Model-Based Clustering Toolbox for MATLAB

Angel R. Martinez
Naval Surface Warfare Center, Dahlgren Division

Wendy L. Martinez'
Office of Naval Research

January 2003

Abstract: This documentation describes various functions for performing model-based clustering and
associated tasks. These are written in MATLAB, version 6.5, but users should be able to run these in older
versions of MATLAB. The MATLAB Statistics Toolbox is not required, except for displaying the
dendrogram. This documentation includes a description of the model-based clustering methodology and
detailed step-by-step instructions for using the MATLAB Model-Based Clustering Toolbox. We assume
that the user has a basic understanding of how to use MATLAB.

Disclaimer: This software and documentation are distributed in the hope that they will be useful, but they
are distributed without any warranty and without even the implied warranty of correctness or fitness for a
particular purpose.

The federal government, in particular the Department of the Navy and the Office of Naval Research,
disclaims all responsibility for this software and any outcome from its use. In addition, this sofiware and
documentation does not reflect the views of and is not endorsed by the federal government nor the
Department of the Navy.

The code has been tested with care, but is not guaranteed to be free of defects and is not guaranteed for
any particular purpose. Bug reports and suggestions for improvements are always welcome at the address
given below.

Acknowledgements: We would like to acknowledge the following people for their assistance in this
effort: Chris Fraley and Adrian Raftery (University of Washington), and Jeffrey L. Solka (Naval Surface
Warfare Center, Dahlgren, VA). Wendy Martinez is also grateful for the support of the ONR ROPO
program.

1. 800 North Quincy Street, BCT1, Code 311, Arlington, VA 22217-5660, Wendy Martinez@onr.navy.mil

Documentation January 2003

Table of Contents
1. Background Information on Model-Based CIuSteringc.ccoeeveeevieevrieenieeesceeeennennn 3
1.1 Model-Based Clustering in Detailcccccceeeeiieeiiieniieecee e 3
1.2. The EM AIZOTItRIM ...oouiiiiiiiiieiiieiiecie et e 5
1.3. Model-Based Clustering - Continuedccccceeeviiieeniiieeniieeeiieeeieeeiee e 6
2. Generating Data From a Finite MIXtUI€ccccccciieiiiiieiiieeiieeeiie et 9
3. Agglomerative Model-Based CIUSteringccceceevieriieniieniieiienie et 13
4. Model-Based CIUSLEIINGccevvuiieriieeiiieeiiieesieeeriieeeiteeeteeesreeesaaeeessaeeeaneessseeensseeennnes 16
4.1 The EM for Finite MIXtUIESccceeeveiiieiiiieiiieeiieeeieeenieeeiveeeaeeesveeeeevee e 16
4.2 Model-Based Clustering PrOCESSccoceeriieriieiiienieeieerie et eiee e 17
5. Visualizing the RESUILScccuiiiiiiiiiiiieicceeeee ettt ees 18
5.1, Plotting the BICSoooeiiiiiiie ettt 18
5.2, Rectangle PIOtScoociiiiiiiiieiieieceee ettt 18
5.3, RECIUS PIOLS ...oiiiieiiieiiieieee ettt et es 22
6. Future IMProVEmMENLScoooiiiiiiiiiiieeeiiie ettt e et e e e e e e e saae e e e eebaeeeenes 25
7. Installation INSTIUCHIONSc.eeeuiieiiieiiieiieiie ettt ettt eebe et e s e eseesaee e 25
8. Function REfEINCEccociiiiiiiiiieiiiiecee ettt st ens 27
AGIMDCT UST ettt et et ettt ev e ete et et e eteeaeereenaeatea 27
ENIT X oottt ettt ettt ettt e et e et e et e et e eteeeateeteeeteeeteeeaeeeteeeseeseeneeeareenreenreereas 27
IMDCT T NIME X ettt 27
IMDCT UST ettt 28
M XCl @SS ittt ettt 29
Pl O DI C ottt ettt et ettt ettt 29
FECT US ittt ettt b ettt e et nes 29
FRCT P Ol oottt ettt ettt sb e st e se et e bessesssessenseeseeseessensenns 30
RETRICTICES ...ueiieitieiie ettt et ettt et e st e bt e st e ebeesaaeenbeenseas 31

Documentation January 2003

1. Background Information on Model-Based Clustering

For information on model-based clustering, see the following references:

Jeffrey D. Banfield and Adrian E. Raftery (1993).” Model-based Gaussian and non-
Gaussian clustering.” Biometrics 49:803-821.

Chris Fraley and Adrian E. Raftery, (1998). “How many clusters? Which clustering
method? Answers via model-based cluster analysis,” Computer Journal 41:578-588.

The model-based clustering method is based on finite mixtures, where the output model is
a weighted sum of ¢ multivariate normals:

c

f(x) = Zpk(P(X; My 25) . (1)

k=1

We describe model-based clustering in more detail later, but the general idea is to generate
estimates based on Equation 1, where constraints are imposed on the covariance matrices. The best
estimate and model (i.e., number of components, parameter estimates, and form of the covariance
matrices) is chosen based on the model that yields the highest value of the Bayesian Information
Criterion (BIC).

1.1 Model-Based Clustering in Detail

A foundational assumption of model-based clustering is that the data are generated by a mixture of
probability distributions in which each component represents a different group or cluster. That is,

in the general case, given d-dimensional observations X, ..., X,,, let f(xi‘ek) be the density of

an observation X; from the k-th component, where 8, is a vector containing the parameters for the

component. One way to model the composite of the clusters is via the mixture likelihood given by

n

L(B,...,05; T4, ...,TG‘X) = |_| Z kak(xl.|9k), (2)

i=1lk=1

where c is the number of components in the mixture, and T, is the probability that an observation

belongs to the k-th component.

Documentation January 2003

In model-based clustering, the multivariate normal is used as the density for f,(x l-‘ 0.,

with 6, consisting of a vector of means |1, and a covariance matrix X, . Thus, the density has the

form

exp{—% (x; = Hy) Tzk(xi - Uk)}
% : 3)

(U, 3, =
e 20 e[z

Key to this method is the fact that the covariance matrix 2, determines important geometric

characteristics of the clusters. Banfield and Raftery [1993] developed a model-based clustering
framework by parameterizing the covariance matrix in terms of eigenvalue decomposition, as
follows

Z, = \DA,D;,)

where D, is the orthogonal matrix of eigenvectors, A, is a diagonal matrix whose elements are
proportional to the eigenvalues of 2, , and A, is a scalar. By means of this decomposition of the

covariance matrix 2, , geometric characteristics of the distributions can be imposed and a suitable

model can be generated.

Orientation, volume and shape can be specified by using the models given in Table 1. The
determination of the component parameters for each of the models is done via the Expectation-
Maximization algorithm (EM), which is described in the following section [Dempster, Laird, and
Rubin, 1977].

Documentation January 2003
Table 1 Parameterizations for Model-Based Clustering

z, Distribution Volume Shape Orientation
N | Spherical Equal Equal NA
Al Spherical Variable Equal NA

ADAD” Ellipsoidal Equal Equal Equal

AD,A,D z Ellipsoidal Variable Variable Variable

AD,A DkT Ellipsoidal Equal Equal Variable

A,D,AD 1{ Ellipsoidal Variable Equal Variable

1.2. The EM Algorithm

The EM algorithm is an iterative procedure that is started with an estimate of the number of
components and an initial guess of the component parameters. In general, the following are the
steps of the procedure. [Note that the update equation for the covariance matrices (Equation 9)
will change in the model-based clustering case, depending on the constraints imposed on the

components. |

Step 1: This is the E step, where we determine the posterior probability for each component:

~

Tkj

f(xj)

N, ®))

where c is the number of components (or clusters), n is the number of observations, Ty; is the

estimated posterior probability that the j-th point belongs to the k-th component, @(x j5 Mo >k) is

the multivariate normal density for the k-th component evaluated at the j-th point, and

fx) = 3 po(x;: Wi Z0)

k=1

(6)

Documentation January 2003

is the finite mixture estimate at point X;. The mixing coefficient or weight is given by [3 x-The

estimate of the posterior probability is used in the following step to compute estimates of the
parameters for each component and the mixing coefficients.

Step 2: This is the maximization or M step. The following equations update the component

mixing coefficients, the means and the covariances in each iteration. The mixing coefficient is
updated using

n
. I
pk:ZZTkj- (7)
j=1

The component means are updated next as follows:

n A
0 1 Ty
W == <, (8)
n pk
j=1

Finally, the update for the covariance matrix (in the general, unconstrained case) is given by

A

1o T —) (X —)

(X — M) (X; — Kk

I . 9)
n pk

J=1

The next iteration begins with an updating of the estimate of the posterior probability for
each datum and component using Equation 5, followed by updates using Equations 7 to 9.
Iterations stop when a predefined tolerance is met, i.e., until the estimates for the parameters stop
changing within the tolerance specified.

1.3. Model-Based Clustering - Continued

Before we outline the steps of model-based clustering, we return to the issue of the constraints
imposed on the covariance matrices that give rise to the various models (see Table 1). Our
implementation of Banfield and Raftery’s method uses four of the possible models. These are
outlined and described in Table 2. The update equations for these models can be found in Celeux
and Govaert [1995].

Recall that the EM algorithm requires an initial guess at the component parameters, the
mixing coefficients and knowledge of the number of components in the mixture. The same

Documentation January 2003

information is needed for model-based clustering. In this method, we get an initialization of the
EM algorithm by partitioning the data based on agglomerative clustering.

In the typical application of agglomerative clustering [Everitt, 1993], each data point starts
out in its own cluster. At each step of the algorithm, the two closest (in terms of some distance)
clusters are merged. The definition of how clusters are determined to be close gives rise to the
various flavors of agglomerative clustering (e.g., single linkage, complete linkage, etc.).

Table 2 Description of the Four Models Used in This Toolbox

Model Number Covariance Model Description
(M)
1 Spherical and equal ik - &I * Diagonal covariance matrices
* Same value in diagonal elements
* Covariance matrices are equal
2 Spherical and -) + Diagonal covariance matrices
unequal 2k = 0,1 * Covariances are allowed to vary
between components
* Same value in each diagonal element
of individual covariance matrix
3 Ellipsoidal and - + Covariance matrices can have non-
equal 2k =2 zero off-diagonal elements
» Covariance matrices are equal
4 Ellipsoidal and - * Unconstrained model described in
unequal 2k = 2y Equation 9.
+ Covariance matrices can have non-
zero off-diagonal elements
+ Covariance matrices can vary among
components

In model-based clustering, we use a similar paradigm, where in this case the clusters are
merged such that the likelihood is maximized, rather than the usual distance metric. Fraley [1998]
describes the agglomerative model-based clustering algorithms for the four models described in
Table 2. In our implementation, we use the unconstrained model of agglomerative model-based
clustering to initialize all models. Fraley and Raftery [1998] show that this seems to be adequate as
an initialization procedure for all models.

The last piece that we need is a way to determine which estimate (number of components

and covariance model) fits the data the best. As previously mentioned, the choice of the best
model is made via the BIC, given by

BIC=2L,,(x, é)—liog(n), (10)

Documentation January 2003

where m , is the number of parameters in model M and L, is the log likelihood. The final model

and estimate deemed the best will be the one that corresponds to the highest value of the BIC.

We now pull all of this together and list the steps of model-based clustering used in this

program.

1.

W

*

Apply the unconstrained agglomerative model-based clustering procedure to the data.
This provides a partition of the data given a desired number of clusters.

Choose amodel: M =1, 2, 3, and 4 (see Table 2).

Choose a number of clusters or component densities, c.

Find the partition given by the agglomerative model-based clustering (step 1) for the
given value of c.

. Using this partition, find the mixing coefficients, means and covariances (based on the

model from step 2) for each cluster.

. Using the chosen ¢ (step 3) and the initial values (step 5), apply the EM algorithm to

obtain the final estimates.

Calculate the value of the BIC for this value of ¢ and M.
Go to step 3 to choose another value of c.

Go to step 2 to choose another model M.

These steps are shown in Figure 1.

Chosen

Model . cre re -
¢ Agglomerative dendrogram |y, ;itialization for EM:

Model-Based > 1. Initial number of components
Clustering 2. Initial values for parameters

/ A
Data
Final Result — Estimated Model:

BIC » Highest 1. Number of components, ¢
BIC 2. Best model: M1 - M4
3. Parameter estimates

A\ 4

Figure 1. This flowchart illustrates the MBC procedure.

Documentation January 2003

2. Generating Data From a Finite Mixture

A useful tool to have is one that generates data from a given finite mixture, and one is provided
with the Model-Based Clustering Toolbox. Because the input arguments for this function
(weights, means and covariances) can be tedious to create on a command line interface, we
provide this tool in a GUI format. The GUI is invoked by typing genm X at the command line
and is shown in Figure 2.

-} Generate Random Yariables from a Finite Mixture o] 1|

File Edit Wew Insert Tools ‘Window Help
This GUI will generate random vanables from a fimte mixture model. Enter the required data and hit
the button to generate the data set. The data can be zaved to the MATLAB workspace or written
to a text file.

Step 1: Choose the number of dimensions:

Step 2 Enter the number of observations: 1000

Jlold

Step 3: Chooge the number of componentz:

Step 4: Chooze the model:
% M1 - zpherical’equal i M3 - eliptical’equal

= M2 - spherical/unequal = M4 - elliptical/unequal

Step 5: Enter the component weights,
zeparated by commaz or blanks: 056,05

Press to view in command window:

Step B: Enter the meansz for each component .
- push button: Enter means... WView Current Means
Step 7: Enter the covariance matrices for
each companent - push buttor: Enter covanance matrices... Yiew Current Covanances
Step 8: Push button to generate random .
vl Generate BY's ...

Plot [1ata Save to\Workspace Save to File Cloze

Figure 2. This shows the GUI that is invoked with genm X. The various steps that must be taken are
shown on the left side of the window.

The steps for entering the required information are listed on the left-side of the GUI
window. We outline them below, and briefly describe how they work:

Step 1: Choose the number of dinmensions.

Documentation January 2003

This is a pop-up menu. Simply select the number of dimensions for the data.

Step 2: Enter the nunber of observations.
Type the number of points in the data set, i.e., the sample size 7.

Step 3: Choose the nunber of conponents.
This is the number of terms or component densities in the mixture. Using the notation in Equation
1, this is the value for c.

Step 4: Choose the npdel
Select the model for generating the data. The model numbers correspond to those described in
Table 2.

Step 5: Enter the conponent weights, separated by commas or
bl anks.
Enter the corresponding weights for each term. These are the p; in Equation 1. These must be

separated by commas or spaces and sum to 1.

Step 6: Enter the neans for each conponent - push button.

Click on the button Ent er neans. . . to bring up a window for entering means, as shown
below in Figure 3. There will be a different number of text boxes, depending on the number of
components selected in Step 3. Note that you must have the right number of values in each text
box; i.e., if you have dimensionality d = 3 (Step 1), then each mean needs 3 values.

-} Input for Component Means x|
Enter the 2-dimensional mean for component 1, separste values by commss or
blanks:

[11

Enter the 2-dimensional mean for component 2, sepatate values by commss or
blanks:

|22

QK | Cancel |

Figure 3. This shows the pop-up window that is activated when the Ent er means button is clicked on.
There will be a text box for each of the component densities.

If you need to check the means that were used, then you can click on the View Current Means
button. The means will be reflected in the MATLAB command window as shown here.
H T ANY KEY TO CONTI NUE. . .

The nean for conponent 1 is:
1 1

10

Documentation January 2003

H T ANY KEY TO CONTI NUE. . .
The nean for conponent 2 is:
2 2

Step 7. Enter the covariance matrices for each conmponent - push
but t on.

Click on the button Enter covariance matrices... to activate a pop-up window. You will get a
different window, depending on the model that was chosen in Step 4.

Model 1: If you choose Model 1, then you only have to enter one variance as shown in Figure 4.

-} Input for Covariance Matrices il

Enter the variance for the components:
| 1

(1] | Cancel |

Figure 4. This is the pop-up window for Model 1. Since the component densities have equal variances, you
only have to enter one value.

Model 2: For Model 2, you must enter a variance for each component. The window for this one is
shown in Figure 5.

-} Input for Covariance Matrices il

Enter the variance for camponernt 1
| 1

Enter the wvariance for camponent 2

|1

ok | Cancel |

Figure 5. This is the pop-up window for Model 2. The component densities have unequal variances, so you
have to enter a variance for each component.

Model 3: The component densities have equal covariances, where the covariances can have non-
zero off-diagonal elements. If this option is selected in Step 4, the full covariance must be entered
in the pop-up window. Enter the row of the covariance matrix in the corresponding text box in the
window. An example of this window is shown in Figure 6.

11

Documentation January 2003

_} Enter the covariance matrix ... ﬂ

Enter the elements of rowe 1 of the covariance matrix, separsted by commas or
blanks:

{10

Enter the elements of rowe 2 of the covariance matrix, separated by commas or
hlanks:
{01

ok | Cancel |

Figure 6. The user must enter each row of the covariance matrix in the corresponding text box. Note that
each row must have the d elements.

Model 4: In this case the covariance matrices are allowed to vary across component densities, and
the off-diagonal elements can be non-zero. The same type of pop-up window as seen for Model 3
will be provided for each component (see Figure 7). So, if there are 4 components or terms in the
mixture model, then 4 separate windows will be shown for the user to enter each covariance
matrix.

Similar to before, the user can push the Vi ew Current Covari ances button to view the
covariance matrices in the MATLAB command window.

) Enter covariance matrix 1 il

Enter the elements of rowe 1 of the covariance matrix, separated by commas or
hlanks:

{10

Enter the elements of rowe 2 of the covariance matrix, separated by commas or
blanks:

fo1

) Enter covariance matrix 2 %]

Enter the elements of rowe 1 of the covariance matrix, separated by commas or
blanks:

{10

Enter the elements of rowe 2 of the covatiance mattix, separsted by commas or
blanks:
{01

QK | Cancel |

Figure 7. Here are the windows to enter the covariance matrices for a 2-component mixture, with d = 2.

12

Documentation January 2003

Step 8. Push the button to generate random vari abl es.
After all of the values have been entered, push the button labeled Generate RVs... to
generate the data set.

Once the variables have been generated, the user has several options. They can be saved to
the workspace using the button Save t o Wor kspace. When this is activated, the window
shown in Figure 8 appears. The data are now saved in the workspace using that variable name.
The data can also be saved to a text file by clicking on the button Save t o Fi | e. This brings up
the usual window for saving files.

-} Set Yariable Name x|

Erter the name for the variable:
I data

(1] | Cancel |

Figure 8. When the Save t o Wor kspace button is pushed, this box appears. Enter the desired variable
name in the text box.

The user can also view the data in a scatterplot matrix by pushing the button
Pl ot Dat a. For the data generated using the default values, we have the picture shown in
Figure 9.

3. Agglomerative Model-Based Clustering

As we stated in Section 2, agglomerative model-based clustering is used to initialize the EM
algorithm. This is a variant of agglomerative clustering where the clusters are merged such that
they maximize the likelihood function, given the chosen model (see Table 2) rather than merging
clusters that are close together in terms of a distance. See Everitt [1993] for a discussion on
agglomerative clustering methods.

The Model-Based Clustering Toolbox includes a stand-alone function for doing
agglomerative model-based clustering. It is not necessary to use this function separately as part of
the model-based clustering procedure (i.e., this step is done automatically when the model-based
clustering function is used). This function is called agnbcl ust . It can be invoked from the
command line as follows:

>> Z = agnbcl ust (data);

13

Documentation January 2003

Figure 9. If we generate random variables according to the default values, we get a scatterplot matrix similar
to this one.

The input variable dat a is an n X d matrix, where each row corresponds to a d-
dimensional observation. The output variable Z is a matrix containing the cluster information that
can be used in MATLAB’s dendr ogr amfunction (available in the Statistics Toolbox) or the
rect pl ot function (available in this toolbox, see Section 5.2).

To illustrate these ideas, we generate some data for a finite mixture. The parameters of the
mixture are:

Weights: p, = 0.2,0.2,0.1,0.5

Dimensionality: 4

n=150

Means: [2,2,2,2],[-2,-2,-2,-2],[-2,2,-2,2],[2,-2,2,-2]

Covariances: 1.5L 1, .751, 1

14

Documentation January 2003

This data set is included with the Model-Based Clustering Toolbox and is called dat a. mat . It
can be loaded with the command:

>> | pad dat a

We first perform the agglomerative model-based clustering and then produce the dendrogram as
follows

>> Z = agnbcl ust (data);
>> dendrogram 2);

The resulting dendrogram is given in Figure 10.

200 -

180

160 -

140 -

120

100

renliliray:

T8 1412 & B 924730 410281319252629 6820 1 3 2161718212223

Figure 10. This is the dendrogram showing the results of the agglomerative model-based clustering. The
vertical axis represents the value of the objective function at each link. Note that some of the numbers on the
leaf nodes do not correspond to the observation number; they might include several of the observations.

The output matrix Z can also be used in the MATLAB function called cl ust er. This is
available in the Statistics Toolbox, and it returns a vector T of »n indices indicating cluster
membership for each observation. This function contains several input options:

15

Documentation January 2003

T = cluster(Z, 'cutoff',c) C is a threshold for cutting Z into clusters,
where clusters are formed when inconsistent
values are less than C.

= cluster(Z, ' maxclust',n) Returns 7 clusters.

T = Uses the specified criterion for forming clus-

cluster(...,'criterion',"'crit") ters. The argument Cr i t is either'i ncon-
si stent'or'di st ance'.

T = cluster(...," depth',d) Evaluates inconsistent values to a depth of d

in the tree.

While we have not thoroughly tested the results of the agglomerative model-based clustering with
these options, they should work with the output Z, especially the second one. The reader should
consult the MATLAB documentation for information on i nconsi st ent values. It is not clear
whether i nconsi st ent makes sense when used with agglomerative model-based clustering.

One thing to note regarding the dendr ogr amfunction is that it displays the top 30 nodes
as the default. Thus, the leaf nodes that are displayed might correspond to multiple observations.
For example in Figure 10, we have 50 observations, but only 30 nodes showing in the dendrogram.
To find out which observations are contained in a leaf node Kk, use the following syntax

>> find(T == k);

4. Model-Based Clustering

In this section, we describe various functions for running the EM algorithm based on the four basic
models (Section 4.1), as well as a general model-based clustering function that implements the
entire process (Section 4.2).

4.1 The EM for Finite Mixtures

Recall from Section 1 that the partitions from agglomerative model-based clustering are used to
initialize the EM algorithm. The estimates for the component parameters are further refined
through this process. As with the agglomerative model-based clustering function described in the
previous section, this does not need to be implemented separately.

The Model-Based Clustering Toolbox includes a function called nbcfi nmi X that
implements the EM algorithm for the four basic models described in Section 1.3 and Table 2. The

basic syntax for this function is

>> [wts, nus, vars] = nbcfinm x(data, mui n, vari n, wt si n, nodel) ;

16

Documentation January 2003

The function returns estimates of the model parameters: weights, means, and covariances.
The Wt s argument is a vector containing the ¢ weights, one for each term. The variable nus is a
d x ¢ matrix, where each column corresponds to a component mean. Recall that ¢ is the number
of components in the mixture, and d is the dimensionality of the data. The variable var s is a 3-D
array, where each page (i.e., third dimension) corresponds to a covariance matrix. Thus, the
dimensions of var s isd x d x c.

The input arguments mui n, vari n,and wt Si n are similar in form and contain the initial
values for these parameters. In the case of model-based clustering, these are obtained from the
partitions from agglomerative clustering part of the process. However, in general, these initial
values can be from any reasonable source. The input variable dat a is an n x d matrix containing
the observations, and nodel is a number indicating one of the 4 basic models (see Table 2).

4.2 Model-Based Clustering Process

We provide a function called nbcl ust that implements the entire model-based clustering
procedure, including the initialization, the EM, and the selection of the best model. The basic
syntax for this function is

>>[bi cs, best nodel , al | nodel s, Z, cl abs] =nbcl ust (dat a, maxcl us) ;

As before, the input variable dat a is an n x d matrix containing the observations. The
variable maxcl us is the maximum allowable number of clusters or component densities in the
mixture (i.e., the maximum allowed value for c).

The output variable bi €S is a matrix that contains all of the BIC values for each model
and number of clusters. The variable bi ¢S contains 4 rows and maxcl us columns, where each
row corresponds to a model and each column corresponds to the number of terms or clusters.

The variable best nodel is a MATLAB structure that contains the parameters for the best
model, as indicated by the highest BIC value. The structure has the following fields:

best nodel . pi es
best nodel . nus
best nodel . vars

The variable al | nodel s is a MATLAB structure that contains information on all of the models.
Each record (there are 4) of al | nodel s contains information for one of the models. The field
cl us is another structure where each record (there are maxcl us of them) contains the parameter
estimates for the model. Finally, the structure cl us contains 3 fields: pi es, nus, vars. For
example,

al | model s(2).clus(5). pies

has the weights for Model 2, 5 clusters. The structure ¢l us is actually a sub-structure (or field)
under the main structure called al | nrodel s.

17

Documentation January 2003

The variable Z is the same matrix as described in Section 3. The output variable cl abs
contains cluster labels for the n observations, as given by the best nodel .

5. Visualizing the Results

In this section, we describe various methods for visualizing the results from clustering. These
include methods for showing the clusters and plotting the values of the BIC (Section 5.1). In
Section 3, we described the dendrogram method of visualizing the results of hierarchical
clustering, whereas Section 5.2 presents an alternative way of viewing the hierarchical structures
from clustering. Finally, in Section 5.3, we describe a new way of displaying the results of
clustering high-dimensional data called ReClus plots.

5.1. Plotting the BICs

As discussed before, the model one chooses is the one that corresponds to the highest BIC value.
So, it would be useful to plot all of the BIC values for all models under consideration. We include
the function called pl ot bi ¢ that will provide such a display. It uses the output variable bi ¢S
from nbcl ust, and the basic syntax is

>> pl ot bi c(bi cs, var nane)

The input argument var namne is optional. It is a character array containing the variable name to
be included in the title.

Using the results of the function nbcl ust as applied to the data set in dat a. mat , we
have the plot of the BIC values in Figure 11. Note that in this case, we did not use the optional
input argument var name.

5.2. Rectangle Plots

The treemap display of Johnson and Shneiderman [Johnson and Shneiderman, 1991],
[Shneiderman, 1990] is an alternative to the dendrogram as a display for hierarchical clustering or
other hierarchical arrangements of data (e.g., directory structures for computer files). This takes
the output from agglomerative clustering [Everitt, 1993] and shows it in a space-filling display.
Recall that in agglomerative clustering, one starts with each observation in an individual cluster.
At each stage of the algorithm, the two closest clusters are merged, where close is determined by
the distance used (e.g., Euclidean, Mahalanobis, city block, etc.) and the type of linkage (e.g.,
single, complete, etc.).

The output of agglomerative clustering can be viewed in a tree or dendrogram (see Figure
10). A dendrogram can be shown vertically or horizontally, but it essentially consists of many U-

18

Documentation January 2003

Model 1, 4 clusters is optimal.

_?DD T T T T T T T T T T
7201 .
-FA0 -
-7BO .
780+ .
o
i
-500 .
-320 .
1-Sphericalfequal: &, = o |
D g o 2-Sphericalfiunequal: I, = D'E I]
x J-Ellipsoidal/equal , =X
-8E0 o .
+ 4-Ellipsoidal/unequal: &, =&,
_BBD 1 | | 1 1 1 1 |
a 1 2 3 4 5 5 7 a8 &l 10 1

Mumber of clusters

Figure 11. This shows the BIC values resulting from model-based clustering for the data set described in
Section 3. Note that for Models 3 and 4, we display only 3 points. This indicates that for ¢ = 4, the covari-
ance matrices for one or more terms were singular.

shaped lines that show the hierarchical structure of the clustering algorithm. The treemap method
displays this in a series of nested rectangles (or ellipses). The parent rectangle (or root of the tree)
is given by entire display area. The treemap is obtained by recursively subdividing this parent
rectangle, where the size of each sub-rectangle is proportional to the size of the node. The
rectangles are further subdivided horizontally, vertically, horizontally, etc., until a given (based on
the number of desired clusters) leaf configuration is obtained.

Note that in the dendrogram shown in Figure 10 the user can specify a distance or
dissimilarity value along the vertical axis. Different clusters are obtained depending on what value
is specified. For example, if the user specifies a value of 120, then 3 clusters are obtained. In the
treemap method, these 3 clusters would be shown as nested rectangles, with the whole display area
representing the parent rectangle. In some applications, the user might have the treemap display
the entire hierarchical structure.

To display a treemap, the user must specify the number of clusters. If the user wants to
explore other cluster configurations (by specifying a different number of clusters), then the display
is re-drawn. It should also be noted that in the treemap display, there is no measure of distance (or
dissimilarity) associated with the clusters as there is in the dendrogram. A further drawback to the
treemap method is the lack of information about the original data, because the rectangles are just

19

Documentation January 2003

given labels. That is, the data are not displayed as glyphs; instead they have labels such as: C1,
C2, C3. The treemap as developed by Johnson and Shneiderman [1991] has not been
implemented in this toolbox. We provide the information here as background for rectangle plots
and ReClus.

To address some of the issues, Wills [1998] developed the rectangle visualization method,
based on the treemap display. This method also works with the output of hierarchical clustering,
but displays the points as glyphs. The layout of the glyphs is determined by the hierarchical
structure given by the clustering. The rectangle plots of Wills split the rectangles along the longest
side, rather than alternating vertical and horizontal splits as in treemap. They keep splitting until it
reaches a leaf node or until the cutoff distance is reached. If a rectangle does not have to be split
because it reaches this cutoff point, but there is more than one observation in the rectangle, the
algorithm continues to split until it reaches a leaf node. However, it does not draw the rectangles.
It uses this information to determine the layout of the points as glyphs, where each point is now in
its own rectangle. The advantage to this method is that other configurations (i.e., number of
clusters) can be shown without re-displaying the glyphs; only the boundaries of the rectangles are
redrawn.

The rectangle method of Wills is suitable for linking and brushing applications, where one
can highlight an observation in one plot (e.g., a scatterplot) and see the same observation
highlighted in another (e.g., a rectangle plot). Some of the other advantages include

» the ability to specify the dissimilarity cutoff value that would in turn determine the
number of clusters,

+ the display layout (i.,e., position of the glyphs) does not need to change if the user
specifies a different cluster configuration, only the lines delineating the rectangles
change

» the linkage with the original data points is retained

A disadvantage is that some of the nesting structure seen in treemaps is lost in the display.
Rectangle plots are shown in Figures 12 and 13, showing the output from agnbcl ust . Note that
this is an alternative to the dendrogram of the data set shown in Figure 10. However, in comparing
the two plots, keep in mind that the dendrogram shows the top 30 observations, not the full 50.

The rectangle plot method is included in this toolbox as the function rectplot. The basic
syntax for this is

>> rectplot(Z nc, cl abs)

This uses the familiar matrix Z that is used to create the dendr ogr am The input variable nc
represents the number of clusters or rectangles to include in the plot. There is a third optional
argument cl abs, which is an n-dimensional vector containing the true class labels for the
observations, if known. If this is included, then each observation is plotted using the class label.
Otherwise, the observation number is used.

20

Documentation

Mumber of Clusters = 3

22

19

17

16

23

21

15

20

11

13

12

14

m 15

46

39

47

45

24

43

40

ar

31 36

30

27

449
33
41
35
26
32
25

43

35

34

44

28

a0

42

January 2003

Figure 12. This is an example of the function r ect pl ot with the output from agnbcl| ust . The observa-
tion numbers are used as the glyphs. This can be compared with the dendrogram in Figure 10, keeping in
mind that the Figure 10 shows 30 points rather than all 50 observations.

Mumber of Clusters = 50

43
22 23 a 13 45 45 49
33| 38| =0
13 21
B 9 34 40 41
17 18 12 37 a4
A7
11 14 24 2
15 20 21| = | a4
45
4 1| 15
5 30 32
25| 28| 42
1 24
5 27

Figure 13. If we call r ect pl ot asking for 50 clusters (each observation is its own cluster), then this is the
result. Note that the numbers are displayed in the same place as in Figure 12

21

Documentation January 2003

5.3. ReClus Plots

Another disadvantage of the treemap and rectangle method is that they are both suitable for
displaying the results of agglomerative clustering only. In many cases, the analyst might want to
use some other clustering method such as model-based clustering or k-means and view the results.
ReClus is a way to extend the ideas of the rectangle method to display configurations from other
cluster methods [Martinez, 2002; Martinez & Wegman, 2002].

As in the previous methods (treemap and rectangle plots), ReClus uses the entire display
area as the parent rectangle. This is then partitioned into rectangles, where the area is proportional
to the number of observations that belong to that cluster. The pseudo-code is given here.

Step 0. Set up the parent rectangle. Note that we will split on the longer side of the rect-
angle according to the proportion of observations that are in each group.

Step I. Find all of the points in each cluster and the corresponding proportion.

Step 2. Order the proportions - ascending.

Step 3. Find all of the rectangles. Partition the proportions into 2 groups. If there are an
odd number of clusters, then put more of the clusters into the 'left/lower' group.

Step 4. Based on the total proportion in each group, split the longer side of the parent rect-
angle. We now have two children. Note that we have to normalize the proportions based
on the parent.

Step 5. Repeat steps 3 through 4 until all rectangles represent only one cluster.

Step 6. Find the observations in each cluster and plot, either as the case or observation
label or the true class label (if known).

Before we can call the function that displays ReClus plots, we need to first get the cluster
labels as given by the cluster scheme. If model-based clustering was used to cluster the
observations, then the following will obtain the desired information:

>>[cl abs, errdata] = ...
m xcl ass(dat a, best nodel . pi es, best nodel . nus, best nodel . vars) ;

Note that the cl abs variable is the same one obtained when nmbcl ust is called, and we are using
the same data set as before. This function can be used with any finite mixture, not just the output
from nbcl ust . We can now call r ecl us, as described below.

ReClus (r ecl us) has several views. The first is to plot the observations using the case
label as the glyph. See Figure 14 for an example of this layout. The syntax is

>> reclus(cl abs);

If we know the true class labels, then we can show those numbers instead. This will give us a
visual picture of how jumbled the clusters are according to the true class information. Since we do
not have the true class labels for this data set, we will just assign some labels, so we can give an
example of this type of ReClus plot. The following MATLAB statement assigns some arbitrary
class labels:

22

Documentation January 2003

Case Mumbers

16 20
24 29 34 39 44 49
5 9 13
17 21
26 30 35 40 45 50
18 22 B 10 14
2% 3 3B 41 4B
19 23
7 11 15
27 32 37 42 47
T 3 g 12
28 33 38 43 48
2 4

Figure 14. This shows the output from model-based clustering using the results from the best model. These
results make sense, given the model that was used to generate the data. Here we see the basic use of
r ecl us, where case or observation numbers are displayed in each cluster.

>> trulabs = [ones(1,6), 2*ones(1, 14), 3*ones(1, 8), 4*ones(1, 22)];
We can now call r ecl us as follows:

>> reclus(clabs, trul abs, errdat a)

This layout is shown in Figure 15. Sometimes, the color is difficult to distinguish, and we might
be interested in seeing what observations have a high probability of belonging to the cluster. We
can call r ecl us with a threshold as follows:

>> reclus(clabs, trul abs, errdata, . 999)

Observations that have a posterior probability higher than the threshold are shown in black and are
bolded.

To summarize, the treemap and rectangle plots [Wills, 1998] can be used to visualize

hierarchical clustering. The ReClus plot is used for other clustering methods, such as model-based
clustering or £ means. Both ReClus and rectangle plots are suitable for linking and brushing.

23

Documentation January 2003

Figure 15. This Reclus plot shows the observations using their true class labels. We see that some of the
observations should not be clustered together (recall they were arbitrary labels). The color bar indicates the
posterior probability that the observation belongs to the cluster.

Figure 16. This ReClus plot shows the observations with a posterior probability higher than 0.999 in black,
bold font.

Documentation January 2003

6. Future Improvements

In the coming year, we plan on making the following improvements to the Model-Based
Clustering Toolbox:

* We intend to add more of the models to the agglomerative model-based clustering part
of the procedure. While previous work [Fraley and Raftery, 1996] showed that the
unconstrained version of agglomerative model-based clustering was adequate as an
initialization for the EM, including the other models would allow one to use this type
of agglomerative clustering as a stand-alone method.

* We will implement the rest of the models in the finite mixture EM function to produce
more options for the ‘optimal” model.

* Initialization of the agglomerative model-based clustering using adaptive mixtures
[Priebe, 1994; Solka, 2001].

» Improvements will be made to the function that displays Wills’ rectangle plots to
allow the user to specify the ‘distance’ rather than the number of clusters.

* We will make some improvements to the ReClus display method to allow brushing
and highlighting of points.

Finally, we plan on creating a stand-alone GUI for clustering, which will include model-based
clustering and other clustering methods (e.g., agglomerative, k-means, etc.).

We welcome any suggestions for improvements, changes, fixes, etc. to the Model-Based
Clustering Toolbox and the ideas mentioned above. Please send them to the contact person given
at the beginning of this documentation.

7. Installation Instructions

The following installation instructions are for Windows versions of MATLAB. This toolbox can
also be used with Unix and Linux operating systems, with suitable changes to the directory
structure for toolboxes and paths.

1. First download the required MBCTool box. zi p from the website and save it in a
temporary directory. This file contains this documentation in .pdf form, as well
as the . mfiles described in the Reference Section.

2. Make a new directory under your current MATLAB toolbox installation. In most
cases, this would be:

C. \ MATLABG6p5\ t ool box\ nbct ool

25

Documentation January 2003

3. Double click on the MBCTool box. zi p file and extract files to the above direc-
tory. Note that you could also create this new directory in the unzipping pro-
cess.

4. The MATLAB search path must be updated for you to use the toolbox files from
any directory. The search path is kept in the pat hdef . mfile. By default, it is
stored in the following directory:

C. \ MATLAB6p5\ t ool box\ | ocal

Before starting MATLAB, open the file pat hdef . musing any text editor. One way
to do this is to double-click on the file from Windows Explorer. This will open the file
in the MATLAB text editor. Add the new directory

mat | abroot, '\tool box\nbctool;', ...

to the path.

5. Close and save the file. Start MATLAB. Type hel pwi n at the command line to

bring up the Help Browser. Click on nbct ool for a list of the available func-

tions in the Model-Based Clustering Toolbox.

Alternative to Step 4:

a. Start MATLAB.

b. Start the Set Pat h dialog box from the Fi | € menu in the MATLAB Command
Window.

c. Add the new directory for the Model-Based Clustering Toolbox to the path. Hit the
Save button to permanently save your changes to the pat hdef . mfile.

d. Close MATLAB and restart it to see the changes in the Help files.

26

Documentation January 2003

8. Function Reference

AGGLOVERATI VE MODEL BASED CLUSTERI NG - NO I NI TI AL PARTI TI ON

This function does the aggl onerative nodel -based cl ustering

of Fraley [1998]. NOTE that this one does the MB aggl onerative
clustering fromthe FULL data set (rather than some other
initialization such as mnimal spanning trees).

Z = AGVBCLUST(X)

The output Z contains the cluster array that MATLAB expects.
This can be used in the DENDROGRAM or the RECTPLOT plotting
functions.

GUl FOR GENERATI NG MULTI VARI ATE RANDOM VARI ABLES FROM M XTURE
GENM X
This GJ will generate random vari abl es using a

finite mxture nodel. The user can pick between
several nodels:

1: COV = sigmar2*| (equal, diagonal covariances)
2: COV = signma_kn2*| (unequal , di agonal covari ances)
3: COV = SI GVA hat (equal, full covariance matrix)
4. COV = SI GVA k_hat (unconstrai ned covari ances)

The user can save the randomvariables to a text file (saved in
row (observations) and colum (variables) format. The data can al so
be saved to the MATLAB Wrkspace with a user-assigned variabl e nane.

MCODEL- BASED FI NI TE M XTURES USI NG THE EM ALGORI THM

This is witten for MBCLUST. Note that at this tinme it will do
mul tivariate only. This uses relative differences between

27

Documentation January 2003

| og-likelihoods to check for convergence. If the estimted covari ance
matri ces becone close to singular, the function
returns enpty arrays for the nodel.

[WIS, MUS, VARS] = MBCFI NM X(DATA, MJI N, VARI N, WI'SI N, MODEL)

| NPUTS: DATA is a matri x of observations, one on each row.
MU N is an array of means, each colum corresponding to a nean.
VARIN is a vector of variances in the univariate case. In the
multivariate case, it is a 3-D array of covariance matri x,
one page per conponent density.
WISIN is a vector of weights.
MODEL i s one of the 4 nodels:

1. COV = sigma"2*| (equal, diagonal covariances)
2: COV = sigma_kn2*| (unequal , di agonal covari ances)
3: COV = SI GVA hat (equal, full covariance matrix)
4, COV = SIGVA k_hat (unconstrai ned covari ances)

Model - based clustering - entire process

[BI CS, BESTMODEL, ALLMODELS, Z, CLABS] = MBCLUST(DATA, MAXCLUS) ;

This does the entire MB Clustering given a set of data.
It only does the 4 basic nodels, unequal -unknown priors. It
returns the BESTMODEL based on the highest BIC

The output variable BICS contains the values of the BIC for

each nodel (row) and number of clusters (col). The output variable
CLABS contains the class labels for the input data according to the
optimal clustering given by BIC

The output variable Z contains the cluster structure fromthe
aggl oner ati ve nodel -based clustering. The matrix Z can be used
in the DENDROGRAM function or the RECTPLOT plotting function

The output variable ALLMODELS is a structure containing all of the
nodel s. ALLMODEI S(1) indicates the I-th nodel type (1-4) and CLUS(J)
i ndi cates the nodel for J clusters.

The input variable MAXCLUS denotes the nmaxi num nunber of clusters to
check for.

28

Documentation January 2003

M XCLASS GCets the classification froma m xture npdel

[CLABS, ERR] = M XCLASS(DATA, WGTS, MUS, VARS)

For a given set of DATA (nxd) and a m xture nodel given by

WGTS (wei ghts), MJS (conponent neans), and VARS (conponent

variances), returns the cluster labels in CLABS, along with
the associated classification error in ERR

Plots the values of the BIC for npdel -based clustering

PLOTBI C(Bl CS, VARNAME)
This takes the results of MBCLUST and plots the val ues
of the BIC for the various nodels.

You can plot the variable nanme in the title via the optiona
argunment VARNAME.

Rectangl e cluster plot - any clustering nmethod - any dinensionality of
t he dat a.

RECLUS(CLABS, TRULABS, ERR, THRESH)

This can be used to plot the results of any clustering al gorithm
(k-nmeans, aggl onerative, nodel -based clustering), where the
input is the cluster labels for each data point.

RECLUS(CLABS) plots the rectangl es, where the area of each
rectangl e represents the proportion of points falling into that
cluster. The data are plotted using their observation nunber.

RECLUS(CLABS, TRULABS) plots the rectangl es as before, but the
position of the synbols as case | abels natches the same position when
the true class labels are used as the plotting synbol - see the
options below for 3 or 4 argunments. This allows the user to see which
cases correspond to specific synbols plotted with the true class

29

Documentation January 2003

| abel .

RECLUS(CLABS, TRULABS, ERR) plots the rectangl es as above, where

each synbol color represents the probability that the point bel ongs
to the cluster; i.e., 1 - ERR Note that this can be used only when
the clustering is done using nodel -based clustering (MBCLUST) or
finite mxtures (MBCFINM X). The classification ERR is obtai ned using
M XCLASS. Note also that if one wants to plot the 'uncertainty' in the
clustering, then 1 - ERR should be used as the input argunent. A
colorbar is included to indicate the color scale.

RECLUS(CLABS, TRULABS, ERR, THRESH) plots the points as above.

The value THRESH is used to indicate which observations have a
classification certainty greater than THRESH, these values are plotted
in bold. Thus, the color indicates the probability that it belongs to
the cluster on a continuous scale, and the bold indicates a binary
val ue - above or bel ow THRESH

Rectangl e cluster plot for Agglonerative Custering CQutput
RECTPLOT(Z, NC, CLABS)

This plots NC clusters based on the cluster schene given by Z
in a rectangle plot. Each rectangle corresponds to a cluster
of observations.

If the optional input argument CLABS is given, then the points
are plotted according to their true class | abels given in CLABS.
Thus, all class 1 points will plot with the '1" synbol, al

class 2 points will plot with the '2' synmbol, etc. If CLABS is
not used, then the observation nunbers are used as synbol s.

30

Documentation January 2003

References

Banfield, Jeffrey D. and Adrian E. Raftery (1993). “Model-based Gaussian and non-Gaussian
clustering,” Biometrics 49:803-821.

Celeux, G. and G. Govaert, (1995). “Gaussian Parsimonious clustering models.” Pattern
Recognition, 28:781-793.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977. ‘Maximum likelihood from incomplete data
via the EM algorithm,” Journal of the Royal Statistical Society, B., 39:1-38.

Everitt, Brian S., 1993. Cluster Analysis, Edward Arnold Publishers, New York.

Fraley, Chris and Adrian E. Raftery, (1998). “How many clusters? Which clustering method?
Answers via model-based cluster analysis,” Computer Journal, 41:578-588.

Fraley, Chris, (1998). “Algorithms for model-based Gaussian hierarchical clustering,” SIAM
Journal on Scientific Computing, 20:270-281.

Johnson, B., and B. Shneiderman, 1991, ‘Treemaps: a space-filling approach to the visualization
of hierarchical information structures,” Proceedings of the 2nd International IEEE Visualization

Conference, pp. 284 - 291.

Martinez, Angel R., 2002. 4 Framework for the Representation of Semantics, Ph.D. Dissertation,
George Mason University.

Martinez, Angel R. and Edward J. Wegman, 2002, ‘A text stream transformation for
semantic-based clustering,” Proceedings of the Interface, Montreal, Canada.

Priebe, Carey L., (1994), “Adaptive Mixtures,” Journal of the American Statistical Association,
89:796-806.

Shneiderman, B., 1990, ‘Tree visualization with tree-maps: a 2D space-filling approach,” ACM
Transactions on Graphics, 11, pp. 92 - 99.

Solka, Jeffrey L., (2001), Private communication.

Wills, G. J., 1998, ‘An interactive view for hierarchical clustering,” Proceedings of Information
Visualization ‘98, pp. 26 - 31.

31

