shows test results. For a “typical” data of size [3000 x 30] and 300
map units, the training times were 8, 77 and 43 seconds, for som_batchtrain,
som_seqtrain and vsom, respectively. For the largest investigated case of
[30000 x 100] data and 1000 map units the times were 8 minutes, 2.2 hours
and 47 minutes, respectively.

It can be seen that the batch training algorithm is almost always considerably
faster than the others: upto 20 times faster than som_seqtrain and upto 11
times faster than vsom, with mean values being 11 and 4. Likewise, sequential
training is almost always the slowest algorithm. The only case where this is
not so is when the number of map units exceeds the number of data samples
n < m (top right corner of Figure 1) — a very unlikely case in practice.
The superiority of som_batchtrain over som seqtrain is no suprise, but it
was suprising to find that the C-program vsom was considerably slower than
som_batchtrain.

Figure 2 shows some typical computing times as a function of the number
of data samples, map units and data dimension. Computing time scales al-
most linearly with respect to dimension and number of data samples (on
this parameter range), but grows faster with the number of map units. This
corresponds well to the results in Section 3.4.

4.3 Additional tests

The gaussian neighborhood function is computationally quite heavy as op-
posed to the bubble neighborhood function. However, with respect to the rest
of the algorithm, this seems to have rather small effect in Matlab. However,
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Figure 1: Computing time (in seconds) as a function of data dimension. Both
axis are logarithmic. The subplot titles n; m show the number of data samples
(n) and map units (m). Times for batch training algorithm are shown with
circles, times for sequential training with squares and times for vsom with
Crosses.

in vsom the effect was more significant, dropping the training time by about
30% on the average.

One of the weak points of Matlab is that loops are relatively slow when
compared with precompiled code (like C-programs). Matlab has a compiler
that can be used to precompile Matlab functions into so-called mex-files
(short for Matlab executable), but this is really beneficial only if there are a
lot of loops in the function. For this reason it is natural that we observed some
benefits with respect to som seqtrain (in the order of 20%; the longer the
training, the greater the benefit) but none with respect to som batchtrain.

Some tests were also performed in a workstation with a single 350 MHz
Pentium II 32-bit CPU and 256 MBs of memory. The tests were performed
both in Linux and Windows N'T operating systems. The relative computation
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Figure 2: Computing time of som_batchtrain (in seconds) as a function of
the number of data samples (on the left, with 300 map units, dimension
50), number of map units (in the center, with 5000 data samples, dimension
50) and data dimension (on the right, with 5000 data samples and 300 map
units). The dashed line is a 1st order polynomial fitted to the using five first
samples.

times for IRIX, Linux and Windows respectively were
e 1:5:2.5 for som batchtrain
e 1:3.3:2.7 for som_seqtrain
e 1:1.7:4 for vsom

Of course, these results reflect differences between underlying hardware, op-
erating system and optimization of the Matlab itself in different platforms
and it is impossible to say how much each factor affected the results. In the
workstation, the lower amount of memory certainly had an effect with large
data and map sizes. Since the performace of vsom in Linux was not effected
by this, with large maps vsom was approximately as fast or even faster than
som_batchtrain. The slowness of vsom in Windows may own something to
the fact that the Windows version of vsom was compiled back in 1996, while
the Unix versions were compiled just recently.



4.4 Memory

The major deficiency of the SOM Toolbox is the expenditure of memory. A
rough estimate of the amount of memory used by som_batchtrain is given
by: 8 X (5md + 4nd + 3m?) bytes, where m is the number of map units, n is
the number of data samples and d is the input space dimension. Especially
the last term limits the usability of the Toolbox considerably. Consider a
relatively small data set [3000 x 10] and 300 map units. The amount of
memory required is still moderate, in the order of 3 MBs. However, increasing
the map size to 3000 map units, the memory requirement is almost 220
MBs, 99% of which comes from the last term of the equation. The sequential
algorithm is less extreme requiring only one half or one third of this.

5 Applicability of the Toolbox

In [1] Goebel and Gruenwald prodive a survey of data currently available
data mining tools. Below is a characterization of the Toolbox (together with
Matlab) as a data mining tool following their categorization scheme.

5.1 General characteristics

SOM Toolbox is freeware, beta-status product directly downloadable from
the Internet. However, to run it requires Matlab. The general characteristics
of Matlab are: a commercial product, with academic licensing fees. One can
download an evaluation version of Matlab from the Internet. The comput-
er architecture is either standalone or client/server. Matlab is available for
Windows and various Unix platforms.

5.2 Database connectivity

The basic Matlab is not particularly strong in database connectivity. About
the only data format supported is ASCII. However, there are some toolboxes
which ameliorate this lack somewhat. For example, Database Toolbox enables
connection to ODBC database using SQL commands, and Excel Link allows
data exchange with Excel. The analysis is typically performed offline, but
also online connection with database is possible.

The data model in SOM Toolbox, and also in Matlab, a single table. The
maximum number of records that SOM Toolbox can comfortably handle
depends on the available hardware. Goebel and Gruenwald divide the data



size to three categories: small (upto 10000 records), medium (10000 - 1000000
records) and large (over million records). Considering the tests in the previous
section, SOM Toolbox is comfortable to use with small data sets, but can
also handle medium data sets.

Matlab can accommodate continuous, categorial and symbolic data. Also
SOM Toolbox can handle all of these, but the algorithm really uses only
numerical data, so with symbolic variables the Toolbox is of little use.

5.3 Data mining characteristics

SOM Toolbox is primarily a clustering and visualization tool, and thus is
an excellent tool for exploratory data analysis. However, it can be used in
most other discovery tasks as well: preprocessing, prediction, regression and
classification. The discovery methodology is neural networks. Matlab itself
is a powerful preprocessing and visualization environment. There are a large
number of toolboxes intended for a variety of modeling and analysis tasks.
These toolboxes are based on wide span of methodologies from statistical
methods to bayesian networks.

In Matlab, the data mining process is typically highly interactive. However,
for specific tasks and applications it is possible to build partly or totally
autonomous tools. SOM Toolbox is also most useful with high degree inter-
action, although default values can be used for most parameters. However,
simply because SOM Toolbox is primarily intended as a tool for data under-
standing, it can never become a completely autonomous tool.

6 Conclusion

In this paper, the scalability and applicability of the SOM Toolbox in da-
ta mining has been considered. The Toolbox runs in Matlab, so while the
Toolbox itself is free, it is not zero-budget software. Matlab as a comput-
ing environment is extremely versatile but for this reason also requires high
degree of user interaction.

The data model in Toolbox is a single table with continuous or categorial
variables. The Toolbox is easily applicable to small data sets (under 10000
records) but can also be applied in case of medium sized data sets (upto
1000000 records). Here, a moderate number of variables — under a few hun-
dred at most — is assumed. An important limiting factor is however map
size. The Toolbox is mainly suitable for training maps with 1000 map units
or less. If this kind of parameter values are used, especially the batch training



algorithm is very efficient, being considerably faster than vsom, a commonly
used implementation of sequential SOM algorithm in C-code.

In data mining, the Toolbox and the SOM in general can be used for a wide
range of tasks from preprocessing to modeling. However, it is best suited
for the data understanding: clustering, visualization and exploratory data
analysis.
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