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Abstract

This is the User’s Guide to the GTM Toolbox — a set of MATLAB functions and
scripts that implements and demonstrates the generative topographic mapping, a
method for density modelling, dimensionality reduction and data visualisation.
This document gives a brief description of the GTM, the content of the toolbox
and what is required to use it. It describes how to use the toolbox and provides
a section of practical advice and tips. Finally, it contains a reference section for
the functions and scripts in the toolbox.
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Chapter 1

Introduction

This section gives a brief introduction to the GTM, the content of this toolbox,
and what you need to use it. It is assumed that you have read at least one of the
papers on the GTM [Bishop, Svensén, and Williams 1997b; Bishop, Svensén,
and Williams 1997a; Bishop, Svensén, and Williams 1996]'.

1.1 What is GTM

GTM, which stands for generative topographic mapping, is a mathematical
model for density modelling and visualisation [Bishop, Svensén, and Williams
1997b)]. It generates a constrained mixture of Gaussians in the data space, which
is fitted to the data using a modified form of the EM (expectation-maximisation)
algorithm [Dempster, Laird, and Rubin 1977; Bishop 1995]. More specifi-
cally, we constrain the model by confining the centres of the mixture to a low-
dimensional manifold embedded in the data space. This is achieved by a latent
variable model approach, where we map a low-dimensional latent variable space
into the data space using a parametric non-linear mapping.

Figure 1.1 shows an example where a discrete sample from a two-dimensional
latent variable space, x, is mapped into a three-dimensional data space by a
parameterised non-linear mapping, y(x; W). Each point in the latent space
maps to a corresponding point in the data space and treating each of these
points as a centre of a Gaussian, we get a mixture of Gaussians. As far as this
release of the toolbox is concerned, we only consider mixtures with equal mixing
coefficients and a single variance parameter, common to all mixture components.
However, this could easily be extended to more general models.

Note that, although we work with a discrete latent variable sample, the map-
ping is defined continuously over the latent space, sweeping out a corresponding
manifold in the data space, on which the centres of the Gaussians lie.

We alter the shape of the mixture by modifying the parameters of the map-
ping, W, using an EM algorithm where the M-step is modified to suit our partic-

! These papers are available from the GTM homepage, http://www.ncrg.aston.ac.uk/GTM.
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Figure 1.1: The basic idea of the GTM — points in the low-dimensional latent
space is mapped to corresponding centres of a Gaussians in the (potentially)
high-dimensional data space.

ular choice of mapping. This toolbox uses a generalised linear regression model,
which uses a linear combination of fixed non-linear basis functions. This gives
significant computational advantages, since the corresponding M-step reduces
to a matrix inversion, avoiding the iterative search procedures often associated
with the fitting of non-linear models.

An important feature of the GTM is that it can be used for visualisation
of data, provided the latent space has no more than two or possibly three di-
mensions. Since the GTM defines a probability distribution in the data space,
p(t|x; W*) (where t denotes a point in the data space and W* denotes parame-
ters of the model fitted to training data), we can use Bayes’ theorem to compute
p(x|t,; W*), for a data point t,,, which then can be plotted against the latent
variable. You can think of it as reversing the mapping to go from data to latent
space. Remember, however, that a single data point in the data space will map
to a complete distribution over the latent space, not just a single point.

1.2 What does this toolbox contain?

This package provides a set of MATLAB functions which together have all the
necessary machinery to generate GTMs and use them for visualisation of data.
It has been developed as a part of ongoing research, with the intention of being
modular to allow for easy extensions and changes. There are also functions
included which are designed to facilitate efficient use and to lower the ‘threshold
of practicalities’.

At the moment, it comes as a MATLAB implementation accompanied by two
short C programs; it does not require any extra toolboxes etc. to run. If you
have a C compiler supported by MATLAB, the C files can be compiled into mex-
files which are called directly from MATLAB [The MathWorks, Inc. 1993]. This



will give a speed up of the GTM training process, but the package can also be
used as a pure MATLAB implementation. There is a demo provided (gtm_demo),
which shows the GTM in action on a toy problem. The corresponding code
forms an example of how some of the other functions can be used.

In terms of documentation, there is this document, which provides a de-
scription of the package and how to use it. It does not describe any of the
underlying theory. It is important that the users of this package understand its
theoretical foundations, which can be achieved by reading the papers published
on the GTM model [Bishop, Svensén, and Williams 1997b; Bishop, Svensén,
and Williams 1997a; Bishop, Svensén, and Williams 1996]. This document is
written with the assumption that the readers are already familiar with the GTM
and its associated terminology; it is also assumed that the readers are familiar
with MATLAB.

The second part of this document is the reference manual, describing all
functions and scripts in the toolbox. This reference documentation is also deliv-
ered as a set of html-files, which can be displayed in html-browsers like Netscape
and Mosaic.

1.2.1 What’s required to use the toolbox?

As has already been said, this package can be used as it is under MATLAB v4.2
(or later). There are, however, requirements in terms of hardware which may
impose restrictions on the size of problems you can tackle with the package.
In particular, the training algorithm requires significant amounts of memory to
be allocated. This is largely due to the fact that the GTM training algorithm
provided with this version of the toolbox operates in batch-mode only?. Some
of the matrices manipulated during training scale like the product of the size
of the set of training data and the number of the latent variable points; e.g.
with 1000 training data points and 400 latent variable points, the distance and
responsibility matrices® will have 400 000 elements, requiring over 3 megabytes
of storage each, with 64 bit floating point representation. The algorithm is also
demanding in terms of CPU usage.

Consequently, you may experience problems if you try to tackle larger scale
problems on a machine with limited resources. MATLAB is itself quite demand-
ing in terms of memory and its memory management is geared towards speed of
execution rather than limited memory usage; the MATLAB documentation [The
MathWorks, Inc. 1992] gives some tips on how to tackle memory problems.

2This is an inherent problem with batch-algorithms, arising from the need of storing large
amounts of intermediate results. The same problem occurs also with other batch algorithms,
e.g. the batch version of the self-organizing map [Kohonen 1995].

3These matrices are generated during the training of a GTM, as described in section 2.3.



1.3 The rest of this document

In the next chapter, the first two sections (2.1 and 2.2) describe how to generate
and train a GTM, and how to use it for visualisation. The last section (2.3)
describes how the toolbox works at a more detailed level, and can be omitted
until the methods described in sections 2.1 and 2.2 no longer suffice for your
needs.

The last chapter gives some hints on the selection of parameters; thereafter
follows the reference section.



Chapter 2

How to use this toolbox

Every session using this package ‘from scratch’ (i.e. starting with just a data set)
will involve two main steps: set-up and training. Set-up refers to the process of
generating an initial GTM model, made up by a set of components (MATLAB
matrices). Training refers to adapting the initial model to a data set, in order
to improve the fit to that data.

Both steps can be more or less automated, depending on which level of
detail you want to work. This package contains functions that automate what
is believed to be the most common usage procedures. All that these functions
do is to call other functions of the package, so by instead doing this by hand
you can exercise more control over the exact details of your model.

The first sections of this chapter describe how to set up and train a GTM,
and how to use it for visualisation of data. The following section take a look
under the bonnet, explaining the steps of set-up and training in greater detail;
for convenience we first introduce some notation used in text, figures, examples
and also in the MATLAB code; most of it also conforms (more or less) to the
notation used in the papers on the GTM. A few self-explanatory variable names
are omitted.

Notation

T denotes a matrix containing the data we want to model and visualise (stored
row-wise).

X denotes a matrix containing the latent variable sample points (stored row-
wise).

MU denotes a matrix containing the positions of the basis functions in the latent
space (stored row-wise).

sigma denotes a scalar giving the relative width of the basis functions; the
absolute width is calculated as sigma times the distance between two
neighbouring basis function centres.
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Figure 2.1: The automated set-up and training procedures for generating a
GTM. The components to the left and right of the boxes denotes input and
output arguments respectively; arguments within parentheses are optional.

FI denotes a matrix containing the output the basis functions corresponding to
the latent variable sample X.

W denotes the weight matrix mapping the output of the basis functions to the
data space.

Y denotes a matrix containing the centres of Gaussian mixture generated in the
data space. (Y = FI*W)

beta denotes a scalar giving the inverse variance of the components of the
Gaussian mixture that is generated in the data space.

lambda denotes a scalar giving the weight regularisation coefficient used when
training the model.

mode denotes an integer that selects the mode of calculation (this is discussed
further in section 2.3).

gtm_* denotes functions of the GTM toolbox, where * is replaced by 2—4 letters
or digits, to form the name of the function.

2.1 Set-up and training

Figure 2.1 illustrates the procedure for automated set-up and training. The
set-up functions (gtm_stpl or gtm_stp2) take the data set we want to model,
along with parameters of the GTM, and generate the initial GTM components,
which are subsequently fed into the training function, gtm trn.

These components represent a default initial GTM, utilising a uniformly
gridded latent sample (X), Gaussian basis functions (FI) uniformly gridded over
the space of the latent sample, weights (W) mapping the outputs of the basis
functions corresponding to the latent sample to the first principal component(s)



of the data, and an accordingly chosen value for beta. The user chooses the size
of the latent sample and the number and relative width of the basis functions.

gtm_trn iteratively adapts the parameters W and beta, each iteration im-
proving the fit to the data, and returns the new values after a given number of
cycles. If desired, these new values can be used as input arguments in second
call to gtm_trn, continuing the training from where it ended.

gtm_trn also takes arguments that control the degree of weight regulari-
sation, mode of calculation and echoing of diagnostic information — see the
reference section for details.

2.2 Visualisation

The GTM can be used for visualisation of either individual data points or whole
sets of data. In the former case, the result is a probability distribution over the
latent space; in the latter, we summarise the distributions by their corresponding
means or modes. This toolbox contains three corresponding functions, which
all return vectors or matrices suited for visualisation using MATLAB’s graphics
routines.

gtm_ppd computes and returns the posterior probability distribution induced
over the latent space given a single points in the data space. Depending on the
dimensionality of the latent space, it returns either two vectors that can be used
with plot or three mesh matrices that can be used with MATLAB’s routines for
3D graphics, e.g. pcolor, mesh and surf. In the latter case, it assumed that
the latent sample was generated using gtm_stp2, in order for the 3D graphic
routines to work.

gtm_pmn takes a whole set of data points, together with the components of a
(trained) GTM and returns, for each data point, the mean of the corresponding
distribution in the latent space. Using this form of visualisation, one should al-
ways bear in mind that the mean might be a poor descriptor of the distribution,
e.g. in the case it is multi-modal.

For a multi-modal distribution, the mean is often significantly different from
the mode, so we may be able to detect such cases by comparing means and
modes. gtm_pmd works just like gtm_pmn, with the difference that it computes
the mode rather than the mean of the posterior distribution.

Example

The example in box 2.1 illustrates the use of the functions described in the
previous sections. A file named Data.mat is present in the directory where
MATLAB is started, containing a data set living in a high-dimensional space.

Figure 2.2 shows the result from the calls to surfl and plot. Note that for
most mean-mode pairs in the right plot, although there may be some discrep-
ancies, these merely indicate that a few nearby mixture components share the
responsibility for the corresponding data point.

10



<MATLAB () >
(c) Copyright 1984-94 The MathWorks, Inc.
A1l Rights Reserved
Version 4.2c.1
Dec 31 1994

Commands to get started: intro, demo, help help
Commands for more information: help, whatsnew, info, subscribe

>> load Data
>> who

Your variables are:
Data

>> noLatPts = 400; % 20-by-20 latent sample grid
>> noBasisFn = 81; % 9-by-9 basis function grid
>> sigma = 1.5;

>> [X, MU, FI, W, beta] = gtm_stp2(Data, nolLatPts,
noBasisFn, sigma);

>> lambda = 0.001;

>> cycles = 40;

>> [trndW, trndBeta, 1llhLog]l = gtm_trn(Data, FI, W,
lambda, cycles, beta, ’quiet’);

>> [x1, yl, p] = gtm_ppd(Data(58,:), FI*trndW,
trndBeta, X, 20, 20); % 20%20 = 400 = nolLatPts

>> surfl(xl, yl, p)

>> means = gtm_pmn(Data, X, FI, trndW, trndBeta);
>> modes = gtm_pmd(Data, X, FI, trndW);

>> plot (means(1:250,1), means(1:250,2), ’o’,
modes(1:250,1), modes(1:250,2), ’x’

) ; % plot only subset for clarity

>> for i = 1:250

plot([means(i,1);modes(i,1)], [means(i,2), modes(i,2)], ’-?)
end

>>

Box 2.1: Transcript of the MATLAB session that produced the plots in figure 2.2.
A MATLAB workspace file named Data.mat is present in the directory where
MATLAB was started.

11
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Figure 2.2: Examples of visualisation with the GTM. The left plot shows the
posterior distribution over the latent space induced by the 58th data point
(which in this case proved to be pretty interesting). The right plot shows the
posterior mean (o) and mode (x) projection of a subset of the data set in the
latent space, with corresponding mean and mode points joined by a line.

2.3 Under the bonnet

Rather than using the automated set-up functions, you can generate the neces-
sary initial components ‘manually’. This gives you more detailed control over
the model, and lets you try out configurations not directly supported by the
automated set-up.

Manual set-up essentially means carrying out the steps of the automated
set-up functions by hand, so an easy way to get an understanding of what to do
is to look at the inner workings of these functions; figure 2.3 gives a pictorial
description of what is happening inside gtm_stp2. (gtm_stpl is very similar —
just slightly simpler.)

The procedure consists of four steps:

1. Generate a latent variable sample, X.
2. Generate the centres of the basis functions, MU.

3. Compute the activations in the basis functions, FI, given the latent vari-
able sample.

4. Compute an initial weight matrix, W, mapping from the output of the
basis functions to the data space, and an initial value for beta, the inverse
variance of the Gaussian mixture.

Steps 1 and 2 both generate sets of points in the latent space, and hence can
both be carried out in the same way. gtm_stpl and gtm_stp2 both generate

12
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Figure 2.3: The inner workings of gtm_stp2, illustrating the steps of creating
an initial GTM.

uniformly gridded samples over the latent space; this is trivial in the case of a
one-dimensional space. For a two-dimensional latent space, gtm_rctg generates
a set of points taken from a regular, rectangular lattice over the latent space;
gtm_hxg does the same thing, but instead uses a hexagonal lattice!.

Alternatively, these steps could be accomplished using MATLAB’S rand or
randn functions, which generate random samples from a uniform and normal
distribution respectively. This is generally not recommended, since GTMs gen-
erated in exactly the same way could still give slightly different results?; more-
over, you would not be able to use a (2D) latent variable sample generated this
way with MATLAB’s functions for 3D visualisation (mesh, surf, pcolor, etc.).
However, it does provide a fast way of generating GTMs with latent spaces of
higher dimension then two; be aware, though, that the number of points re-
quired to provide an adequate sample grows exponentially with the number
of dimensions of the latent space — a phenomenon known as the curse of di-
mensionality [Bellman 1961; Bishop 1995] — and therefore higher dimensional
models are computationally expensive.

Step 3 is carried out using gtm_gbf. It returns the activations of a set of
spherical Gaussian basis functions whose centres were generated in step 2 and

lgtm hxg was developed as part of the study of the relationship between GTM and the self-
organizing map [Kohonen 1995]. For the case of the GTM, using a rectangular or hexagonal
lattice appears to have small impact on the resulting density model, although in visualisation,
the underlying lattice may ‘shine through’ to some extent.

2This could be avoided by initialising the random generator each time before generating
an initial GTM.

13



the width chosen by the user, given the latent sample generated in 1. There is
also a function, gtm_1bf, which returns the activations from linear basis func-
tions; with a Gaussian latent distribution and linear basis functions, the GTM
will implement a constrained variant of factor analysis. However, the use of
linear basis functions is not considered further in this document.

For step 4, finally, gtm_pci calculates a weight matrix which maps the L-
dimensional latent variable to the plane spanned by the L first principal com-
ponents of the target data, so as to match the mean and variance of the data
projected onto this plane. The corresponding value for beta is chosen so its
inverse equals larger of

e half the average distance from one component of the mixture to its nearest
neighbour, or

e the (L + 1)th eigenvalue of the covariance matrix of the data, i.e. the
largest variance orthogonal to the L-dimensional hyperplane to which the
latent sample is mapped.

This is the initialisation used by gtm_stpl and gtm_stp2.

Alternatively, gtm_ri returns a weight matrix generated at random from
an axis-aligned Gaussian distribution (in the weight space), with parameters
chosen so that the mean and variance of the set of points generated in target
space (taken to be the centres in the Gaussian mixture) roughly match the mean
and variance of the data on each dimension; beta is set to the average distance
between each mixture component and its nearest data point.

2.3.1 The steps of training

Whereas it is reasonably likely that you might want to try set up GTM models
by hand, in order to try configurations not catered for by the automated set-
up procedures, it is rather unlikely that you ever will want to do ‘manual’
training. This section is rather intended as additional documentation on the
implementation of training algorithm in this toolbox (gtm_trn); it should be
particularly useful when you want to experiment with, or change this code. The
whole training procedure is illustrated in figure 2.4; details of the figure are
explained in the following paragraphs.

The training procedure can, initially, be divided into the two steps of the
EM-algorithm. In the E-step we calculate a matrix, R, containing the responsi-
bilities assumed by each Gaussian mixture component for each of the training
data points. These responsibilities are subsequently used in the M-step, for cal-
culating new parameters of the Gaussian mixture, by means of new values for
W and beta.

The E-step can, in turn, be broken down into two sub tasks. gtm_dist
takes care of the first one: calculating the distances between all mixture com-
ponents and all training data points. It takes the corresponding two matrices,
T and Y, as input arguments and returns a matrix with all the distances, DIST.
This is a computationally demanding step; the overall speed of the algorithm

14
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Figure 2.4: A simplified illustration of the steps of training. Note a) how infor-
mation is flowing down the figure; b) how all E-steps but the first overlaps with
the preceding M-step by re-using DIST.
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can be increased if this calculation is done using an external C or FORTRAN
implementation®.

The DIST matrix is used as an argument to gtm_resp which calculate re-
sponsibilities from the distances, which are returned in a matrix, R.

There are optional argument for both gtm dist and gtm resp controlling
the mode of calculation — greater accuracy can be obtained at the expense of
more calculations. At the moment there are three modes of calculations: 0,
1 and 2, in increasing order of accuracy and required number of operations.
No serious attempt has been made to quantify the differences in accuracy, but
experience so far point towards very marginal improvements in accuracy, and
that the relative largest gain is made going from mode 0 to mode 1. (See code
for details.)

As has already been said, the GTM training algorithm is quite demand-
ing in terms of memory, a problem further worsened by the fact that output
arguments from functions are passed by value in MATLAB. This leads to prob-
lems with repeated calls to gtm_dist and gtm_resp; each call will allocate re-
turn matrices from the memory heap, and if these matrices take sizes in or-
der of megabytes, MATLAB will run out of memory before long*. Therefore,
gtm dist and gtm resp have sibling functions, gtm dstg and gtm_rspg which
utilise global variables to pass on their results, rather than normal output ar-
guments. For these functions to work efficiently, the necessary global variables
should have been pre-allocated. It is highly recommended that you use gtm_dstg
and gtm_rspg rather than gtm_dist and gtm_resp inside any kind of loop struc-
tures (gtm_trn indeed does so). There is a C implementation of gtm_dstg; note
that this has pre-allocated global variables of correct size as an absolute pre-
requisite.

The M-step can also be divided into two steps, first maximising with respect
to W, then with respect to beta. The first step corresponds to solving a system
of linear equations, i.e. a matrix inversion followed by a matrix multiplication.
As the matrix that is inverted is symmetric and often also positive definite,
it is worthwhile trying Cholesky decomposition, with the option of resorting
to the pseudo-inverse if the matrix would prove to be singular; this normally
gives better performance both in terms of speed and accuracy. In figure 2.4 this
is just represented by the line invA = inv(...);, for the sake of simplicity.
Admittedly, the savings in CPU-time are normally marginal, as the matrix
inversion only accounts for a small part of total amount of calculations necessary
the determine W. Most of the time is spent calculating the factor (FI’*(R*T));
note that the multiplication should be forced to go right-to-left, which normally
requires significantly fewer operations®.

3The difference in speed between the C and MATLAB implementations delivered in the
toolbox varies between platforms, but it appears as if the C implementation is faster (if only
slightly) in most cases.

40ne would have hoped that MATLAB would re-use allocated memory upon repeated func-
tions calls, but experience shows that this is not the case.

5This is due to the fact that these are not square matrices; ‘absorbing’ the largest dimension
first, which is normally the number of training data points, will minimise the total number

16



For the maximisation of beta, we simply apply the update formula from
the papers. Note, however, that the DIST matrix should be re-calculated with
the new set of weights. This may seem to be a costly update formula, but
the new DIST matrix can be retained and used for calculating a new matrix of
responsibilities (using the updated beta) for the next iteration of training.

of operations required. MATLAB does not seem to recognise this fact, but do the calculations
left-to-right, regardless of the shape of the matrices involved.

17



Chapter 3

Practical advice and tips

So far we have covered the procedures involved in building and experimenting
with GTMs. This section gives additional guidelines for the usage of GTMs
and can hopefully help you to some extent in tackling the problem of parameter
setting. The setting of parameters corresponds to choosing a prior distribution
over possible models, which generally is a difficult task. However, reasonable
assumptions about the distributions we are trying to model give directions for
this choice. The GTM already prescribes a fairly restrictive prior, as the density
models that can be generated in the data space will necessarily take the shape
of low-dimensional manifolds. It also seems reasonable to assume that this
manifold is relatively smooth, which in turn means that we should choose a
smooth mapping from latent to data space.

The smoothness of the mapping is controlled both by the parameters we
choose at set-up time and the ones we set during training, as will be explained
in the following two sections. As the choice of priors is inevitable in statistical
density modelling, it is an important advantage of the GTM that the relationship
between the model parameters and the corresponding prior distributions over
density models is relatively straightforward.

3.1 Parameters chosen at set-up time

During set-up you are required to specify the number of latent points and ba-
sis functions, together with a width parameter of the basis functions. The
smoothness of the mapping is largely determined by the properties of the basis
functions. Clearly, a limited number of basis functions will necessarily restrict
the possible forms that the mapping can take. Moreover, as basis functions
overlap, their response will be correlated — it is this correlation that causes the
smoothness of the mapping — which decreases the ‘effective’ number of basis
functions. Hence, more or narrower basis functions will allow a more flexible
mapping, while fewer or broader basis functions will prescribe a smoother map-
ping. Beware that very broad basis functions will cause the matrix of basis
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function activations, FI, to be ill-conditioned (gtm_pci will warn of this), while
on the other hand, very narrow basis functions will be close to uncorrelated so
the smoothness of the mapping is lost. The choice of parameters must be done
individually for each problem you try; experience so far has shown that sigma
= 1.0 is a good starting point, from were you can search by halving or doubling
subsequent values of sigma (i.e. searching on a logs scale).

As we are working with a finite latent variable sample, the size of this will
also affect the final mapping; the effective measure of overlap between basis
functions is how many latent points they ‘share’. With too few points per basis
function — and even fewer shared between neighbouring basis functions — the
smoothness of the mapping is lost. Ideally, we would choose the latent variable
sample to be very large, but this is computationally prohibitive. A good rule of
thumb is to have O(10%) number of latent points in the support of each basis
function, where L is the number of dimensions of the latent variable.

3.2 Parameters chosen for training

There is just one parameter to set for training: the weight regularisation factor,
lambda. It governs the degree of weight decay applied during training. While the
basis function parameters controls the smoothness of the manifold in the data
space, the weight regularisation parameter controls the scaling, by restricting
the magnitude of the weights.

In practice, because we work with finite number of latent and data points,
a small degree of weight regularisation, say 1073, is generally advisable as this
prevents the weights from growing very large, which otherwise could cause the
smoothness imposed by the basis function parameter to break down. (In par-
ticular, this can be the case when using many broad basis functions.)

In general, it is recommended that prior belief about the smoothness of the
mapping is primarily expressed in the choice of basis function parameters, while
the weight regularisation parameter is chosen to ensure that this smoothness is
maintained, while respecting the overall scale of the training data.

3.2.1 Local maxima

Like the general EM-algorithm, the training algorithm for the GTM suffers
from the problem of local maxima. Empirical evidence shows that the PCA
initialisation performed by gtm_pci (which is used by gtm_stpl and gtm_stp2)
often yields good results, although not optimal. You will be well advised to also
try a few random initialisations, once a suitable model architecture has been
determined.
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Reference Manual

This part of the document contains reference information about all the func-
tions included with the GTM toolbox. This information is also available via
MATLAB’s online help and as html-documents.

As these reference pages have been generated automatically from the MAT-
LAB help comments, please excuse any deviations and ‘glitches’ in the typeset-
ting, as compared to the first part of this document.
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gtm b1

Calculate an initial value for beta.

The value is calculated from the average distance between the nearest neigh-
bours in Y, the centres of the constrained Gaussian mixture generated in the
target space from latent sample.

Synopsis
beta = gtm_bi(Y)

Arguments

Y — a matrix containing the positions of the centres of the Gaussian mixture
induced in target space from the latent variable samples.

Return

beta — an initial value for the inverse variance of the Gaussian mixture
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gtm_demo

Demonstrates the GTM with a 2D target space and a 1D latent space.

This script generates a simple data set in 2 dimensions, with an intrinsic
dimensionality of 1, and trains a GTM with a 1-dimensional latent variable to
model this data set, visually illustrating the training process

Synopsis

gtm_demo

Notes

The script generates a number of variables which may overwrite variables al-
ready existing in the workspace. The generated variables remain in the work
space after the script has finished executing.
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gtm dist

Calculate the squared distances between two sets of data points.
This function calculates distances between all data points in the two data
sets T and Y and returns them in a matrix.

Synopsis

[DIST, minDist, maxDist] = gtm_dist(T, Y, m)
[DIST] = gtm_dist(T, Y)

Arguments

T, Y — data set matrices in which each row is a data point; dimensions N-by-D
and K-by-D respectively

m — mode of calculation; iff m > 0, min- and maxDist (below) are calculated;
the default mode is 0

Return

DIST — matrix containing the calculated distances; dimension K-by-N; DIST (k,n)
contains the squared distance between T(n,:) and Y(k,:).

minDist, maxDist — vectors containing the minimum and maximum of each
column in DIST, respectively; 1-by-N; required iff m > 0.
Notes

This m-file provides this help comment and a MATLAB implementation of the
distance calculation. If, however, a mex-file with the same name is present in
the MATLABPATH, this will be called for doing the calculation. As this is a
computationally demanding step of the algorithm, an efficient mex-file imple-
mentation will improve the performance of the GTM training algorithm.

See also

gtm_dstg
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gtm_dstg

Calculate the squared distances between two sets of data points.
This function calculates distances between all data points in the two data
sets T and Y and returns them via the global variable matrix gtmGlobalDIST.
In addition, the minimum and maximum value of each column in gtmGlob-
alDIST may be calculated and returned via the global variables gtmGlobal-
MinDist and gtmGlobalMaxDist.

Synopsis

gtm_dstg(T, Y, m)
gtm_dstg(T, Y)

Arguments

T, Y — data set matrices in which each row is a data point; dimensions N-by-D
and K-by-D respectively

m — mode of calculation; the default mode is m = 0 (see gtmGlobalMinDist/MaxDist
below)

Global variables

gtmGlobalDIST — Matrix containing the calculated distances; dimension K-by-
N; DIST(k,n) contains the squared distance between T(n,:) and Y(k,:).
This matrix is assumed to be pre-allocated; if this is not the case, perfor-
mance deteriorates dramatically

gtmGlobalMinDist, gtmGlobalMaxDist — vectors containing the minimum
and maximum of each column in DIST, respectively; 1-by-N; calculated
iff m > 0.

Notes

This m-file provides this help comment and a MATLAB implementation of the
distance calculation. If, however, a mex-file with the same name is present in
the MATLABPATH, this will be called for doing the calculation. As this is
a computationally demanding step of the algorithm, an efficient mex-file im-
plementation will improve the performance of the GTM training algorithm. A
mex-file implementation will have pre-allocated global matrices as an absolute
requirement.

See also

gtm_dist
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gtm_gbt

Calculates the output of Gaussian basis functions for a given set of input

Synopsis
FI = gtm_gbf (MU, sigma, X)

Arguments

MU — a M-by-L matrix containing the centers of the basis functions

sigma — ascalar giving the standard deviation of the radii-symmetric Gaussian
basis functions,

X — the latent variable sample forming the set of inputs; K-by-L

Return

FI — the matrix of basis functions output values; K-by-(M+1),”+1” for a bias
basis function with a fixed value of 1.0

See also

gtm_1bf
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gtm_hxg

Produces a 2D grid with points arranged in a hexagonal lattice.
The grid is centered on the origin and scaled so the dimension (X or Y) with
largest number of points ranges from -1 to 1.

Synopsis
grid = gtm_hxg(xDim, yDim)

Arguments

xDim, yDim — number of points along the X and Y dimensions, respectively;
must be >=2.

Return

grid — a (xDim*yDim)-by-2 matrix of grid points with the first point being
the top-left corner and subsequent points following columnwise.

See also

gtm rctg
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gtm_1bf

Calculates the output of linear basis functions for a given set of inputs
This simply amounts to returning the set of inputs with an extra bias column
of ones after the last column in the input set matrix.

Synopsis
FI = gtm_1bf (X)

Arguments

X — the latent variable sample forming the set of inputs; K-by-L

Return

FI — the matrix of basis functions output values; K-by-(L+1), "+1” for the
bias basis function

See also

gtm_gbf
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gtm m2r

Converts from a mesh-matrix to vector representation

Returns a matrix in which each row corresponds to a point on the grid
defined by the mesh-matrices X and Y. The enumeration of points goes from
the top-left corner of the mesh to the bottom-right, columnwise.

Synopsis
cXcYcZ = gtm_m2r (X, Y, Z)

cXcYcZ = gtm_m2r (X, Y)
cXcYcZ = gtm_m2r (X)
Arguments

X, Y, Z — mesh-matrices for x-, y- and z- coordinates respectively; M-by-N.

Return
cXcYcZ — matrix of rows of tuples; (M*N)-by-k, where k is 1, 2 or 3

See also

gtm_r2m
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gtm_pca

Calculates the principal components of a data set.
The principal components equals the eigenvectors of the covariance matrix
of the data..

Synopsis
[eVts, eVls] = gtm_pca(T)

Arguments

T — the data set for which the principal components are to be calculated. Every
row is assumed to be a data point; N-by-D

Return

eVts — an D-by-D matrix in which each column is a unit length eigenvector of
the covariance matrix of the data, sorted in descending order w.r.t. the
corresponding eigenvalues

eVls — a D-dimensional vector holding the eigen- values of the covariance
matrix of the data, sorted in descending order
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gtm pci

Returns a weight matrix initialised using principal components.

The returned weight matrix maps the mean of the latent variable to the
mean of the target variable, and the L-dimensional latent variable variance to
the variance of the target data along its L first principal components.

An initial value for beta can also be calculated, based on the noise of the
data (the "L+1”th eigenvalue) and the interdistances between Gaussian mixture
centres in the data space.

Synopsis

[W, beta] = gtm_pci(T, X, FI)
W = gtm_pci(T, X, FI)

Arguments

T — target distribution sample; one data point per row; N-by-D

X — the latent distribution sample, K-by-L

FI — basis functions’ activation when fed the latent data, X, plus a bias, K-
by-(M+1)

Return

W — the initialised weight matrix, (K+1)-by-D

beta — the initial beta value, scalar. This is an optional output argument;
if ommitted, the corresponding (rather time consuming) calculations are
ommitted too.

Notes

The first dimension (column) of X will map to the first principal component, the
second dimension (column) of X will map to the second principal component,
and so on. This may be of importance for the choice of sampling density along
the different dimensions of X, if it differs between different dimensions

See also

gtm.ri
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gtm_pmd

Calculates the posterior mode projection of data into the latent space.

The posterior mode projection of a point from the target space, t, is the
mode of the correspondig posterior distribution induced in the latent space.
Synopsis
modes = gtm_pmn(T, X, FI, W)

Arguments

T — data points representing the distribution in the target space. N-by-D

X — data points forming a latent variable sample of the distribution in the
latent space. K-by-L

FI — activations of the basis functions when fed X; K-by-(M+1)

W — a matrix of trained weights

Return

modes — the posterior modes in latent space. N-by-L

See also

gtm_ppd, gtm_pmn
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gtm_pmn

Calculates the posterior mean projection of data into the latent space.

The posterior mean projection of a point from the target space, t, is the
mean of the correspondig posterior distribution induced in the latent space.
Synopsis
means = gtm_pmn(T, X, FI, W, b)

Arguments

T — data points representing the distribution in the target space. N-by-D

X — data points forming a latent variable sample of the distribution in the
latent space. K-by-L

FI — activations of the basis functions when fed X; K-by-(M+1)
W — a matrix of trained weights

b — the trained value for beta

Return

means — the posterior means in latent space. N-by-L

See also

gtm_ppd, gtm_pmd
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gtm ppd

Latent space posterior probability distribution for a given data point.

This function calculates the posterior probability distribution induced in the
latent space of a trained GTM model for a given data point, and returns it in a
format suitable for MATLAB’s 2D or 3D graphic plotting routines, depending
on the latent space dimensionality.

Synopsis

[x1, y1, p] = gtm_ppd(t, Y, beta, X, xDim, yDim)
[x1, p] = gtm_ppd(t, Y, beta, X)

Arguments
t — a point in the data space; 1-by-D

Y — centres of the Gaussian mixture generated by the GTM in the data space,
Y = FI*W; K-by-D

beta — variance of Gaussian mixture; scalar
X — latent sample
xDim, yDim — number of points along the 2 dimensions of the latent space

meshgrid sample

Return

x1, yl1 — latent sample; if the latent space is 2D, x] and yl are mesh matrices;
if it is 1D, xl is identical to X

p — posterior distribution over latent space given data point t; if the latent
space is 2D, p is a mesh matrix, otherwise it is a vector of same length as
x1

Notes

If the latent sample X is 2 dimensional, it is assumed to have been constructed
from a mesh-grid, e.g. as if generated by gtm_stp2

See also

gtm_pmn, gtm_pmd, gtm_stp2
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gtm_r2m

Convert data from column vector to a mesh-matrix representation

The mesh-matrices are filled columnwise, starting from the top left corner,
with the elements from the corresponding column vectors. The exact (cX, cY,
cZ) - (X, Y, Z) relationship being:

X(i,j) = cX(meshRows*(i-1)+j)

Y(i,j) = cY(meshRows*(i-1)+j)

Z(i,j) = cZ(meshRows*(i-1)+j)

Synopsis

[X, Y, Z] = gtm_r2m(cX, cY, cZ, meshRows, meshCols)
[X, Y] = gtm_r2m(cX, cY, meshRows, meshCols)
X = gtm_r2m(cX, meshRows, meshCols)

Arguments

cX, cY, cZ — column vectors with x-, y-, and x-data respectively; N-by-1

meshRows, meshCols — number of rows and colmuns of the mesh matrices;
meshRows*meshCols = N

Return

X, Y, Z — mesh matrices; meshRows-by-meshCols

See also

gtmm2r
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gtm rctg

Produces a 2D grid with points arranged in a rectangular lattice.
The grid is centered on the origin and scaled so the dimension (X or Y) with
largest number of points ranges from -1 to 1.

Synopsis

grid = gtm_rctg(xDim, yDim)

Arguments

xDim, yDim — number of points along the X and Y dimensions, respectively;
must be >=2.

Return

grid — a (xDim*yDim)-by-2 matrix of grid points with the first point being
the top-left corner and subsequent points following column-wise.

See also

gtm_hxg
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gtm resp

Log-likelihood and component responsibilities under a Gaussian mixture

The responsibility R(k,n) is the probability of a particular component in the
Gaussian mixture, k, having generated a particular data point, n. It is calculated
from the distances between the data point n and the centres of the mixture
components, 1..K, and the inverse variance, beta, common to all components.

Synopsis

[11h, R] = gtm_resp(DIST, minDist, maxDist, beta, D, mode)
[11h, R] = gtm_resp(DIST, beta, D)

Arguments

DIST — a K-by-N matrix in which element (k,n) is the squared distance between
the centre of component k and the data point n.

minDist, maxDist — vectors containing the minimum and maximum of each
column in DIST, respectively; 1-by-N; required iff m > 0.

beta — a scalar value of the inverse variance common to all components of the
mixture.

D — dimensionality of space where the data and the Gaussian mixture lives;
necessary to calculate the correct log-likelihood.

mode — optional argument used to control the mode of calculation; it can be
set to 0, 1 or 2 corresponding to increasingly elaborate measure taken to
reduce the amount of numerical errors; mode = 0 will be fast but less
accurate, mode = 2 will be slow but more accurate; the default mode is 0

Return

11h — the log-likelihood of data under the Gaussian mixture

R — an K-by-N responsibility matrix; R(k,n) is the responsibility takened by
mixture component k for data point n.

Notes

1Ih’ is put as the first output argument, as 'R’ is not of interest in the fairly
common task of calculating the log-likelihood of a data set under a given model.
This allows for calls like: 1lh = gtm_resp(...);

See also

gtm_dist, gtm_rspg, gtm_dstg
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gtm ri

Returns an initial random weight matrix.

Generates a weight matrix with the bias weights set to map to the mean of
the target distribution and remaining weights drawn at random from a Gaussian
distribution with zero mean and variances choosen so that the variances of the
generated distribution roughly match the variances of the target distribution.

In addition, an initial value for beta may be calculated as the inverse of
the average distance between each Gaussian centre, calculated with the random
mapping, and its nearest neighbours in the set of data points.

Synopsis

[W, beta] = gtm_ri(T, FI)
W = gtm_ri(T, FI)

Arguments

T — sample of target distribution, used for calculating the mean; one data point
per row; N-by-D

FI — basis functions’ activations when fed the latent data, X, plus a bias,
K-by-(M+1)
Return

W — the initialised weight matrix; (M+1)-by-D

beta — the initial beta value, scalar. This is an optional output argument; if
omitted, the corresponding calculations are omitted too.

See also

gtm_pci
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gtm rspg

Log-likelihood and component responsibilities over a Gaussian mixture

The responsibilities are returned via the global variable matrix gtmGlobalR.
The responsibility gtmGlobalR,(k,n) is the probability of a particular component
in the Gaussian mixture, k, having generated a particular data point, n. It
is calculated from the distances between the data point n and the centres of
the mixture components, 1..K, and the inverse variance, beta, common to all
components.

Synopsis

11h
11h

gtm_rspg(beta, D, mode)
gtm_rspg(beta, D)

Arguments

beta — a scalar value of the inverse variance common to all components of the
mixture.

D — dimensionality of space where the data and the Gaussian mixture lives;
necessary to calculate the correct log-likelihood.

mode — optional argument used to control the mode of calculation; it can be
set to 0, 1 or 2 corresponding to increasingly elaborate measure taken to
reduce the amount of numerical errors; mode = 0 will be fast but less
accurate, mode = 2 will be slow but more accurate; the default mode is 0

Return

11h — the log-likelihood of data under a the Gaussian mixture.

Global variables

gtmGlobalR — an K-by-N responsibility matrix; gtmGlobalR(k,n) is the responsa-
bility takened by mixture component k for data point n.

gtmGlobalDIST — an K-by-N matrix in which element (k,n) is the Euclidean
distance between the centre of component m and the data point n.

gtmGlobalMinDist, gtmGlobalMaxDist — vectors containing the minimum
and maximum of each column in DIST, respectively; 1-by-N; required
iff m > 0.

See also

gtm_resp, gtm_dstg, gtm_dist
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gtm_sort

Sorts the columns of argument matrix R in increasing order.

Synopsis

srtdR = gtm_sort(R)

Arguments

R — an (unsorted) matrix

Return

srtdR — the corresponding sorted matrix

Notes

The m-file implementation is simply an alias for MATLAB’s built-in sort func-
tion. However, if a corresponding mex-file exists, this will be used instead;
experience has shown that a C-implementation of (e.g.) quicksort works much
faster.
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gtm_stpl

Generates the components of a GTM with a 1D latent space.

Synopsis
[X, MU, FI, W, betal = gtm_stpl(T, nolLatVarSmpl, noBasFn, s)

Arguments

T — target data, to be modelled by the GTM.

nolLatVarSmpl — number of samples in the latent variable space
noBasFn — number of basis functions

s — the width of basis functions relative to the distance between two neighbour-
ing basis function centres, i.e. if s = 1, the basis functions will have widths
(std.dev) equal to (i.e. 1 times) the distance between two neighbouring
basis function centres.

Return

X — the grid of data points making up the latent variable sample; a vector of
length noLatVarSmpl, in which each row is a data point

MU — a noBasFn-element vector holding the coordinates of the centres of the
basis functions

FI — the activations of the basis functions when fed the latent variable sample
X, and a bias unit fixed to 1.0; a matrix with the same number of rows as
X and noBasFn+1 columns (41 for the bias).

W — the initial matrix of weights, mapping the latent variable sample X linearly
onto the first principal component of the target data (T)

beta — the intial value for the inverse variance of the data space noise model

Notes

The latent variable sample is constructed as a uniform grid on the interval [-1,
1]. Similarly the centres of the basis function are gridded uniformly over the
latent variable sample, with equal standard deviation, set relative to the distance
between two centres. The initial linear mapping maps mean and std.devs. 1:1
from the latent to the target sample along the principal component.

See also

gtm_stp2
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gtm_stp2

Generates the components of a GTM with a 2D latent space.

Synopsis

[X, MU, FI, W, betal = gtm_stp2(T, noLatVarSmpl, noBasFn, s)

Arguments
T — target data, to be modelled by the GTM.

noLatVarSmpl — number of samples in the latent variable space; must be an
integer~2, e.g. 1, 4,9, 16, 25, 36, 49, ...

noBasFn — number of basis functions in the; must be an integer~2

s — the width of basis functions relative to the distance between two neigh-
bouring basis function centres, i.e. if s = 1, the basis functions will have
widths (std.dev) equal to (1 times) the distance between two neighbouring
basis function centres.

Return

X — the grid of data points making up the latent variable sample; a matrix of
size noLatVarSmpl-by-2, in which each row is a data point

MU — a noBasFn-by-2 matrix holding the coordinates of the centres of the basis
functions

FI — the activations of the basis functions when fed the latent variable sample
X, and a bias unit fixed to 1.0; a matrix with the same number of rows as
X and noBasFn+1 columns (41 for the bias).

W — the initial matrix of weights, mapping the latent variable sample X linearly
onto the 2 first principal components of the target data (T)

Notes

The latent variable sample is constructed as a uniform grid in the square [-1 -1;
-11;11; 1-1]. Similarly the centres of the basis function are gridded uniformly
over the latent variable sample, with equal standard deviation, set relative to
the distance between neigh- bouring centres.The initial linear mapping maps
the std.devs. 1:1 from the latent to the target sample

See also

gtm_stpl
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gtm_trn

Optimize (train) the parameters of a GTM model, using an EM algorithm.

Synopsis

[W, beta, 1llhLog] = gtm_trn(T, FI, W, 1, cycles, beta, m, q)
[W, beta] = gtm_trn(T, FI, W, 1, cycles, beta)

Arguments

T — matrix containing a sample of the distribution to be modeled; N-by-D

FI — matrix containing the output values from the basis functions, when fed
the latent variable sample; K-by-(M+1)

W — an initial weight matrix; (M+1)-by-D
1 — weight regularisation factor
cycles — no of training cycles

beta — an initial value for beta, the inverse variance of the Gaussian mixture
generated in the data space

m — mode of calculation; it can be set to 0, 1 or 2 corresponding to increasingly
elaborate measure taken to reduce the amount of numerical errors; mode
= 0 will be fast but less accurate, mode = 2 will be slow but more accurate;
the default mode is 1

q — quiet execution; if q equals the string ’quiet’, the plottingand echoing of
the values of log- likelihood and beta during traaining is supressed. This
argument is optional; if omitted the training is run non-quiet.

Return

W, beta — the corresponding weight matrix and inverse variance after training

11hLog — the log-likelihood after each cycle of training; optional output argu-
ment
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