
Image Processing Toolbox 5
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Image Processing Toolbox User’s Guide

© COPYRIGHT 1993–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
August 1993 First printing Version 1
May 1997 Second printing Version 2
April 2001 Third printing Revised for Version 3.0
June 2001 Online only Revised for Version 3.1 (Release 12.1)
July 2002 Online only Revised for Version 3.2 (Release 13)
May 2003 Fourth printing Revised for Version 4.0 (Release 13.0.1)
September 2003 Online only Revised for Version 4.1 (Release 13.SP1)
June 2004 Online only Revised for Version 4.2 (Release 14)
August 2004 Online only Revised for Version 5.0 (Release 14+)
October 2004 Fifth printing Revised for Version 5.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 5.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 5.1 (Release 14SP3)
March 2006 Online only Revised for Version 5.2 (Release 2006a)
September 2006 Online only Revised for Version 5.3 (Release 2006b)
March 2007 Online only Revised for Version 5.4 (Release 2007a)

Contents

Getting Started

1
What Is Image Processing Toolbox? 1-2

Configuration Notes . 1-3
Related Products . 1-3
Compilability . 1-3

Example 1 — Some Basic Concepts 1-4
Step 1: Read and Display an Image 1-4
Step 2: Check How the Image Appears in the Workspace . . 1-5
Step 3: Improve Image Contrast . 1-6
Step 4: Write the Image to a Disk File 1-8
Step 5: Check the Contents of the Newly Written File 1-8

Example 2 — Advanced Topics . 1-10
Step 1: Read and Display an Image 1-11
Step 2: Estimate the Value of Background Pixels 1-11
Step 3: View the Background Approximation as a

Surface . 1-12
Step 4: Create an Image with a Uniform Background 1-14
Step 5: Adjust the Contrast in the Processed Image 1-14
Step 6: Create a Binary Version of the Image 1-15
Step 7: Determine the Number of Objects in the Image . . . 1-16
Step 8: Examine the Label Matrix . 1-17
Step 9: Display the Label Matrix as a Pseudocolor Indexed

Image . 1-18
Step 10: Measure Object Properties in the Image 1-19
Step 11: Compute Statistical Properties of Objects in the

Image . 1-21

Getting Help . 1-23
Online Help . 1-23
Image Processing Demos . 1-23
MATLAB Newsgroup . 1-24

Image Credits . 1-25

v

Introduction

2
Images in MATLAB and Image Processing Toolbox . . . 2-2

Coordinate Systems . 2-2

Image Types in the Toolbox . 2-7
Binary Images . 2-8
Indexed Images . 2-8
Grayscale Images . 2-10
Truecolor Images . 2-11

Converting Between Image Types 2-15
Color Space Conversions . 2-16

Converting Between Image Classes 2-17
Losing Information in Conversions 2-17
Converting Indexed Images . 2-17

Working with Image Sequences . 2-19
Example: Processing Image Sequences 2-22
Multi-Frame Image Arrays . 2-23

Image Arithmetic . 2-25
Image Arithmetic Saturation Rules 2-25
Nesting Calls to Image Arithmetic Functions 2-26

Reading and Writing Image Data

3
Getting Information About a Graphics File 3-2

Reading Image Data . 3-3
Reading Multiple Images from a Graphics File 3-4

Writing Image Data . 3-5
Specifying Additional Format-Specific Parameters 3-5

vi Contents

Reading and Writing Binary Images in 1-Bit Format 3-6
Determining the Storage Class of the Output File 3-7

Converting Graphics File Formats 3-8

Reading and Writing Data in Medical File Formats . . . 3-9
Reading Metadata from a DICOM File 3-9
Reading Image Data from a DICOM File 3-10
Writing Image Data or Metadata to a DICOM File 3-11
Using the Mayo Analyze 7.5 Format 3-16
Using the Interfile Format . 3-17

Displaying and Exploring Images

4
Overview . 4-3

Understanding Handle Graphics Object Property
Settings . 4-4

Using imshow to Display Images . 4-5
Specifying the Initial Image Magnification 4-6
Controlling the Appearance of the Figure 4-7

Using the Image Tool to Explore Images 4-9
Opening the Image Tool . 4-11
Specifying the Initial Image Magnification 4-12
Specifying the Colormap . 4-13
Importing Image Data from the Workspace 4-15
Exporting Image Data to the Workspace 4-16
Closing the Image Tool . 4-17
Printing the Image in the Image Tool 4-17

Using Image Tool Navigation Aids 4-18
Overview Navigation . 4-18
Panning the Image Displayed in the Image Tool 4-21
Zooming In and Out on an Image . 4-22
Specifying the Magnification of the Image 4-22

vii

Getting Information about the Pixels in an Image 4-24
Determining the Value of Individual Pixels 4-24
Getting the Display Range of an Image 4-26
Viewing Pixel Values with the Pixel Region Tool 4-27

Measuring Features in an Image . 4-31
Using the Distance Tool . 4-31
Exporting Endpoint and Distance Data 4-32
Customizing the Appearance of the Distance Tool 4-33

Getting Information About an Image 4-34

Adjusting the Contrast and Brightness of an Image . . . 4-36
Using the Adjust Contrast Tool . 4-38
Example: Adjusting Contrast and Brightness 4-40
Using the Window/Level Tool . 4-43
Understanding Contrast Adjustment 4-45

Viewing Multiple Images . 4-47
Displaying Each Image in a Separate Figure 4-47
Displaying Multiple Images in the Same Figure 4-48

Displaying Different Image Types 4-51
Displaying Indexed Images . 4-51
Displaying Grayscale Images . 4-52
Displaying Binary Images . 4-54
Displaying Truecolor Images . 4-56

Special Display Techniques . 4-58
Adding a Colorbar . 4-58
Displaying Multiple Image Frames at Once 4-60
Converting a Multiframe Image to a Movie 4-61
Texture Mapping . 4-62

Printing Images . 4-63
Printing and Handle Graphics Object Properties 4-63

Setting Toolbox Display Preferences 4-65
Retrieving the Values of Toolbox Preferences 4-65
Setting the Values of Toolbox Preferences 4-66

viii Contents

Building GUIs with Modular Tools

5
Overview . 5-2

Using Modular Tools . 5-6
Displaying the Target Image . 5-7
Specifying the Target Image . 5-8
Specifying the Parent of a Modular Tool 5-12
Positioning the Modular Tools in a GUI 5-15
Example: Building a Pixel Information GUI 5-17
Adding Navigation Aids to a GUI . 5-19
Making Connections for Interactivity 5-25

Creating Your Own Modular Tools 5-31

Spatial Transformations

6
Resizing an Image . 6-2

Specifying the Size of the Output Image 6-2
Specifying the Interpolation Method 6-3
Using Filters to Prevent Aliasing . 6-4

Rotating an Image . 6-5
Image Rotation Basics . 6-5
Specifying the Size of the Output Image 6-5
Specifying the Interpolation Method 6-5

Cropping an Image . 6-7

Performing General 2-D Spatial Transformations 6-8
Example: Performing a Translation 6-9
Defining the Transformation Data . 6-14
Creating TFORM Structures . 6-16
Performing the Spatial Transformation 6-17

ix

Performing N-Dimensional Spatial Transformations . . 6-20

Example: Performing Image Registration 6-22
Step 1: Read in Base and Unregistered Images 6-22
Step 2: Display the Unregistered Image 6-22
Step 3: Create a TFORM Structure 6-23
Step 4: Transform the Unregistered Image 6-23
Step 5: Overlay Registered Image Over Base Image 6-24
Step 6: Using XData and YData Input Parameters 6-25
Step 7: Using XData and YData Output Values 6-26

Image Registration

7
Registering an Image . 7-2

Point Mapping . 7-2
Using cpselect in a Script . 7-4
Example: Registering to a Digital Orthophoto 7-5

Transformation Types . 7-12

Selecting Control Points . 7-13
Using the Control Point Selection Tool: An Overview 7-13
Starting the Control Point Selection Tool 7-15
Using Navigation Tools to Explore the Images 7-16
Specifying Matching Control Point Pairs 7-20
Exporting Control Points to the Workspace 7-26

Using Correlation to Improve Control Points 7-29

Linear Filtering and Filter Design

8
Linear Filtering . 8-2

Convolution . 8-2

x Contents

Correlation . 8-4
Filtering Using imfilter . 8-5
Using Predefined Filter Types . 8-13

Filter Design . 8-15
FIR Filters . 8-16
Frequency Transformation Method 8-16
Frequency Sampling Method . 8-18
Windowing Method . 8-19
Creating the Desired Frequency Response Matrix 8-21
Computing the Frequency Response of a Filter 8-22

Transforms

9
Fourier Transform . 9-3

Definition of Fourier Transform . 9-3
Discrete Fourier Transform . 9-8
Applications of the Fourier Transform 9-11

Discrete Cosine Transform . 9-16
DCT Definition . 9-16
The DCT Transform Matrix . 9-18
DCT and Image Compression . 9-18

Radon Transform . 9-20
Radon Transformation Definition . 9-20
Plotting the Radon Transform . 9-22
Viewing the Radon Transform as an Image 9-24
Using the Radon Transform to Detect Lines 9-25

The Inverse Radon Transformation 9-29
Inverse Radon Transform Definition 9-29
Example: Reconstructing an Image from Parallel Projection

Data . 9-32

Fan-Beam Projection Data . 9-36
Computing Fan-Beam Projection Data 9-37

xi

Reconstructing an Image from Fan-Beam Projection
Data . 9-39

Example: Using Reconstructing an Image From Fan-Beam
Projection Data . 9-40

Morphological Operations

10
Dilation and Erosion . 10-3

Understanding Dilation and Erosion 10-3
Structuring Elements . 10-6
Dilating an Image . 10-10
Eroding an Image . 10-11
Combining Dilation and Erosion . 10-13
Dilation- and Erosion-Based Functions 10-15

Morphological Reconstruction . 10-18
Marker and Mask . 10-18
Pixel Connectivity . 10-22
Flood-Fill Operations . 10-24
Finding Peaks and Valleys . 10-27

Distance Transform . 10-37

Objects, Regions, and Feature Measurement 10-40
Connected-Component Labeling . 10-40
Selecting Objects in a Binary Image 10-42
Finding the Area of the Foreground of a Binary Image . . . 10-42
Finding the Euler Number of a Binary Image 10-43

Lookup Table Operations . 10-44
Creating a Lookup Table . 10-44
Using a Lookup Table . 10-45

xii Contents

Analyzing and Enhancing Images

11
Getting Information about Pixel Values and

Statistics . 11-2
Getting Information About Image Pixels 11-2
Getting the Intensity Profile of an Image 11-3
Displaying a Contour Plot of Image Data 11-7
Creating an Image Histogram . 11-9
Getting Summary Statistics About an Image 11-10
Computing Properties for Image Regions 11-10

Analyzing an Image . 11-11
Detecting Edges . 11-11
Tracing Boundaries . 11-13
Detecting Lines Using the Hough Transform 11-17
Using Quadtree Decomposition . 11-21

Analyzing the Texture of an Image 11-24
Using Texture Filter Functions . 11-24
Using a Gray-Level Co-Occurrence Matrix (GLCM) 11-28

Intensity Adjustment . 11-34
Adjusting Intensity Values to a Specified Range 11-35
Histogram Equalization . 11-39
Contrast-Limited Adaptive Histogram Equalization 11-41
Decorrelation Stretching . 11-42

Noise Removal . 11-47
Using Linear Filtering . 11-47
Using Median Filtering . 11-48
Using Adaptive Filtering . 11-50

ROI-Based Processing

12
Specifying a Region of Interest (ROI) 12-2

Selecting a Polygonal ROI Interactively 12-2

xiii

Specifying an ROI Noninteractively 12-4
Creating an ROI Without an Associated Image 12-4
Creating an ROI Based on Color Values 12-5

Filtering an ROI . 12-6
Filtering a Region in an Image . 12-6
Specifying the Filtering Operation . 12-7

Filling an ROI . 12-9

Image Deblurring

13
Understanding Deblurring . 13-2

Causes of Blurring . 13-2
Deblurring Model . 13-2
Deblurring Functions . 13-4

Deblurring with the Wiener Filter 13-6
Refining the Result . 13-7

Deblurring with a Regularized Filter 13-8
Refining the Result . 13-9

Deblurring with the Lucy-Richardson Algorithm 13-10
Reducing the Effect of Noise Amplification 13-10
Accounting for Nonuniform Image Quality 13-11
Handling Camera Read-Out Noise 13-11
Handling Undersampled Images . 13-12
Example: Using the deconvlucy Function to Deblur an

Image . 13-12
Refining the Result . 13-15

Deblurring with the Blind Deconvolution Algorithm . . 13-16
Example: Using the deconvblind Function to Deblur an

Image . 13-16
Refining the Result . 13-21

xiv Contents

Creating Your Own Deblurring Functions 13-23

Avoiding Ringing in Deblurred Images 13-24

Color

14
Working with Different Screen Bit Depths 14-2

Determining Screen Bit Depth . 14-2
Choosing a Screen Bit Depth . 14-4

Reducing the Number of Colors in an Image 14-5
Color Approximation . 14-5
Reducing Colors in an Indexed Image 14-11
Dithering . 14-12

Converting Color Data Between Color Spaces 14-14
Converting Between Device-Independent Color Spaces . . . 14-14
Performing Profile-Based Color Space Conversions 14-18
Converting Between Device-Dependent Color Spaces 14-22

Neighborhood and Block Operations

15
Block Processing Operations . 15-2

Types of Block Processing Operations 15-2

Sliding Neighborhood Operations 15-4
Determining the Center Pixel . 15-4
Performing a Sliding Neighborhood Operation 15-5
Padding Borders . 15-5
Implementing Linear and Nonlinear Filtering 15-6

Distinct Block Operations . 15-8
Specifying Overlap . 15-10

xv

Column Processing Operations . 15-12
Sliding Neighborhoods . 15-12
Using Column Processing with Distinct Block

Operations . 15-13

Functions — By Category

16
Image Display and Exploration . 16-2

Image Display and Exploration . 16-2
Image File I/O . 16-2
Image Types and Type Conversions 16-3

GUI Tools . 16-5
Modular Interactive Tools . 16-5
Navigational tools for Image Scroll Panel 16-5
Utility Functions for Interactive Tools 16-6

Spatial Transformation and Image Registration 16-8
Spatial Transformations . 16-8
Image Registration . 16-9

Image Analysis and Statistics . 16-10
Image Analysis . 16-10
Texture Analysis . 16-10
Pixel Values and Statistics . 16-11

Image Arithmetic . 16-12

Image Enhancement and Restoration 16-13
Image Enhancement . 16-13
Image Restoration (Deblurring) . 16-13

Linear Filtering and Transforms . 16-15
Linear Filtering . 16-15
Linear 2-D Filter Design . 16-15
Image Transforms . 16-16

xvi Contents

Morphological Operations . 16-17
Intensity and Binary Images . 16-17
Binary Images . 16-18
Structuring Element (STREL) Creation and

Manipulation . 16-19

ROI-Based, Neighborhood, and Block Processing 16-20
ROI-Based Processing . 16-20
Neighborhood and Block Processing 16-20

Colormap and Color Space Functions 16-21
Colormap Manipulation . 16-21
Color Space Conversions . 16-21

Miscellaneous Functions . 16-23
Toolbox Preferences . 16-23
Toolbox Utility Functions . 16-23
Interactive Mouse Utility Functions 16-24
Array Operations . 16-24
Demos . 16-24
Performance . 16-24

Functions — Alphabetical List

17

Examples

A
Introductory Examples . A-2

Image Display . A-2

Modular Tools . A-2

Morphology Examples . A-2

xvii

Image Analysis . A-3

Image Enhancement . A-3

Working with Regions of Interest A-3

Working with Color . A-3

Index

xviii Contents

1

Getting Started

This chapter contains two examples to get you started doing image processing
using MATLAB® and Image Processing Toolbox. The examples contain
cross-references to other sections in the documentation manual that have
in-depth discussions on the concepts presented in the examples.

What Is Image Processing Toolbox?
(p. 1-2)

Introduces Image Processing Toolbox
and its capabilities

Example 1 — Some Basic Concepts
(p. 1-4)

Guides you through an example of
some of the basic image processing
capabilities of the toolbox, including
reading, writing, and displaying
images

Example 2 — Advanced Topics
(p. 1-10)

Guides you through some advanced
image processing topics, including
components labeling, object property
measurement, image arithmetic,
morphological image processing, and
contrast enhancement

Getting Help (p. 1-23) Provides pointers to additional
sources of information

Image Credits (p. 1-25) Provides information about the
sources of the images used in the
documentation

1 Getting Started

What Is Image Processing Toolbox?
Image Processing Toolbox is a collection of functions that extend the capability
of the MATLAB numeric computing environment. The toolbox supports a
wide range of image processing operations, including

• Spatial image transformations

• Morphological operations

• Neighborhood and block operations

• Linear filtering and filter design

• Transforms

• Image analysis and enhancement

• Image registration

• Deblurring

• Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB
statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of Image Processing Toolbox by writing your
own M-files, or by using the toolbox in combination with other toolboxes, such
as Signal Processing Toolbox and Wavelet Toolbox.

For a list of the new features in this version of Image Processing Toolbox, see
the Release Notes documentation.

This section also covers the following topics:

• “Configuration Notes” on page 1-3

• “Related Products” on page 1-3

• “Compilability” on page 1-3

1-2

What Is Image Processing Toolbox?

Configuration Notes
To determine if Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

Related Products
The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with Image Processing Toolbox and that extend the
capabilities of MATLAB. For information about these related products, see
www.mathworks.com/products/image/related.html.

Compilability
Image Processing Toolbox is compilable with the MATLAB Compiler except
for the following two functions that launch GUIs:

• cpselect

• imtool

1-3

http://www.mathworks.com
http://www.mathworks.com/products/image/related.html

1 Getting Started

Example 1 — Some Basic Concepts
This example introduces some basic image processing concepts, including
reading and writing images, performing histogram equalization on an image,
and getting information about an image. The example breaks this process
into the following steps:

• “Step 1: Read and Display an Image” on page 1-4

• “Step 2: Check How the Image Appears in the Workspace” on page 1-5

• “Step 3: Improve Image Contrast” on page 1-6

• “Step 4: Write the Image to a Disk File” on page 1-8

• “Step 5: Check the Contents of the Newly Written File” on page 1-8

Before beginning with this example, you should already have installed Image
Processing Toolbox and have started MATLAB. If you are new to MATLAB,
read the MATLAB Getting Started documentation to learn about basic
MATLAB concepts.

Step 1: Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows.

close all

To read an image, use the imread command. The example reads one of the
sample images included with Image Processing Toolbox, pout.tif, and stores
it in an array named I.

I = imread('pout.tif');

imread infers from the file that the graphics file format is Tagged Image File
Format (TIFF). For the list of supported graphics file formats, see the imread
function reference documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imtool. imshow is the toolbox’s fundamental image display
function. imtool starts the Image Tool which presents an integrated
environment for displaying images and performing some common image

1-4

Example 1 — Some Basic Concepts

processing tasks. The Image Tool provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and
exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool. For more information, see Chapter 4,
“Displaying and Exploring Images”. You can use either function to display an
image. This example uses imshow.

imshow(I)

Grayscale Image pout.tif

Step 2: Check How the Image Appears in the
Workspace
To see how the imread function stores the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. The imread function returned the image data in the variable I, which
is a 291-by-240 element array of uint8 data. MATLAB can store images
as uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos
Name Size Bytes Class

I 291x240 69840 uint8 array

1-5

1 Getting Started

Grand total is 69840 elements using 69840 bytes

For more information about image storage classes, see “Converting Between
Image Classes” on page 2-17.

Step 3: Improve Image Contrast
pout.tif is a somewhat low contrast image. To see the distribution of
intensities in pout.tif, you can create a histogram by calling the imhist
function. (Precede the call to imhist with the figure command so that the
histogram does not overwrite the display of the image I in the current figure
window.)

figure, imhist(I)

Notice how the intensity range is rather narrow. It does not cover the
potential range of [0, 255], and is missing the high and low values that would
result in good contrast.

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization.

I2 = histeq(I);

1-6

Example 1 — Some Basic Concepts

Display the new equalized image, I2, in a new figure window.

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you
compare the two histograms, the histogram of I2 is more spread out than
the histogram of I1.

figure, imhist(I2)

1-7

1 Getting Started

The toolbox includes several other functions that perform contrast
adjustment, including the imadjust and adapthisteq functions. See
“Intensity Adjustment” on page 11-34 for more information. In addition, the
toolbox includes an interactive tool, called the Adjust Contrast tool, that you
can use to adjust the contrast and brightness of an image displayed in the
Image Tool. To use this tool, call the imcontrast function or access the tool
from the Image Tool. For more information, see “Adjusting the Contrast and
Brightness of an Image” on page 4-36.

Step 4: Write the Image to a Disk File
To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes
the image to a file in Portable Network Graphics (PNG) format, but you can
specify other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports.
See also “Writing Image Data” on page 3-5 for a tutorial discussion on writing
images using Image Processing Toolbox.

Step 5: Check the Contents of the Newly Written File
To see what imwrite wrote to the disk file, use the imfinfo function.

imfinfo('pout2.png')

The imfinfo function returns information about the image in the file, such
as its format, size, width, and height. See “Getting Information About a
Graphics File” on page 3-2 for more information about using imfinfo.

ans =

Filename: 'pout2.png'
FileModDate: '29-Dec-2005 09:34:39'

FileSize: 36938
Format: 'png'

FormatVersion: []
Width: 240

1-8

Example 1 — Some Basic Concepts

Height: 291
BitDepth: 8

ColorType: 'grayscale'
FormatSignature: [137 80 78 71 13 10 26 10]

Colormap: []
Histogram: []

InterlaceType: 'none'
Transparency: 'none'

SimpleTransparencyData: []
BackgroundColor: []
RenderingIntent: []
Chromaticities: []

Gamma: []
XResolution: []
YResolution: []

ResolutionUnit: []
XOffset: []
YOffset: []

OffsetUnit: []
SignificantBits: []

ImageModTime: '29 Dec 2005 14:34:39 +0000'
Title: []

Author: []
Description: []

Copyright: []
CreationTime: []

Software: []
Disclaimer: []

Warning: []
Source: []

Comment: []
OtherText: []

1-9

1 Getting Started

Example 2 — Advanced Topics
This example introduces some advanced image processing concepts. The
example calculates statistics about objects in the image but, before it performs
these calculations, it preprocesses the image to achieve better results. The
preprocessing involves creating a uniform background in the image and
converting the image into a binary image. The example breaks this process
into the following steps:

• “Step 1: Read and Display an Image” on page 1-11

• “Step 2: Estimate the Value of Background Pixels” on page 1-11

• “Step 3: View the Background Approximation as a Surface” on page 1-12

• “Step 4: Create an Image with a Uniform Background” on page 1-14

• “Step 5: Adjust the Contrast in the Processed Image” on page 1-14

• “Step 6: Create a Binary Version of the Image” on page 1-15

• “Step 7: Determine the Number of Objects in the Image” on page 1-16

• “Step 8: Examine the Label Matrix” on page 1-17

• “Step 9: Display the Label Matrix as a Pseudocolor Indexed Image” on
page 1-18

• “Step 10: Measure Object Properties in the Image” on page 1-19

• “Step 11: Compute Statistical Properties of Objects in the Image” on page
1-21

1-10

Example 2 — Advanced Topics

Step 1: Read and Display an Image
Clear the MATLAB workspace of any variables, close open figure windows,
and close all open Image Tools.

Read and display the grayscale image rice.png.

Grayscale Image rice.png

Step 2: Estimate the Value of Background Pixels
In the sample image, the background illumination is brighter in the
center of the image than at the bottom. In this step, the example uses a
morphological opening operation to estimate the background illumination.
Morphological opening is an erosion followed by a dilation, using the same
structuring element for both operations. The opening operation has the effect
of removing objects that cannot completely contain the structuring element.
For more information about morphological image processing, see Chapter 10,
“Morphological Operations”.

1-11

1 Getting Started

The example calls the imopen function to perform the morphological opening
operation and then calls the imshow function to view the results. Note how the
example calls the strel function to create a disk-shaped structuring element
with a radius of 15. To remove the rice grains from the image, the structuring
element must be sized so that it cannot fit entirely inside a single grain of rice.

Step 3: View the Background Approximation as a
Surface
Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example
also sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the
pixels at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values
of background (and consequently rice.png) occur near the middle rows of
the image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.

1-12

Example 2 — Advanced Topics

The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the MATLAB graphics documentation.

1-13

1 Getting Started

Step 4: Create an Image with a Uniform Background
To create a more uniform background, subtract the background image,
background, from the original image, I, and then view the image.

Image with Uniform Background

Step 5: Adjust the Contrast in the Processed Image
After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.imadjust increases
the contrast of the image by saturating 1% of the data at both low and high
intensities of I2 and by stretching the intensity values to fill the uint8
dynamic range. See the reference page for imadjust for more information.

1-14

Example 2 — Advanced Topics

The following example adjusts the contrast in the image created in the
previous step and displays it.

Image After Intensity Adjustment

Step 6: Create a Binary Version of the Image
Create a binary version of the image so that you can use toolbox functions
to count the number of rice grains. Use the im2bw function to convert the
grayscale image into a binary image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to
convert the grayscale image to binary.

Binary Version of the Image

1-15

1 Getting Started

The binary image bw returned by im2bw is of class logical, as can be seen in
this call to whos. Image Processing Toolbox uses logical arrays to represent
binary images. For more information, see “Binary Images” on page 2-8.

whos

MATLAB responds with

Name Size Bytes Class

I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array

Grand total is 327681 elements using 327688 bytes

Step 7: Determine the Number of Objects in the
Image
After converting the image to a binary image, you can use the bwlabel
function to determine the number of grains of rice in the image. The bwlabel
function labels all the components in the binary image bw and returns the
number of components it finds in the image in the output value, numObjects.

The accuracy of the results depends on a number of factors, including

• The size of the objects

• Whether or not any objects are touching (in which case they might be
labeled as one object)

• The accuracy of the approximated background

• The connectivity selected. The parameter 4, passed to the bwlabel
function, means that pixels must touch along an edge to be considered
connected. For more information about the connectivity of objects, see
“Pixel Connectivity” on page 10-22.

1-16

Example 2 — Advanced Topics

Step 8: Examine the Label Matrix
To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
close-up view of pixel values. For example, you can use imcrop to select a
small portion of the image. Another way is to use toolbox Pixel Region tool to
examine pixel values. The following example displays the label matrix, using
imshow, and then starts a Pixel Region tool associated with the displayed
image.

By default, it automatically associates itself with the image in the current
figure. The Pixel Region tool draws a rectangle, called the pixel region
rectangle, in the center of the visible part of the image. This rectangle defines
which pixels are displayed in the Pixel Region tool. As you move the rectangle,
the Pixel Region tool updates the pixel values displayed in the window. For
more information about using the toolbox modular interactive tools, see
Chapter 5, “Building GUIs with Modular Tools”.

1-17

1 Getting Started

The following figure shows the Image Viewer with the Pixel Region rectangle
positioned over the edges of two rice grains. Note how all the pixels in the rice
grains have the values assigned by the bwlabel function and the background
pixels have the value 0 (zero).

Examining the Label Matrix with the Pixel Region Tool

Step 9: Display the Label Matrix as a Pseudocolor
Indexed Image
A good way to view a label matrix is to display it as a pseudocolor indexed
image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The
colors in the image make objects easier to distinguish.

1-18

Example 2 — Advanced Topics

To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

Label Matrix Displayed as Pseudocolor Image

Step 10: Measure Object Properties in the Image
The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

The following example uses regionprops to create a structure array
containing some basic properties for labeled. When you set the properties
parameter to 'basic', the regionprops function returns three commonly
used measurements: area, centroid (or center of mass), and bounding box.
The bounding box represents the smallest rectangle that can contain a region,
or in this case, a grain of rice.

MATLAB responds with

graindata =

101x1 struct array with fields:
Area
Centroid
BoundingBox

1-19

1 Getting Started

To find the area of the 51st labeled component, access the Area field in the
51st element in the graindata structure array. Note that structure field
names are case sensitive.

returns the following results

ans =

140

To find the smallest possible bounding box and the centroid (center of mass)
for the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid
ans =

107.5000 4.5000 13.0000 20.0000

ans =

114.5000 15.4500

1-20

Example 2 — Advanced Topics

Step 11: Compute Statistical Properties of Objects
in the Image
Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

returns

ans =

404

Use the find command to return the component label of the grain of rice
with this area.

returns

biggrain =

59

Find the mean of all the rice grain sizes.

returns

ans =

175.0396

1-21

1 Getting Started

Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

1-22

Getting Help

Getting Help
For more information about the topics covered in these exercises, read
the tutorial chapters that make up the remainder of this documentation.
For reference information about any of the Image Processing Toolbox
functions, see the online Chapter 17, “Functions — Alphabetical List”, which
complements the M-file help that is displayed in the MATLAB command
window when you type

help functionname

For example,

help imtool

This section covers the following topics:

• “Online Help” on page 1-23

• “Image Processing Demos” on page 1-23

• “MATLAB Newsgroup” on page 1-24

Online Help
The Image Processing Toolbox documentation is available online in both
HTML and PDF formats. To access the HTML help, select Help from the
menu bar of the MATLAB desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents
tab of the Help browser and go to the link under “Printable Documentation
(PDF).” (Note that to view the PDF help, you must have Adobe’s Acrobat
Reader installed.)

Image Processing Demos
Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

1-23

1 Getting Started

To view all the Image Processing Toolbox demos, call the iptdemos function.
This displays an HTML page in the MATLAB Help browser that lists all
the Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and
clicking the Demos tab in the Help Navigator pane. From the list of products
with demos, select Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

MATLAB Newsgroup
If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.

1-24

Image Credits

Image Credits
This table lists the copyright owners of the images used in the Image
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,
courtesy of Steve Decker and Shujaat Nadeem,
MIT, 1993.

concordaerial and
westconcordaerial

Visible color aerial photographs courtesy of
mPower3/Emerge.

concordorthophoto and
westconcordorthophoto

Orthoregistered photographs courtesy
of Massachusetts Executive Office of
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

LAN files Permission to use Landsat data sets provided by
Space Imaging, LLC, Denver, Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy of
NASA (Image number E-10962).

m83 M83 spiral galaxy astronomical image courtesy
of Anglo-Australian Observatory, photography
by David Malin.

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with permission.

1-25

1 Getting Started

Image Source

tissue Courtesy of Alan W. Partin, M.D., PhD., Johns
Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on paper,
copyright Susan Cohen. Used with permission.

1-26

2

Introduction

This chapter introduces you to the fundamentals of image processing using
MATLAB and Image Processing Toolbox.

Images in MATLAB and Image
Processing Toolbox (p. 2-2)

How images are represented in
MATLAB and Image Processing
Toolbox

Image Types in the Toolbox (p. 2-7) Fundamental image types supported
by Image Processing Toolbox

Converting Between Image Types
(p. 2-15)

Converting between the image types

Converting Between Image Classes
(p. 2-17)

Converting image data from one
class to another

Working with Image Sequences
(p. 2-19)

Working with sequences of images

Image Arithmetic (p. 2-25) Adding, subtracting, multiplying,
and dividing images

2 Introduction

Images in MATLAB and Image Processing Toolbox
The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single
dot on a computer display.)

For example, an image composed of 200 rows and 300 columns of different
colored dots would be stored in MATLAB as a 200-by-300 matrix. Some
images, such as truecolor images, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities,
the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities. This convention makes working with
images in MATLAB similar to working with any other type of matrix data, and
makes the full power of MATLAB available for image processing applications.

Coordinate Systems
Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in Image Processing Toolbox and the relationship between them. These
two coordinate systems are described in

• “Pixel Coordinates” on page 2-3

• “Spatial Coordinates” on page 2-4

• “Using a Nondefault Spatial Coordinate System” on page 2-5

2-2

Images in MATLAB and Image Processing Toolbox

Pixel Coordinates
Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as
a grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component c (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the
row or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence
makes the relationship between an image’s data matrix and the way the
image is displayed easy to understand. For example, the data for the pixel
in the fifth row, second column is stored in the matrix element (5,2). You use
normal MATLAB matrix subscripting to access values of individual pixels.
For example, the MATLAB code

I(2,15)

returns the value of the pixel at row 2, column 15 of the image I.

2-3

2 Introduction

Spatial Coordinates
In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from
(5,2). In this spatial coordinate system, locations in an image are positions
on a plane, and they are described in terms of x and y (not r and c as in
the pixel coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.

The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the
upper left corner of an image is (1,1), while in spatial coordinates, this location
by default is (0.5,0.5). This difference is due to the pixel coordinate system’s
being discrete, while the spatial coordinate system is continuous. Also, the
upper left corner is always (1,1) in pixel coordinates, but you can specify a
nondefault origin for the spatial coordinate system. See “Using a Nondefault
Spatial Coordinate System” on page 2-5 for more information.

2-4

Images in MATLAB and Image Processing Toolbox

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and y, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System
By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3
has spatial coordinates x=3, y=5. (Remember, the order of the coordinates
is reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates
rather than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner
of an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function
that returns coordinates for this image, the coordinates returned will be
values in this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties
are two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is
[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is
[1 200], and the default YData is [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not
the pixel edges), so the actual coordinate range spanned is slightly larger;
for instance, if XData is [1 200], the x-axis range spanned by the image is
[0.5 200.5].

2-5

2 Introduction

These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

2-6

Image Types in the Toolbox

Image Types in the Toolbox
Image Processing Toolbox defines four basic types of images, summarized
in the following table. These image types determine the way MATLAB
interprets data matrix elements as pixel intensity values. The sections that
follow provide more information about each image type. See also “Converting
Between Image Types” on page 2-15.

Image Type Interpretation

Binary
(Also known as a
bilevel image)

Logical array containing only 0s and 1s, interpreted
as black and white, respectively. See “Binary
Images” on page 2-8 for more information.

Indexed
(Also known as a
pseudocolor image)

Array of class logical, uint8, uint16, single, or
double whose pixel values are direct indices into a
colormap. The colormap is an m-by-3 array of class
double.

For single or double arrays, integer values range
from [1, p]. For logical, uint8, or uint16 arrays,
values range from [0, p-1]. See “Indexed Images” on
page 2-8 for more information.

Grayscale
(Also known as an
intensity, gray scale,
or gray level image)

Array of class uint8, uint16, int16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from
[0, 1]. For uint8, values range from [0,255]. For
uint16, values range from [0, 65535]. For int16,
values range from [-32768, 32767]. See “Grayscale
Images” on page 2-10 for more information.

Truecolor
(Also known as an
RGB image)

m-by-n-by-3 array of class uint8, uint16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from
[0, 1]. For uint8, values range from [0, 255]. For
uint16, values range from [0, 65535]. See “Truecolor
Images” on page 2-11 for more information.

2-7

2 Introduction

Binary Images
In a binary image, each pixel assumes one of only two discrete values: 1
or 0. A binary image is stored as a logical array. By convention, this
documentation uses the variable name BW to refer to binary images.

The following figure shows a binary image with a close-up view of some of
the pixel values.

Pixel Values in a Binary Image

Indexed Images
An indexed image consists of an array and a colormap matrix. The pixel
values in the array are direct indices into a colormap. By convention, this
documentation uses the variable name X to refer to the array and map to refer
to the colormap.

The colormap matrix is an m-by-3 array of class double containing
floating-point values in the range [0,1]. Each row of map specifies the red,
green, and blue components of a single color. An indexed image uses direct
mapping of pixel values to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an index into map.

2-8

Image Types in the Toolbox

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. After you read the image
and the colormap into the MATLAB workspace as separate variables, you
must keep track of the association between the image and colormap. However,
you are not limited to using the default colormap--you can use any colormap
that you choose.

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
single or double, it normally contains integer values 1 through p, where p is
the length of the colormap. the value 1 points to the first row in the colormap,
the value 2 points to the second row, and so on. If the image matrix is of class
logical, uint8 or uint16, the value 0 points to the first row in the colormap,
the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the
figure, the image matrix is of class double, so the value 5 points to the fifth
row of the colormap.

Pixel Values Index to Colormap Entries in Indexed Images

2-9

2 Introduction

Grayscale Images
A grayscale image (also called gray-scale, gray scale, or gray-level) is a data
matrix whose values represent intensities within some range. MATLAB
stores a grayscale image as a individual matrix, with each element of the
matrix corresponding to one image pixel. By convention, this documentation
uses the variable name I to refer to grayscale images.

The matrix can be of class uint8, uint16, int16, single, or double.While
grayscale images are rarely saved with a colormap, MATLAB uses a colormap
to display them.

For a matrix of class single or double, using the default grayscale colormap,
the intensity 0 represents black and the intensity 1 represents white. For a
matrix of type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax(class(I)) represents white.

The figure below depicts a grayscale image of class double.

Pixel Values in a Grayscale Image Define Gray Levels

2-10

Image Types in the Toolbox

Truecolor Images
A truecolor image is an image in which each pixel is specified by three values
— one each for the red, blue, and green components of the pixel’s color.
MATLAB store truecolor images as an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel. Truecolor
images do not use a colormap. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane
at the pixel’s location.

Graphics file formats store truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16
million colors. The precision with which a real-life image can be replicated
has led to the commonly used term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a
truecolor array of class single or double, each color component is a value
between 0 and 1. A pixel whose color components are (0,0,0) is displayed
as black, and a pixel whose color components are (1,1,1) is displayed as
white. The three color components for each pixel are stored along the third
dimension of the data array. For example, the red, green, and blue color
components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

2-11

2 Introduction

The following figure depicts a truecolor image of class double.

The Color Planes of a Truecolor Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

2-12

Image Types in the Toolbox

To further illustrate the concept of the three separate color planes used in a
truecolor image, the code sample below creates a simple image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). The example displays
each color plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)
figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

The Separated Color Planes of an RGB Image

2-13

2 Introduction

Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R == 0.

2-14

Converting Between Image Types

Converting Between Image Types
You might need to convert an image from one type to another. For example, if
you want to filter a color image that is stored as an indexed image, you must
first convert it to truecolor format. When you apply the filter to the truecolor
image, MATLAB filters the intensity values in the image, as is appropriate. If
you attempt to filter the indexed image, MATLAB simply applies the filter
to the indices in the indexed image matrix, and the results might not be
meaningful.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to a grayscale image, the resulting image is grayscale,
not color.

The following table lists all the image type conversion functions in Image
Processing Toolbox.

Function Description

dither Use dithering to convert a grayscale image to a binary
image or to convert a truecolor image to an indexed image

gray2ind Convert a grayscale image to an indexed image

grayslice Convert a grayscale image to an indexed image by using
multilevel thresholding

im2bw Convert a grayscale image, indexed image, or truecolor
image, to a binary image, based on a luminance threshold

ind2gray Convert an indexed image to a grayscale image

ind2rgb Convert an indexed image to a truecolor image

mat2gray Convert a data matrix to a grayscale image, by scaling
the data

rgb2gray Convert a truecolor image to a grayscale image

rgb2ind Convert a truecolor image to an indexed image

2-15

2 Introduction

You can perform certain conversions just using MATLAB syntax. For example,
you can convert a grayscale image to truecolor format by concatenating three
copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and
blue planes, so the image displays as shades of gray.

In addition to these standard conversion functions, there are other functions
that return a different image type as part of the operation they perform. For
example, the region of interest functions return a binary image that you can
use to mask an image for filtering or for other operations.

Color Space Conversions
Image Processing Toolbox represents colors as RGB values in both truecolor
and indexed images. However, there are other methods for representing
colors. For example, a color can be represented by its hue, saturation, and
value components (HSV). Different methods for representing colors are called
color spaces.

The toolbox provides functions to convert between color spaces. The image
processing functions themselves assume all color data is RGB, but you can
process an image that uses a different color space by first converting it to
RGB, and then converting the processed image back to the original color
space. For more information about color space conversion routines, see
Chapter 14, “Color”.

2-16

Converting Between Image Classes

Converting Between Image Classes
You can convert uint8 and uint16 image data to double using the MATLAB
double function. However, converting between classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset
the data when you convert it.

For easier conversion of classes, use one of these toolbox functions:
im2uint8, im2uint16, im2int16, im2single, or im2double. These functions
automatically handle the rescaling and offsetting of the original data of any
image class. For example, this command converts a double-precision RGB
image with data in the range [0,1] to a uint8 RGB image with data in the
range [0,255].

RGB2 = im2uint8(RGB1);

This section covers the following additional topics:

• “Losing Information in Conversions” on page 2-17

• “Converting Indexed Images” on page 2-17

Losing Information in Conversions
When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
grayscale image is capable of storing up to 65,536 distinct shades of gray, but
a uint8 grayscale image can store only 256 distinct shades of gray. When
you convert a uint16 grayscale image to a uint8 grayscale image, im2uint8
quantizes the gray shades in the original image. In other words, all values
from 0 to 127 in the original image become 0 in the uint8 image, values from
128 to 385 all become 1, and so on.

Converting Indexed Images
It is not always possible to convert an indexed image from one storage class
to another. In an indexed image, the image matrix contains only indices into
a colormap, rather than the color data itself, so no quantization of the color
data is possible during the conversion.

2-17

2 Introduction

For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If
you want to perform this conversion, you must first reduce the number of the
colors in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors in an Indexed Image” on page 14-11
for more information.

2-18

Working with Image Sequences

Working with Image Sequences
Some applications work with collections of images related by time, such as
frames in a movie, or by view (spatial location), such as magnetic resonance
imaging (MRI) slices. These collections of images are referred to by a variety
of names, such as image sequences or image stacks.

The ability to create N-dimensional arrays can provide a convenient way to
store image sequences. For example, an m-by-n-by-p array can store an array
of p two-dimensional images, such as grayscale or binary images, as shown in
the following figure. An m-by-n-by-3-by-p array can store truecolor images
where each image is made up of three planes.

Multidimensional Array Containing an Image Sequence

Many toolbox functions can operate on multi-dimensional arrays and,
consequently, can operate on image sequences. For example, if you pass a
multi-dimensional array to the imtransform function, it applies the same 2-D
transformation to all 2-D planes along the higher dimension.

Some toolbox functions that accept multi-dimensional arrays, however, do
not by default interpret an m-by-n-by-p or an m-by-n-by-3-by-p array as an
image sequence. To use these functions with image sequences, you must
use particular syntax and be aware of other limitations. The following table
lists these toolbox functions and provides guidelines about how to use them
to process image sequences. For more information about image sequence,
see these additional topics:

• “Example: Processing Image Sequences” on page 2-22

• “Multi-Frame Image Arrays” on page 2-23

2-19

2 Introduction

Function
Image Sequence
Dimensions

Guideline When Used with an
Image Sequence

bwlabeln m-by-n-by-p only Must use the bwlabeln(BW,conn)
syntax with a 2-D connectivity.

deconvblind m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D
or 2-D.

deconvlucy m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D
or 2-D.

edgetaper m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D
or 2-D.

entropyfilt m-by-n-by-p only nhood argument must be 2-D.

imabsdiff m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size.

imadd m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size. Cannot add scalar to image
sequence.

imbothat m-by-n-by-p only SE argument must be 2-D.

imclose m-by-n-by-p only SE argument must be 2-D.

imdilate m-by-n-by-p only SE argument must be 2-D.

imdivide m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size.

imerode m-by-n-by-p only SE argument must be 2-D.

imextendedmax m-by-n-by-p only Must use the
imextendedmax(I,h,conn)
syntax with a 2-D connectivity.

imextendedmin m-by-n-by-p only Must use the
imextendedmin(I,h,conn)
syntax with a 2-D connectivity.

imfilter m-by-n-by-p or
m-by-n-by-3-by-p

With grayscale images, h can be
2-D. With truecolor images (RGB),
h can be 2-D or 3-D.

2-20

Working with Image Sequences

Function
Image Sequence
Dimensions

Guideline When Used with an
Image Sequence

imhmax m-by-n-by-p only Must use the imhmax(I,h,conn)
syntax with a 2-D connectivity.

imhmin m-by-n-by-p only Must use the imhmin(I,h,conn)
syntax with a 2-D connectivity.

imlincomb m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size.

immultiply m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size.

imopen m-by-n-by-p only SE argument must be 2-D.

imregionalmax m-by-n-by-p only Must use the
imextendedmax(I,conn)
syntax with a 2-D connectivity.

imregionalmin m-by-n-by-p only Must use the
imextendedmin(I,conn)
syntax with a 2-D connectivity.

imtransform m-by-n-by-p or
m-by-n-by-3-by-p

TFORM argument must be 2-D.

imsubtract m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same
size.

imtophat m-by-n-by-p only SE argument must be 2-D.

padarray m-by-n-by-p or
m-by-n-by-3-by-p

PADSIZE argument must be a
two-element vector.

rangefilt m-by-n-by-p only NHOOD argument must be 2-D.

stdfilt m-by-n-by-p only NHOOD argument must be 2-D.

2-21

2 Introduction

Function
Image Sequence
Dimensions

Guideline When Used with an
Image Sequence

tformarray m-by-n-by-p or
m-by-n-by-3-by-p

T must be 2-D to 2-D (compatible
with imtransform).
R must be 2-D.
TDIMS_A and TDIMS_B
must be 2-D, i.e., [2 1] or
[1 2]
TSIZE_B must be a two-element
array [D1 D2], where D1 and D2
are the first and second transform
dimensions of the output space.
TMAP_B must be [TSIZE_B 2]
F can be a scalar or a p-by-1
array for m-by-n-by-p arrays, or
it can be a scalar, 1-by-p array,
3-by-1 array, or 3-by-p array, for
m-by-n-by-3-by-p arrays.

watershed m-by-n-by-p only Must use watershed(I,conn)
syntax with a 2-D connectivity.

Example: Processing Image Sequences
This example starts by reading a series of images from a directory into
the MATLAB workspace, storing the images in an m-by-n-by-p array. The
example then passes the entire array to the stdfilt function and performs
standard deviation filtering on each image in the sequence. Note that, to
use stdfilt with an image sequence, you must use the nhood argument,
specifying a 2-D neighborhood.

% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}';
numFrames = numel(fileNames);

I = imread(fileNames{1});

% Preallocate the array

2-22

Working with Image Sequences

sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

% Create image sequence array
for p = 2:numFrames

sequence(:,:,p) = imread(fileNames{p});
end

% Process sequence
sequenceNew = stdfilt(sequence,ones(3));

% View results
figure;
for k = 1:numFrames

imshow(sequence(:,:,k));
title(sprintf('Original Image # %d',k));
pause(1);
imshow(sequenceNew(:,:,k),[]);
title(sprintf('Processed Image # %d',k));
pause(1);

end

Multi-Frame Image Arrays
The toolbox includes two functions, immovie and montage, that work with a
specific type of multi-dimensional array called a multi-frame array. In this
array, images, called frames in this context, are concatenated along the fourth
dimension. Multi-frame arrays are either m-by-n-by-1-by-p, for grayscale,
binary, or indexed images, or m-by-n-by-3-by-p, for truecolor images, where
p is the number of frames.

For example, a multi-frame array containing five, 480-by-640 grayscale or
indexed images would be 480-by-640-by-1-by-5. An array with five 480-by-640
truecolor images would be 480-by-640-by-3-by-5.

Note To process a multi-frame array of grayscale images as an image
sequence, as described in “Working with Image Sequences” on page 2-19, you
can use the squeeze function to remove the singleton dimension.

2-23

2 Introduction

You can use the cat command to create a multi-frame array. For example, the
following stores a group of images (A1, A2, A3, A4, and A5) in a single array.

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you
have a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size
and have the same number of planes. In a multiframe indexed image, each
image must also use the same colormap.

2-24

Image Arithmetic

Image Arithmetic
Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can
be used to detect differences between two or more images of the same scene
or object.

You can do image arithmetic using the MATLAB arithmetic operators. Image
Processing Toolbox also includes a set of functions that implement arithmetic
operations for all numeric, nonsparse data types. The toolbox arithmetic
functions accept any numeric data type, including uint8, uint16, and double,
and return the result image in the same format. The functions perform
the operations in double precision, on an element-by-element basis, but do
not convert images to double-precision values in the MATLAB workspace.
Overflow is handled automatically. The functions saturate return values to fit
the data type. For more information, see these additional topics:

• “Image Arithmetic Saturation Rules” on page 2-25

• “Nesting Calls to Image Arithmetic Functions” on page 2-26

Note On Intel architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages
for the individual arithmetic functions for more information.

Image Arithmetic Saturation Rules
The results of integer arithmetic can easily overflow the data type allotted
for storage. For example, the maximum value you can store in uint8 data is
255. Arithmetic operations can also result in fractional values, which cannot
be represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic
functions use these rules for integer arithmetic:

2-25

2 Introduction

• Values that exceed the range of the integer type are saturated to that range.

• Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including
Inf) are set to 255. The following table lists some additional examples.

Result Class Truncated Value

300 uint8 255

-45 uint8 0

10.5 uint8 11

Nesting Calls to Image Arithmetic Functions
You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds
and saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. imlincomb performs all the
arithmetic operations in the linear combination in double precision and only
rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended

2-26

3

Reading and Writing Image
Data

This chapter describes how to get information about the contents of a graphics
file, read image data from a file, and write image data to a file, using standard
graphics and medical file formats.

Getting Information About a
Graphics File (p. 3-2)

Describes how to get information
about the contents of a graphics file
by reading the metadata contained
in the file

Reading Image Data (p. 3-3) Describes how to read image data
from a file

Writing Image Data (p. 3-5) Describes how to write image data
to a file

Converting Graphics File Formats
(p. 3-8)

Describes how to change the file
format used to store an image

Reading and Writing Data in
Medical File Formats (p. 3-9)

Describes how to import image data
into the MATLAB workspace and
write image data to graphics files

3 Reading and Writing Image Data

Getting Information About a Graphics File
The imfinfo function enables you to obtain information about a graphics file
and its contents. You can use imfinfo with any of the formats supported
by MATLAB. Use the imformats function to determine which formats are
supported.

Note You can also get information interactively about an image displayed in
the Image Tool — see “Getting Information About an Image” on page 4-34.

The information returned by imfinfo depends on the file format, but it always
includes at least the following:

• Name of the file

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: truecolor (RGB), grayscale (intensity), or indexed

See imfinfo for more information about getting information about graphics
files. For information about adding support for a new file format, see
imformats.

3-2

Reading Image Data

Reading Image Data
The imread function reads an image from any supported graphics image file
format, in any of the supported bit depths. Most image file formats use 8 bits
to store pixel values. When these are read into memory, MATLAB stores them
as class uint8. For file formats that support 16-bit data, PNG and TIFF,
MATLAB stores the images as class uint16.

For example, this code reads a truecolor image into the MATLAB workspace
as the variable RGB.

RGB = imread('football.jpg');

This code reads an indexed image with its associated colormap into the
MATLAB workspace in two separate variables.

[X,map] = imread('trees.tif');

Note For indexed images, imread always reads the colormap into a matrix
of class double, even though the image array itself may be of class uint8 or
uint16.

In these examples, imread infers the file format to use from the contents of the
file. You can also specify the file format as an argument to imread. MATLAB
supports many common graphics file formats, such as Microsoft Windows
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged
Image File Format (TIFF) formats. For the latest information concerning
the bit depths and/or image formats supported, see the reference pages for
the imread and imformats functions.

3-3

3 Reading and Writing Image Data

Reading Multiple Images from a Graphics File
MATLAB supports several graphics file formats, such as HDF and TIFF,
that can contain multiple images. By default, imread imports only the first
image from a file. To import additional images from the file, use the syntax
supported by the file format.

For example, when used with TIFF files, you can use an index value with
imread that identifies the image in the file you want to import. This example
reads a series of 27 images from a TIFF file and stores the images in a
four-dimensional array. You can use imfinfo to determine how many images
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

When a file contains multiple images that are related in some way, such as
a time sequence, you can store the images in MATLAB as a 4-D array. All
the images must be the same size. For more information, see “Working with
Image Sequences” on page 2-19.

3-4

Writing Image Data

Writing Image Data
The imwrite function writes an image to a graphics file in one of the
supported formats. The most basic syntax for imwrite takes the image
variable name and a filename. If you include an extension in the filename,
MATLAB infers the desired file format from it. (For more information, see the
reference page for the imwrite function.)

This example loads the indexed image X from a MAT-file, clown.mat, that
contains the data matrix and the associated colormap and then writes the
image to a BMP file.

load clown
whos

Name Size Bytes Class

X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

imwrite(X,map,'clown.bmp')

This section includes the following additional topics:

• “Specifying Additional Format-Specific Parameters” on page 3-5

• “Reading and Writing Binary Images in 1-Bit Format” on page 3-6

• “Determining the Storage Class of the Output File” on page 3-7

Specifying Additional Format-Specific Parameters
When using imwrite with some graphics formats, you can specify additional
parameters. For example, with PNG files, you can specify the bit depth as an
additional parameter. This example writes a grayscale image I to a 4-bit
PNG file.

imwrite(I,'clown.png','BitDepth',4);

3-5

3 Reading and Writing Image Data

This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite(A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain
graphics formats, see the reference pages for imwrite.

Reading and Writing Binary Images in 1-Bit Format
In certain file formats, a binary image can be stored in a 1-bit format. If
the file format supports it, MATLAB writes binary images as 1-bit images
by default. When you read in a binary image in 1-bit format, MATLAB
represents it in the workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite(BW,'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.

info = imfinfo('test.tif');

info.BitDepth
ans =

1

Note When writing binary files, MATLAB sets the ColorType field to
'grayscale'.

3-6

Writing Image Data

Determining the Storage Class of the Output File
imwrite uses the following rules to determine the storage class used in the
output image.

Storage Class
of Image Storage Class of Output Image File

logical If the output image file format specified supports 1-bit
images, imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, imwrite converts the image to a
class uint8 grayscale image.

uint8 If the output image file format specified supports
unsigned 8-bit images, imwrite creates an unsigned
8-bit image file.

uint16 If the output image file format specified supports
unsigned 16-bit images (PNG or TIFF), imwrite creates
an unsigned 16-bit image file.

If the output image file format specified does not
support 16-bit images, imwrite scales the image data to
class uint8 and creates an 8-bit image file.

int16 Partially supported; depends on file format.

single Partially supported; depends on file format.

double MATLAB scales the image data to uint8 and creates an
8-bit image file, because most image file formats use
8 bits.

3-7

3 Reading and Writing Image Data

Converting Graphics File Formats
To change the graphics format of an image, use imread to import the image
into the MATLAB workspace and then use the imwrite function to export the
image, specifying the appropriate file format.

To illustrate, this example uses the imread function to read an image in
bitmap (BMP) format into the workspace. The example then writes the
bitmap image to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp','bmp');
imwrite(bitmap,'mybitmap.png','png');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference pages for imread and imwrite.

3-8

Reading and Writing Data in Medical File Formats

Reading and Writing Data in Medical File Formats
The Image Processing Toolbox includes support for working with image data
in the many commonly used medical file formats, described in the following
sections:

• “Reading Metadata from a DICOM File” on page 3-9

• “Reading Image Data from a DICOM File” on page 3-10

• “Writing Image Data or Metadata to a DICOM File” on page 3-11, including
an example that reads image data and metadata from a DICOM file,
modifies the image data, and writes the modified data to a new DICOM file

• “Using the Mayo Analyze 7.5 Format” on page 3-16

• “Using the Interfile Format” on page 3-17

Reading Metadata from a DICOM File
DICOM files contain metadata that provide information about the image
data, such as the size, dimensions, bit depth, modality used to create the data,
the equipment settings used to capture the image, and information about the
study. The DICOM specification defines many of these metadata fields, but
files can contain additional fields, called private metadata.

To read metadata from a DICOM file, use the dicominfo function. dicominfo
returns the information in a MATLAB structure where every field contains
a specific piece of DICOM metadata. You can use the metadata structure
returned by dicominfo to specify the DICOM file you want to read using
dicomread — see “Reading Image Data from a DICOM File” on page 3-10.

3-9

3 Reading and Writing Image Data

The following example reads the metadata from a sample DICOM file that
is included with the toolbox.

info = dicominfo('CT-MONO2-16-ankle.dcm')

info =

Filename: [1x47 char]
FileModDate: '24-Dec-2000 19:54:47'

FileSize: 525436
Format: 'DICOM'

FormatVersion: 3
Width: 512

Height: 512
BitDepth: 16

ColorType: 'grayscale'
SelectedFrames: []

FileStruct: [1x1 struct]
StartOfPixelData: 1140

MetaElementGroupLength: 192
FileMetaInformationVersion: [2x1 double]

MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]

TransferSyntaxUID: '1.2.840.10008.1.2'
ImplementationClassUID: '1.2.840.113619.6.5'

.

.

.

Reading Image Data from a DICOM File
To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

When using dicomread, you can specify the filename as an argument, as
in the following example. The example reads the sample DICOM file that
is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

3-10

Reading and Writing Data in Medical File Formats

You can also use the metadata structure returned by dicominfo to specify the
file you want to read, as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Viewing Images from DICOM Files
To view the image data imported from a DICOM file, use one of the toolbox
image display functions imshow or imtool. Note, however, that because
the image data in this DICOM file is signed 16-bit data, you must use the
autoscaling syntax with either display function to make the image viewable.

imshow(I,'DisplayRange',[])

Writing Image Data or Metadata to a DICOM File
To write image data or metadata to a file in DICOM format, use the
dicomwrite function. This example writes the image I to the DICOM file
ankle.dcm.

dicomwrite(I,'h:\matlab\work\ankle.dcm')

3-11

3 Reading and Writing Image Data

Writing Metadata with the Image Data
When writing image data to a DICOM file, dicomwrite automatically
includes the minimum set of metadata fields required by the type of DICOM
information object (IOD) you are creating. dicomwrite supports the following
DICOM IODs with full validation.

• Secondary capture (default)

• Magnetic resonance

• Computed tomography

dicomwrite can write many other types of DICOM data (e.g. X-ray,
radiotherapy, nuclear medicine) to a file; however, dicomwrite does not
perform any validation of this data. See dicomwrite for more information.

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo. In the following example, the dicomwrite function writes the
relevant information in the metadata structure info to the new DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I,'h:\matlab\tmp\ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in
the info structure. When writing metadata to a file, there are certain fields
that dicomwrite must update. To illustrate, look at the instance ID in the
original metadata with the ID in the new file.

info.SOPInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244

3-12

Reading and Writing Data in Medical File Formats

Now, read the metadata from the newly created DICOM file, using dicominfo,
and check the SOPInstanceUID field. Note that they contain different values.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');

info2.SOPInstanceUID

ans =

1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Removing Confidential Information from a DICOM File
When using a DICOM file as part of a training set, blinded study, or a
presentation, you might want to remove confidential patient information, a
process called anonymizing the file. To do this, use the dicomanon function.

The dicomanon function creates a new series with new study values, changes
some of the metadata, and then writes the file. For example, you could replace
steps 4, 5, and 6 in the example in “Example: Creating a New Series” on page
3-13 with a call to the dicomanon function.

Example: Creating a New Series
When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images
can be organized into series. When you write an image with metadata to a
DICOM file, dicomwrite puts the image in the same series by default. To
create a new series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. The following example illustrates this
process.

1 Read an image from a DICOM file into the MATLAB workspace.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions imshow or
imtool. Because the DICOM image data is signed 16-bit data, you must
use the autoscaling syntax.

imtool(I,'DisplayRange',[])

3-13

3 Reading and Writing Image Data

2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID

ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in
some way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in
the image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080

3-14

Reading and Writing Data in Medical File Formats

min(I(:))

ans =

32

To remove these text characters, the example sets all pixels with the
maximum value to the minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid = dicomuid

uid =

1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.

3-15

3 Reading and Writing Image Data

5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified
metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified,'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

Using the Mayo Analyze 7.5 Format
Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI
data. An Analyze 7.5 data set consists of two files:

• Header file (filename.hdr) — Provides information about dimensions,
identification, and processing history. You use the analyze75info function
to read the header information.

• Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use analyze75read to read the image
data into the MATLAB workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization
and the same filename extensions as the Interfile format; however, the file
formats are not interchangeable. To learn how to read data from an Interfile
data set, see “Using the Interfile Format” on page 3-17.

The following example calls the analyze75info function to read the metadata
from the Analyze 7.5 header file. The example then passes the info structure
returned by analyze75info to the analyze75read function to read the image

3-16

Reading and Writing Data in Medical File Formats

data from the image file. The file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

Using the Interfile Format
Interfile is a file format that was developed for the exchange of nuclear
medicine image data.

An Interfile data set consists of two files:

• Header file (filename.hdr) — Provides information about dimensions,
identification and processing history. You use the interfileinfo function
to read the header information.

• Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use interfileread to read the image
data into the MATLAB workspace.

Note The Interfile format uses the same dual-file data set organization and
the same filename extensions as the Analyze 7.5 format; however, the file
formats are not interchangeable. To learn how to read data from an Analyze
7.5 data set, see “Using the Mayo Analyze 7.5 Format” on page 3-16.

The following example calls the interfileinfo function to read the metadata
from the Interfile header file. The example then reads the image data from
the corresponding image file in the Interfile data set. The file used in the
example can be downloaded from http://www.keston.com/Phantoms/.

info = interfileinfo('dyna');
X = interfileread('dyna');

3-17

http://www.radiology.uiowa.edu/downloads/
http://www.keston.com/Phantoms/

3 Reading and Writing Image Data

3-18

4

Displaying and Exploring
Images

This chapter describes the image display and exploration tools provided by
Image Processing Toolbox.

Overview (p. 4-3) Comparison of toolbox display
functions

Using imshow to Display Images
(p. 4-5)

How to use the imshow display
function

Using the Image Tool to Explore
Images (p. 4-9)

How to use the Image Tool integrated
display and exploration environment

Using Image Tool Navigation Aids
(p. 4-18)

Image Tool navigation aids including
the Overview tool, panning, and
zooming

Getting Information about the Pixels
in an Image (p. 4-24)

Image Tool pixel information tools,
including the Pixel Region tool and
the Pixel Information tool

Measuring Features in an Image
(p. 4-31)

Image Tool includes the Distance
tool to measure regions in an image

Getting Information About an Image
(p. 4-34)

Image Tool’s Image Information tool

Adjusting the Contrast and
Brightness of an Image (p. 4-36)

Image Tool’s Adjust Contrast tool

Viewing Multiple Images (p. 4-47) Using imshow and imtool to view
multiple images

4 Displaying and Exploring Images

Displaying Different Image Types
(p. 4-51)

Using imshow and imtool with each
image type

Special Display Techniques (p. 4-58) Using the colorbar, montage, and
warp functions

Printing Images (p. 4-63) Print images from imshow and the
Image Tool

Setting Toolbox Display Preferences
(p. 4-65)

Setting toolbox preferences

4-2

Overview

Overview
Image Processing Toolbox includes two display functions, imshow and imtool.
Both functions work within the Handle Graphics architecture: they create
an image object and display it in an axes object contained in a figure object.
The toolbox functions automatically set the values of certain figure, axes, and
image object properties to control how the image data is displayed — see
“Understanding Handle Graphics Object Property Settings” on page 4-4.

imshow is the toolbox’s fundamental image display function. Use imshow when
you want to display any of the different image types supported by the toolbox,
such as grayscale (intensity), truecolor (RGB), binary, and indexed. For more
information, see “Using imshow to Display Images” on page 4-5. The imshow
function is also a key building block for image applications you might want to
create using the toolbox modular tools. For more information, see Chapter 5,
“Building GUIs with Modular Tools”.

The other toolbox display function, imtool, launches the Image Tool, which
presents an integrated environment for displaying images and performing
some common image processing tasks. The Image Tool provides all the image
display capabilities of imshow but also provides access to several other tools
for navigating and exploring images, such as scroll bars, the Pixel Region
tool, the Image Information tool, and the Adjust Contrast tool. For more
information, see “Using the Image Tool to Explore Images” on page 4-9.

In general, using the toolbox functions to display images is preferable to
using the MATLAB image display functions image and imagesc. The toolbox
functions are easier to use and are optimized for displaying images.

4-3

4 Displaying and Exploring Images

Understanding Handle Graphics Object Property
Settings
When you display an image, imshow and imtool set the Handle Graphics
properties that control how the image is displayed. The following table lists
the relevant properties and their settings for each image type. The table uses
standard toolbox terminology to refer to the various image types: X represents
an indexed image, I represents a grayscale image, BW represents a binary
image, and RGB represents a truecolor image.

Note Both imshow and imtool can perform automatic scaling of image
data. When called with the syntax imshow(I,'DisplayRange',[]), and
similarly for imtool, the functions set the axes CLim property to [min(I(:))
max(I(:))]. CDataMapping is always scaled for grayscale images, so that
the value min(I(:)) is displayed using the first colormap color, and the value
max(I(:)) is displayed using the last colormap color.

Handle
Graphics
Property

Indexed
Images

Grayscale
Images Binary Images

Truecolor
Images

CData (Image) Set to the data in
X

Set to the data in
I

Set to data in BW Set to data in RGB

CDataMapping
(Image)

Set to 'direct' Set to 'scaled' Set to 'direct' Ignored when
CData is 3-D

CLim (Axes) Does not apply double: [0 1]
uint8: [0 255]
uint16: [0
65535]

Set to [0 1] Ignored when
CData is 3-D

Colormap
(Figure)

Set to data in map Set to grayscale
colormap

Set to a grayscale
colormap whose
values range
from black to
white

Ignored when
CData is 3-D

4-4

Using imshow to Display Images

Using imshow to Display Images
You can use the imshow function to display an image that has already been
imported into the MATLAB workspace or to display an image stored in a
graphics file. For example, this code reads an image into the MATLAB
workspace and then displays it in a MATLAB figure window.

moon = imread('moon.tif');
imshow(moon);

The imshow function displays the image in a MATLAB figure window, as
shown in the following figure.

Image Displayed in a Figure Window by imshow

4-5

4 Displaying and Exploring Images

The imshow filename syntax

imshow('moon.tif');

can be useful for scanning through images. Note, however, that when you
use this syntax, the image data is not stored in the MATLAB workspace. If
you want to bring the image into the workspace, you must use the getimage
function, which retrieves the image data from the current Handle Graphics
image object. For example,

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.

For more information about using imshow, see these additional topics.

• “Specifying the Initial Image Magnification” on page 4-6

• “Controlling the Appearance of the Figure” on page 4-7

For more information about using imshow to display the various image types
supported by the toolbox, see “Displaying Different Image Types” on page 4-51.

Specifying the Initial Image Magnification
By default, imshow attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel). However, if an image
is too large to fit in a figure window on the screen at 100% magnification,
imshow scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to
imshow, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the
image does not fit on the screen at the specified magnification, imshow scales
the image to fit and issues a warning message. You can also specify the text

4-6

Using imshow to Display Images

string 'fit' as the initial magnification value. In this case, imshow scales the
image to fit the current size of the figure window.

You can also change the default initial magnification behavior of imshow
by setting the ImshowInitialMagnification toolbox preference. To make
this preference persist between sessions, include the command to set the
preference in your startup.m file. To learn more about toolbox preferences,
see “Setting the Values of Toolbox Preferences” on page 4-66.

When imshow scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix.

Controlling the Appearance of the Figure
By default, when imshow displays an image in a figure, it surrounds the image
with a gray border. You can change this default and suppress the border using
the 'border' parameter with imshow, as shown in the following example.

imshow('moon.tif','Border','tight')

4-7

4 Displaying and Exploring Images

The following figure shows the same image displayed with and without a
border.

Image Displayed With and Without a Border

The 'border' parameters affects only the image being displayed in the call to
imshow. If you want all the images that you display using imshow to appear
without the gray border, set the Image Processing Toolbox 'ImshowBorder'
preference to 'tight'. When you set a preference, it affects only the current
MATLAB session. You can also use preferences to include a visible axes in
the figure. For more information about preferences, see “Setting Toolbox
Display Preferences” on page 4-65.

4-8

Using the Image Tool to Explore Images

Using the Image Tool to Explore Images
The Image Tool is an image display tool that also provides access to several
other related tools, such as the Pixel Region tool, the Image Information tool,
and the Adjust Contrast tool. The Image Tool also provides navigation aids
that can help explore large images, such as scroll bars, the Overview tool, pan
tool, and zoom buttons. The Image Tool presents an integrated environment
for displaying images and performing common image processing tasks.

For example, this code reads the image from the file moon.tif and then
displays it in the Image Tool.

imtool('moon.tif');

The following figure shows the image displayed in the Image Tool, with all of
the related tools active. For more information about using the Image Tool,
see the topics in the following list.

• “Opening the Image Tool” on page 4-11

• “Specifying the Initial Image Magnification” on page 4-12

• “Specifying the Colormap” on page 4-13

• “Importing Image Data from the Workspace” on page 4-15

• “Exporting Image Data to the Workspace” on page 4-16

• “Closing the Image Tool” on page 4-17

• “Printing the Image in the Image Tool” on page 4-17

For information about using the related tools that the Image Tool makes
available, see the following additional topics:

• “Using Image Tool Navigation Aids” on page 4-18

• “Getting Information about the Pixels in an Image” on page 4-24.

• “Measuring Features in an Image” on page 4-31

• “Getting Information About an Image” on page 4-34

• “Adjusting the Contrast and Brightness of an Image” on page 4-36

• “Displaying Different Image Types” on page 4-51

4-9

4 Displaying and Exploring Images

Image Tool and Related Tools

4-10

Using the Image Tool to Explore Images

Opening the Image Tool
To start the Image Tool, use the imtool function. You can also start another
Image Tool from within an existing Image Tool by using the New option
from the File menu.

The imtool function supports many syntax options. For example, when called
without any arguments, it opens an empty Image Tool.

imtool

To bring image data into this empty Image Tool, you can use either the Open
or Import from Workspace options from the File menu — see “Importing
Image Data from the Workspace” on page 4-15.

You can also specify the name of the MATLAB workspace variable that
contains image data when you call imtool, as follows:

moon = imread('moon.tif');
imtool(moon)

Alternatively, you can specify the name of the graphics file containing the
image. This syntax can be useful for scanning through graphics files.

imtool('moon.tif');

Note When you use this syntax, the image data is not stored in a MATLAB
workspace variable. To bring the image displayed in the Image Tool into
the workspace, you must use the getimage function or the Export from
Workspace option from the Image Tool File menu — see “Exporting Image
Data to the Workspace” on page 4-16.

For more information about these syntax, see the imtool function reference
page.

4-11

4 Displaying and Exploring Images

Specifying the Initial Image Magnification
Like imshow, the imtool function attempts to display an image in its entirety
at 100% magnification (one screen pixel for each image pixel). Unlike imshow,
imtool always honors the specified numeric magnification, showing only a
portion of the image if it is too big to fit in a figure on the screen and adding
scroll bars to allow navigation to parts of the image that are not currently
visible. If the specified magnification would make the image too large to fit on
the screen, imtool scales the image to fit, without issuing a warning. This
is the default behavior, specified by the imtool 'InitialMagnification'
parameter value 'adaptive'.

To override this default initial magnification behavior for a particular call to
imtool, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value.
In this case, imtool scales the image to fit the default size of a figure window.

You can also change the default initial magnification behavior of imtool
by setting the ImtoolInitialMagnification toolbox preference. The
magnification value you specify affects every call to imtool for the current
MATLAB session. To make this preference persist between sessions, include
the command to set the preference in your startup.m file. To learn more
about toolbox preferences, see “Setting the Values of Toolbox Preferences”
on page 4-66.

When imtool scales an image, it uses interpolation to determine the values
for screen pixels that do not directly correspond to elements in the image
matrix. For more information, see .

4-12

Using the Image Tool to Explore Images

Specifying the Colormap
A colormap is a matrix that can have any number of rows, but must have three
columns. Each row in the colormap is interpreted as a color, with the first
element specifying the intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or a grayscale
image in the Image Tool, select the Choose Colormap option on the Tools
menu. This activates the Choose Colormap tool, shown below. Using this tool
you can select one of the MATLAB colormaps or select a colormap variable
from the MATLAB workspace.

When you select a colormap, the Image Tool executes the colormap function
you specify and updates the image displayed. You can edit the colormap
command in the Evaluate Colormap text box; for example, you can change
the number of entries in the colormap (default is 256). You can enter your own
colormap function in this field. Press Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you
click OK, the Image Tool applies the colormap and closes the Choose Colormap
tool. If you click Cancel, the image reverts to the previous colormap.

4-13

4 Displaying and Exploring Images

Choose Colormap Tool

4-14

Using the Image Tool to Explore Images

Importing Image Data from the Workspace
To import image data from the MATLAB workspace into the Image Tool, use
the Import from Workspace option on the Image Tool File menu. In the
dialog box, shown below, you select the workspace variable that you want to
import into the workspace.

The following figure shows the Import from Workspace dialog box. You can
use the Filter menu to limit the images included in the list to certain image
types, i.e., binary, indexed, intensity (grayscale), or truecolor.

Import from Workspace Dialog Box

4-15

4 Displaying and Exploring Images

Exporting Image Data to the Workspace
To export the image displayed in the Image Tool to the MATLAB workspace,
you can use the Export to Workspace option on the Image Tool File menu.
In the dialog box, shown below, you specify the name you want to assign to the
variable in the workspace. By default, the Image Tool prefills the variable
name field with BW, for binary images, RGB, for truecolor images, and I for
grayscale or indexed images.

If the Image Tool contains an indexed image, this dialog box also contain a
field where you can specify the name of the associated colormap.

Export Image to Workspace Dialog Box

Using the getimage Function to Export Image Data
You can also use the getimage function to bring image data from the Image
Tool into the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current
Handle Graphics image object. Because, by default, the Image Tool does not
make handles to objects visible, you must use the toolbox function imgca to
get a handle to the image axes displayed in the Image Tool. For example,

moon = getimage(imgca);

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.

4-16

Using the Image Tool to Explore Images

Closing the Image Tool
To close the Image Tool window, use the Close button in the window title bar
or select the Close option from the Image Tool File menu. You can also use
the imtool function to return a handle to the Image Tool and use the handle
to close the Image Tool. When you close the Image Tool, any related tools that
are currently open also close.

Because the Image Tool does not make the handles to its figure objects
visible, the Image Tool does not close when you call the MATLAB close all
command. If you want to close multiple Image Tools, use the syntax

imtool close all

or select Close all from the Image Tool File menu.

Printing the Image in the Image Tool
To print the image displayed in the Image Tool, select the Print to Figure
option from the File menu. The Image Tool opens another figure window and
displays the image. Use the Print option on the File menu of this figure
window to print the image. See “Printing Images” on page 4-63 for more
information.

4-17

4 Displaying and Exploring Images

Using Image Tool Navigation Aids
If an image is large or viewed at a large magnification, the Image Tool
displays only a portion of the entire image. When this occurs, the Image Tool
includes scroll bars to allow navigation around the image. In some cases,
scroll bars might not be sufficient. To help navigate large images, the Image
Tool includes the following navigation aids:

• Overview tool — Provides a view of the entire image to help you understand
which portion of the image is currently displayed in the Image Tool. See
“Overview Navigation” on page 4-18 for more information.

• Pan tool — Lets you click and grab the image displayed and move it in the
Image Tool. See “Panning the Image Displayed in the Image Tool” on page
4-21 for more information.

• Zoom tools — Lets you zoom in or out on the image. See “Zooming In and
Out on an Image” on page 4-22 for more information.

• Magnification Box — Lets you specify the exact magnification of the image.
See “Specifying the Magnification of the Image” on page 4-22 for more
information.

Overview Navigation
To get an overview of the image displayed in the Image Tool, use the Overview
tool. The Overview tool displays a view of the entire image, scaled to fit, in a
separate window. Superimposed over this view of the image is a rectangle,
called the detail rectangle. The detail rectangle shows which part of the image
is currently visible in the Image Tool window. You can change the portion of
the image visible in the Image Tool by moving the detail rectangle over the
image in the Overview tool.

The following figure shows the Image Tool with the Overview tool.

4-18

Using Image Tool Navigation Aids

Image Tool with Overview Tool

The following sections provide more information about using the Overview
tool.

• “Starting the Overview Tool” on page 4-19

• “Using the Overview Tool” on page 4-20

• “Specifying the Color of the Detail Rectangle” on page 4-20

• “Getting the Position and Size of the Detail Rectangle” on page 4-20

• “Printing the View of the Image in the Overview Tool” on page 4-21

Starting the Overview Tool
The Overview tool starts automatically when you start the Image Tool. For
example, execute the following command.

imtool('moon.tif')

4-19

4 Displaying and Exploring Images

You can also start the Overview tool by clicking the Overview button in
the Image Tool toolbar or by selecting the Overview option from the Tools
menu in the Image Tool.

Using the Overview Tool
To use the Overview tool to explore an image displayed in the Image Tool,
follow this procedure:

1 Start the Overview tool by clicking the Overview button in the Image
Tool toolbar or by selecting Overview from the Tools menu. The Overview
tool opens in a separate window containing a view of the entire image,
scaled to fit.

The Image Tool opens the Overview tool, by default. If the Overview tool is
already active, clicking the Overview button brings the tool to the front of
the windows open on your screen.

2 Using the mouse, move the cursor into the detail rectangle. The cursor

changes to the fleur shape, .

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image. The Image Tool updates the view of the image to make the
specified region visible.

Specifying the Color of the Detail Rectangle
By default, the color of the detail rectangle in the Overview tool is blue. You
might want to change the color of the rectangle to achieve better contrast
with the predominant color of the underlying image. To do this, right-click
anywhere inside the boundary of the detail rectangle and select a color from
the Set Rectangle Color option on the context menu.

Getting the Position and Size of the Detail Rectangle
To get the current position and size of the detail rectangle, right-click
anywhere inside it and select Copy Position from the context menu. You can
also access this option from the Edit menu of the Overview tool.

This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height]. To paste

4-20

Using Image Tool Navigation Aids

this position vector into the MATLAB workspace or another application,
right-click and select Paste from the context menu.

Printing the View of the Image in the Overview Tool
You can print the view of the image displayed in the Overview tool. Select
the Print to Figure option from the Overview tool File menu. See “Printing
Images” on page 4-63 for more information.

Panning the Image Displayed in the Image Tool
To change the portion of the image displayed in the Image Tool, you can
use the Pan tool to move the image displayed in the window. This is called
panning the image.

To pan an image displayed in the Image Tool,

1 Click the Pan tool button in the toolbar or select Pan from the Tools
menu. When the Pan tool is active, a checkmark appears next to the Pan
selection in the menu.

2 Move the cursor over the image in the Image Tool, using the mouse. The
cursor changes to an open-hand shape .

3 Press and hold the mouse button and drag the image in the Image Tool.
When you drag the image, the cursor changes to the closed-hand shape .

4 To turn off panning, click the Pan tool button again or click the Pan option
in the Tools menu.

Note As you pan the image in the Image Tool, the Overview tool updates the
position of the detail rectangle — see “Overview Navigation” on page 4-18.

4-21

4 Displaying and Exploring Images

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom
in or out on an image by changing the magnification — see “Specifying the
Magnification of the Image” on page 4-22.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button in the Image Tool toolbar
or select the Zoom In or Zoom Out option in the Tools menu. When the
Zoom tool is active, a checkmark appears next to the appropriate Zoom
selection in the menu.

2 Move the cursor over the image you want to zoom in or out on, using the
mouse. The cursor changes to the appropriate magnifying glass icon.
With each click, the Image Tool changes the magnification of the image,
centering the new view of the image on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed
in the magnification edit box changes and the Overview window updates
the position of the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it or
click the Zoom option in the Tools menu.

Specifying the Magnification of the Image
To enlarge an image to get a closer look or to shrink an image to see the
whole image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink
an image. See “Zooming In and Out on an Image” on page 4-22 for more
information.)

4-22

Using Image Tool Navigation Aids

Image Tool Magnification Edit Box and Menu

To change the magnification of an image,

1 Move the cursor into the magnification edit box. The cursor changes to
the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The
Image Tool changes the magnification of the image and displays the new
view in the window.

You can also specify a magnification by clicking the menu associated with
the magnification edit box and selecting from a list of preset magnifications.
If you choose the Fit to Window option, the Image Tool scales the image
so that the entire image is visible.

4-23

4 Displaying and Exploring Images

Getting Information about the Pixels in an Image
Often, you need to get information about the pixels in an image, such as
their location and value. The Image Tool provides several ways to get this
information, including:

• Pixel Information tool — Displays the location and value of the pixel under
the cursor in the Image Tool window. See “Determining the Value of
Individual Pixels” on page 4-24 for more information.

• Display Range tool — Displays the display range of the image in the Image
Tool window. See “Getting the Display Range of an Image” on page 4-26
for more information.

• Pixel Region tool — Displays an extreme close-up view of the pixels in
a specific region of an image. See “Viewing Pixel Values with the Pixel
Region Tool” on page 4-27 for more information.

Determining the Value of Individual Pixels
The Image Tool provides information about the location and value of
individual pixels in an image. This information is displayed in the Pixel
Information tool at the bottom left corner of the Image Tool window. The
pixel value and location information represent the pixel under the current
location of the cursor. The Image Tool updates this information as you move
the cursor over the image.

For example, view an image in the Image Tool.

imtool('moon.tif')

4-24

Getting Information about the Pixels in an Image

The following figure shows the Image Tool with pixel location and value
displayed in the Pixel Information tool. For more information, see “Saving the
Pixel Value and Location Information” on page 4-25.

Pixel Information in Image Tool

Saving the Pixel Value and Location Information
To save the pixel location and value information displayed, right-click a pixel
in the image and choose the Copy pixel info option. The Image Tool copies
the x- and y-coordinates and the pixel value to the clipboard.

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

4-25

4 Displaying and Exploring Images

Getting the Display Range of an Image
The Image Tool provides information about the display range of pixels in a
grayscale image. The display range is the value of the axes CLim property,
which controls the mapping of image CData to the figure colormap. CLim is
a two-element vector [cmin cmax] specifying the CData value to map to the
first color in the colormap (cmin) and the CData value to map to the last color
in the colormap (cmax). Data values in between are linearly scaled.

The Image Tool displays this information in the Display Range tool at the
bottom right corner of the window. The Image Tool does not show the display
range for indexed, truecolor, or binary images.

For example, view an image in the Image Tool.

imtool('moon.tif')

The following figure shows the Image Tool displaying the image with display
range information.

Display Range Information in Image Tool

4-26

Getting Information about the Pixels in an Image

Viewing Pixel Values with the Pixel Region Tool
To view the values of pixels in a specific region of an image displayed in the
Image Tool, use the Pixel Region tool. The Pixel Region tool superimposes a
rectangle, called the pixel region rectangle, over the image displayed in the
Image Tool. This rectangle defines the group of pixels that are displayed, in
extreme close-up view, in the Pixel Region tool window. The following figure
shows the Image Tool with the Pixel Region tool.

Image Tool with Pixel Region Tool and Pixel Region Rectangle

The following sections provide more information about using the Pixel Region
tool.

• “Starting the Pixel Region Tool” on page 4-28

• “Selecting a Region” on page 4-28

4-27

4 Displaying and Exploring Images

• “Customizing the View” on page 4-29

• “Determining the Location of the Pixel Region Rectangle” on page 4-29

• “Printing the View of the Image in the Pixel Region Tool” on page 4-30

Starting the Pixel Region Tool

To start the Pixel Region tool, click the Pixel Region button in the Image
Tool toolbar or by selecting the Pixel Region option from the Tools menu in
the Image Tool.

Selecting a Region
To examine pixels in specific regions of an image, use the Pixel Region
rectangle, as follows:

1 Start the Pixel Region tool by clicking the Pixel Region button in the
Image Tool toolbar or by selecting the Pixel Region option from the Tools

menu. The Image Tool displays the pixel region rectangle in the center
of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part
of the image that is currently displayed. To bring the pixel region rectangle
back to the center of the part of the image that is currently visible, click
the Pixel Region button again. For help finding the Pixel Region tool in
large images, see “Determining the Location of the Pixel Region Rectangle”
on page 4-29.

2 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape, .

3 Click the left mouse button and drag the pixel region rectangle to any part
of the image. As you move the pixel region rectangle over the image, the
Pixel Region tool updates the pixel values displayed. You can also move
the pixel region rectangle by moving the scroll bars in the Pixel Region
tool window.

4-28

Getting Information about the Pixels in an Image

Customizing the View
The pixel region rectangle defines the group of pixels that are displayed in the
Pixel Region tool. To view a larger region, grab any side of the Pixel Region
tool figure window and resize it, or use the zoom tools in the Pixel Region
toolbar to zoom in or out on the image.

The Pixel Region tool displays the pixels at high magnification, overlaying
each pixel with its numeric value. For RGB images, this information includes
three numeric values, one for each band of the image. For indexed images,
this information includes the index value and the associated RGB value.

If you would rather not see the numeric values in the display, go to the Pixel
Region tool Edit menu and clear the Superimpose Pixel Values option.

Pixel Region Tool Edit Menu

Determining the Location of the Pixel Region Rectangle
To determine the current location of the pixel region in the target image, you
can use the pixel information given at the bottom of the tool. This information
includes the x- and y-coordinates of pixels in the target image coordinate
system. When you move the pixel region rectangle over the target image, the
pixel information given at the bottom of the tool is not updated until you move
the cursor back over the Pixel Region tool.

4-29

4 Displaying and Exploring Images

You can also retrieve the current position of the pixel region rectangle by
selecting the Copy Position option from the Pixel Region tool Edit menu.
This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height].

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.

Pixel Region Rectangle Location Information

Printing the View of the Image in the Pixel Region Tool
You can print the view of the image displayed in the Pixel Region tool. Select
the Print to Figure option from the Pixel Region tool File menu. See
“Printing Images” on page 4-63 for more information.

4-30

Measuring Features in an Image

Measuring Features in an Image
This section describes how to use the Distance tool to calculate the Euclidean
distance between two points in an image displayed in the Image Tool. Topics
covered include:

• “Using the Distance Tool” on page 4-31

• “Exporting Endpoint and Distance Data” on page 4-32

• “Customizing the Appearance of the Distance Tool” on page 4-33

Using the Distance Tool
To use the Distance tool, follow this procedure.

1 Display an image in the Image Tool.

imtool('moon.tif')

2 Click the Distance tool button in the Image Tool toolbar or select
Distance Tool from the Tools menu. The Distance tool appears as a
horizontal line displayed over the image, as shown in the following figure.

The Distance tool displays the distance between the two endpoints of the
line in a label superimposed over the line. The tools specifies the distance
in data units determined by the XData and YData properties, which is
pixels, by default.

4-31

4 Displaying and Exploring Images

3 Using the mouse, you can move the Distance tool over the image or, by
grabbing either one of its endpoints, resize the tool.

Exporting Endpoint and Distance Data
To save the endpoint locations and distance information, right-click the
Distance tool and choose the Copy pixel info option from the context menu.

The Distance tool opens the Export to Workspace dialog box. You can use this
dialog box to specify the names of the variables used to store this information.

4-32

Measuring Features in an Image

After you click OK, the Distance tool creates the variables in the workspace,
as in the following example.

whos
Name Size Bytes Class

distance 1x1 8 double array
moon 537x358 192246 uint8 array
point1 1x2 16 double array
point2 1x2 16 double array

Customizing the Appearance of the Distance Tool
Using the Distance tool context menu, you can customize many aspects of the
Distance tool appearance and behavior, including:

• Toggling the distance tool label on and off using the Show Distance Label
option.

• Changing the color used to display the Distance tool line using the Set
line color option.

• Constraining movement of the tool to either horizontal or vertical using
the Constrain drag option.

• Deleting the distance tool object using the Delete option.

Right-click the Distance tool to access this context menu.

4-33

4 Displaying and Exploring Images

Getting Information About an Image
To get information about the image displayed in the Image Tool, use the
Image Information tool. The Image Information tool can provide two types of
information about an image:

• Basic information — Includes width, height, class, and image type. For
grayscale and indexed images, this information also includes the minimum
and maximum intensity values.

• Image metadata — Displays all the metadata from the graphics file that
contains the image. This is the same information returned by the imfinfo
function or the dicominfo function.

Note The Image Information tool can display image metadata only
when you specify the filename containing the image to Image Tool, e.g.,
imtool('moon.tif').

For example, view an image in the Image Tool.

imtool('moon.tif')

Start the Image Information tool by clicking the Image Information button
in the Image Tool toolbar or by selecting the Image Information option from
the Tools menu in the Image Tool.

4-34

Getting Information About an Image

The following figure shows the Image Tool with the Image Information tool. In
the figure, the Image Information tool displays both basic image information
and image metadata because a file name was specified with imtool.

Image Tool with Image Information Tool

4-35

4 Displaying and Exploring Images

Adjusting the Contrast and Brightness of an Image
To adjust the contrast and brightness of the image displayed in the Image
Tool, use the Adjust Contrast tool.

When you start the Adjust Contrast tool, it opens a separate window
containing a histogram of the image displayed in the Image Tool. The
histogram shows the data range of the image and the display range of the
image. The data range is the range of intensity values actually used in the
image. The display range is the black-to-white mapping used to display
the image, which is determined by the image class. The Adjust Contrast
tool works by manipulating the display range; the data range of the image
remains constant.

For example, in the following figure, the histogram for the image shows that
the data range of the image is 74 to 224 and the display range is the default
display range for the uint8 class, 0 to 255. Over this histogram, the Adjust
Contrast tool overlays a red-tinted rectangular box, called a window. By
changing the size of this window, you can modify the display range of the
image and improve its contrast and brightness.

Note The Adjust Contrast tool just affects the display of the image; it does
not change the values of pixels in the image. To change the intensity values
and create a new output image, use imadjust.

For more information about using the Adjust Contrast tool, see these
additional topics:

• “Using the Adjust Contrast Tool” on page 4-38

• “Example: Adjusting Contrast and Brightness” on page 4-40

• “Using the Window/Level Tool” on page 4-43

• “Understanding Contrast Adjustment” on page 4-45

4-36

Adjusting the Contrast and Brightness of an Image

Image Tool with Adjust Contrast Tool

4-37

4 Displaying and Exploring Images

Using the Adjust Contrast Tool
This section describes how to use the Adjust Contrast tool. Topics covered
include:

• “Starting the Adjust Contrast Tool” on page 4-38

• “Changing the Size of the Adjust Contrast Tool Window” on page 4-39

Note This section describes how to use the Adjust Contrast tool in the Image
Tool. You can also use the Adjust Contrast tool independent of the Image Tool
by calling the imcontrast function. See Chapter 5, “Building GUIs with
Modular Tools” for more information.

Starting the Adjust Contrast Tool
To start the Adjust Contrast tool, follow this procedure:

1 View an image in the Image Tool.

imtool('pout.tif')

2 Click the Adjust Contrast button in the Image Tool toolbar, or select
the Adjust Contrast option from the Image Tool Tools menu.

When you start the Adjust Contrast tool, the Image Tool also activates the
Window/Level tool, changing the cursor to the Window/Level cursor . The
Window/Level tool provides another way to adjust contrast and brightness
using the mouse — see “Using the Window/Level Tool” on page 4-43.

Note When you close the Adjust Contrast tool, the Window/Level tool remains
active. To turn off the Window/Level tool, click the Window/Level button or
one of the navigation buttons in the Image Tool toolbar.

4-38

Adjusting the Contrast and Brightness of an Image

Changing the Size of the Adjust Contrast Tool Window
You adjust the contrast and brightness of the displayed image by manipulating
the window over the histogram in the Adjust Contrast tool. The tool provides
several ways that you can modify the size and position of the window
interactively:

• By grabbing one of the red handles on the right and left edges of the
window and dragging it. You can also change the position of the window by
grabbing the center line and dragging the window to the right or left.

• By specifying the size and position of the window in the Minimum and
Maximum fields. You can also define these values by clicking the dropper
button associated with these fields. When you do this, the cursor becomes
an eye dropper shape. Position this cursor over the pixel in the image that
you want to be the minimum (or maximum) value and click the mouse
button.

• By specifying the size and position of the window in the Width and Center
fields.

• By automatically scaling the display range to match the image data range.
For example, with the pout.tif image, if you select the Match data range
option, the window changes from the default display range (0 to 255) to the
data range of the image (74 to 224).

• By automatically trimming outliers at the top and bottom of the image data
range. If you select the Eliminate outliers option, the Adjust Contrast
tool removes the top 1% and the bottom 1%, but you can specify other
percentages. When you specify a percentage, the Adjust Contrast tool
applies half the percentage to the top and half to the bottom. (You can
perform this same operation from the command line using the stretchlim
function.)

4-39

4 Displaying and Exploring Images

The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.

Example: Adjusting Contrast and Brightness
This example shows how to use the Adjust Contrast tool to change how pixel
values display as black and white.

1 View an image in the Image Tool. This example opens the image pout.tif,
which is a low-contrast image.

imtool('pout.tif')

2 Start the Adjust Contrast tool by clicking the Adjust Contrast button
in the Image Tool toolbar, or by selecting Adjust Contrast from the Tools
menu in the Image Tool.

4-40

Adjusting the Contrast and Brightness of an Image

The following figure shows the image displayed in the Image Tool with the
Adjust Contrast tool open in a separate window. In the figure, note how the
image histogram shows that pixel values are clustered in the middle of the
display range. The display range, shown in the lower right corner of the
Image Tool, is the default display range for uint8.

Image with Default Pixel Value to Display Intensity Mapping

4-41

4 Displaying and Exploring Images

3 Adjust the contrast and brightness by changing the size and position of
the window overlaid on the image histogram, using any of the methods
described in “Changing the Size of the Adjust Contrast Tool Window” on
page 4-39.

For example, you can grab either of the handles and resize the window,
and grab the center line and reposition the window. Alternatively, you
can adjust the contrast automatically by trimming outliers at the top and
bottom of the image data range. Select the Eliminate outliers option and
click the Apply button. By default, the Adjust Contrast tool removes the
top 1% and the bottom 1%, but you can specify other percentages. (You can
perform this same operation from the command line using the stretchlim
function.)

The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.

Adjust Contrast Tool with Window Resized

4-42

Adjusting the Contrast and Brightness of an Image

The following figure shows the pout.tif image after contrast adjustment.
In this version, note how the adjusted contrast reveals much more detail in
the image background. The Image Tool updates the display range values
displayed in the lower right corner of the Image Tool as you change the size of
the window.

Contrast Adjusted Image

Using the Window/Level Tool
When you start the Adjust Contrast tool you also activate Window/Level
mode; the cursor changes shape to the Window/Level cursor . You can also
start the Window/Level tool by clicking the Window/Level button in the
Image Tool toolbar. (The name comes from medical applications.)

Using the Window/Level tool, you can change the contrast and brightness of
an image by simply dragging the mouse over the image. Moving the mouse
horizontally affects contrast; moving the mouse vertically affects brightness.

The following table summarizes how these mouse motions affect the size and
position of the window in the Adjust Contrast tool.

4-43

4 Displaying and Exploring Images

Mouse Motion Effect

Horizontally to the left Shrinks the window from both sides.

Horizontally to the
right

Expands the window from both sides.

Vertically up Moves the window to the right over the
histogram, increasing brightness.

Vertically down Moves the window to the left over
the image histogram, decreasing
brightness.

To stop the Window/Level tool, click on the Window/Level button in the Image
Tool toolbar, or click any of the navigation buttons in the toolbar.

Example: Adjusting Contrast with the Window/Level Tool
The following example shows how to use the Window/Level tool to improve
the contrast of an image.

1 Read an image from a sample DICOM file included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Tool. Because the image data is
signed 16-bit data, this example uses the autoscaling syntax.

imtool(I,'DisplayRange',[])

4-44

Adjusting the Contrast and Brightness of an Image

3 Click the Window/Level button to start the tool, or select
Window/Level from the Tools menu in the Image Tool. The Window/Level
tool also starts when you start the Adjust Contrast tool.

4 Move the cursor over the image. The cursor changes to the Window/Level
cursor .

5 Press and hold the left (or right) mouse button and move the cursor
horizontally to the left or right to adjust the contrast, or vertically up or
down to change the brightness.

Understanding Contrast Adjustment
An image lacks contrast when there are no sharp differences between black
and white. Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool
performs contrast stretching. In this process, pixel values below a specified
value are displayed as black, pixel values above a specified value are displayed
as white, and pixel values in between these two values are displayed as shades
of gray. The result is a linear mapping of a subset of pixel values to the entire
range of grays, from black to white, producing an image of higher contrast.

4-45

4 Displaying and Exploring Images

The following figure shows this mapping. Note that the lower limit and
upper limit mark the boundaries of the window, displayed graphically as the
red-tinted window in the Adjust Contrast tool.

Relationship of Pixel Values to Display Range

The Adjust Contrast tool accomplishes this contrast stretching by modifying
the CLim property of the axes object that contains the image. The CLim
property controls the mapping of image pixel values to display intensities.

By default, the Image Tool sets the CLim property to the default display range
according to the data type. For example, the display range of an image of class
uint8 is from 0 to 255. When you use the Adjust Contrast tool, you change
the contrast in the image by changing the display range which affects the
mapping between image pixel values and the black-to-white range. You create
a window over the range that defines which pixels in the image map to the
black in the display range by shrinking the range from the bottom up.

4-46

Viewing Multiple Images

Viewing Multiple Images
If you specify a file that contains multiple images, imshow and imtool only
display the first image in the file. To view all the images in the file, import the
images into the MATLAB workspace by calling imread. See “Reading Image
Data” on page 3-3 for more information.

Some applications create collections of images related by time or view, such as
magnetic resonance imaging (MRI) slices or frames of data acquired from a
video stream. Image Processing Toolbox supports these collections of images
as four-dimensional arrays, where each separate image is called a frame and
the frames are concatenated along the fourth dimension. All the frames in a
multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to
display them using imshow:

• “Displaying Each Image in a Separate Figure” on page 4-47

• “Displaying Multiple Images in the Same Figure” on page 4-48

To view all the frames in a multiframe image at once, you can also use the
montage function. See “Displaying Multiple Image Frames at Once” on page
4-60 for more information.

Displaying Each Image in a Separate Figure
The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously.

The Image Tool can only display one image frame at a time. Each time you
call imtool, it opens a new figure window. Use standard MATLAB indexing
syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

In contrast, imshow always displays an image in the current figure. If you
display two images in succession, the second image replaces the first image.
To view multiple figures with imshow, use the figure command to explicitly

4-47

4 Displaying and Exploring Images

create a new empty figure before calling imshow for the next image. For
example, to view the first three frames in an array of grayscale images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

The Image Tool can only display one image frame at a time. Use standard
MATLAB indexing syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

Displaying Multiple Images in the Same Figure
You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window.

Note imtool does not support this capability.

Dividing a Figure Window into Multiple Display Regions
subplot divides a figure into multiple display regions. The syntax of subplot
is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

Note When you use subplot to display multiple color images in one figure
window, the images must share the colormap of the last image displayed. In
some cases, as illustrated by the following example, the display results can be
unacceptable. As an alternative, you can use the subimage function, described
in “Using the subimage Function to Display Multiple Images” on page 4-50, or
you can map all images to the same colormap as you load them.

4-48

Viewing Multiple Images

For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), imshow(X1,map1)
subplot(1,2,2), imshow(X2,map2)

In the figure, note how the first image displayed, X1, appears dark after the
second image is displayed.

Two Images in Same Figure Using the Same Colormap

4-49

4 Displaying and Exploring Images

Using the subimage Function to Display Multiple Images
subimage converts images to truecolor before displaying them and therefore
circumvents the colormap sharing problem. This example uses subimage to
display the forest and the trees images with better results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

Two Images in Same Figure Using Separate Colormaps

4-50

Displaying Different Image Types

Displaying Different Image Types
This section describes how to use imshow and imtool with the different types
of images supported by Image Processing Toolbox. Topics include:

• “Displaying Indexed Images” on page 4-51

• “Displaying Grayscale Images” on page 4-52

• “Displaying Binary Images” on page 4-54

• “Displaying Truecolor Images” on page 4-56

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-7.

Displaying Indexed Images
To display an indexed image, using either imshow or imtool, specify both
the image matrix and the colormap. This documentation uses the variable
name X to represent an indexed image in the workspace, and map to represent
the colormap.

imshow(X,map)

or

imtool(X,map)

For each pixel in X, these functions display the color stored in the
corresponding row of map. If the image matrix data is of class double, the
value 1 points to the first row in the colormap, the value 2 points to the second
row, and so on. However, if the image matrix data is of class uint8 or uint16,
the value 0 (zero) points to the first row in the colormap, the value 1 points to
the second row, and so on. This offset is handled automatically by the imtool
and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over
the limits of the colormap’s capacity to the last color in the colormap. For
example, if an image of class uint8 contains 256 colors, and you display it

4-51

4 Displaying and Exploring Images

with a colormap that contains only 16 colors, all pixels with a value of 15 or
higher are displayed with the last color in the colormap.

Displaying Grayscale Images
To display a grayscale image, using either imshow or imtool, specify the
image matrix as an argument. This documentation uses the variable name I
to represent a grayscale image in the workspace.

imshow(I)

or

imtool(I)

Both functions display the image by scaling the intensity values to serve
as indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0
is displayed as white, and pixel values in between are displayed as shades
of gray. If I is uint8, then a pixel value of 255 is displayed as white. If I is
uint16, then a pixel value of 65535 is displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3
RGB colormap, but you normally do not specify a colormap for a grayscale
image. MATLAB displays grayscale images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 14-2 for a detailed
explanation.)

Displaying Grayscale Images That Have Unconventional
Ranges
In some cases, the image data you want to display as a grayscale image
might have a display range that is outside the conventional toolbox range
(i.e., [0,1] for single or double arrays, [0,255] for uint8 arrays, [0,65535] for
uint16 arrays, or [-32767,32768] for int16 arrays). For example, if you filter
a grayscale image, some of the output data might fall outside the range of
the original data.

4-52

Displaying Different Image Types

To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imtool functions.

imshow(I,'DisplayRange',[low high])

or

imtool(I,'DisplayRange',[low high])

If you use an empty matrix ([]) for the display range, these functions scale
the data automatically, setting low and high to the minimum and maximum
values in the array.

The next example filters a grayscale image, creating unconventional range
data. The example calls imtool to display the image, using the automatic
scaling option. If you execute this example, note the display range specified in
the lower right corner of the Image Tool window.

I = imread('testpat1.png');
J = filter2([1 2;-1 -2],I);
imtool(J,'DisplayRange',[]);

4-53

4 Displaying and Exploring Images

Displaying Binary Images
In MATLAB, a binary image is of class logical. Binary images contain only
0’s and 1’s. Pixels with the value 0 are displayed as black; pixels with the
value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class
logical. Grayscale images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image. This documentation uses
the variable name BW to represent a binary image in the workspace

BW = imread('circles.png');
imshow(BW)

or

imtool(BW)

Changing the Display Colors of a Binary Image
You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:

4-54

Displaying Different Image Types

imshow(~BW)

or

imtool(~BW)

You can also display a binary image using the indexed image colormap
syntax. For example, the following command specifies a two-row colormap
that displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

or

imtool(BW,[1 0 0; 0 0 1])

4-55

4 Displaying and Exploring Images

Displaying Truecolor Images
Truecolor images, also called RGB images, represent color values directly,
rather than through a colormap. A truecolor image is an m-by-n-by-3 array.
For each pixel (r,c) in the image, the color is represented by the triplet
(r,c,1:3).

To display a truecolor image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a truecolor image into
the MATLAB workspace and then displays the image. This documentation
uses the variable name RGB to represent a truecolor image in the workspace

RGB = imread(`peppers.png');
imshow(RGB)

or

imtool(RGB)

4-56

Displaying Different Image Types

Systems that use 24 bits per screen pixel can display truecolor images
directly, because they allocate 8 bits (256 levels) each to the red, green, and
blue color planes. On systems with fewer colors, imshow displays the image
using a combination of color approximation and dithering. See “Working with
Different Screen Bit Depths” on page 14-2 for more information.

Note If you display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 4-51.

4-57

4 Displaying and Exploring Images

Special Display Techniques
In addition to imshow and imtool, the toolbox includes functions that perform
specialized display operations, or exercise more direct control over the display
format. These functions, together with the MATLAB graphics functions,
provide a range of image display options.

This section includes the following topics:

• “Adding a Colorbar” on page 4-58

• “Displaying Multiple Image Frames at Once” on page 4-60

• “Converting a Multiframe Image to a Movie” on page 4-61

• “Texture Mapping” on page 4-62

Adding a Colorbar
To display an image with a colorbar that indicates the range of intensity
values, first use the imshow function to display the image in a MATLAB figure
window and then call the colorbar function to add the colorbar to the image.

When you add a colorbar to an axes object that contains an image object,
the colorbar indicates the data values that the different colors in the image
correspond to.

If you want to add a colorbar to an image displayed in the Image Tool, select
the Print to Figure option from the Image Tool File menu. The Image
Tool displays the image in a separate figure window to which you can add a
colorbar.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional
range data as an image, as described under “Displaying Grayscale Images
That Have Unconventional Ranges” on page 4-52.

4-58

Special Display Techniques

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');
I = rgb2gray(RGB);
h = [1 2 1; 0 0 0; -1 -2 -1];
I2 = filter2(h,I);
imshow(I2,'DisplayRange',[]), colorbar

4-59

4 Displaying and Exploring Images

Displaying Multiple Image Frames at Once
To view multiple frames in a multiframe array at one time, use the montage
function. montage displays all the image frames, arranging them into a
rectangular grid. The montage of images is a single image object. The image
frames can be grayscale, indexed, or truecolor images. If you specify indexed
images, they all must use the same colormap.

This example creates an array of truecolor images and uses montage to display
them all at once. Note how montage displays the images in a 2-by-2 grid. The
first image frame is displayed in the first position of the first row, the next
frame in the second position of the first row, and so on.

onion = imread('onion.png');
onionArray = repmat(onion, [1 1 1 4]);
montage(onionArray);

4-60

Special Display Techniques

montage supports several optional parameters that you can use to customize
the display. For example, using the 'size' parameter, you can specify the
number of rows and columns montage uses to display the images. To display
the onion images in one horizontal row, specify the 'size' parameter with the
value [1 NaN]. When you specify NaN for a dimension, montage calculates the
number of images to display along that dimension. Using montage parameters
you can also specify which images in the image array you want to display, and
adjust the contrast of the images displayed. See montage for more information.

Converting a Multiframe Image to a Movie
To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to
use for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of
it. It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27));
for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

mov = immovie(mri,map);
movie(mov);

Note To view a MATLAB movie, you must have MATLAB installed. To
make a movie that can be run outside MATLAB, use the MATLAB avifile
and addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don’t require
a multiframe image.

4-61

4 Displaying and Exploring Images

Texture Mapping
When you use imshow or imtool to view an image, MATLAB displays
the image in two dimensions. However, it is also possible to map an
image onto a parametric surface, such as a sphere, or below a surface plot.
The warp function creates these displays by texture mapping the image.
Texture mapping is a process that maps an image onto a surface grid using
interpolation.

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

An Image Texture-Mapped onto a Cylinder

The image might not map onto the surface in the way that you expect. One
way to modify the way the texture map appears is to change the settings of
the Xdir, Ydir, and Zdir properties. For more information, see Changing Axis
Direction in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for
the warp function.

4-62

Printing Images

Printing Images
If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing Image Data” on page 3-5 for details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. If you are using the Image Tool, you must use the Print to
Figure option on the Image Tool File menu. When you choose this option, the
Image Tool opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window.
You can also use the Print to Figure option to print the image displayed in
the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the
figure window to print the image. When you print from the figure window,
the output includes nonimage elements such as labels, titles, and other
annotations.

Printing and Handle Graphics Object Properties
The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be
helpful when you print images:

• Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

• To ensure that printed images have the proper size and aspect ratio,
set the figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed
figure are determined by the figure’s dimensions on the screen. By default,
the value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

4-63

4 Displaying and Exploring Images

For detailed information about printing with File/Print or the print
command (and for information about Handle Graphics), see “Printing and
Exporting” in the MATLAB Graphics documentation. For a complete list
of options for the print command, enter help print at the MATLAB
command-line prompt or see the print command reference page in the
MATLAB documentation.

4-64

Setting Toolbox Display Preferences

Setting Toolbox Display Preferences
You can use Image Processing Toolbox preferences to control certain
characteristics of how imshow and imtool display images on your screen. For
example, using toolbox preferences, you can specify the initial magnification
used by imtool and imshow. This section covers these topics:

• “Retrieving the Values of Toolbox Preferences” on page 4-65

• “Setting the Values of Toolbox Preferences” on page 4-66

For a complete list of toolbox preferences, see the iptsetpref reference page.

Retrieving the Values of Toolbox Preferences
To determine the current value of a preference, use the iptgetpref
function. This example uses iptgetpref to determine the value of the
ImtoolInitialMagnification preference.

iptgetpref('ImtoolInitialMagnification')

ans =

100

Preference names are case insensitive and can be abbreviated. For more
information, see the iptgetpref reference page.

4-65

4 Displaying and Exploring Images

Setting the Values of Toolbox Preferences
To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session.
To preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.

4-66

5

Building GUIs with
Modular Tools

This chapter describes how to use the toolbox modular tools to create custom
image processing applications.

Overview (p. 5-2) Lists the modular interactive tools

Using Modular Tools (p. 5-6) Describes how to use the modular
tools to create GUIs

Creating Your Own Modular Tools
(p. 5-31)

Describes the utility function the
toolbox provides to help you create
your own modular tools

5 Building GUIs with Modular Tools

Overview
The toolbox includes several new modular interactive tools that you can
activate from the command line and use with images displayed in a MATLAB
figure window, called the target image in this documentation. The tools are
modular because they can be used independently or in combination to create
custom graphical user interfaces (GUIs) for image processing applications.
The Image Tool uses these modular tools — see “Using the Image Tool to
Explore Images” on page 4-9

The following table lists the modular tools in alphabetical order. The table
includes an illustration of each tool and the function you use to create it. For
more information about how the tools operate, see “Using the Image Tool to
Explore Images” on page 4-9. For more information about using tools to create
GUIs, see “Using Modular Tools” on page 5-6.

Modular Tool Example Description

Adjust Contrast
tool

Displays a histogram of the target image
and enables interactive adjustment of
contrast and brightness by manipulation
of the display range.

Use the imcontrast function to create
the tool in a separate figure window and
associate it with an image.

Display Range
tool

Displays a text string identifying the
display range values of the associated
image.

Use the imdisplayrange function to
create the tool, associate it with an image,
and embed it in a figure or uipanel.

5-2

Overview

Modular Tool Example Description

Distance tool Displays a draggable, resizable line on
an image. Superimposed on the line is
the distance between the two endpoints
of the line. The distance is measured in
units specified by the XData and YData
properties, which is pixels by default.

Use the imdistline function to create the
tool and associate it with an image.

Image
Information tool

Displays basic attributes about the
target image. If the image displayed
was specified as a graphics file, the tool
displays any metadata that the image file
might contain.

Use the imageinfo function to create
the tool in a separate figure window and
associate it with an image.

Magnification
box

Creates a text edit box containing the
current magnification of the target image.
Users can change the magnification of the
image by entering a new magnification
value.

Use immagbox to create the tool, associate
it with an image, and embed it in a figure
or uipanel.

Note The target image must be contained
in a scroll panel.

5-3

5 Building GUIs with Modular Tools

Modular Tool Example Description

Overview tool Displays the target image in its entirety
with the portion currently visible in
the scroll panel outlined by a rectangle
superimposed on the image. Moving the
rectangle changes the portion of the target
image that is currently visible in the scroll
panel.

Use imoverview to create the tool in a
separate figure window and associate it
with an image.

Use imoverviewpanel to create the tool
in a uipanel that can be embedded within
another figure or uipanel.

Note The target image must be contained
in a scroll panel.

Pixel
Information tool

Displays information about the pixel the
mouse is over in the target image.

Use impixelinfo to create the tool,
associate it with an image, and display it
in a figure or uipanel.

If you want to display only the pixel
values, without the Pixel info label, use
impixelinfoval.

5-4

Overview

Modular Tool Example Description

Pixel Region tool Display pixel values for a specified region
in the target image.

Use impixelregion to create the tool in a
separate figure window and associate it
with an image.

Use impixelregionpanel to create the
tool as a uipanel that can be embedded
within another figure or uipanel.

Scroll Panel tool Display target image in a scrollable panel.

Use imscrollpanel to add a scroll panel
to an image displayed in a figure window.

5-5

5 Building GUIs with Modular Tools

Using Modular Tools
To use the modular tools to create custom graphical user interfaces (GUIs) for
image processing applications, follow this general procedure:

1 Display the target image in a figure window.

Image processing applications typically use the imshow function to display
the target image, i.e., the image being processed. See “Displaying the
Target Image” on page 5-7 for more information.

2 Create the modular tool, specifying the target image.

When you create a tool, you must associate it with a target image. Most
of the tools associate themselves with the image in the current axes, by
default. But you can specify the handle to a specific image object, or a
handle to a figure, axes, or uipanel object that contains an image. See
“Specifying the Target Image” on page 5-8 for more information.

Depending on how you designed your GUI, you might also want to specify
the parent object of the modular tool itself. This is optional; by default, the
tools either use the same parent as the target image or open in a separate
figure window. See “Specifying the Parent of a Modular Tool” on page 5-12
for more information.

In addition, when you create custom GUIs, you might need to specify the
position of the graphics objects in the GUI, including the modular tools. See
“Positioning the Modular Tools in a GUI” on page 5-15 for more information.

3 Set up interactivity between the tool and the target image.

This is an optional step. The modular tools all set up their interactive
connections to the target image automatically. However, your GUI might
require some additional connectivity. See “Making Connections for
Interactivity” on page 5-25.

5-6

Using Modular Tools

Many of the modular tools support application programmer interfaces
(APIs) that let you assign values to their properties, get the values of
their properties, and control other aspects of their functioning. See “Using
Modular Tool APIs” on page 5-26 for more information.

The following sections provide more detail on these steps. For a complete
illustration, see “Example: Building a Pixel Information GUI” on page 5-17.

Displaying the Target Image
As the foundation for any image processing GUI you create, use imshow to
display the target image (or images) in a MATLAB figure window. (You
can also use the MATLAB image or imagesc functions.) Once the image is
displayed in the figure, you can associate any of the modular tools with the
image displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow('pout.tif');

Because some of the modular tools add themselves to the figure window
containing the image, make sure that the Image Processing Toolbox
ImshowBorder preference is set to 'loose', if you are using the imshow
function. (This is the default setting.) By including a border, you ensure that
the modular tools are not displayed over the image in the figure.

5-7

5 Building GUIs with Modular Tools

Specifying the Target Image
To associate a modular tool with a target image displayed in a MATLAB
figure window, create the tool using the appropriate tool creation function,
specifying a handle to the target image as an argument. The function creates
the tool and automatically sets up the interactivity connection between the
tool and the target image.

This section covers the following topics:

• “Associating Modular Tools with the Default Target Image” on page 5-8

• “Associating Modular Tools with a Particular Image” on page 5-10

• “Getting the Handle of the Target Image” on page 5-11

Associating Modular Tools with the Default Target Image
By default, most of the modular tool creation functions support a no-argument
syntax that uses the image in the current figure as the target image. If
the current figure contains multiple images, the tools associate themselves
with the first image in the figure object’s children (the last image created).
impixelinfo, impixelinfoval and imdisplayrange can work with multiple
images in a figure.

For example, to use the Pixel Information tool with a target image, display
the image in a figure window, using imshow, and then call the impixelinfo
function to create the tool. In this example, the image in the current figure is
the target image.

imshow('pout.tif');
impixelinfo

5-8

Using Modular Tools

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner of the window. The Pixel Information
tool automatically sets up a connection to the target image: when you move
the cursor over the image, the tool displays the x- and y-coordinates and value
of the pixel under the cursor.

Figure Window with Pixel Information Tool

5-9

5 Building GUIs with Modular Tools

Associating Modular Tools with a Particular Image
You can specify the target image of the modular tool when you create it by
passing a handle to the target image as an argument to the modular tool
creation function. You can also specify a handle to a figure, axes, or uipanel
object that contains the target image.

Continuing the example in the previous section, you might want to add the
Display Range tool to the figure window that already contains the Pixel
Information tool. To do this, call the imdisplayrange function, specifying the
handle to the target image. You could also have specified the handle of the
figure, axes, or uipanel object containing the target image.

himage = imshow('pout.tif');
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);

Note that the example retrieves handles to the uipanel objects created by
the impixelinfo and imdisplayrange functions; both tools are uipanel
objects. It can be helpful to get handles to the tools if you want to change
their positioning. See “Positioning the Modular Tools in a GUI” on page 5-15
for more information.

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner and the Display Range tool in the
lower right corner of the window. The Display Range tool automatically sets
up a connection to the target image: when you move the cursor over the image
(or images) in the figure, the Display Range tool shows the display range
of the image.

5-10

Using Modular Tools

Figure Window with Pixel Information and Display Range Tools

Getting the Handle of the Target Image
The examples in the previous section use the optional imshow syntax that
returns a handle to the image displayed, himage. When creating GUIs with
the modular tools, having a handle to the target image can be useful. You can
get the handle when you first display the image, using this optional imshow
syntax. You can also get a handle to the target image using the imhandles
function. The imhandles function returns all the image objects that are
children of a specified figure, axes, uipanel, or image object.

5-11

5 Building GUIs with Modular Tools

For example, imshow returns a handle to the image in this syntax.

hfig = figure;
himage = imshow('moon.tif')
himage =

152.0055

When you call the imhandles function, specifying a handle to the figure (or
axes) containing the image, it returns a handle to the same image.

himage2 = imhandles(hfig)
himage2 =

152.0055

Specifying the Parent of a Modular Tool
When you create a modular tool, in addition to specifying the target image,
you can optionally specify the object that you want to be the parent of the
tool. By specifying the parent, you determine where the tool appears on your
screen. Using this syntax of the modular tool creation functions, you can add
the tool to the figure window containing the target image, open the tool in a
separate figure window, or create some other combination.

Specifying the parent is optional; the modular tools all have a default
behavior. Some of the smaller tools, such as the Pixel Information tool, use
the parent of the target image as their parent, inserting themselves in the
same figure window as the target image. Other modular tools, such as the
Pixel Region tool or the Overview tool, open in separate figures of their own.

Tools With Separate Creation Functions
Two of the tools, the Pixel Region tool and the Overview tool, have a separate
creation function to provide this capability. Their primary creation functions,
imoverview and impixelregion, open the tools in a separate figure window.
To specify a different parent, you must use the imoverviewpanel and
impixelregionpanel functions.

5-12

Using Modular Tools

Note The Overview tool and the Pixel Region tool provide additional
capabilities when created in their own figure windows. For example, both
tools include zoom buttons that are not part of their uipanel versions.

Example: Embedding the Pixel Region Tool in an Existing
Figure
This example shows the default behavior when you create the Pixel Region
tool using the impixelregion function. The tool opens in a separate figure
window, as shown in the following figure.

himage = imshow('pout.tif')
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);
hpixreg = impixelregion(himage);

Target Image with Pixel Region Tool in Separate Window (Default)

5-13

5 Building GUIs with Modular Tools

To embed the Pixel Region tool in the same window as the target image, you
must specify the handle of the target image’s parent figure as the parent of
the Pixel Region tool when you create it.

The following example creates a figure and an axes object, getting handles to
both objects. The example needs these handles to perform some repositioning
of the objects in the figure to ensure their visibility. See “Positioning the
Modular Tools in a GUI” on page 5-15 for more information. The example
then creates the modular tools, specifying the figure containing the target
image as the parent of the Pixel Region tool. Note that the example uses the
impixelregionpanel function to create the tool.

hfig = figure;
hax = axes('units','normalized','position',[0 .5 1 .5]);
himage = imshow('pout.tif')
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);
hpixreg = impixelregionpanel(hfig,himage);
set(hpixreg, 'Units','normalized','Position',[0 .08 1 .4]);

5-14

Using Modular Tools

The following figure shows the Pixel Region embedded in the same figure
as the target image.

Target Image with Embedded Pixel Region Tool

Positioning the Modular Tools in a GUI
When you create the modular tools, they have default positioning behavior.
For example, the impixelinfo function creates the tool as a uipanel object
that is the full width of the figure window, positioned in the lower left corner
of the target image figure window.

Because the modular tools are constructed from standard Handle Graphics
objects, such as uipanel objects, you can use properties of the objects to change
their default positioning or other characteristics.

For example, in “Specifying the Parent of a Modular Tool” on page 5-12, when
the Pixel Region tool was embedded in the same figure window as the target

5-15

5 Building GUIs with Modular Tools

image, the example had to reposition both the image object and the Pixel
Region tool uipanel object to make them both visible in the figure window.

Specifying the Position with a Position Vector
To specify the position of a modular tool or other graphics object, set the
value of the Position property of the object. As the value of this property,
you specify a four-element position vector [left bottom width height],
where left and bottom specify the distance from the lower left corner of
the parent container object, such as a figure. The width and height specify
the dimensions of the object.

When you use a position vector, you can specify the units of the values in
the vector by setting the value of the Units property of the object. To allow
better resizing behavior, use normalized units because they specify the
relative position, not the exact location in pixels. See the reference page for
the Handle Graphics object for more details.

For example, when you first create an embedded Pixel Region tool in a figure,
it appears to take over the entire figure because, by default, the position
vector is set to [0 0 1 1], in normalized units. This position vector tells the
tool to align itself with the bottom left corner of its parent and fill the entire
object. To accommodate the image and the Pixel Information tool and Display
Range tools, change the position of the Pixel Region tool in the lower half of
the figure window, leaving room at the bottom for the Pixel Information and
Display Range tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units','normalized','Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it
fits in the upper half of the figure window, using the following position vector.
To reposition the image, you must specify the Position property of the axes
object that contains it; image objects do not have a Position property.

set(hax,'Units','normalized','Position',[0 0.5 1 0.5])

5-16

Using Modular Tools

Example: Building a Pixel Information GUI
This example shows how to use the tools to create a simple GUI that provides
information and pixels and features in an image. The GUI displays an image
and includes the following modular pixel information tools:

• Display Range tool

• Distance tool

• Pixel Information tool

• Pixel Region tool panel

The example suppresses the figure window toolbar and menu bar because
the standard figure zoom tools are not compatible with the toolbox modular
navigation tools — see “Adding Navigation Aids to a GUI” on page 5-19.

function my_pixinfotool(im)
% Create figure, setting up properties
hfig = figure('Toolbar','none',...

'Menubar', 'none',...
'Name','My Pixel Info Tool',...
'NumberTitle','off',...
'IntegerHandle','off');

% Create axes and reposition the axes
% to accommodate the Pixel Region tool panel
hax = axes('Units','normalized',...

'Position',[0 .5 1 .5]);

% Display image in the axes and get a handle to the image
himage = imshow(im);

% Add Distance tool, specifying axes as parent
hdist = imdistline(hax);

% Add Pixel Information tool, specifying image as parent
hpixinfo = impixelinfo(himage);

% Add Display Range tool, specifying image as parent
hdrange = imdisplayrange(himage);

5-17

5 Building GUIs with Modular Tools

% Add Pixel Region tool panel, specifying figure as parent
% and image as target
hpixreg = impixelregionpanel(hfig,himage);

% Reposition the Pixel Region tool to fit in the figure
% window, leaving room for the Pixel Information and
% Display Range tools.
set(hpixreg, 'units','normalized','position',[0 .08 1 .4])

To use the tool, pass it an image that is already in the MATLAB workspace.

pout = imread('pout.tif');
my_pixinfotool(pout)

The tool opens a figure window, displaying the image in the upper half, with
the Distance tool overlaid on the image, and the Pixel Information tool,
Display Range tool, and the Pixel Region tool panel in the lower half of the
figure.

5-18

Using Modular Tools

Custom Image Display Tool with Pixel Information

Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard
MATLAB figure window navigation tools. When using these tools in a GUI,
suppress the toolbar and menu bar in the figure windows to avoid conflicts
between the tools.

The toolbox includes several modular tools that you can use to add navigation
aids to a GUI application:

• Scroll Panel

• Overview tool

• Magnification box

5-19

5 Building GUIs with Modular Tools

The Scroll Panel is the primary navigation tool; it is a prerequisite for the
other navigation tools. When you display an image in a Scroll Panel, the
tool displays only a portion of the image, if it is too big to fit into the figure
window. When only a portion of the image is visible, the Scroll Panel adds
horizontal and vertical scroll bars, to enable viewing of the parts of the image
that are not currently visible.

Once you create a Scroll Panel, you can optionally add the other modular
navigation tools: the Overview tool and the Magnification tool. The Overview
tool displays a view of the entire image, scaled to fit, with a rectangle
superimposed over it that indicates the part of the image that is currently
visible in the scroll panel. The Magnification Box displays the current
magnification of the image and can be used to change the magnification.

The following sections provide more details.

• “Understanding Scroll Panels” on page 5-20 — Adding a scroll panel to an
image display changes the relationship of the graphics objects used in the
display. This section provides some essential background.

• “Example: Building a Navigation GUI for Large Images” on page 5-23 —
This section shows how to add a scroll panel to an image display.

Understanding Scroll Panels
When you display an image in a scroll panel, it changes the object hierarchy
of your displayed image. This diagram illustrates the typical object hierarchy
for an image displayed in an axes object in a figure object.

hfig = figure;
himage = imshow('concordaerial.png');

5-20

Using Modular Tools

The following figure shows this object hierarchy.

Object Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a
scrollable window, this object hierarchy changes. For example, this code
adds a scroll panel to an image displayed in a figure window, specifying the
parent of the scroll panel and the target image as arguments. The example
suppresses the figure window toolbar and menu bar because they are not
compatible with the scroll panel navigation tools.

hfig = figure('Toolbar','none',...
'Menubar', 'none');

himage = imshow('concordaerial.png');
hpanel = imscrollpanel(hfig,himage);

5-21

5 Building GUIs with Modular Tools

The following figure shows the object hierarchy after the call to
imscrollpanel. Note how imscrollpanel inserts new objects (shaded
in gray) into the hierarchy between the figure object and the axes object
containing the image. (To change the image data displayed in the scroll bar,
use the replaceImage function in the imscrollpanel API.)

Object Hierarchy of Image Displayed in Scroll Panel

5-22

Using Modular Tools

The following figure shows how these graphics objects appear in the scrollable
image as it is displayed on the screen.

Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images
If your work typically requires that you view large images, you might want to
create a custom image display function that includes the modular navigation
tools.

This example creates a tool that accepts an image as an argument and displays
the image in a scroll panel with an Overview tool and a Magnification box.

5-23

5 Building GUIs with Modular Tools

Note Because the toolbox scrollable navigation is incompatible with standard
MATLAB figure window navigation tools, the example suppresses the toolbar
and menu bar in the figure window.

function my_large_image_display(im)

% Create a figure without toolbar and menubar.
hfig = figure('Toolbar','none',...

'Menubar', 'none',...
'Name','My Large Image Display Tool',...
'NumberTitle','off',...
'IntegerHandle','off');

% Display the image in a figure with imshow.
himage = imshow(im);

% Add the scroll panel.
hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools.
set(hpanel,'Units','normalized','Position',[0 .1 1 .9]);

% Add the Magnification box.
hMagBox = immagbox(hfig,himage);

% Position the Magnification box
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)]);

% Add the Overview tool.
hovervw = imoverview(himage);

To use the tool, pass it a large image that is already in the MATLAB
workspace.

big_image = imread('peppers.png');
my_large_image_display(big_image)

5-24

Using Modular Tools

The tool opens a figure window, displaying the image in a scroll panel with
the Overview tool and the Magnification Box tool.

Custom Image Display Tool with Navigation Aids

Making Connections for Interactivity
When you create a modular tool and associate it with a target image, the
tool automatically makes the necessary connections to the target image to
do its job.

For example, the Pixel Information tool sets up a connection to the target
image so that it can display the location and value of the pixel currently
under the cursor. The Overview tool sets up a two-way connection to the
target image:

• Target image to the Overview tool — If the visible portion of the image
changes, by scrolling, panning, or by changing the magnification, the

5-25

5 Building GUIs with Modular Tools

Overview tool changes the size and location of the detail rectangle to the
indicate the portion of the image that is now visible.

• Overview tool to the target image — If a user moves the detail
rectangle in the Overview tool, the portion of the target image visible in
the scroll panel is updated.

The modular tools accomplish this interactivity by using callback
properties of the graphics objects. For example, the figure object supports a
WindowButtonMotionFcn callback that executes whenever the mouse button
is depressed.

Using Modular Tool APIs
Many of the modular tools support an application programmer interface
(API). This API is a set of functions that let you get information about the tool
as it operates and set up callbacks to get notification of events.

For example, the Magnification box supports a single API function:
setMagnification. You can use this API function to set the magnification
value displayed in the Magnification box. The Magnification box automatically
notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions. To get
information about these APIs, see the reference page for the modular tool.

Example: Building an Image Comparison Tool
To illustrate how to use callbacks to make the connections required for
interactions between tools, this example uses the Scroll Panel API to build a
simple image comparison GUI. This custom tool displays two images side by
side in scroll panels that are synchronized in location and magnification. The
custom tool also includes an Overview tool and a Magnification box.

function my_image_compare_tool(left_image, right_image)

% Create the figure
hFig = figure('Toolbar','none',...

'Menubar','none',...
'Name','My Image Compare Tool',...
'NumberTitle','off',...
'IntegerHandle','off');

5-26

Using Modular Tools

% Display left image
subplot(121)
hImL = imshow(left_image);

% Display right image
subplot(122)
hImR = imshow(right_image);

% Create a scroll panel for left image
hSpL = imscrollpanel(hFig,hImL);
set(hSpL,'Units','normalized',...

'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image
hSpR = imscrollpanel(hFig,hImR);
set(hSpR,'Units','normalized',...

'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box
hMagBox = immagbox(hFig,hImL);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])

%% Add an Overview tool
imoverview(hImL)

%% Get APIs from the scroll panels
apiL = iptgetapi(hSpL);
apiR = iptgetapi(hSpR);

%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apiL.setVisibleLocation(apiR.getVisibleLocation())

% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback(apiR.setMagnification);

% When magnification changes on right scroll panel,

5-27

5 Building GUIs with Modular Tools

% tell left scroll panel
apiR.addNewMagnificationCallback(apiL.setMagnification);

% When location changes on left scroll panel,
% tell right scroll panel
apiL.addNewLocationCallback(apiR.setVisibleLocation);

% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisibleLocation);

The tool sets up a complex interaction between the scroll panels with just
a few calls to Scroll Panel API functions. In the code, the tool specifies
a callback function to execute every time the magnification changes. The
function specified is the setMagnification API function of the other scroll
panel. Thus, whenever the magnification changes in one of the scroll panels,
the other scroll panel changes its magnification to match. The tool sets up a
similar connection for position changes.

The following figure is a sequence diagram that shows the interaction
between the two scroll panels set up by the comparison tool for both changes
in magnification and location.

5-28

Using Modular Tools

Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');
right_image = edge(left_image(:,:,1),'canny');
my_image_compare_tool(left_image,right_image);

5-29

5 Building GUIs with Modular Tools

The tool opens a figure window, displaying the two images side by side, in
separate scroll panels. The custom compare tool also includes an Overview
tool and a Magnification box. When you move the detail rectangle in the
Overview tool or change the magnification in one image, both images respond.

Custom Image Comparison Tool with Synchronized Scroll Panels

5-30

Creating Your Own Modular Tools

Creating Your Own Modular Tools
Because the toolbox uses an open architecture for the modular interactive
tools, you can extend the toolbox by creating your own modular interactive
tools, using standard Handle Graphics concepts and techniques. To help you
create tools that integrate well with the existing modular interactive tools, the
toolbox includes many utility functions that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add
callback functions to a callback list or remove them from a list, draw a
draggable point, line, or rectangle over an image, and align figure windows
in relation to a fixed window. The following table lists these utility functions
in alphabetical order. See the function’s reference page for more detailed
information.

Utility Function Description

getimagemodel Retrieve image model objects from image handles

getrangefromclass Get default display range of image, based on its
class

imagemodel Access to properties of an image relevant to its
display

imattributes Return information about image attributes

imgca Get handle to most recent current axis containing
an image

imgcf Get handle to most recent current figure
containing an image

imgetfile Display Open Image dialog box

imhandles Get all image handles

imline Create a line that can be dragged and resized
interactively

impoint Create a point that can be dragged interactively

imrect Create a rectangle that can be dragged
interactively

iptaddcallback Add function handle to a callback list

5-31

5 Building GUIs with Modular Tools

Utility Function Description

iptcheckconn Check validity of connectivity argument

iptcheckhandle Check validity of image handle argument

iptcheckinput Check validity of input argument

iptcheckmap Check validity of colormap argument

iptchecknargin Check number of input arguments

iptcheckstrs Check validity of string argument

iptgetapi Get application programmer interface (API) for
a handle

iptGetPointerBehavior Retrieve pointer behavior from HG object

ipticondir Return names of directories containing IPT and
MATLAB icons

iptnum2ordinal Convert positive integer to ordinal string

iptPointerManager Install mouse pointer manager in figure

iptremovecallback Delete function handle from callback list

iptSetPointerBehavior Store pointer behavior in HG object

iptwindowalign Align figure windows

5-32

6

Spatial Transformations

This chapter describes the spatial transformation functions in Image
Processing Toolbox. A spatial transformation (also known as a geometric
operation) modifies the spatial relationship between pixels in an image,
mapping pixel locations in an input image to new locations in an output
image. The toolbox includes functions that perform certain specialized spatial
transformations, such as resizing and rotating an image. In addition, the
toolbox includes functions that you can use to perform many types of 2-D and
N-D spatial transformations, including custom transformations.

Resizing an Image (p. 6-2) Describes how to use the imresize
function to change the size of an
image

Rotating an Image (p. 6-5) Describes how to use the imrotate
function to rotate an image

Cropping an Image (p. 6-7) Describes how to use the imcrop
function to extract a rectangular
portion of an image

Performing General 2-D Spatial
Transformations (p. 6-8)

Describes how to perform a general
spatial transformation of a 2-D
image

Performing N-Dimensional Spatial
Transformations (p. 6-20)

Describes the toolbox functions you
can use to perform N-D spatial
transformations of arrays

Example: Performing Image
Registration (p. 6-22)

Shows how to use some capabilities
of imtransform to view the results of
image registration

6 Spatial Transformations

Resizing an Image
This section describes how to use the imresize function to change the size
of an image. Topics covered include:

• “Specifying the Size of the Output Image” on page 6-2

• “Specifying the Interpolation Method” on page 6-3

• “Using Filters to Prevent Aliasing” on page 6-4

Specifying the Size of the Output Image
Using imresize, you can specify the size of the output image in two ways:

• By specifying the magnification factor to be used on the image

• By specifying the dimensions of the output image

Using the Magnification Factor
To enlarge an image, specify a magnification factor greater than 1. To reduce
an image, specify a magnification factor between 0 and 1. For example, the
command below increases the size of an image by 1.25 times.

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)
figure, imshow(J)

6-2

Resizing an Image

Specifying the Size of the Output Image
You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. If the specified size
does not produce the same aspect ratio as the input image, the output image
will be distorted. If you specify one of the elements in the vector as NaN,
imresize calculates the value for that dimension to preserve the aspect ratio
of the image.

The following command creates an output image with 100 rows and 150
columns.

I = imread('circuit.tif');
J = imresize(I,[100 150]);
imshow(I)
figure, imshow(J)

Specifying the Interpolation Method
Interpolation is the process used to estimate an image value at a location in
between image pixels. When imresize enlarges an image, the output image
contains more pixels than the original image. The imresize function uses
interpolation to determine the values for the additional pixels.

6-3

6 Spatial Transformations

Interpolation methods determine the value for an interpolated pixel by finding
the point in the input image that corresponds to a pixel in the output image
and then calculating the value of the output pixel by computing a weighted
average of some set of pixels in the vicinity of the point. The weightings are
based on the distance each pixel is from the point.

By default, imresize uses bicubic interpolation to determine the values of
pixels in the output image, but you can specify other interpolation methods
and interpolation kernels. In the following example, imresize uses the
bilinear interpolation method. See the imresize reference page for a complete
list of interpolation methods and interpolation kernels available. You can also
specify your own custom interpolation kernel. .

Y = imresize(X,[100 150],'bilinear')

Using Filters to Prevent Aliasing
When you reduce the size of an image, you lose some of the original pixels
because there are fewer pixels in the output image. Aliasing that occurs as a
result of size reduction normally appears as “stair-step“ patterns (especially in
high-contrast images), or as moiré (ripple-effect) patterns in the output image.

By default, imresize uses antialiasing to limit the impact of aliasing on the
output image for all interpolation types except nearest neighbor. To turn
off antialiasing, specify the 'Antialiasing' parameter and set the value
to false.

Note Even with antialiasing, resizing an image can introduce artifacts,
because information is always lost when you reduce the size of an image.

For more information, see the reference page for imresize.

6-4

Rotating an Image

Rotating an Image
This section describes how to use the imrotate function to rotate an image.
Topics covered include:

• “Image Rotation Basics” on page 6-5

• “Specifying the Size of the Output Image” on page 6-5

• “Specifying the Interpolation Method” on page 6-5

Image Rotation Basics
The imrotate function accepts two primary arguments:

• The image to be rotated

• The rotation angle

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,
imrotate rotates the image clockwise. This example rotates the image I 35
degrees in the counterclockwise direction.

J = imrotate(I,35);

Specifying the Size of the Output Image
By default, imrotate creates an output image large enough to include the
entire original image. Pixels that fall outside the boundaries of the original
image are set to 0 and appear as a black background in the output image. If
you specify the text string `crop' as an argument, imrotate crops the output
image to be the same size as the input image. (See the reference page for
imrotate for an example of cropping.)

Specifying the Interpolation Method
By default, imrotate uses nearest-neighbor interpolation to determine the
value of pixels in the output image, but you can specify other interpolation
methods. See the imrotate reference page for a list of supported interpolation
methods.

6-5

6 Spatial Transformations

For example, these commands rotate an image 35° counterclockwise and use
bilinear interpolation.

I = imread('circuit.tif');
J = imrotate(I,35,'bilinear');
imshow(I)
figure, imshow(J)

6-6

Cropping an Image

Cropping an Image
To extract a rectangular portion of an image, use the imcrop function. imcrop
accepts two primary arguments:

• The image to be cropped

• The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the
crop rectangle interactively. In this case, the cursor changes to crosshairs
when it is over the image. Position the crosshairs over a corner of the
crop region and press and hold the left mouse button. When you drag the
crosshairs over the image you specify the rectangular crop region. imcrop
draws a rectangle around the area you are selecting. When you release the
mouse button, imcrop creates a new image from the selected region.

In this example, you display an image and call imcrop. The imcrop function
displays the image in a figure window and waits for you to draw the cropping
rectangle on the image. In the figure, the rectangle you select is shown in red.
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);

6-7

6 Spatial Transformations

Performing General 2-D Spatial Transformations
This section describes two toolbox functions that you can use to perform
general 2-D spatial transformations. (For information about performing
transformations of arrays of higher dimension, see “Performing N-Dimensional
Spatial Transformations” on page 6-20.)

• maketform

• imtransform

You use the maketform function to define the 2-D spatial transformation you
want to perform. maketform creates a MATLAB structure called a TFORM
that contains all the parameters required to perform the transformation.
You can define many types of spatial transformations in a TFORM, including
affine transformations, such as translation, scaling, rotation, and shearing,
projective transformations, and custom transformations. For more
information, see “Creating TFORM Structures” on page 6-16. (You can
also create a TFORM using the cp2tform function — see Chapter 7, “Image
Registration”.)

After you create the TFORM, you use the imtransform function to perform the
transformation, passing imtransform the image to be transformed and the
TFORM structure. The following figure illustrates this process.

Overview of General 2-D Spatial Transformation Process

For more information about 2-D spatial transformations, see these additional
topics:

• “Example: Performing a Translation” on page 6-9

6-8

Performing General 2-D Spatial Transformations

• “Defining the Transformation Data” on page 6-14

• “Creating TFORM Structures” on page 6-16

• “Performing the Spatial Transformation” on page 6-17

Example: Performing a Translation
This example illustrates how to use the maketform and imtransform
functions to perform a 2-D spatial transformation of an image. The example
performs a simple affine transformation called a translation. In a translation,
you shift an image in coordinate space by adding a specified value to the x-
and y-coordinates. The example illustrates the following steps:

• “Step 1: Import the Image to Be Transformed” on page 6-9

• “Step 2: Define the Spatial Transformation” on page 6-9

• “Step 3: Create the TFORM Structure” on page 6-10

• “Step 4: Perform the Transformation” on page 6-10

• “Step 5: View the Output Image” on page 6-12

Step 1: Import the Image to Be Transformed
Bring the image to be transformed into the MATLAB workspace. This
example creates a checkerboard image, using the checkerboard function. By
default, checkerboard creates an 80-by-80 pixel image.

cb = checkerboard;
imshow(cb)

Original Image

Step 2: Define the Spatial Transformation
You must define the spatial transformation that you want to perform. For
many types of 2-D spatial transformations, such as affine transformations,

6-9

6 Spatial Transformations

you can use a 3-by-3 transformation matrix to specify the transformation.
You can also use sets of points in the input and output images to specify the
transformation and let maketform create the transformation matrix. For more
information, see “Defining the Transformation Data” on page 6-14.

This example uses the following transformation matrix to define a spatial
transformation called a translation.

xform = [1 0 0
0 1 0

40 40 1]

In this matrix, xform(3,1) specifies the number of pixels to shift the image
in the horizontal direction and xform(3,2) specifies the number of pixels to
shift the image in the vertical direction.

Step 3: Create the TFORM Structure
You use the maketform function to create a TFORM structure. As arguments,
you specify the type of transformation you want to perform and the
transformation matrix (or set of points) that you created to define the
transformation. For more information, see “Creating TFORM Structures”
on page 6-16.

This example calls maketform, specifying 'affine' as the type of
transformation, because translation is a type of affine transformation, and
xform, the transformation matrix created in step 2.

tform_translate = maketform('affine',xform);

Step 4: Perform the Transformation
To perform the transformation, call the imtransform function, specifying
the image you want to transform and the TFORM structure that stores all the
required transformation parameters. For more information, see “Performing
the Spatial Transformation” on page 6-17.

The following example passes to the imtransform function the checkerboard
image, created in Step 1, and the TFORM structure created in Step 3.
imtransform returns the transformed image.

6-10

Performing General 2-D Spatial Transformations

[cb_trans xdata ydata]= imtransform(cb, tform_translate);

The example includes two optional output arguments: xdata and ydata.
These arguments return the location of the output image in output coordinate
space. xdata contains the x-coordinates of the pixels at the corners of the
output image. ydata contains the y-coordinates of these same pixels.

Note This section uses the spatial coordinate system when referring to pixel
locations. In the spatial coordinates system, the x- and y-coordinates specify
the center of the pixel. For more information about the distinction between
spatial coordinates and pixel coordinates, see “Coordinate Systems” on page
2-2.

The following figure illustrates this translation graphically. By convention,
the axes in input space are labeled u and v and the axes in output space are
labelled x and y. In the figure, note how imtransform modifies the spatial
coordinates that define the locations of pixels in the input image. The pixel
at (1,1) is now positioned at (41,41). (In the checkerboard image, each black,
white, and gray square is 10 pixels high and 10 pixels wide.)

Input Image Translated

6-11

6 Spatial Transformations

Pixel Values and Pixel Locations. The previous figure shows how
imtransform changes the locations of pixels between input space and output
space. The pixel located at (1,1) in the input image is now located at (41,41)
in the output image. Note, however, that the value at that pixel location has
not changed. Pixel (1,1) in the input image is black and so is pixel (41,41)
in the output image.

imtransform determines the value of pixels in the output image by mapping
the new locations back to the corresponding locations in the input image
(inverse mapping). In a translation, because the size and orientation of the
output image is the same as the input image, this is a one to one mapping
of pixel values to new locations. For other types of transformations, such
as scaling or rotation, imtransform interpolates within the input image to
compute the output pixel value. For more information about the interpolation
methods used by imtransform, see .

Step 5: View the Output Image
After performing the transformation, you might want to view the transformed
image. The example uses the imshow function to display the transformed
image.

figure, imshow(cb_trans)

Translated Image

Understanding the Display of the Transformed Image. When viewing
the transformed image, especially for a translation operation, it might appear
that the transformation had no effect. The transformed image looks identical
to the original image. However, if you check the xdata and ydata values
returned by imtransform, you can see that the spatial coordinates have
changed. The upper left corner of the input image with spatial coordinates
(1,1) is now (41,41). The lower right corner of the input image with spatial
coordinates (80,80) is now (120,120). The value 40 has been added to each,
as expected.

6-12

Performing General 2-D Spatial Transformations

xdata =

41 120

ydata =

41 120

The reason that no change is apparent in the visualization is because
imtransform sizes the output image to be just large enough to contain the
entire transformed image but not the entire output coordinate space. To see
the effect of the translation in relation to the original image, you can use
several optional input parameters that specify the size of output image and
how much of the output space is included in the output image.

The example uses two of these optional input parameters, XData and YData,
to specify how much of the output coordinate space to include in the output
image. The example sets the XData and YData to include the origin of the
original image and be large enough to contain the entire translated image.

Note All the pixels that are now in the output image that do not correspond
to locations in the input image are black. imtransform assigns a value, called
a fill value, to these pixels. This example uses the default fill value but you
can specify a different one — see “Specifying Fill Values” on page 6-18.

cb_trans2 = imtransform(cb, tform_translate,...
'XData',[1 (size(cb,2)+xform(3,1)],...
'YData', [1 (size(cb,1)+xform(3,2)]);

figure, imshow(cb_trans2)

6-13

6 Spatial Transformations

View of the Translated Image in Relation to Original Coordinate Space

Defining the Transformation Data
Before you can perform a spatial transformation, you must first define the
parameters of the transformation. The following sections describe two ways
you can define a spatial transformation.

• “Using a Transformation Matrix” on page 6-14

• “Using Sets of Points” on page 6-15

With either method, you pass the result to the maketform function to create
the TFORM structure required by imtransform.

Using a Transformation Matrix
The maketform function can accept transformation matrices of various
sizes for N-D transformations. Because imtransform only performs 2-D
transformations, you can only specify 3-by-3 transformation matrices.

For example, you can use a 3-by-3 matrix to specify any of the affine
transformations. For affine transformations, the last column must contain
0 0 1 ([zeros(N,1); 1]). You can specify a 3-by-2 matrix. In this case,
imtransform automatically adds this third column.

The following table lists the affine transformations you can perform with
imtransform along with the transformation matrix used to define them. You
can combine multiple affine transformations into a single matrix.

6-14

Performing General 2-D Spatial Transformations

Affine
Transform Example Transformation Matrix

Translation tx specifies the
displacement along
the x axis

ty specifies the
displacement along
the y axis.

Scale sx specifies the scale
factor along the x axis

sy specifies the scale
factor along the y axis.

Shear shx specifies the shear
factor along the x axis

shy specifies the shear
factor along the y axis.

Rotation q specifies the angle
of rotation.

Using Sets of Points
Instead of specifying a transformation matrix, you optionally use sets of points
to specify a transformation and let maketform infer the transformation matrix.

To do this for an affine transformation, you must pick three non-collinear
points in the input image and in the output image. (The points form a
triangle.) For a projective transformation, you must pick four points. (The
points form a quadrilateral.)

This example picks three points in the input image and three points in the
output image created by the translation performed in “Example: Performing a
Translation” on page 6-9. The example passes these points to maketform and
lets maketform infer the transformation matrix. The three points mark three

6-15

6 Spatial Transformations

corners of one of the checkerboard squares in the input image and the same
square in the output image.

in_points = [11 11;21 11; 21 21]

out_points = [51 51;61 51;61 61]

tform2 = maketform('affine',inpts,outpts)

Creating TFORM Structures
After defining the transformation data (“Defining the Transformation
Data” on page 6-14), you must create a TFORM structure to specify the
spatial transformation. You use the maketform function to create a TFORM
structure. You pass the TFORM structure to the imtransform to perform the
transformation. (You can also create a TFORM using the cp2tform function.
For more information, see Chapter 7, “Image Registration”.)

The example creates a TFORM structure that specifies the parameters
necessary for the translation operation.

tform_translate = maketform('affine',xform)

To create a TFORM you must specify the type of transformation you want to
perform and pass in the transformation data. The example specifies 'affine'
as the transformation type because translation is an affine transformation but
maketform also supports projective transformations. In addition, by using the
custom and composite options you can specify a virtually limitless variety
of spatial transformations to be used with imtransform. The following table
lists the transformation types supported by maketform.

6-16

Performing General 2-D Spatial Transformations

Transformation
Type Description

'affine' Transformation that can include translation, rotation,
scaling, and shearing. Straight lines remain straight,
and parallel lines remain parallel, but rectangles might
become parallelograms.

'projective' Transformation in which straight lines remain straight
but parallel lines converge toward vanishing points.
(The vanishing points can fall inside or outside the
image -- even at infinity.)

'box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

'custom' User-defined transformation, providing the
forward and/or inverse functions that are called by
imtransform.

'composite' Composition of two or more transformations.

Performing the Spatial Transformation
Once you specify the transformation in a TFORM struct, you can perform the
transformation by calling imtransform. The imtransform function performs
the specified transformation on the coordinates of the input image and creates
an output image.

The translation example called imtransform to perform the transformation,
passing it the image to be transformed and the TFORM structure. imtransform
returns the transformed image.

cb_trans = imtransform(cb, tform_translate);

imtransform supports several optional input parameters that you can use
to control various aspects of the transformation so as the size of the output
image and the fill value used. To see an example of using the XData and
YData input parameters, see “Example: Performing Image Registration” on
page 6-22. For more information about specifying fill values, see “Specifying
Fill Values” on page 6-18.

6-17

6 Spatial Transformations

Specifying Fill Values
When you perform a transformation, there are often pixels in the output
image that are not part of the original input image. These pixels must
be assigned some value, called a fill value. By default, imtransform sets
these pixels to zero and they are displayed as black. Using the FillValues
parameter with the imtransform function, you can specify a different color.

Grayscale Images. If the image being transformed is a grayscale image,
you must specify a scalar value that specifies a shade of gray.

For example, in “Step 5: View the Output Image” on page 6-12, where the
example displays the translated checkerboard image in relation to the original
coordinate space, you can specify a fill value that matches the color of the gray
squares, rather than the default black color.

cb_fill = imtransform(cb, tform_translate,...
'XData', [1 (size(cb,2)+xform(3,1))],...
'YData', [1 (size(cb,1)+xform(3,2))],...
'FillValues', .7);

figure, imshow(cb_fill)

Translated Image with Gray Fill Value

RGB Images. If the image being transformed is an RGB image, you can use
either a scalar value or a 1-by-3 vector. If you specify a scalar, imtransform
uses that shade of gray for each plane of the RGB image. If you specify a
1-by-3 vector, imtransform interprets the values as an RGB color value.

For example, this code translates an RGB image, specifying an RGB color
value as the fill value. The example specifies one of the light green values in
the image as the fill value.

6-18

Performing General 2-D Spatial Transformations

rgb = imread('onion.png');
xform = [1 0 0

0 1 0
40 40 1]

tform_translate = maketform('affine',xform);
cb_rgb = imtransform(rgb, tform_translate,...

'XData', [1 (size(rgb,2)+xform(3,1))],...
'YData', [1 (size(rgb,1)+xform(3,2))],...
'FillValues', [187;192;57]);

figure, imshow(cb_rgb)

Translated RGB Image with Color Fill Value

If you are transforming multiple RGB images, you can specify different fill
values for each RGB image. For example, if you want to transform a series of
10 RGB images, a 4-D array with dimensions 200-by-200-by-3-by-10, you have
several options. You can specify a single scalar value and use a grayscale fill
value for each RGB image. You can also specify a 1-by-3 vector to use a single
color value for all the RGB images in the series. To use a different color fill
value for each RGB image in the series, specify a 3-by-10 array containing
RGB color values.

6-19

6 Spatial Transformations

Performing N-Dimensional Spatial Transformations
The following functions, when used in combination, provide a vast array
of options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

• maketform

• fliptform

• tformfwd

• tforminv

• findbounds

• makeresampler

• tformarray

• imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd
and tforminv to explore the geometric effects of a transformation by applying
them to points and lines and plotting the results. They support a consistent
handling of both image and pointwise data.

The following example, “Performing the Spatial Transformation” on page
6-17, uses the makeresampler function with a standard interpolation method.
You can also use it to obtain special effects or custom processing. For example,
you could specify your own separable filtering/interpolation kernel, build a
custom resampler around the MATLAB interp2 or interp3 functions, or
even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.

6-20

Performing N-Dimensional Spatial Transformations

For example, if you are sampling 3-D data on a 2-D slice or manifold, the
input array might have a lower dimensionality. The output dimensionality
might be higher, for example, if you combine multiple 2-D transformations
into a single 2-D to 3-D operation.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);
figure; imshow(I)
T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...

[5 5; 40 5; 35 30; -10 30]);
R = makeresampler('cubic','circular');
K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);
figure, imshow(K)

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears
to contain multiple copies of the original image. This is accomplished
by using the 'Size' option, to make the output image larger than the
input image, and then specifying a padding method that extends the input
image by repeating the pixels in a circular pattern. The Image Processing
Toolbox Image Transformation demos provide more examples of using the
imtransform function and related functions to perform different types of
spatial transformations.

6-21

6 Spatial Transformations

Example: Performing Image Registration
This example is intended to clarify the spatial relationship between the output
image and the base image in image registration. The example illustrates use
of the optional 'XData' and 'YData' input parameters and the optional xdata
and ydata output values. The example includes the following steps:

• “Step 1: Read in Base and Unregistered Images” on page 6-22

• “Step 2: Display the Unregistered Image” on page 6-22

• “Step 3: Create a TFORM Structure” on page 6-23

• “Step 4: Transform the Unregistered Image” on page 6-23

• “Step 5: Overlay Registered Image Over Base Image” on page 6-24

• “Step 6: Using XData and YData Input Parameters” on page 6-25

• “Step 7: Using XData and YData Output Values” on page 6-26

Step 1: Read in Base and Unregistered Images
Read the base and unregistered images from sample data files that come
with Image Processing Toolbox.

base = imread('westconcordorthophoto.png');
unregistered = imread('westconcordaerial.png');

Step 2: Display the Unregistered Image
Display the unregistered image.

iptsetpref('ImshowAxesVisible','on')
imshow(unregistered)
text(size(unregistered,2),size(unregistered,1)+30, ...

'Image courtesy of mPower3/Emerge', ...
'FontSize',7,'HorizontalAlignment','right');

6-22

Example: Performing Image Registration

Step 3: Create a TFORM Structure
Create a TFORM structure using preselected control points. Start by loading a
MAT-file that contains preselected control points for the base and unregistered
images.

load westconcordpoints
tform = cp2tform(input_points, base_points, 'projective');

Step 4: Transform the Unregistered Image
Use imtransform to perform the transformations necessary to register
the unregistered image with the base image. This code uses the optional
FillValues input parameter to specify a fill value (white). This fill value helps
when the example overlays the transformed image, registered, on the base
image to check the registration in a later step.

registered = imtransform(unregistered, tform,...
'FillValues', 255);

6-23

6 Spatial Transformations

Step 5: Overlay Registered Image Over Base Image
Overlay a semitransparent version of the registered image over the base
image. Notice how the two images appear misregistered because the example
assumes that the images are in the same spatial coordinate system. The next
steps provide two ways to remedy this display problem.

figure; imshow(registered);
hold on
h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

Registered Image with Base Image Overlay

6-24

Example: Performing Image Registration

Step 6: Using XData and YData Input Parameters
One way to ensure that the registered image appears registered with the
base image is to truncate the registered image by discarding any areas that
would extrapolate beyond the extent of the base image. You use the 'XData'
and 'YData' parameters to do this.

registered1 = imtransform(unregistered,tform,...
'FillValues', 255,...
'XData', [1 size(base,2)],...
'YData', [1 size(base,1)]);

Display the registered image, overlaying a semitransparent version of the
base image for comparison. The registration is evident, but part of the
unregistered image has been discarded. The next step provides another
solution in which the entire registered image is visible.

figure; imshow(registered1)
hold on
h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

Registered Image Truncated with Base Image Overlay

6-25

6 Spatial Transformations

Step 7: Using XData and YData Output Values
Another approach is to compute the full extent of the registered image and
use the optional imtransform syntax that returns the x- and y-coordinates
that indicate the transformed image’s position relative to the base image’s
pixel coordinates.

[registered2 xdata ydata] = imtransform(unregistered, tform,...
'FillValues', 255);

Display the registered image. Overlay a semi-transparent version of the base
image for comparison. Adjust the axes to include the full base image. In this
case, notice how the registration is evident and the full extent of both images
is visible as well.

figure; imshow(registered2, 'XData', xdata, 'YData', ydata)
hold on
h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)
ylim = get(gca, 'YLim');
set(gca, 'YLim', [0.5 ylim(2)])

6-26

7

Image Registration

This chapter describes the image registration capabilities of Image Processing
Toolbox. Image registration is the process of aligning two or more images of
the same scene. Image registration is often used as a preliminary step in
other image processing applications.

Registering an Image (p. 7-2) Steps you through an example of the
image registration process

Transformation Types (p. 7-12) Describes the types of supported
transformations

Selecting Control Points (p. 7-13) Describes how to use the Control
Point Selection Tool (cpselect)
to select control points in pairs of
images

Using Correlation to Improve
Control Points (p. 7-29)

Describes how to use the cpcorr
function to fine-tune your control
point selections

7 Image Registration

Registering an Image
Image registration is the process of aligning two or more images of the
same scene. Typically, one image, called the base image or reference image,
is considered the reference to which the other images, called input images,
are compared. The object of image registration is to bring the input image
into alignment with the base image by applying a spatial transformation to
the input image. The differences between the input image and the output
image might have occurred as a result of terrain relief and other changes in
perspective when imaging the same scene from different viewpoints. Lens
and other internal sensor distortions, or differences between sensors and
sensor types, can also cause distortion.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 6, “Spatial Transformations”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

This section covers the following topics:

• “Point Mapping” on page 7-2

• “Using cpselect in a Script” on page 7-4

• “Example: Registering to a Digital Orthophoto” on page 7-5

Point Mapping
Image Processing Toolbox provides tools to support point mapping to
determine the parameters of the transformation required to bring an image
into alignment with another image. In point mapping, you pick points in a
pair of images that identify the same feature or landmark in the images.
Then, a spatial mapping is inferred from the positions of these control points.

7-2

Registering an Image

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.

The following figure provides a graphic illustration of this process. This
process is best understood by looking at an example. See “Example:
Registering to a Digital Orthophoto” on page 7-5 for an extended example.

�������	�
�
����
�����

�������	�����
�	������������	�

��������	���	���	���
���
�����
��
������
�����

�����������	����
������	�
�
�������	����	���	����

��

��	���
��	������	����	
�������
�����������
�	�����	�

�������������� ��

����	����!��
�����������
�	�����	�"���

���
������
�	����!������ ������!��������������

#������
�����

����������� $�
�������

7-3

7 Image Registration

Using cpselect in a Script
If you need to perform the same kind of registration for many images, you
automate the process by putting all the steps in a script. For example, you
could create a script that launches the Control Point Selection Tool with an
input and a base image. The script could then use the control points selected
to create a TFORM structure and pass the TFORM and the input image to
the imtransform function, outputting the registered image.

To do this, specify the 'Wait' option when you call cpselect to launch the
Control Point Selection Tool. With the 'Wait' option, cpselect blocks the
MATLAB command line until control points have been selected and returns
the sets of control points selected in the input image and the base image as a
return values. If you do not use the 'Wait' option, cpselect returns control
immediately and your script will continue without allowing time for control
point selection. In addition, without the 'Wait' option, cpselect does not
return the control points as return values. For an example, see the cpselect
reference page.

7-4

Registering an Image

Example: Registering to a Digital Orthophoto
This example illustrates the steps involved in performing image registration
using point mapping. These steps include:

• “Step 1: Read the Images into MATLAB” on page 7-6

• “Step 2: Choose Control Points in the Images” on page 7-7

• “Step 3: Save the Control Point Pairs to the MATLAB Workspace” on
page 7-8

• “Step 4: Fine-Tune the Control Point Pair Placement (Optional)” on page
7-9

• “Step 5: Specify the Type of Transformation and Infer Its Parameters”
on page 7-9

• “Step 6: Transform the Unregistered Image” on page 7-10

To illustrate this process, the example registers a digital aerial photograph
to a digital orthophoto. Both images are centered on the business district of
West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

The orthophoto, supplied by the Massachusetts Geographic Information
System (MassGIS), has been orthorectified to remove camera, perspective,
and relief distortions (via a specialized image transformation process). The
orthophoto is also georegistered (and geocoded)—the columns and rows of
the digital orthophoto image are aligned to the axes of the Massachusetts
State Plane coordinate system, each pixel center corresponds to a definite
geographic location, and every pixel is 1 meter square in map units.

7-5

7 Image Registration

Step 1: Read the Images into MATLAB
In this example, the base image is westconcordorthophoto.png, the
MassGIS georegistered orthophoto. It is a panchromatic (grayscale) image.
The image to be registered is westconcordaerial.png, a digital aerial
photograph supplied by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However,
if you want to use cross-correlation to tune your control point positioning,
the images must be in the workspace.

7-6

Registering an Image

Step 2: Choose Control Points in the Images
The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

cpselect(unregistered, orthophoto)

The Control Point Selection Tool displays two views of both the input image
and the base image in which you can pick control points by pointing and
clicking. For more information, see “Selecting Control Points” on page 7-13.
This figure shows the Control Point Selection Tool with four pairs of control
points selected. The number of control point pairs you pick is at least partially
determined by the type of transformation you want to perform (specified in
Step 5). See “Transformation Types” on page 7-12 for information about the
minimum number of points required by each transformation.

7-7

7 Image Registration

Step 3: Save the Control Point Pairs to the MATLAB Workspace
In the Control Point Selection Tool, click the File menu and choose the
Export Points to Workspace option. See “Exporting Control Points to the
Workspace” on page 7-26 for more information.

7-8

Registering an Image

For example, the following set of control points in the input image represent
spatial coordinates; the left column lists x-coordinates, the right column lists
y-coordinates.

input_points =

118.0000 96.0000
304.0000 87.0000
358.0000 281.0000
127.0000 292.0000

Step 4: Fine-Tune the Control Point Pair Placement (Optional)
This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. To use cross-correlation, features
in the two images must be at the same scale and have the same orientation.
They cannot be rotated relative to each other. Because the Concord image is
rotated in relation to the base image, cpcorr cannot tune the control points.
See “Using Correlation to Improve Control Points” on page 7-29 for more
information.

Step 5: Specify the Type of Transformation and Infer Its
Parameters
In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you
want to perform. The cp2tform function can infer the parameters for five
types of transformations. You must choose which transformation will correct
the type of distortion present in the input image. See “Transformation Types”
on page 7-12 for more information. Images can contain more than one type
of distortion.

The predominant distortion in the aerial image of West Concord (the input
image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for camera perspective

7-9

7 Image Registration

distortion by using a projective transformation. The projective transformation
also rotates the image into alignment with the map coordinate system
underlying the base digital orthophoto image. (Given sufficient information
about the terrain and camera, you could correct these other distortions at
the same time by creating a composite transformation with maketform. See
“Performing General 2-D Spatial Transformations” on page 6-8 for more
information.)

mytform = cp2tform(input_points, base_points, 'projective');

Step 6: Transform the Unregistered Image
As the final step in image registration, transform the input image to bring
it into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image.
For more information about using imtransform, see Chapter 6, “Spatial
Transformations”

registered = imtransform(unregistered, mytform);

7-10

Registering an Image

The following figure shows the transformed image transparently overlaid on
the base image to show the results of the registration. (To see how this is
done, see “Example: Performing Image Registration” on page 6-22.

7-11

7 Image Registration

Transformation Types
The cp2tform function can infer the parameters for the following types of
transformations, listed in order of complexity.

• 'linear conformal'

• 'affine'

• 'projective'

• 'polynomial' (Order 2, 3, or 4)

• 'piecewise linear'

• 'lwm'

The first four transformations, 'linear conformal', 'affine',
'projective', and 'polynomial' are global transformations. In these
transformations, a single mathematical expression applies to an entire
image. The last two transformations, 'piecewise linear' and 'lwm' (local
weighted mean), are local transformations. In these transformations, different
mathematical expressions apply to different regions within an image. When
exploring how different transformations affect the images you are working
with, try the global transformations first. If these transformations are not
satisfactory, try the local transformations: the piecewise linear transformation
first, and then the local weighted mean transformation.

Your choice of transformation type affects the number of control point pairs
you need to select. For example, a linear conformal transformation requires at
least two control point pairs. A polynomial transformation of order 4 requires
15 control point pairs. For more information about these transformation
types, and the special syntaxes they require, see cpselect.

7-12

Selecting Control Points

Selecting Control Points
The toolbox includes an interactive tool that enables you to specify control
points in the images you want to register. The tool displays the images side by
side. When you are satisfied with the number and placement of the control
points, you can save the control points. This section covers the following topics:

• “Using the Control Point Selection Tool: An Overview” on page 7-13

• “Starting the Control Point Selection Tool” on page 7-15

• “Using Navigation Tools to Explore the Images” on page 7-16

• “Specifying Matching Control Point Pairs” on page 7-20

• “Exporting Control Points to the Workspace” on page 7-26

Using the Control Point Selection Tool: An Overview
To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it
to, called the base image or reference image.

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 Use navigation aids to explore the image, looking for visual elements that
you can identify in both images. cpselect provides many ways to navigate
around the image, panning and zooming to view areas of the image in
more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first
start it.

7-13

7 Image Registration

������
�	���

%
���	���
��������	�

&		���������	��
	�������

 	'�������
���
�������(���	(

�������������������	��	���	�)
������'�������������	��	�������

*�����
(���	(

�'��'��(
(���	(

*�����
���������

7-14

Selecting Control Points

Starting the Control Point Selection Tool
To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

For simplicity, this section uses the same image as the input and the base
image. To walk through an example of an actual registration, see “Registering
an Image” on page 7-2.

moon_base = imread('moon.tif');
moon_input = moon_base;
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure
as the third argument. For more information about restarting sessions, see
“Exporting Control Points to the Workspace” on page 7-26. For complete
details, see the cpselect reference page.

When the Control Point Selection Tool starts, it contains three primary
components:

• Details windows—The two windows displayed at the top of tool are called
the Detail windows. These windows show a close-up view of a portion of
the images you are working with. The input image is on the left and the
base image is on the right.

• Overview windows—The two windows displayed at the bottom of the tool
are called the Overview windows. These windows show the images in their
entirety, at the largest scale that fits the window. The input image is on
the left and the base image is on the right. You can control whether the
Overview window appears by using the View menu.

• Details rectangle—Superimposed on the images displayed in the two
Overview windows is a rectangle, called the Detail rectangle. This
rectangle controls the part of the image that is visible in the Detail window.
By default, at startup, the detail rectangle covers one quarter of the entire
image and is positioned over the center of the image. You can move the
Detail rectangle to change the portion of the image displayed in the Detail
windows.

7-15

7 Image Registration

The following figure shows these components of the Control Point Selection
Tool.

*�����
(���	(

�����

$�
�

�'��'��(
(���	(

�����
$�
�

*�����
���������

�����
$�
�

Using Navigation Tools to Explore the Images
To find visual elements that are common to both images, you might want to
change the section of the image displayed in the detail view or zoom in on a
part of the image to view it in more detail. The following sections describe the
different ways to change your view of the images:

• “Using Scroll Bars to View Other Parts of an Image” on page 7-17

• “Using the Detail Rectangle to Change the View” on page 7-17

• “Panning the Image Displayed in the Detail Window” on page 7-18

• “Zooming In and Out on an Image” on page 7-18

7-16

Selecting Control Points

• “Specifying the Magnification of the Images” on page 7-19

• “Locking the Relative Magnification of the Input and Base Images” on
page 7-20

Using Scroll Bars to View Other Parts of an Image
To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided for each window.

As you scroll the image in the Detail window, note how the Detail rectangle
moves over the image in the Overview window. The position of the Detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View
To get a closer view of any part of the image, move the Detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than
the Overview window.

To move the detail rectangle,

1 Move the pointer into the Detail rectangle. The cursor changes to the fleur

shape, .

2 Press and hold the mouse button to drag the detail rectangle anywhere
on the image.

Note As you move the Detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.

7-17

7 Image Registration

Panning the Image Displayed in the Detail Window
To change the section of the image displayed in the Detail window, use the
pan tool to move the image in the window.

To use the pan tool,

1 Click the Pan button in the Control Point Selection Tool toolbar or
select Pan from the Tools menu.

2 Move the pointer over the image in the Detail window. The cursor changes

to the hand shape, .

3 Press and hold the mouse button. The cursor changes to a closed fist shape,

. Use the mouse to move the image in the Detail window.

Note As you move the image in the Detail window, the Detail rectangle in
the Overview window moves.

Zooming In and Out on an Image
To enlarge an image to get a closer look or shrink an image to see the whole
image in context, you can zoom in or zoom out on the images displayed.
(You can also zoom in or out on an image by changing the magnification.
See “Specifying the Magnification of the Images” on page 7-19 for more
information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button on the Control Point
Selection Tool toolbar or select Zoom In or Zoom Out from the Tools menu.

&		���� &		��	��

7-18

Selecting Control Points

2 Move the pointer over the image in the Detail window that you want to
zoom in or out on. The cursor changes to the appropriate magnifying glass

shape, such as . Position the cursor over a location in the image and
click the mouse. With each click, cpselect changes the magnification of the
image by a preset amount. (See for a list of some of these magnifications.)
cpselect centers the new view of the image on the spot where you clicked.

Another way to use the Zoom tool to zoom in on an image is to position the
cursor over a location in the image and, while pressing and holding the
mouse button, draw a rectangle defining the area you want to zoom in on.
cpselect magnifies the image so that the chosen section fills the Detail
window. cpselect resizes the detail rectangle in the Overview window
as well.

The size of the Detail rectangle in the Overview window changes as you
zoom in or out on the image in the Detail window.

To keep the relative magnifications of the base and input images
synchronized as you zoom in or out, click the Lock ratio check box. See
“Locking the Relative Magnification of the Input and Base Images” on page
7-20 for more information.

Specifying the Magnification of the Images
To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 7-18 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter, or click
the menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window. To keep the relative
magnifications of the base and input images synchronized as you change the
magnification, click the Lock ratio check box. See for more information.

7-19

7 Image Registration

 ����������	�������
	+ ����������	������

Locking the Relative Magnification of the Input and Base
Images
To keep the relative magnification of the input and base images automatically
synchronized in the Detail windows, click the Lock Ratio check box.

When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

,	�)������������	������	��!��)�
	+

Specifying Matching Control Point Pairs
The primary function of the Control Point Selection Tool is to enable you
to pick control points in the image to be registered (the input image) and
the image to which you are comparing it (the base image). When you start
cpselect, point selection is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify

7-20

Selecting Control Points

in the input image must have a match in the base image. The following
sections describe the ways you can use the Control Point Selection Tool to
choose control point pairs:

• “Picking Control Point Pairs Manually” on page 7-21

• “Using Control Point Prediction” on page 7-23

• “Moving Control Points” on page 7-25

• “Deleting Control Points” on page 7-26

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button in the Control Point
Selection Tool toolbar or select Add Points from the Tools menu. (Control
point selection mode is active by default.) The cursor changes to a

crosshairs shape

2 Position the cursor over a feature you have visually selected in any of the
images displayed and click the mouse button. cpselect places a control

point symbol, , at the position you specified, in both the Detail window
and the corresponding Overview window. cpselect numbers the points as
you select them. The appearance of the control point symbol indicates its
current state. The circle around the point indicates that it is the currently
selected point. The number identifies control point pairs.

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.

3 You can select another point in the same image or you can move to the
corresponding image and create a match for the point. To create the match
for this control point, position the cursor over the same feature in the
corresponding Detail or Overview window and click the mouse button.
cpselect places a control point symbol at the position you specified, in

7-21

7 Image Registration

both the Detail and Overview windows. You can work in either direction:
picking control points in either of the Detail windows, input or base, or in
either of the Overview windows, input or base.

To match an unmatched control point, select it, and then pick a point in
the corresponding window. You can move or delete control points after you
create them.

The following figure illustrates control points in several states.

 ���!��������	���	���

��������"
������!��
�	���

7-22

Selecting Control Points

Using Control Point Prediction
Instead of picking matching control points yourself, you can let the Control
Point Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points, not on any feature of the underlying images.

To illustrate point prediction, this figure shows four control points selected
in the input image, where the points form the four corners of a square.
(The control point selections in the figure do not attempt to identify any
landmarks in the image.) The figure shows the picking of a fourth point, in
the left window, and the corresponding predicted point in the right window.
Note how the Control Point Selection Tool places the predicted point at the
same location relative to the other control points, forming the bottom right
corner of the square.

7-23

7 Image Registration

�����������	���

Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or
base_points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move
a predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 7-25.

To use control point prediction,

7-24

Selecting Control Points

1 Click the Control Point Prediction button .

Note Because the Control Point Selection Tool predicts control point
locations based on the locations of the previous control points, you cannot
use point prediction until you have a minimum of two pairs of matched
points. Until this minimum is met, the Control Point Prediction button
is disabled.

2 Position the cursor anywhere in any of the images displayed. The cursor

changes to the crosshairs shape, .

You can pick control points in either of the Detail windows, input or base,
or in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

3 Click either mouse button. The Control Point Selection Tool places a control
point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for the

predicted point contains the letter P, indicating that it’s a predicted
control point,

4 To accept a predicted point, select it with the cursor and move it. The
Control Point Selection Tool removes the P from the point.

Moving Control Points
To move a control point,

1 Click the Control Point Selection button .

2 Position the cursor over the control point you want to move. The cursor

changes to the fleur shape,

3 Press and hold the mouse button and drag the control point. The state of
the control point changes to selected when you move it.

7-25

7 Image Registration

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.

Deleting Control Points
To delete a control point, and its matching point, if one exists

1 Click the Control Point Selection button .

2 Click the control point you want to delete. Its state changes to selected. If
the control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

• Pressing the Backspace key

• Pressing the Delete key

• Choosing one of the delete options from the Edit menu

Using this menu you can delete individual points or pairs of matched
points, in the input or base images.

Exporting Control Points to the Workspace
After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Export Points to Workspace option. The Control Point
Selection Tool displays this dialog box:

7-26

Selecting Control Points

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected
in two arrays named input_points and base_points, although you can
specify other names. These are n-by-2 arrays, where n is the number of valid
control point pairs you selected. This example shows the input_points array
containing four pairs of control points. The values in the left column represent
the x-coordinates; the values in the right column represent the y-coordinates.

input_points =

215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to
save your control points.

Saving Your Control Point Selection Session
To save the current state of the Control Point Selection Tool, choose the
Export Points to Workspace option from the File menu. In the Export
Points to Workspace dialog box, select the Structure with all points
check box.

7-27

7 Image Registration

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]

inputBasePairs: [4x2 double]
ids: [4x1 double]

inputIdPairs: [4x2 double]
baseIdPairs: [4x2 double]

isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.

7-28

Using Correlation to Improve Control Points

Using Correlation to Improve Control Points
You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected
by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and
then calculates the correlation between the values at each pixel in the region.
Next, the cpcorr function looks for the position with the highest correlation
value and uses this as the optimal position of the control point. The cpcorr
function only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values
in input_points unmodified.

7-29

7 Image Registration

7-30

8

Linear Filtering and Filter
Design

Image Processing Toolbox provides a number of functions for designing and
implementing two-dimensional linear filters for image data. This chapter
describes these functions and how to use them effectively.

Linear Filtering (p. 8-2) Provides an explanation of linear
filtering and how it is implemented
in the toolbox. This topic describes
filtering in terms of the spatial
domain, and is accessible to anyone
doing image processing.

Filter Design (p. 8-15) Discusses designing two-dimensional
finite impulse response (FIR) filters.
This section assumes you are
familiar with working in the
frequency domain.

8 Linear Filtering and Filter Design

Linear Filtering
Filtering is a technique for modifying or enhancing an image. For example,
you can filter an image to emphasize certain features or remove other
features. Image processing operations implemented with filtering include
smoothing, sharpening, and edge enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel
in the output image is determined by applying some algorithm to the values
of the pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 15, “Neighborhood and Block Operations” for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

This section discusses linear filtering in MATLAB and Image Processing
Toolbox. Topics covered include:

• “Convolution” on page 8-2

• “Correlation” on page 8-4

• “Filtering Using imfilter” on page 8-5

• “Using Predefined Filter Types” on page 8-13

See “Filter Design” on page 8-15 for information about how to design filters.

Convolution
Linear filtering of an image is accomplished through an operation called
convolution. Convolution is a neighborhood operation in which each output
pixel is the weighted sum of neighboring input pixels. The matrix of weights
is called the convolution kernel, also known as the filter. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

For example, suppose the image is

A = [17 24 1 8 15

8-2

Linear Filtering

23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9]

and the convolution kernel is

h = [8 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of
the (2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.

Hence the (2,4) output pixel is

8-3

8 Linear Filtering and Filter Design

Computing the (2,4) Output of Convolution

Correlation
The operation called correlation is closely related to convolution. In
correlation, the value of an output pixel is also computed as a weighted sum of
neighboring pixels. The difference is that the matrix of weights, in this case
called the correlation kernel, is not rotated during the computation. The filter
design functions in Image Processing Toolbox return correlation kernels.

The following figure shows how to compute the (2,4) output pixel of the
correlation of A, assuming h is a correlation kernel instead of a convolution
kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of
the (2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.

The (2,4) output pixel from the correlation is

8-4

Linear Filtering

Computing the (2,4) Output of Correlation

Filtering Using imfilter
Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with
a 5-by-5 filter containing equal weights. Such a filter is often called an
averaging filter.

I = imread('coins.png');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

8-5

8 Linear Filtering and Filter Design

Data Types
The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Saturation Rules”
on page 2-25. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds
the range of the data type, the imfilter function truncates the result to
that data type’s allowed range. If it is an integer data type, imfilter rounds
fractional values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In
this example, the output of imfilter has negative values when the input is
of class double.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

8-6

Linear Filtering

h = [-1 0 1]

h =
-1 0 1

imfilter(A,h)

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20

12 9 9 -16 -21
18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A is of class uint8,
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =

24 0 0 14 0
5 0 9 9 0
6 9 14 9 0

12 9 9 0 0
18 14 0 0 0

Since the input to imfilter is of class uint8, the output also is of class
uint8, and so the negative values are truncated to 0. In such cases, it might
be appropriate to convert the image to another type, such as a signed integer
type, single, or double, before calling imfilter.

Correlation and Convolution Options
The imfilter function can perform filtering using either correlation or
convolution. It uses correlation by default, because the filter design functions,
described in “Filter Design” on page 8-15, and the fspecial function,
described in “Using Predefined Filter Types” on page 8-13, produce correlation
kernels.

8-7

8 Linear Filtering and Filter Design

However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For
example:

A = magic(5);
h = [-1 0 1]
imfilter(A,h) % filter using correlation

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20

12 9 9 -16 -21
18 14 -16 -16 -2

imfilter(A,h,'conv') % filter using convolution

ans =

-24 16 16 -14 8
-5 16 -9 -9 14
-6 -9 -14 -9 20

-12 -9 -9 16 21
-18 -14 16 16 2

Boundary Padding Options
When computing an output pixel at the boundary of an image, a portion of
the convolution or correlation kernel is usually off the edge of the image,
as illustrated in the following figure.

8-8

Linear Filtering

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by
assuming that they are 0. This is called zero padding and is illustrated in
the following figure.

Zero Padding of Outside Pixels

8-9

8 Linear Filtering and Filter Design

When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I = imread('eight.tif');
h = ones(5,5) / 25;
I2 = imfilter(I,h);
imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image with Black Border')

To eliminate the zero-padding artifacts around the edge of the image,
imfilter offers an alternative boundary padding method called border
replication. In border replication, the value of any pixel outside the image
is determined by replicating the value from the nearest border pixel. This
is illustrated in the following figure.

8-10

Linear Filtering

Replicated Boundary Pixels

To filter using border replication, pass the additional optional argument
'replicate' to imfilter.

I3 = imfilter(I,h,'replicate');
figure, imshow(I3);
title('Filtered Image with Border Replication')

8-11

8 Linear Filtering and Filter Design

The imfilter function supports other boundary padding options, such as
'circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering
The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering
a three-dimensional image with a two-dimensional filter is equivalent to
filtering each plane of the three-dimensional image individually with the
same two-dimensional filter. This example shows how easy it is to filter each
color plane of a truecolor image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

2 Filter the image and display it.

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

8-12

Linear Filtering

Relationship to Other Filtering Functions
MATLAB has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional
convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other
padding options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options,
as described in “Boundary Padding Options” on page 8-8.

Using Predefined Filter Types
The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to a grayscale image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

8-13

8 Linear Filtering and Filter Design

I = imread('moon.tif');
h = fspecial('unsharp');
I2 = imfilter(I,h);
imshow(I), title('Original Image')
figure, imshow(I2), title('Filtered Image')

8-14

Filter Design

Filter Design
This section describes working in the frequency domain to design filters.
Topics discussed include:

• “FIR Filters” on page 8-16

• “Frequency Transformation Method” on page 8-16

• “Frequency Sampling Method” on page 8-18

• “Windowing Method” on page 8-19

• “Creating the Desired Frequency Response Matrix” on page 8-21

• “Computing the Frequency Response of a Filter” on page 8-22

This section assumes you are familiar with working in the frequency domain.
This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating
a two-dimensional filter from a one-dimensional filter or window created
using functions from Signal Processing Toolbox. Although this toolbox is
not required, you might find it difficult to design filters in Image Processing
Toolbox if you do not have Signal Processing Toolbox as well.

8-15

8 Linear Filtering and Filter Design

FIR Filters
Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have a finite
extent to a single point, or impulse. All filter design functions in Image
Processing Toolbox return FIR filters.

FIR filters have several characteristics that make them ideal for image
processing in the MATLAB environment:

• FIR filters are easy to represent as matrices of coefficients.

• Two-dimensional FIR filters are natural extensions of one-dimensional
FIR filters.

• There are several well-known, reliable methods for FIR filter design.

• FIR filters are easy to implement.

• FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method
The frequency transformation method transforms a one-dimensional FIR
filter into a two-dimensional FIR filter. The frequency transformation
method preserves most of the characteristics of the one-dimensional filter,
particularly the transition bandwidth and ripple characteristics. This method
uses a transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal
and Image Processing, 1990, for details.)

8-16

Filter Design

The frequency transformation method generally produces very good results,
as it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to
create a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response.

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);
[H,w] = freqz(b,1,64,'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))
figure, freqz2(h,[32 32])

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

One-Dimensional Frequency Response

8-17

8 Linear Filtering and Filter Design

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

F
x

F
y

M
ag

ni
tu

de

Corresponding Two-Dimensional Frequency Response

Frequency Sampling Method
The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes
through those points. Frequency sampling places no constraints on the
behavior of the frequency response between the given points; usually, the
response ripples in these areas. (Ripples are oscillations around a constant
value. The frequency response of a practical filter often has ripples where the
frequency response of an ideal filter is flat.)

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 8-22 for more information.)

8-18

Filter Design

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method
The windowing method involves multiplying the ideal impulse response
with a window function to generate a corresponding filter, which tapers the
ideal impulse response. Like the frequency sampling method, the windowing
method produces a filter whose frequency response approximates a desired
frequency response. The windowing method, however, tends to produce better
results than the frequency sampling method.

8-19

8 Linear Filtering and Filter Design

The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that
you specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

fwind1 supports two different methods for making the two-dimensional
windows it uses:

• Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

• Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;
[f1,f2] = freqspace(11,'meshgrid');
mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1(Hd,hamming(11));
figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

8-20

Filter Design

Creating the Desired Frequency Response Matrix
The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. Frequency response is a
mathematical function describing the gain of a filter in response to different
input frequencies.

You can create an appropriate desired frequency response matrix using the
freqspace function. freqspace returns correct, evenly spaced frequency
values for any size response. If you create a desired frequency response
matrix using frequency points other than those returned by freqspace, you
might get unexpected results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5, use

[f1,f2] = freqspace(25,'meshgrid');
Hd = zeros(25,25); d = sqrt(f1.^2 + f2.^2) < 0.5;
Hd(d) = 1;
mesh(f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response
should be symmetric about the frequency origin (f1 = 0, f2 = 0).

8-21

8 Linear Filtering and Filter Design

Computing the Frequency Response of a Filter
The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667];

This command computes and displays the 64-by-64 point frequency response
of h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments

[H,f1,f2] = freqz2(h);

8-22

Filter Design

freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or π radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 9-3 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

8-23

8 Linear Filtering and Filter Design

8-24

9

Transforms

The usual mathematical representation of an image is a function of two
spatial variables: . The value of the function at a particular location

represents the intensity of the image at that point. This is called the
spatial domain. The term transform refers to an alternative mathematical
representation of an image. For example, the Fourier transform is a
representation of an image as a sum of complex exponentials of varying
magnitudes, frequencies, and phases. This is called the frequency domain.
Transforms are useful for a wide range of purposes, including convolution,
enhancement, feature detection, and compression.

This chapter defines several important transforms and shows examples of
their application to image processing.

Fourier Transform (p. 9-3) Defines the Fourier transform and
some of its applications in image
processing

Discrete Cosine Transform (p. 9-16) Describes the discrete cosine
transform (DCT) of an image and its
application, particularly in image
compression

Radon Transform (p. 9-20) Describes how the radon function
computes projections of an image
matrix along specified directions

9 Transforms

The Inverse Radon Transformation
(p. 9-29)

Describes how the iradon function
reconstructs images from projection
data

Fan-Beam Projection Data (p. 9-36) Describes how the fanbeam function
computes projections of an image
matrix along paths that radiate from
a specific source

9-2

Fourier Transform

Fourier Transform
The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

This section covers the following topics:

• “Definition of Fourier Transform” on page 9-3

• “Discrete Fourier Transform” on page 9-8

• “Applications of the Fourier Transform” on page 9-11

Definition of Fourier Transform
If is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of is defined by the relationship

The variables ω1 and ω2 are frequency variables; their units are radians
per sample. is often called the frequency-domain representation
of . is a complex-valued function that is periodic both in

and , with period . Because of the periodicity, usually only the range
is displayed. Note that is the sum of all the values of

. For this reason, is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse of a transform is an operation that when performed on a
transformed image produces the original image. The inverse two-dimensional
Fourier transform is given by

9-3

9 Transforms

Roughly speaking, this equation means that can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies

are given by .

Visualizing the Fourier Transform
To illustrate, consider a function that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, is shown as a
continuous function, even though the variables m and n are discrete.

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier

transform, , of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.

9-4

Fourier Transform

Magnitude Image of a Rectangular Function

The peak at the center of the plot is , which is the sum of all the values
in . The plot also shows that has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of are narrow pulses, while vertical
cross sections are broad pulses. Narrow pulses have more high-frequency
content than broad pulses.

Another common way to visualize the Fourier transform is to display

as an image, as shown.

9-5

9 Transforms

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where is very close to 0.

Examples of the Fourier transform for other simple shapes are shown below.

9-6

Fourier Transform

Fourier Transforms of Some Simple Shapes

9-7

9 Transforms

Discrete Fourier Transform
Working with the Fourier transform on a computer usually involves a form
of the transform known as the discrete Fourier transform (DFT). A discrete
transform is a transform whose input and output values are discrete samples,
making it convenient for computer manipulation. There are two principal
reasons for using this form of the transform:

• The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

• There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function that is nonzero only
over the finite region and . The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

The values are the DFT coefficients of . The zero-frequency
coefficient, , is often called the "DC component." DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities and

, respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DFT, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.

9-8

Fourier Transform

Relationship to the Fourier Transform
The DFT coefficients are samples of the Fourier transform .

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example
in “Definition of Fourier Transform” on page 9-3. Remember that f(m,n)
is equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f,'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5],'notruesize'); colormap(jet); colorbar

9-9

9 Transforms

Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing
the Fourier Transform” on page 9-4. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in
the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

9-10

Fourier Transform

Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper
left corner rather than the center. You can fix this problem by using
the function fftshift, which swaps the quadrants of F so that the
zero-frequency coefficient is in the center.

F = fft2(f,256,256);F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 9-4.

Applications of the Fourier Transform
This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters
The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays
a filter’s frequency response. The frequency response of the Gaussian
convolution kernel shows that this filter passes low frequencies and
attenuates high frequencies.

h = fspecial('gaussian');
freqz2(h)

9-11

9 Transforms

Frequency Response of a Gaussian Filter

See Chapter 8, “Linear Filtering and Filter Design” for more information
about linear filtering, filter design, and frequency responses.

Fast Convolution
A key property of the Fourier transform is that the multiplication of two
Fourier transforms corresponds to the convolution of the associated spatial
functions. This property, together with the fast Fourier transform, forms the
basis for a fast convolution algorithm.

Note The FFT-based convolution method is most often used for large inputs.
For small inputs it is generally faster to use imfilter.

To illustrate, this example performs the convolution of A and B, where A is an
M-by-N matrix and B is a P-by-Q matrix:

1 Create two matrices.

A = magic(3);
B = ones(3);

9-12

Fourier Transform

2 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A
and B are zero-padded to a size that is a power of 2 because fft2 is fastest
for these sizes.) The example pads the matrices to be 8-by-8.

A(8,8) = 0;
B(8,8) = 0;

3 Compute the two-dimensional DFT of A and B using fft2.

4 Multiply the two DFTs together.

5 Compute the inverse two-dimensional DFT of the result using ifft2.

The following code performs steps 3, 4, and 5 in the procedure.

C = ifft2(fft2(A).*fft2(B));

6 Extract the nonzero portion of the result and remove the imaginary part
caused by roundoff error.

C = C(1:5,1:5);
C = real(C)

C =

8.0000 9.0000 15.0000 7.0000 6.0000
11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000
7.0000 21.0000 30.0000 23.0000 9.0000
4.0000 13.0000 15.0000 11.0000 2.0000

Locating Image Features
The Fourier transform can also be used to perform correlation, which is closely
related to convolution. Correlation can be used to locate features within an
image; in this context correlation is often called template matching.

This example illustrates how to use correlation to locate occurrences of the
letter "a" in an image containing text:

1 Read in the sample image.

9-13

9 Transforms

bw = imread('text.png');

2 Create a template for matching by extracting the letter "a" from the image.

a = bw(32:45,88:98);

You can also create the template image by using the interactive version of
imcrop, using the pixval function to determine the coordinates of features
in an image.

The following figure shows both the original image and the template.

imshow(bw);
figure, imshow(a);

Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image with the original image
by rotating the template image by 180o and then using the FFT-based
convolution technique described in “Fast Convolution” on page 9-12.

(Convolution is equivalent to correlation if you rotate the convolution
kernel by 180o.) To match the template to the image, use the fft2 and
ifft2 functions.

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in
the image correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.

9-14

Fourier Transform

Correlated Image

4 To view the locations of the template in the image, find the maximum pixel
value and then define a threshold value that is less than this maximum.
The locations of these peaks are indicated by the white spots in the
thresholded correlation image. (To make the locations easier to see in this
figure, the thresholded image has been dilated to enlarge the size of the
points.)

max(C(:))
ans =
68.0000

thresh = 60; % Use a threshold that's a little less than max.
figure, imshow(C > thresh)% Display showing pixels over
threshold.

Correlated, Thresholded Image Showing Template Locations

9-15

9 Transforms

Discrete Cosine Transform
The discrete cosine transform (DCT) represents an image as a sum of
sinusoids of varying magnitudes and frequencies. The dct2 function computes
the two-dimensional discrete cosine transform (DCT) of an image. The DCT
has the property that, for a typical image, most of the visually significant
information about the image is concentrated in just a few coefficients of the
DCT. For this reason, the DCT is often used in image compression applications.
For example, the DCT is at the heart of the international standard lossy image
compression algorithm known as JPEG. (The name comes from the working
group that developed the standard: the Joint Photographic Experts Group.)

This section covers the following topics:

• “DCT Definition” on page 9-16

• “The DCT Transform Matrix” on page 9-18

• “DCT and Image Compression” on page 9-18

DCT Definition
The two-dimensional DCT of an M-by-N matrix A is defined as follows.

The values are called the DCT coefficients of A. (Note that matrix indices
in MATLAB always start at 1 rather than 0; therefore, the MATLAB matrix
elements A(1,1) and B(1,1) correspond to the mathematical quantities
and , respectively.)

The DCT is an invertible transform, and its inverse is given by

9-16

Discrete Cosine Transform

The inverse DCT equation can be interpreted as meaning that any M-by-N
matrix A can be written as a sum of functions of the form

These functions are called the basis functions of the DCT. The DCT coefficients
, then, can be regarded as the weights applied to each basis function. For

8-by-8 matrices, the 64 basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies
increase from top to bottom. The constant-valued basis function at the
upper left is often called the DC basis function, and the corresponding DCT
coefficient is often called the DC coefficient.

9-17

9 Transforms

The DCT Transform Matrix
Image Processing Toolbox offers two different ways to compute the DCT. The
first method is to use the function dct2. dct2 uses an FFT-based algorithm
for speedy computation with large inputs. The second method is to use the
DCT transform matrix, which is returned by the function dctmtx and might
be more efficient for small square inputs, such as 8-by-8 or 16-by-16. The
M-by-M transform matrix T is given by

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the
one-dimensional DCT of the columns of A. The two-dimensional DCT of A can
be computed as B=T*A*T'. Since T is a real orthonormal matrix, its inverse
is the same as its transpose. Therefore, the inverse two-dimensional DCT of
B is given by T'*B*T.

DCT and Image Compression
In the JPEG image compression algorithm, the input image is divided into
8-by-8 or 16-by-16 blocks, and the two-dimensional DCT is computed for each
block. The DCT coefficients are then quantized, coded, and transmitted. The
JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients,
computes the inverse two-dimensional DCT of each block, and then puts the
blocks back together into a single image. For typical images, many of the
DCT coefficients have values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks
in the input image, discards (sets to zero) all but 10 of the 64 DCT coefficients
in each block, and then reconstructs the image using the two-dimensional
inverse DCT of each block. The transform matrix computation method is used.

9-18

Discrete Cosine Transform

I = imread('cameraman.tif');
I = im2double(I);
T = dctmtx(8);
B = blkproc(I,[8 8],'P1*x*P2',T,T');
mask = [1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0];

B2 = blkproc(B,[8 8],'P1.*x',mask);
I2 = blkproc(B2,[8 8],'P1*x*P2',T',T);
imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
To experiment with discarding more or fewer coefficients, and to apply this
technique to other images, try running the demo function dctdemo.

9-19

9 Transforms

Radon Transform
The radon function computes projections of an image matrix along specified
directions. This section covers the following topics:

• “Radon Transformation Definition” on page 9-20

• “Plotting the Radon Transform” on page 9-22

• “Viewing the Radon Transform as an Image” on page 9-24

• “Using the Radon Transform to Detect Lines” on page 9-25

Radon Transformation Definition
The radon function computes projections of an image matrix along specified
directions.

A projection of a two-dimensional function f(x,y) is a set of line integrals.
The radon function computes the line integrals from multiple sources along
parallel paths, or beams, in a certain direction. The beams are spaced 1
pixel unit apart. To represent an image, the radon function takes multiple,
parallel-beam projections of the image from different angles by rotating the
source around the center of the image. The following figure shows a single
projection at a specified rotation angle.

Parallel-Beam Projection at Rotation Angle Theta

9-20

Radon Transform

Note For information about creating projection data from line integrals along
paths that radiate from a single source, called fan-beam projections, see
“Fan-Beam Projection Data” on page 9-36. To convert parallel-beam projection
data to fan-beam projection data, use the para2fan function.

For example, the line integral of f(x,y) in the vertical direction is the projection
of f(x,y) onto the x-axis; the line integral in the horizontal direction is the
projection of f(x,y) onto the y-axis. The following figure shows horizontal and
vertical projections for a simple two-dimensional function.

Horizontal and Vertical Projections of a Simple Function

Projections can be computed along any angle [[THETA]]. In general, the
Radon transform of f(x,y) is the line integral of f parallel to the y´-axis

where

9-21

9 Transforms

The following figure illustrates the geometry of the Radon transform.

Geometry of the Radon Transform

Plotting the Radon Transform
You can compute the Radon transform of an image I for the angles specified in
the vector theta using the radon function with this syntax.

[R,xp] = radon(I,theta);

9-22

Radon Transform

The columns of R contain the Radon transform for each angle in theta. The
vector xp contains the corresponding coordinates along the x´-axis. The center
pixel of I is defined to be floor((size(I)+1)/2); this is the pixel on the
x´-axis corresponding to .

The commands below compute and plot the Radon transform at 0° and 45° of
an image containing a single square object. xp is the same for all projection
angles.

I = zeros(100,100);
I(25:75, 25:75) = 1;
imshow(I)
[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_{0^o} (x\prime)')

Radon Transform of a Square Function at 0 Degrees

figure; plot(xp,R(:,2)); title('R_{45^o} (x\prime)')

9-23

9 Transforms

Radon Transform of a Square Function at 45 Degrees

Viewing the Radon Transform as an Image
The Radon transform for a large number of angles is often displayed as
an image. In this example, the Radon transform for the square image is
computed at angles from 0° to 180°, in 1° increments.

theta = 0:180;
[R,xp] = radon(I,theta);
imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');
set(gca,'XTick',0:20:180);
colormap(hot);
colorbar

9-24

Radon Transform

Radon Transform Using 180 Projections

Using the Radon Transform to Detect Lines
The Radon transform is closely related to a common computer vision operation
known as the Hough transform. You can use the radon function to implement
a form of the Hough transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
BW = edge(I);
imshow(I), figure, imshow(BW)

9-25

9 Transforms

2 Compute the Radon transform of the edge image.

theta = 0:179;
[R,xp] = radon(BW,theta);
figure, imagesc(theta, xp, R); colormap(hot);
xlabel('\theta (degrees)'); ylabel('x\prime');
title('R_{\theta} (x\prime)');
colorbar

9-26

Radon Transform

Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The
locations of these peaks correspond to the locations of straight lines in the
original image.

In the following figure, the strongest peaks in R correspond to and
. The line perpendicular to that angle and located at

is shown below, superimposed in red on the original image. The Radon
transform geometry is shown in black. Notice that the other strong lines
parallel to the red line also appear as peaks at in the transform. Also,
the lines perpendicular to this line appear as peaks at .

9-27

9 Transforms

Radon Transform Geometry and the Strongest Peak (Red)

9-28

The Inverse Radon Transformation

The Inverse Radon Transformation
The iradon function inverts the Radon transform (which was introduced
in the previous section), and can therefore be used to reconstruct images
from projection data. The inverse Radon transform is commonly used in
tomography applications..This section covers the following topics:

• “Inverse Radon Transform Definition” on page 9-29

• “Example: Reconstructing an Image from Parallel Projection Data” on
page 9-32

Inverse Radon Transform Definition
As described in “Radon Transform” on page 9-20, given an image I and a
set of angles theta, the radon function can be used to calculate the Radon
transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I.

IR = iradon(R,theta);

In the example above, projections are calculated from the original image I.
In most application areas, there is no original image from which projections
are formed. For example, in X-ray absorption tomography, projections are
formed by measuring the attenuation of radiation that passes through a
physical specimen at different angles. The original image can be thought of
as a cross section through the specimen, in which intensity values represent
the density of the specimen. Projections are collected using special purpose
hardware, and then an internal image of the specimen is reconstructed by
iradon. This allows for noninvasive imaging of the inside of a living body or
another opaque object.

iradon reconstructs an image from parallel-beam projections. In
parallel-beam geometry, each projection is formed by combining a set of line
integrals through an image at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in
X-ray absorption tomography. Note that there is an equal number of n

9-29

9 Transforms

emitters and n sensors. Each sensor measures the radiation emitted from its
corresponding emitter, and the attenuation in the radiation gives a measure
of the integrated density, or mass, of the object. This corresponds to the line
integral that is calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry
that was described in “Radon Transform” on page 9-20. f(x,y) denotes the
brightness of the image and is the projection at angle theta.

Parallel-Beam Projections Through an Object

Another geometry that is commonly used is fan-beam geometry, in which
there is one source and n sensors. For more information, see “Fan-Beam

9-30

The Inverse Radon Transformation

Projection Data” on page 9-36. To convert parallel-beam projection data into
fan-beam projection data, use the para2fan function.

Improving the Results
iradon uses the filtered backprojection algorithm to compute the inverse
Radon transform. This algorithm forms an approximation of the image I
based on the projections in the columns of R. A more accurate result can be
obtained by using more projections in the reconstruction. As the number of
projections (the length of theta) increases, the reconstructed image IR more
accurately approximates the original image I. The vector theta must contain
monotonically increasing angular values with a constant incremental angle

[[THETA]]. When the scalar [[THETA]] is known, it can be passed to
iradon instead of the array of theta values. Here is an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then
reconstructs the image using the filtered projections. In some cases, noise
can be present in the projections. To remove high frequency noise, apply a
window to the filter to attenuate the noise. Many such windowed filters are
available in iradon. The example call to iradon below applies a Hamming
window to the filter. See the iradon reference page for more information. To
get unfiltered backprojection data, specify 'none' for the filter parameter.

IR = iradon(R,theta,'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the
filter has zero response. D must be a scalar in the range [0,1]. With this option,
the frequency axis is rescaled so that the whole filter is compressed to fit into
the frequency range [0,D]. This can be useful in cases where the projections
contain little high-frequency information but there is high-frequency noise.
In this case, the noise can be completely suppressed without compromising
the reconstruction. The following call to iradon sets a normalized frequency
value of 0.85.

IR = iradon(R,theta,0.85);

9-31

9 Transforms

Example: Reconstructing an Image from Parallel
Projection Data
The commands below illustrate how to reconstruct an image from parallel
projection data. The test image is the Shepp-Logan head phantom, which
can be generated by the Image Processing Toolbox function phantom. The
phantom image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads. The bright elliptical shell along the
exterior is analogous to a skull, and the many ellipses inside are analogous
to brain features.

1 Create a Shepp-Logan head phantom image.

P = phantom(256);
imshow(P)

2 Compute the Radon transform of the phantom brain for three different
sets of theta values. R1 has 18 projections, R2 has 36 projections, and R3
has 90 projections.

theta1 = 0:10:170; [R1,xp] = radon(P,theta1);
theta2 = 0:5:175; [R2,xp] = radon(P,theta2);
theta3 = 0:2:178; [R3,xp] = radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head
phantom. The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');

9-32

The Inverse Radon Transformation

Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of
the transform. The first column in the Radon transform corresponds to a
projection at 0º that is integrating in the vertical direction. The centermost
column corresponds to a projection at 90º, which is integrating in the
horizontal direction. The projection at 90º has a wider profile than the
projection at 0º due to the larger vertical semi-axis of the outermost ellipse
of the phantom.

9-33

9 Transforms

4 Reconstruct the head phantom image from the projection data created in
step 2 and display the results.

I1 = iradon(R1,10);
I2 = iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)
figure, imshow(I2)
figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice
how image I1, which was reconstructed from only 18 projections, is the
least accurate reconstruction. Image I2, which was reconstructed from 36
projections, is better, but it is still not clear enough to discern clearly the
small ellipses in the lower portion of the image. I3, reconstructed using
90 projections, most closely resembles the original image. Notice that
when the number of projections is relatively small (as in I1 and I2), the
reconstruction can include some artifacts from the back projection.

9-34

The Inverse Radon Transformation

Inverse Radon Transforms of the Shepp-Logan Head Phantom

9-35

9 Transforms

Fan-Beam Projection Data
The fanbeam function computes projections of an image matrix along specified
directions. A projection of a two-dimensional function f(x,y) is a set of line
integrals. The fanbeam function computes the line integrals along paths that
radiate from a single source, forming a fan shape. To represent an image, the
fanbeam function takes multiple projections of the image from different angles
by rotating the source around the center of the image. The following figure
shows a single fan-beam projection at a specified rotation angle.

Fan-Beam Projection at Rotation Angle Theta

This section covers the following topics:

• “Computing Fan-Beam Projection Data” on page 9-37

• “Reconstructing an Image from Fan-Beam Projection Data” on page 9-39

• “Example: Using Reconstructing an Image From Fan-Beam Projection
Data” on page 9-40

Note For information about creating projection data from line integrals along
parallel paths, see “Radon Transform” on page 9-20. To convert fan-beam
projection data to parallel-beam projection data, use the fan2para function.

9-36

Fan-Beam Projection Data

Computing Fan-Beam Projection Data
To compute fan-beam projection data, use the fanbeam function. You specify
as arguments an image and the distance between the vertex of the fan-beam
projections and the center of rotation (the center pixel in the image). The
fanbeam function determines the number of beams, based on the size of the
image and the settings of fanbeam parameters.

The FanSensorGeometry parameter specifies how sensors are aligned. If
you specify the value 'arc' for FanSensorGeometry (the default), fanbeam
positions the sensors along an arc, spacing the sensors at 1 degree intervals.
Using the FanSensorSpacing parameter, you can control the distance
between sensors by specifying the angle between each beam. If you specify
the value 'line' for FanSensorGeometry parameter, fanbeam position
sensors along a straight line, rather than an arc. With 'line' geometry, the
FanSensorSpacing parameter specifies the distance between the sensors,
in pixels, along the x’ axis.

fanbeam takes projections at different angles by rotating the source around
the center pixel at 1 degree intervals. Using the FanRotationIncrement
parameter you can specify a different rotation angle increment.

The following figures illustrate both these geometries. The first figure
illustrates geometry used by the fanbeam function when FanSensorGeometry
is set to 'arc' (the default). Note how you specify the distance between
sensors by specifying the angular spacing of the beams.

9-37

9 Transforms

Fan-Beam Projection with Arc Geometry

The following figure illustrates the geometry used by the fanbeam function
when FanSensorGeometry is set to 'line'. In this figure, note how you
specify the position of the sensors by specifying the distance between them in
pixels along the x’ axis.

9-38

Fan-Beam Projection Data

Fan-Beam Projection with Line Geometry

Reconstructing an Image from Fan-Beam Projection
Data
To reconstruct an image from fan-beam projection data, use the ifanbeam
function. With this function, you specify as arguments the projection data and
the distance between the vertex of the fan-beam projections and the center
of rotation when the projection data was created. For example, this code
recreates the image I from the projection data P and distance D.

I = ifanbeam(P,D);

By default, the ifanbeam function assumes that the fan-beam projection data
was created using the arc fan sensor geometry, with beams spaced at 1 degree
angles and projections taken at 1 degree increments over a full 360 degree

9-39

9 Transforms

range. As with the fanbeam function, you can use ifanbeam parameters to
specify other values for these characteristics of the projection data. Use the
same values for these parameters that were used when the projection data
was created. For more information about these parameters, see “Computing
Fan-Beam Projection Data” on page 9-37.

The ifanbeam function converts the fan-beam projection data to parallel-beam
projection data with the fan2para function, and then calls the iradon
function to perform the image reconstruction. For this reason, the ifanfeam
function supports certain iradon parameters, which it passes to the iradon
function. See “The Inverse Radon Transformation” on page 9-29 for more
information about the iradon function.

Example: Using Reconstructing an Image From
Fan-Beam Projection Data
The commands below illustrate how to use fanbeam and ifanbeam to form
projections from a sample image and then reconstruct the image from
the projections. The test image is the Shepp-Logan head phantom, which
can be generated by the Image Processing Toolbox function phantom. The
phantom image illustrates many of the qualities that are found in real-world
tomographic imaging of human heads.

1 Generate the test image and display it.

P = phantom(256);
imshow(P)

9-40

Fan-Beam Projection Data

2 Compute fan-beam projection data of the test image, using the
FanSensorSpacing parameter to vary the sensor spacing. The example
uses the fanbeam arc geometry, so you specify the spacing between sensors
by specifying the angular spacing of the beams. The first call spaces the
beams at 2 degrees; the second at 1 degree; and the third at 0.25 degrees.
In each call, the distance between the center of rotation and vertex of the
projections is constant at 250 pixels. In addition, fanbeam rotates the
projection around the center pixel at 1 degree increments.

D = 250;

dsensor1 = 2;
F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1);

dsensor2 = 1;
F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2);

dsensor3 = 0.25
[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...
'FanSensorSpacing',dsensor3);

3 Plot the projection data F3. Because fanbeam calculates projection data
at rotation angles from 0 to 360 degrees, the same patterns occur at an
offset of 180 degrees. The same features are being sampled from both sides.
Compare this plot to the plot of the parallel-beam projection data of the
head phantom using 90 projections in “Example: Reconstructing an Image
from Parallel Projection Data” on page 9-32.

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)
colormap(hot); colorbar
xlabel('Fan Rotation Angle (degrees)')
ylabel('Fan Sensor Position (degrees)')

9-41

9 Transforms

4 Reconstruct the image from the fan-beam projection data using ifanbeam.
In each reconstruction, match the fan sensor spacing with the spacing
used when the projection data was created in step 2. The example uses the
OutputSize parameter to constrain the output size of each reconstruction
to be the same as the size of the original image |P|.

output_size = max(size(P));

Ifan1 = ifanbeam(F1,D,
'FanSensorSpacing',dsensor1,'OutputSize',output_size);

figure, imshow(Ifan1)

Ifan2 = ifanbeam(F2,D,
'FanSensorSpacing',dsensor2,'OutputSize',output_size);

figure, imshow(Ifan2)

Ifan3 = ifanbeam(F3,D,
'FanSensorSpacing',dsensor3,'OutputSize',output_size);

figure, imshow(Ifan3)

The following figure shows the result of each transform. Note how the
quality of the reconstruction gets better as the number of beams in the

9-42

Fan-Beam Projection Data

projection increases. The first image, Ifan1, was created using 2 degree
spacing of the beams; the second image, ifan2, was created using 1 degree
spacing of the beams; the third image, ifan3, was created using 0.25
spacing of the beams.

Reconstructions of the Head Phantom Image from Fan-Beam Projections

9-43

9 Transforms

9-44

10

Morphological Operations

Morphology is a broad set of image processing operations that process images
based on shapes. Morphological operations apply a structuring element
to an input image, creating an output image of the same size. The most
basic morphological operations are dilation and erosion. In a morphological
operation, the value of each pixel in the output image is based on a comparison
of the corresponding pixel in the input image with its neighbors. By choosing
the size and shape of the neighborhood, you can construct a morphological
operation that is sensitive to specific shapes in the input image.

This chapter describes the Image Processing Toolbox morphological functions.
You can use these functions to perform common image processing tasks, such
as contrast enhancement, noise removal, thinning, skeletonization, filling,
and segmentation.

Dilation and Erosion (p. 10-3) Defines the two fundamental
morphological operations, dilation
and erosion, and some of the
morphological image processing
operations that are based on
combinations of these operations

Morphological Reconstruction
(p. 10-18)

Describes morphological
reconstruction and the toolbox
functions that use this type of
processing

Distance Transform (p. 10-37) Describes how to use the bwdist
function to compute the distance
transform of an image

10 Morphological Operations

Objects, Regions, and Feature
Measurement (p. 10-40)

Describes functions that return
information about a binary image

Lookup Table Operations (p. 10-44) Describes functions that perform
lookup table operations

10-2

Dilation and Erosion

Dilation and Erosion
Dilation and erosion are two fundamental morphological operations. Dilation
adds pixels to the boundaries of objects in an image, while erosion removes
pixels on object boundaries. The number of pixels added or removed from the
objects in an image depends on the size and shape of the structuring element
used to process the image.

The following sections

• Provide important background information about how the dilation and
erosion functions operate

• Describe structuring elements and how to create them

• Describe how to perform a morphological dilation

• Describe how to perform a morphological erosion

• Describe some of the common operations that are based on dilation and
erosion

• Describe toolbox functions that are based on dilation and erosion

To view an extended example that uses morphological processing to solve
an image processing problem, see the Image Processing Toolbox watershed
segmentation demo.

Understanding Dilation and Erosion
In the morphological dilation and erosion operations, the state of any
given pixel in the output image is determined by applying a rule to the
corresponding pixel and its neighbors in the input image. The rule used to
process the pixels defines the operation as a dilation or an erosion. This table
lists the rules for both dilation and erosion.

10-3

10 Morphological Operations

Rules for Dilation and Erosion

Operation Rule

Dilation The value of the output pixel is the maximum value of all
the pixels in the input pixel’s neighborhood. In a binary
image, if any of the pixels is set to the value 1, the output
pixel is set to 1.

Erosion The value of the output pixel is the minimum value of all the
pixels in the input pixel’s neighborhood. In a binary image,
if any of the pixels is set to 0, the output pixel is set to 0.

The following figure illustrates the dilation of a binary image. Note how the
structuring element defines the neighborhood of the pixel of interest, which is
circled. (See “Structuring Elements” on page 10-6 for more information.) The
dilation function applies the appropriate rule to the pixels in the neighborhood
and assigns a value to the corresponding pixel in the output image. In the
figure, the morphological dilation function sets the value of the output pixel to
1 because one of the elements in the neighborhood defined by the structuring
element is on.

Morphological Dilation of a Binary Image

The following figure illustrates this processing for a grayscale image. The
figure shows the processing of a particular pixel in the input image. Note
how the function applies the rule to the input pixel’s neighborhood and uses
the highest value of all the pixels in the neighborhood as the value of the
corresponding pixel in the output image.

10-4

Dilation and Erosion

Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders (Padding Behavior)
Morphological functions position the origin of the structuring element, its
center element, over the pixel of interest in the input image. For pixels at
the edge of an image, parts of the neighborhood defined by the structuring
element can extend past the border of the image.

To process border pixels, the morphological functions assign a value to these
undefined pixels, as if the functions had padded the image with additional
rows and columns. The value of these padding pixels varies for dilation
and erosion operations. The following table describes the padding rules for
dilation and erosion for both binary and grayscale images.

10-5

10 Morphological Operations

Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the minimum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
0. For grayscale images, the minimum value for uint8
images is 0.

Erosion Pixels beyond the image border are assigned the maximum
value afforded by the data type.

For binary images, these pixels are assumed to be set to
1. For grayscale images, the maximum value for uint8
images is 255.

Note By using the minimum value for dilation operations and the maximum
value for erosion operations, the toolbox avoids border effects, where regions
near the borders of the output image do not appear to be homogeneous with
the rest of the image. For example, if erosion padded with a minimum value,
eroding an image would result in a black border around the edge of the output
image.

Structuring Elements
An essential part of the dilation and erosion operations is the structuring
element used to probe the input image. A structuring element is a matrix
consisting of only 0’s and 1’s that can have any arbitrary shape and size. The
pixels with values of 1 define the neighborhood.

Two-dimensional, or flat, structuring elements are typically much smaller
than the image being processed. The center pixel of the structuring element,
called the origin, identifies the pixel of interest -- the pixel being processed.
The pixels in the structuring element containing 1’s define the neighborhood
of the structuring element. These pixels are also considered in dilation or
erosion processing.

10-6

Dilation and Erosion

Three-dimensional, or nonflat, structuring elements use 0’s and 1’s to define
the extent of the structuring element in the x- and y-planes and add height
values to define the third dimension.

The Origin of a Structuring Element
The morphological functions use this code to get the coordinates of the origin
of structuring elements of any size and dimension.

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element.
Because structuring elements are MATLAB objects, you cannot use the size of
the STREL object itself in this calculation. You must use the STREL getnhood
method to retrieve the neighborhood of the structuring element from the
STREL object. For information about other STREL object methods, see the
strel function reference page.)

For example, the following illustrates a diamond-shaped structuring element.

Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element
The toolbox dilation and erosion functions accept structuring element objects,
called STRELs. You use the strel function to create STRELs of any arbitrary
size and shape. The strel function also includes built-in support for many
common shapes, such as lines, diamonds, disks, periodic lines, and balls.

10-7

10 Morphological Operations

Note You typically choose a structuring element the same size and shape as
the objects you want to process in the input image. For example, to find lines
in an image, create a linear structuring element.

For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)
se =

Flat STREL object containing 25 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

Structuring Element Decomposition
To enhance performance, the strel function might break structuring elements
into smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be
accomplished by dilating first with a 1-by-11 structuring element, and
then with an 11-by-1 structuring element. This results in a theoretical
speed improvement of a factor of 5.5, although in practice the actual speed
improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes
are approximations; all other decompositions are exact. Decomposition is not
used with an arbitrary structuring element unless it is a flat structuring
element whose neighborhood is all 1’s.

10-8

Dilation and Erosion

To view the sequence of structuring elements used in a decomposition, use the
STREL getsequence method. The getsequence function returns an array of
the structuring elements that form the decomposition. For example, here are
the structuring elements created in the decomposition of a diamond-shaped
structuring element.

sel = strel('diamond',4)
sel =
Flat STREL object containing 41 neighbors.
Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:
0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0

seq = getsequence(sel)
seq =
3x1 array of STREL objects

seq(1)
ans =
Flat STREL object containing 5 neighbors.

Neighborhood:
0 1 0
1 1 1
0 1 0

seq(2)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:

10-9

10 Morphological Operations

0 1 0
1 0 1
0 1 0

seq(3)
ans =
Flat STREL object containing 4 neighbors.

Neighborhood:
0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

Dilating an Image
To dilate an image, use the imdilate function. The imdilate function accepts
two primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: PADOPT and PACKOPT.
The PADOPT argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. (Packing is a method of
compressing binary images that can speed up the processing of the image. See
the bwpack reference page for information.)

This example dilates a simple binary image containing one rectangular object.

BW = zeros(9,10);
BW(4:6,4:7) = 1
BW =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0

10-10

Dilation and Erosion

0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

To expand all sides of the foreground component, the example uses a 3-by-3
square structuring element object. (For more information about using the
strel function, see “Structuring Elements” on page 10-6.)

SE = strel('square',3)
SE =

Flat STREL object containing 3 neighbors.

Neighborhood:
1 1 1
1 1 1
1 1 1

To dilate the image, pass the image BW and the structuring element SE to
the imdilate function. Note how dilation adds a rank of 1’s to all sides of
the foreground object.

BW2 = imdilate(BW,SE)

Eroding an Image
To erode an image, use the imerode function. The imerode function accepts
two primary arguments:

10-11

10 Morphological Operations

• The input image to be processed (grayscale, binary, or packed binary image)

• A structuring element object, returned by the strel function, or a binary
matrix defining the neighborhood of a structuring element

imerode also accepts three optional arguments: PADOPT, PACKOPT, and M.

The PADOPT argument affects the size of the output image. The PACKOPT
argument identifies the input image as packed binary. If the image is packed
binary, M identifies the number of rows in the original image. (Packing is a
method of compressing binary images that can speed up the processing of the
image. See the bwpack reference page for more information.)

The following example erodes the binary image circbw.tif:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal
structuring element object. (For more information about using the strel
function, see “Structuring Elements” on page 10-6.)

SE = strel('arbitrary',eye(5));
SE=

Flat STREL object containing 5 neighbors.

Neighborhood:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3 Call the imerode function, passing the image BW and the structuring
element SE as arguments.

BW2 = imerode(BW1,SE);

Notice the diagonal streaks on the right side of the output image. These
are due to the shape of the structuring element.

10-12

Dilation and Erosion

imshow(BW1)
figure, imshow(BW2)

Combining Dilation and Erosion
Dilation and erosion are often used in combination to implement image
processing operations. For example, the definition of a morphological opening
of an image is an erosion followed by a dilation, using the same structuring
element for both operations. The related operation, morphological closing of
an image, is the reverse: it consists of dilation followed by an erosion with the
same structuring element.

The following section uses imdilate and imerode to illustrate how to
implement a morphological opening. Note, however, that the toolbox already
includes the imopen function, which performs this processing. The toolbox
includes functions that perform many common morphological operations. See
“Dilation- and Erosion-Based Functions” on page 10-15 for a complete list.

Morphological Opening
You can use morphological opening to remove small objects from an image
while preserving the shape and size of larger objects in the image. For
example, you can use the imopen function to remove all the circuit lines
from the original circuit image, circbw.tif, creating an output image that
contains only the rectangular shapes of the microchips.

To morphologically open the image, perform these steps:

10-13

10 Morphological Operations

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element.

SE = strel('rectangle',[40 30]);

The structuring element should be large enough to remove the lines when
you erode the image, but not large enough to remove the rectangles. It
should consist of all 1’s, so it removes everything but large contiguous
patches of foreground pixels.

3 Erode the image with the structuring element.

BW2 = imerode(BW1,SE);
imshow(BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image
using the same structuring element, SE.

BW3 = imdilate(BW2,SE);
imshow(BW3)

10-14

Dilation and Erosion

Dilation- and Erosion-Based Functions
This section describes two common image processing operations that are
based on dilation and erosion:

• Skeletonization

• Perimeter determination

This table lists other functions in the toolbox that perform common
morphological operations that are based on dilation and erosion. For more
information about these functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring
element, and the image’s complement, eroded with a second
structuring element.

imbothat Subtracts the original image from a morphologically closed
version of the image. Can be used to find intensity troughs
in an image.

imclose Dilates an image and then erodes the dilated image using
the same structuring element for both operations.

10-15

10 Morphological Operations

Dilation- and Erosion-Based Functions (Continued)

Function Morphological Definition

imopen Erodes an image and then dilates the eroded image using
the same structuring element for both operations.

imtophat Subtracts a morphologically opened image from the original
image. Can be used to enhance contrast in an image.

Skeletonization
To reduce all objects in an image to lines, without changing the essential
structure of the image, use the bwmorph function. This process is known as
skeletonization.

BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1,'skel',Inf);
imshow(BW1)
figure, imshow(BW2)

10-16

Dilation and Erosion

Perimeter Determination
The bwperim function determines the perimeter pixels of the objects in a
binary image. A pixel is considered a perimeter pixel if it satisfies both of
these criteria:

• The pixel is on.

• One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a
circuit board.

BW1 = imread('circbw.tif');
BW2 = bwperim(BW1);
imshow(BW1)
figure, imshow(BW2)

10-17

10 Morphological Operations

Morphological Reconstruction
Morphological reconstruction is another major part of morphological image
processing. Based on dilation, morphological reconstruction has these unique
properties:

• Processing is based on two images, a marker and a mask, rather than one
image and a structuring element.

• Processing repeats until stability; i.e., the image no longer changes.

• Processing is based on the concept of connectivity, rather than a structuring
element.

This section

• Provides background information about morphological reconstruction and
describes how to use the imreconstruct function

• Describes how pixel connectivity affects morphological reconstruction

• Describes how to use the imfill function, which is based on morphological
reconstruction

• Describes a group of functions, all based on morphological reconstruction,
that process image extrema, i.e., the areas of high and low intensity in
images

Marker and Mask
Morphological reconstruction processes one image, called the marker, based
on the characteristics of another image, called the mask. The high points, or
peaks, in the marker image specify where processing begins. The processing
continues until the image values stop changing.

To illustrate morphological reconstruction, consider this simple image. It
contains two primary regions, the blocks of pixels containing the values 14
and 18. The background is primarily all set to 10, with some pixels set to 11.

10-18

Morphological Reconstruction

To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and
erosion, the characteristics of the marker image determine the processing
performed in morphological reconstruction. The peaks in the marker image
should identify the location of objects in the mask image that you want to
emphasize.

One way to create a marker image is to subtract a constant from the mask
image, using imsubtract.

marker = imsubtract(A,2)
marker =

8 8 8 8 8 8 8 8 8 8
8 12 12 12 8 8 9 8 9 8
8 12 12 12 8 8 8 9 8 8
8 12 12 12 8 8 9 8 9 8
8 8 8 8 8 8 8 8 8 8
8 9 8 8 8 16 16 16 8 8
8 8 8 9 8 16 16 16 8 8
8 8 9 8 8 16 16 16 8 8
8 9 8 9 8 8 8 8 8 8
8 8 8 8 8 8 9 8 8 8

2 Call the imreconstruct function to morphologically reconstruct the image.
In the output image, note how all the intensity fluctuations except the
intensity peak have been removed.

recon = imreconstruct(marker, mask)

10-19

10 Morphological Operations

Understanding Morphological Reconstruction
Morphological reconstruction can be thought of conceptually as repeated
dilations of the marker image until the contour of the marker image fits
under the mask image. In this way, the peaks in the marker image “spread
out,” or dilate.

This figure illustrates this processing in 1-D. Each successive dilation is
constrained to lie underneath the mask. When further dilation ceases to
change the image, processing stops. The final dilation is the reconstructed
image. (Note: the actual implementation of this operation in the toolbox is
done much more efficiently. See the imreconstruct reference page for more
details.) The figure shows the successive dilations of the marker.

10-20

Morphological Reconstruction

Repeated Dilations of Marker Image, Constrained by Mask

10-21

10 Morphological Operations

Pixel Connectivity
Morphological processing starts at the peaks in the marker image and
spreads throughout the rest of the image based on the connectivity of the
pixels. Connectivity defines which pixels are connected to other pixels. A set
of pixels in a binary image that form a connected group is called an object or a
connected component.

For example, this binary image contains one foreground object--all the
pixels that are set to 1. If the foreground is 4-connected, the image has one
background object, and all the pixels are set to 0. However, if the foreground
is 8-connected, the foreground makes a closed loop and the image has two
separate background objects: the pixels in the loop and the pixels outside
the loop.

0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Defining Connectivity in an Image
The following table lists all the standard two- and three-dimensional
connectivities supported by the toolbox. See these sections for more
information:

• “Choosing a Connectivity” on page 10-24

• “Specifying Custom Connectivities” on page 10-24

10-22

Morphological Reconstruction

Supported Connectivities

Two-Dimensional
Connectivities

4-connected Pixels are connected if their edges touch.
This means that a pair of adjoining pixels are
part of the same object only if they are both
on and are connected along the horizontal or
vertical direction.

8-connected Pixels are connected if their edges or corners
touch. This means that if two adjoining pixels
are on, they are part of the same object,
regardless of whether they are connected
along the horizontal, vertical, or diagonal
direction.

Three-Dimensional
Connectivities

6-connected Pixels are connected if their faces touch.

18-connected Pixels are connected if their faces or edges
touch.

26-connected Pixels are connected if their faces, edges, or
corners touch.

10-23

10 Morphological Operations

Choosing a Connectivity
The type of neighborhood you choose affects the number of objects found in
an image and the boundaries of those objects. For this reason, the results
of many morphology operations often differ depending upon the type of
connectivity you specify.

For example, if you specify a 4-connected neighborhood, this binary image
contains two objects; if you specify an 8-connected neighborhood, the image
has one object.

0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

Specifying Custom Connectivities
You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3
array of 0’s and 1’s. The 1-valued elements define the connectivity of the
neighborhood relative to the center element.

For example, this array defines a “North/South” connectivity that has the
effect of breaking up an image into independent columns.

CONN = [0 1 0; 0 1 0; 0 1 0]
CONN =

0 1 0
0 1 0
0 1 0

Note Connectivity arrays must be symmetric about their center element.
Also, you can use a 2-D connectivity array with a 3-D image; the connectivity
affects each "page" in the 3-D image.

Flood-Fill Operations
The imfill function performs a flood-fill operation on binary and grayscale
images. For binary images, imfill changes connected background pixels (0’s)

10-24

Morphological Reconstruction

to foreground pixels (1’s), stopping when it reaches object boundaries. For
grayscale images, imfill brings the intensity values of dark areas that are
surrounded by lighter areas up to the same intensity level as surrounding
pixels. (In effect, imfill removes regional minima that are not connected to
the image border. See “Finding Areas of High or Low Intensity” on page 10-29
for more information.) This operation can be useful in removing irrelevant
artifacts from images.

This section includes information about

• Specifying the connectivity in flood-fill operations

• Specifying the starting point for binary image fill operations

• Filling holes in binary or grayscale images

Specifying Connectivity
For both binary and grayscale images, the boundary of the fill operation is
determined by the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates
on background pixels. When you specify connectivity with imfill, you are
specifying the connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.

BW = [0 0 0 0 0 0 0 0;
0 1 1 1 1 1 0 0;
0 1 0 0 0 1 0 0;
0 1 0 0 0 1 0 0;
0 1 0 0 0 1 0 0;
0 1 1 1 1 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0];

If the background is 4-connected, this binary image contains two separate
background elements (the part inside the loop and the part outside). If the
background is 8-connected, the pixels connect diagonally, and there is only
one background element.

10-25

10 Morphological Operations

Specifying the Starting Point
For binary images, you can specify the starting point of the fill operation by
passing in the location subscript or by using imfill in interactive mode,
selecting starting pixels with a mouse. See the reference page for imfill for
more information about using imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting
point, imfill only fills the inside of the loop because, by default, the
background is 4-connected.

imfill(BW,[4 3])

ans =
0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

If you specify the same starting point, but use an 8-connected background
connectivity, imfill fills the entire image.

imfill(BW,[4 3],8)

ans =
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Filling Holes
A common use of the flood-fill operation is to fill holes in images. For example,
suppose you have an image, binary or grayscale, in which the foreground

10-26

Morphological Reconstruction

objects represent spheres. In the image, these objects should appear as
disks, but instead are donut shaped because of reflections in the original
photograph. Before doing any further processing of the image, you might
want to first fill in the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special
syntax to support it for both binary and grayscale images. In this syntax,
you just specify the argument 'holes'; you do not have to specify starting
locations in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.

[X,map] = imread('spine.tif');
I = ind2gray(X,map);
Ifill = imfill(I,'holes');
imshow(I);figure, imshow(Ifill)

Finding Peaks and Valleys
Grayscale images can be thought of in three dimensions: the x- and y-axes
represent pixel positions and the z-axis represents the intensity of each pixel.
In this interpretation, the intensity values represent elevations, as in a
topographical map. The areas of high intensity and low intensity in an image,

10-27

10 Morphological Operations

peaks and valleys in topographical terms, can be important morphological
features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity
could represent the tops of the objects. Using morphological processing, these
maxima can be used to identify objects in an image.

This section covers these topics:

• “Terminology” on page 10-28

• “Understanding the Maxima and Minima Functions” on page 10-29

• “Finding Areas of High or Low Intensity” on page 10-29

• “Suppressing Minima and Maxima” on page 10-31

• “Imposing a Minimum” on page 10-33

Terminology
This section uses the following terms.

Term Definition

global maxima Highest regional maxima in the image. See the
entry for regional maxima in this table for more
information.

global minima Lowest regional minima in the image. See the
entry for regional minima in this table for more
information.

10-28

Morphological Reconstruction

Term Definition

regional maxima Connected set of pixels of constant intensity
from which it is impossible to reach a point with
higher intensity without first descending; that is,
a connected component of pixels with the same
intensity value, t, surrounded by pixels that all
have a value less than t.

regional minima Connected set of pixels of constant intensity
from which it is impossible to reach a point with
lower intensity without first ascending; that is,
a connected component of pixels with the same
intensity value, t, surrounded by pixels that all
have a value greater than t.

Understanding the Maxima and Minima Functions
An image can have multiple regional maxima or minima but only a single
global maximum or minimum. Determining image peaks or valleys can be
used to create marker images that are used in morphological reconstruction.

This figure illustrates the concept in 1-D.

Finding Areas of High or Low Intensity
The toolbox includes functions that you can use to find areas of high or low
intensity in an image:

10-29

10 Morphological Operations

• The imregionalmax and imregionalmin functions identify all regional
minima or maxima.

• The imextendedmax and imextendedmin functions identify all regional
minima or maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image
as output. In the output binary image, the regional minima or maxima are
set to 1; all other pixels are set to 0.

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 13 and 18, and several smaller maxima,
set to 11.

The binary image returned by imregionalmax pinpoints all these regional
maxima.

B = imregionalmax(A)

10-30

Morphological Reconstruction

You might want only to identify areas of the image where the change in
intensity is extreme; that is, the difference between the pixel and neighboring
pixels is greater than (or less than) a certain threshold. For example, to find
only those regional maxima in the sample image, A, that are at least two units
higher than their neighbors, use imextendedmax.

B = imextendedmax(A,2)

Suppressing Minima and Maxima
In an image, every small fluctuation in intensity represents a regional
minimum or maximum. You might only be interested in significant minima or
maxima and not in these smaller minima and maxima caused by background
texture.

To remove the less significant minima and maxima but retain the significant
minima and maxima, use the imhmax or imhmin function. With these functions,
you can specify a contrast criteria or threshold level, h, that suppresses all
maxima whose height is less than h or whose minima are greater than h.

Note The imregionalmin, imregionalmax, imextendedmin, and
imextendedmax functions return a binary image that marks the locations
of the regional minima and maxima in an image. The imhmax and imhmin
functions produce an altered image.

10-31

10 Morphological Operations

For example, this simple image contains two primary regional maxima, the
blocks of pixels containing the value 14 and 18, and several smaller maxima,
set to 11.

To eliminate all regional maxima except the two significant maxima, use
imhmax, specifying a threshold value of 2. Note that imhmax only affects the
maxima; none of the other pixel values are changed. The two significant
maxima remain, although their heights are reduced.

B = imhmax(A,2)

This figure takes the second row from the sample image to illustrate in 1-D
how imhmax changes the profile of the image.

10-32

Morphological Reconstruction

Imposing a Minimum
You can emphasize specific minima (dark objects) in an image using the
imimposemin function. The imimposemin function uses morphological
reconstruction to eliminate all minima from the image except the minima
you specify.

To illustrate the process of imposing a minimum, this code creates a simple
image containing two primary regional minima and several other regional
minima.

mask = uint8(10*ones(10,10));
mask(6:8,6:8) = 2;
mask(2:4,2:4) = 7;
mask(3,3) = 5;
mask(2,9) = 9
mask(3,8) = 9
mask(9,2) = 9
mask(8,3) = 9

10-33

10 Morphological Operations

Creating a Marker Image
To obtain an image that emphasizes the two deepest minima and removes all
others, create a marker image that pinpoints the two minima of interest. You
can create the marker image by explicitly setting certain pixels to specific
values or by using other morphological functions to extract the features you
want to emphasize in the mask image.

This example uses imextendedmin to get a binary image that shows the
locations of the two deepest minima.

marker = imextendedmin(mask,1)

Applying the Marker Image to the Mask
Now use imimposemin to create new minima in the mask image at the points
specified by the marker image. Note how imimposemin sets the values of
pixels specified by the marker image to the lowest value supported by the
datatype (0 for uint8 values). imimposemin also changes the values of all the
other pixels in the image to eliminate the other minima.

10-34

Morphological Reconstruction

I = imimposemin(mask,marker)
I =

11 11 11 11 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 8 0 8 11 11 11 11 11 11
11 8 8 8 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 0 0 0 11 11
11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11

This figure illustrates in 1-D how imimposemin changes the profile of row 2
of the image.

10-35

10 Morphological Operations

Imposing a Minimum

10-36

Distance Transform

Distance Transform
The distance transform provides a metric or measure of the separation of
points in the image. The bwdist function calculates the distance between each
pixel that is set to off (0) and the nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following
table.

Distance Metrics

Distance Metric Description Illustration

Euclidean The Euclidean distance is the
straight-line distance between
two pixels.

City Block The city block distance metric
measures the path between the
pixels based on a 4-connected
neighborhood. Pixels whose
edges touch are 1 unit apart;
pixels diagonally touching are
2 units apart.

10-37

10 Morphological Operations

Distance Metrics (Continued)

Distance Metric Description Illustration

Chessboard The chessboard distance metric
measures the path between the
pixels based on an 8-connected
neighborhood. Pixels whose
edges or corners touch are 1
unit apart.

Quasi-Euclidean The quasi-Euclidean metric
measures the total Euclidean
distance along a set of
horizontal, vertical, and
diagonal line segments.

This example creates a binary image containing two intersecting circular
objects.

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw), title('bw')

To compute the distance transform of the complement of the binary image,
use the bwdist function. In the image of the distance transform, note how the
centers of the two circular areas are white.

10-38

Distance Transform

D = bwdist(~bw);
figure, imshow(D,[]), title('Distance transform of ~bw')

10-39

10 Morphological Operations

Objects, Regions, and Feature Measurement
The toolbox includes several functions that return information about the
features in a binary image, including

• Connected-component labeling, and using the label matrix to get statistics
about an image

• Selecting objects in a binary image

• Finding the area of the foreground of a binary image

• Finding the Euler number of a binary image

Pixels that are on, i.e., set to the value 1, in a binary image are considered
to be the foreground. When you view a binary image, the foreground pixels
appear white. Pixels that are off, i.e., set to the value 0, are considered to
be the background. When you view a binary image, the background pixels
appear black.

Connected-Component Labeling
The bwlabel and the bwlabeln functions perform connected-component
labeling, which is a method for identifying each object in a binary image. The
bwlabel function supports 2-D inputs only; the bwlabeln function supports
inputs of any dimension.

These functions return a matrix, called a label matrix. A label matrix is an
image, the same size as the input image, in which the objects in the input
image are distinguished by different integer values in the output matrix. For
example, bwlabel can identify the objects in this binary image.

BW = [0 0 0 0 0 0 0 0;
0 1 1 0 0 1 1 1;
0 1 1 0 0 0 1 1;
0 1 1 0 0 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 1 1 0 0 0;
0 0 0 0 0 0 0 0];

10-40

Objects, Regions, and Feature Measurement

X = bwlabel(BW,4)
X =

0 0 0 0 0 0 0 0
0 1 1 0 0 3 3 3
0 1 1 0 0 0 3 3
0 1 1 0 0 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 2 2 0 0 0
0 0 0 0 0 0 0 0

In the output matrix, the 1’s represent one object, the 2’s a second object, and
the 3’s a third. (If you had used 8-connected neighborhoods (the default),
there would be only two objects, because the first and second objects would
be a single object, connected along the diagonal.)

Viewing a Label Matrix
The label matrix returned by bwlabel or bwlabeln is of class double; it
is not a binary image. One way to view it is to display it as a pseudocolor
indexed image, using label2rgb. In the pseudocolor image, each number that
identifies an object in the label matrix is used as an index value into the
associated colormap matrix. When you view a label matrix as an pseudocolor
image, the objects in the image are easier to distinguish.

To illustrate this technique, this example uses label2rgb to view the label
matrix X. The call to label2rgb specifies one of the standard MATLAB
colormaps, jet. The third argument, 'k', specifies the background color
(black).

X = bwlabel(BW1,4);
RGB = label2rgb(X, @jet, 'k');
imshow(RGB,'notruesize')

10-41

10 Morphological Operations

Using Color to Distinguish Objects in a Binary Image

Selecting Objects in a Binary Image
You can use the bwselect function to select individual objects in a binary
image. You specify pixels in the input image, and bwselect returns a binary
image that includes only those objects from the input image that contain one
of the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For
example, suppose you want to select objects in the image displayed in the
current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects
you want to select; bwselect displays a small star over each pixel you
click. When you are done, press Return. bwselect returns a binary image
consisting of the objects you selected, and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary
Image
The bwarea function returns the area of a binary image. The area is a
measure of the size of the foreground of the image. Roughly speaking, the
area is the number of on pixels in the image.

10-42

Objects, Regions, and Feature Measurement

bwarea does not simply count the number of pixels set to on, however. Rather,
bwarea weights different pixel patterns unequally when computing the area.
This weighting compensates for the distortion that is inherent in representing
a continuous image with discrete pixels. For example, a diagonal line of 50
pixels is longer than a horizontal line of 50 pixels. As a result of the weighting
bwarea uses, the horizontal line has area of 50, but the diagonal line has
area of 62.5.

This example uses bwarea to determine the percentage area increase in
circbw.tif that results from a dilation operation.

BW = imread('circbw.tif');
SE = ones(5);
BW2 = imdilate(BW,SE);
increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW);
increase =

0.3456

See the reference page for bwarea for more information about the weighting
pattern.

Finding the Euler Number of a Binary Image
The bweuler function returns the Euler number for a binary image. The
Euler number is a measure of the topology of an image. It is defined as the
total number of objects in the image minus the number of holes in those
objects. You can use either 4- or 8-connected neighborhoods.

This example computes the Euler number for the circuit image, using
8-connected neighborhoods.

BW1 = imread('circbw.tif');
eul = bweuler(BW1,8)

eul =

-85

In this example, the Euler number is negative, indicating that the number of
holes is greater than the number of objects.

10-43

10 Morphological Operations

Lookup Table Operations
Certain binary image operations can be implemented most easily through
lookup tables. A lookup table is a column vector in which each element
represents the value to return for one possible combination of pixels in a
neighborhood. This section includes the following topics:

• “Creating a Lookup Table” on page 10-44

• “Using a Lookup Table” on page 10-45

Creating a Lookup Table
You can use the makelut function to create lookup tables for various
operations. makelut creates lookup tables for 2-by-2 and 3-by-3 neighborhoods.
This figure illustrates these types of neighborhoods. Each neighborhood pixel
is indicated by an x, and the center pixel is the one with a circle.

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels
in the neighborhood. Therefore, the lookup table for this operation is a
16-element vector. For a 3-by-3 neighborhood, there are 512 permutations, so
the lookup table is a 512-element vector.

Note You cannot use makelut and applylut for neighborhoods of sizes
other than 2-by-2 or 3-by-3. These functions support only 2-by-2 and 3-by-3
neighborhoods, because lookup tables are not practical for neighborhoods
larger than 3-by-3. For example, a lookup table for a 4-by-4 neighborhood
would have 65,536 entries.

10-44

Lookup Table Operations

Using a Lookup Table
Once you create a lookup table, you can use it to perform the desired operation
by using the applylut function.

The example below illustrates using lookup table operations to modify an
image containing text. The example creates an anonymous function that
returns 1 if three or more pixels in the 3-by-3 neighborhood are 1; otherwise, it
returns 0. The example then calls makelut, passing in this function as the first
argument, and using the second argument to specify a 3-by-3 lookup table.

f = @(x) sum(x(:)) >= 3;
lut = makelut(f,3);

lut is returned as a 512-element vector of 1’s and 0’s. Each value is the output
from the function for one of the 512 possible permutations.

You then perform the operation using applylut.

BW1 = imread('text.png');
BW2 = applylut(BW1,lut);
imshow(BW1)
figure, imshow(BW2)

Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to
entries in the lookup table, see the reference page for applylut.

10-45

10 Morphological Operations

10-46

11

Analyzing and Enhancing
Images

This chapter describes functions that support a range of standard image
processing operations for analyzing and enhancing images.

Getting Information about Pixel
Values and Statistics (p. 11-2)

Return information about the data
values that make up an image

Analyzing an Image (p. 11-11) Return information about the
structure of an image

Analyzing the Texture of an Image
(p. 11-24)

Return information about the
texture of an image

Intensity Adjustment (p. 11-34) Improve an image by intensity
adjustment

Noise Removal (p. 11-47) Improve an image by removing noise

11 Analyzing and Enhancing Images

Getting Information about Pixel Values and Statistics
This section describes how to get information about the data values that make
up an image. Topics covered include:

• “Getting Information About Image Pixels” on page 11-2

• “Getting the Intensity Profile of an Image” on page 11-3

• “Displaying a Contour Plot of Image Data” on page 11-7

• “Creating an Image Histogram” on page 11-9

• “Getting Summary Statistics About an Image” on page 11-10

• “Computing Properties for Image Regions” on page 11-10

Getting Information About Image Pixels
To determine the values of one or more pixels in an image and return the
values in a variable, use the impixel function. You can specify the pixels by
passing their coordinates as input arguments or you can select the pixels
interactively using a mouse. impixel returns the value of specified pixels in a
variable in the MATLAB workspace.

Note You can also get pixel value information interactively using the Image
Tool -- see “Getting Information about the Pixels in an Image” on page 4-24.

This example illustrates how to use impixel to get pixel values.

1 Display an image.

imshow canoe.tif

2 Call impixel. When called with no input arguments, impixel associates
itself with the image in the current axes.

vals = impixel

3 Select the points you want to examine in the image by clicking the mouse.
impixel places a star at each point you select.

11-2

Getting Information about Pixel Values and Statistics

4 When you are finished selecting points, press Return. impixel returns the
pixel values in an n-by-2 array, where n is the number of points you selected.
The stars used to indicate selected points disappear from the image.

pixel_values =

0.1294 0.1294 0.1294
0.5176 0 0
0.7765 0.6118 0.4196

Getting the Intensity Profile of an Image
The intensity profile of an image is the set of intensity values taken from
regularly spaced points along a line segment or multiline path in an image.
For points that do not fall on the center of a pixel, the intensity values are
interpolated.

To create an intensity profile, use the improfile function. This function
calculates and plots the intensity values along a line segment or a multiline
path in an image. You define the line segment (or segments) by specifying
their coordinates as input arguments. You can define the line segments using
a mouse. (By default, improfile uses nearest-neighbor interpolation, but you

11-3

11 Analyzing and Enhancing Images

can specify a different method. For more information, see .) improfile works
best with grayscale and truecolor images.

For a single line segment, improfile plots the intensity values in a
two-dimensional view. For a multiline path, improfile plots the intensity
values in a three-dimensional view.

If you call improfile with no arguments, the cursor changes to crosshairs
when it is over the image. You can then specify line segments by clicking
the endpoints; improfile draws a line between each two consecutive points
you select. When you finish specifying the path, press Return. improfile
displays the plot in a new figure.

In this example, you call improfile and specify a single line with the mouse.
In this figure, the line is shown in red, and is drawn from top to bottom.

I = fitsread('solarspectra.fts');
imshow(I,[]);
improfile

improfile displays a plot of the data along the line. Notice the peaks and
valleys and how they correspond to the light and dark bands in the image.

11-4

Getting Information about Pixel Values and Statistics

Plot Produced by improfile

The example below shows how improfile works with an RGB image. Use
imshow to display the image in a figure window. Call improfile without
any arguments and trace a line segment in the image interactively. In the
figure, the black line indicates a line segment drawn from top to bottom.
Double-click to end the line segment.

imshow peppers.png
improfile

11-5

11 Analyzing and Enhancing Images

RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the
line segment. The plot includes separate lines for the red, green, and blue
intensities. In the plot, notice how low the blue values are at the beginning of
the plot where the line traverses the orange pepper.

11-6

Getting Information about Pixel Values and Statistics

Plot of Intensity Values Along a Line Segment in an RGB Image

Displaying a Contour Plot of Image Data
You can use the toolbox function imcontour to display a contour plot of the
data in a grayscale image. A contour is a path in an image along which the
image intensity values are equal to a constant. This function is similar to the
contour function in MATLAB, but it automatically sets up the axes so their
orientation and aspect ratio match the image.

This example displays a grayscale image of grains of rice and a contour plot of
the image data:

11-7

11 Analyzing and Enhancing Images

1 Read a grayscale image and display it.

I = imread('rice.png');
imshow(I)

2 Display a contour plot of the grayscale image.

figure, imcontour(I,3)

You can use the clabel function to label the levels of the contours. See the
description of clabel in the MATLAB Function Reference for details.

11-8

Getting Information about Pixel Values and Statistics

Creating an Image Histogram
An image histogram is a chart that shows the distribution of intensities in
an indexed or grayscale image. You can use the information in a histogram
to choose an appropriate enhancement operation. For example, if an image
histogram shows that the range of intensity values is small, you can use an
intensity adjustment function to spread the values across a wider range.

To create an image histogram, use the imhist function. This function creates
a histogram plot by making n equally spaced bins, each representing a range
of data values. It then calculates the number of pixels within each range.

The following example displays an image of grains of rice and a histogram
based on 64 bins. The histogram shows a peak at around 100, corresponding
to the dark gray background in the image. For information about how to
modify an image by changing the distribution of its histogram, see “Adjusting
Intensity Values to a Specified Range” on page 11-35.

1 Read image and display it.

I = imread('rice.png');
imshow(I)

2 Display histogram of image.

figure, imhist(I)

11-9

11 Analyzing and Enhancing Images

Getting Summary Statistics About an Image
You can compute standard statistics of an image using the mean2, std2, and
corr2 functions. mean2 and std2 compute the mean and standard deviation of
the elements of a matrix. corr2 computes the correlation coefficient between
two matrices of the same size.

These functions are two-dimensional versions of the mean, std, and corrcoef
functions described in the MATLAB Function Reference.

Computing Properties for Image Regions
You can use the regionprops function to compute properties for image
regions. For example, regionprops can measure such properties as the area,
center of mass, and bounding box for a region you specify. See the reference
page for regionprops for more information.

11-10

Analyzing an Image

Analyzing an Image
This section describes image analysis techniques that return information
about the structure of an image. Topics covered include:

• “Detecting Edges” on page 11-11

• “Tracing Boundaries” on page 11-13

• “Detecting Lines Using the Hough Transform” on page 11-17

• “Using Quadtree Decomposition” on page 11-21

The toolbox also includes functions that return information about the texture
of an image. See “Analyzing the Texture of an Image” on page 11-24 for more
information.

Detecting Edges
In an image, an edge is a curve that follows a path of rapid change in image
intensity. Edges are often associated with the boundaries of objects in a scene.
Edge detection is used to identify the edges in an image.

To find edges, you can use the edge function. This function looks for places in
the image where the intensity changes rapidly, using one of these two criteria:

• Places where the first derivative of the intensity is larger in magnitude
than some threshold

• Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements
one of the definitions above. For some of these estimators, you can specify
whether the operation should be sensitive to horizontal edges, vertical edges,
or both. edge returns a binary image containing 1’s where edges are found
and 0’s elsewhere.

The most powerful edge-detection method that edge provides is the Canny
method. The Canny method differs from the other edge-detection methods in
that it uses two different thresholds (to detect strong and weak edges), and
includes the weak edges in the output only if they are connected to strong

11-11

11 Analyzing and Enhancing Images

edges. This method is therefore less likely than the others to be fooled by
noise, and more likely to detect true weak edges.

The following example illustrates the power of the Canny edge detector by
showing the results of applying the Sobel and Canny edge detectors to the
same image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

2 Apply the Sobel and Canny edge detectors to the image and display them.

BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
imshow(BW1)
figure, imshow(BW2)

11-12

Analyzing an Image

For an interactive demonstration of edge detection, try running edgedemo.

Tracing Boundaries
The toolbox includes two functions you can use to find the boundaries of
objects in a binary image:

• bwtraceboundary

• bwboundaries

The bwtraceboundary function returns the row and column coordinates of all
the pixels on the border of an object in an image. You must specify the location
of a border pixel on the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border
pixels of all the objects in an image.

For both functions, the nonzero pixels in the binary image belong to an object
and pixels with the value 0 (zero) constitute the background.

The following example uses bwtraceboundary to trace the border of an object
in a binary image and then uses bwboundaries to trace the borders of all the
objects in the image:

1 Read image and display it.

I = imread('coins.png');
imshow(I)

11-13

11 Analyzing and Enhancing Images

2 Convert the image to a binary image. bwtraceboundary and bwboundaries
only work with binary images.

BW = im2bw(I);
imshow(BW)

3 Determine the row and column coordinates of a pixel on the border of
the object you want to trace. bwboundary uses this point as the starting
location for the boundary tracing.

dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)))

4 Call bwtraceboundary to trace the boundary from the specified point. As
required arguments, you must specify a binary image, the row and column
coordinates of the starting point, and the direction of the first step. The
example specifies north ('N'). For information about this parameter, see
“Choosing the First Step and Direction for Boundary Tracing” on page
11-16.

boundary = bwtraceboundary(BW,[row, col],'N');

5 Display the original grayscale image and use the coordinates returned by
bwtraceboundary to plot the border on the image.

imshow(I)
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);

11-14

Analyzing an Image

6 To trace the boundaries of all the coins in the image, use the bwboundaries
function. By default, bwboundaries finds the boundaries of all objects in
an image, including objects inside other objects. In the binary image used
in this example, some of the coins contain black areas that bwboundaries
interprets as separate objects. To ensure that bwboundaries only traces
the coins, use imfill to fill the area inside each coin.

BW_filled = imfill(BW,'holes');
boundaries = bwboundaries(BW_filled);

bwboundaries returns a cell array, where each cell contains the row/column
coordinates for an object in the image.

7 Plot the borders of all the coins on the original grayscale image using the
coordinates returned by bwboundaries.

for k=1:10
b = boundaries{k};
plot(b(:,2),b(:,1),'g','LineWidth',3);

end

11-15

11 Analyzing and Enhancing Images

Choosing the First Step and Direction for Boundary Tracing
For certain objects, you must take care when selecting the border pixel you
choose as the starting point and the direction you choose for the first step
parameter (north, south, etc.).

For example, if an object contains a hole and you select a pixel on a thin part
of the object as the starting pixel, you can trace the outside border of the
object or the inside border of the hole, depending on the direction you choose
for the first step. For filled objects, the direction you select for the first step
parameter is not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is
on a thin part of the object and the first step is set to north and south. The
connectivity is set to 8 (the default).

11-16

Analyzing an Image

Impact of First Step and Direction Parameters on Boundary Tracing

Detecting Lines Using the Hough Transform
Image Processing Toolbox includes functions that support the Hough
transform.

• hough

• houghpeaks

• houghlines

11-17

11 Analyzing and Enhancing Images

The hough function implements the Standard Hough Transform (SHT).
The Hough transform is designed to detect lines, using the parametric
representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector
perpendicular to the line. theta is the angle between the x-axis and this
vector. The hough function generates a parameter space matrix whose rows
and columns correspond to these rho and theta values, respectively.

The houghpeaks function finds peak values in this space, which represent
potential lines in the input image.

The houghlines function finds the endpoints of the line segments
corresponding to peaks in the Hough transform and it automatically fills in
small gaps.

The following example shows how to use these functions to detect lines in
an image.

1 Read an image into the MATLAB workspace.

I = imread('circuit.tif');

2 For this example, rotate and crop the image.

rotI = imrotate(I,33,'crop');

11-18

Analyzing an Image

3 Find the edges in the image.

BW = edge(rotI,'canny');

4 Compute the Hough transform of the image using the hough function.

[H,theta,rho] = hough(BW);

5 Display the transform.

imshow(H,[],'XData',theta,'YData',rho,...
'InitialMagnification','fit');

xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;

6 Find the peaks in the Hough transform matrix, H, using the houghpeaks
function.

11-19

11 Analyzing and Enhancing Images

P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));

7 Plot the peaks.

x = theta(P(:,2));
y = rho(P(:,1));
plot(x,y,'s','color','white');

8 Find lines in the image.

lines = houghlines(BW,theta,rho,P,'FillGap',5,'MinLength',7);

9 Create a plot that superimposes the lines on the original image.

figure, imshow(rotI), hold on
max_len = 0;
for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

% Determine the endpoints of the longest line segment
len = norm(lines(k).point1 - lines(k).point2);
if (len > max_len)

max_len = len;
xy_long = xy;

end
end

% highlight the longest line segment
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');

11-20

Analyzing an Image

Using Quadtree Decomposition
Quadtree decomposition is an analysis technique that involves subdividing
an image into blocks that are more homogeneous than the image itself. This
technique reveals information about the structure of the image. It is also
useful as the first step in adaptive compression algorithms.

You can perform quadtree decomposition using the qtdecomp function. This
function works by dividing a square image into four equal-sized square blocks,
and then testing each block to see if it meets some criterion of homogeneity
(e.g., if all the pixels in the block are within a specific dynamic range). If a
block meets the criterion, it is not divided any further. If it does not meet
the criterion, it is subdivided again into four blocks, and the test criterion is
applied to those blocks. This process is repeated iteratively until each block
meets the criterion. The result might have blocks of several different sizes.

Example: Performing Quadtree Decomposition
To illustrate, this example performs quadtree decomposition on a 512-by-512
grayscale image. For an interactive demonstration of quadtree decomposition,
run the demo qtdemo.

1 Read in the grayscale image.

I = imread('liftingbody.png');

11-21

11 Analyzing and Enhancing Images

2 Specify the test criteria used to determine the homogeneity of each block
in the decomposition. For example, the criterion might be this threshold
calculation.

max(block(:)) - min(block(:)) <= 0.2

You can also supply qtdecomp with a function (rather than a threshold
value) for deciding whether to split blocks; for example, you might base the
decision on the variance of the block. See the reference page for qtdecomp
for more information.

3 Perform this quadtree decomposition by calling the qtdecomp function,
specifying the image and the threshold value as arguments.

S = qtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the
class of I. If I is uint8, qtdecomp multiplies the threshold value by 255 to
determine the actual threshold to use. If I is uint16, qtdecomp multiplies
the threshold value by 65535.

qtdecomp first divides the image into four 256-by-256 blocks and applies the
test criterion to each block. If a block does not meet the criterion, qtdecomp
subdivides it and applies the test criterion to each block. qtdecomp continues
to subdivide blocks until all blocks meet the criterion. Blocks can be as small
as 1-by-1, unless you specify otherwise.

qtdecomp returns S as a sparse matrix, the same size as I. The nonzero
elements of S represent the upper left corners of the blocks; the value of each
nonzero element indicates the block size.

The following figure shows the original image and a representation of its
quadtree decomposition. (To see how this representation was created, see the
example on the qtdecomp reference page.) Each black square represents a
homogeneous block, and the white lines represent the boundaries between
blocks. Notice how the blocks are smaller in areas corresponding to large
changes in intensity in the image.

11-22

Analyzing an Image

Image and a Representation of Its Quadtree Decomposition

11-23

11 Analyzing and Enhancing Images

Analyzing the Texture of an Image
The toolbox supports a set of functions that you can use for texture analysis.
Texture analysis refers to the characterization of regions in an image by their
texture content. Texture analysis attempts to quantify intuitive qualities
described by terms such as rough, smooth, silky, or bumpy as a function of
the spatial variation in pixel intensities. In this sense, the roughness or
bumpiness refers to variations in the intensity values, or gray levels.

Texture analysis is used in a variety of applications, including remote sensing,
automated inspection, and medical image processing. Texture analysis can
be used to find the texture boundaries, called texture segmentation. Texture
analysis can be helpful when objects in an image are more characterized
by their texture than by intensity, and traditional thresholding techniques
cannot be used effectively.

The toolbox provides two types of texture functions:

• Texture filter functions — These functions use standard statistical
measures to characterize the local texture of an image. See “Using Texture
Filter Functions” on page 11-24 for more information.

• Gray-level co-occurrence matrix — These functions characterize the
texture of an image by calculating how often pairs of pixel with specific
values and in a specified spatial relationship occur in an image and then
extracting statistical measures from this matrix. See “Using a Gray-Level
Co-Occurrence Matrix (GLCM)” on page 11-28 for more information

Using Texture Filter Functions
The toolbox includes three texture analysis functions that filter an image
using standard statistical measures, such as range, standard deviation, and
entropy. Entropy is a statistical measure of randomness. These statistics can
characterize the texture of an image because they provide information about
the local variability of the intensity values of pixels in an image.

For example, in areas with smooth texture, the range of values in the
neighborhood around a pixel will be a small value; in areas of rough texture,
the range will be larger. Similarly, calculating the standard deviation of pixels
in a neighborhood can indicate the degree of variability of pixel values in
that region.

11-24

Analyzing the Texture of an Image

The following sections provide additional information about the texture
functions:

• “Understanding the Texture Filter Functions” on page 11-25

• “Example: Using the Texture Functions” on page 11-26

Understanding the Texture Filter Functions
The three statistical texture filtering functions are

rangefilt -- Calculates the local range of an image

stdfilt -- Calculates the local standard deviation of an image

entropyfilt -- Calculates the local entropy of a grayscale image

The functions all operate in a similar way: they define a neighborhood around
the pixel of interest and calculate the statistic for that neighborhood.

This example shows how the rangefilt function operates on a simple array.

A = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20]

A =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

B = rangefilt(A)

B =

6 7 7 7 6
11 12 12 12 11
11 12 12 12 11
6 7 7 7 6

11-25

11 Analyzing and Enhancing Images

The following figure shows how the value of element B(2,4) was calculated
from A(2,4). By default, the rangefilt function uses a 3-by-3 neighborhood
but you can specify neighborhoods or different shapes and sizes.

Determining Pixel Values in Range Filtered Output Image

The stdfilt and entropyfilt functions operate similarly, defining a
neighborhood around the pixel of interest and calculating the statistic for
the neighborhood to determine the pixel value in the output image. The
stdfilt function calculates the standard deviation of all the values in the
neighborhood.

The entropyfilt function calculates the entropy of the neighborhood and
assigns that value to the output pixel. Note that, by default, the entropyfilt
function defines a 9-by-9 neighborhood around the pixel of interest. To
calculate the entropy of an entire image, use the entropy function.

Example: Using the Texture Functions
The following example illustrates how the texture filter functions can detect
regions of texture in an image. In the figure, the background is smooth; there
is very little variation in the gray-level values. In the foreground, the surface
contours of the coins exhibit more texture. In this image, foreground pixels
have more variability and thus higher range values. Range filtering makes
the edges and contours of the coins more visible.

To see an example of using filtering functions, view the Texture Segmentation
Using Texture Filters demo.

11-26

Analyzing the Texture of an Image

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

2 Filter the image with the rangefilt function and display the results. Note
how range filtering highlights the edges and surface contours of the coins.

K = rangefilt(I);
figure, imshow(K)

11-27

11 Analyzing and Enhancing Images

Using a Gray-Level Co-Occurrence Matrix (GLCM)
The texture filter functions provide a statistical view of texture based on the
image histogram. These functions can provide useful information about the
texture of an image but cannot provide information about shape, i.e., the
spatial relationships of pixels in an image.

Another statistical method that considers the spatial relationship of pixels
is the gray-level co-occurrence matrix (GLCM), also known as the gray-level
spatial dependence matrix. The toolbox provides functions to create a GLCM
and derive statistical measurements from it.

This section includes the following topics.

• “Creating a Gray-Level Co-Occurrence Matrix” on page 11-28

• “Specifying the Offsets” on page 11-29

• “Deriving Statistics from a GLCM” on page 11-30

• “Example: Plotting the Correlation” on page 11-31

Creating a Gray-Level Co-Occurrence Matrix
To create a GLCM, use the graycomatrix function. The graycomatrix
function creates a gray-level co-occurrence matrix (GLCM) by calculating
how often a pixel with the intensity (gray-level) value i occurs in a specific
spatial relationship to a pixel with the value j. By default, the spatial
relationship is defined as the pixel of interest and the pixel to its immediate
right (horizontally adjacent), but you can specify other spatial relationships
between the two pixels. Each element (i,j) in the resultant glcm is simply
the sum of the number of times that the pixel with value i occurred in the
specified spatial relationship to a pixel with value j in the input image.

The number of gray levels in the image determines the size of the GLCM. By
default, graycomatrix uses scaling to reduce the number of intensity values
in an image to eight, but you can use the NumLevels and the GrayLimits
parameters to control this scaling of gray levels. See the graycomatrix
reference page for more information.

The gray-level co-occurrence matrix can reveal certain properties about the
spatial distribution of the gray levels in the texture image. For example, if

11-28

Analyzing the Texture of an Image

most of the entries in the GLCM are concentrated along the diagonal, the
texture is coarse with respect to the specified offset. You can also derive
several statistical measures from the GLCM. See “Deriving Statistics from a
GLCM” on page 11-30 for more information.

To illustrate, the following figure shows how graycomatrix calculates the
first three values in a GLCM. In the output GLCM, element (1,1) contains
the value 1 because there is only one instance in the input image where two
horizontally adjacent pixels have the values 1 and 1, respectively. glcm(1,2)
contains the value 2 because there are two instances where two horizontally
adjacent pixels have the values 1 and 2. Element (1,3) in the GLCM has the
value 0 because there are no instances of two horizontally adjacent pixels
with the values 1 and 3. graycomatrix continues processing the input image,
scanning the image for other pixel pairs (i,j) and recording the sums in the
corresponding elements of the GLCM.

Process Used to Create the GLCM

Specifying the Offsets
By default, the graycomatrix function creates a single GLCM, with the
spatial relationship, or offset, defined as two horizontally adjacent pixels.
However, a single GLCM might not be enough to describe the textural features
of the input image. For example, a single horizontal offset might not be
sensitive to texture with a vertical orientation. For this reason, graycomatrix
can create multiple GLCMs for a single input image.

11-29

11 Analyzing and Enhancing Images

To create multiple GLCMs, specify an array of offsets to the graycomatrix
function. These offsets define pixel relationships of varying direction and
distance. For example, you can define an array of offsets that specify four
directions (horizontal, vertical, and two diagonals) and four distances. In
this case, the input image is represented by 16 GLCMs. When you calculate
statistics from these GLCMs, you can take the average.

You specify these offsets as a p-by-2 array of integers. Each row in the array is
a two-element vector, [row_offset, col_offset], that specifies one offset.
row_offset is the number of rows between the pixel of interest and its
neighbor. col_offset is the number of columns between the pixel of interest
and its neighbor. This example creates an offset that specifies four directions
and 4 distances for each direction. For more information about specifying
offsets, see the graycomatrix reference page.

offsets = [0 1; 0 2; 0 3; 0 4;...
-1 1; -2 2; -3 3; -4 4;...
-1 0; -2 0; -3 0; -4 0;...
-1 -1; -2 -2; -3 -3; -4 -4];

The figure illustrates the spatial relationships of pixels that are defined by
this array of offsets, where D represents the distance from the pixel of interest.

Deriving Statistics from a GLCM
After you create the GLCMs, you can derive several statistics from them
using the graycoprops function. These statistics provide information about
the texture of an image. The following table lists the statistics you can derive.
You specify the statistics you want when you call the graycoprops function.

11-30

Analyzing the Texture of an Image

For detailed information about these statistics, see the graycoprops reference
page.

Statistic Description

Contrast Measures the local variations in the gray-level
co-occurrence matrix.

Correlation Measures the joint probability occurrence of the specified
pixel pairs.

Energy Provides the sum of squared elements in the GLCM. Also
known as uniformity or the angular second moment.

Homogeneity Measures the closeness of the distribution of elements in
the GLCM to the GLCM diagonal.

Example: Plotting the Correlation
This example shows how to create a set of GLCMs and derive statistics from
them and illustrates how the statistics returned by graycoprops have a direct
relationship to the original input image.

1 Read in a grayscale image and display it. The example converts the
truecolor image to a grayscale image and then rotates it 90° for this
example.

circuitBoard = rot90(rgb2gray(imread('board.tif')));
imshow(circuitBoard)

11-31

11 Analyzing and Enhancing Images

2 Define offsets of varying direction and distance. Because the image
contains objects of a variety of shapes and sizes that are arranged in
horizontal and vertical directions, the example specifies a set of horizontal
offsets that only vary in distance.

offsets0 = [zeros(40,1) (1:40)'];

3 Create the GLCMs. Call the graycomatrix function specifying the offsets.

glcms = graycomatrix(circuitBoard,'Offset',offsets0)

4 Derive statistics from the GLCMs using the graycoprops function. The
example calculates the contrast and correlation.

stats = graycoprops(glcms,'Contrast Correlation');

5 Plot correlation as a function of offset.

figure, plot([stats.Correlation]);
title('Texture Correlation as a function of offset');
xlabel('Horizontal Offset')
ylabel('Correlation')

11-32

Analyzing the Texture of an Image

The plot contains peaks at offsets 7, 15, 23, and 30. If you examine the input
image closely, you can see that certain vertical elements in the image have a
periodic pattern that repeats every seven pixels. The following figure shows
the upper left corner of the image and points out where this pattern occurs.

11-33

11 Analyzing and Enhancing Images

Intensity Adjustment
Image enhancement techniques are used to improve an image, where
“improve” is sometimes defined objectively (e.g., increase the signal-to-noise
ratio), and sometimes subjectively (e.g., make certain features easier to see by
modifying the colors or intensities).

Intensity adjustment is an image enhancement technique that maps an
image’s intensity values to a new range. To illustrate, this figure shows a
low-contrast image with its histogram. Notice in the histogram of the image
how all the values gather in the center of the range.

I = imread('pout.tif');
imshow(I)
figure, imhist(I,64)

If you remap the data values to fill the entire intensity range [0, 255], you can
increase the contrast of the image. The following sections describe several
intensity adjustment techniques, including

• “Adjusting Intensity Values to a Specified Range” on page 11-35

• “Histogram Equalization” on page 11-39

• “Contrast-Limited Adaptive Histogram Equalization” on page 11-41

• “Decorrelation Stretching” on page 11-42

11-34

Intensity Adjustment

The functions described in this section apply primarily to grayscale images.
However, some of these functions can be applied to color images as well.
For information about how these functions work with color images, see the
reference pages for the individual functions.

Adjusting Intensity Values to a Specified Range
You can adjust the intensity values in an image using the imadjust function,
where you specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast grayscale
image by remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');
J = imadjust(I);
imshow(J)
figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the
increased contrast in the image, and that the histogram now fills the entire
range.

Adjusted Image and Its Histogram

Specifying the Adjustment Limits
You can optionally specify the range of the input values and the output values
using imadjust. You specify these ranges in two vectors that you pass to

11-35

11 Analyzing and Enhancing Images

imadjust as arguments. The first vector specifies the low- and high-intensity
values that you want to map. The second vector specifies the scale over which
you want to map them.

Note Note that you must specify the intensities as values between 0 and 1
regardless of the class of I. If I is uint8, the values you supply are multiplied
by 255 to determine the actual values to use; if I is uint16, the values are
multiplied by 65535. To learn about an alternative way to set these limits
automatically, see “Setting the Adjustment Limits Automatically” on page
11-37.

For example, you can decrease the contrast of an image by narrowing the
range of the data. In the example below, the man’s coat is too dark to reveal
any detail. imadjust maps the range [0,51] in the uint8 input image to
[128,255] in the output image. This brightens the image considerably, and
also widens the dynamic range of the dark portions of the original image,
making it much easier to see the details in the coat. Note, however, that
because all values above 51 in the original image are mapped to 255 (white) in
the adjusted image, the adjusted image appears washed out.

I = imread('cameraman.tif');
J = imadjust(I,[0 0.2],[0.5 1]);
imshow(I)
figure, imshow(J)

Image After Remapping and Widening the Dynamic Range

11-36

Intensity Adjustment

Setting the Adjustment Limits Automatically
To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.

2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass
them to imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim
function. (The imadjust function uses stretchlim for its simplest syntax,
imadjust(I).)

This function calculates the histogram of the image and determines the
adjustment limits automatically. The stretchlim function returns these
values as fractions in a vector that you can pass as the [low_in high_in]
argument to imadjust; for example:

I = imread('rice.png');
J = imadjust(I,stretchlim(I),[0 1]);

By default, stretchlim uses the intensity values that represent the bottom
1% (0.01) and the top 1% (0.99) of the range as the adjustment limits. By
trimming the extremes at both ends of the intensity range, stretchlim makes
more room in the adjusted dynamic range for the remaining intensities. But
you can specify other range limits as an argument to stretchlim. See the
stretchlim reference page for more information.

Gamma Correction
imadjust maps low to bottom, and high to top. By default, the values
between low and high are mapped linearly to values between bottom and
top. For example, the value halfway between low and high corresponds to the
value halfway between bottom and top.

imadjust can accept an additional argument that specifies the gamma
correction factor. Depending on the value of gamma, the mapping between
values in the input and output images might be nonlinear. For example, the
value halfway between low and high might map to a value either greater than
or less than the value halfway between bottom and top.

11-37

11 Analyzing and Enhancing Images

Gamma can be any value between 0 and infinity. If gamma is 1 (the default),
the mapping is linear. If gamma is less than 1, the mapping is weighted
toward higher (brighter) output values. If gamma is greater than 1, the
mapping is weighted toward lower (darker) output values.

The figure below illustrates this relationship. The three transformation curves
show how values are mapped when gamma is less than, equal to, and greater
than 1. (In each graph, the x-axis represents the intensity values in the input
image, and the y-axis represents the intensity values in the output image.)

Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to
imadjust, the data ranges of the input and output images are specified as
empty matrices. When you specify an empty matrix, imadjust uses the
default range of [0,1]. In the example, both ranges are left empty; this means
that gamma correction is applied without any other adjustment of the data.

[X,map] = imread('forest.tif')
I = ind2gray(X,map);
J = imadjust(I,[],[],0.5);
imshow(I)
figure, imshow(J)

11-38

Intensity Adjustment

Image Before and After Applying Gamma Correction

Histogram Equalization
The process of adjusting intensity values can be done automatically by the
histeq function. histeq performs histogram equalization, which involves
transforming the intensity values so that the histogram of the output image
approximately matches a specified histogram. (By default, histeq tries to
match a flat histogram with 64 bins, but you can specify a different histogram
instead; see the reference page for histeq.)

This example illustrates using histeq to adjust a grayscale image. The
original image has low contrast, with most values in the middle of the
intensity range. histeq produces an output image having values evenly
distributed throughout the range.

I = imread('pout.tif');
J = histeq(I);
imshow(J)
figure, imhist(J,64)

11-39

11 Analyzing and Enhancing Images

Image After Histogram Equalization with Its Histogram

histeq can return a 1-by-256 vector that shows, for each possible input value,
the resulting output value. (The values in this vector are in the range [0,1],
regardless of the class of the input image.) You can plot this data to get the
transformation curve. For example:

I = imread('pout.tif');
[J,T] = histeq(I);
figure,plot((0:255)/255,T);

11-40

Intensity Adjustment

Notice how this curve reflects the histograms in the previous figure, with
the input values mostly between 0.3 and 0.6, while the output values are
distributed evenly between 0 and 1.

For an interactive demonstration of intensity adjustment, try running
imadjdemo.

Contrast-Limited Adaptive Histogram Equalization
As an alternative to using histeq, you can perform contrast-limited adaptive
histogram equalization (CLAHE) using the adapthisteq function. While
histeq works on the entire image, adapthisteq operates on small regions in
the image, called tiles. Each tile’s contrast is enhanced, so that the histogram
of the output region approximately matches a specified histogram. After

11-41

11 Analyzing and Enhancing Images

performing the equalization, adapthisteq combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries.

To avoid amplifying any noise that might be present in the image, you can
use adapthisteq optional parameters to limit the contrast, especially in
homogeneous areas.

To illustrate, this example uses adapthisteq to adjust the contrast in a
grayscale image. The original image has low contrast, with most values in the
middle of the intensity range. adapthisteq produces an output image having
values evenly distributed throughout the range.

I = imread('pout.tif');
J = adapthisteq(I);
imshow(I)
figure, imshow(J)

Image After CLAHE Equalization with Its Histogram

Decorrelation Stretching
Decorrelation stretching enhances the color separation of an image
with significant band-band correlation. The exaggerated colors improve
visual interpretation and make feature discrimination easier. You apply
decorrelation stretching with the decorrstretch function. See “Adding a

11-42

Intensity Adjustment

Linear Contrast Stretch” on page 11-45 on how to add an optional linear
contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you
can apply decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values
with a wider range. The color intensities of each pixel are transformed into
the color eigenspace of the NBANDS-by-NBANDS covariance or correlation
matrix, stretched to equalize the band variances, then transformed back to
the original color bands.

To define the bandwise statistics, you can use the entire original image or,
with the subset option, any selected subset of it. See the decorrstretch
reference page.

Simple Decorrelation Stretching
You can apply decorrelation and stretching operations on the library of images
available in the imdemos directory. The library includes a LANDSAT image of
the Little Colorado River. In this example, you perform a simple decorrelation
stretch on this image:

1 The image has seven bands, but just read in the three visible colors:

A = multibandread('littlecoriver.lan', [512, 512, 7], ...
'uint8=>uint8', 128, 'bil', 'ieee-le', ...
{'Band','Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A); figure; imshow(B)

Compare the two images. The original has a strong violet (red-bluish) tint,
while the transformed image has a somewhat expanded color range.

11-43

11 Analyzing and Enhancing Images

Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated
and equalized:

rA = A(:,:,1); gA = A(:,:,2); bA = A(:,:,3);
figure, plot3(rA(:),gA(:),bA(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...
zlabel('Blue (Band 1)')
rB = B(:,:,1); gB = B(:,:,2); bB = B(:,:,3);
figure, plot3(rB(:),gB(:),bB(:),'.'); grid('on')
xlabel('Red (Band 3)'); ylabel('Green (Band 2)'); ...
zlabel('Blue (Band 1)')

11-44

Intensity Adjustment

Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch
Now try the same transformation, but with a linear contrast stretch applied
after the decorrelation stretch:

imshow(A); C = decorrstretch(A,'Tol',0.01); figure; imshow(C)

Compare the transformed image to the original.

Little Colorado River After Decorrelation Stretch Followed by Linear Contrast
Stretch

11-45

11 Analyzing and Enhancing Images

Adding the linear contrast stretch enhances the resulting image by further
expanding the color range. In this case, the transformed color range is
mapped within each band to a normalized interval between 0.01 and 0.99,
saturating 2%.

See the stretchlim function reference page for more about Tol. Without the
Tol option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after
performing a decorrelation stretch, using stretchlim and imadjust. This
alternative, however, often gives inferior results for uint8 and uint16 images,
because the pixel values must be clamped to [0 255] (or [0 65535]). The Tol
option in decorrstretch circumvents this limitation.

11-46

Noise Removal

Noise Removal
Digital images are prone to a variety of types of noise. Noise is the result
of errors in the image acquisition process that result in pixel values that
do not reflect the true intensities of the real scene. There are several ways
that noise can be introduced into an image, depending on how the image is
created. For example:

• If the image is scanned from a photograph made on film, the film grain is
a source of noise. Noise can also be the result of damage to the film, or
be introduced by the scanner itself.

• If the image is acquired directly in a digital format, the mechanism for
gathering the data (such as a CCD detector) can introduce noise.

• Electronic transmission of image data can introduce noise.

This section describes a number of different ways to remove or reduce noise
in an image. Different methods are better for different kinds of noise. The
methods available include

• “Using Linear Filtering” on page 11-47

• “Using Median Filtering” on page 11-48

• “Using Adaptive Filtering” on page 11-50

To simulate the effects of some of the problems listed above, the toolbox
provides the imnoise function, which you can use to add various types of
noise to an image. The examples in this section use this function.

Using Linear Filtering
You can use linear filtering to remove certain types of noise. Certain filters,
such as averaging or Gaussian filters, are appropriate for this purpose.
For example, an averaging filter is useful for removing grain noise from a
photograph. Because each pixel gets set to the average of the pixels in its
neighborhood, local variations caused by grain are reduced.

See “Linear Filtering” on page 8-2 for more information.

11-47

11 Analyzing and Enhancing Images

Using Median Filtering
Median filtering is similar to using an averaging filter, in that each output
pixel is set to an average of the pixel values in the neighborhood of the
corresponding input pixel. However, with median filtering, the value of an
output pixel is determined by the median of the neighborhood pixels, rather
than the mean. The median is much less sensitive than the mean to extreme
values (called outliers). Median filtering is therefore better able to remove
these outliers without reducing the sharpness of the image. The medfilt2
function implements median filtering.

Note Median filtering is a specific case of order-statistic filtering, also known
as rank filtering. For information about order-statistic filtering, see the
reference page for the ordfilt2 function.

The following example compares using an averaging filter and medfilt2 to
remove salt and pepper noise. This type of noise consists of random pixels’
being set to black or white (the extremes of the data range). In both cases the
size of the neighborhood used for filtering is 3-by-3.

1 Read in the image and display it.

I = imread('eight.tif');
imshow(I)

11-48

Noise Removal

2 Add noise to it.

J = imnoise(I,'salt & pepper',0.02);
figure, imshow(J)

3 Filter the noisy image with an averaging filter and display the results.

K = filter2(fspecial('average',3),J)/255;
figure, imshow(K)

11-49

11 Analyzing and Enhancing Images

4 Now use a median filter to filter the noisy image and display the results.
Notice that medfilt2 does a better job of removing noise, with less blurring
of edges.

L = medfilt2(J,[3 3]);
figure, imshow(K)
figure, imshow(L)

Using Adaptive Filtering
The wiener2 function applies a Wiener filter (a type of linear filter) to an
image adaptively, tailoring itself to the local image variance. Where the
variance is large, wiener2 performs little smoothing. Where the variance is
small, wiener2 performs more smoothing.

This approach often produces better results than linear filtering. The
adaptive filter is more selective than a comparable linear filter, preserving
edges and other high-frequency parts of an image. In addition, there are no
design tasks; the wiener2 function handles all preliminary computations and
implements the filter for an input image. wiener2, however, does require
more computation time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise,
such as Gaussian noise. The example below applies wiener2 to an image of
Saturn that has had Gaussian noise added. For an interactive demonstration
of filtering to remove noise, try running nrfiltdemo.

RGB = imread('saturn.png');
I = rgb2gray(RGB);
J = imnoise(I,'gaussian',0,0.005);

11-50

Noise Removal

K = wiener2(J,[5 5]);
imshow(J)
figure, imshow(K)

Noisy Version (left) and Filtered Version (right)

11-51

11 Analyzing and Enhancing Images

11-52

12

ROI-Based Processing

This chapter describes how to define a region of interest (ROI) and perform
processing on the ROI you define.

Specifying a Region of Interest (ROI)
(p. 12-2)

Describes how to specify a
region-of-interest (ROI).

Filtering an ROI (p. 12-6) Describes how to apply a filter to a
region using the roifilt2 function

Filling an ROI (p. 12-9) Describes how to fill a region of
interest using the roifill function

12 ROI-Based Processing

Specifying a Region of Interest (ROI)
A region of interest (ROI) is a portion of an image that you want to filter or
perform some other operation on. You define an ROI by creating a binary
mask, which is a binary image that is the same size as the image you want to
process with pixels that define the ROI set to 1 and all other pixels set to 0.

You can define more than one ROI in an image. The regions can be geographic
in nature, such as polygons that encompass contiguous pixels, or they can
be defined by a range of intensities. In the latter case, the pixels are not
necessarily contiguous.

The following subsections discuss methods for creating binary masks:

• “Selecting a Polygonal ROI Interactively” on page 12-2

• “Specifying an ROI Noninteractively” on page 12-4

• “Creating an ROI Without an Associated Image” on page 12-4

• “Creating an ROI Based on Color Values” on page 12-5

Note This section describes how to create binary masks to define ROIs.
However, any binary image can be used as a mask, provided that the binary
image is the same size as the image being filtered. For example, suppose
you want to filter the grayscale image I, filtering only those pixels whose
values are greater than 0.5. You can create the appropriate mask with this
command: BW = (I > 0.5).

Selecting a Polygonal ROI Interactively
You can use the roipoly function to specify a polygonal ROI interactively
in a particular image. To do this, display an image, using imshow and then
call roipoly with no input arguments. When you move the cursor over the
image displayed in the current axes, the cursor changes to the crosshairs
shape, . You can then specify the vertices of the polygon by clicking points
in the image with the mouse. When you are done selecting vertices, press
Return; roipoly returns a binary image of the same size as the input image,
containing 1’s inside the specified polygon, and 0’s everywhere else.

12-2

Specifying a Region of Interest (ROI)

The example below illustrates using the interactive syntax of roipoly to
create a binary mask. In the figure, the border of the selected region that was
created using a mouse is shown in red.

I = imread('pout.tif');
imshow(I)
BW = roipoly;

Polygonal Region of Interest Selected Using roipoly

imshow(BW)

Binary Mask Created for the Region Shown in the Preceding Figure

12-3

12 ROI-Based Processing

Specifying an ROI Noninteractively
Using roipoly interactively provides an easy way to create a binary mask
associated with a particular image. However, you can also use roipoly to
create a binary mask noninteractively by specifying the x- and y-coordinates
of the vertices of the ROI in two vectors.

The example below illustrates usingroipoly to create a binary mask of the
same region as shown in “Selecting a Polygonal ROI Interactively” on page
12-2.

I = imread('pout.tif');
c = [123 123 170 170];
r = [160 210 210 160];
BW = roipoly(I,c,r);
imshow(BW)

You can also create a binary mask without using an existing image by calling
the poly2mask function — see “Creating an ROI Without an Associated
Image” on page 12-4.

.

Creating an ROI Without an Associated Image
Using roipoly you can create a binary mask that defines an ROI associated
with a particular image. To create a binary mask without having an
associated image, use the poly2mask function. Unlike the roipoly function,
poly2mask does not require an input image. You specify the vertices of the
ROI in two vectors and specify the size of the binary mask returned. For
example, the following creates a binary mask that can be used to filter an
ROI in the pout.tif image.

c = [123 123 170 170];
r = [160 210 210 160];
m = 291; % height of pout image
n = 240; % width of pout image
BW = poly2mask(c,r,m,n);
figure, imshow(BW)

12-4

Specifying a Region of Interest (ROI)

Creating an ROI Based on Color Values
You can use the roicolor function to define an ROI based on color or intensity
range. For more information, see the reference page for roicolor.

12-5

12 ROI-Based Processing

Filtering an ROI
Filtering a region of interest (ROI) is the process of applying a filter to a
region in an image, where a binary mask defines the region. For example, you
can apply an intensity adjustment filter to certain regions of an image.

To filter an ROI in an image, use the roifilt2 function. When you call
roifilt2, you specify a grayscale image, a binary mask, and a filter.
roifilt2 filters the input image and returns an image that consists of filtered
values for pixels where the binary mask contains 1’s and unfiltered values
for pixels where the binary mask contains 0’s. This type of operation is called
masked filtering. For an interactive demonstration of region-based processing,
try running roidemo. This section covers the following topics:

• “Filtering a Region in an Image” on page 12-6

• “Specifying the Filtering Operation” on page 12-7

Note roifilt2 is best suited to operations that return data in the same
range as in the original image, because the output image takes some of its
data directly from the input image. Certain filtering operations can result
in values outside the normal image data range (i.e., [0,1] for images of class
double, [0,255] for images of class uint8, and [0,65535] for images of class
uint16). For more information, see the reference page for roifilt2.

Filtering a Region in an Image
This example uses masked filtering to increase the contrast of a specific
region of an image:

1 Read in the image.

I = imread('pout.tif');

2 Create the mask.

This example uses the mask BW created in “Selecting a Polygonal ROI
Interactively” on page 12-2. The region of interest specified by the mask is
the logo on the girl’s jacket.

12-6

Filtering an ROI

3 Create the filter.

h = fspecial('unsharp');

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.

I2 = roifilt2(h,I,BW);
imshow(I)
figure, imshow(I2)

Image Before and After Using an Unsharp Filter on the Region of Interest

Specifying the Filtering Operation
roifilt2 also enables you to specify your own function to operate on the ROI.
This example uses the imadjust function to lighten parts of an image:

1 Read in the image.

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing
text. The mask image must be cropped to be the same size as the image to
be filtered.

BW = imread('text.png');
mask = BW(1:256,1:256);

3 Create the filter.

12-7

12 ROI-Based Processing

f = @(x) imadjust(x,[],[],0.3);

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter.
The resulting image, I2, has the text imprinted on it.

I2 = roifilt2(I,mask,f);
imshow(I2)

Image Brightened Using a Binary Mask Containing Text

12-8

Filling an ROI

Filling an ROI
Filling is a process that fills a region of interest (ROI) by interpolating the
pixel values from the borders of the region. This process can be used to make
objects in an image seem to disappear as they are replaced with values that
blend in with the background area.

To fill an ROI, you can use the roifill function. This function is useful for
image editing, including removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on
Laplace’s equation. This method results in the smoothest possible fill, given
the values on the boundary of the region.

As with roipoly, you select the region of interest with the mouse. When
you complete the selection, roifill returns an image with the selected ROI
filled in.

This example shows how to use roifill to fill an ROI in an image.

1 Read an image into the MATLAB workspace and display it. Because the
image is an indexed image, the example uses ind2gray to convert it to a
grayscale image.

load trees
I = ind2gray(X,map);
imshow(I)

2 Call roifill and then use the mouse to select the ROI you want to fill
(shown in red in the following figure). roifill returns the modified image
in I2.

I2 = roifill;

12-9

12 ROI-Based Processing

3 Display the modified image. Note how the ROI defined in the previous
step has been filled.

imshow(I2)

12-10

13

Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring
functions.

Understanding Deblurring (p. 13-2) Defines deblurring and
deconvolution

Deblurring with the Wiener Filter
(p. 13-6)

Using the deconvwnr function

Deblurring with a Regularized Filter
(p. 13-8)

Using the deconvreg function

Deblurring with the
Lucy-Richardson Algorithm
(p. 13-10)

Using the deconvlucy function

Deblurring with the Blind
Deconvolution Algorithm (p. 13-16)

Using the deconvblind function

Creating Your Own Deblurring
Functions (p. 13-23)

Using the otf2psf and psf2otf
functions

Avoiding Ringing in Deblurred
Images (p. 13-24)

Using the edgetaper function to
avoid "ringing" in deblurred images

13 Image Deblurring

Understanding Deblurring
This section provides some background on deblurring techniques. The section
includes these topics:

• “Causes of Blurring” on page 13-2

• “Deblurring Model” on page 13-2

• “Deblurring Functions” on page 13-4

Causes of Blurring
The blurring, or degradation, of an image can be caused by many factors:

• Movement during the image capture process, by the camera or, when long
exposure times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a
short exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

Deblurring Model
A blurred or degraded image can be approximately described by this equation
g = Hf + n, where

g The blurred image

H The distortion operator, also called the point spread function (PSF).
In the spatial domain, the PSF describes the degree to which an
optical system blurs (spreads) a point of light. The PSF is the
inverse Fourier transform of the optical transfer function (OTF). In
the frequency domain, the OTF describes the response of a linear,
position-invariant system to an impulse. The OTF is the Fourier
transform of the point spread function (PSF). The distortion operator,
when convolved with the image, creates the distortion. Distortion
caused by a point spread function is just one type of distortion.

f The original true image

n Additive noise, introduced during image acquisition, that corrupts
the image

13-2

Understanding Deblurring

Note The image f really doesn’t exist. This image represents what you would
have if you had perfect image acquisition conditions.

Importance of the PSF
Based on this model, the fundamental task of deblurring is to deconvolve
the blurred image with the PSF that exactly describes the distortion.
Deconvolution is the process of reversing the effect of convolution.

Note The quality of the deblurred image is mainly determined by knowledge
of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by
convolving it with a PSF. The example uses the fspecial function to create a
PSF that simulates a motion blur, specifying the length of the blur in pixels,
(LEN=31), and the angle of the blur in degrees (THETA=11). Once the PSF
is created, the example uses the imfilter function to convolve the PSF
with the original image, I, to create the blurred image, Blurred. (To see
how deblurring is the reverse of this process, using the same images, see
“Deblurring with the Wiener Filter” on page 13-6.)

I = imread('peppers.png');
I = I(60+[1:256],222+[1:256],:); % crop the image
figure; imshow(I); title('Original Image');

13-3

13 Image Deblurring

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv');
figure; imshow(Blurred); title('Blurred Image');

Deblurring Functions
The toolbox includes four deblurring functions, listed here in order of
complexity. All the functions accept a PSF and the blurred image as their
primary arguments.

deconvwnr Implements a least squares solution. You should provide
some information about the noise to reduce possible noise
amplification during deblurring. See“Deblurring with the
Wiener Filter” on page 13-6 for more information.

deconvreg Implements a constrained least squares solution, where you
can place constraints on the output image (the smoothness
requirement is the default). You should provide some
information about the noise to reduce possible noise
amplification during deblurring. See “Deblurring with a
Regularized Filter” on page 13-8 for more information.

13-4

Understanding Deblurring

deconvlucy Implements an accelerated, damped Lucy-Richardson
algorithm. This function performs multiple iterations, using
optimization techniques and Poisson statistics. You do not
need to provide information about the additive noise in the
corrupted image. See “Deblurring with the Lucy-Richardson
Algorithm” on page 13-10 for more information.

deconvblind Implements the blind deconvolution algorithm, which
performs deblurring without knowledge of the PSF. You
pass as an argument your initial guess at the PSF. The
deconvblind function returns a restored PSF in addition
to the restored image. The implementation uses the same
damping and iterative model as the deconvlucy function.
See “Deblurring with the Blind Deconvolution Algorithm”
on page 13-16 for more information.

Note

When using the deblurring functions, note the following:

• Deblurring is an iterative process. You might need to repeat the deblurring
process multiple times, varying the parameters you specify to the
deblurring functions with each iteration, until you achieve an image that,
based on the limits of your information, is the best approximation of the
original scene. Along the way, you must make numerous judgments about
whether newly uncovered features in the image are features of the original
scene or simply artifacts of the deblurring process.

• To avoid "ringing" in a deblurred image, you can use the edgetaper
function to preprocess your image before passing it to the deblurring
functions. See “Avoiding Ringing in Deblurred Images” on page 13-24 for
more information.

• For information about creating your own deblurring functions, see
“Creating Your Own Deblurring Functions” on page 13-23.

13-5

13 Image Deblurring

Deblurring with the Wiener Filter
Use the deconvwnr function to deblur an image using the Wiener filter. Wiener
deconvolution can be used effectively when the frequency characteristics of
the image and additive noise are known, to at least some degree. In the
absence of noise, the Wiener filter reduces to the ideal inverse filter.

This example deblurs the blurred image created in “Deblurring Model” on
page 13-2, specifying the same PSF function that was used to create the blur.
This example illustrates the importance of knowing the PSF, the function that
caused the blur. When you know the exact PSF, the results of deblurring
can be quite effective.

1 Read an image into the MATLAB workspace. (To speed the deblurring
operation, the example also crops the image.)

I = imread('peppers.png');
I = I(10+[1:256],222+[1:256],:);
figure;imshow(I);title('Original Image');

2 Create a PSF.

LEN = 31;
THETA = 11;
PSF = fspecial('motion',LEN,THETA);

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circular','conv');

13-6

Deblurring with the Wiener Filter

figure; imshow(Blurred);title('Blurred Image');

4 Deblur the image.

wnr1 = deconvwnr(Blurred,PSF);
figure;imshow(wnr1);
title('Restored, True PSF');

Refining the Result
You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvwnr function. Using these arguments you
can specify the noise-to-signal power value and/or provide autocorrelation
functions to help refine the result of deblurring. To see the impact of these
optional arguments, view the Image Processing Toolbox deblurring demos.

13-7

13 Image Deblurring

Deblurring with a Regularized Filter
Use the deconvreg function to deblur an image using a regularized filter. A
regularized filter can be used effectively when limited information is known
about the additive noise.

To illustrate, this example simulates a blurred image by convolving a
Gaussian filter PSF with an image (using imfilter). Additive noise in the
image is simulated by adding Gaussian noise of variance V to the blurred
image (using imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to
reduce the size of the image to be deblurred. This is not a required step in
deblurring operations.

I = imread('tissue.png');
I = I(125+[1:256],1:256,:);
figure; imshow(I); title('Original Image');

Image Courtesy Alan W. Partin

2 Create the PSF.

PSF = fspecial('gaussian',11,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'conv');

V = .02;

13-8

Deblurring with a Regularized Filter

BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

4 Use deconvreg to deblur the image, specifying the PSF used to create the
blur and the noise power, NP.

NP = V*prod(size(I));
[reg1 LAGRA] = deconvreg(BlurredNoisy,PSF,NP);
figure,imshow(reg1),title('Restored Image');

Refining the Result
You can affect the deconvolution results by providing values for the optional
arguments supported by the deconvreg function. Using these arguments you
can specify the noise power value, the range over which deconvreg should
iterate as it converges on the optimal solution, and the regularization operator
to constrain the deconvolution. To see the impact of these optional arguments,
view the Image Processing Toolbox deblurring demos.

13-9

13 Image Deblurring

Deblurring with the Lucy-Richardson Algorithm
Use the deconvlucy function to deblur an image using the accelerated,
damped, Lucy-Richardson algorithm. The algorithm maximizes the likelihood
that the resulting image, when convolved with the PSF, is an instance of
the blurred image, assuming Poisson noise statistics. This function can be
effective when you know the PSF but know little about the additive noise
in the image.

The deconvlucy function implements several adaptations to the original
Lucy-Richardson maximum likelihood algorithm that address complex image
restoration tasks. The following sections describe these adaptations and
provide an example of using the deconvlucy function.

• “Reducing the Effect of Noise Amplification” on page 13-10

• “Accounting for Nonuniform Image Quality” on page 13-11

• “Handling Camera Read-Out Noise” on page 13-11

• “Handling Undersampled Images” on page 13-12

• “Example: Using the deconvlucy Function to Deblur an Image” on page
13-12

• “Refining the Result” on page 13-15

Reducing the Effect of Noise Amplification
Noise amplification is a common problem of maximum likelihood methods
that attempt to fit data as closely as possible. After many iterations, the
restored image can have a speckled appearance, especially for a smooth
object observed at low signal-to-noise ratios. These speckles do not represent
any real structure in the image, but are artifacts of fitting the noise in the
image too closely.

To control noise amplification, the deconvlucy function uses a damping
parameter, DAMPAR. This parameter specifies the threshold level for the
deviation of the resulting image from the original image, below which
damping occurs. For pixels that deviate in the vicinity of their original values,
iterations are suppressed.

13-10

Deblurring with the Lucy-Richardson Algorithm

Damping is also used to reduce ringing, the appearance of high-frequency
structures in a restored image. Ringing is not necessarily the result of noise
amplification. See “Avoiding Ringing in Deblurred Images” on page 13-24
for more information.

Accounting for Nonuniform Image Quality
Another complication of real-life image restoration is that the data might
include bad pixels, or that the quality of the receiving pixels might vary
with time and position. By specifying the WEIGHT array parameter with
the deconvlucy function, you can specify that certain pixels in the image
be ignored. To ignore a pixel, assign a weight of zero to the element in the
WEIGHT array that corresponds to the pixel in the image.

The algorithm converges on predicted values for the bad pixels based on
the information from neighborhood pixels. The variation in the detector
response from pixel to pixel (the so-called flat-field correction) can also be
accommodated by the WEIGHT array. Instead of assigning a weight of 1.0 to the
good pixels, you can specify fractional values and weight the pixels according
to the amount of the flat-field correction.

Handling Camera Read-Out Noise
Noise in charge coupled device (CCD) detectors has two primary components:

• Photon counting noise with a Poisson distribution

• Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise.
You must account for the second type of noise; otherwise, it can cause pixels
with low levels of incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle
camera read-out noise. The value of this parameter is typically the sum of
the read-out noise variance and the background noise (e.g., number of counts
from the background radiation). The value of the READOUT parameter specifies
an offset that ensures that all values are positive.

13-11

13 Image Deblurring

Handling Undersampled Images
The restoration of undersampled data can be improved significantly if it is
done on a finer grid. The deconvlucy function uses the SUBSMPL parameter to
specify the subsampling rate, if the PSF is known to have a higher resolution.

If the undersampled data is the result of camera pixel binning during image
acquisition, the PSF observed at each pixel rate can serve as a finer grid PSF.
Otherwise, the PSF can be obtained via observations taken at subpixel offsets
or via optical modeling techniques. This method is especially effective for
images of stars (high signal-to-noise ratio), because the stars are effectively
forced to be in the center of a pixel. If a star is centered between pixels, it is
restored as a combination of the neighboring pixels. A finer grid redirects the
consequent spreading of the star flux back to the center of the star’s image.

Example: Using the deconvlucy Function to Deblur
an Image
To illustrate a simple use of deconvlucy, this example simulates a blurred,
noisy image by convolving a Gaussian filter PSF with an image (using
imfilter) and then adding Gaussian noise of variance V to the blurred image
(using imnoise):

1 Read an image into the MATLAB workspace. (The example uses cropping
to reduce the size of the image to be deblurred. This is not a required step
in deblurring operations.)

I = imread('board.tif');
I = I(50+[1:256],2+[1:256],:);
figure;imshow(I);title('Original Image');

13-12

Deblurring with the Lucy-Richardson Algorithm

2 Create the PSF.

PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'symmetric','conv');

V = .002;
BlurredNoisy = imnoise(Blurred,'gaussian',0,V);
figure;imshow(BlurredNoisy);title('Blurred and Noisy Image');

13-13

13 Image Deblurring

4 Use deconvlucy to restore the blurred and noisy image, specifying the
PSF used to create the blur, and limiting the number of iterations to 5
(the default is 10).

Note The deconvlucy function can return values in the output image that
are beyond the range of the input image.

luc1 = deconvlucy(BlurredNoisy,PSF,5);
figure; imshow(luc1);
title('Restored Image');

13-14

Deblurring with the Lucy-Richardson Algorithm

Refining the Result
The deconvlucy function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number of
iterations to check the result, and then restart the iterations from the point
where processing stopped. To do this, pass in the input image as a cell
array, for example, {BlurredNoisy}. The deconvlucy function returns the
output image as a cell array that you can then pass as an input argument to
deconvlucy to restart the deconvolution.

The output cell array contains these four elements:

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know where
to restart the process

The deconvlucy function supports several other optional arguments you
can use to achieve the best possible result, such as specifying a damping
parameter to handle additive noise in the blurred image. To see the impact
of these optional arguments, view the Image Processing Toolbox deblurring
demos.

13-15

13 Image Deblurring

Deblurring with the Blind Deconvolution Algorithm
Use the deconvblind function to deblur an image using the blind
deconvolution algorithm. The algorithm maximizes the likelihood that the
resulting image, when convolved with the resulting PSF, is an instance of the
blurred image, assuming Poisson noise statistics. The blind deconvolution
algorithm can be used effectively when no information about the distortion
(blurring and noise) is known. The deconvblind function restores the
image and the PSF simultaneously, using an iterative process similar to the
accelerated, damped Lucy-Richardson algorithm.

The deconvblind function, just like the deconvlucy function, implements
several adaptations to the original Lucy-Richardson maximum likelihood
algorithm that address complex image restoration tasks. Using these
adaptations, you can

• Reduce the effect of noise on the restoration

• Account for nonuniform image quality (e.g., bad pixels)

• Handle camera read-out noise

For more information about these adaptations, see “Deblurring with the
Lucy-Richardson Algorithm” on page 13-10. In addition, the deconvblind
function supports PSF constraints that can be passed in through a
user-specified function.

Example: Using the deconvblind Function to Deblur
an Image
To illustrate blind deconvolution, this example creates a simulated blurred
image and then uses deconvblind to deblur it. The example makes two passes
at deblurring the image to show the effect of certain optional parameters
on the deblurring operation:

13-16

Deblurring with the Blind Deconvolution Algorithm

1 Read an image into the MATLAB workspace.

I = imread('cameraman.tif');
figure; imshow(I); title('Original Image');

2 Create the PSF.

PSF = fspecial('motion',13,45);
figure; imshow(PSF,[],'notruesize'); title('Original PSF');

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circ','conv');
figure; imshow(Blurred); title('Blurred Image');

13-17

13 Image Deblurring

4 Deblur the image, making an initial guess at the size of the PSF.

To determine the size of the PSF, examine the blurred image and measure
the width of a blur (in pixels) around an obviously sharp object. In the
sample blurred image, you can measure the blur near the contour of the
man’s sleeve. Because the size of the PSF is more important than the values
it contains, you can typically specify an array of 1’s as the initial PSF.

The following figure shows a restoration where the initial guess at the PSF
is the same size as the PSF that caused the blur. In a real application, you
might need to rerun deconvblind, experimenting with PSFs of different
sizes, until you achieve a satisfactory result. The restored PSF returned by
each deconvolution can also provide valuable hints at the optimal PSF size.
See the Image Processing Toolbox deblurring demos for an example.

INITPSF = ones(size(PSF));
[J P]= deconvblind(Blurred,INITPSF,30);
figure; imshow(J); title('Restored Image');
figure; imshow(P,[],'notruesize');
title('Restored PSF');

13-18

Deblurring with the Blind Deconvolution Algorithm

Although deconvblind was able to deblur the image to a great extent, the
ringing around the sharp intensity contrast areas in the restored image
is unsatisfactory. (The example eliminated edge-related ringing by using
the 'circular' option with imfilter when creating the simulated blurred
image in step 3.)

The next steps in the example repeat the deblurring process, attempting to
achieve a better result by

• Eliminating high-contrast areas from the processing

• Specifying a better PSF

5 Create a WEIGHT array to exclude areas of high contrast from the deblurring
operation. This can reduce contrast-related ringing in the result.

To exclude a pixel from processing, you create an array of the same size as
the original image, and assign the value 0 to the pixels in the array that
correspond to pixels in the original image that you want to exclude from
processing. (See “Accounting for Nonuniform Image Quality” on page 13-11
for information about WEIGHT arrays.)

To create a WEIGHT array, the example uses a combination of edge detection
and morphological processing to detect high-contrast areas in the image.
Because the blur in the image is linear, the example dilates the image
twice. (For more information about using these functions, see Chapter
10, “Morphological Operations”.) To exclude the image boundary pixels (a

13-19

13 Image Deblurring

high-contrast area) from processing, the example uses padarray to assign
the value 0 to all border pixels.

WEIGHT = edge(I,'sobel',.28);
se1 = strel('disk',1);
se2 = strel('line',13,45);
WEIGHT = ~imdilate(WEIGHT,[se1 se2]);
WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);
figure; imshow(WEIGHT); title('Weight Array');

6 Refine the guess at the PSF. The reconstructed PSF P returned by the first
pass at deconvolution shows a clear linearity, as shown in the figure in step
4. For the second pass, the example uses a new PSF, P1, which is the same
as the restored PSF but with the small amplitude pixels set to 0.

P1 = P;
P1(find(P1 < 0.01))=0;

7 Rerun the deconvolution, specifying the WEIGHT array and the modified
PSF. Note how the restored image has much less ringing around the sharp
intensity contrast areas than the result of the first pass (step 4).

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);
figure; imshow(J2);
title('Newly Deblurred Image');
figure; imshow(P2,[],'notruesize');
title('Newly Reconstructed PSF');

13-20

Deblurring with the Blind Deconvolution Algorithm

Refining the Result
The deconvblind function, by default, performs multiple iterations of the
deblurring process. You can stop the processing after a certain number
of iterations to check the result, and then restart the iterations from the
point where processing stopped. To use this feature, you must pass in both
the blurred image and the PSF as cell arrays, for example, {Blurred} and
{INITPSF}.

The deconvblind function returns the output image and the restored PSF as
cell arrays. The output image cell array contains these four elements:

Element Description

output{1} Original input image

output{2} Image produced by the last iteration

output{3} Image produced by the next to last iteration

output{4} Internal information used by deconvlucy to know where
to restart the process

13-21

13 Image Deblurring

The PSF output cell array contains similar elements.

The deconvblind function supports several other optional arguments you
can use to achieve the best possible result, such as specifying a damping
parameter to handle additive noise in the blurred image. To see the impact
of these optional arguments, as well as the functional option that allows you
to place additional constraints on the PSF reconstruction, see the Image
Processing Toolbox deblurring demos.

13-22

Creating Your Own Deblurring Functions

Creating Your Own Deblurring Functions
All the toolbox deblurring functions perform deconvolution in the frequency
domain, where the process becomes a simple matrix multiplication. To work
in the frequency domain, the deblurring functions must convert the PSF you
provide into an optical transfer function (OTF), using the psf2otf function.
The toolbox also provides a function to convert an OTF into a PSF, otf2psf.
The toolbox makes these functions available in case you want to create your
own deblurring functions. (In addition, to aid this conversion between PSFs
and OTFs, the toolbox also makes the padding function padarray available.)

13-23

13 Image Deblurring

Avoiding Ringing in Deblurred Images
The discrete Fourier transform (DFT), used by the deblurring functions,
assumes that the frequency pattern of an image is periodic. This assumption
creates a high-frequency drop-off at the edges of images. In the figure, the
shaded area represents the actual extent of the image; the unshaded area
represents the assumed periodicity.

This high-frequency drop-off can create an effect called boundary related
ringing in deblurred images. In this figure, note the horizontal and vertical
patterns in the image.

To avoid ringing, use the edgetaper function to preprocess your images
before passing them to the deblurring functions. The edgetaper function
removes the high-frequency drop-off at the edge of an image by blurring
the entire image and then replacing the center pixels of the blurred image
with the original image. In this way, the edges of the image taper off to a
lower frequency.

13-24

14

Color

This chapter describes the toolbox functions that help you work with color
image data. Note that “color“ includes shades of gray; therefore much of the
discussion in this chapter applies to grayscale images as well as color images.

Working with Different Screen Bit
Depths (p. 14-2)

Describes how to determine the
screen bit depth of your system and
provides recommendations if you can
change the bit depth

Reducing the Number of Colors in
an Image (p. 14-5)

Describes how to use imapprox
and rgb2ind to reduce the number
of colors in an image, including
information about dithering

Converting Color Data Between
Color Spaces (p. 14-14)

Defines the concept of image color
space and describes how to convert
images between color spaces

14 Color

Working with Different Screen Bit Depths
Most computer displays use 8, 16, or 24 bits per screen pixel. The number
of bits per screen pixel determines the display’s screen bit depth. The screen
bit depth determines the screen color resolution, which is how many distinct
colors the display can produce.

Regardless of the number of colors your system can display, MATLAB can
store and process images with very high bit depths: 224 colors for uint8 RGB
images, 248 colors for uint16 RGB images, and 2159 for double RGB images.
These images are displayed best on systems with 24-bit color, but usually
look fine on 16-bit systems as well. (For additional information about how
MATLAB handles color, see the MATLAB graphics documentation.)

This section covers the following topics:

• “Determining Screen Bit Depth” on page 14-2

• “Choosing a Screen Bit Depth” on page 14-4

Determining Screen Bit Depth
To determine the bit depth of your system’s screen, enter this command at
the MATLAB prompt.

get(0,'ScreenDepth')
ans =

32

The integer MATLAB returns represents the number of bits per screen pixel:

14-2

Working with Different Screen Bit Depths

Value Screen Bit Depth

8 8-bit displays support 256 colors. An 8-bit display can produce
any of the colors available on a 24-bit display, but only 256
distinct colors can appear at one time. (There are 256 shades
of gray available, but if all 256 shades of gray are used, they
take up all the available color slots.)

16 16-bit displays usually use 5 bits for each color component,
resulting in 32 (i.e., 25) levels each of red, green, and blue.
This supports 32,768 (i.e., 215) distinct colors (of which 32 are
shades of gray). Some systems use the extra bit to increase
the number of levels of green that can be displayed. In this
case, the number of different colors supported by a 16-bit
display is actually 64,536 (i.e. 216).

24 24-bit displays use 8 bits for each of the three color
components, resulting in 256 (i.e., 28) levels each of red, green,
and blue. This supports 16,777,216 (i.e., 224) different colors.
(Of these colors, 256 are shades of gray. Shades of gray occur
where R=G=B.) The 16 million possible colors supported by
24-bit display can render a lifelike image.

32 32-bit displays use 24 bits to store color information and
use the remaining 8 bits to store transparency data (alpha
channel). For information about how MATLAB supports
the alpha channel, see the section “Transparency” in the
MATLAB 3-D Visualization documentation.

14-3

14 Color

Choosing a Screen Bit Depth
Depending on your system, you might be able to choose the screen bit depth
you want to use. (There might be tradeoffs between screen bit depth and
screen color resolution.) In general, 24-bit display mode produces the best
results. If you need to use a lower screen bit depth, 16-bit is generally
preferable to 8-bit. However, keep in mind that a 16-bit display has certain
limitations, such as

• An image might have finer gradations of color than a 16-bit display
can represent. If a color is unavailable, MATLAB uses the closest
approximation.

• There are only 32 shades of gray available. If you are working primarily
with grayscale images, you might get better display results using 8-bit
display mode, which provides up to 256 shades of gray.

For information about reducing the number of colors used by an image, see
“Reducing the Number of Colors in an Image” on page 14-5.

14-4

Reducing the Number of Colors in an Image

Reducing the Number of Colors in an Image
This section describes how to reduce the number of colors in an indexed or
RGB image. Topics covered include:

• “Color Approximation” on page 14-5

• “Reducing Colors in an Indexed Image” on page 14-11

• “Dithering” on page 14-12

This section includes a discussion about dithering, which is used by the
toolbox’s color-reduction functions. Dithering is used to increase the apparent
number of colors in an image.

Color Approximation
On systems with 24-bit color displays, truecolor images can display up to
16,777,216 (i.e., 224) colors. On systems with lower screen bit depths, truecolor
images are still displayed reasonably well, because MATLAB automatically
uses color approximation and dithering if needed. Color approximation is the
process by which the software chooses replacement colors in the event that
direct matches cannot be found. The methods of approximation discussed in
this chapter are colormap mapping, uniform quantization, and minimum
variance quantization — see “Color Approximation” on page 14-5.

Indexed images, however, might cause problems if they have a large number
of colors. In general, you should limit indexed images to 256 colors for the
following reasons:

• On systems with 8-bit display, indexed images with more than 256 colors
will need to be dithered or mapped and, therefore, might not display well.

• On some platforms, colormaps cannot exceed 256 entries.

• If an indexed image has more than 256 colors, MATLAB cannot store the
image data in a uint8 array, but generally uses an array of class double
instead, making the storage size of the image much larger (each pixel uses
64 bits).

14-5

14 Color

• Most image file formats limit indexed images to 256 colors. If you write an
indexed image with more than 256 colors (using imwrite) to a format that
does not support more than 256 colors, you will receive an error.

To reduce the number of colors in an image, use the rgb2ind function.
This function converts a truecolor image to an indexed image, reducing the
number of colors in the process. rgb2ind provides the following methods for
approximating the colors in the original image:

• Quantization (described in “Quantization” on page 14-6)

- Uniform quantization

- Minimum variance quantization

• Colormap mapping (described in “Colormap Mapping” on page 14-10)

The quality of the resulting image depends on the approximation method
you use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 14-12 for a description of dithering and how to enable
or disable it.

Quantization
Reducing the number of colors in an image involves quantization. The
function rgb2ind uses quantization as part of its color reduction algorithm.
rgb2ind supports two quantization methods: uniform quantization and
minimum variance quantization.

An important term in discussions of image quantization is RGB color cube,
which is used frequently throughout this section. The RGB color cube is a
three-dimensional array of all of the colors that are defined for a particular
data type. Since RGB images in MATLAB can be of type uint8, uint16, or
double, three possible color cube definitions exist. For example, if an RGB
image is of class uint8, 256 values are defined for each color plane (red, blue,
and green), and, in total, there will be 224 (or 16,777,216) colors defined by the
color cube. This color cube is the same for all uint8 RGB images, regardless
of which colors they actually use.

The uint8, uint16, and double color cubes all have the same range of colors.
In other words, the brightest red in a uint8 RGB image appears the same as

14-6

Reducing the Number of Colors in an Image

the brightest red in a double RGB image. The difference is that the double
RGB color cube has many more shades of red (and many more shades of all
colors). The following figure shows an RGB color cube for a uint8 image.

RGB Color Cube for uint8 Images

Quantization involves dividing the RGB color cube into a number of smaller
boxes, and then mapping all colors that fall within each box to the color value
at the center of that box.

Uniform quantization and minimum variance quantization differ in the
approach used to divide up the RGB color cube. With uniform quantization,
the color cube is cut up into equal-sized boxes (smaller cubes). With minimum
variance quantization, the color cube is cut up into boxes (not necessarily
cubes) of different sizes; the sizes of the boxes depend on how the colors are
distributed in the image.

Uniform Quantization. To perform uniform quantization, call rgb2ind and
specify a tolerance. The tolerance determines the size of the cube-shaped
boxes into which the RGB color cube is divided. The allowable range for a
tolerance setting is [0,1]. For example, if you specify a tolerance of 0.1, the
edges of the boxes are one-tenth the length of the RGB color cube and the
maximum total number of boxes is

n = (floor(1/tol)+1)^3

14-7

14 Color

The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('peppers.png');
[x,map] = rgb2ind(RGB, 0.1);

The following figure illustrates uniform quantization of a uint8 image. For
clarity, the figure shows a two-dimensional slice (or color plane) from the color
cube where red=0 and green and blue range from 0 to 255. The actual pixel
values are denoted by the centers of the x’s.

Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out.
Therefore, only one of the boxes is used to produce a color for the colormap.
As shown earlier, the maximum length of a colormap created by uniform
quantization can be predicted, but the colormap can be smaller than the
prediction because rgb2ind removes any colors that do not appear in the
input image.

14-8

Reducing the Number of Colors in an Image

Minimum Variance Quantization. To perform minimum variance
quantization, call rgb2ind and specify the maximum number of colors in the
output image’s colormap. The number you specify determines the number
of boxes into which the RGB color cube is divided. These commands use
minimum variance quantization to create an indexed image with 185 colors.

RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups
based on the variance between their pixel values. For example, a set of blue
pixels might be grouped together because they have a small variance from
the center pixel of the group.

In minimum variance quantization, the boxes that divide the color cube vary
in size, and do not necessarily fill the color cube. If some areas of the color
cube do not have pixels, there are no boxes in these areas.

While you set the number of boxes, n, to be used by rgb2ind, the placement
is determined by the algorithm as it analyzes the color data in your image.
Once the image is divided into n optimally located boxes, the pixels within
each box are mapped to the pixel value at the center of the box, as in uniform
quantization.

The resulting colormap usually has the number of entries you specify. This is
because the color cube is divided so that each region contains at least one color
that appears in the input image. If the input image uses fewer colors than the
number you specify, the output colormap will have fewer than n colors, and
the output image will contain all of the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as
shown in the preceding figure (demonstrating uniform quantization). Eleven
boxes have been created using minimum variance quantization.

14-9

14 Color

Minimum Variance Quantization on a Slice of the RGB Color Cube

For a given number of colors, minimum variance quantization produces better
results than uniform quantization, because it takes into account the actual
data. Minimum variance quantization allocates more of the colormap entries
to colors that appear frequently in the input image. It allocates fewer entries
to colors that appear infrequently. As a result, the accuracy of the colors
is higher than with uniform quantization. For example, if the input image
has many shades of green and few shades of red, there will be more greens
than reds in the output colormap. Note that the computation for minimum
variance quantization takes longer than that for uniform quantization.

Colormap Mapping
If you specify an actual colormap to use, rgb2ind uses colormap mapping
(instead of quantization) to find the colors in the specified colormap that best
match the colors in the RGB image. This method is useful if you need to
create images that use a fixed colormap. For example, if you want to display
multiple indexed images on an 8-bit display, you can avoid color problems by
mapping them all to the same colormap. Colormap mapping produces a good
approximation if the specified colormap has similar colors to those in the RGB
image. If the colormap does not have similar colors to those in the RGB image,
this method produces poor results.

14-10

Reducing the Number of Colors in an Image

This example illustrates mapping two images to the same colormap. The
colormap used for the two images is created on the fly using the MATLAB
function colorcube, which creates an RGB colormap containing the number
of colors that you specify. (colorcube always creates the same colormap for a
given number of colors.) Because the colormap includes colors all throughout
the RGB color cube, the output images can reasonably approximate the input
images.

RGB1 = imread('autumn.tif');
RGB2 = imread('peppers.png');
X1 = rgb2ind(RGB1,colorcube(128));
X2 = rgb2ind(RGB2,colorcube(128));

Note The function subimage is also helpful for displaying multiple indexed
images. For more information, see “Displaying Multiple Images in the Same
Figure” on page 4-48 or the reference page for subimage.

Reducing Colors in an Indexed Image
Use imapprox when you need to reduce the number of colors in an indexed
image. imapprox is based on rgb2ind and uses the same approximation
methods. Essentially, imapprox first calls ind2rgb to convert the image to
RGB format, and then calls rgb2ind to return a new indexed image with
fewer colors.

For example, these commands create a version of the trees image with 64
colors, rather than the original 128.

load trees
[Y,newmap] = imapprox(X,map,64);
imshow(Y, newmap);

The quality of the resulting image depends on the approximation method
you use, the range of colors in the input image, and whether or not you use
dithering. Note that different methods work better for different images. See
“Dithering” on page 14-12 for a description of dithering and how to enable
or disable it.

14-11

14 Color

Dithering
When you use rgb2ind or imapprox to reduce the number of colors in an
image, the resulting image might look inferior to the original, because some
of the colors are lost. rgb2ind and imapprox both perform dithering to
increase the apparent number of colors in the output image. Dithering
changes the colors of pixels in a neighborhood so that the average color in each
neighborhood approximates the original RGB color.

For an example of how dithering works, consider an image that contains
a number of dark orange pixels for which there is no exact match in the
colormap. To create the appearance of this shade of orange, the Image
Processing Toolbox selects a combination of colors from the colormap, that,
taken together as a six-pixel group, approximate the desired shade of orange.
From a distance, the pixels appear to be the correct shade, but if you look up
close at the image, you can see a blend of other shades. This example loads a
24-bit image, and then use rgb2ind to create two indexed images with just
eight colors each:

1 Read image and display it.

rgb=imread('onion.png');
imshow(rgb);

2 Create an indexed image with eight colors and without dithering.

[X_no_dither,map]= rgb2ind(rgb,8,'nodither');
figure, imshow(X_no_dither,map);

14-12

Reducing the Number of Colors in an Image

3 Create an indexed image using eight colors with dithering.

[X_dither,map]=rgb2ind(rgb,8,'dither');
figure, imshow(X_dither,map);

Notice that the dithered image has a larger number of apparent colors but is
somewhat fuzzy-looking. The image produced without dithering has fewer
apparent colors, but an improved spatial resolution when compared to the
dithered image. One risk in doing color reduction without dithering is that
the new image can contain false contours.

14-13

14 Color

Converting Color Data Between Color Spaces
The Image Processing Toolbox represents colors as RGB values, either
directly (in an RGB image) or indirectly (in an indexed image, where the
colormap is stored in RGB format). However, there are other models besides
RGB for representing colors numerically. The various models are referred to
as color spaces because most of them can be mapped into a 2-D, 3-D, or 4-D
coordinate system; thus, a color specification is made up of coordinates in a
2-D, 3-D, or 4-D space.

The various color spaces exist because they present color information in ways
that make certain calculations more convenient or because they provide a
way to identify colors that is more intuitive. For example, the RGB color
space defines a color as the percentages of red, green, and blue hues mixed
together. Other color models describe colors by their hue (green), saturation
(dark green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting
color data from one color space to another through a mathematical
transformation.

This section includes the following topics:

• “Converting Between Device-Independent Color Spaces” on page 14-14

• “Performing Profile-Based Color Space Conversions” on page 14-18

• “Converting Between Device-Dependent Color Spaces” on page 14-22

Converting Between Device-Independent Color
Spaces
The standard terms used to describe colors, such as hue, brightness, and
intensity, are subjective and make comparisons difficult.

In 1931, the International Commission on Illumination, known by the
acronym CIE, for Commission Internationale de l’Éclairage, studied human
color perception and developed a standard, called the CIE XYZ. This standard
defined a three-dimensional space where three values, called tristimulus
values, define a color. This standard is still widely used today.

14-14

Converting Color Data Between Color Spaces

In the decades since that initial specification, the CIE has developed several
additional color space specifications that attempt to provide alternative
color representations that are better suited to some purposes than XYZ. For
example, in 1976, in an effort to get a perceptually uniform color space that
could be correlated with the visual appearance of colors, the CIE created
the L*a*b* color space.

The toolbox supports conversions between members of the CIE family of
device-independent color spaces. In addition, the toolbox also supports
conversions between these CIE color spaces and the sRGB color space. This
color space was defined by an industry group to describe the characteristics of
a typical PC monitor.

This section

• Lists the supported device-independent color spaces

• Provides an example of how to perform a conversion

• Provides guidelines about data type support of the various conversions

Supported Conversions
This table lists all the device-independent color spaces that the toolbox
supports.

Color
Space Description

Supported
Conversions

The original, 1931 CIE color space specification. , ,
, and

CIE specification that provides normalized
chromaticity values. The capital Y value represents
luminance and is the same as in XYZ.

CIE specification that attempts to make the
chromaticity plane more visually uniform. Lis
luminance and is the same as Y in XYZ.

CIE specification in which u and v are rescaled to
improve uniformity.

14-15

14 Color

Color
Space Description

Supported
Conversions

CIE specification that attempts to make the
luminance scale more perceptually uniform. is
a nonlinear scaling of L, normalized to a reference
white point.

CIE specification where c is chroma and h is hue.
These values are a polar coordinate conversion of
a* and b* in .

Standard adopted by major manufacturers that
characterizes the average PC monitor.

and

Example: Performing a Color Space Conversion
To illustrate a conversion between two device-independent color spaces, this
example reads an RGB color image into the MATLAB workspace and converts
the color data to the XYZ color space:

1 Import color space data. This example reads an RGB color image into the
MATLAB workspace.

I_rgb = imread('peppers.png');

2 Create a color transformation structure. A color transformation structure
defines the conversion between two color spaces. You use the makecform
function to create the structure, specifying a transformation type string
as an argument.

This example creates a color transformation structure that defines a
conversion from RGB color data to XYZ color data.

C = makecform('srgb2xyz');

14-16

Converting Color Data Between Color Spaces

3 Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert
and the color transformation structure that defines the conversion. The
applycform function returns the converted data.

I_xyz = applycform(I_rgb,C);
whos

Name Size Bytes Class

C 1x1 7744 struct array
I_xyz 384x512x3 1179648 uint16 array
I_rgb 384x512x3 589824 uint8 array

Color Space Data Encodings
When you convert between two device-independent color spaces, the data
type used to encode the color data can sometimes change, depending on what
encodings the color spaces support. In the preceding example, the original
image is uint8 data. The XYZ conversion is uint16 data. The XYZ color space
does not define a uint8 encoding. The following table lists the data types that
can be used to represent values in all the device-independent color spaces.

Color Space Encodings

XYZ uint16 or double

xyY double

uvL double

u'v'L double

L*a*b* uint8, uint16, or double

L*ch double

sRGB double

As the table indicates, certain color spaces have data type limitations. For
example, the XYZ color space does not define a uint8 encoding. If you convert
8-bit CIE LAB data into the XYZ color space, the data is returned in uint16
format. If you want the returned XYZ data to be in the same format as the
input LAB data, you can use one of the following toolbox color space format
conversion functions.

14-17

14 Color

• lab2double

• lab2uint8

• lab2uint16

• xyz2double

• xyz2uint16

Performing Profile-Based Color Space Conversions
The Image Processing Toolbox can perform color space conversions based on
device profiles. This section includes the following topics:

• “Understanding Device Profiles” on page 14-18

• “Reading ICC Profiles” on page 14-19

• “Writing Profile Information to a File” on page 14-19

• “Example: Performing a Profile-Based Conversion” on page 14-20

• “Specifying the Rendering Intent” on page 14-22

Understanding Device Profiles
If two colors have the same CIE colorimetry, they will match if viewed under
the same conditions. However, because color images are typically produced for
a wide variety of viewing environments, it is necessary to go beyond simple
application of the CIE system.

For this reason, the International Color Consortium (ICC) has defined a Color
Management System (CMS) that provides a means for communicating color
information among input, output, and display devices. The CMS uses device
profiles that contain color information specific to a particular device. Vendors
that support CMS provide profiles that characterize the color reproduction
of their devices, and methods, called Color Management Modules (CMM),
that interpret the contents of each profile and perform the necessary image
processing.

Device profiles contain the information that color management systems need
to translate color data between devices. Any conversion between color spaces
is a mathematical transformation from some domain space to a range space.
With profile-based conversions, the domain space is often called the source

14-18

Converting Color Data Between Color Spaces

space and the range space is called the destination space. In the ICC color
management model, profiles are used to represent the source and destination
spaces.

For more information about color management systems, go to the
International Color Consortium Web site, www.color.org.

Reading ICC Profiles
To read an ICC profile into the MATLAB workspace, use the iccread
function. In this example, the function reads in the profile for the color space
that describes color monitors.

P = iccread('sRGB.icm');

You can use the iccfind function to find ICC color profiles on your system, or
to find a particular ICC color profile whose description contains a certain text
string. To get the name of the directory that is the default system repository
for ICC profiles, use iccroot.

iccread returns the contents of the profile in the structure P. All profiles
contain a header, a tag table, and a series of tagged elements. The header
contains general information about the profile, such as the device class, the
device color space, and the file size. The tagged elements, or tags, are the
data constructs that contain the information used by the CMM. For more
information about the contents of this structure, see the iccread function
reference page.

Using iccread, you can read both Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12) ICC profile formats. For detailed information about these
specifications and their differences, visit the ICC web site, www.color.org.

Writing Profile Information to a File
To export ICC profile information from the MATLAB workspace to a file,
use the iccwrite function. This example reads a profile into the MATLAB
workspace and then writes the profile information out to a new file.

P = iccread('sRGB.icm');
P_new = iccwrite(P,'my_profile.icm');

14-19

http://www.color.org
http://www.color.org

14 Color

iccwrite returns the profile it writes to the file in P_new because it can
be different than the input profile P. For example, iccwrite updates the
Filename field in P to match the name of the file specified as the second
argument.

iccwrite checks the validity of the input profile structure. If any required
fields are missing, iccwrite errors. For more information about the writing
ICC profile data to a file, see the iccwrite function reference page. To
determine if a structure is a valid ICC profile, use the isicc function.

Using iccwrite, you can export profile information in both Version 2
(ICC.1:2001-04) or Version 4 (ICC.1:2001-12) ICC profile formats. The value
of the Version field in the file profile header determines the format version.
For detailed information about these specifications and their differences, visit
the ICC web site, www.color.org.

Example: Performing a Profile-Based Conversion
To illustrate a profile-based color space conversion, this section presents an
example that converts color data from the RGB space of a monitor to the
CMYK space of a printer. This conversion requires two profiles: a monitor
profile and a printer profile. The source color space in this example is monitor
RGB and the destination color space is printer CMYK:

1 Import RGB color space data. This example imports an RGB color image
into the MATLAB workspace.

I_rgb = imread('peppers.png');

2 Read ICC profiles. Read the source and destination profiles into the
MATLAB workspace. This example uses the sRGB profile as the source
profile. The sRGB profile is an industry-standard color space that describes
a color monitor.

inprof = iccread('sRGB.icm');

For the destination profile, the example uses a profile that describes a
particular color printer. The printer vendor supplies this profile. (The
following profile and several other useful profiles can be obtained as
downloads from www.adobe.com.)

14-20

http://www.color.org

Converting Color Data Between Color Spaces

outprof = iccread('USSheetfedCoated.icc');

3 Create a color transformation structure. You must create a color
transformation structure to define the conversion between the color spaces
in the profiles. You use the makecform function to create the structure,
specifying a transformation type string as an argument.

Note The color space conversion might involve an intermediate conversion
into a device-independent color space, called the Profile Connection Space
(PCS), but this is transparent to the user.

This example creates a color transformation structure that defines a
conversion from RGB color data to CMYK color data.

C = makecform('icc',inprof,outprof);

4 Perform the conversion. You use the applycform function to perform the
conversion, specifying as arguments the color data you want to convert
and the color transformation structure that defines the conversion. The
function returns the converted data.

I_cmyk = applycform(I_rgb,C);

5 Write the converted data to a file. To export the CMYK data, use the
imwrite function, specifying the format as TIFF. If the format is TIFF and
the data is an m-by-n-by-4 array, imwrite writes CMYK data to the file.

imwrite(I_cmyk,'pep_cmyk.tif','tif')

To verify that the CMYK data was written to the file, use imfinfo to get
information about the file and look at the PhotometricInterpretation
field.

info = imfinfo('pep_cmyk.tif');
info.PhotometricInterpretation
ans =

'CMYK'

14-21

14 Color

Specifying the Rendering Intent
For most devices, the range of reproducible colors is much smaller than
the range of colors represented by the PCS. It is for this reason that four
rendering intents (or gamut mapping techniques) are defined in the profile
format. Each one has distinct aesthetic and color-accuracy tradeoffs.

When you create a profile-based color transformation structure, you can
specify the rendering intent for the source as well as the destination profiles.
For more information, see the makecform reference information.

Converting Between Device-Dependent Color Spaces
The toolbox includes functions that you can use to convert RGB data to several
common device-dependent color spaces, and vice versa:

• YIQ

• YCbCr

• Hue, saturation, value (HSV)

YIQ Color Space
The National Television Systems Committee (NTSC) defines a color space
known as YIQ. This color space is used in televisions in the United States.
One of the main advantages of this format is that grayscale information is
separated from color data, so the same signal can be used for both color and
black and white sets.

In the NTSC color space, image data consists of three components: luminance
(Y), hue (I), and saturation (Q). The first component, luminance, represents
grayscale information, while the last two components make up chrominance
(color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color
space. ntsc2rgb performs the reverse operation.

For example, these commands convert an RGB image to NTSC format.

RGB = imread('peppers.png');
YIQ = rgb2ntsc(RGB);

14-22

Converting Color Data Between Color Spaces

Because luminance is one of the components of the NTSC format, the RGB
to NTSC conversion is also useful for isolating the gray level information
in an image. In fact, the toolbox functions rgb2gray and ind2gray use the
rgb2ntsc function to extract the grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);
I = YIQ(:,:,1);

Note In the YIQ color space, I is one of the two color components, not the
grayscale component.

YCbCr Color Space
The YCbCr color space is widely used for digital video. In this format,
luminance information is stored as a single component (Y), and chrominance
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference
value. (YUV, another color space widely used for digital video, is very similar
to YCbCr but not identical.)

YCbCr data can be double precision, but the color space is particularly well
suited to uint8 data. For uint8 images, the data range for Y is [16, 235],
and the range for Cb and Cr is [16, 240]. YCbCr leaves room at the top and
bottom of the full uint8 range so that additional (nonimage) information
can be included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr
color space. ycbcr2rgb performs the reverse operation.

For example, these commands convert an RGB image to YCbCr format.

RGB = imread('peppers.png');
YCBCR = rgb2ycbcr(RGB);

14-23

14 Color

HSV Color Space
The HSV color space (hue, saturation, value) is often used by people who are
selecting colors (e.g., of paints or inks) from a color wheel or palette, because it
corresponds better to how people experience color than the RGB color space
does. The functions rgb2hsv and hsv2rgb convert images between the RGB
and HSV color spaces.

As hue varies from 0 to 1.0, the corresponding colors vary from red through
yellow, green, cyan, blue, magenta, and back to red, so that there are
actually red values both at 0 and 1.0. As saturation varies from 0 to 1.0, the
corresponding colors (hues) vary from unsaturated (shades of gray) to fully
saturated (no white component). As value, or brightness, varies from 0 to 1.0,
the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.

Illustration of the HSV Color Space

The rgb2hsv function converts colormaps or RGB images to the HSV color
space. hsv2rgb performs the reverse operation. These commands convert an
RGB image to the HSV color space.

14-24

Converting Color Data Between Color Spaces

RGB = imread('peppers.png');
HSV = rgb2hsv(RGB);

For closer inspection of the HSV color space, the next block of code displays
the separate color planes (hue, saturation, and value) of an HSV image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);
HSV=rgb2hsv(RGB);
H=HSV(:,:,1);
S=HSV(:,:,2);
V=HSV(:,:,3);
subplot(2,2,1), imshow(H)
subplot(2,2,2), imshow(S)
subplot(2,2,3), imshow(V)
subplot(2,2,4), imshow(RGB)

The Separated Color Planes of an HSV Image

As the hue plane image in the preceding figure illustrates, hue values make a
linear transition from high to low. If you compare the hue plane image against

14-25

14 Color

the original image, you can see that shades of deep blue have the highest
values, and shades of deep red have the lowest values. (As stated previously,
there are values of red on both ends of the hue scale. To avoid confusion, the
sample image uses only the red values from the beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane
image shows, the colors with the highest saturation have the highest values
and are represented as white. In the center of the saturation image, notice
the various shades of gray. These correspond to a mixture of colors; the
cyans, greens, and yellow shades are mixtures of true colors. Value is roughly
equivalent to brightness, and you will notice that the brightest areas of the
value plane correspond to the brightest colors in the original image.

14-26

15

Neighborhood and Block
Operations

This chapter discusses these generic block processing functions. Topics
covered include

Block Processing Operations (p. 15-2) Provides an overview of the types
of block processing operations
supported by the toolbox

Sliding Neighborhood Operations
(p. 15-4)

Defines sliding neighborhood
operations and describes how you
can use them to implement many
types of filtering operations

Distinct Block Operations (p. 15-8) Describes block operations

Column Processing Operations
(p. 15-12)

Describes how to process sliding
neighborhoods or distinct blocks as
columns

15 Neighborhood and Block Operations

Block Processing Operations
Certain image processing operations involve processing an image in sections
called blocks, rather than processing the entire image at once. Image
Processing Toolbox provides several functions for specific operations that
work with blocks, for example, the imdilate function for image dilation. In
addition, the toolbox provides more generic functions for processing an image
in blocks. This section discusses these generic block processing functions.

To use these functions, you supply two pieces of information:

• The size of the blocks

• The function to use to process the blocks.

The block processing function does the work of breaking the input image into
blocks, calling the specified function for each block, and reassembling the
results into an output image. See these additional topics for more information:

Types of Block Processing Operations
Using these functions, you can perform various block processing operations,
including sliding neighborhood operations and distinct block operations:

• Sliding neighborhood operations — The input image is processed in a
pixelwise fashion. That is, for each pixel in the input image, some operation
is performed to determine the value of the corresponding pixel in the output
image. The operation is performed on a block of neighboring pixels. For
more information, see “Sliding Neighborhood Operations” on page 15-4.

• Distinct block operations — The input image is processed a block at a time.
That is, the image is divided into rectangular blocks, and some operation is
performed on each block individually to determine the values of the pixels
in the corresponding block of the output image. For more information, see
“Distinct Block Operations” on page 15-8.

15-2

Block Processing Operations

In addition, the toolbox provides functions for column processing operations.
These operations are not actually distinct from block operations; instead,
they are a way of speeding up block operations by rearranging blocks into
matrix columns. For more information, see “Column Processing Operations”
on page 15-12.

Note that even if you do not use these block processing functions, the
information here might be useful to you, as it includes concepts fundamental
to many areas of image processing. In particular, the discussion of sliding
neighborhood operations is applicable to linear filtering and morphological
operations. See Chapter 8, “Linear Filtering and Filter Design” and Chapter
10, “Morphological Operations” for information about these applications.

15-3

15 Neighborhood and Block Operations

Sliding Neighborhood Operations
A sliding neighborhood operation is an operation that is performed a pixel at a
time, with the value of any given pixel in the output image being determined
by the application of an algorithm to the values of the corresponding input
pixel’s neighborhood. A pixel’s neighborhood is some set of pixels, defined by
their locations relative to that pixel, which is called the center pixel. The
neighborhood is a rectangular block, and as you move from one element to the
next in an image matrix, the neighborhood block slides in the same direction.

The following figure shows the neighborhood blocks for some of the elements
in a 6-by-5 matrix with 2-by-3 sliding blocks. The center pixel for each
neighborhood is marked with a dot.

Neighborhood Blocks in a 6-by-5 Matrix

See these additional topics for more information.

• “Determining the Center Pixel” on page 15-4

• “Performing a Sliding Neighborhood Operation” on page 15-5

• “Padding Borders” on page 15-5

• “Implementing Linear and Nonlinear Filtering” on page 15-6

Determining the Center Pixel
The center pixel is the actual pixel in the input image being processed by
the operation. If the neighborhood has an odd number of rows and columns,
the center pixel is actually in the center of the neighborhood. If one of the
dimensions has even length, the center pixel is just to the left of center or

15-4

Sliding Neighborhood Operations

just above center. For example, in a 2-by-2 neighborhood, the center pixel
is the upper left one.

For any m-by-n neighborhood, the center pixel is

floor(([m n]+1)/2)

In the 2-by-3 block shown in the preceding figure, the center pixel is (1,2), or
the pixel in the second column of the top row of the neighborhood.

Performing a Sliding Neighborhood Operation
To perform a sliding neighborhood operation,

1 Select a single pixel.

2 Determine the pixel’s neighborhood.

3 Apply a function to the values of the pixels in the neighborhood. This
function must return a scalar.

4 Find the pixel in the output image whose position corresponds to that of
the center pixel in the input image. Set this output pixel to the value
returned by the function.

5 Repeat steps 1 through 4 for each pixel in the input image.

For example, the function might be an averaging operation that sums the
values of the neighborhood pixels and then divides the result by the number
of pixels in the neighborhood. The result of this calculation is the value of
the output pixel.

Padding Borders
As the neighborhood block slides over the image, some of the pixels in a
neighborhood might be missing, especially if the center pixel is on the border of
the image. For example, if the center pixel is the pixel in the upper left corner
of the image, the neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the
borders of the image, usually with 0’s. In other words, these functions process

15-5

15 Neighborhood and Block Operations

the border pixels by assuming that the image is surrounded by additional
rows and columns of 0’s. These rows and columns do not become part of the
output image and are used only as parts of the neighborhoods of the actual
pixels in the image.

Implementing Linear and Nonlinear Filtering
You can use sliding neighborhood operations to implement many kinds
of filtering operations. One example of a sliding neighbor operation is
convolution, which is used to implement linear filtering. MATLAB provides
the conv and filter2 functions for performing convolution, and the toolbox
provides the imfilter function. See Chapter 8, “Linear Filtering and Filter
Design” for more information about these functions.

In addition to convolution, there are many other filtering operations you can
implement through sliding neighborhoods. Many of these operations are
nonlinear in nature. For example, you can implement a sliding neighborhood
operation where the value of an output pixel is equal to the standard deviation
of the values of the pixels in the input pixel’s neighborhood.

You can use the nlfilter function to implement a variety of sliding
neighborhood operations. nlfilter takes as input arguments an image, a
neighborhood size, and a function that returns a scalar, and returns an image
of the same size as the input image. The value of each pixel in the output
image is computed by passing the corresponding input pixel’s neighborhood to
the function. For example, this call computes each output pixel by taking the
standard deviation of the values of the input pixel’s 3-by-3 neighborhood (that
is, the pixel itself and its eight contiguous neighbors).

I = imread('tire.tif');
I2 = nlfilter(I,[3 3],'std2');

You can also write an M-file to implement a specific function, and then use
this function with nlfilter. For example, this command processes the matrix
I in 2-by-3 neighborhoods with a function called myfun.m. The syntax @myfun
is an example of a function handle.

I2 = nlfilter(I,[2 3],@myfun);

15-6

Sliding Neighborhood Operations

If you prefer not to write a M-file, you can use an anonymous function instead.
This example converts the image to class double because the square root
function is not defined for the uint8 datatype.

I = im2double(imread('tire.tif'));
f = @(x) sqrt(min(x(:)));
I2 = nlfilter(I,[2 2],f);

(For more information on function handles and anonymous functions, see
function_handle in the MATLAB Function Reference documentation.)

The following example uses nlfilter to set each pixel to the maximum value
in its 3-by-3 neighborhood.

Note This example is only intended to illustrate the use of nlfilter. For a
faster way to perform this local maximum operation, use imdilate.

I = imread('tire.tif');
f = @(x) max(x(:));
I2 = nlfilter(I,[3 3],f);
imshow(I);
figure, imshow(I2);

Each Output Pixel Set to Maximum Input Neighborhood Value

Many operations that nlfilter can implement run much faster if the
computations are performed on matrix columns rather than rectangular
neighborhoods. For information about this approach, see the reference page
for colfilt.

15-7

15 Neighborhood and Block Operations

Distinct Block Operations
Distinct blocks are rectangular partitions that divide a matrix into m-by-n
sections. Distinct blocks overlay the image matrix starting in the upper left
corner, with no overlap. If the blocks don’t fit exactly over the image, the
toolbox adds zero padding so that they do. The following figure shows a
15-by-30 matrix divided into 4-by-8 blocks.

Image Divided into Distinct Blocks

The zero padding process adds 0’s to the bottom and right of the image matrix,
as needed. After zero padding, the matrix is size 16-by-32.

The function blkproc performs distinct block operations. blkproc extracts
each distinct block from an image and passes it to a function you specify.
blkproc assembles the returned blocks to create an output image.

For example, the command below processes the matrix I in 4-by-6 blocks
with the function myfun.

I2 = blkproc(I,[4 6],@myfun);

15-8

Distinct Block Operations

If you prefer not to create an M-file, you can specify the function as an
anonymous function. For example:

f = @(x) mean2(x)*ones(size(x));
I2 = blkproc(I,[4 6],f);

(For more information about using function handles and anonymous functions,
see function_handle in the MATLAB Function Reference documentation.)

The example below uses blkproc to set every pixel in each 8-by-8 block of an
image matrix to the average of the elements in that block.

I = imread('tire.tif');
f = @(x) uint8(round(mean2(x)*ones(size(x))));
I2 = blkproc(I,[8 8],f);
imshow(I)
figure, imshow(I2);

The anonymous function in the example computes the mean of the block and
then multiplies the result by a matrix of ones, so that the output block is the
same size as the input block. As a result, the output image is the same size as
the input image. blkproc does not require that the images be the same size;
however, if this is the result you want, you must make sure that the function
you specify returns blocks of the appropriate size.

15-9

15 Neighborhood and Block Operations

Specifying Overlap
When you call blkproc to define distinct blocks, you can specify that the
blocks overlap each other, that is, you can specify extra rows and columns of
pixels outside the block whose values are taken into account when processing
the block. When there is an overlap, blkproc passes the expanded block
(including the overlap) to the specified function.

The following figure shows the overlap areas for some of the blocks in a
15-by-30 matrix with 1-by-2 overlaps. Each 4-by-8 block has a one-row
overlap above and below, and a two-column overlap on each side. In the figure,
shading indicates the overlap. The 4-by-8 blocks overlay the image matrix
starting in the upper left corner.

Image Divided into Distinct Blocks with Specified Overlaps

To specify the overlap, you provide an additional input argument to blkproc.
To process the blocks in the figure above with the function myfun, the call is

B = blkproc(A,[4 8],[1 2],@myfun)

15-10

Distinct Block Operations

Overlap and Zero-padding
Overlap often increases the amount of zero padding needed. For example, in
the figure, the original 15-by-30 matrix became a 16-by-32 matrix with zero
padding. When the 15-by-30 matrix includes a 1-by-2 overlap, the padded
matrix becomes an 18-by-36 matrix. The outermost rectangle in the figure
delineates the new boundaries of the image after padding has been added to
accommodate the overlap plus block processing. Notice that in the preceding
figure, padding has been added to the left and top of the original image, not
just to the right and bottom.

15-11

15 Neighborhood and Block Operations

Column Processing Operations
The toolbox provides functions that you can use to process sliding
neighborhoods or distinct blocks as columns. This approach is useful for
operations that MATLAB performs columnwise; in many cases, column
processing can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing
the mean of each block. This computation is much faster if you first rearrange
the blocks into columns, because you can compute the mean of every column
with a single call to the mean function, rather than calling mean for each block
individually.

You can use the colfilt function to implement column processing. This
function

1 Reshapes each sliding or distinct block of an image matrix into a column in
a temporary matrix

2 Passes the temporary matrix to a function you specify

3 Rearranges the resulting matrix back into the original shape

See these additional topics for more information.

• “Sliding Neighborhoods” on page 15-12

• “Using Column Processing with Distinct Block Operations” on page 15-13

Sliding Neighborhoods
For a sliding neighborhood operation, colfilt creates a temporary matrix
that has a separate column for each pixel in the original image. The column
corresponding to a given pixel contains the values of that pixel’s neighborhood
from the original image.

The following figure illustrates this process. In this figure, a 6-by-5 image
matrix is processed in 2-by-3 neighborhoods. colfilt creates one column
for each pixel in the image, so there are a total of 30 columns in the
temporary matrix. Each pixel’s column contains the value of the pixels in its
neighborhood, so there are six rows. colfilt zero-pads the input image as

15-12

Column Processing Operations

necessary. For example, the neighborhood of the upper left pixel in the figure
has two zero-valued neighbors, due to zero padding.

colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single
value for each column. (Many MATLAB functions work this way, for example,
mean, median, std, sum, etc.) The resulting values are then assigned to the
appropriate pixels in the output image.

colfilt can produce the same results as nlfilter with faster execution time;
however, it might use more memory. The example below sets each output
pixel to the maximum value in the input pixel’s neighborhood, producing the
same result as the nlfilter example shown in “Implementing Linear and
Nonlinear Filtering” on page 15-6.

I2 = colfilt(I,[3 3],'sliding',@max);

Using Column Processing with Distinct Block
Operations
For a distinct block operation, colfilt creates a temporary matrix by
rearranging each block in the image into a column. colfilt pads the original
image with 0’s, if necessary, before creating the temporary matrix.

The following figure illustrates this process. A 6-by-16 image matrix is
processed in 4-by-6 blocks. colfilt first zero-pads the image to make the size

15-13

15 Neighborhood and Block Operations

8-by-18 (six 4-by-6 blocks), and then rearranges the blocks into six columns
of 24 elements each.

colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, colfilt passes this
matrix to the function. The function must return a matrix of the same size as
the temporary matrix. If the block size is m-by-n, and the image is mm-by-nn,
the size of the temporary matrix is (m*n)-by-(ceil(mm/m)*ceil(nn/n)).
After the function processes the temporary matrix, the output is rearranged
into the shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean
pixel value for the block, producing the same result as the blkproc example
in “Distinct Block Operations” on page 15-8.

15-14

Column Processing Operations

I = im2double(imread('tire.tif'));
f = @(x) ones(64,1)*mean(x);
I2 = colfilt(I,[8 8],'distinct',f);

The anonymous function in the example computes the mean of the block
and then multiplies the result by a vector of ones, so that the output block is
the same size as the input block. As a result, the output image is the same
size as the input image.

Restrictions
You can use colfilt to implement many of the same distinct block operations
that blkproc performs. However, colfilt has certain restrictions that
blkproc does not:

• The output image must be the same size as the input image.

• The blocks cannot overlap.

For situations that do not satisfy these constraints, use blkproc.

15-15

15 Neighborhood and Block Operations

15-16

16

Functions — By Category

Image Display and Exploration
(p. 16-2)

Display, import, and export images

GUI Tools (p. 16-5) Modular interactive tools and
associated utility functions.

Spatial Transformation and Image
Registration (p. 16-8)

Spatial transformation and image
registration

Image Analysis and Statistics
(p. 16-10)

Image analysis, texture analysis,
view pixel values, and calculate
image statistics

Image Arithmetic (p. 16-12) Add, subtract, multiply, and divide
images

Image Enhancement and
Restoration (p. 16-13)

Enhance and restore images

Linear Filtering and Transforms
(p. 16-15)

Linear filters, filter design, and
image transforms

Morphological Operations (p. 16-17) Morphological image processing

ROI-Based, Neighborhood, and
Block Processing (p. 16-20)

ROI-based, neighborhood, and block
operations

Colormap and Color Space Functions
(p. 16-21)

Manipulate image color

Miscellaneous Functions (p. 16-23) Array operations, demos, preferences
and other toolbox utility functions

16 Functions — By Category

Image Display and Exploration

Image Display and Exploration
(p. 16-2)

Display and explore images

Image File I/O (p. 16-2) Import and export images

Image Types and Type Conversions
(p. 16-3)

Convert between the various image
types

Image Display and Exploration

colorbar Display color bar

immovie Make movie from multiframe image

imshow Display image

imtool Image Tool

montage Display multiple image frames as
rectangular montage

subimage Display multiple images in single
figure

warp Display image as texture-mapped
surface

Image File I/O

analyze75info Read metadata from header file of
Analyze 7.5 data set

analyze75read Read image data from image file of
Analyze 7.5 data set

dicomanon Anonymize DICOM file

dicomdict Get or set active DICOM data
dictionary

16-2

Image Display and Exploration

dicominfo Read metadata from DICOM
message

dicomlookup Find attribute in DICOM data
dictionary

dicomread Read DICOM image

dicomuid Generate DICOM unique identifier

dicomwrite Write images as DICOM files

interfileinfo Read metadata from Interfile file

interfileread Read images in Interfile format

Image Types and Type Conversions

dither Convert image, increasing apparent
color resolution by dithering

double Convert data to double precision

gray2ind Convert grayscale or binary image
to indexed image

grayslice Convert grayscale image to indexed
image using multilevel thresholding

graythresh Global image threshold using Otsu’s
method

im2bw Convert image to binary image,
based on threshold

im2double Convert image to double precision

im2int16 Convert image to 16-bit signed
integers

im2java Convert image to Java image

im2java2d Convert image to Java buffered
image

im2single Convert image to single precision

16-3

16 Functions — By Category

im2uint16 Convert image to 16-bit unsigned
integers

im2uint8 Convert image to 8-bit unsigned
integers

ind2gray Convert indexed image to grayscale
image

ind2rgb Convert indexed image to RGB
image

label2rgb Convert label matrix into RGB
image

mat2gray Convert matrix to grayscale image

rgb2gray Convert RGB image or colormap to
grayscale

rgb2ind Convert RGB image to indexed
image

uint16 Convert data to unsigned 16-bit
integers

uint8 Convert data to unsigned 8-bit
integers

16-4

GUI Tools

GUI Tools

Modular Interactive Tools (p. 16-5) Modular interactive tool creation
functions

Navigational tools for Image Scroll
Panel (p. 16-5)

Modular interactive navigational
tools

Utility Functions for Interactive
Tools (p. 16-6)

Modular interactive tool utility
functions

Modular Interactive Tools

imageinfo Image Information tool

imcontrast Adjust Contrast tool

imdisplayrange Display Range tool

imdistline Distance tool

impixelinfo Pixel Information tool

impixelinfoval Pixel Information tool without text
label

impixelregion Pixel Region tool

impixelregionpanel Pixel Region tool panel

Navigational tools for Image Scroll Panel

immagbox Magnification box for scroll panel

imoverview Overview tool for image displayed in
scroll panel

imoverviewpanel Overview tool panel for image
displayed in scroll panel

imscrollpanel Scroll panel for interactive image
navigation

16-5

16 Functions — By Category

Utility Functions for Interactive Tools

axes2pix Convert axes coordinates to pixel
coordinates

getimage Image data from axes

getimagemodel Image model object from image
object

imattributes Information about image attributes

imgca Get handle to current axis containing
image

imgcf Get handle to current figure
containing image

imgetfile Open Image dialog box

imhandles Get all image handles

imline Create draggable, resizable line

impoint Create draggable point

imrect Create draggable, resizable rectangle

iptaddcallback Add function handle to callback list

iptcheckhandle Check validity of handle

iptgetapi Get Application Programmer
Interface (API) for handle

iptGetPointerBehavior Retrieve pointer behavior from HG
object

ipticondir Directories containing IPT and
MATLAB icons

iptPointerManager Create pointer manager in figure

iptremovecallback Delete function handle from callback
list

iptSetPointerBehavior Store pointer behavior structure in
Handle Graphics object

iptwindowalign Align figure windows

16-6

GUI Tools

makeConstrainToRectFcn Create rectangularly bounded drag
constraint function

truesize Adjust display size of image

16-7

16 Functions — By Category

Spatial Transformation and Image Registration

Spatial Transformations (p. 16-8) Spatial transformation of images
and multidimensional arrays

Image Registration (p. 16-9) Align two images using control
points

Spatial Transformations

checkerboard Create checkerboard image

findbounds Find output bounds for spatial
transformation

fliptform Flip input and output roles of TFORM
structure

imcrop Crop image

imresize Resize image

imrotate Rotate image

imtransform Apply 2-D spatial transformation to
image

makeresampler Create resampling structure

maketform Create spatial transformation
structure (TFORM)

tformarray Apply spatial transformation to N-D
array

tformfwd Apply forward spatial
transformation

tforminv Apply inverse spatial transformation

16-8

Spatial Transformation and Image Registration

Image Registration

cp2tform Infer spatial transformation from
control point pairs

cpcorr Tune control-point locations using
cross correlation

cpselect Control Point Selection Tool

cpstruct2pairs Convert CPSTRUCT to valid pairs of
control points

normxcorr2 Normalized 2-D cross-correlation

16-9

16 Functions — By Category

Image Analysis and Statistics

Image Analysis (p. 16-10) Trace boundaries, detect edges, and
perform quadtree decomposition

Texture Analysis (p. 16-10) Entropy, range, and standard
deviation filtering; gray-level
co-occurrence matrix

Pixel Values and Statistics (p. 16-11) Create histograms, contour plots,
and get statistics on image regions

Image Analysis

bwboundaries Trace region boundaries in binary
image

bwtraceboundary Trace object in binary image

edge Find edges in grayscale image

hough Hough transform

houghlines Extract line segments based on
Hough transform

houghpeaks Identify peaks in Hough transform

qtdecomp Quadtree decomposition

qtgetblk Block values in quadtree
decomposition

qtsetblk Set block values in quadtree
decomposition

Texture Analysis

entropy Entropy of grayscale image

entropyfilt Local entropy of grayscale image

16-10

Image Analysis and Statistics

graycomatrix Create gray-level co-occurrence
matrix from image

graycoprops Properties of gray-level co-occurrence
matrix

rangefilt Local range of image

stdfilt Local standard deviation of image

Pixel Values and Statistics

corr2 2-D correlation coefficient

imcontour Create contour plot of image data

imhist Display histogram of image data

impixel Pixel color values

improfile Pixel-value cross-sections along line
segments

mean2 Average or mean of matrix elements

pixval Display information about image
pixels

regionprops Measure properties of image regions
(blob analysis)

std2 Standard deviation of matrix
elements

16-11

16 Functions — By Category

Image Arithmetic
imabsdiff Absolute difference of two images

imadd Add two images or add constant to
image

imcomplement Complement image

imdivide Divide one image into another or
divide image by constant

imlincomb Linear combination of images

immultiply Multiply two images or multiply
image by constant

imsubtract Subtract one image from another or
subtract constant from image

16-12

Image Enhancement and Restoration

Image Enhancement and Restoration

Image Enhancement (p. 16-13) Histogram equalization,
decorrelation stretching, and
2-D filtering

Image Restoration (Deblurring)
(p. 16-13)

Deconvolution for deblurring

Image Enhancement

adapthisteq Contrast-limited adaptive histogram
equalization (CLAHE)

decorrstretch Apply decorrelation stretch to
multichannel image

histeq Enhance contrast using histogram
equalization

imadjust Adjust image intensity values or
colormap

imnoise Add noise to image

intlut Convert integer values using lookup
table

medfilt2 2-D median filtering

ordfilt2 2-D order-statistic filtering

stretchlim Find limits to contrast stretch image

wiener2 2-D adaptive noise-removal filtering

Image Restoration (Deblurring)

deconvblind Deblur image using blind
deconvolution

deconvlucy Deblur image using Lucy-Richardson
method

16-13

16 Functions — By Category

deconvreg Deblur image using regularized filter

deconvwnr Deblur image using Wiener filter

edgetaper Taper discontinuities along image
edges

otf2psf Convert optical transfer function to
point-spread function

psf2otf Convert point-spread function to
optical transfer function

16-14

Linear Filtering and Transforms

Linear Filtering and Transforms

Linear Filtering (p. 16-15) Convolution, N-D filtering, and
predefined 2-D filters

Linear 2-D Filter Design (p. 16-15) 2-D FIR filters

Image Transforms (p. 16-16) Fourier, Discrete Cosine, Radon, and
Fan-beam transforms

Linear Filtering

conv2 2-D convolution

convmtx2 2-D convolution matrix

convn N-D convolution

filter2 2-D linear filtering

fspecial Create predefined 2-D filter

imfilter N-D filtering of multidimensional
images

Linear 2-D Filter Design

freqspace Determine frequency spacing for 2-D
frequency response

freqz2 2-D frequency response

fsamp2 2-D FIR filter using frequency
sampling

ftrans2 2-D FIR filter using frequency
transformation

fwind1 2-D FIR filter using 1-D window
method

fwind2 2-D FIR filter using 2-D window
method

16-15

16 Functions — By Category

Image Transforms

dct2 2-D discrete cosine transform

dctmtx Discrete cosine transform matrix

fan2para Convert fan-beam projections to
parallel-beam

fanbeam Fan-beam transform

fft2 2-D fast Fourier transform

fftn N-D fast Fourier transform

fftshift Shift zero-frequency component of
fast Fourier transform to center of
spectrum

idct2 2-D inverse discrete cosine transform

ifanbeam Inverse fan-beam transform

ifft2 2-D inverse fast Fourier transform

ifftn N-D inverse fast Fourier transform

iradon Inverse Radon transform

para2fan Convert parallel-beam projections to
fan-beam

phantom Create head phantom image

radon Radon transform

16-16

Morphological Operations

Morphological Operations

Intensity and Binary Images
(p. 16-17)

Dilate, erode, reconstruct, and
perform other morphological
operations

Binary Images (p. 16-18) Label, pack, and perform
morphological operations on
binary images

Structuring Element (STREL)
Creation and Manipulation (p. 16-19)

Create and manipulate structuring
elements for morphological
operations

Intensity and Binary Images

conndef Create connectivity array

imbothat Bottom-hat filtering

imclearborder Suppress light structures connected
to image border

imclose Morphologically close image

imdilate Dilate image

imerode Erode image

imextendedmax Extended-maxima transform

imextendedmin Extended-minima transform

imfill Fill image regions and holes

imhmax H-maxima transform

imhmin H-minima transform

imimposemin Impose minima

imopen Morphologically open image

imreconstruct Morphological reconstruction

imregionalmax Regional maxima

16-17

16 Functions — By Category

imregionalmin Regional minima

imtophat Top-hat filtering

watershed Watershed transform

Binary Images

applylut Neighborhood operations on binary
images using lookup tables

bwarea Area of objects in binary image

bwareaopen Morphologically open binary image
(remove small objects)

bwdist Distance transform of binary image

bweuler Euler number of binary image

bwhitmiss Binary hit-miss operation

bwlabel Label connected components in
binary image

bwlabeln Label connected components in N-D
binary image

bwmorph Morphological operations on binary
images

bwpack Pack binary image

bwperim Find perimeter of objects in binary
image

bwselect Select objects in binary image

bwulterode Ultimate erosion

bwunpack Unpack binary image

imregionalmin Regional minima

imtophat Top-hat filtering

makelut Create lookup table for use with
applylut

16-18

Morphological Operations

Structuring Element (STREL) Creation and
Manipulation

getheight Height of structuring element

getneighbors Structuring element neighbor
locations and heights

getnhood Structuring element neighborhood

getsequence Sequence of decomposed structuring
elements

isflat True for flat structuring element

reflect Reflect structuring element

strel Create morphological structuring
element (STREL)

translate Translate structuring element
(STREL)

16-19

16 Functions — By Category

ROI-Based, Neighborhood, and Block Processing

ROI-Based Processing (p. 16-20) Define regions of interest (ROI) and
perform operations on them

Neighborhood and Block Processing
(p. 16-20)

Defining neighborhoods and blocks
and processing them

ROI-Based Processing

poly2mask Convert region of interest (ROI)
polygon to region mask

roicolor Select region of interest (ROI) based
on color

roifill Fill in specified region of interest
(ROI) polygon in grayscale image

roifilt2 Filter region of interest (ROI) in
image

roipoly Specify polygonal region of interest
(ROI)

Neighborhood and Block Processing

bestblk Determine optimal block size for
block processing

blkproc Distinct block processing for image

col2im Rearrange matrix columns into
blocks

colfilt Columnwise neighborhood
operations

im2col Rearrange image blocks into columns

nlfilter General sliding-neighborhood
operations

16-20

Colormap and Color Space Functions

Colormap and Color Space Functions

Colormap Manipulation (p. 16-21) Manipulate colormaps to brighten or
change an image

Color Space Conversions (p. 16-21) ICC profile-based device independent
color space conversions and
device-dependent color space
conversions

Colormap Manipulation

brighten Brighten or darken colormap

cmpermute Rearrange colors in colormap

cmunique Eliminate duplicate colors in
colormap; convert grayscale or
truecolor image to indexed image

imapprox Approximate indexed image by one
with fewer colors

rgbplot Plot colormap

Color Space Conversions

applycform Apply device-independent color
space transformation

hsv2rgb Convert hue-saturation-value (HSV)
values to RGB color space

iccfind Search for ICC profiles

iccread Read ICC profile

iccroot Find system default ICC profile
repository

iccwrite Write ICC color profile to disk file

isicc True for valid ICC color profile

16-21

16 Functions — By Category

lab2double Convert L*a*b* data to double

lab2uint16 Convert L*a*b* data to uint16

lab2uint8 Convert L*a*b* data to uint8

makecform Create color transformation
structure

ntsc2rgb Convert NTSC values to RGB color
space

rgb2hsv Convert RGB values to
hue-saturation-value (HSV)
color space

rgb2ntsc Convert RGB color values to NTSC
color space

rgb2ycbcr Convert RGB color values to YCbCr
color space

whitepoint XYZ color values of standard
illuminants

xyz2double Convert XYZ color values to double

xyz2uint16 Convert XYZ color values to uint16

ycbcr2rgb Convert YCbCr color values to RGB
color space

16-22

Miscellaneous Functions

Miscellaneous Functions

Toolbox Preferences (p. 16-23) Set and determine the value of
toolbox preferences

Toolbox Utility Functions (p. 16-23) Check input arguments and perform
other common programming tasks

Interactive Mouse Utility Functions
(p. 16-24)

Retrieve the values of lines, points,
and rectangles defined interactively
using the mouse

Array Operations (p. 16-24) Circularly shift pixel values and pad
arrays

Demos (p. 16-24) Launch Image Processing Toolbox
demos

Performance (p. 16-24) Check for presence of Intel
Performance Primitives Library
(IPPL)

Toolbox Preferences

iptgetpref Get value of Image Processing
Toolbox preference

iptsetpref Set Image Processing Toolbox
preferences or display valid values

Toolbox Utility Functions

getrangefromclass Default display range of image based
on its class

iptcheckconn Check validity of connectivity
argument

iptcheckinput Check validity of array

iptcheckmap Check validity of colormap

16-23

16 Functions — By Category

iptchecknargin Check number of input arguments

iptcheckstrs Check validity of option string

iptnum2ordinal Convert positive integer to ordinal
string

Interactive Mouse Utility Functions

getline Select polyline with mouse

getpts Specify points with mouse

getrect Specify rectangle with mouse

Array Operations

padarray Pad array

Demos

iptdemos Index of Image Processing Toolbox
demos

Performance

ippl Check for presence of Intel
Performance Primitives Library
(IPPL)

16-24

17

Functions — Alphabetical
List

adapthisteq

Purpose Contrast-limited adaptive histogram equalization (CLAHE)

Syntax J = adapthisteq(I)
J = adapthisteq(I,param1,val1,param2,val2...)

Description J = adapthisteq(I) enhances the contrast of the grayscale image I
by transforming the values using contrast-limited adaptive histogram
equalization (CLAHE).

CLAHE operates on small regions in the image, called tiles, rather
than the entire image. Each tile’s contrast is enhanced, so that the
histogram of the output region approximately matches the histogram
specified by the 'Distribution' parameter. The neighboring tiles are
then combined using bilinear interpolation to eliminate artificially
induced boundaries. The contrast, especially in homogeneous areas,
can be limited to avoid amplifying any noise that might be present in
the image.

J = adapthisteq(I,param1,val1,param2,val2...) specifies any
of the additional parameter/value pairs listed in the following table.
Parameter names can be abbreviated, and case does not matter.

Parameter Value

'NumTiles' Two-element vector of positive integers specifying
the number of tiles by row and column, [M N].
Both M and N must be at least 2. The total number
of tiles is equal to M*N.

Default: [8 8]

'ClipLimit' Real scalar in the range [0 1] that specifies a
contrast enhancement limit. Higher numbers
result in more contrast.

Default: 0.01

17-2

adapthisteq

Parameter Value

'NBins' Positive integer scalar specifying the number of
bins for the histogram used in building a contrast
enhancing transformation. Higher values result
in greater dynamic range at the cost of slower
processing speed.

Default: 256

'Range' String specifying the range of the output image
data.

'original' — Range is limited to the range of
the original image, [min(I(:)) max(I(:))].

'full' — Full range of the output image class is
used. For example, for uint8 data, range is [0
255].

Default: 'full'

'Distribution' String specifying the desired histogram shape for
the image tiles.

'uniform' — Flat histogram

'rayleigh' — Bell-shaped histogram

'exponential' — Curved histogram

Default: 'uniform'

'Alpha' Nonnegative real scalar specifying a distribution
parameter.

Default: 0.4

Note Only used when 'Distribution' is set to
either 'rayleigh' or 'exponential'.

17-3

adapthisteq

Remarks • 'NumTiles' specifies the number of rectangular contextual regions
(tiles) into which adapthisteq divides the image. adapthisteq
calculates the contrast transform function for each of these regions
individually. The optimal number of tiles depends on the type of the
input image, and it is best determined through experimentation.

• 'ClipLimit' is a contrast factor that prevents over-saturation
of the image specifically in homogeneous areas. These areas are
characterized by a high peak in the histogram of the particular image
tile due to many pixels falling inside the same gray level range.
Without the clip limit, the adaptive histogram equalization technique
could produce results that, in some cases, are worse than the original
image.

• 'Distribution' specifies the distribution that adapthisteq uses
as the basis for creating the contrast transform function. The
distribution you select should depend on the type of the input image.
For example, underwater imagery appears to look more natural when
the Rayleigh distribution is used.

Class
Support

Grayscale image I can be of class uint8, uint16, int16, single, or
double. The output image J has the same class as I.

Examples Apply Contrast-limited Adaptive Histogram Equalization (CLAHE) to
an image and display the results.

I = imread('tire.tif');
A = adapthisteq(I,'clipLimit',0.02,'Distribution','rayleigh');
figure, imshow(I);
figure, imshow(A);

Apply CLAHE to a color image.

[X MAP] = imread('shadow.tif');

% Convert indexed image to true-color (RGB) format
RGB = ind2rgb(X,MAP);

17-4

adapthisteq

% Convert image to L*a*b* color space
cform2lab = makecform('srgb2lab');
LAB = applycform(RGB, cform2lab);

% Scale values to range from 0 to 1
L = LAB(:,:,1)/100;

% Perform CLAHE
LAB(:,:,1) = adapthisteq(L,'NumTiles',...

[8 8],'ClipLimit',0.005)*100;

% Convert back to RGB color space
cform2srgb = makecform('lab2srgb');
J = applycform(LAB, cform2srgb);

% Display the results
figure, imshow(RGB);
figure, imshow(J);

See Also histeq

17-5

analyze75info

Purpose Read metadata from header file of Analyze 7.5 data set

Syntax info = analyze75info(filename)
info = analyze75info(filename,'ByteOrder', endian)

Description info = analyze75info(filename) reads the header file of the Analyze
7.5 data set specified by the string filename. The function returns
info, a structure whose fields contain information about the data set.

Analyze 7.5 is a 3-D biomedical image visualization and analysis
product developed by the Biomedical Imaging Resource of the Mayo
Clinic. An Analyze 7.5 data set is made of two files, a header file and an
image file. The files have the same name with different file extensions.
The header file has the file extension .hdr and the image file has the
file extension .img. For more information about Analyze 7.5 format
metadata returned in info, see the Mayo Clinic Web site.

info = analyze75info(filename,'ByteOrder', endian) reads the
Analyze 7.5 header file using the byte ordering specified by endian,
where endian can have either of the following values:

Value Meaning

'ieee-le' Byte ordering is Little Endian

'ieee-be' Byte ordering is Big Endian

If the specified endian value results in a read error, analyze75info
issues a warning message and attempts to read the header file with
the opposite ByteOrder format.

Examples Read an Analyze 7.5 header file. The file used in the example can be
downloaded from http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');

Specify the byte ordering of the data set.

info = analyze75info('CT_HAND', 'ByteOrder', 'ieee-be');

17-6

http://www.mayo.edu/bir/PDF/ANALYZE75.pdf
http://www.radiology.uiowa.edu/downloads/

analyze75info

See Also analyze75read

17-7

analyze75read

Purpose Read image data from image file of Analyze 7.5 data set

Syntax X = analyze75read(filename)
X = analyze75read(info)

Description X = analyze75read(filename) reads the image data from the image
file of an Analyze 7.5 format data set specified by the string filename.
The function returns the image data in X. For single-frame, grayscale
images, X is an m-by-n array. analyze75read uses a data type for X that
is consistent with the data type specified in the data set header file.

Analyze 7.5 is a 3-D biomedical image visualization and analysis
product developed by the Biomedical Imaging Resource of the Mayo
Clinic. An Analyze 7.5 data set is made of two files, a header file and an
image file. The files have the same name with different file extensions.
The header file has the file extension .hdr and the image file has the
file extension .img. For more information about the Analyze 7.5 format,
see the Mayo Clinic Web site.

X = analyze75read(info) reads the image data from the image
file specified in the metadata structure info. info must be a valid
metadata structure returned by the analyze75info function.

Note analyze75read returns image data in radiological orientation
(LAS). This is the default used by the Analyze 7.5 format.

Examples Example 1

Read image data from an Analyze 7.5 image file. The
file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

X = analyze75read('CT_HAND');

Because Analyze 7.5 format uses radiological orientation (LAS), flip the
data for correct image display in MATLAB.

17-8

http://www.mayo.edu/bir/PDF/ANALYZE75.pdf.
http://www.radiology.uiowa.edu/downloads/

analyze75read

X = flipdim(X,1);

Select frames 51 to 56 and use reshape to create an array for montage.

Y = reshape(X(:,:,51:56),[size(X,1) size(X,2) 1 6]);
montage(Y);

Example 2

Call analyze75read with the metadata obtained from the header file
using analyze75info.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

Class
Support

X can be logical, uint8, int16, int32, single, or double. Complex
and RGB data types are not supported.

See Also analyze75info

17-9

applycform

Purpose Apply device-independent color space transformation

Syntax B = applycform(A,C)

Description B = applycform(A,C) converts the color values in A to the color
space specified in the color transformation structure C. The color
transformation structure specifies various parameters of the
transformation. See makecform for details.

If A is two-dimensional, each row is interpreted as a color. A can have
either three or more columns, depending on the input color space. B has
the same number of rows and either three or four columns, depending
on the output color space. (The ICC spec currently supports up to
15-channel device spaces.)

If A is three-dimensional, each row-column location is interpreted as a
color, and size(A,3) is typically either three or more, depending on the
input color space. B has the same number of rows and columns as A, and
size(B,3) is either three or more, depending on the output color space.

Class
Support

A must be a real, nonsparse array of class uint8, uint16, or double. The
output array B has the same class as A, unless the output space is XYZ.
If the input is XYZ data of class uint8, the output is of class uint16,
because there is no standard 8-bit encoding defined for XYZ color values.

Examples Read in a color image that uses the sRGB color space.

rgb = imread('peppers.png');

Create a color transformation structure that defines an sRGB to L*a*b*
conversion.

C = makecform('srgb2lab');

Perform the transformation with applycform.

lab = applycform(rgb,C);

17-10

applycform

See Also lab2double, lab2uint8, lab2uint16, makecform, whitepoint,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-11

applylut

Purpose Neighborhood operations on binary images using lookup tables

Syntax A = applylut(BW,LUT)

Description A = applylut(BW,LUT) performs a 2-by-2 or 3-by-3 neighborhood
operation on binary image BW by using a lookup table (LUT). LUT is
either a 16-element or 512-element vector returned by makelut. The
vector consists of the output values for all possible 2-by-2 or 3-by-3
neighborhoods.

Class
Support

BW can be numeric or logical, and it must be real, two-dimensional, and
nonsparse. LUT can be numeric or logical, and it must be a real vector
with 16 or 512 elements. If all the elements of LUT are 0 or 1, then A is
logical. If all the elements of LUT are integers between 0 and 255, then A
is uint8. For all other cases, A is double.

Algorithm applylut performs a neighborhood operation on a binary image by
producing a matrix of indices into lut, and then replacing the indices
with the actual values in lut. The specific algorithm used depends on
whether you use 2-by-2 or 3-by-3 neighborhoods.

2-by-2 Neighborhoods

For 2-by-2 neighborhoods, length(lut) is 16. There are four pixels in
each neighborhood, and two possible states for each pixel, so the total
number of permutations is 24 = 16.

To produce the matrix of indices, applylut convolves the binary image
BW with this matrix.

8 2
4 1

The resulting convolution contains integer values in the range [0,15].
applylut uses the central part of the convolution, of the same size
as BW, and adds 1 to each value to shift the range to [1,16]. It then
constructs A by replacing the values in the cells of the index matrix with
the values in lut that the indices point to.

17-12

applylut

3-by-3 Neighborhoods

For 3-by-3 neighborhoods, length(lut) is 512. There are nine pixels in
each neighborhood, and two possible states for each pixel, so the total
number of permutations is 29 = 512.

To produce the matrix of indices, applylut convolves the binary image
BW with this matrix.

256 32 4
128 16 2
64 8 1

The resulting convolution contains integer values in the range [0,511].
applylut uses the central part of the convolution, of the same size
as BW, and adds 1 to each value to shift the range to [1,512]. It then
constructs A by replacing the values in the cells of the index matrix with
the values in lut that the indices point to.

Examples Perform erosion using a 2-by-2 neighborhood. An output pixel is on only
if all four of the input pixel’s neighborhood pixels are on.

lut = makelut('sum(x(:)) == 4',2);
BW = imread('text.png');
BW2 = applylut(BW,lut);
imshow(BW), figure, imshow(BW2)

17-13

applylut

See Also makelut

17-14

axes2pix

Purpose Convert axes coordinates to pixel coordinates

Syntax pixelx = axes2pix(dim, XDATA, AXESX)

Description pixelx = axes2pix(dim, XDATA, AXESX) converts an axes coordinate
into a pixel coordinate. For example, if pt = get(gca,'CurrentPoint')
then AXESX could be pt(1,1) or pt(1,2). AXESX must be in pixel
coordinates. XDATA is a two-element vector returned by
get(image_handle, 'XData') or get(image_handle,'YData'). dim
is the number of image columns for the x coordinate, or the number of
image rows for the y coordinate.

Class
Support

dim, XDATA, and AXESX can be double. The output is double.

Note axes2pix performs minimal checking on the validity of AXESX, DIM, or
XDATA. For example, axes2pix returns a negative coordinate if AXESX is
less than XDATA(1). The function calling axes2pix bears responsibility
for error checking.

Examples Example with default XData and YData.

h = imshow('pout.tif');
[nrows,ncols] = size(get(h,'CData'));
xdata = get(h,'XData')
ydata = get(h,'YData')
px = axes2pix(ncols,xdata,30)
py = axes2pix(nrows,ydata,30)

Example with non-default XData and YData.

xdata = [10 100]
ydata = [20 90]
px = axes2pix(ncols,xdata,30)
py = axes2pix(nrows,ydata,30)

See Also impixelinfo, bwselect, imfill, impixel, improfile, pixval, roipoly

17-15

bestblk

Purpose Determine optimal block size for block processing

Syntax siz = bestblk([m n],k)
[mb,nb] = bestblk([m n],k)

Description siz = bestblk([m n],k) returns, for an m-by-n image, the optimal
block size for block processing. k is a scalar specifying the maximum
row and column dimensions for the block; if the argument is omitted,
it defaults to 100. The return value siz is a 1-by-2 vector containing
the row and column dimensions for the block.

[mb,nb] = bestblk([m n],k) returns the row and column dimensions
for the block in mb and nb, respectively.

Algorithm bestblk returns the optimal block size given m, n, and k. The algorithm
for determining siz is

• If m is less than or equal to k, return m.

• If m is greater than k, consider all values between min(m/10,k/2)
and k. Return the value that minimizes the padding required.

The same algorithm is then repeated for n.

Examples siz = bestblk([640 800],72)

siz =

64 50

See Also blkproc

17-16

blkproc

Purpose Distinct block processing for image

Syntax B = blkproc(A,[m n],fun)
B = blkproc(A,[m n],[mborder nborder],fun)
B = blkproc(A,'indexed',...)

Description B = blkproc(A,[m n],fun) processes the image A by applying the
function fun to each distinct m-by-n block of A, padding A with 0’s if
necessary. fun is a function handle that accepts an m-by-n matrix, x, and
returns a matrix, vector, or scalar y.

y = fun(x)

blkproc does not require that y be the same size as x. However, B is the
same size as A only if y is the same size as x.

B = blkproc(A,[m n],[mborder nborder],fun) defines an
overlapping border around the blocks. blkproc extends the original
m-by-n blocks by mborder on the top and bottom, and nborder on the left
and right, resulting in blocks of size (m+2*mborder)-by-(n+2*nborder).
The blkproc function pads the border with 0’s, if necessary, on the
edges of A. The function fun should operate on the extended block.

The line below processes an image matrix as 4-by-6 blocks, each having
a row border of 2 and a column border of 3. Because each 4-by-6 block
has this 2-by-3 border, fun actually operates on blocks of size 8-by-12.

B = blkproc(A,[4 6],[2 3],fun)

B = blkproc(A,'indexed',...) processes A as an indexed image,
padding with 0’s if the class of A is uint8 or uint16, or 1’s if the class
of A is double.

Class
Support

The input image A can be of any class supported by fun. The class of B
depends on the class of the output from fun.

17-17

blkproc

Examples Compute the 2-D DCT of each 8-by-8 block to the standard deviation
of the elements in that block. In this example, fun is specified as a
function handle created using @.

I = imread('cameraman.tif');
fun = @dct2;
J = blkproc(I,[8 8],fun);
imagesc(J), colormap(hot)

Set the pixels in each 16-by-16 block to the standard deviation of
the elements in that block. In this example, fun is specified as an
anonymous function.

I = imread('liftingbody.png');
fun = @(x) std2(x)*ones(size(x));
I2 = blkproc(I,[32 32],fun);
imshow(I), figure, imshow(I2,'DisplayRange',[])

17-18

blkproc

See Also bestblk, colfilt, nlfilter, function_handle

17-19

brighten

Purpose Brighten or darken colormap

Note brighten is a MATLAB function.

17-20

bwarea

Purpose Area of objects in binary image

Syntax total = bwarea(BW)

Description total = bwarea(BW) estimates the area of the objects in binary image
BW. total is a scalar whose value corresponds roughly to the total
number of on pixels in the image, but might not be exactly the same
because different patterns of pixels are weighted differently.

Class
Support

BW can be numeric or logical. For numeric input, any nonzero pixels are
considered to be on. The return value total is of class double.

Algorithm bwarea estimates the area of all of the on pixels in an image by
summing the areas of each pixel in the image. The area of an individual
pixel is determined by looking at its 2-by-2 neighborhood. There are six
different patterns, each representing a different area:

• Patterns with zero on pixels (area = 0)

• Patterns with one on pixel (area = 1/4)

• Patterns with two adjacent on pixels (area = 1/2)

• Patterns with two diagonal on pixels (area = 3/4)

• Patterns with three on pixels (area = 7/8)

• Patterns with all four on pixels (area = 1)

Keep in mind that each pixel is part of four different 2-by-2
neighborhoods. This means, for example, that a single on pixel
surrounded by off pixels has a total area of 1.

Examples Compute the area in the objects of a 256-by-256 binary image.

BW = imread('circles.png');
imshow(BW);

17-21

bwarea

bwarea(BW)

ans =

1.4187e+004

See Also bweuler, bwperim

References [1] Pratt, William K., Digital Image Processing, New York, John Wiley
& Sons, Inc., 1991, p. 634.

17-22

bwareaopen

Purpose Morphologically open binary image (remove small objects)

Syntax BW2 = bwareaopen(BW,P)
BW2 = bwareaopen(BW,P,conn)

Description BW2 = bwareaopen(BW,P) removes from a binary image all connected
components (objects) that have fewer than P pixels, producing another
binary image, BW2. The default connectivity is 8 for two dimensions, 26
for three dimensions, and conndef(ndims(BW),'maximal') for higher
dimensions.

BW2 = bwareaopen(BW,P,conn) specifies the desired connectivity. conn
can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

Class
Support

BW can be a logical or numeric array of any dimension, and it must be
nonsparse. The return value BW2 is of class logical.

17-23

bwareaopen

Algorithm The basic steps are

1 Determine the connected components.

L = bwlabeln(BW, conn);

2 Compute the area of each component.

S = regionprops(L, 'Area');

3 Remove small objects.

bw2 = ismember(L, find([S.Area] >= P));

Examples Read in the image and display it.

originalBW = imread('text.png');
imshow(originalBW)

Remove all objects smaller than 50 pixels. Note the missing letters.

bwAreaOpenBW = bwareaopen(originalBW,50);
figure, imshow(bwAreaOpenBW)

17-24

bwareaopen

See Also bwlabel, bwlabeln, conndef, regionprops

17-25

bwboundaries

Purpose Trace region boundaries in binary image

Syntax B = bwboundaries(BW)
B = bwboundaries(BW,conn)
B = bwboundaries(BW,conn,options)
[B,L] = bwboundaries(...)
[B,L,N,A] = bwboundaries(...)

Description B = bwboundaries(BW) traces the exterior boundaries of objects, as
well as boundaries of holes inside these objects, in the binary image BW.
bwboundaries also descends into the outermost objects (parents) and
traces their children (objects completely enclosed by the parents). BW
must be a binary image where nonzero pixels belong to an object and
0 pixels constitute the background. The following figure illustrates
these components.

bwboundaries returns B, a P-by-1 cell array, where P is the number of
objects and holes. Each cell in the cell array contains a Q-by-2 matrix.
Each row in the matrix contains the row and column coordinates
of a boundary pixel. Q is the number of boundary pixels for the
corresponding region.

B = bwboundaries(BW,conn) specifies the connectivity to use when
tracing parent and child boundaries. conn can have either of the
following scalar values.

17-26

bwboundaries

Value Meaning

4 4-connected neighborhood

8 8-connected neighborhood. This is the default.

B = bwboundaries(BW,conn,options) specifies an optional argument,
where options can have either of the following values:

Value Meaning

'holes' Search for both object and hole boundaries. This is the
default.

'noholes' Search only for object (parent and child) boundaries. This
can provide better performance.

[B,L] = bwboundaries(...) returns the label matrix L as the second
output argument. Objects and holes are labeled. L is a two-dimensional
array of nonnegative integers that represent contiguous regions. The
kth region includes all elements in L that have value k. The number
of objects and holes represented by L is equal to max(L(:)). The
zero-valued elements of L make up the background.

[B,L,N,A] = bwboundaries(...) returns N, the number of objects
found, and A, an adjacency matrix. The first N cells in B are object
boundaries. A represents the parent-child-hole dependencies. A is a
square, sparse, logical matrix with side of length max(L(:)), whose
rows and columns correspond to the positions of boundaries stored in B.

The boundaries enclosed by a B{m} as well as the boundary enclosing
B{m} can both be found using A as follows:

enclosing_boundary = find(A(m,:));
enclosed_boundaries = find(A(:,m));

Class
Support

BW can be logical or numeric and it must be real, two-dimensional, and
nonsparse. L and N are double. A is sparse logical.

17-27

bwboundaries

Examples Example 1

Read in and threshold an intensity image. Display the labeled objects
using the jet colormap, on a gray background, with region boundaries
outlined in white.

I = imread('rice.png');
BW = im2bw(I, graythresh(I));
[B,L] = bwboundaries(BW,'noholes');
imshow(label2rgb(L, @jet, [.5 .5 .5]))
hold on
for k = 1:length(B)

boundary = B{k};
plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)

end

Example 2

Read in and display a binary image. Overlay the region boundaries on
the image. Display text showing the region number (based on the label
matrix) next to every boundary. Additionally, display the adjacency
matrix using the MATLAB spy function.

After the image is displayed, use the zoom tool to read individual labels.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
figure, imshow(BW); hold on;
colors=['b' 'g' 'r' 'c' 'm' 'y'];
for k=1:length(B)

boundary = B{k};
cidx = mod(k,length(colors))+1;
plot(boundary(:,2), boundary(:,1),...

colors(cidx),'LineWidth',2);
%randomize text position for better visibility
rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
col = boundary(rndRow,2); row = boundary(rndRow,1);
h = text(col+1, row-1, num2str(L(row,col)));
set(h,'Color',colors(cidx),...

'FontSize',14,'FontWeight','bold');

17-28

bwboundaries

end
figure; spy(A);

Example 3

Display object boundaries in red and hole boundaries in green.

BW = imread('blobs.png');
[B,L,N] = bwboundaries(BW);
figure; imshow(BW); hold on;
for k=1:length(B),

boundary = B{k};
if(k > N)

plot(boundary(:,2),...
boundary(:,1),'g','LineWidth',2);

else
plot(boundary(:,2),...

boundary(:,1),'r','LineWidth',2);
end

end

Example 4

Display parent boundaries in red (any empty row of the adjacency
matrix belongs to a parent) and their holes in green.

BW = imread('blobs.png');
[B,L,N,A] = bwboundaries(BW);
figure; imshow(BW); hold on;
for k=1:length(B),

if(~sum(A(k,:)))
boundary = B{k};
plot(boundary(:,2),...

boundary(:,1),'r','LineWidth',2);
for l=find(A(:,k))'

boundary = B{l};
plot(boundary(:,2),...

boundary(:,1),'g','LineWidth',2);
end

17-29

bwboundaries

end
end

See Also bwlabel, bwlabeln, bwperim, bwtraceboundary

17-30

bwdist

Purpose Distance transform of binary image

Syntax D = bwdist(BW)
[D,L] = bwdist(BW)
[D,L] = bwdist(BW,method)

Description D = bwdist(BW) computes the Euclidean distance transform of the
binary image BW. For each pixel in BW, the distance transform assigns a
number that is the distance between that pixel and the nearest nonzero
pixel of BW. bwdist uses the Euclidean distance metric by default. BW
can have any dimension. D is the same size as BW.

[D,L] = bwdist(BW) also computes the nearest-neighbor transform
and returns it as label matrix L, which has the same size as BW and
D. Each element of L contains the linear index of the nearest nonzero
pixel of BW.

[D,L] = bwdist(BW,method) computes the distance transform, where
method specifies an alternate distance metric. method can take any
of these values:

Method Description

'chessboard' In 2-D, the chessboard distance between
(x1,y1) and (x2,y2) is

'cityblock' In 2-D, the cityblock distance between (x1,y1)
and (x2,y2) is

17-31

bwdist

Method Description

'euclidean' In 2-D, the Euclidean distance between
(x1,y1) and (x2,y2) is

This is the default method.

'quasi-euclidean' In 2-D, the quasi-Euclidean distance between
(x1,y1) and (x2,y2) is

The method string can be abbreviated.

Note bwdist uses fast algorithms to compute the true Euclidean
distance transform, especially in the 2-D case. The other methods
are provided primarily for pedagogical reasons. However, the
alternative distance transforms are sometimes significantly faster for
multidimensional input images, particularly those that have many
nonzero elements.

Class
Support

BW can be numeric or logical, and it must be nonsparse. D and L are
double matrices with the same size as BW.

Examples Compute the Euclidean distance transform.

bw = zeros(5,5); bw(2,2) = 1; bw(4,4) = 1
bw =

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

17-32

bwdist

0 0 0 1 0
0 0 0 0 0

[D,L] = bwdist(bw)

D =
1.4142 1.0000 1.4142 2.2361 3.1623
1.0000 0 1.0000 2.0000 2.2361
1.4142 1.0000 1.4142 1.0000 1.4142
2.2361 2.0000 1.0000 0 1.0000
3.1623 2.2361 1.4142 1.0000 1.4142

L =
7 7 7 7 7
7 7 7 7 19
7 7 7 19 19
7 7 19 19 19
7 19 19 19 19

In the nearest-neighbor matrix L the values 7 and 19 represent the
position of the nonzero elements using linear matrix indexing. If a pixel
contains a 7, its closest nonzero neighbor is at linear position 7.

Compare the 2-D distance transforms for each of the supported
distance methods. In the figure, note how the quasi-Euclidean distance
transform best approximates the circular shape achieved by the
Euclidean distance method.

bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')

17-33

bwdist

hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Quasi-Euclidean')
hold on, imcontour(D4)

Compare isosurface plots for the distance transforms of a 3-D image
containing a single nonzero pixel in the center.

bw = zeros(50,50,50); bw(25,25,25) = 1;
D1 = bwdist(bw);
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), isosurface(D1,15), axis equal, view(3)
camlight, lighting gouraud, title('Euclidean')
subplot(2,2,2), isosurface(D2,15), axis equal, view(3)
camlight, lighting gouraud, title('City block')
subplot(2,2,3), isosurface(D3,15), axis equal, view(3)
camlight, lighting gouraud, title('Chessboard')

17-34

bwdist

subplot(2,2,4), isosurface(D4,15), axis equal, view(3)
camlight, lighting gouraud, title('Quasi-Euclidean')

Algorithm For two-dimensional Euclidean distance transforms, bwdist uses the
second algorithm described in

[1] Breu, Heinz, Joseph Gil, David Kirkpatrick, and Michael Werman,
"Linear Time Euclidean Distance Transform Algorithms," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No.
5, May 1995, pp. 529-533.

For higher dimensional Euclidean distance transforms, bwdist uses a
nearest-neighbor search on an optimized kd-tree, as described in

[1] Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel,
"An Algorithm for Finding Best Matches in Logarithmic Expected
Time," ACM Transactions on Mathematics Software, Vol. 3, No. 3,
September 1997, pp. 209-226.

For cityblock, chessboard, and quasi-Euclidean distance transforms,
bwdist uses the two-pass, sequential scanning algorithm described in

17-35

bwdist

[1] Rosenfeld, A. and J. Pfaltz, "Sequential operations in digital picture
processing," Journal of the Association for Computing Machinery, Vol.
13, No. 4, 1966, pp. 471-494.

The different distance measures are achieved by using different sets of
weights in the scans, as described in

[1] Paglieroni, David, "Distance Transforms: Properties and Machine
Vision Applications," Computer Vision, Graphics, and Image Processing:
Graphical Models and Image Processing, Vol. 54, No. 1, January 1992,
pp. 57-58.

See Also watershed

17-36

bweuler

Purpose Euler number of binary image

Syntax eul = bweuler(BW,n)

Description eul = bweuler(BW,n) returns the Euler number for the binary image
BW. The return value eul is a scalar whose value is the total number of
objects in the image minus the total number of holes in those objects.
The argument n can have a value of either 4 or 8, where 4 specifies
4-connected objects and 8 specifies 8-connected objects; if the argument
is omitted, it defaults to 8.

Class
Support

BW can be numeric or logical and it must be real, nonsparse, and
two-dimensional. The return value eul is of class double.

Examples BW = imread('circles.png');
imshow(BW);

bweuler(BW)

ans =

-3

17-37

bweuler

Algorithm bweuler computes the Euler number by considering patterns of
convexity and concavity in local 2-by-2 neighborhoods. See [2] for a
discussion of the algorithm used.

See Also bwmorph, bwperim

References [1] Horn, Berthold P. K., Robot Vision, New York, McGraw-Hill, 1986,
pp. 73-77.

[2] Pratt, William K., Digital Image Processing, New York, John Wiley
& Sons, Inc., 1991, p. 633.

17-38

bwhitmiss

Purpose Binary hit-miss operation

Syntax BW2 = bwhitmiss(BW1,SE1,SE2)
BW2 = bwhitmiss(BW1,INTERVAL)

Description BW2 = bwhitmiss(BW1,SE1,SE2) performs the hit-miss operation
defined by the structuring elements SE1 and SE2. The hit-miss operation
preserves pixels whose neighborhoods match the shape of SE1 and don’t
match the shape of SE2. SE1 and SE2 can be flat structuring element
objects, created by strel, or neighborhood arrays. The neighborhoods
of SE1 and SE2 should not have any overlapping elements. The
syntax bwhitmiss(BW1,SE1,SE2) is equivalent to imerode(BW1,SE1) &
imerode(~BW1,SE2).

BW2 = bwhitmiss(BW1,INTERVAL) performs the hit-miss operation
defined in terms of a single array, called an interval. An interval is an
array whose elements can contain 1, 0, or -1. The 1-valued elements
make up the domain of SE1, the -1-valued elements make up the
domain of SE2, and the 0-valued elements are ignored. The syntax
bwhitmiss(INTERVAL) is equivalent to bwhitmiss(BW1,INTERVAL == 1,
INTERVAL == -1).

Class
Support

BW1 can be a logical or numeric array of any dimension, and it must
be nonsparse. BW2 is always a logical array the same size as BW1. SE1
and SE2 must be flat STREL objects or they must be logical or numeric
arrays containing 1’s and 0’s. INTERVAL must be an array containing
1's, 0's, and -1's.

Examples Perform the hit-miss operation on a binary image using an interval.

bw = [0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 1 0 0 0]

17-39

bwhitmiss

interval = [0 -1 -1
1 1 -1
0 1 0];

bw2 = bwhitmiss(bw,interval)

bw2 =

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

See Also imdilate, imerode, strel

17-40

bwlabel

Purpose Label connected components in binary image

Syntax L = bwlabel(BW,n)
[L,num] = bwlabel(BW,n)

Description L = bwlabel(BW,n) returns a matrix L, of the same size as BW,
containing labels for the connected objects in BW. n can have a value
of either 4 or 8, where 4 specifies 4-connected objects and 8 specifies
8-connected objects; if the argument is omitted, it defaults to 8.

The elements of L are integer values greater than or equal to 0. The
pixels labeled 0 are the background. The pixels labeled 1 make up one
object, the pixels labeled 2 make up a second object, and so on.

[L,num] = bwlabel(BW,n) returns in num the number of connected
objects found in BW.

Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any
dimension. In some cases, you might prefer to use bwlabeln even for
2-D problems because it can be faster. If you have a 2-D input whose
objects are relatively thick in the vertical direction, bwlabel is probably
faster; otherwise bwlabeln is probably faster.

Class
Support

BW can be logical or numeric, and it must be real, two-dimensional, and
nonsparse. L is of class double.

Remarks You can use the MATLAB find function in conjunction with bwlabel to
return vectors of indices for the pixels that make up a specific object.
For example, to return the coordinates for the pixels in object 2,

[r,c] = find(bwlabel(BW)==2)

You can display the output matrix as a pseudocolor indexed image. Each
object appears in a different color, so the objects are easier to distinguish
than in the original image. See label2rgb for more information.

17-41

bwlabel

Examples Label components using 4-connected objects. Notice objects 2 and 3;
with 8-connected labeling, bwlabel would consider these a single object
rather than two separate objects.

BW = [1 1 1 0 0 0 0 0
1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0];

L = bwlabel(BW,4)

L =

1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 3 3 0
1 1 1 0 0 0 0 0

[r,c] = find(L==2);
rc = [r c]

rc =

2 5
3 5
2 6
3 6

17-42

bwlabel

Algorithm bwlabel uses the general procedure outlined in reference [1], pp. 40-48:

1 Run-length encode the input image.

2 Scan the runs, assigning preliminary labels and recording label
equivalences in a local equivalence table.

3 Resolve the equivalence classes.

4 Relabel the runs based on the resolved equivalence classes.

See Also bweuler, bwlabeln, bwselect, label2rgb

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot
Vision, Volume I, Addison-Wesley, 1992, pp. 28-48.

17-43

bwlabeln

Purpose Label connected components in N-D binary image

Syntax L = bwlabeln(BW)
[L,NUM] = bwlabeln(BW)
[L,NUM] = bwlabeln(BW,conn)

Description L = bwlabeln(BW) returns a label matrix L containing labels for the
connected components in BW. BW can have any dimension; L is the same
size as BW. The elements of L are integer values greater than or equal to
0. The pixels labeled 0 are the background. The pixels labeled 1 make up
one object, the pixels labeled 2 make up a second object, and so on. The
default connectivity is 8 for two dimensions, 26 for three dimensions,
and conndef(ndims(BW), 'maximal') for higher dimensions.

[L,NUM] = bwlabeln(BW) returns in NUM the number of connected
objects found in BW.

[L,NUM] = bwlabeln(BW,conn) specifies the desired connectivity. conn
can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can also be defined in a more general way for any
dimension by using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s.
The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its
center element.

17-44

bwlabeln

Remarks bwlabel supports 2-D inputs only; bwlabeln supports inputs of any
dimension. In some cases, you might prefer to use bwlabeln even for
2-D problems because it can be faster. If you have a 2-D input whose
objects are relatively thick in the vertical direction, bwlabel is probably
faster; otherwise bwlabeln is probably faster.

Class
Support

BW can be numeric or logical, and it must be real and nonsparse. L is
of class double.

Examples BW = cat(3,[1 1 0; 0 0 0; 1 0 0],...
[0 1 0; 0 0 0; 0 1 0],...
[0 1 1; 0 0 0; 0 0 1])

bwlabeln(BW)

ans(:,:,1) =

1 1 0
0 0 0
2 0 0

ans(:,:,2) =

0 1 0
0 0 0
0 2 0

ans(:,:,3) =

0 1 1
0 0 0
0 0 2

17-45

bwlabeln

Algorithm bwlabeln uses the following general procedure:

1 Scan all image pixels, assigning preliminary labels to nonzero pixels
and recording label equivalences in a union-find table.

2 Resolve the equivalence classes using the union-find algorithm [1]..

3 Relabel the pixels based on the resolved equivalence classes.

See Also bwlabel, label2rgb

Reference [1] Sedgewick, Robert, Algorithms in C, 3rd Ed., Addison-Wesley, 1998,
pp. 11-20.

17-46

bwmorph

Purpose Morphological operations on binary images

Syntax BW2 = bwmorph(BW,operation)
BW2 = bwmorph(BW,operation,n)

Description BW2 = bwmorph(BW,operation) applies a specific morphological
operation to the binary image BW.

BW2 = bwmorph(BW,operation,n) applies the operation n times. n
can be Inf, in which case the operation is repeated until the image
no longer changes.

operation is a string that can have one of the values listed below.

Operation Description

'bothat' Performs the morphological “bottom hat” operation,
returning the image minus the morphological closing of
the image .(dilation followed by erosion).

'bridge' Bridges unconnected pixels, that is, sets 0-valued pixels
to 1 if they have two nonzero neighbors that are not
connected. For example:

1 0 0 1 1 0
1 0 1 becomes 1 1 1
0 0 1 0 1 1

'clean' Removes isolated pixels (individual 1’s that are
surrounded by 0’s), such as the center pixel in this
pattern.

0 0 0
0 1 0
0 0 0

'close' Performs morphological closing (dilation followed by
erosion).

17-47

bwmorph

Operation Description

'diag' Uses diagonal fill to eliminate 8-connectivity of the
background. For example:

0 1 0 0 1 0
1 0 0 becomes 1 1 0
0 0 0 0 0 0

'dilate' Performs dilation using the structuring element
ones(3).

'erode' Performs erosion using the structuring element ones(3).

'fill' Fills isolated interior pixels (individual 0’s that are
surrounded by 1’s), such as the center pixel in this
pattern.

1 1 1
1 0 1
1 1 1

'hbreak' Removes H-connected pixels. For example:

1 1 1 1 1 1
0 1 0 becomes 0 0 0
1 1 1 1 1 1

'majority' Sets a pixel to 1 if five or more pixels in its 3-by-3
neighborhood are 1’s; otherwise, it sets the pixel to 0.

'open' Performs morphological opening (erosion followed by
dilation).

'remove' Removes interior pixels. This option sets a pixel to 0 if
all its 4-connected neighbors are 1, thus leaving only the
boundary pixels on.

17-48

bwmorph

Operation Description

'shrink' With n = Inf, shrinks objects to points. It removes
pixels so that objects without holes shrink to a point, and
objects with holes shrink to a connected ring halfway
between each hole and the outer boundary. This option
preserves the Euler number.

'skel' With n = Inf, removes pixels on the boundaries of
objects but does not allow objects to break apart. The
pixels remaining make up the image skeleton. This
option preserves the Euler number.

'spur' Removes spur pixels. For example:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 becomes 0 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0

'thicken' With n = Inf, thickens objects by adding pixels to
the exterior of objects until doing so would result in
previously unconnected objects being 8-connected. This
option preserves the Euler number.

'thin' With n = Inf, thins objects to lines. It removes pixels
so that an object without holes shrinks to a minimally
connected stroke, and an object with holes shrinks to a
connected ring halfway between each hole and the outer
boundary. This option preserves the Euler number. See
“Algorithm” on page 17-51 for more detail.

'tophat' Performs morphological "top hat" operation, returning
the image minus the morphological opening of the image
(erosion followed by dilation)..

17-49

bwmorph

Class
Support

The input image BW can be numeric or logical. It must be 2-D, real and
nonsparse. The output image BW2 is of class logical.

Examples BW = imread('circles.png');
imshow(BW);

BW2 = bwmorph(BW,'remove');
figure, imshow(BW2)

BW3 = bwmorph(BW,'skel',Inf);
figure, imshow(BW3)

17-50

bwmorph

See Also bweuler, bwperim, imdilate, imerode

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot
Vision, Volume I, Addison-Wesley, 1992.

[2] Pratt, William K., Digital Image Processing, John Wiley & Sons,
Inc., 1991.

[3] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
Methodologies-A Comprehensive Survey," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 14, No. 9, September 1992, page
879, bottom of first column through top of second column.

See “Algorithm” on page 17-51 for more detail.

Algorithm When used with the 'thin' option, bwmorph uses the following
algorithm (References [3]):

1 Divide the image into two distinct subfields in a checkerboard
pattern.

2 In the first subiteration, delete pixel p from the first subfield if and
only if the conditions G1, G2, and G3 are all satisfied.

3 In the second subiteration, delete pixel p from the second subfield if
and only if the conditions G1, G2, and G3’ are all satisfied.

17-51

bwmorph

Condition G1:

where

x1, x2, ..., x8 are the values of the eight neighbors of p, starting with the
east neighbor and numbered in counter-clockwise order.

Condition G2:

where

Condition G3:

Condition G3’:

The two subiterations together make up one iteration of the thinning
algorithm. When the user specifies an infinite number of iterations
(n=Inf), the iterations are repeated until the image stops changing.
The conditions are all tested using applylut with precomputed lookup
tables.

17-52

bwpack

Purpose Pack binary image

Syntax BWP = bwpack(BW)

Description BWP = bwpack(BW) packs the uint8 binary image BW into the uint32
array BWP, which is known as a packed binary image. Because each 8-bit
pixel value in the binary image has only two possible values, 1 and 0,
bwpack can map each pixel to a single bit in the packed output image.

bwpack processes the image pixels by column, mapping groups of 32
pixels into the bits of a uint32 value. The first pixel in the first row
corresponds to the least significant bit of the first uint32 element of
the output array. The first pixel in the 32nd input row corresponds
to the most significant bit of this same element. The first pixel of the
33rd row corresponds to the least significant bit of the second output
element, and so on. If BW is M-by-N, then BWP is ceil(M/32)-by-N. This
figure illustrates how bwpack maps the pixels in a binary image to the
bits in a packed binary image.

17-53

bwpack

Binary image packing is used to accelerate some binary morphological
operations, such as dilation and erosion. If the input to imdilate or
imerode is a packed binary image, the functions use a specialized
routine to perform the operation faster.

bwunpack is used to unpack packed binary images.

Class
Support

BW can be logical or numeric, and it must be 2-D, real, and nonsparse.
BWP is of class uint32.

Examples Pack, dilate, and unpack a binary image:

BW = imread('text.png');
BWp = bwpack(BW);
BWp_dilated = imdilate(BWp,ones(3,3),'ispacked');
BW_dilated = bwunpack(BWp_dilated, size(BW,1));

17-54

bwpack

See Also bwunpack, imdilate, imerode

17-55

bwperim

Purpose Find perimeter of objects in binary image

Syntax BW2 = bwperim(BW1)
BW2 = bwperim(BW1,conn)

Description BW2 = bwperim(BW1) returns a binary image containing only the
perimeter pixels of objects in the input image BW1. A pixel is part
of the perimeter if it is nonzero and it is connected to at least one
zero-valued pixel. The default connectivity is 4 for two dimensions, 6
for three dimensions, and conndef(ndims(BW), 'minimal') for higher
dimensions.

BW2 = bwperim(BW1,conn) specifies the desired connectivity. conn can
have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can also be defined in a more general way for any
dimension by using for conn a 3-by-3-by-...-by-3 matrix of 0’s and 1’s.
The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its
center element.

Class
Support

BW1 must be logical or numeric, and it must be nonsparse. BW2 is of
class logical.

17-56

bwperim

Examples BW1 = imread('circbw.tif');
BW2 = bwperim(BW1,8);
imshow(BW1)
figure, imshow(BW2)

See Also bwarea, bwboundaries, bweuler, bwtraceboundary, conndef, imfill

17-57

bwselect

Purpose Select objects in binary image

Syntax BW2 = bwselect(BW,c,r,n)
BW2 = bwselect(BW,n)
[BW2,idx] = bwselect(...)
BW2 = bwselect(x,y,BW,xi,yi,n)
[x,y,BW2,idx,xi,yi] = bwselect(...)

Description BW2 = bwselect(BW,c,r,n) returns a binary image containing
the objects that overlap the pixel (r,c). r and c can be scalars or
equal-length vectors. If r and c are vectors, BW2 contains the sets of
objects overlapping with any of the pixels (r(k),c(k)). n can have a
value of either 4 or 8 (the default), where 4 specifies 4-connected objects
and 8 specifies 8-connected objects. Objects are connected sets of on
pixels (i.e., pixels having a value of 1).

BW2 = bwselect(BW,n) displays the image BW on the screen and lets you
select the (r,c) coordinates using the mouse. If you omit BW, bwselect
operates on the image in the current axes. Use normal button clicks to
add points. Pressing Backspace or Delete removes the previously
selected point. A shift-click, right-click, or double-click selects the final
point; pressing Return finishes the selection without adding a point.

[BW2,idx] = bwselect(...) returns the linear indices of the pixels
belonging to the selected objects.

BW2 = bwselect(x,y,BW,xi,yi,n) uses the vectors x and y to establish
a nondefault spatial coordinate system for BW1. xi and yi are scalars or
equal-length vectors that specify locations in this coordinate system.

[x,y,BW2,idx,xi,yi] = bwselect(...) returns the XData and YData
in x and y, the output image in BW2, linear indices of all the pixels
belonging to the selected objects in idx, and the specified spatial
coordinates in xi and yi.

If bwselect is called with no output arguments, the resulting image is
displayed in a new figure.

17-58

bwselect

Class
Support

The input image BW can be logical or numeric and must be 2-D and
nonsparse. The output image BW2 is of class logical.

Examples BW1 = imread('text.png');
c = [43 185 212];
r = [38 68 181];
BW2 = bwselect(BW1,c,r,4);
imshow(BW1), figure, imshow(BW2)

See Also bwlabel, imfill, impixel, roipoly, roifill

17-59

bwtraceboundary

Purpose Trace object in binary image

Syntax B = bwtraceboundary(BW,P,fstep)
B = bwtraceboundary(BW,P,fstep,conn)
B = bwtraceboundary(...,N,dir)

Description B = bwtraceboundary(BW, P,fstep) traces the outline of an object
in binary image bw. Nonzero pixels belong to an object and 0 pixels
constitute the background. P is a two-element vector specifying the row
and column coordinates of the point on the object boundary where you
want the tracing to begin.

fstep is a string specifying the initial search direction for the next
object pixel connected to P. You use strings such as 'N' for north, 'NE'
for northeast, to specify the direction. The following figure illustrates
all the possible values for fstep.

bwtraceboundary returns B, a Q-by-2 matrix, where Q is the number of
boundary pixels for the region. B holds the row and column coordinates
of the boundary pixels.

B = bwtraceboundary(bw, P, fstep, conn) specifies the
connectivity to use when tracing the boundary. conn can have either of
the following scalar values.

17-60

bwtraceboundary

Value Meaning

4 4-connected neighborhood

Note With this connectivity, fstep is limited to the
following values: 'N', 'E', 'S', and 'W'.

8 8-connected neighborhood. This is the default.

B = bwtraceboundary(...,N,dir) specifies n, the maximum number
of boundary pixels to extract, and dir, the direction in which to trace
the boundary. When N is set to Inf, the default value, the algorithm
identifies all the pixels on the boundary. dir can have either of the
following values:

Value Meaning

'clockwise' Search in a clockwise direction. This is the
default.

'counterclockwise' Search in counterclockwise direction.

Class
Support

BW can be logical or numeric and it must be real, 2-D, and nonsparse. B,
P, conn, and N are of class double. dir and fstep are strings.

Examples Read in and display a binary image. Starting from the top left, project
a beam across the image searching for the first nonzero pixel. Use the
location of that pixel as the starting point for the boundary tracing.
Including the starting point, extract 50 pixels of the boundary and
overlay them on the image. Mark the starting points with a green x.
Mark beams that missed their targets with a red x.

BW = imread('blobs.png');
imshow(BW,[]);
s=size(BW);
for row = 2:55:s(1)

17-61

bwtraceboundary

for col=1:s(2)
if BW(row,col),

break;
end

end

contour = bwtraceboundary(BW, [row, col], 'W', 8, 50,...
'counterclockwise');

if(~isempty(contour))
hold on;
plot(contour(:,2),contour(:,1),'g','LineWidth',2);
hold on;
plot(col, row,'gx','LineWidth',2);

else
hold on; plot(col, row,'rx','LineWidth',2);

end
end

See Also bwboundaries, bwperim

17-62

bwulterode

Purpose Ultimate erosion

Syntax BW2 = bwulterode(BW)
BW2 = bwulterode(BW,method,conn)

Description BW2 = bwulterode(BW) computes the ultimate erosion of the binary
image BW. The ultimate erosion of BW consists of the regional maxima of
the Euclidean distance transform of the complement of BW. The default
connectivity for computing the regional maxima is 8 for two dimensions,
26 for three dimensions, and conndef(ndims(BW), 'maximal') for
higher dimensions.

BW2 = bwulterode(BW,method,conn) specifies the distance transform
method and the regional maxima connectivity. method can be one
of the strings 'euclidean', 'cityblock', 'chessboard', and
'quasi-euclidean'.

conn can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by... - by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-63

bwulterode

Class
Support

BW can be numeric or logical and it must be nonsparse. It can have any
dimension. The return value BW2 is always a logical array.

Examples originalBW = imread('circles.png');
imshow(originalBW)
ultimateErosion = bwulterode(originalBW);
figure, imshow(ultimateErosion)

See Also bwdist, conndef, imregionalmax

17-64

bwunpack

Purpose Unpack binary image

Syntax BW = bwunpack(BWP,m)

Description BW = bwunpack(BWP,m) unpacks the packed binary image BWP. BWP is a
uint32 array. When it unpacks BWP, bwunpack maps the least significant
bit of the first row of BWP to the first pixel in the first row of BW. The
most significant bit of the first element of BWP maps to the first pixel in
the 32nd row of BW, and so on. BW is M-by-N, where N is the number of
columns of BWP. If m is omitted, its default value is 32*size(BWP,1).

Binary image packing is used to accelerate some binary morphological
operations, such as dilation and erosion. If the input to imdilate or
imerode is a packed binary image, the functions use a specialized
routine to perform the operation faster.

bwpack is used to create packed binary images.

Class
Support

BWP is of class uint32 and must be real, 2-D, and nonsparse. The return
value BW is of class uint8.

Examples Pack, dilate, and unpack a binary image.

bw = imread('text.png');
bwp = bwpack(bw);
bwp_dilated = imdilate(bwp,ones(3,3),'ispacked');
bw_dilated = bwunpack(bwp_dilated, size(bw,1));

See Also bwpack, imdilate, imerode

17-65

checkerboard

Purpose Create checkerboard image

Syntax I = checkerboard
I = checkerboard(n)
I = checkerboard(n,p,q)

Description I = checkerboard creates an 8-by-8 square checkerboard image that
has four identifiable corners. Each square has 10 pixels per side. The
light squares on the left half of the checkerboard are white. The light
squares on the right half of the checkerboard are gray.

I = checkerboard(n) creates a checkerboard image where each square
has n pixels per side.

I = checkerboard(n,p,q) creates a rectangular checkerboard where p
specifies the number of rows and q specifies the number of columns. If
you omit q, it defaults to p and the checkerboard is square.

Each row and column is made up of tiles. Each tile contains four
squares, n pixels per side, defined as

TILE = [DARK LIGHT; LIGHT DARK]

The light squares on the left half of the checkerboard are white. The
light squares on the right half of the checkerboard are gray.

Examples Create a checkerboard where the side of every square is 20 pixels in
length.

I = checkerboard(20);imshow(I)

17-66

checkerboard

Create a rectangular checkerboard that is 2 tiles in height and 3 tiles
wide.

J = checkerboard(10,2,3);
figure, imshow(J)

Create a black and white checkerboard.

K = (checkerboard > 0.5);
figure, imshow(K)

See Also cp2tform, imtransform, maketform

17-67

cmpermute

Purpose Rearrange colors in colormap

Syntax [Y,newmap] = cmpermute(X,map)
[Y,newmap] = cmpermute(X,map,index)

Description [Y,newmap] = cmpermute(X,map) randomly reorders the colors in
map to produce a new colormap newmap. The cmpermute function also
modifies the values in X to maintain correspondence between the
indices and the colormap, and returns the result in Y. The image Y and
associated colormap newmap produce the same image as X and map.

[Y,newmap] = cmpermute(X,map,index) uses an ordering matrix
(such as the second output of sort) to define the order of colors in the
new colormap.

Class
Support

The input image X can be of class uint8 or double. Y is returned as
an array of the same class as X.

Examples Order a colormap by luminance.

load trees
ntsc = rgb2ntsc(map);
[dum,index] = sort(ntsc(:,1));
[Y,newmap] = cmpermute(X,map,index);
figure, imshow(X,map)
figure, imshow(Y,newmap)

See Also randperm, sort in the MATLAB Function Reference

17-68

cmunique

Purpose Eliminate duplicate colors in colormap; convert grayscale or truecolor
image to indexed image

Syntax [Y,newmap] = cmunique(X,map)
[Y,newmap] = cmunique(RGB)
[Y,newmap] = cmunique(I)

Description [Y,newmap] = cmunique(X,map) returns the indexed image Y and
associated colormap newmap that produce the same image as (X,map)
but with the smallest possible colormap. The cmunique function
removes duplicate rows from the colormap and adjusts the indices in
the image matrix accordingly.

[Y,newmap] = cmunique(RGB) converts the true-color image RGB to the
indexed image Y and its associated colormap newmap. The return value
newmap is the smallest possible colormap for the image, containing one
entry for each unique color in RGB. (Note that newmap might be very
large, because the number of entries can be as many as the number of
pixels in RGB.)

[Y,newmap] = cmunique(I) converts the grayscale image I to an
indexed image Y and its associated colormap newmap. The return value
newmap is the smallest possible colormap for the image, containing one
entry for each unique intensity level in I.

Class
Support

The input image can be of class uint8, uint16, or double. The class of
the output image Y is uint8 if the length of newmap is less than or equal
to 256. If the length of newmap is greater than 256, Y is of class double.

Examples Use the magic function to create a sample 4-by-4 image that uses every
value in the range between 1 and 16.

X = magic(4)

X =

16 2 3 13

17-69

cmunique

5 11 10 8
9 7 6 12
4 14 15 1

Concatenate two 8-entry grayscale colormaps created using the gray
function. The resultant colormap, map, has 16 entries. Entries 9 through
16 are duplicates of entries 1 through 8.

map = [gray(8); gray(8)]
size(map)

ans =

16 3

Use cmunique to eliminate duplicate entries in the colormap.

[Y, newmap] = cmunique(X, map);
size(newmap)

ans =

8 3

cmunique adjusts the values in the original image X to index the new
colormap.

Y =

7 1 2 4
4 2 1 7
0 6 5 3
3 5 6 0

View both images to verify that their appearance is the same.

imshow(X, map, 'InitialMagnification', 'fit')
figure, imshow(Y, newmap, 'InitialMagnification', 'fit')

17-70

cmunique

See Also gray2ind, rgb2ind

17-71

col2im

Purpose Rearrange matrix columns into blocks

Syntax A = col2im(B,[m n],[mm nn],'distinct')
A = col2im(B,[m n],[mm nn],'sliding')

Description A = col2im(B,[m n],[mm nn],'distinct') rearranges each column
of B into a distinct m-by-n block to create the matrix A of size mm-by-nn.
If B = [A11(:) A21(:) A12(:) A22(:)], where each column has
length m*n, then A = [A11 A12; A21 A22] where each Aij is m-by-n.

A = col2im(B,[m n],[mm nn],'sliding') rearranges the row vector
B into a matrix of size (mm-m+1)-by-(nn-n+1). B must be a vector of
size 1-by-(mm-m+1)*(nn-n+1). B is usually the result of processing
the output of im2col(...,'sliding') using a column compression
function (such as sum).

col2im(B,[m n],[mm nn]) is the same as col2im(B, [m n], [mm
nn],'sliding').

Class
Support

B can be logical or numeric. The return value A is of the same class as B.

Examples B = reshape(uint8(1:25),[5 5])'
C = im2col(B,[1 5])
A = col2im(C,[1 5],[5 5],'distinct')

See Also blkproc, colfilt, im2col, nlfilter

17-72

colfilt

Purpose Columnwise neighborhood operations

Syntax B = colfilt(A,[m n],block_type,fun)
B = colfilt(A,[m n],[mblock nblock],block_type,fun)
B = colfilt(A,'indexed',...)

Description B = colfilt(A,[m n],block_type,fun) processes the image A by
rearranging each m-by-n block of A into a column of a temporary matrix,
and then applying the function fun to this matrix. fun must be a
function handle. colfilt zero-pads A, if necessary.

Before calling fun, colfilt calls im2col to create the temporary
matrix. After calling fun, colfilt rearranges the columns of the matrix
back into m-by-n blocks using col2im.

block_type is a string that can have one of the values listed in this
table.

Note colfilt can perform operations similar to blkproc and
nlfilter, but often executes much faster.

17-73

colfilt

Value Description

'distinct' Rearranges each m-by-n distinct block of A into a column
in a temporary matrix, and then applies the function
fun to this matrix. fun must return a matrix the same
size as the temporary matrix. colfilt then rearranges
the columns of the matrix returned by fun into m-by-n
distinct blocks.

'sliding' Rearranges each m-by-n sliding neighborhood of A into
a column in a temporary matrix, and then applies the
function fun to this matrix. fun must return a row
vector containing a single value for each column in the
temporary matrix. (Column compression functions such
as sum return the appropriate type of output.) colfilt
then rearranges the vector returned by fun into a
matrix the same size as A.

B = colfilt(A,[m n],[mblock nblock],block_type,fun) processes
the matrix A as above, but in blocks of size mblock-by-nblock to save
memory. Note that using the [mblock nblock] argument does not
change the result of the operation.

B = colfilt(A,'indexed',...) processes A as an indexed image,
padding with 0’s if the class of A is uint8 or uint16, or 1’s if the class
of A is double or single.

Note To save memory, the colfilt function might divide A into
subimages and process one subimage at a time. This implies that fun
may be called multiple times, and that the first argument to fun may
have a different number of columns each time.

Class
Support

The input image A can be of any class supported by fun. The class of B
depends on the class of the output from fun.

17-74

colfilt

Examples Set each output pixel to the mean value of the input pixel’s 5-by-5
neighborhood.

I = imread('tire.tif');
imshow(I)
I2 = uint8(colfilt(I,[5 5],'sliding',@mean));
figure, imshow(I2)

See Also blkproc, col2im, function_handle, im2col, nlfilter

17-75

colorbar

Purpose Display color bar

Note colorbar is a MATLAB function.

17-76

conndef

Purpose Create connectivity array

Syntax conn = conndef(num_dims,type)

Description conn = conndef(num_dims,type) returns the connectivity array
defined by type for num_dims dimensions. type can have either of the
values listed in this table.

Value Description

'minimal' Defines a neighborhood whose neighbors are touching
the central element on an (N-1)-dimensional surface,
for the N-dimensional case.

'maximal' Defines a neighborhood including neighbors
that touch the central element in any way; it is
ones(repmat(3,1,NUM_DIMS)).

Several Image Processing Toolbox functions use conndef to create the
default connectivity input argument.

Examples The minimal connectivity array for two dimensions includes the
neighbors touching the central element along a line.

conn1 = conndef(2,'minimal')

conn1 =
0 1 0
1 1 1
0 1 0

The minimal connectivity array for three dimensions includes all the
neighbors touching the central element along a face.

conndef(3,'minimal')

ans(:,:,1) =
0 0 0

17-77

conndef

0 1 0
0 0 0

ans(:,:,2) =
0 1 0
1 1 1
0 1 0

ans(:,:,3) =
0 0 0
0 1 0
0 0 0

The maximal connectivity array for two dimensions includes all the
neighbors touching the central element in any way.

conn2 = conndef(2,'maximal')

conn2 =
1 1 1
1 1 1
1 1 1

17-78

conv2

Purpose 2-D convolution

Note conv2 is a function in MATLAB.

17-79

convmtx2

Purpose 2-D convolution matrix

Syntax T = convmtx2(H,m,n)
T = convmtx2(H,[m n])

Description T = convmtx2(H,m,n) returns the convolution matrix T for the matrix
H. If X is an m-by-n matrix, then reshape(T*X(:),size(H)+[m n]-1) is
the same as conv2(X,H).

T = convmtx2(H,[m n]) returns the convolution matrix, where the
dimensions m and n are a two-element vector.

Class
Support

The inputs are all of class double. The output matrix T is of class
sparse. The number of nonzero elements in T is no larger than
prod(size(H))*m*n.

See Also conv2

convmtx in the Signal Processing Toolbox User’s Guide documentation

17-80

convn

Purpose N-D convolution

Note convn is a MATLAB function.

17-81

corr2

Purpose 2-D correlation coefficient

Syntax r = corr2(A,B)

Description r = corr2(A,B) computes the correlation coefficient between A and B,
where A and B are matrices or vectors of the same size.

Class
Support

A and B can be numeric or logical. The return value r is a scalar double.

Algorithm corr2 computes the correlation coefficient using

where = mean2(A), and = mean2(B).

See Also std2

corrcoef in the MATLAB Function Reference

17-82

cp2tform

Purpose Infer spatial transformation from control point pairs

Syntax TFORM = cp2tform(input_points, base_points, transformtype)
TFORM = cp2tform(CPSTRUCT, transformtype)
[TFORM, input_points, base_points] = cp2tform(CPSTRUCT,...)
TFORM = cp2tform(..., 'polynomial', order)
TFORM = cp2tform(..., 'lwm', N)
[TFORM, input_points, base_points, input_points_bad,

base_points_bad]= cp2tform(..., 'piecewise linear')

Description TFORM = cp2tform(input_points, base_points, transformtype)
takes pairs of control points and uses them to infer a spatial
transformation. input_points is an m-by-2 double matrix containing
the x- and y-coordinates of control points in the image you want to
transform. base_points is an m-by-2 double matrix containing the
x- and y-coordinates of control points specified in the base image.
transformtype specifies the type of spatial transformation to infer.
See “Transformation Types” on page 17-83 for a list of the supported
transform types. cp2tform returns a TFORM structure containing the
spatial transformation.

TFORM = cp2tform(CPSTRUCT, transformtype) infers a spatial
transformation using the control point matrices for the input and base
images in the CPSTRUCT structure.. You use the Control Point Selection
Tool (cpselect) to create the CPSTRUCT.

[TFORM, input_points, base_points] = cp2tform(CPSTRUCT,...)
returns the control points that were actually used in the return values
input_points and base_points. A CPSTRUCT can contain unmatched
and predicted points that are not used in the calculation. For more
information, see cpstruct2pairs.

Transformation Types

The following table lists all the transformation types supported
by cp2tform in order of complexity. The 'lwm' and 'polynomial'
transform types can each take an optional, additional parameter. See
the syntax descriptions that follow for details.

17-83

cp2tform

Note When transformtype is 'linear conformal', 'affine',
'projective', or 'polynomial', and input_points and base_points
(or CPSTRUCT) have the minimum number of control points needed for
a particular transformation, cp2tform finds the coefficients exactly.
If input_points and base_points include more than the minimum
number of points, cp2tform uses a least squares solution. For more
information, see mldivide.

Transformation
Type Description

Minimum
Control Points Example

'linear
conformal'

Use this transformation when
shapes in the input image are
unchanged, but the image is
distorted by some combination of
translation, rotation, and scaling.
Straight lines remain straight,
and parallel lines are still parallel.

2 pairs

'affine' Use this transformation when
shapes in the input image exhibit
shearing. Straight lines remain
straight, and parallel lines remain
parallel, but rectangles become
parallelograms.

3 pairs

'projective' Use this transformation when the
scene appears tilted. Straight
lines remain straight, but parallel
lines converge toward vanishing
points that might or might not fall
within the image.

4 pairs

17-84

cp2tform

Transformation
Type Description

Minimum
Control Points Example

'polynomial'
See
“Transform-specific
Syntaxes” on page
17-85

Use this transformation when
objects in the image are curved.
The higher the order of the
polynomial, the better the fit, but
the result can contain more curves
than the base image.

6 pairs (order 2)

10 pairs (order
3)

15 pairs (order
4)

'piecewise
linear'
See
“Transform-specific
Syntaxes” on page
17-85

Use this transformation when
parts of the image appear distorted
differently.

4 pairs

'lwm'
See
“Transform-specific
Syntaxes” on page
17-85

Use this transformation (local
weighted mean), when the
distortion varies locally and
piecewise linear is not sufficient.

6 pairs (12 pairs
recommended)

Transform-specific Syntaxes

TFORM = cp2tform(..., 'polynomial', order) returns a TFORM
structure specifying a 'polynomial' transformation, where order
specifies the order of the polynomial to use. order can be the scalar
value 2, 3, or 4. If you omit order, it defaults to 3.

TFORM = cp2tform(..., 'lwm', N) returns a TFORM structure
specifying a 'lwm' transformation, where N specifies the number of
points used to infer each polynomial. The radius of influence extends
out to the furthest control point used to infer that polynomial. The N
closest points are used to infer a polynomial of order 2 for each control
point pair. If you omit N, it defaults to 12. N can be as small as 6, but
making N small risks generating ill-conditioned polynomials.

[TFORM, input_points, base_points, input_points_bad,
base_points_bad]= cp2tform(..., 'piecewise linear') returns

17-85

cp2tform

a TFORM structure specifying a 'piecewise linear' transformation.
Returns the control points that were actually used in input_points
and base_points, and returns the control points that were eliminated
because they were middle vertices of degenerate fold-over triangles, in
input_points_bad and base_points_bad.

Remarks

When either input_points or base_points has a large offset with
respect to their origin (relative to range of values that it spans),
cp2tform shifts the points to center their bounding box on the origin
before fitting a TFORM structure. This enhances numerical stability and
is handled transparently by wrapping the origin-centered TFORM within
a custom TFORM that automatically applies and undoes the coordinate
shift as needed. This means that fields(T) may give different results
for different coordinate inputs, even for the same transformation type.

Examples I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J,I,input_points,base_points);

t = cp2tform(input_points,base_points,'linear conformal');

% Recover angle and scale by checking how a unit vector
% parallel to the x-axis is rotated and stretched.
u = [0 1];
v = [0 0];
[x, y] = tformfwd(t, u, v);
dx = x(2) - x(1);
dy = y(2) - y(1);
angle = (180/pi) * atan2(dy, dx)
scale = 1 / sqrt(dx^2 + dy^2)

See Also cpcorr, cpselect, cpstruct2pairs, imtransform

17-86

cp2tform

Algorithms cp2tform uses the following general procedure:

1 Use valid pairs of control points to infer a spatial transformation
or an inverse mapping from output space (x,y) to input space (u,v)
according to transformtype.

2 Return TFORM structure containing spatial transformation.

The procedure varies depending on the transformtype.

Linear Conformal

Linear conformal transformations can include a rotation, a scaling, and
a translation. Shapes and angles are preserved. Parallel lines remain
parallel. Straight lines remain straight.

Let

sc = scale*cos(angle)
ss = scale*sin(angle)

[u v] = [x y 1] * [sc -ss
ss sc
tx ty]

Solve for sc, ss, tx, ty.

t_lc = cp2tform(input_points, base_points, 'linear conformal');

The coefficients of the inverse mapping are stored in t_lc.tdata.Tinv.

Since linear conformal transformations are a subset of affine
transformations, t_lc.forward_fcn is @affine_fwd and
t_lc.inverse_fcn is @affine_inv.

At least two control-point pairs are needed to solve for the four unknown
coefficients.

17-87

cp2tform

Affine

In an affine transformation, the x and y dimensions can be scaled or
sheared independently and there can be a translation. Parallel lines
remain parallel. Straight lines remain straight. Linear conformal
transformations are a subset of affine transformations.

For an affine transformation,

[u v] = [x y 1] * Tinv

Tinv is a 3-by-2 matrix. Solve for the six elements of Tinv.

t_affine = cp2tform(input_points,base_points,'affine');

The coefficients of the inverse mapping are stored in
t_affine.tdata.Tinv.

At least three control-point pairs are needed to solve for the six
unknown coefficients.

Projective

In a projective transformation, quadrilaterals map to quadrilaterals.
Straight lines remain straight. Affine transformations are a subset of
projective transformations.

For a projective transformation

[up vp wp] = [x y w] * Tinv

where

u = up/wp
v = vp/wp

Tinv is a 3-by-3 matrix.

Assuming

Tinv = [A D G;
B E H;

17-88

cp2tform

C F I];
u = (Ax + By + C)/(Gx + Hy + I)
v = (Dx + Ey + F)/(Gx + Hy + I)

Solve for the nine elements of Tinv.

t_proj = cp2tform(input_points,base_points,'projective');

The coefficients of the inverse mapping are stored in
t_proj.tdata.Tinv.

At least four control-point pairs are needed to solve for the nine
unknown coefficients.

Polynomial

In a polynomial transformation, polynomial functions of x and y
determine the mapping.

Second-Order Polynomials

For a second-order polynomial transformation,

[u v] = [1 x y x*y x^2 y^2] * Tinv

Both u and v are second-order polynomials of x and y. Each second-order polynomial has
six terms. To specify all coefficients, Tinv has size 6-by-2.

t_poly_ord2 = cp2tform(input_points, base_points,'polynomial');

The coefficients of the inverse mapping are stored in t_poly_ord2.tdata.

At least six control-point pairs are needed to solve for the 12 unknown coefficients.

17-89

cp2tform

Third-Order Polynomials

For a third-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3] * Tinv

Both u and v are third-order polynomials of x and y. Each third-order polynomial has ten
terms. To specify all coefficients, Tinv has size 10-by-2.

t_poly_ord3 = cp2tform(input_points, base_points,'polynomial',3);

The coefficients of the inverse mapping are stored in t_poly_ord3.tdata.

At least ten control-point pairs are needed to solve for the 20 unknown coefficients.

Fourth-Order Polynomials

For a fourth-order polynomial transformation:

[u v] = [1 x y x*y x^2 y^2 y*x^2 x*y^2 x^3 y^3 x^3*y x^2*y^2 x*y^3 x^4
y^4] * Tinv

Both u and v are fourth-order polynomials of x and y. Each fourth-order polynomial has 15
terms. To specify all coefficients, Tinv has size 15-by-2.

t_poly_ord4 = cp2tform(input_points, base_points,'polynomial',4);

The coefficients of the inverse mapping are stored in t_poly_ord4.tdata.

At least 15 control-point pairs are needed to solve for the 30 unknown coefficients.

Piecewise Linear

In a piecewise linear transformation, linear (affine) transformations are
applied separately to each triangular region of the image [1].

1 Find a Delaunay triangulation of the base control points.

17-90

cp2tform

2 Using the three vertices of each triangle, infer an affine mapping
from base to input coordinates.

Note At least four control-point pairs are needed. Four pairs result in
two triangles with distinct mappings.

Local Weighted Mean

For each control point in base_points:

1 Find the N closest control points.

2 Use these N points and their corresponding points in input_points
to infer a second-order polynomial.

3 Calculate the radius of influence of this polynomial as the distance
from the center control point to the farthest point used to infer the
polynomial (using base_points). [2]

Note At least six control-point pairs are needed to solve for the
second-order polynomial. Ill-conditioned polynomials might result if too
few pairs are used.

References [1] Goshtasby, Ardeshir, "Piecewise linear mapping functions for image
registration," Pattern Recognition, Vol. 19, 1986, pp. 459-466.

[2] Goshtasby, Ardeshir, "Image registration by local approximation
methods," Image and Vision Computing, Vol. 6, 1988, pp. 255-261.

17-91

cpcorr

Purpose Tune control-point locations using cross correlation

Syntax input_points = cpcorr(input_points_in, base_points_in, input,
base)

Description input_points = cpcorr(input_points_in, base_points_in,
input,base) uses normalized cross-correlation to adjust each pair of
control points specified in input_points_in and base_points_in.

input_points_in must be an M-by-2 double matrix containing the
coordinates of control points in the input image. base_points_in is
an M-by-2 double matrix containing the coordinates of control points
in the base image.

cpcorr returns the adjusted control points in input_points, a double
matrix the same size as input_points_in. If cpcorr cannot correlate
a pair of control points, input_points contains the same coordinates
as input_points_in for that pair.

cpcorr only moves the position of a control point by up to four pixels.
Adjusted coordinates are accurate to one-tenth of a pixel. cpcorr is
designed to get subpixel accuracy from the image content and coarse
control-point selection.

Note input and base images must have the same scale for cpcorr
to be effective.

cpcorr cannot adjust a point if any of the following occur:

• Points are too near the edge of either image.

• Regions of images around points contain Inf or NaN.

• Region around a point in input image has zero standard deviation.

• Regions of images around points are poorly correlated.

17-92

cpcorr

Class
Support

The images input and base can be numeric and must contain finite
values. The control-point pairs are of class double.

Algorithm cpcorr uses the following general procedure.

For each control-point pair,

1 Extract an 11-by-11 template around the input control point and a
21-by-21 region around the base control point.

2 Calculate the normalized cross-correlation of the template with the
region.

3 Find the absolute peak of the cross-correlation matrix.

4 Use the position of the peak to adjust the coordinates of the input
control point.

Examples Use cpcorr to fine-tune control points selected in an image. Note
the difference in the values of the input_points matrix and the
input_points_adj matrix.

input = imread('onion.png');
base = imread('peppers.png');
input_points = [127 93; 74 59];
base_points = [323 195; 269 161];
input_points_adj = cpcorr(input_points,base_points,...

input(:,:,1),base(:,:,1))
input_points_adj =

127.0000 93.0000
71.0000 59.6000

See Also cp2tform, cpselect, imtransform, normxcorr2

17-93

cpselect

Purpose Control Point Selection Tool

Syntax cpselect(input, base)
cpselect(input, base, CPSTRUCT_IN)
cpselect(input, base, xyinput_in, xybase_in)
H = cpselect(input, base,...)
cpselect((...,param1, val1,...)

Description cpselect(input, base) starts the Control Point Selection Tool, a
graphical user interface that enables you to select control points in two
related images. input is the image that needs to be warped to bring it
into the coordinate system of the base image. input and base can be
either variables that contain grayscale, truecolor, or binary images, or
strings that identify files containing these images. The Control Point
Selection Tool returns the control points in a CPSTRUCT structure. (For
more information, see “Using the Control Point Selection Tool: An
Overview” on page 7-13.)

cpselect(input, base, CPSTRUCT_IN) starts cpselect with an
initial set of control points that are stored in CPSTRUCT_IN. This
syntax allows you to restart cpselect with the state of control points
previously saved in CPSTRUCT_IN.

cpselect(input, base, xyinput_in, xybase_in) starts cpselect
with a set of initial pairs of control points. xyinput_in and xybase_in
are m-by-2 matrices that store the input and base coordinates,
respectively.

H = cpselect(input, base,...) returns a handle H to the tool. You
can use the close(H) syntax to close the tool from the command line.

cpselect((...,param1, val1,...) starts CPSELECT, specifying
parameters and corresponding values that control various aspects of the
tool. Parameter names can be abbreviated, and case does not matter.
Parameters include:

17-94

cpselect

Parameter Description

'wait' Logical scalar that controls whether cpselect
waits for the user to finish the task of selecting
points. If set to false (the default), you can run
cpselect at the same time as you run other
programs in MATLAB. If set to true, you must
finish the task of selecting points before doing
anything else in MATLAB.

Note When 'wait' is set to true,
cpselect returns the selected pairs
of points, not a handle to the tool:
[xyinput_out, xybase_out] =
cpselect(...,'Wait', true)
xyinput_out and xybase_out are P-by-2
matrices that store the input and base image
coordinates, respectively.

Class
Support

TheThe images can be grayscale, truecolor, or binary. A grayscale
image can be uint8, uint16, int16, single, or double. A truecolor
image can be uint8, uint16, single, or double. A binary image is of
class logical.

Algorithm cpselect uses the following general procedure for control-point
prediction.

1 Find all valid pairs of control points.

2 Infer a spatial transformation between input and base control points
using method that depends on the number of valid pairs, as follows:

17-95

cpselect

2 pairs Linear conformal

3 pairs Affine

4 or more
pairs

Projective

3 Apply spatial transformation to the new point to generate the
predicted point.

4 Display predicted point.

Examples Start Control Point Selection tool with saved images.

cpselect('westconcordaerial.png','westconcordorthophoto.png')

Start Control Point Selection tool with images and control points stored
in variables in the workspace.

I = checkerboard;
J = imrotate(I,30);
base_points = [11 11; 41 71];
input_points = [14 44; 70 81];
cpselect(J, I, input_points, base_points);

Use cpselect in a script, specifying the 'wait' parameter to block
until control point selection is complete.

aerial = imread('westconcordaerial.png');
figure, imshow(aerial)
figure, imshow('westconcordorthophoto.png')
load westconcordpoints % load some control points that were already pic

% Block the tool until you pick some more control points
[aerial_points,ortho_points] = ...

cpselect(aerial,'westconcordorthophoto.png',...
input_points,base_points,...
'Wait',true);

17-96

cpselect

t_concord = cp2tform(aerial_points,ortho_points,'projective');
info = imfinfo('westconcordorthophoto.png');
aerial_registered = imtransform(aerial, t_concord,...

'XData',[1 info.Width],...
'YData',[1 info.Height]);

figure, imshow(aerial_registered)

See Also cpcorr, cp2tform, cpstruct2pairs, imtransform

Chapter 7, “Image Registration”

17-97

cpstruct2pairs

Purpose Convert CPSTRUCT to valid pairs of control points

Syntax [input_points, base_points] = cpstruct2pairs(CPSTRUCT)

Description [input_points, base_points] = cpstruct2pairs(CPSTRUCT)
takes a CPSTRUCT (produced by cpselect) and returns the arrays
of coordinates of valid control point pairs in input_points and
base_points. cpstruct2pairs eliminates unmatched points and
predicted points.

Examples Start the Control Point Selection Tool, cpselect.

aerial = imread('westconcordaerial.png');
cpselect(aerial(:,:,1),'westconcordorthophoto.png')

Using cpselect, pick control points in the images. Select Save to
Workspace from the File menu to save the points to the workspace.
On the Save dialog box, check the Structure with all points check
box and clear Input points of valid pairs and Base points of valid
pairs. Click OK. Use cpstruct2pairs to extract the input and base
points from the CPSTRUCT.

[input_points,base_points] = cpstruct2pairs(cpstruct);

See Also cp2tform, cpselect, imtransform

17-98

dct2

Purpose 2-D discrete cosine transform

Syntax B = dct2(A)
B = dct2(A,m,n)
B = dct2(A,[m n])

Description B = dct2(A) returns the two-dimensional discrete cosine transform of
A. The matrix B is the same size as A and contains the discrete cosine
transform coefficients B(k1,k2).

B = dct2(A,m,n) pads the matrix A with 0’s to size m-by-n before
transforming. If m or n is smaller than the corresponding dimension of
A, dct2 truncates A.

B = dct2(A,[m n]) same as above.

Class
Support

A can be numeric or logical. The returned matrix B is of class double.

Algorithm The discrete cosine transform (DCT) is closely related to the discrete
Fourier transform. It is a separable linear transformation; that is, the
two-dimensional transform is equivalent to a one-dimensional DCT
performed along a single dimension followed by a one-dimensional DCT
in the other dimension. The definition of the two-dimensional DCT for
an input image A and output image B is

where M and N are the row and column size of A, respectively. If you
apply the DCT to real data, the result is also real. The DCT tends
to concentrate information, making it useful for image compression
applications.

17-99

dct2

This transform can be inverted using idct2.

Examples The commands below compute the discrete cosine transform for the
autumn image. Notice that most of the energy is in the upper left corner.

RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar

Now set values less than magnitude 10 in the DCT matrix to zero, and
then reconstruct the image using the inverse DCT function idct2.

J(abs(J) < 10) = 0;
K = idct2(J);
imshow(I)
figure, imshow(K,[0 255])

17-100

dct2

See Also fft2, idct2, ifft2

References [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, William B., and Joan L. Mitchell, JPEG: Still Image
Data Compression Standard, Van Nostrand Reinhold, 1993.

17-101

dctmtx

Purpose Discrete cosine transform matrix

Syntax D = dctmtx(n)

Description D = dctmtx(n) returns the n-by-n DCT (discrete cosine transform)
matrix. D*A is the DCT of the columns of A and D'*A is the inverse DCT
of the columns of A (when A is n-by-n).

Class
Support

n is an integer scalar of class double. D is returned as a matrix of class
double.

Remarks If A is square, the two-dimensional DCT of A can be computed as D*A*D'.
This computation is sometimes faster than using dct2, especially if
you are computing a large number of small DCTs, because D needs to
be determined only once.

For example, in JPEG compression, the DCT of each 8-by-8 block is
computed. To perform this computation, use dctmtx to determine D, and
then calculate each DCT using D*A*D' (where A is each 8-by-8 block).
This is faster than calling dct2 for each individual block.

Examples A = im2double(imread('rice.png'));
D = dctmtx(size(A,1));
dct = D*A*D';
figure, imshow(dct)

See Also dct2

17-102

deconvblind

Purpose Deblur image using blind deconvolution

Syntax [J,PSF] = deconvblind(I, INITPSF)
[J,PSF] = deconvblind(I, INITPSF, NUMIT)
[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR)
[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT)
[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT,

READOUT)
[J,PSF] = deconvblind(..., FUN, P1, P2,...,PN)

Description [J,PSF] = deconvblind(I, INITPSF) deconvolves image I using the
maximum likelihood algorithm, returning both the deblurred image J
and a restored point-spread function PSF. The restored PSF is a positive
array that is the same size as INITPSF, normalized so its sum adds up to
1. The PSF restoration is affected strongly by the size of the initial guess
INITPSF and less by the values it contains. For this reason, specify
an array of 1’s as your INITPSF.

I can be a N-dimensional array.

To improve the restoration, deconvblind supports several optional
parameters, described below. Use [] as a placeholder if you do not
specify an intermediate parameter.

[J,PSF] = deconvblind(I, INITPSF, NUMIT) specifies the number of
iterations (default is 10).

[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR) specifies the
threshold deviation of the resulting image from the input image I (in
terms of the standard deviation of Poisson noise) below which damping
occurs. The iterations are suppressed for the pixels that deviate within
the DAMPAR value from their original value. This suppresses the noise
generation in such pixels, preserving necessary image details elsewhere.
The default value is 0 (no damping).

[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT)
specifies which pixels in the input image I are considered in the
restoration. By default, WEIGHT is a unit array, the same size as the
input image. You can assign a value between 0.0 and 1.0 to elements

17-103

deconvblind

in the WEIGHT array. The value of an element in the WEIGHT array
determines how much the pixel at the corresponding position in the
input image is considered. For example, to exclude a pixel from
consideration, assign it a value of 0 in the WEIGHT array. You can adjust
the weight value assigned to each pixel according to the amount of
flat-field correction.

[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT,
READOUT), where READOUT is an array (or a value) corresponding to the
additive noise (e.g., background, foreground noise) and the variance of
the read-out camera noise. READOUT has to be in the units of the image.
The default value is 0.

[J,PSF] = deconvblind(..., FUN, P1, P2,...,PN), where FUN is a
function describing additional constraints on the PSF. FUN must be a
function handle.

FUN is called at the end of each iteration. FUN must accept the PSF as
its first argument and can accept additional parameters P1, P2,..., PN.
The FUN function should return one argument, PSF, that is the same size
as the original PSF and that satisfies the positivity and normalization
constraints.

Note The output image J could exhibit ringing introduced by the
discrete Fourier transform used in the algorithm. To reduce the ringing,
use I = edgetaper(I,PSF) before calling deconvblind.

Resuming
Deconvolution

You can use deconvblind to perform a deconvolution that starts where
a previous deconvolution stopped. To use this feature, pass the input
image I and the initial guess at the PSF, INITPSF, as cell arrays: {I}
and {INITPSF}. When you do, the deconvblind function returns the
output image J and the restored point-spread function, PSF, as cell
arrays, which can then be passed as the input arrays into the next
deconvblind call. The output cell array J contains four elements:

J{1} contains I, the original image.

17-104

deconvblind

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.

Class
Support

I and INITPSF can be uint8, uint16, int16, single, or double. DAMPAR
and READOUT must have the same class as the input image. Other inputs
have to be double. The output image J (or the first array of the output
cell) has the same class as the input image I. The output PSF is double.

Examples I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
INITPSF = ones(size(PSF));
[J P] = deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT);
subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(PSF,[]);
title('True PSF');
subplot(223);imshow(J);
title('Deblurred Image');
subplot(224);imshow(P,[]);
title('Recovered PSF');

See Also deconvlucy, deconvreg, deconvwnr, edgetaper, function_handle,
imnoise, otf2psf, padarray, psf2otf

17-105

deconvlucy

Purpose Deblur image using Lucy-Richardson method

Syntax J = deconvlucy(I, PSF)
J = deconvlucy(I, PSF, NUMIT)
J = deconvlucy(I, PSF, NUMIT, DAMPAR)
J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT)
J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT, READOUT)
J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT, READOUT,

SUBSMPL)

Description J = deconvlucy(I, PSF) restores image I that was degraded by
convolution with a point-spread function PSF and possibly by additive
noise. The algorithm is based on maximizing the likelihood of the
resulting image J’s being an instance of the original image I under
Poisson statistics.

I can be a N-dimensional array.

To improve the restoration, deconvlucy supports several optional
parameters. Use [] as a placeholder if you do not specify an
intermediate parameter.

J = deconvlucy(I, PSF, NUMIT) specifies the number of iterations
the deconvlucy function performs. If this value is not specified, the
default is 10.

J = deconvlucy(I, PSF, NUMIT, DAMPAR) specifies the threshold
deviation of the resulting image from the image I (in terms of the
standard deviation of Poisson noise) below which damping occurs.
Iterations are suppressed for pixels that deviate beyond the DAMPAR
value from their original value. This suppresses the noise generation in
such pixels, preserving necessary image details elsewhere. The default
value is 0 (no damping).

J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT) specifies the
weight to be assigned to each pixel to reflect its recording quality in the
camera. A bad pixel is excluded from the solution by assigning it zero
weight value. Instead of giving a weight of unity for good pixels, you can

17-106

deconvlucy

adjust their weight according to the amount of flat-field correction. The
default is a unit array of the same size as input image I.

J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT, READOUT)
specifies a value corresponding to the additive noise (e.g., background,
foreground noise) and the variance of the readout camera noise.
READOUT has to be in the units of the image. The default value is 0.

J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT, READOUT,
SUBSMPL), where SUBSMPL denotes subsampling and is used when the
PSF is given on a grid that is SUBSMPL times finer than the image. The
default value is 1.

Note The output image J could exhibit ringing introduced by the
discrete Fourier transform used in the algorithm. To reduce the ringing,
use I = edgetaper(I,PSF) before calling deconvlucy.

Resuming
Deconvolution

If I is a cell array, it can contain a single numerical array (the blurred
image) or it can be the output from a previous run of deconvlucy.

When you pass a cell array to deconvlucy as input, it returns a 1-by-4
cell array J, where

J{1} contains I, the original image.

J{2} contains the result of the last iteration.

J{3} contains the result of the next-to-last iteration.

J{4} is an array generated by the iterative algorithm.

Class
Support

I and PSF can be uint8, uint16, int16, double, or single. DAMPAR and
READOUT must have the same class as the input image. Other inputs
have to be double. The output image J (or the first array of the output
cell) has the same class as the input image I.

Examples I = checkerboard(8);
PSF = fspecial('gaussian',7,10);

17-107

deconvlucy

V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

subplot(221);imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222);imshow(J1);
title('deconvlucy(A,PSF)');
subplot(223);imshow(J2);
title('deconvlucy(A,PSF,NI,DP)');
subplot(224);imshow(J3);
title('deconvlucy(A,PSF,NI,DP,WT)');

See Also deconvblind, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

17-108

deconvreg

Purpose Deblur image using regularized filter

Syntax J = deconvreg(I, PSF)
J = deconvreg(I, PSF, NOISEPOWER)
J = deconvreg(I, PSF, NOISEPOWER, LRANGE)
J = deconvreg(I, PSF, NOISEPOWER, LRANGE, REGOP)
[J, LAGRA] = deconvreg(I, PSF,...)

Description J = deconvreg(I, PSF) deconvolves image I using the regularized
filter algorithm, returning deblurred image J. The assumption is that
the image I was created by convolving a true image with a point-spread
function PSF and possibly by adding noise. The algorithm is a
constrained optimum in the sense of least square error between the
estimated and the true images under requirement of preserving image
smoothness.

I can be a N-dimensional array.

J = deconvreg(I, PSF, NOISEPOWER) where NOISEPOWER is the
additive noise power. The default value is 0.

J = deconvreg(I, PSF, NOISEPOWER, LRANGE) where LRANGE is a
vector specifying range where the search for the optimal solution is
performed. The algorithm finds an optimal Lagrange multiplier LAGRA
within the LRANGE range. If LRANGE is a scalar, the algorithm assumes
that LAGRA is given and equal to LRANGE; the NP value is then ignored.
The default range is between [1e-9 and 1e9].

J = deconvreg(I, PSF, NOISEPOWER, LRANGE, REGOP) where REGOP
is the regularization operator to constrain the deconvolution. The
default regularization operator is the Laplacian operator, to retain the
image smoothness. The REGOP array dimensions must not exceed the
image dimensions; any nonsingleton dimensions must correspond to the
nonsingleton dimensions of PSF.

[J, LAGRA] = deconvreg(I, PSF,...) outputs the value of the
Lagrange multiplier LAGRA in addition to the restored image J.

17-109

deconvreg

Note The output image J could exhibit ringing introduced by the
discrete Fourier transform used in the algorithm. To reduce the ringing,
process the image with the edgetaper function prior to calling the
deconvreg function. For example, I = edgetaper(I,PSF).

Class
Support

I can be of class uint8, uint16, int16, single, or double. Other inputs
have to be of class double. J has the same class as I.

Examples I = checkerboard(8);
PSF = fspecial('gaussian',7,10);
V = .01;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
NOISEPOWER = V*prod(size(I));
[J LAGRA] = deconvreg(BlurredNoisy,PSF,NOISEPOWER);

subplot(221); imshow(BlurredNoisy);
title('A = Blurred and Noisy');
subplot(222); imshow(J);
title('[J LAGRA] = deconvreg(A,PSF,NP)');
subplot(223); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));
title('deconvreg(A,PSF,[],0.1*LAGRA)');
subplot(224); imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10));
title('deconvreg(A,PSF,[],10*LAGRA)');

See Also deconvblind, deconvlucy, deconvwnr, otf2psf, padarray, psf2otf

17-110

deconvwnr

Purpose Deblur image using Wiener filter

Syntax J = deconvwnr(I, PSF)
J = deconvwnr(I, PSF, NSR)
J = deconvwnr(I, PSF, NCORR, ICORR)

Description J = deconvwnr(I, PSF) restores image I that was degraded by
convolution with a point-spread function PSF and possibly by additive
noise. The algorithm is optimal in a sense of least mean square error
between the estimated and the true image, and uses the correlation
matrices of image and noise. In the absence of noise, the Wiener filter
reduces to the ideal inverse filter.

I can be an N-dimensional array.

J = deconvwnr(I, PSF, NSR) where NSR is the noise-to-signal power
ratio. NSR could be a scalar or an array of the same size as I. The default
value is 0.

J = deconvwnr(I, PSF, NCORR, ICORR) where NCORR and ICORR
are the autocorrelation functions of the noise and the original image,
respectively. NCORR and ICORR can be of any size or dimension not
exceeding the original image. An N-dimensional NCORR or ICORR array
corresponds to the autocorrelation within each dimension. A vector
NCORR or ICORR represents an autocorrelation function in the first
dimension if PSF is a vector. If PSF is an array, the 1-D autocorrelation
function is extrapolated by symmetry to all nonsingleton dimensions
of PSF. A scalar NCORR or ICORR represents the power of the noise or
the image.

Note The output image J could exhibit ringing introduced by the
discrete Fourier transform used in the algorithm. To reduce the ringing,
process the image with the edgetaper function prior to calling the
deconvwnr function. For example, I = edgetaper(I,PSF)

17-111

deconvwnr

Class
Support

I can be of class uint8, uint16, int16, single, or double. Other inputs
have to be of class double. J has the same class as I.

Examples I = checkerboard(8);
noise = 0.1*randn(size(I));
PSF = fspecial('motion',21,11);
Blurred = imfilter(I,PSF,'circular');
BlurredNoisy = im2uint8(Blurred + noise);

% noise-to-power ratio
NSR = sum(noise(:).^2)/sum(I(:).^2);

% noise power
NP = abs(fftn(noise)).^2;
NPOW = sum(NP(:))/prod(size(noise));

% noise autocorrelation function, centered
NCORR = fftshift(real(ifftn(NP)));

% original image power
IP = abs(fftn(I)).^2;
IPOW = sum(IP(:))/prod(size(I));

% image autocorrelation function, centered
ICORR = fftshift(real(ifftn(IP)));
ICORR1 = ICORR(:,ceil(size(I,1)/2));

% noise to power ratio
NSR = NPOW/IPOW;

subplot(221);imshow(BlurredNoisy,[]);
title('A = Blurred and Noisy');
subplot(222);imshow(deconvwnr(BlurredNoisy,PSF,NSR),[]);
title('deconvwnr(A,PSF,NSR)');
subplot(223);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);
title('deconvwnr(A,PSF,NCORR,ICORR)');
subplot(224);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);

17-112

deconvwnr

title('deconvwnr(A,PSF,NPOW,ICORR_1_D)');

See Also deconvblind, deconvlucy, deconvreg, otf2psf, padarray, psf2otf

17-113

decorrstretch

Purpose Apply decorrelation stretch to multichannel image

Syntax S = decorrstretch(I)
S = decorrstretch(I, TOL)

Description S = decorrstretch(I) applies a decorrelation stretch to a
multichannel image I and returns the result in S. S has the same size
and class as I. The mean and variance in each band are the same as in I.

S = decorrstretch(I, TOL) applies a contrast following the
decorrelation stretch. The contrast stretch is controlled by TOL:

• TOL = [LOW_FRACT HIGH_FRACT] specifies the fraction of the image
to saturate at low and high intensities.

• If TOL is a scalar, LOW_FRACT = TOL, and HIGH_FRACT = 1 - TOL,
which saturates equal fractions at low and high intensities.

Notes The decorrelation stretch is normally applied to three band
images (ordinary RGB images or RGB multispectral composite images),
but decorrstretch works on an arbitrary number of bands.

The primary purpose of decorrelation stretch is visual enhancement.
Small adjustments to TOL can strongly affect the visual appearance of
the output.

Class
Support

The input image must be of class uint8, uint16, int16, single, or
double.

Examples [X, map] = imread('forest.tif');
S = decorrstretch(ind2rgb(X, map),'tol',0.01);
figure, imshow(X,map)
figure, imshow(S)

See Also imadjust, stretchlim

17-114

dicomanon

Purpose Anonymize DICOM file

Syntax dicomanon(file_in, file_out)
dicomanon(..., 'keep', FIELDS)
dicomanon(..., 'update', ATTRS)

Description dicomanon(file_in, file_out) removes confidential medical
information from the DICOM file file_in and creates a new file
file_out with the modified values. Image data and other attributes
are unmodified.

dicomanon(..., 'keep', FIELDS) modifies all of the confidential
data except for those listed in FIELDS, which is a cell array of field
names. This syntax is useful for keeping metadata that does not
uniquely identify the patient but is useful for diagnostic purposes (e.g.,
PatientAge, PatientSex, etc.).

Note Keeping certain fields might compromise patient confidentiality.

dicomanon(..., 'update', ATTRS) modifies the confidential data and
updates particular confidential data. ATTRS is a structure whose fields
are the names of the attributes to preserve. The structure values are the
attribute values. Use this syntax to preserve the Study/Series/Image
hierarchy or to replace a specific value with a more generic property
(e.g., remove PatientBirthDate but keep a computed PatientAge).

For information about the fields that will be modified or removed, see
DICOM Supplement 55 from http://medical.nema.org/.

Examples Remove all confidential metadata from a file.

dicomanon('patient.dcm', 'anonymized.dcm')

17-115

http://medical.nema.org/

dicomanon

Create a training file.

dicomanon('tumor.dcm', 'tumor_anon.dcm', 'keep',...
{'PatientAge', 'PatientSex', 'StudyDescription'})

Anonymize a series of images, keeping the hierarchy.

values.StudyInstanceUID = dicomuid;
values.SeriesInstanceseriesUID = dicomuid;

d = dir('*.dcm');
for p = 1:numel(d)
dicomanon(d(p).name, sprintf('anon%d.dcm', p), ...
'update', values)

end

See Also dicominfo, dicomwrite

17-116

dicomdict

Purpose Get or set active DICOM data dictionary

Syntax dicomdict('set',dictionary)
dictionary = dicomdict('get')
dicomdict('factory')

Description dicomdict('set',dictionary) sets the Digital Imaging and
Communications in Medicine (DICOM) data dictionary to the value
stored in dictionary, a string containing the filename of the dictionary.
DICOM-related functions use this dictionary by default, unless a
different dictionary is provided at the command line.

dictionary = dicomdict('get') returns a string containing the
filename of the stored DICOM data dictionary.

dicomdict('factory') resets the DICOM data dictionary to its default
startup value.

Note The default data dictionary is a MAT-file, dicom-dict.mat. The
toolbox also includes a text version of this default data dictionary,
dicom-dict.txt. If you want to create your own DICOM data
dictionary, open the dicom-dict.txt file in a text editor, modify it,
and save it under another name.

Examples dictionary = dicomdict('get')

dictionary =

dicom-dict.mat

See Also dicominfo, dicomread, dicomwrite

17-117

dicominfo

Purpose Read metadata from DICOM message

Syntax info = dicominfo(filename)
info = dicominfo(filename, 'dictionary', D)

Description info = dicominfo(filename) reads the metadata from the compliant
Digital Imaging and Communications in Medicine (DICOM) file
specified in the string filename.

info = dicominfo(filename, 'dictionary', D) uses the data
dictionary file given in the string D to read the DICOM message. The
file in D must be on the MATLAB search path. The default file is
dicom-dict.mat.

Examples info = dicominfo('CT-MONO2-16-ankle.dcm')

info =

Filename: [1x62 char]
FileModDate: '18-Dec-2000 11:06:43'

FileSize: 525436
Format: 'DICOM'

FormatVersion: 3
Width: 512

Height: 512
BitDepth: 16

ColorType: 'grayscale'
SelectedFrames: []

FileStruct: [1x1 struct]
StartOfPixelData: 1140

FileMetaInformationGroupLength: 192
FileMetaInformationVersion: [2x1 uint8]

MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
.
.
.

17-118

dicominfo

See Also dicomdict, dicomread, dicomwrite, dicomuid

17-119

dicomlookup

Purpose Find attribute in DICOM data dictionary

Syntax name = dicomlookup(group, element)
[group, element] = dicomlookup(name)

Description name = dicomlookup(group, element) looks into the current DICOM
data dictionary for the attribute with the specified group and element
tag and returns a string containing the name of the attribute. group and
element can contain either a decimal value or hexadecimal string.

[group, element] = dicomlookup(name) looks into the current
DICOM data dictionary for the attribute specified byname and returns
the group and element tags associated with the attribute. The values
are returned as decimal values.

Examples Find the names of DICOM attributes using their tags.

name1 = dicomlookup('7FE0', '0010')
name2 = dicomlookup(40, 4)

Look up a DICOM attribute’s tag (GROUP and ELEMENT) using its
name.

[group, element] = dicomlookup('TransferSyntaxUID')

Examine the metadata of a DICOM file. This returns the same value
even if the data dictionary changes.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
metadata.(dicomlookup('0028', '0004'))

See Also dicomdict,dicominfo

17-120

dicomread

Purpose Read DICOM image

Syntax X = dicomread(filename)
X = dicomread(info)
[X,map] = dicomread(...)
[X,map,alpha] = dicomread(...)
[X,map,alpha,overlays] = dicomread(...)
[...] = dicomread(filename, 'frames', v)

Description X = dicomread(filename) reads the image data from the compliant
Digital Imaging and Communications in Medicine (DICOM) file
filename. For single-frame grayscale images, X is an M-by-N array. For
single-frame true-color images, X is an M-by-N-by-3 array. Multiframe
images are always 4-D arrays.

X = dicomread(info) reads the image data from the message
referenced in the DICOM metadata structure info. The info structure
is produced by the dicominfo function.

[X,map] = dicomread(...) returns the image X and the colormap map.
If X is a grayscale or true-color image, map is empty.

[X,map,alpha] = dicomread(...) returns the image X, the colormap
map, and an alpha channel matrix for X. The values of alpha are 0 if the
pixel is opaque; otherwise they are row indices into map. The RGB value
in map should be substituted for the value in X to use alpha. alpha has
the same height and width as X and is 4-D for a multiframe image.

[X,map,alpha,overlays] = dicomread(...) returns the image X, the
colormap map, an alpha channel matrix for X, and any overlays from the
DICOM file. Each overlay is a 1-bit black and white image with the
same height and width as X. If multiple overlays are present in the
file, overlays is a 4-D multiframe image. If no overlays are in the file,
overlays is empty.

[...] = dicomread(filename, 'frames', v) reads only the frames
in the vector v from the image. v must be an integer scalar, a vector of
integers, or the string 'all'. The default value is 'all'.

17-121

dicomread

Class
Support

X can be uint8, int8, uint16, or int16. map must be double. alpha has
the same size and type as X. overlays is a logical array.

Examples Retrieve the data matrix X and colormap matrix map and create a
montage.

[X, map] = dicomread('US-PAL-8-10x-echo.dcm');
montage(X, map);

Call dicomread with the information retrieved from the DICOM file
using dicominfo. Because a DICOM image is a 16-bit image, the
example uses the imshow autoscaling syntax to display the image.

info = dicominfo('CT-MONO2-16-ankle.dcm');
Y = dicomread(info);
figure, imshow(Y, 'DisplayRange',[]);

See Also dicomdict, dicominfo, dicomwrite

17-122

dicomuid

Purpose Generate DICOM unique identifier

Syntax UID = dicomuid

Description UID = dicomuid creates a string UID containing a new DICOM unique
identifier.

Multiple calls to dicomuid produce globally unique values. Two calls to
dicomuid always return different values.

See Also dicominfo, dicomwrite

17-123

dicomwrite

Purpose Write images as DICOM files

Syntax dicomwrite(X, filename)
dicomwrite(X, map, filename)
dicomwrite(..., param1, value1, param2, value2,...)
dicomwrite(..., 'ObjectType', IOD,...)
dicomwrite(..., 'SOPClassUID', UID,...)
dicomwrite(..., meta_struct,...)
dicomwrite(..., info,...)
status = dicomwrite(...)

Description dicomwrite(X, filename) writes the binary, grayscale, or truecolor
image X to the file filename, where filename is a string specifying
the name of the Digital Imaging and Communications in Medicine
(DICOM) file to create.

dicomwrite(X, map, filename) writes the indexed image X with
colormap map.

dicomwrite(..., param1, value1, param2, value2,...) specifies
optional metadata to write to the DICOM file or parameters that
affect how the file is written. param1 is a string containing the
metadata attribute name or a dicomwrite-specific option. value1 is the
corresponding value for the attribute or option.

To find a list of the DICOM attributes that you can specify, see the data
dictionary file, dicom-dict.txt, included with the Image Processing
Toolbox. The following table lists the options that you can specify, in
alphabetical order. Default values are enclosed in braces ({}).

17-124

dicomwrite

Option Name Description

'CompressionMode' String specifying the type of compression to
use when storing the image. Possible values:

{'None'}

'JPEG lossless'

'JPEG lossy'

'RLE'

'CreateMode' Specifies the method used for creating the
data to put in the new file. Possible values:

{'Create'} — Verify input values and
generate missing data values.

'Copy' — Copy all values from the input
and do not generate missing values.

'Dictionary' String specifying the name of a DICOM
data dictionary.

'Endian' String specifying the byte ordering of the
file.

'Big'

{'Little'}

Note If VR is set to 'Explicit', 'Endian'
must be 'Big'. dicomwrite ignores
this value if 'CompressionMode' or
'TransferSyntax' is set.

17-125

dicomwrite

Option Name Description

'TransferSyntax' A DICOM UID specifying the 'Endian',
'VR', and 'CompressionMode' options.

Note If specified, dicomwrite ignores any
values specified for the 'Endian', 'VR',
and 'CompressionMode' options. The
TransferSyntax value encodes values for
these options.

'VR' String specifying whether the two-letter
value representation (VR) code should be
written to the file.

'explicit' — Write VR to file.

{'implicit'} — Infer from data dictionary.

Note If you specify the 'Endian' value
'Big', you must specify 'Explicit'.

'WritePrivate' Logical value indicating whether private
data should be written to the file. Possible
values: true — Write private data to file.

{false} — Do not write private data.

dicomwrite(..., 'ObjectType', IOD,...) writes a file containing
the necessary metadata for a particular type of DICOM Information
Object (IOD). Supported IODs are

• 'Secondary Capture Image Storage' (default)

• 'CT Image Storage'

• 'MR Image Storage'

17-126

dicomwrite

dicomwrite(..., 'SOPClassUID', UID,...) provides an alternate
method for specifying the IOD to create. UID is the DICOM unique
identifier corresponding to one of the IODs listed above.

dicomwrite(..., meta_struct,...) specifies optional metadata
or file options in structure meta_struct. The names of fields in
meta_struct must be the names of DICOM file attributes or options.
The value of a field is the value you want to assign to the attribute or
option.

dicomwrite(..., info,...) specifies metadata in the metadata
structure info, which is produced by the dicominfo function. For more
information about this structure, see dicominfo.

status = dicomwrite(...) returns information about the metadata
and the descriptions used to generate the DICOM file. This syntax
can be useful when you specify an info structure that was created by
dicominfo to the dicomwrite function. An info structure can contain
many fields. If no metadata was specified, dicomwrite returns an
empty matrix ([]).

The structure returned by dicomwrite contains these fields:

Field Description

'BadAttribute' The attribute’s internal description is bad. It
might be missing from the data dictionary or
have incorrect data in its description.

'MissingCondition' The attribute is conditional but no condition
has been provided for when to use it.

'MissingData' No data was provided for an attribute that
must appear in the file.

'SuspectAttribute' Data in the attribute does not match a
list of enumerated values in the DICOM
specification.

17-127

dicomwrite

Remarks The DICOM format specification lists several Information Object
Definitions (IODs) that can be created. These IODs correspond to
images and metadata produced by different real-world modalities
(e.g., MR, X-ray, Ultrasound, etc.). For each type of IOD, the DICOM
specification defines the set of metadata that must be present and
possible values for other metadata.

dicomwrite fully implements a limited number of these IODs, listed
above in the ObjectType syntax. For these IODs, dicomwrite verifies
that all required metadata attributes are present, creates missing
attributes if necessary, and specifies default values where possible.
Using these supported IODs is the best way to ensure that the files you
create conform to the DICOM specification. This is dicomwrite default
behavior and corresponds to the CreateMode option value of 'Create'.

To write DICOM files for IODs that dicomwrite doesn’t implement, use
the 'Copy' value for the CreateMode option. In this mode, dicomwrite
writes the image data to a file including the metadata that you specify
as a parameter, shown above in the info syntax. The purpose of this
option is to take metadata from an existing file of the same modality
or IOD and use it to create a new DICOM file with different image
pixel data.

Note Because dicomwrite copies metadata to the file without
verification in 'copy' mode, it is possible to create a DICOM file that
does not conform to the DICOM standard. For example, the file may
be missing required metadata, contain superfluous metadata, or the
metadata may no longer correspond to the modality settings used to
generate the original image. When using 'Copy' mode, make sure that
the metadata you use is from the same modality and IOD. If the copy
you make is unrelated to the original image, use dicomuid to create
new unique identifiers for series and study metadata. See the IOD
descriptions in Part 3 of the DICOM specification for more information
on appropriate IOD values.

17-128

dicomwrite

Examples Read a CT image from the sample DICOM file included with the toolbox
and then write the CT image to a file, creating a secondary capture
image.

X = dicomread('CT-MONO2-16-ankle.dcm');
dicomwrite(X, 'sc_file.dcm');

Write the CT image, X, to a DICOM file along with its metadata. Use
the dicominfo function to retrieve metadata from a DICOM file.

metadata = dicominfo('CT-MONO2-16-ankle.dcm');
dicomwrite(X, 'ct_file.dcm', metadata);

Copy all metadata from one file to another. In this mode, dicomwrite
does not verify the metadata written to the file.

dicomwrite(X, 'ct_copy.dcm', metadata, 'CreateMode', 'copy');

See Also dicomdict, dicominfo, dicomread, dicomuid

17-129

dither

Purpose Convert image, increasing apparent color resolution by dithering

Syntax X = dither(RGB, map)
X = dither(RGB, map, Qm, Qe)
BW = dither(I)

Description X = dither(RGB, map) creates an indexed image approximation of the
RGB image in the array RGB by dithering the colors in the colormap map.
The colormap cannot have more than 65,536 colors.

X = dither(RGB, map, Qm, Qe) creates an indexed image from RGB,
where Qm specifies the number of quantization bits to use along each
color axis for the inverse color map, and Qe specifies the number of
quantization bits to use for the color space error calculations. If Qe <
Qm, dithering cannot be performed, and an undithered indexed image is
returned in X. If you omit these parameters, dither uses the default
values Qm = 5, Qe = 8.

BW = dither(I) converts the grayscale image in the matrix I to the
binary (black and white) image BW by dithering.

Class
Support

RGB can be uint8, uint16, single, or double. I can be uint8, uint16,
int16, single, or double. All other input arguments must be double.
BW is logical. X is uint8, if it is an indexed image with 256 or fewer
colors; otherwise, it is uint16.

Algorithm dither increases the apparent color resolution of an image by applying
Floyd-Steinberg’s error diffusion dither algorithm.

Examples Convert intensity image to binary using dithering.

I = imread('cameraman.tif');
BW = dither(I);
imshow(I), figure, imshow(BW)

See Also rgb2ind

17-130

dither

References [1] Floyd, R. W., and L. Steinberg, "An Adaptive Algorithm for Spatial
Gray Scale," International Symposium Digest of Technical Papers,
Society for Information Displays, 1975, p. 36.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

17-131

double

Purpose Convert data to double precision

Note double is a MATLAB built-in function.

17-132

edge

Purpose Find edges in grayscale image

Syntax BW = edge(I)

BW = edge(I,'sobel')
BW = edge(I,'sobel',thresh)
BW = edge(I,'sobel',thresh,direction)
[BW,thresh] = edge(I,'sobel',...)

BW = edge(I,'prewitt')
BW = edge(I,'prewitt',thresh)
BW = edge(I,'prewitt',thresh,direction)
[BW,thresh] = edge(I,'prewitt',...)

BW = edge(I,'roberts')
BW = edge(I,'roberts',thresh)
[BW,thresh] = edge(I,'roberts',...)

BW = edge(I,'log')
BW = edge(I,'log',thresh)
BW = edge(I,'log',thresh,sigma)
[BW,threshold] = edge(I,'log',...)

BW = edge(I,'zerocross',thresh,h)
[BW,thresh] = edge(I,'zerocross',...)

BW = edge(I,'canny')
BW = edge(I,'canny',thresh)
BW = edge(I,'canny',thresh,sigma)
[BW,threshold] = edge(I,'canny',...)

Description BW = edge(I) takes a grayscale or a binary image I as its input, and
returns a binary image BW of the same size as I, with 1’s where the
function finds edges in I and 0’s elsewhere.

17-133

edge

By default, edge uses the Sobel method to detect edges but the following
provides a complete list of all the edge-finding methods supported by
this function:

• The Sobel method finds edges using the Sobel approximation to the
derivative. It returns edges at those points where the gradient of
I is maximum.

• The Prewitt method finds edges using the Prewitt approximation to
the derivative. It returns edges at those points where the gradient of
I is maximum.

• The Roberts method finds edges using the Roberts approximation to
the derivative. It returns edges at those points where the gradient of
I is maximum.

• The Laplacian of Gaussian method finds edges by looking for zero
crossings after filtering I with a Laplacian of Gaussian filter.

• The zero-cross method finds edges by looking for zero crossings after
filtering I with a filter you specify.

• The Canny method finds edges by looking for local maxima of the
gradient of I. The gradient is calculated using the derivative of a
Gaussian filter. The method uses two thresholds, to detect strong and
weak edges, and includes the weak edges in the output only if they
are connected to strong edges. This method is therefore less likely
than the others to be fooled by noise, and more likely to detect true
weak edges.

The parameters you can supply differ depending on the method you
specify. If you do not specify a method, edge uses the Sobel method.

Sobel Method

BW = edge(I,'sobel') specifies the Sobel method.

BW = edge(I,'sobel',thresh) specifies the sensitivity threshold for
the Sobel method. edge ignores all edges that are not stronger than
thresh. If you do not specify thresh, or if thresh is empty ([]), edge
chooses the value automatically.

17-134

edge

BW = edge(I,'sobel',thresh,direction) specifies the direction of
detection for the Sobel method. direction is a string specifying whether
to look for 'horizontal' or 'vertical' edges or 'both' (the default).

BW = edge(I,'sobel',...,options) provides an optional string
input. String 'nothinning' speeds up the operation of the algorithm
by skipping the additional edge thinning stage. By default, or when
'thinning' string is specified, the algorithm applies edge thinning.

[BW,thresh] = edge(I,'sobel',...) returns the threshold value.

[BW,thresh,gv,gh] = edge(I,'sobel',...) returns vertical and
horizontal edge responses to Sobel gradient operators. You can also use
the following expressions to obtain gradient responses:

if ~(isa(I,'double') || isa(I,'single')); I = im2single(I); end

gh = imfilter(I,fspecial('sobel') /8,'replicate');

gv = imfilter(I,fspecial('sobel')'/8,'replicate');

Prewitt Method

BW = edge(I,'prewitt') specifies the Prewitt method.

BW = edge(I,'prewitt',thresh) specifies the sensitivity threshold
for the Prewitt method. edge ignores all edges that are not stronger
than thresh. If you do not specify thresh, or if thresh is empty ([]),
edge chooses the value automatically.

BW = edge(I,'prewitt',thresh,direction) specifies the direction
of detection for the Prewitt method. direction is a string specifying
whether to look for 'horizontal' or 'vertical' edges or 'both' (the
default).

[BW,thresh] = edge(I,'prewitt',...) returns the threshold value.

Roberts Method

BW = edge(I,'roberts') specifies the Roberts method.

BW = edge(I,'roberts',thresh) specifies the sensitivity threshold
for the Roberts method. edge ignores all edges that are not stronger
than thresh. If you do not specify thresh, or if thresh is empty ([]),
edge chooses the value automatically.

17-135

edge

BW = edge(I,'roberts',...,options) where options can be the text
string 'thinning' or 'nothinning'. When you specify 'thinning', or
don’t specify a value, the algorithm applies edge thinning. Specifying
the 'nothinning' option can speed up the operation of the algorithm by
skipping the additional edge thinning stage.

[BW,thresh] = edge(I,'roberts',...) returns the threshold value.

[BW,thresh,g45,g135] = edge(I,'roberts',...) returns 45 degree
and 135 degree edge responses to Roberts gradient operators. You can
also use these expressions to obtain gradient responses:

if ~(isa(I,'double') || isa(I,'single'));
I = im2single(I);

end
g45 = imfilter(I,[1 0; 0 -1]/2,'replicate');
g135 = imfilter(I,[0 1;-1 0]/2,'replicate');

Laplacian of Gaussian Method

BW = edge(I,'log') specifies the Laplacian of Gaussian method.

BW = edge(I,'log',thresh) specifies the sensitivity threshold for
the Laplacian of Gaussian method. edge ignores all edges that are
not stronger than thresh. If you do not specify thresh, or if thresh
is empty ([]), edge chooses the value automatically. If you specify a
threshold of 0, the output image has closed contours, because it includes
all the zero crossings in the input image.

BW = edge(I,'log',thresh,sigma) specifies the Laplacian of
Gaussian method, using sigma as the standard deviation of the LoG
filter. The default sigma is 2; the size of the filter is n-by-n, where n =
ceil(sigma*3)*2+1.

[BW,thresh] = edge(I,'log',...) returns the threshold value.

Zero-Cross Method

BW = edge(I,'zerocross',thresh,h) specifies the zero-cross method,
using the filter h. thresh is the sensitivity threshold; if the argument is
empty ([]), edge chooses the sensitivity threshold automatically. If you

17-136

edge

specify a threshold of 0, the output image has closed contours, because
it includes all the zero crossings in the input image.

[BW,thresh] = edge(I,'zerocross',...) returns the threshold
value.

Canny Method

BW = edge(I,'canny') specifies the Canny method.

BW = edge(I,'canny',thresh) specifies sensitivity thresholds for
the Canny method. thresh is a two-element vector in which the first
element is the low threshold, and the second element is the high
threshold. If you specify a scalar for thresh, this value is used for the
high threshold and 0.4*thresh is used for the low threshold. If you do
not specify thresh, or if thresh is empty ([]), edge chooses low and
high values automatically.

BW = edge(I,'canny',thresh,sigma) specifies the Canny method,
using sigma as the standard deviation of the Gaussian filter. The default
sigma is 1; the size of the filter is chosen automatically, based on sigma.

[BW,thresh] = edge(I,'canny',...) returns the threshold values as
a two-element vector.

Class
Support

I is a nonsparse numeric array. BW is of class logical.

Remarks For the gradient-magnitude methods (Sobel, Prewitt, Roberts), thresh
is used to threshold the calculated gradient magnitude. For the
zero-crossing methods, including Lap, thresh is used as a threshold for
the zero-crossings; in other words, a large jump across zero is an edge,
while a small jump isn’t.

The Canny method applies two thresholds to the gradient: a high
threshold for low edge sensitivity and a low threshold for high edge
sensitivity. edge starts with the low sensitivity result and then grows it
to include connected edge pixels from the high sensitivity result. This
helps fill in gaps in the detected edges.

17-137

edge

In all cases, the default threshold is chosen heuristically in a way that
depends on the input data. The best way to vary the threshold is to
run edge once, capturing the calculated threshold as the second output
argument. Then, starting from the value calculated by edge, adjust the
threshold higher (fewer edge pixels) or lower (more edge pixels).

Examples Find the edges of an image using the Prewitt and Canny methods.

I = imread('circuit.tif');
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
imshow(BW1);
figure, imshow(BW2)

See Also fspecial

References [1] Canny, John, "A Computational Approach to Edge Detection," IEEE
Transactions on Pattern Analysis and Machine Intelligence,Vol. PAMI-8,
No. 6, 1986, pp. 679-698.

[2] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 478-488.

17-138

edge

[3] Parker, James R., Algorithms for Image Processing and Computer
Vision, New York, John Wiley & Sons, Inc., 1997, pp. 23-29.

17-139

edgetaper

Purpose Taper discontinuities along image edges

Syntax J = edgetaper(I,PSF)

Description J = edgetaper(I,PSF) blurs the edges of the input image I using the
point spread function PSF. The size of the PSF cannot exceed half of
the image size in any dimension.

The output image J is the weighted sum of the original image I and its
blurred version. The weighting array, determined by the autocorrelation
function of PSF, makes J equal to I in its central region, and equal to
the blurred version of I near the edges.

The edgetaper function reduces the ringing effect in image deblurring
methods that use the discrete Fourier transform, such as deconvwnr,
deconvreg, and deconvlucy.

Class
Support

I and PSF can be of class uint8, uint16, int16, single, or double. J
is of the same class as I.

Examples original = imread('cameraman.tif');
PSF = fspecial('gaussian',60,10);
edgesTapered = edgetaper(original,PSF);
figure, imshow(original,[]);
figure, imshow(edgesTapered,[]);

See Also deconvlucy, deconvreg, deconvwnr, otf2psf, padarray, psf2otf

17-140

entropy

Purpose Entropy of grayscale image

Syntax E = entropy(I)

Description E = entropy(I) returns E, a scalar value representing the entropy of
grayscale image I. Entropy is a statistical measure of randomness that
can be used to characterize the texture of the input image. Entropy
is defined as

-sum(p.*log(p))

where p contains the histogram counts returned from imhist. By
default, entropy uses two bins for logical arrays and 256 bins for uint8,
uint16, or double arrays.

I can be a multidimensional image. If I has more than two dimensions,
the entropy function treats it as a multidimensional grayscale image
and not as an RGB image.

Class
Support

I can be logical, uint8, uint16, or double and must be real, nonempty,
and nonsparse. E is double.

Notes entropy converts any class other than logical to uint8 for the
histogram count calculation so that the pixel values are discrete and
directly correspond to a bin value.

Examples I = imread('circuit.tif');
J = entropy(I)

See Also imhist, entropyfilt, blkproc

References [1] Gonzalez, R.C., R.E. Woods, S.L. Eddins, Digital Image Processing
Using MATLAB, New Jersey, Prentice Hall, 2003, Chapter 11.

17-141

entropyfilt

Purpose Local entropy of grayscale image

Syntax J = entropyfilt(I)
J = entropyfilt(I,NHOOD)

Description J = entropyfilt(I) returns the array J, where each output pixel
contains the entropy value of the 9-by-9 neighborhood around the
corresponding pixel in the input image I. I can have any dimension.
If I has more than two dimensions, entropyfilt treats it as a
multidimensional grayscale image and not as a truecolor (RGB) image.
The output image J is the same size as the input image I.

For pixels on the borders of I, entropyfilt uses symmetric padding. In
symmetric padding, the values of padding pixels are a mirror reflection
of the border pixels in I.

J = entropyfilt(I,NHOOD) performs entropy filtering of the input
image I where you specify the neighborhood in NHOOD. NHOOD is a
multidimensional array of zeros and ones where the nonzero elements
specify the neighbors. NHOOD’s size must be odd in each dimension.

By default, entropyfilt uses the neighborhood true(9).
entropyfilt determines the center element of the neighborhood by
floor((size(NHOOD) + 1)/2). To specify neighborhoods of various
shapes, such as a disk, use the strel function to create a structuring
element object and then use the getnhood function to extract the
neighborhood from the structuring element object.

Class
Support

I can be logical, uint8, uint16, or double, and must be real and
nonsparse. NHOOD can be logical or numeric and must contain zeros or
ones. The output array J is of class double.

entropyfilt converts any class other than logical to uint8 for the
histogram count calculation so that the pixel values are discrete and
directly correspond to a bin value.

Examples I = imread('circuit.tif');
J = entropyfilt(I);

17-142

entropyfilt

imshow(I), figure, imshow(J,[]);

See Also entropy, imhist, rangefilt, stdfilt

References [1] Gonzalez, R.C., R.E. Woods, S.L. Eddins, Digital Image Processing
Using MATLAB, New Jersey, Prentice Hall, 2003, Chapter 11.

17-143

fan2para

Purpose Convert fan-beam projections to parallel-beam

Syntax P = fan2para(F,D)
P = fan2para(..., param1, val1, param2, val2,...)
[P ,parallel_locations,

parallel_rotation_angles] = fan2para(...)

Description P = fan2para(F,D) converts the fan-beam data F to the parallel-beam
data P. D is the distance in pixels from the fan-beam vertex to the center
of rotation that was used to obtain the projections.

P = fan2para(..., param1, val1, param2, val2,...) specifies
parameters that control various aspects of the fan2para conversion,
listed in the following table. Parameter names can be abbreviated, and
case does not matter.

Parameter Description

'FanCoverage' String specifying the range through which the
beams are rotated.

'cycle' — Rotate through the full range
[0,360). This is the default.

'minimal' — Rotate the minimum range
necessary to represent the object.

'FanRotationIncrement' Positive real scalar specifying the increment of
the rotation angle of the fan-beam projections,
measured in degrees. Default value is 1.

17-144

fan2para

Parameter Description

'FanSensorGeometry' String specifying how sensors are positioned.

'arc' — Sensors are spaced equally along a
circular arc at distance D from the center of
rotation. Default value is 'arc'

'line' — Sensors are spaced equally along a
line, the closest point of which is distance D from
the center of rotation.

See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing of the
fan-beam sensors. Interpretation of the value
depends on the setting of 'FanSensorGeometry'.

If 'FanSensorGeometry' is set to 'arc' (the
default), the value defines the angular spacing in
degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value
specifies the linear spacing. Default value is 1.
See fanbeam for details.

Note This linear spacing is measured on the
x’ axis. The x’ axis for each column, col, of F is
oriented at fan_rotation_angles(col) degrees
counterclockwise from the x-axis. The origin of
both axes is the center pixel of the image.

17-145

fan2para

Parameter Description

'Interpolation' Text string specifying the type of interpolation
used between the parallel-beam and fan-beam
data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

'ParallelCoverage' Text string specifying the range of rotation.

'cycle' — Parallel data covers 360 degrees

{'halfcycle'} — Parallel data covers 180
degrees

17-146

fan2para

Parameter Description

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam
rotation angle increment, measured in
degrees. Parallel beam angles are calculated
to cover [0,180) degrees with increment
PAR_ROT_INC, where PAR_ROT_INC is the
value of 'ParallelRotationIncrement'.
180/PAR_ROT_INC must be an integer.

If 'ParallelRotationIncrement' is not
specified, the increment is assumed to be the
same as the increment of the fan-beam rotation
angles.

'ParallelSensorSpacing' Positive real scalar specifying the spacing of the
parallel-beam sensors in pixels. The range of
sensor locations is implied by the range of fan
angles and is given by

[D*tan(min(FAN_ANGLES)),...
D*tan(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the
spacing is assumed to be uniform and is set to the
minimum spacing implied by the fan angles and
sampled over the range implied by the fan angles.

[P ,parallel_locations, parallel_rotation_angles] =
fan2para(...) returns the parallel-beam sensor locations in
parallel_locations and rotation angles in parallel_rotation_angles.

Class
Support

The input arguments, F and D, can be double or single, and they
must be nonsparse. All other numeric inputs are double. The output
P is double.

Examples Create synthetic parallel-beam data, derive fan-beam data, and then
use the fan-beam data to recover the parallel-beam data.

17-147

fan2para

ph = phantom(128);
theta = 0:179;
[Psynthetic,xp] = radon(ph,theta);
imshow(Psynthetic,[],...

'XData',theta,'YData',xp,'InitialMagnification','fit')
axis normal
title('Synthetic Parallel-Beam Data')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar
Fsynthetic = para2fan(Psynthetic,100,'FanSensorSpacing',1);

Recover original parallel-beam data.

[Precovered,Ploc,Pangles] = fan2para(Fsynthetic,100,...
'FanSensorSpacing',1,...

'ParallelSensorSpacing',1);
figure
imshow(Precovered,[],'XData',Pangles,...

'YData',Ploc,'InitialMagnification','fit')
axis normal
title('Recovered Parallel-Beam Data')
xlabel('Rotation Angles (degrees)')
ylabel('Parallel Sensor Locations (pixels)')
colormap(hot), colorbar

See Also fanbeam, ifanbeam, iradon, para2fan, phantom, radon

17-148

fanbeam

Purpose Fan-beam transform

Syntax F = fanbeam(I,D)
F = fanbeam(..., param1, val1, param1, val2,...)
[F, fan_sensor_positions, fan_rotation_angles] = fanbeam(...)

Description F = fanbeam(I,D) computes the fan-beam data (sinogram) F from the
image I. A sinogram is a special x-ray procedure that is done with
contrast media (x-ray dye) to visualize any abnormal opening (sinus)
in the body.

D is the distance in pixels from the fan-beam vertex to the center of
rotation. The center of rotation is the center pixel of the image, defined
as floor((size(I)+1)/2). D must be large enough to ensure that the
fan-beam vertex is outside of the image at all rotation angles. See
“Remarks” on page 17-152 for guidelines on specifying D. The following
figure illustrates D in relation to the fan-beam vertex for one fan-beam
geometry. See the FanSensorGeometry parameter for more information.

Each column of F contains the fan-beam sensor samples at one rotation
angle. The number of columns in F is determined by the fan rotation
increment. By default, the fan rotation increment is 1 degree so F has
360 columns.

17-149

fanbeam

The number of rows in F is determined by the number of sensors.
fanbeam determines the number of sensors by calculating how many
beams are required to cover the entire image for any rotation angle.

For information about how to specify the rotation increment and sensor
spacing, see the documentation for the FanRotationIncrement and
FanSensorSpacing parameters, below.

F = fanbeam(..., param1, val1, param1, val2,...) specifies
parameters, listed below, that control various aspects of the fan-beam
projections. Parameter names can be abbreviated, and case does not
matter.

'FanRotationIncrement' -- Positive real scalar specifying the
increment of the rotation angle of the fan-beam projections. Measured
in degrees. Default value is 1.

'FanSensorGeometry' -- Text string specifying how sensors are
positioned. Valid values are 'arc' or 'line'. In the 'arc' geometry,
sensors are spaced equally along a circular arc, as shown below. This
is the default value.

In 'line' geometry, sensors are spaced equally along a line, as shown
below.

17-150

fanbeam

'FanSensorSpacing' -- Positive real scalar specifying the spacing
of the fan-beam sensors. Interpretation of the value depends on the
setting of 'FanSensorGeometry'. If 'FanSensorGeometry' is set to
'arc' (the default), the value defines the angular spacing in degrees.
Default value is 1. If 'FanSensorGeometry' is 'line', the value
specifies the linear spacing. Default value is 1.

Note This linear spacing is measured on the x’ axis. The x’ axis for
each column, col, of F is oriented at fan_rotation_angles(col) degrees
counterclockwise from the x-axis. The origin of both axes is the center
pixel of the image.

[F, fan_sensor_positions, fan_rotation_angles] =
fanbeam(...) returns the location of fan-beam sensors in
fan_sensor_positions and the rotation angles where the fan-beam
projections are calculated in fan_rotation_angles.

If 'FanSensorGeometry' is 'arc' (the default), fan_sensor_positions
contains the fan-beam spread angles. If 'FanSensorGeometry' is
'line', fan_sensor_positions contains the fan-beam sensor positions
along the x’ axis. See 'FanSensorSpacing' for more information.

17-151

fanbeam

Class
Support

I can be logical or numeric. All other numeric inputs and outputs can
be double. None of the inputs can be sparse.

Remarks As a guideline, try making D a few pixels larger than half the image
diagonal dimension, calculated as follows

sqrt(size(I,1)^2 + size(I,2)^2)

The values returned in F are a numerical approximation of the
fan-beam projections. The algorithm depends on the Radon transform,
interpolated to the fan-beam geometry. The results vary depending on
the parameters used. You can expect more accurate results when the
image is larger, D is larger, and for points closer to the middle of the
image, away from the edges.

Examples The following example computes the fan-beam projections for rotation
angles that cover the entire image.

iptsetpref('ImshowAxesVisible','on')
ph = phantom(128);
imshow(ph)
[F,Fpos,Fangles] = fanbeam(ph,250);
figure
imshow(F,[],'XData',Fangles,'YData',Fpos,...

'InitialMagnification','fit')
axis normal
xlabel('Rotation Angles (degrees)')
ylabel('Sensor Positions (degrees)')
colormap(hot), colorbar

The following example computes the Radon and fan-beam projections
and compares the results at a particular rotation angle.

I = ones(100);
D = 200;
dtheta = 45;

17-152

fanbeam

% Compute fan-beam projections for 'arc' geometry
[Farc,FposArcDeg,Fangles] = fanbeam(I,D,...

'FanSensorGeometry','arc',...
'FanRotationIncrement',dtheta);

% Convert angular positions to linear distance
% along x-prime axis
FposArc = D*tan(FposArcDeg*pi/180);

% Compute fan-beam projections for 'line' geometry
[Fline,FposLine] = fanbeam(I,D,...

'FanSensorGeometry','line',...
'FanRotationIncrement',dtheta);

% Compute the corresponding Radon transform
[R,Rpos]=radon(I,Fangles);

% Display the three projections at one particular rotation
% angle. Note the three are very similar. Differences are
% due to the geometry of the sampling, and the numerical
% approximations used in the calculations.
figure
idx = find(Fangles==45);
plot(Rpos,R(:,idx),...

FposArc,Farc(:,idx),...
FposLine,Fline(:,idx))

legend('Radon','Arc','Line')

See Also fan2para, ifanbeam, iradon, para2fan, phantom, radon

Reference [1] Kak, A.C., & Slaney, M., Principles of Computerized Tomographic
Imaging, IEEE Press, NY, 1988, pp. 92-93.

17-153

fft2

Purpose 2-D fast Fourier transform

Note fft2 is a function in MATLAB.

17-154

fftn

Purpose N-D fast Fourier transform

Note fftn is a function in MATLAB.

17-155

fftshift

Purpose Shift zero-frequency component of fast Fourier transform to center of
spectrum

Note fftshift is a function in MATLAB.

17-156

filter2

Purpose 2-D linear filtering

Note filter2 is a function in MATLAB.

17-157

findbounds

Purpose Find output bounds for spatial transformation

Syntax outbounds = findbounds(TFORM, inbounds)

Description outbounds = findbounds(TFORM, inbounds) estimates the output
bounds corresponding to a given spatial transformation and a set of
input bounds. TFORM is a spatial transformation structure as returned
by maketform. inbounds is 2-by-NUM_DIMS matrix. The first row of
inbounds specifies the lower bounds for each dimension, and the second
row specifies the upper bounds. NUM_DIMS has to be consistent with
the ndims_in field of TFORM.

outbounds has the same form as inbounds. It is an estimate of the
smallest rectangular region completely containing the transformed
rectangle represented by the input bounds. Since outbounds is only
an estimate, it might not completely contain the transformed input
rectangle.

Notes imtransform uses findbounds to compute the 'OutputBounds'
parameter if the user does not provide it.

If TFORM contains a forward transformation (a nonempty forward_fcn
field), then findbounds works by transforming the vertices of the input
bounds rectangle and then taking minimum and maximum values of
the result.

If TFORM does not contain a forward transformation, then findbounds
estimates the output bounds using the Nelder-Mead optimization
function fminsearch. If the optimization procedure fails, findbounds
issues a warning and returns outbounds = inbounds .

Examples inbounds = [0 0; 1 1]
tform = maketform('affine',[2 0 0; .5 3 0; 0 0 1])
outbounds = findbounds(tform, inbounds)

See Also cp2tform, imtransform, maketform, tformarray, tformfwd, tforminv

17-158

fliptform

Purpose Flip input and output roles of TFORM structure

Syntax TFLIP = fliptform(T)

Description TFLIP = fliptform(T) creates a new spatial transformation structure,
a TFORM struct, by flipping the roles of the inputs and outputs in an
existing TFORM struct.

Examples T = maketform('affine', [.5 0 0; .5 2 0; 0 0 1]);
T2 = fliptform(T)

The following are equivalent:

x = tformfwd([-3 7],T)
x = tforminv([-3 7],T2)

See Also maketform, tformfwd, tforminv

17-159

freqspace

Purpose Determine frequency spacing for 2-D frequency response

Note freqspace is a function in MATLAB.

17-160

freqz2

Purpose 2-D frequency response

Syntax [H, f1, f2] = freqz2(h, n1, n2)
[H, f1, f2] = freqz2(h, [n2 n1])
[H, f1, f2] = freqz2(h)
[H, f1, f2] = freqz2(h, f1, f2)
[...] = freqz2(h,...,[dx dy])
[...] = freqz2(h,...,dx)
freqz2(...)

Description [H, f1, f2] = freqz2(h, n1, n2) returns H, the n2-by-n1 frequency
response of h, and the frequency vectors f1 (of length n1) and f2
(of length n2). h is a two-dimensional FIR filter, in the form of a
computational molecule. f1 and f2 are returned as normalized
frequencies in the range -1.0 to 1.0, where 1.0 corresponds to half the
sampling frequency, or π radians.

[H, f1, f2] = freqz2(h, [n2 n1]) returns the same result returned
by [H,f1,f2] = freqz2(h,n1,n2).

[H, f1, f2] = freqz2(h) uses [n2 n1] = [64 64].

[H, f1, f2] = freqz2(h, f1, f2) returns the frequency response
for the FIR filter h at frequency values in f1 and f2. These frequency
values must be in the range -1.0 to 1.0, where 1.0 corresponds to half
the sampling frequency, or π radians.

[...] = freqz2(h,...,[dx dy]) uses [dx dy] to override the
intersample spacing in h. dx determines the spacing for the x dimension
and dy determines the spacing for the y dimension. The default spacing
is 0.5, which corresponds to a sampling frequency of 2.0.

[...] = freqz2(h,...,dx) uses dx to determine the intersample
spacing in both dimensions.

freqz2(...)produces a mesh plot of the two-dimensional magnitude
frequency response when no output arguments are specified.

17-161

freqz2

Class
Support

The input matrix h can be of class double or of any integer class. All
other inputs to freqz2 must be of class double. All outputs are of class
double.

Examples Use the window method to create a 16-by-16 filter, then view its
frequency response using freqz2.

Hd = zeros(16,16);
Hd(5:12,5:12) = 1;
Hd(7:10,7:10) = 0;
h = fwind1(Hd,bartlett(16));
colormap(jet(64))
freqz2(h,[32 32]); axis ([-1 1 -1 1 0 1])

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

F
x

F
y

M
ag

ni
tu

de

See Also freqz in the Signal Processing Toolbox User’s Guide documentation

17-162

fsamp2

Purpose 2-D FIR filter using frequency sampling

Syntax h = fsamp2(Hd)
h = fsamp2(f1, f2, Hd,[m n])

Description h = fsamp2(Hd) designs a two-dimensional FIR filter with frequency
response Hd, and returns the filter coefficients in matrix h. (fsamp2
returns h as a computational molecule, which is the appropriate form to
use with filter2.) The filter h has a frequency response that passes
through points in Hd. If Hd is m-by-n, then h is also m-by-n.

fsamp2 designs two-dimensional FIR filters based on a desired
two-dimensional frequency response sampled at points on the Cartesian
plane. Hd is a matrix containing the desired frequency response
sampled at equally spaced points between -1.0 and 1.0 along the x and y
frequency axes, where 1.0 corresponds to half the sampling frequency,
or π radians.

For accurate results, use frequency points returned by freqspace to
create Hd.

h = fsamp2(f1, f2, Hd,[m n]) produces an m-by-n FIR filter by
matching the filter response at the points in the vectors f1 and f2. The
frequency vectors f1 and f2 are in normalized frequency, where 1.0
corresponds to half the sampling frequency, or π radians. The resulting
filter fits the desired response as closely as possible in the least squares
sense. For best results, there must be at least m*n desired frequency
points. fsamp2 issues a warning if you specify fewer than m*n points.

Class
Support

The input matrix Hd can be of class double or of any integer class. All
other inputs to fsamp2 must be of class double. All outputs are of class
double.

Examples Use fsamp2 to design an approximately symmetric two-dimensional
bandpass filter with passband between 0.1 and 0.5 (normalized

17-163

fsamp2

frequency, where 1.0 corresponds to half the sampling frequency, or
π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

2 Design the filter that passes through this response.

h = fsamp2(Hd);
freqz2(h)

17-164

fsamp2

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

F
x

F
y

M
ag

ni
tu

de

Algorithm fsamp2 computes the filter h by taking the inverse discrete Fourier
transform of the desired frequency response. If the desired frequency
response is real and symmetric (zero phase), the resulting filter is also
zero phase.

See Also conv2, filter2, freqspace, ftrans2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 213-217.

17-165

fspecial

Purpose Create predefined 2-D filter

Syntax h = fspecial(type)
h = fspecial(type, parameters)

Description h = fspecial(type) creates a two-dimensional filter h of the specified
type. fspecial returns h as a correlation kernel, which is the
appropriate form to use with imfilter. type is a string having one
of these values.

Value Description

'average' Averaging filter

'disk' Circular averaging filter (pillbox)

'gaussian' Gaussian lowpass filter

'laplacian' Approximates the two-dimensional Laplacian
operator

'log' Laplacian of Gaussian filter

'motion' Approximates the linear motion of a camera

'prewitt' Prewitt horizontal edge-emphasizing filter

'sobel' Sobel horizontal edge-emphasizing filter

'unsharp' Unsharp contrast enhancement filter

h = fspecial(type, parameters) accepts the filter specified by type
plus additional modifying parameters particular to the type of filter
chosen. If you omit these arguments, fspecial uses default values
for the parameters.

The following list shows the syntax for each filter type. Where
applicable, additional parameters are also shown.

• h = fspecial('average', hsize) returns an averaging filter h
of size hsize. The argument hsize can be a vector specifying the

17-166

fspecial

number of rows and columns in h, or it can be a scalar, in which case
h is a square matrix. The default value for hsize is [3 3].

• h = fspecial('disk', radius) returns a circular averaging filter
(pillbox) within the square matrix of side 2*radius+1. The default
radius is 5.

• h = fspecial('gaussian', hsize, sigma) returns a rotationally
symmetric Gaussian lowpass filter of size hsize with standard
deviation sigma (positive). hsize can be a vector specifying the
number of rows and columns in h, or it can be a scalar, in which
case h is a square matrix. The default value for hsize is [3 3]; the
default value for sigma is 0.5.

• h = fspecial('laplacian', alpha) returns a 3-by-3 filter
approximating the shape of the two-dimensional Laplacian operator.
The parameter alpha controls the shape of the Laplacian and must
be in the range 0.0 to 1.0. The default value for alpha is 0.2.

• h = fspecial('log', hsize, sigma) returns a rotationally
symmetric Laplacian of Gaussian filter of size hsize with standard
deviation sigma (positive). hsize can be a vector specifying the
number of rows and columns in h, or it can be a scalar, in which case
h is a square matrix. The default value for hsize is [5 5] and 0.5
for sigma.

• h = fspecial('motion', len, theta) returns a filter to
approximate, once convolved with an image, the linear motion
of a camera by len pixels, with an angle of theta degrees in a
counterclockwise direction. The filter becomes a vector for horizontal
and vertical motions. The default len is 9 and the default theta is 0,
which corresponds to a horizontal motion of nine pixels.

• h = fspecial('prewitt') returns the 3-by-3 filter h (shown below)
that emphasizes horizontal edges by approximating a vertical
gradient. If you need to emphasize vertical edges, transpose the
filter h'.

17-167

fspecial

[1 1 1
0 0 0
-1 -1 -1]

To find vertical edges, or for x-derivatives, use h'.

• h = fspecial('sobel') returns a 3-by-3 filter h (shown below)
that emphasizes horizontal edges using the smoothing effect by
approximating a vertical gradient. If you need to emphasize vertical
edges, transpose the filter h'.

[1 2 1
0 0 0
-1 -2 -1]

• h = fspecial('unsharp', alpha) returns a 3-by-3 unsharp
contrast enhancement filter. fspecial creates the unsharp filter
from the negative of the Laplacian filter with parameter alpha.
alpha controls the shape of the Laplacian and must be in the range
0.0 to 1.0. The default value for alpha is 0.2.

Note Do not be confused by the name of this filter: an unsharp filter
is an image sharpening operator. The name comes from a publishing
industry process in which an image is sharpened by subtracting a
blurred (unsharp) version of the image from itself.

Class
Support

h is of class double.

Examples I = imread('cameraman.tif');
subplot(2,2,1);
imshow(I); title('Original Image');

H = fspecial('motion',20,45);
MotionBlur = imfilter(I,H,'replicate');
subplot(2,2,2);

17-168

fspecial

imshow(MotionBlur);title('Motion Blurred Image');

H = fspecial('disk',10);
blurred = imfilter(I,H,'replicate');
subplot(2,2,3);
imshow(blurred); title('Blurred Image');

H = fspecial('unsharp');
sharpened = imfilter(I,H,'replicate');
subplot(2,2,4);
imshow(sharpened); title('Sharpened Image');

17-169

fspecial

Algorithms fspecial creates Gaussian filters using

fspecial creates Laplacian filters using

fspecial creates Laplacian of Gaussian (LoG) filters using

fspecial creates averaging filters using

ones(n(1),n(2))/(n(1)*n(2))

fspecial creates unsharp filters using

17-170

fspecial

See Also conv2, edge, filter2, fsamp2, fwind1, fwind2, imfilter

del2 in the MATLAB Function Reference

17-171

ftrans2

Purpose 2-D FIR filter using frequency transformation

Syntax h = ftrans2(b, t)
h = ftrans2(b)

Description h = ftrans2(b, t) produces the two-dimensional FIR filter h
that corresponds to the one-dimensional FIR filter b using the
transform t. (ftrans2 returns h as a computational molecule,
which is the appropriate form to use with filter2.) b must be
a one-dimensional, odd-length (Type I) FIR filter such as can be
returned by fir1, fir2, or remez in the Signal Processing Toolbox.
The transform matrix t contains coefficients that define the frequency
transformation to use. If t is m-by-n and b has length Q, then h is size
((m-1)*(Q-1)/2+1)-by-((n-1)*(Q-1)/2+1).

h = ftrans2(b) uses the McClellan transform matrix t.

t = [1 2 1; 2 -4 2; 1 2 1]/8;

Remarks The transformation below defines the frequency response of the
two-dimensional filter returned by ftrans2,

where B(ω) is the Fourier transform of the one-dimensional filter b,

and T(ω1,ω2) is the Fourier transform of the transformation matrix t.

The returned filter h is the inverse Fourier transform of H(ω1,ω2).

17-172

ftrans2

Examples Use ftrans2 to design an approximately circularly symmetric
two-dimensional bandpass filter with passband between 0.1 and 0.6
(normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians):

1 Since ftrans2 transforms a one-dimensional FIR filter to create a
two-dimensional filter, first design a one-dimensional FIR bandpass
filter using the Signal Processing Toolbox function remez.

colormap(jet(64))
b = remez(10,[0 0.05 0.15 0.55 0.65 1],[0 0 1 1 0 0]);
[H,w] = freqz(b,1,128,'whole');
plot(w/pi-1,fftshift(abs(H)))

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

17-173

ftrans2

2 Use ftrans2 with the default McClellan transformation to create the
desired approximately circularly symmetric filter.

h = ftrans2(b);
freqz2(h)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

F
x

F
y

M
ag

ni
tu

de

See Also conv2, filter2, fsamp2, fwind1, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 218-237.

17-174

fwind1

Purpose 2-D FIR filter using 1-D window method

Syntax h = fwind1(Hd, win)
h = fwind1(Hd, win1, win2)
h = fwind1(f1, f2, Hd,...)

Description fwind1 designs two-dimensional FIR filters using the window method.
fwind1 uses a one-dimensional window specification to design a
two-dimensional FIR filter based on the desired frequency response Hd.
fwind1 works with one-dimensional windows only; use fwind2 to work
with two-dimensional windows.

h = fwind1(Hd, win) designs a two-dimensional FIR filter h with
frequency response Hd. (fwind1 returns h as a computational molecule,
which is the appropriate form to use with filter2.) fwind1 uses the
one-dimensional window win to form an approximately circularly
symmetric two-dimensional window using Huang’s method. You can
specify win using windows from the Signal Processing Toolbox, such as
boxcar, hamming, hanning, bartlett, blackman, kaiser, or chebwin. If
length(win) is n, then h is n-by-n.

Hd is a matrix containing the desired frequency response sampled at
equally spaced points between -1.0 and 1.0 (in normalized frequency,
where 1.0 corresponds to half the sampling frequency, or π radians)
along the x and y frequency axes. For accurate results, use frequency
points returned by freqspace to create Hd. (See the entry for freqspace
for more information.)

h = fwind1(Hd, win1, win2) uses the two one-dimensional windows
win1 and win2 to create a separable two-dimensional window. If
length(win1) is n and length(win2) is m, then h is m-by-n.

h = fwind1(f1, f2, Hd,...) lets you specify the desired frequency
response Hd at arbitrary frequencies (f1 and f2) along the x- and y-axes.
The frequency vectors f1 and f2 should be in the range -1.0 to 1.0,
where 1.0 corresponds to half the sampling frequency, or π radians. The
length of the windows controls the size of the resulting filter, as above.

17-175

fwind1

Class
Support

The input matrix Hd can be of class double or of any integer class. All
other inputs to fwind1 must be of class double. All outputs are of class
double.

Examples Use fwind1 to design an approximately circularly symmetric
two-dimensional bandpass filter with passband between 0.1 and 0.5
(normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

17-176

fwind1

2 Design the filter using a one-dimensional Hamming window.

h = fwind1(Hd,hamming(21));
freqz2(h)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

F
x

F
y

M
ag

ni
tu

de

Algorithm fwind1 takes a one-dimensional window specification and forms an
approximately circularly symmetric two-dimensional window using
Huang’s method,

where w(t) is the one-dimensional window and w(n1,n2) is the resulting
two-dimensional window.

Given two windows, fwind1 forms a separable two-dimensional window.

17-177

fwind1

fwind1 calls fwind2 with Hd and the two-dimensional window. fwind2
computes h using an inverse Fourier transform and multiplication by
the two-dimensional window.

See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990.

17-178

fwind2

Purpose 2-D FIR filter using 2-D window method

Syntax h = fwind2(Hd, win)
h = fwind2(f1, f2, Hd, win)

Description Use fwind2 to design two-dimensional FIR filters using the window
method. fwind2 uses a two-dimensional window specification to design
a two-dimensional FIR filter based on the desired frequency response
Hd. fwind2 works with two-dimensional windows; use fwind1 to work
with one-dimensional windows.

h = fwind2(Hd, win) produces the two-dimensional FIR filter h using
an inverse Fourier transform of the desired frequency response Hd and
multiplication by the window win. Hd is a matrix containing the desired
frequency response at equally spaced points in the Cartesian plane.
fwind2 returns h as a computational molecule, which is the appropriate
form to use with filter2. h is the same size as win.

For accurate results, use frequency points returned by freqspace to
create Hd. (See the entry for freqspace for more information.)

h = fwind2(f1, f2, Hd, win) lets you specify the desired frequency
response Hd at arbitrary frequencies (f1 and f2) along the x- and y-axes.
The frequency vectors f1 and f2 should be in the range -1.0 to 1.0,
where 1.0 corresponds to half the sampling frequency, or π radians.
h is the same size as win.

Class
Support

The input matrix Hd can be of class double or of any integer class. All
other inputs to fwind2 must be of class double. All outputs are of class
double.

Examples Use fwind2 to design an approximately circularly symmetric
two-dimensional bandpass filter with passband between 0.1 and 0.5
(normalized frequency, where 1.0 corresponds to half the sampling
frequency, or π radians):

1 Create a matrix Hd that contains the desired bandpass response. Use
freqspace to create the frequency range vectors f1 and f2.

17-179

fwind2

[f1,f2] = freqspace(21,'meshgrid');
Hd = ones(21);
r = sqrt(f1.^2 + f2.^2);
Hd((r<0.1)|(r>0.5)) = 0;
colormap(jet(64))
mesh(f1,f2,Hd)

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

2 Create a two-dimensional Gaussian window using fspecial.

win = fspecial('gaussian',21,2);

win = win ./ max(win(:)); % Make the maximum window value be 1.

mesh(win)

17-180

fwind2

0
5

10
15

20
25

0

10

20

30
0

0.2

0.4

0.6

0.8

1

3 Design the filter using the window from step 2.

h = fwind2(Hd,win);
freqz2(h)

17-181

fwind2

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

F
x

F
y

M
ag

ni
tu

de

Algorithm fwind2 computes h using an inverse Fourier transform and
multiplication by the two-dimensional window win.

See Also conv2, filter2, fsamp2, freqspace, ftrans2, fwind1

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 202-213.

17-182

getheight

Purpose Height of structuring element

Syntax H = getheight(SE)

Description H = getheight(SE) returns an array the same size as getnhood(SE)
containing the height associated with each of the structuring element
neighbors. H is all zeros for a flat structuring element.

Class
Support

SE is a STREL object. H is of class double.

Examples se = strel(ones(3,3),magic(3));
getheight(se)

See Also strel, getnhood

17-183

getimage

Purpose Image data from axes

Syntax A = getimage(h)
[x, y, A] = getimage(h)
[..., A, flag] = getimage(h)
[...] = getimage

Description A = getimage(h) returns the first image data contained in the Handle
Graphics object h. h can be a figure, axes, or image. A is identical to
the image CData; it contains the same values and is of the same class
(uint8, uint16, double, or logical) as the image CData. If h is not an
image or does not contain an image, A is empty.

[x, y, A] = getimage(h) returns the image XData in x and the YData
in y. XData and YData are two-element vectors that indicate the range
of the x-axis and y-axis.

[..., A, flag] = getimage(h) returns an integer flag that indicates
the type of image h contains. This table summarizes the possible values
for flag.

Flag Type of Image

0 Not an image; A is returned as an empty matrix

1 Indexed image

2 Intensity image with values in standard range ([0,1]
for single and double arrays, [0,255] for uint8 arrays,
[0,65535] for uint16 arrays)

3 Intensity data, but not in standard range

4 RGB image

5 Binary image

[...] = getimage returns information for the current axes object. It
is equivalent to [...] = getimage(gca).

17-184

getimage

Class
Support

The output array A is of the same class as the image CData. All other
inputs and outputs are of class double.

Note For int16 and single images, the image data returned by getimage
is of class double, not int16 or single. This is because the getimage
function gets the data from the image object’s CData property and image
objects store int16 and single image data as class double.

For example, create an image object of class int16. If you retrieve the
CData from the object and check its class, it returns double.

h = imshow(ones(10,'int16'));
class(get(h,'CData'))

Therefore, if you get the image data using the getimage function, the
data it returns is also of class double. The flag return value is set to 3.

[img,flag] = getimage(h);
class(img)

The same is true for an image of class single. Getting the CData
directly from the image object or by using getimage, the class of the
returned data is double.

h = imshow(ones(10,'single'));
class(get(h,'CData'))
[img,flag] = getimage(h);
class(img)

For images of class single, the flag return value is set to 2 because
single and double share the same dynamic range.

Examples After using imshow or imtool to display an image directly from a file,
use getimage to get the image data into the workspace.

imshow rice.png
I = getimage;

17-185

getimage

imtool cameraman.tif
I = getimage(imgca);

See Also imshow, imtool

17-186

getimagemodel

Purpose Image model object from image object

Syntax imgmodel = getimagemodel(himage)

Description imgmodel = getimagemodel(himage) returns the image model object
associated with himage. himage must be a handle to an image object or
an array of handles to image objects.

The return value imgmodel is an image model object. If himage is an
array of handles to image objects, imgmodel is an array of image models.

If himage does not have an associated image model object,
getimagemodel creates one.

Examples h = imshow('bag.png');
imgmodel = getimagemodel(h);

See Also imagemodel

17-187

getline

Purpose Select polyline with mouse

Syntax [x, y] = getline(fig)
[x, y] = getline(ax)
[x, y] = getline
[x, y] = getline(...,'closed')

Description [x, y] = getline(fig) lets you select a polyline in the current axes of
figure fig using the mouse. Coordinates of the polyline are returned in
X and Y. Use normal button clicks to add points to the polyline. A shift-,
right-, or double-click adds a final point and ends the polyline selection.
Pressing Return or Enter ends the polyline selection without adding
a final point. Pressing Backspace or Delete removes the previously
selected point from the polyline.

[x, y] = getline(ax) lets you select a polyline in the axes specified
by the handle ax.

[x, y] = getline is the same as [x,y] = getline(gcf).

[x, y] = getline(...,'closed') animates and returns a closed
polygon.

See Also getpts, getrect

17-188

getneighbors

Purpose Structuring element neighbor locations and heights

Syntax [offsets, heights] = getneighbors(SE)

Description [offsets, heights] = getneighbors(SE) returns the relative
locations and corresponding heights for each of the neighbors in the
structuring element object SE.

offsets is a P-by-N array where P is the number of neighbors in the
structuring element and N is the dimensionality of the structuring
element. Each row of offsets contains the location of the corresponding
neighbor, relative to the center of the structuring element.

heights is a P-element column vector containing the height of each
structuring element neighbor.

Class
Support

SE is a STREL object. The return values offsets and heights are arrays
of double-precision values.

Examples se = strel([1 0 1],[5 0 -5])
[offsets,heights] = getneighbors(se)
se =
Nonflat STREL object containing 2 neighbors.

Neighborhood:
1 0 1

Height:
5 0 -5

offsets =
0 -1
0 1

heights =
5 -5

See Also strel, getnhood, getheight

17-189

getnhood

Purpose Structuring element neighborhood

Syntax NHOOD = getnhood(SE)

Description NHOOD = getnhood(SE) returns the neighborhood associated with the
structuring element SE.

Class
Support

SE is a STREL object. NHOOD is a logical array.

Examples se = strel(eye(5));
NHOOD = getnhood(se)

See Also strel, getneighbors

17-190

getpts

Purpose Specify points with mouse

Syntax [x, y] = getpts(fig)
[x, y] = getpts(ax)
[x, y] = getpts

Description [x, y] = getpts(fig) lets you choose a set of points in the current
axes of figure fig using the mouse. Coordinates of the selected points
are returned in X and Y.

Use normal button clicks to add points. A shift-, right-, or double-click
adds a final point and ends the selection. Pressing Return or Enter
ends the selection without adding a final point. Pressing Backspace or
Delete removes the previously selected point.

[x, y] = getpts(ax) lets you choose points in the axes specified by
the handle ax.

[x, y] = getpts is the same as [x,y] = getpts(gcf).

See Also getline, getrect

17-191

getrangefromclass

Purpose Default display range of image based on its class

Syntax range = getrangefromclass(I)

Description range = getrangefromclass(I) returns the default display range
of the image I, based on its class type. The function returns range, a
two-element vector specifying the display range in the form [min max].

Class
Support

I can be uint8, uint16, int16, logical, single, or double. range is
of class double.

Note For single and double data, getrangefromclass returns the range
[0 1] to be consistent with the way double and single images are
interpreted in MATLAB. For integer data, getrangefromclass returns
the default display range of the class. For example, if the class is uint8,
the dynamic range is [0 255].

Examples Read in the 16-bit DICOM image and get the default display range.

CT = dicomread('CT-MONO2-16-ankle.dcm');
r = getrangefromclass(CT)
r =

-32768 32767

See Also intmin, intmax

17-192

getrect

Purpose Specify rectangle with mouse

Syntax rect = getrect(fig)
rect = getrect(ax)

Description rect = getrect(fig) lets you select a rectangle in the current axes of
figure fig using the mouse.

Use the mouse to click and drag the desired rectangle. rect is a
four-element vector with the form [xmin ymin width height]. To
constrain the rectangle to be a square, use a shift- or right-click to
begin the drag.

rect = getrect(ax) lets you select a rectangle in the axes specified by
the handle ax.

See Also getline, getpts

17-193

getsequence

Purpose Sequence of decomposed structuring elements

Syntax SEQ = getsequence(SE)

Description SEQ = getsequence(SE) returns the array of structuring elements
SEQ, containing the individual structuring elements that form the
decomposition of SE. SE can be an array of structuring elements. SEQ is
equivalent to SE, but the elements of SEQ have no decomposition.

Class
Support

SE and SEQ are arrays of STREL objects.

Examples The strel function uses decomposition for square structuring elements
larger than 3-by-3. Use getsequence to extract the decomposed
structuring elements.

se = strel('square',5)

se =

Flat STREL object containing 25 neighbors.

Decomposition: 2 STREL objects containing a total of 10 neighbors

Neighborhood:

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

seq = getsequence(se)

seq =

2x1 array of STREL objects

Use imdilate with the 'full' option to see that dilating sequentially
with the decomposed structuring elements really does form a 5-by-5
square:

imdilate(1,seq,'full')

17-194

getsequence

See Also imdilate, imerode, strel

17-195

gray2ind

Purpose Convert grayscale or binary image to indexed image

Syntax [X, map] = gray2ind(I,n)
[X, map] = gray2ind(BW,n)

Description [X, map] = gray2ind(I,n) converts the grayscale image I to an
indexed image X. n specifies the size of the colormap, gray(n). n must
be an integer between 1 and 65536. If n is omitted, it defaults to 64.

[X, map] = gray2ind(BW,n) converts the binary image BW to an
indexed image X. n specifies the size of the colormap, gray(n). If n
is omitted, it defaults to 2.

gray2ind scales and then rounds the intensity image to produce an
equivalent indexed image.

Class
Support

The input image I can be logical, uint8, uint16, int16, single, or
double and must be a real and nonsparse. The image I can have any
dimension. The class of the output image X is uint8 if the colormap
length is less than or equal to 256; otherwise it is uint16.

Examples Convert a grayscale image into an indexed image and then view the
result.

I = imread('cameraman.tif');
[X, map] = gray2ind(I, 16);
imshow(X, map);

See Also grayslice, ind2gray, mat2gray

17-196

graycomatrix

Purpose Create gray-level co-occurrence matrix from image

Syntax glcm = graycomatrix(I)
glcms = graycomatrix(I, param1, val1, param2, val2,...)
[glcm, SI] = graycomatrix(...)

Description glcm = graycomatrix(I) creates a gray-level co-occurrence matrix
(GLCM) from image I. graycomatrix creates the GLCM by calculating
how often a pixel with gray-level (grayscale intensity) value i occurs
horizontally adjacent to a pixel with the value j. (You can specify
other pixel spatial relationships using the 'Offsets' parameter -- see
Parameters.) Each element (i,j) in glcm specifies the number of times
that the pixel with value i occurred horizontally adjacent to a pixel
with value j.

graycomatrix calculates the GLCM from a scaled version of the image.
By default, if I is a binary image, graycomatrix scales the image to
two gray-levels. If I is an intensity image, graycomatrix scales the
image to eight gray-levels. You can specify the number of gray-levels
graycomatrix uses to scale the image by using the 'NumLevels'
parameter, and the way that graycomatrix scales the values using the
'GrayLimits' parameter — see Parameters.

The following figure shows how graycomatrix calculates several values
in the GLCM of the 4-by-5 image I. Element (1,1) in the GLCM contains
the value 1 because there is only one instance in the image where two,
horizontally adjacent pixels have the values 1 and 1. Element (1,2)
in the GLCM contains the value 2 because there are two instances in
the image where two, horizontally adjacent pixels have the values 1 and
2. graycomatrix continues this processing to fill in all the values in
the GLCM.

17-197

graycomatrix

glcms = graycomatrix(I, param1, val1, param2, val2,...)
returns one or more gray-level co-occurrence matrices, depending on the
values of the optional parameter/value pairs. Parameter names can be
abbreviated, and case does not matter.

Parameters The following table lists these parameters in alphabetical order.

Parameter Description Default

'GrayLimits' Two-element vector, [low high], that specifies
how the grayscale values in I are linearly
scaled into gray levels. Grayscale values less
than or equal to low are scaled to 1. Grayscale
values greater than or equal to high are
scaled to NumLevels. If graylimits is set
to [], graycomatrix uses the minimum and
maximum grayscale values in the image as
limits, [min(I(:)) max(I(:))].

Minimum
and
maximum
specified by
class, e.g.
double
[0 1]
int16
[-32768
32767]

17-198

graycomatrix

Parameter Description Default

'NumLevels' Integer specifying the number of gray-levels to
use when scaling the grayscale values in I. For
example, if NumLevels is 8, graycomatrix scales
the values in I so they are integers between 1
and 8. The number of gray-levels determines the
size of the gray-level co-occurrence matrix (glcm).

8 (numeric)
2 (binary)

17-199

graycomatrix

Parameter Description Default

'Offset' p-by-2 array of integers specifying the distance
between the pixel of interest and its neighbor.
Each row in the array is a two-element
vector, [row_offset, col_offset], that
specifies the relationship, or offset, of a pair
of pixels. row_offset is the number of rows
between the pixel-of-interest and its neighbor.
col_offset is the number of columns between
the pixel-of-interest and its neighbor. Because
the offset is often expressed as an angle, the
following table lists the offset values that specify
common angles, given the pixel distance D.

Angle Offset

0 [0 D]

45 [-D D]

90 [-D 0]

135 [-D -D]

The figure illustrates the array: offset = [0
1; -1 1; -1 0; -1 -1]

[0 1]

'Symmetric' A Boolean that creates a GLCM where the
ordering of values in the pixel pairs is not
considered. For example, when calculating the
number of times the value 1 is adjacent to the
value 2, graycomatrix counts both 1,2 and 2,1
pairings, if 'Symmetric' is set to true. When
'Symmetric' is set to false, graycomatrix
only counts 1,2 or 2,1, depending on the
value of 'offset'. The GLCM created when
'Symmetric' is set to true is symmetric across
its diagonal, and is equivalent to the GLCM
described by Haralick (1973). See Notes below
for more information.

false

17-200

graycomatrix

[glcm, SI] = graycomatrix(...) returns the scaled image, SI, used
to calculate the gray-level co-occurrence matrix. The values in SI are
between 1 and NumLevels.

Class
Support

I can be numeric or logical but must be two-dimensional, real, and
nonsparse. SI is a double matrix having the same size as I. glcms is a
'NumLevels'-by-'NumLevels'-by-P double array where P is the number
of offsets in 'Offset'.

Notes Another name for a gray-level co-occurrence matrix is a gray-level
spatial dependence matrix. Also, the word co-occurrence is frequently
used in the literature without a hyphen, cooccurrence.

graycomatrix ignores pixel pairs if either of the pixels contains a NaN.

graycomatrix replaces positive Infs with the value NumLevels and
replaces negative Infs with the value 1.

graycomatrix ignores border pixels, if the corresponding neighbor pixel
falls outside the image boundaries.

The GLCM produced by the following syntax, with 'Symmetric' set
to true

graycomatrix(I, 'offset', [0 1], 'Symmetric', true)

is equivalent to the sum of the two GLCMs produced by these
statements where'Symmetric' is set to false.

graycomatrix(I, 'offset', [0 1], 'Symmetric', false)
graycomatrix(I, 'offset', [0 -1], 'Symmetric', false)

Examples Calculate the gray-level co-occurrence matrix for a grayscale image.

I = imread('circuit.tif');
glcm = graycomatrix(I,'Offset',[2 0]);

Calculate the gray-level co-occurrence matrix and return the scaled
version of the image, SI, used by graycomatrix to generate the GLCM.

17-201

graycomatrix

I = [1 1 5 6 8 8; 2 3 5 7 0 2; 0 2 3 5 6 7];
[glcm,SI] = graycomatrix(I,'NumLevels',9,'G',[])

See Also graycoprops

References Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features
for Image Classification", IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-3, 1973, pp. 610-621.

Haralick, R.M., and L.G. Shapiro. Computer and Robot Vision: Vol.
1, Addison-Wesley, 1992, p. 459.

17-202

graycoprops

Purpose Properties of gray-level co-occurrence matrix

Syntax stats = graycoprops(glcm, properties)

Description stats = graycoprops(glcm, properties) calculates the statistics
specified in properties from the gray-level co-occurence matrix glcm.
glcm is an m-by-n-by-p array of valid gray-level co-occurrence matrices.
If glcm is an array of GLCMs, stats is an array of statistics for each
glcm.

graycoprops normalizes the gray-level co-occurrence matrix (GLCM)
so that the sum of its elements is equal to 1. Each element (r,c) in the
normalized GLCM is the joint probability occurrence of pixel pairs
with a defined spatial relationship having gray level values r and c
in the image. graycoprops uses the normalized GLCM to calculate
properties.

properties can be a comma-separated list of strings, a cell array
containing strings, the string 'all', or a space separated string. The
property names can be abbreviated and are not case sensitive.

Property Description Formula

'Contrast' Returns a measure of the intensity
contrast between a pixel and its neighbor
over the whole image.

Range = [0 (size(GLCM,1)-1)^2]

Contrast is 0 for a constant image.

17-203

graycoprops

Property Description Formula

'Correlation' Returns a measure of how correlated a
pixel is to its neighbor over the whole
image.

Range = [-1 1]

Correlation is 1 or -1 for a perfectly
positively or negatively correlated image.
Correlation is NaN for a constant image.

'Energy' Returns the sum of squared elements in
the GLCM.

Range = [0 1]

Energy is 1 for a constant image.

'Homogeneity' Returns a value that measures the
closeness of the distribution of elements
in the GLCM to the GLCM diagonal.

Range = [0 1]

Homogeneity is 1 for a diagonal GLCM.

stats is a structure with fields that are specified by properties.
Each field contains a 1 x p array, where p is the number of gray-level
co-occurrence matrices in GLCM. For example, if GLCM is an 8 x 8 x 3
array and properties is 'Energy', then stats is a structure containing
the field Energy, which contains a 1 x 3 array.

Notes Energy is also known as uniformity, uniformity of energy, and angular
second moment.

Contrast is also known as variance and inertia.

17-204

graycoprops

Class
Support

glcm can be logical or numeric, and it must contain real, non-negative,
finite, integers. stats is a structure.

Examples GLCM = [0 1 2 3;1 1 2 3;1 0 2 0;0 0 0 3];
stats = graycoprops(GLCM)

I = imread('circuit.tif');
GLCM2 = graycomatrix(I,'Offset',[2 0;0 2]);
stats = graycoprops(GLCM2,{'contrast','homogeneity'})

See Also graycomatrix

17-205

grayslice

Purpose Convert grayscale image to indexed image using multilevel thresholding

Syntax X = grayslice(I, n)

Description X = grayslice(I, n) thresholds the intensity image I returning an
indexed image in X. grayslice uses the threshold values:

X = grayslice(I, v) thresholds the intensity image I using the
values of v, where v is a vector of values between 0 and 1, returning an
indexed image in X.

You can view the thresholded image using imshow(X,map) with a
colormap of appropriate length.

Class
Support

The input image I can be of class uint8, uint16, int16, single, or
double, and must be nonsparse. Note that the threshold values are
always between 0 and 1, even if I is of class uint8 or uint16. In this
case, each threshold value is multiplied by 255 or 65535 to determine
the actual threshold to use.

The class of the output image X depends on the number of threshold
values, as specified by n or length(v). If the number of threshold
values is less than 256, then X is of class uint8, and the values in X
range from 0 to n or length(v). If the number of threshold values is
256 or greater, X is of class double, and the values in X range from 1 to
n+1 or length(v)+1.

17-206

grayslice

Examples I = imread('snowflakes.png');
X = grayslice(I,16);
imshow(I)
figure, imshow(X,jet(16))

See Also gray2ind

17-207

graythresh

Purpose Global image threshold using Otsu’s method

Syntax level = graythresh(I)
[level EM] = graythresh(I)

Description level = graythresh(I) computes a global threshold (level) that can
be used to convert an intensity image to a binary image with im2bw.
level is a normalized intensity value that lies in the range [0, 1].

The graythresh function uses Otsu’s method, which chooses the
threshold to minimize the intraclass variance of the black and white
pixels.

Multidimensional arrays are converted automatically to 2-D arrays
using reshape. The graythresh function ignores any nonzero
imaginary part of I.

[level EM] = graythresh(I) returns the effectiveness metric, EM, as
the second output argument. The effectiveness metric is a value in the
range [0 1] that indicates the effectiveness of the thresholding of the
input image. The lower bound is attainable only by images having a
single gray level, and the upper bound is attainable only by two-valued
images.

Class
Support

The input image I can be of class uint8, uint16, int16, single,or
double and it must be nonsparse. The return value level is a double
scalar. The effectiveness metric EM is a double scalar.

Examples I = imread('coins.png');
level = graythresh(I);
BW = im2bw(I,level);
imshow(BW)

See Also im2bw

Reference [1] Otsu, N., "A Threshold Selection Method from Gray-Level
Histograms," IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 9, No. 1, 1979, pp. 62-66.

17-208

histeq

Purpose Enhance contrast using histogram equalization

Syntax J = histeq(I, hgram)
J = histeq(I, n)
[J, T] = histeq(I,...)
newmap = histeq(X, map, hgram)
newmap = histeq(X, map)
[newmap, T] = histeq(X,...)

Description histeq enhances the contrast of images by transforming the values in
an intensity image, or the values in the colormap of an indexed image,
so that the histogram of the output image approximately matches a
specified histogram.

J = histeq(I, hgram) transforms the intensity image I so that the
histogram of the output intensity image J with length(hgram) bins
approximately matches hgram. The vector hgram should contain integer
counts for equally spaced bins with intensity values in the appropriate
range: [0, 1] for images of class double, [0, 255] for images of class
uint8, and [0, 65535] for images of class uint16. histeq automatically
scales hgram so that sum(hgram) = prod(size(I)). The histogram of
J will better match hgram when length(hgram) is much smaller than
the number of discrete levels in I.

J = histeq(I, n) transforms the intensity image I, returning in J an
intensity image with n discrete gray levels. A roughly equal number of
pixels is mapped to each of the n levels in J, so that the histogram of
J is approximately flat. (The histogram of J is flatter when n is much
smaller than the number of discrete levels in I.) The default value for
n is 64.

[J, T] = histeq(I,...) returns the grayscale transformation that
maps gray levels in the image I to gray levels in J.

newmap = histeq(X, map, hgram) transforms the colormap associated
with the indexed image X so that the histogram of the gray component
of the indexed image (X,newmap) approximately matches hgram.
The histeq function returns the transformed colormap in newmap.
length(hgram) must be the same as size(map,1).

17-209

histeq

newmap = histeq(X, map) transforms the values in the colormap so
that the histogram of the gray component of the indexed image X is
approximately flat. It returns the transformed colormap in newmap.

[newmap, T] = histeq(X,...) returns the grayscale transformation T
that maps the gray component of map to the gray component of newmap.

Class
Support

For syntax that include an intensity image I as input, I can be of class
uint8, uint16, int16, single, or double. The output image J has the
same class as I.

For syntax that include an indexed image X as input, X can be of class
uint8, single, or double; the output colormap is always of class
double. The optional output T (the gray-level transform) is always of
class double..

Examples Enhance the contrast of an intensity image using histogram
equalization.

I = imread('tire.tif');
J = histeq(I);
imshow(I)
figure, imshow(J)

Display a histogram of the original image.

figure; imhist(I,64)

17-210

histeq

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

Compare it to a histogram of the processed image.

figure; imhist(J,64)

17-211

histeq

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

Algorithm When you supply a desired histogram hgram, histeq chooses the
grayscale transformation T to minimize

where c0 is the cumulative histogram of A, c1 is the cumulative sum
of hgram for all intensities k. This minimization is subject to the
constraints that T must be monotonic and c1(T(a)) cannot overshoot
c0(a) by more than half the distance between the histogram counts at
a. histeq uses this transformation to map the gray levels in X (or the
colormap) to their new values.

If you do not specify hgram, histeq creates a flat hgram,

hgram = ones(1,n)*prod(size(A))/n;

17-212

histeq

and then applies the previous algorithm.

See Also brighten, imadjust, imhist

17-213

hough

Purpose Hough transform

Syntax [H, theta, rho] = hough(BW)
[H, theta, rho] = hough(BW, param1, val1, param2, val2)

Description [H, theta, rho] = hough(BW) computes the Standard Hough
Transform (SHT) of the binary image BW. You can use the hough
function to detect lines in an image. The function returns H, the Hough
transform matrix. theta (in degrees) and rho are the arrays of rho and
theta values over which the Hough transform matrix was generated.

[H, theta, rho] = hough(BW, param1, val1, param2, val2)
specifies parameter/value pairs, listed in the following table. Parameter
names can be abbreviated, and case does not matter.

Parameter Description

'ThetaResolution' Real scalar value between 0 and 90,
exclusive, that specifies the spacing (in
degrees) of the Hough transform bins
along the theta axis. Default: 1.

'RhoResolution' Real scalar value between 0 and
norm(size(BW)), exclusive, that specifies
the spacing of the Hough transform bins
along the rho axis. Default: 1

Notes The hough function implements the Standard Hough Transform (SHT).
The SHT uses the parametric representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector
perpendicular to the line. theta is the angle between the x-axis and this
vector. The hough function generates a parameter space matrix whose
rows and columns correspond to rho and theta values respectively.
Peak values in this space represent potential lines in the input image.

17-214

hough

The Hough transform matrix, H, is NRHO-by-NTHETA where
NRHO = 2*ceil(norm(size(BW))/RhoResolution)-1, and
NTHETA = 2*ceil(90/ThetaResolution). Theta angle
values are in the range [-90, 90) degrees and rho values
range from -DIAGONAL to DIAGONAL where DIAGONAL =
RhoResolution*ceil(norm(size(BW))/RhoResolution). Note
that if 90/DTHETA is not an integer, the actual angle spacing will be
90/ceil(90/DTHETA).

Class
Support

BW can be logical or numeric and it must be real, 2-D, and nonsparse.

Examples Compute and display the Hough transform of an image

RGB = imread('gantrycrane.png');
I = rgb2gray(RGB); % convert to intensity
BW = edge(I,'canny'); % extract edges
[H,T,R] = hough(BW,'RhoResolution',0.5,'ThetaResolution',0.5);

% display the original image
subplot(2,1,1);
imshow(RGB);
title('gantrycrane.png');

% display the hough matrix
subplot(2,1,2);
imshow(imadjust(mat2gray(H)),'XData',T,'YData',R,...

'InitialMagnification','fit');
title('Hough transform of gantrycrane.png');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
colormap(hot);

See also houghpeaks, houghlines

17-215

houghlines

Purpose Extract line segments based on Hough transform

Syntax lines = houghlines(BW, theta, rho, peaks)
lines = houghlines(..., param1, val1, param2, val2)

Description lines = houghlines(BW, theta, rho, peaks) extracts line
segments in the image BW associated with particular bins in a Hough
transform. theta and rho are vectors returned by function hough.
peaks is a matrix returned by the houghpeaks function that contains
the row and column coordinates of the Hough transform bins to use in
searching for line segments.

The houghlines function returns lines, a structure array whose length
equals the number of merged line segments found. Each element of the
structure array has these fields:

Field Description

point1 Two element vector [X Y] specifying the coordinates
of the end-point of the line segment

point2 Two element vector [X Y] specifying the coordinates
of the end-point of the line segment

theta Angle in degrees of the Hough transform bin

rho rho axis position of the Hough transform bin

lines = houghlines(..., param1, val1, param2, val2) specifies
parameter/value pairs, listed in the following table. Parameter names
can be abbreviated, and case does not matter.

17-216

houghlines

Parameter Description

'FillGap' Positive real scalar value that specifies the distance
between two line segments associated with the same
Hough transform bin. When the distance between
the line segments is less the value specified, the
houghlines function merges the line segments into
a single line segment. Default: 20

'MinLength' Positive real scalar value that specifies whether
merged lines should be kept or discarded. Lines
shorter than the value specified are discarded.
Default: 40

Class
Support

BW can be logical or numeric and it must be real, 2-D, and nonsparse.

Examples Search for line segments in an image and highlight the longest segment.

I = imread('circuit.tif');
rotI = imrotate(I,33,'crop');
BW = edge(rotI,'canny');
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,...

'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','white');
% Find lines and plot them
lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(rotI), hold on
max_len = 0;
for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

17-217

houghlines

% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

% Determine the endpoints of the longest line segment
len = norm(lines(k).point1 - lines(k).point2);
if (len > max_len)

max_len = len;
xy_long = xy;

end
end

% highlight the longest line segment
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');

See also hough, houghpeaks

17-218

houghpeaks

Purpose Identify peaks in Hough transform

Syntax peaks = houghpeaks(H, numpeaks)
peaks = houghpeaks(..., param1, val1, param2, val2)

Description peaks = houghpeaks(H, numpeaks) locates peaks in the Hough
transform matrix, H, generated by the hough function. numpeaks is a
scalar value that specifies the maximum number of peaks to identify. If
you omit numpeaks, it defaults to 1.

The function returns peaks, a Q-by-2 matrix, where Q can range from 0
to numpeaks. Q holds the row and column coordinates of the peaks.

peaks = houghpeaks(..., param1, val1, param2, val2) specifies
parameter/value pairs, listed in the following table. Parameter names
can be abbreviated, and case does not matter.

Parameter Description

'Threshold' Nonnegative scalar value that specifies the
threshold at which values of H are considered to be
peaks. Threshold can vary from 0 to Inf. Default
is 0.5*max(H(:)).

'NHoodSize' Two-element vector of positive odd integers:
[M N]. 'NHoodSize' specifies the size of
the suppression neighborhood. This is the
neighborhood around each peak that is set to zero
after the peak is identified. Default: smallest odd
values greater than or equal to size(H)/50.

Class
Support

H is the output of the hough function. numpeaks is a positive integer
scalar.

Examples Locate and display two peaks in the Hough transform of a rotated image.

I = imread('circuit.tif');
BW = edge(imrotate(I,50,'crop'),'canny');

17-219

houghpeaks

[H,T,R] = hough(BW);
P = houghpeaks(H,2);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
plot(T(P(:,2)),R(P(:,1)),'s','color','white');

See also hough, houghlines

17-220

hsv2rgb

Purpose Convert hue-saturation-value (HSV) values to RGB color space

Note hsv2rgb is a function in MATLAB.

17-221

iccfind

Purpose Search for ICC profiles

Syntax P = iccfind(directory)
[P, descriptions] = iccfind(directory)
[...] = iccfind(directory, pattern)

Description P = iccfind(directory) searches for all of the ICC profiles found in
the directory specified by directory. The function returns P, a cell
array of structures containing profile information.

[P, descriptions] = iccfind(directory) searches for all of the
ICC profiles in the specified directory and returns P, a cell array of
structures containing profile information, and descriptions, a cell
array of text strings, where each string describes the corresponding
profile in P. Each text string is the value of the Description.String
field in the profile information structure.

[...] = iccfind(directory, pattern) returns all of the ICC
profiles in the specified directory with a given pattern in their
Description.String fields. iccfind performs case-insensitive pattern
matching.

Note To improve performance, iccfind caches copies of the ICC profiles
in memory. Adding or modifying profiles might not change the results of
iccfind. To clear the cache, use the clear functions command.

Examples Get all the ICC profiles in the default system directory where profiles
are stored.

profiles = iccfind(iccroot);

Get a listing of all the ICC profiles with text strings that describe each
profile.

[profiles, descriptions] = iccfind(profiles);

17-222

iccfind

Find the profiles whose descriptions contain the text string RGB.

[profiles, descriptions] = iccfind(iccroot, 'rgb');

See Also iccread, iccroot, iccwrite

17-223

iccread

Purpose Read ICC profile

Syntax P = iccread(filename)

Description P = iccread(filename) reads the International Color Consortium
(ICC) color profile information from the file specified by filename.
The file can be either an ICC profile file or a TIFF file containing an
embedded ICC profile. To determine if a TIFF file contains an embedded
ICC profile, use the imfinfo function to get information about the file
and look for the ICCProfileOffset field. iccread looks for the file
in the current directory, a directory on the MATLAB path, or in the
directory returned by iccroot, in that order.

iccread returns the profile information in the structure P, a 1-by-1
structure array whose fields contain the data structures (called tags)
defined in the ICC specification. iccread can read profiles that conform
with either Version 2 (ICC.1:2001-04) or Version 4 (ICC.1:2001-12) of
the ICC specification. For more information about ICC profiles, visit
the ICC web site, www.color.org.

ICC profiles provide color management systems with the information
necessary to convert color data between native device color spaces and
device independent color spaces, called the Profile Connection Space
(PCS). You can use the profile as the source or destination profile with
the makecform function to compute color space transformations.

The number of fields in P depends on the profile class and the choices
made by the profile creator. iccread returns all the tags for a given
profile, both public and private. Private tags and certain public tags
are left as encoded uint8 data. The following table lists fields that
are found in any profile structure generated by iccread, in the order
they appear in the structure.

17-224

http://www.color.org

iccread

Field Data Type Description

Header 1-by-1
struct
array

Profile header fields

TagTable n-by-3 cell
array

Profile tag table

Copyright Text string Profile copyright notice

Description 1-by-1
struct
array

The String field in this structure
contains a text string describing
the profile.

MediaWhitepoint double
array

XYZ tristimulus values of the
device’s media white point

PrivateTags m-by-2 cell
array

Contents of all the private tags
or tags not defined in the ICC
specifications. The tag signatures
are in the first column, and the
contents of the tags are in
the second column. Note that
iccread leaves the contents
of these tags in unsigned 8-bit
encoding.

Filename Text string Name of the file containing the
profile

Additionally, P might contain one or more of the following transforms:

• Three-component, matrix-based transform: A simple transform that
is often used to transform between the RGB and XYZ color spaces. If
this transform is present, P contains a field called MatTRC.

• N-component LUT-based transform: A transform that is used
for transforming between color spaces that have a more complex
relationship. This type of transform is found in any of the following
fields in P:

17-225

iccread

AToB0 BToA0 Preview0

AToB1 BToA1 Preview1

AToB2 BToA2 Preview2

AToB3 BToA3 Gamut

Notes Portions of the implementation of iccread are derived from the RSA
Data Security, Inc., MD5 Message-Digest Algorithm.

Examples The example reads the ICC profile that describes a typical PC computer
monitor.

P = iccread('sRGB.icm')

P =

Header: [1x1 struct]

TagTable: {17x3 cell}

Copyright: 'Copyright (c) 1999 Hewlett-Packard Company'

Description: [1x1 struct]

MediaWhitePoint: [0.9505 1 1.0891]

MediaBlackPoint: [0 0 0]

DeviceMfgDesc: [1x1 struct]

DeviceModelDesc: [1x1 struct]

ViewingCondDesc: [1x1 struct]

ViewingConditions: [1x1 struct]

Luminance: [76.0365 80 87.1246]

Measurement: [1x36 uint8]

Technology: [115 105 103 32 0 0 0 0 67 82 84 32]

MatTRC: [1x1 struct]

PrivateTags: {}

Filename: 'sRGB.icm'

The profile header provides general information about the profile, such
as its class, color space, and PCS. For example, to determine the source
color space, view the ColorSpace field in the Header structure.

17-226

iccread

P.Header.ColorSpace

ans =

RGB

See Also applycform, iccfind, iccroot, iccwrite, isicc, makecform

17-227

iccroot

Purpose Find system default ICC profile repository

Syntax rootdir = iccroot

Description rootdir = iccroot returns the system directory containing ICC
profiles. Additional profiles can be stored in other directories, but this is
the default location used by the color management system.

Note Only Windows and Mac OS X platforms are supported.

Examples Return information on all the profiles in the root directory.

iccfind(iccroot)

See Also iccfind, iccread, iccwrite

17-228

iccwrite

Purpose Write ICC color profile to disk file

Syntax P_new = iccwrite(P, filename)

Description P_new = iccwrite(P, filename) writes the International Color
Consortium (ICC) color profile data in structure P to the file specified
by filename.

P is a structure representing an ICC profile in the data format
returned by iccread and used by makecform and applycform to
compute color-space transformations. P must contain all the tags and
fields required by the ICC profile specification. Some fields may be
inconsistent, however, because of interactive changes to the structure.
For instance, the tag table may not be correct because tags may have
been added, deleted, or modified since the tag table was constructed.
iccwrite makes any necessary corrections to the profile structure
before writing it to the file and returns this corrected structure in P_new.

Note Because some applications use the profile description string
in the ICC profile to present choices to users, the ICC recommends
modifying the profile description string in the ICC profile data before
writing the data to a file. Each profile should have a unique description
string. For more information, see the example.

iccwrite can write the color profile data using either Version 2
(ICC.1:2001-04) or Version 4 (ICC.1:2001-12) of the ICC specification,
depending on the value of the Version field in the file profile header. If
any required fields are missing, iccwrite errors. For more information
about ICC profiles, visit the ICC web site, www.color.org.

17-229

http://www.color.org

iccwrite

Note iccwrite does not perform automatic conversions from one
version of the ICC specification to another. Such conversions have to
be done manually, by adding fields or modifying fields. Use isicc
to validate a profile.

Notes Portions of the implementation of iccwrite are derived from the RSA
Data Security, Inc. MD5 Message-Digest Algorithm.

Examples Read a profile into the MATLAB workspace and export the profile data
to a new file. The example changes the profile description string in the
profile data before writing the data to a file.

P = iccread('monitor.icm');

P.Description.String

ans =

sgC4_050102_d50.pf

P.Description.String = 'my new description';

pmon = iccwrite(P, 'monitor2.icm');

See Also applycform, iccread, isicc, makecform

17-230

idct2

Purpose 2-D inverse discrete cosine transform

Syntax B = idct2(A)
B = idct2(A,m,n)
B = idct2(A,[m n])

Description B = idct2(A) returns the two-dimensional inverse discrete cosine
transform (DCT) of A.

B = idct2(A,m,n) pads A with 0’s to size m-by-n before transforming. If
[m n] < size(A), idct2 crops A before transforming.

B = idct2(A,[m n]) same as above.

For any A, idct2(dct2(A)) equals A to within roundoff error.

Class
Support

The input matrix A can be of class double or of any numeric class. The
output matrix B is of class double.

Algorithm idct2 computes the two-dimensional inverse DCT using

Examples Create a DCT matrix.

RGB = imread('autumn.tif');
I = rgb2gray(RGB);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet), colorbar

Set values less than magnitude 10 in the DCT matrix to zero, then
reconstruct the image using the inverse DCT function idct2.

17-231

idct2

J(abs(J)<10) = 0;
K = idct2(J);
figure, imshow(I)
figure, imshow(K,[0 255])

See Also dct2, dctmtx, fft2, ifft2

References [1] Jain, A. K., Fundamentals of Digital Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1989, pp. 150-153.

[2] Pennebaker, W. B., and J. L. Mitchell, JPEG: Still Image Data
Compression Standard, New York, Van Nostrand Reinhold, 1993.

17-232

ifanbeam

Purpose Inverse fan-beam transform

Syntax I = ifanbeam(F,D)
I = ifanbeam(...,param1,val1,param2,val2,...)
[I,H] = ifanbeam(...)

Description I = ifanbeam(F,D) reconstructs the image I from projection data
in the two-dimensional array F. Each column of F contains fan-beam
projection data at one rotation angle. ifanbeam assumes that the center
of rotation is the center point of the projections, which is defined as
ceil(size(F,1)/2).

The fan-beam spread angles are assumed to be the same increments
as the input rotation angles split equally on either side of zero. The
input rotation angles are assumed to be stepped in equal increments
to cover [0:359] degrees.

D is the distance from the fan-beam vertex to the center of rotation.

I = ifanbeam(...,param1,val1,param2,val2,...) specifies
parameters that control various aspects of the ifanbeam reconstruction,
described in the following table. Parameter names can be abbreviated,
and case does not matter. Default values are in braces ({}).

Parameter Description

'FanCoverage' String specifying the range through
which the beams are rotated.
{'cycle'} — Rotate through the full
range [0,360).
'minimal' — Rotate the minimum range
necessary to represent the object.

'FanRotationIncrement' Positive real scalar specifying the
increment of the rotation angle of the
fan-beam projections, measured in
degrees. See fanbeam for details.

17-233

ifanbeam

Parameter Description

'FanSensorGeometry' String specifying how sensors are
positioned.

'arc' — Sensors are spaced equally
along a circular arc at distance D from
the center of rotation. Default value is
'arc'

'line' — Sensors are spaced equally
along a line, the closest point of which is
distance D from the center of rotation.

See fanbeam for details.

'FanSensorSpacing' Positive real scalar specifying the spacing
of the fan-beam sensors. Interpretation
of the value depends on the setting of
'FanSensorGeometry'.

If 'FanSensorGeometry' is set to 'arc'
(the default), the value defines the
angular spacing in degrees. Default
value is 1.

If 'FanSensorGeometry' is 'line',
the value specifies the linear spacing.
Default value is 1. See fanbeam for
details.

'Filter' String specifying the name of a filter.
See iradon for details.

'FrequencyScaling' Scalar in the range (0,1] that modifies
the filter by rescaling its frequency axis.
See iradon for details.

17-234

ifanbeam

Parameter Description

'Interpolation' Text string specifying the type of
interpolation used between the
parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' —- Piecewise cubic Hermite
(PCHIP)

'cubic' — Same as 'pchip'

'OutputSize' Positive scalar specifying the number of
rows and columns in the reconstructed
image.

If 'OutputSize' is not specified,
ifanbeam determines the size
automatically.

If you specify 'OutputSize', ifanbeam
reconstructs a smaller or larger portion
of the image, but does not change the
scaling of the data.

Note If the projections were calculated
with the fanbeam function, the
reconstructed image might not be the
same size as the original image.

[I,H] = ifanbeam(...) returns the frequency response of the filter
in the vector H.

17-235

ifanbeam

Notes ifanbeam converts the fan-beam data to parallel beam projections and
then uses the filtered back projection algorithm to perform the inverse
Radon transform. The filter is designed directly in the frequency domain
and then multiplied by the FFT of the projections. The projections are
zero-padded to a power of 2 before filtering to prevent spatial domain
aliasing and to speed up the FFT.

Class
Support

The input arguments, F and D, can be double or single. All other
numeric input arguments must be double. The output arguments are
double.

Examples Example 1

This example creates a fan-beam transformation of the phantom head
image and then calls the ifanbeam function to recreate the phantom
image from the fan-beam transformation.

ph = phantom(128);
d = 100;
F = fanbeam(ph,d);
I = ifanbeam(F,d);
imshow(ph), figure, imshow(I);

Example 2

This example illustrates use of the ifanbeam function with the
'fancoverage' option set to 'minimal' .

ph = phantom(128);
P = radon(ph);
[F,obeta,otheta] = para2fan(P,100,...

'FanSensorSpacing',0.5,...
'FanCoverage','minimal',...
'FanRotationIncrement',1);

phReconstructed = ifanbeam(F,100,...
'FanSensorSpacing',0.5,...
'Filter','Shepp-Logan',...
'OutputSize',128,...
'FanCoverage','minimal',...

17-236

ifanbeam

'FanRotationIncrement',1);
imshow(ph), figure, imshow(phReconstructed)

See Also fan2para, fanbeam, iradon, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic
Imaging, New York, NY, IEEE Press, 1988.

17-237

ifft2

Purpose 2-D inverse fast Fourier transform

Note ifft2 is a function in MATLAB.

17-238

ifftn

Purpose N-D inverse fast Fourier transform

Note ifftn is a function in MATLAB.

17-239

im2bw

Purpose Convert image to binary image, based on threshold

Syntax BW = im2bw(I, level)
BW = im2bw(X, map, level)
BW = im2bw(RGB, level)

Description BW = im2bw(I, level) converts the grayscale image I to a binary
image. The output image BW replaces all pixels in the input image with
luminance greater than level with the value 1 (white) and replaces
all other pixels with the value 0 (black). You specify level in the
range [0,1], regardless of the class of the input image. The function
graythresh can be used to compute the level argument automatically.

BW = im2bw(X, map, level) converts the indexed image X with
colormap map to a binary image.

BW = im2bw(RGB, level) converts the truecolor image RGB to a binary
image.

If the input image is not a grayscale image, im2bw converts the input
image to grayscale, and then converts this grayscale image to binary
by thresholding.

Class
Support

The input image can be of class uint8, uint16, single, int16, or
double, and must be nonsparse. The output image BW is of class
logical.

17-240

im2bw

Examples load trees
BW = im2bw(X,map,0.4);
imshow(X,map), figure, imshow(BW)

See Also graythresh, ind2gray, rgb2gray

17-241

im2col

Purpose Rearrange image blocks into columns

Syntax B = im2col(A,[m n],block_type)
B = im2col(A,'indexed',...)

Description B = im2col(A,[m n],block_type) rearranges image blocks into
columns. block_type is a string that can have one of these values. The
default value is enclosed in braces ({}).

Value Description

'distinct' Rearranges each distinct m-by-n block in the image A
into a column of B. im2col pads A with 0’s, if necessary,
so its size is an integer multiple of m-by-n. If A = [A11
A12; A21 A22], where each Aij is m-by-n, then B =
[A11(:) A12(:) A21(:) A22(:)].

{'sliding'} Converts each sliding m-by-n block of A into a column of
B, with no zero padding. B has m*n rows and contains
as many columns as there are m-by-n neighborhoods
of A. If the size of A is [mm nn], then the size of B is
(m*n)-by-((mm-m+1)*(nn-n+1)).

For the sliding block case, each column of B contains the neighborhoods
of A reshaped as NHOOD(:) where NHOOD is a matrix containing an
m-by-n neighborhood of A. im2col orders the columns of B so that they
can be reshaped to form a matrix in the normal way. For Examples,
suppose you use a function, such as sum(B), that returns a scalar for
each column of B. You can directly store the result in a matrix of size
(mm-m+1)-by-(nn-n+1), using these calls.

B = im2col(A,[m n],'sliding');
C = reshape(sum(B),mm-m+1,nn-n+1);

B = im2col(A,'indexed',...) processes A as an indexed image,
padding with 0’s if the class of A is uint8, or 1’s if the class of A is double.

17-242

im2col

Class
Support

The input image A can be numeric or logical. The output matrix B is of
the same class as the input image.

See Also blkproc, col2im, colfilt, nlfilter

17-243

im2double

Purpose Convert image to double precision

Syntax I2 = im2double(I)
RGB2 = im2double(RGB)
I = im2double(BW)
X2 = im2double(X,'indexed')

Description I2 = im2double(I) converts the intensity image I to double precision,
rescaling the data if necessary.

If the input image is of class double, the output image is identical.

RGB2 = im2double(RGB) converts the truecolor image RGB to double
precision, rescaling the data if necessary.

I = im2double(BW) converts the binary image BW to a double-precision
intensity image.

X2 = im2double(X,'indexed') converts the indexed image X to double
precision, offsetting the data if necessary.

Class
Support

Intensity and truecolor images can be uint8, uint16, double, logical,
single, or int16. Indexed images can be uint8, uint16, double or
logical. Binary input images must be logical. The output image is
double.

Examples I1 = reshape(uint8(linspace(1,255,25)),[5 5])
I2 = im2double(I1)

See Also double, im2single, im2int16, im2uint8, im2uint16

17-244

im2int16

Purpose Convert image to 16-bit signed integers

Syntax I2 = im2int16(I)
RGB2 = im2int16(RGB)
I = im2int16(BW)

Description I2 = im2int16(I) converts the intensity image I to int16, rescaling
the data if necessary. If the input image is of class int16, the output
image is identical to it.

RGB2 = im2int16(RGB) converts the truecolor image RGB to int16,
rescaling the data if necessary.

I = im2int16(BW) converts the binary image BW to an int16 intensity
image, changing false-valued elements to -32768 and true-valued
elements to 32767.

Class
Support

Intensity and truecolor images can be uint8, uint16, int16, single,
double, or logical. Binary input images must be logical. The output
image is int16.

Examples I = reshape(linspace(0,1,20),[5 4])
I2 = im2int16(I)

See Also im2double, im2single, im2uint8, im2uint16, int16

17-245

im2java

Purpose Convert image to Java image

Note im2java is a MATLAB function.

17-246

im2java2d

Purpose Convert image to Java buffered image

Syntax jimage = im2java2d(I)
jimage = im2java2d(X,MAP)

Description jimage = im2java2d(I) converts the image I to an instance of the
Java image class java.awt.image.BufferedImage. The image I can be
an intensity (grayscale), RGB, or binary image.

jimage = im2java2d(X,MAP) converts the indexed image
X with colormap MAP to an instance of the Java class
java.awt.image.BufferedImage.

Note The im2java2d function works with the Java 2D API. The
im2java function works with the Java Abstract Windowing Toolkit
(AWT).

Class
Support

Intensity, indexed, and RGB input images can be of class uint8, uint16,
or double. Binary input images must be of class logical.

Examples Read an image into the MATLAB workspace and then use
im2java2d to convert it into an instance of the Java class
java.awt.image.BufferedImage.

I = imread('moon.tif');
javaImage = im2java2d(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack
frame.show

17-247

im2single

Purpose Convert image to single precision

Syntax I2 = im2single(I)
RGB2 = im2single(RGB)
I = im2single(BW)
X2 = im2single(X,'indexed')

Description I2 = im2single(I) converts the intensity image I to single, rescaling
the data if necessary. If the input image is of class single, the output
image is identical to it.

RGB2 = im2single(RGB) converts the truecolor image RGB to single,
rescaling the data if necessary.

I = im2single(BW) converts the binary image BW to a single-precision
intensity image.

X2 = im2single(X,'indexed') converts the indexed image X to single
precision, offsetting the data if necessary.

Class
Support

Intensity and truecolor images can be uint8, uint16, int16, single,
double, or logical. Indexed images can be uint8, uint16, double or
logical. Binary input images must be logical. The output image is
single.

Examples I = reshape(uint8(linspace(1,255,25)),[5 5])
I2 = im2single(I)

See Also im2double, im2int16, im2uint8, im2uint16, single

17-248

im2uint16

Purpose Convert image to 16-bit unsigned integers

Syntax I2 = im2uint16(I)
RGB2 = im2uint16(RGB)
I = im2uint16(BW)
X2 = im2uint16(X,'indexed')

Description I2 = im2uint16(I) converts the intensity image I to uint16, rescaling
the data if necessary. If the input image is of class uint16, the output
image is identical to it.

RGB2 = im2uint16(RGB) converts the truecolor image RGB to uint16,
rescaling the data if necessary.

I = im2uint16(BW) converts the binary image BW to a uint16 intensity
image, changing 1-valued elements to 65535.

X2 = im2uint16(X,'indexed') converts the indexed image X to
uint16, offsetting the data if necessary. If X is of class double,
max(X(:)) must be 65536 or less.

Class
Support

Intensity and truecolor images can be uint8, uint16, double, logical,
single, or int16. Indexed images can be uint8, uint16, double, or
logical. Binary input images must be logical. The output image is
uint16.

Examples I = reshape(linspace(0,1,20),[5 4])
I2 = im2uint16(I)

See Also im2uint8, double, im2double, uint8, uint16, imapprox

17-249

im2uint8

Purpose Convert image to 8-bit unsigned integers

Syntax I2 = im2uint8(I)
RGB2 = im2uint8(RGB)
I = im2uint8(BW)
X2 = im2uint8(X,'indexed')

Description I2 = im2uint8(I) converts the intensity image I to uint8, rescaling
the data if necessary. If the input image is of class uint8, the output
image is identical to it.

RGB2 = im2uint8(RGB) converts the truecolor image RGB to uint8,
rescaling the data if necessary.

I = im2uint8(BW) converts the binary image BW to a uint8 intensity
image, changing 1-valued elements to 255

X2 = im2uint8(X,'indexed') converts the indexed image X to uint8,
offsetting the data if necessary. Note that it is not always possible to
convert an indexed image to uint8. If X is of class double, the maximum
value of X must be 256 or less; if X is of class uint16, the maximum
value of X must be 255 or less.

Class
Support

Intensity and truecolor images can be uint8, uint16, double, logical,
single, or int16. Indexed images can be uint8, uint16, double, or
logical. Binary input images must be logical. The output image is
uint8.

Examples I = reshape(uint8(linspace(0,255,255)),[5 5])
I2 = im2uint8(I)

See Also im2double, im2int16, im2single, im2uint16, uint8

17-250

imabsdiff

Purpose Absolute difference of two images

Syntax Z = imabsdiff(X,Y)

Description Z = imabsdiff(X,Y) subtracts each element in array Y from the
corresponding element in array X and returns the absolute difference
in the corresponding element of the output array Z. X and Y are real,
nonsparse numeric arrays with the same class and size. Z has the same
class and size as X and Y. If X and Y are integer arrays, elements in the
output that exceed the range of the integer type are truncated.

If X and Y are double arrays, you can use the expression abs(X-Y)
instead of this function.

Note On Intel architecture processors, imabsdiff can take advantage
of the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated only if arrays X, Y, and Z are of
class logical, uint8, or single, and are of the same class.

Examples Calculate the absolute difference between two uint8 arrays. Note that
the absolute value prevents negative values from being rounded to zero
in the result, as they are with imsubtract.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imabsdiff(X,Y)

Z =
205 40 25

6 175 50

Display the absolute difference between a filtered image and the
original.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));

17-251

imabsdiff

K = imabsdiff(I,J);
imshow(K,[]) % [] = scale data automatically

See Also imadd, imcomplement, imdivide, imlincomb, immultiply, imsubtract,
ippl

17-252

imadd

Purpose Add two images or add constant to image

Syntax Z = imadd(X,Y)

Description Z = imadd(X,Y) adds each element in array X with the corresponding
element in array Y and returns the sum in the corresponding element
of the output array Z. X and Y are real, nonsparse numeric arrays with
the same size and class, or Y is a scalar double. Z has the same size and
class as X, unless X is logical, in which case Z is double.

If X and Y are integer arrays, elements in the output that exceed the
range of the integer type are truncated, and fractional values are
rounded.

Note On Intel architecture processors, imadd can take advantage of
the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated if arrays X, Y, and Z are of class
logical, uint8, or single and are of the same class. IPPL is also
activated if Y is a double scalar and arrays X and Z are uint8, int16, or
single and are of the same class.

Examples Add two uint8 arrays. Note the truncation that occurs when the values
exceed 255.

X = uint8([255 0 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imadd(X,Y)
Z =

255 50 125
94 255 150

Add two images together and specify an output class.

I = imread('rice.png');
J = imread('cameraman.tif');

17-253

imadd

K = imadd(I,J,'uint16');
imshow(K,[])

Add a constant to an image.

I = imread('rice.png');
J = imadd(I,50);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See Also imabsdiff, imcomplement, imdivide, imlincomb, immultiply,
imsubtract, ippl

17-254

imadjust

Purpose Adjust image intensity values or colormap

Syntax J = imadjust(I)
J = imadjust(I,[low_in; high_in],[low_out; high_out])
J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma)
newmap = imadjust(map,[low_in; high_in],[low_out; high_out],

gamma)
RGB2 = imadjust(RGB1,...)

Description J = imadjust(I) maps the intensity values in grayscale image I to
new values in J such that 1% of data is saturated at low and high
intensities of I. This increases the contrast of the output image J. This
syntax is equivalent to imadjust(I,stretchlim(I)).

J = imadjust(I,[low_in; high_in],[low_out; high_out]) maps
the values in I to new values in J such that values between low_in
and high_in map to values between low_out and high_out. Values
below low_in and above high_in are clipped; that is, values below
low_in map to low_out, and those above high_in map to high_out.
You can use an empty matrix ([]) for [low_in high_in] or for [low_out
high_out] to specify the default of [0 1].

J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma)
maps the values in I to new values in J, where gamma specifies the
shape of the curve describing the relationship between the values
in I and J. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values. If gamma is greater than 1, the mapping
is weighted toward lower (darker) output values. If you omit the
argument, gamma defaults to 1 (linear mapping).

newmap = imadjust(map,[low_in; high_in],[low_out;
high_out],gamma) transforms the colormap associated with an indexed
image. If low_in, high_in, low_out, high_out, and gamma are scalars,
then the same mapping applies to red, green, and blue components.
Unique mappings for each color component are possible when

low_in and high_in are both 1-by-3 vectors.

17-255

imadjust

low_out and high_out are both 1-by-3 vectors, or gamma is a 1-by-3
vector.

The rescaled colormap newmap is the same size as map.

RGB2 = imadjust(RGB1,...) performs the adjustment on each image
plane (red, green, and blue) of the RGB image RGB1. As with the
colormap adjustment, you can apply unique mappings to each plane.

Note If high_out < low_out, the output image is reversed, as in a
photographic negative.

Class
Support

For syntax variations that include an input image (rather than a
colormap), the input image can be of class uint8, uint16, int16,
single, or double. The output image has the same class as the input
image. For syntax variations that include a colormap, the input and
output colormaps are of class double.

Examples Adjust a low-contrast grayscale image.

I = imread('pout.tif');
J = imadjust(I);
imshow(I), figure, imshow(J)

17-256

imadjust

Adjust the grayscale image, specifying the contrast limits.

K = imadjust(I,[0.3 0.7],[]);
figure, imshow(K)

Adjust an RGB image.

RGB1 = imread('football.jpg');
RGB2 = imadjust(RGB1,[.2 .3 0; .6 .7 1],[]);
imshow(RGB1), figure, imshow(RGB2)

See Also brighten, histeq, stretchlim

17-257

imageinfo

Purpose Image Information tool

Syntax imageinfo
imageinfo(h)
imageinfo(filename)
imageinfo(info)
imageinfo(himage,filename)
imageinfo(himage,info)
hfig=imageinfo(...)

Description imageinfo creates an Image Information tool associated with the image
in the current figure. The tool appears in a separate figure information
about the basic attributes of the target image. imageinfo gets the
image attributes by querying the image object’s CData.

The following table lists the basic image information included in the
Image Information tool display. Note that the tool contains either four
or six fields, depending on the type of image.

Attribute
Name Value

Width
(columns)

Number of columns in the image

Height (rows) Number of rows in the image

Class Data type used by the image, such as uint8.

Note For single or int16 images, imageinfo
returns a class value of double, because image objects
convert the CData of these classes to double.

Image type One of the image types identified by the Image
Processing Toolbox: 'intensity' 'truecolor',
'binary', or 'indexed'.

17-258

imageinfo

Attribute
Name Value

Minimum
intensity

For intensity images, this value represents the lowest
intensity value of any pixel.

For indexed images, this value represents the lowest
index value into a color map.

Not included for 'binary' or 'truecolor' images.

Maximum
intensity

For intensity images, this value represents the
highest intensity value of any pixel.

For indexed images, this value represents the highest
index value into a color map.

Not included for 'binary' or 'truecolor' images.

imageinfo(h) creates an Image Information tool associated with h,
where h is a handle to a figure, axes, or image object.

imageinfo(filename) creates an Image Information tool containing
image metadata from the graphics file filename. The image does not
have to be displayed in a figure window. filename can be any file
type that has been registered with an information function in the file
formats registry, imformats, so its information can be read by imfinfo.
filename can also be a DICOM file with information readable by
dicominfo.

imageinfo(info) creates an Image Information tool containing the
image metadata in the structure info. info is a structure returned
by the functions imfinfo or dicominfo, or info can be a user-created
structure.

imageinfo(himage,filename) creates an Image Information tool
containing information about the basic attributes of the image specified
by the handle himage and the image metadata from the graphics file
filename.

17-259

imageinfo

imageinfo(himage,info) creates an Image Information tool containing
information about the basic attributes of the image specified by the
handle himage and the image metadata in the structure info.

hfig=imageinfo(...) returns a handle to the Image Information tool
figure.

Examples imageinfo('peppers.png')

h = imshow('bag.png');
info = imfinfo('bag.png');
imageinfo(h,info);

imshow('trees.tif');
imageinfo;

See Also dicominfo, imattributes, imfinfo, imformats, imtool

17-260

imagemodel

Purpose Image Model object

Syntax imgmodel = imagemodel(himage)

Description imgmodel = imagemodel(himage) create an image model object
associated with the target image himage. himage is a handle to an
image object or an array of handles to image objects.

imagemodel returns an image model object or, if himage is an array of
image objects, an array of image model objects.

An image model object stores information about an image such as
class, type, display range, width, height, minimum intensity value and
maximum intensity value.

API
Functions

The image model object supports methods that you can use to access
this information, get information about the pixels in an image, and
perform special text formatting. The following lists these methods
with a brief description. Use methods(imgmodel) to get a list of image
model methods.

Method Description

getClassType Returns a string indicating the class of the image.

str = getClassType(imgmodel)

where imgmodel is a valid image model and str is a
text string, such as 'uint8'.

getDisplayRange Returns a double array containing the minimum and
maximum values of the display range for an intensity
image. For image types other than intensity, the
value returned is an empty array.

disp_range = getDisplayRange(imgmodel)

where imgmodel is a valid image model and
disp_range is an array of doubles, such as [0 255].

17-261

imagemodel

Method Description

getImageHeight Returns a double scalar containing the number of
rows.

height = getImageHeight(imgmodel)

where imgmodel is a valid image model and height
is a double scalar.

getImageType Returns a text string indicating the image type.

str = getImageType(imgmodel)

where imgmodel is a valid image model and str is
one of the text strings 'intensity', 'truecolor',
'binary', or 'indexed'.

getImageWidth Returns a double scalar containing the number of
columns.

width = getImageWidth(imgmodel)

where imgmodel is a valid image model and width is
a double scalar.

getMinIntensity Returns the minimum value in the image calculated
as min(Image(:)). For an intensity image, the value
returned is the minimum intensity. For an indexed
image, the value returned is the minimum index. For
any other image type, the value returned is an empty
array. minval = getMinIntensity(imgmodel)

where imgmodel is a valid image model and minval
is a numeric value. The class of minval depends on
the class of the target image.

17-262

imagemodel

Method Description

getMaxIntensity Returns the maximum value in the image calculated
as max(Image(:)). For an intensity image, the value
returned is the maximum intensity. For an indexed
image, the value returned is the maximum index.
For any other image type, the value returned is an
empty array.

maxval = getMaxIntensity(imgmodel)

where imgmodel is a valid image model and maxval
is a numeric value. The class of maxval depends on
the class of the target image.

getNumberFormatFcn Returns the handle to a function that converts a
numeric value into a string.

fun = getNumberFormatFcn(imgmodel)

where imgmodel is a valid image model. fun is a
handle to a function that accepts a numeric value
and returns the value as a text string. For example,
you can use this function to convert the numeric
return value of the getPixelValue method into a
text string.

str = fun(getPixelValue(imgmodel,100,100))

getPixelInfoString Returns a text string containing value of the pixel at
the location specified by row and column.

str =
getPixelInfoString(imgmodel,row,column)

where imgmodel is a valid image model and row and
column are numeric scalar values. str is a character
array. For example, for an RGB image, the method
returns a text string such as '[66 35 60]'.

17-263

imagemodel

Method Description

getPixelRegionFormatFcn Returns a handle to a function that formats the
value of a pixel into a text string.

fun = getPixelRegionFormatFcn(imgmodel)

where imgmodel is a valid image model. fun is
a handle to a function that accepts the location
(row,column) of a pixel in the target image and
returns the value of the pixel as a specially formatted
text string. For example, when used with an RGB
image, this function returns a text string of the form
'R:000 G:000 B:000' where 000 is the actual pixel
value.

str = fun(100,100)

getPixelValue Returns the value of the pixel at the location
specified by row and column as a numeric array.

val = getPixelValue(imgmodel,row, column)

where imgmodel is a valid image model and row and
column are numeric scalar values. The class of val
depends on the class of the target image.

getDefaultPixelInfoString Returns a text string indicating the type of
information returned in a pixel information string.
This string can be used in place of actual pixel
information values.

str = getDefaultPixelInfoString(imgmodel)

where imgmodel is a valid image model. Depending
on the image type, str can be the text string
'Intensity','[R G B]','BW', or '<Index> [R G
B]'.

17-264

imagemodel

Method Description

getDefaultPixelRegionString Returns a text string indicating the type of
information displayed in the Pixel Region tool for
each image type. This string can be used in place of
actual pixel values.

str = getDefaultPixelRegionString(imgmodel)

where imgmodel is a valid image model. Depending
on the image type, str can be the text string
'000','R:000 G:000 B:000]', '0', or '<000>
R:0.00 G:0.00 B:0.00'.

getScreenPixelRGBValue Returns the screen display value of the pixel at the
location specified by row and col as a double array.

val = getScreenPixelRGBValue(imgmodel,row,
col)

where imgmodel is a valid image model and row and
col are numeric scalar values. val is an array of
doubles, such as [0.2 0.5 0.3].

Note imagemodel works by querying the image object’s CData. For
a single or int16 image, the image object converts its CData to
double. For example, in the case of h = imshow(int16(ones(10))),
class(get(h,'CData')) returns 'double'. Therefore,
getClassType(imgmodel) returns 'double'.

Examples Create an image model.

h = imshow('peppers.png');
im = imagemodel(h);

figure,subplot(1,2,1)
h1 = imshow('hestain.png');
subplot(1,2,2)
h2 = imshow('coins.png');
im = imagemodel([h1 h2]);

17-265

imagemodel

See Also getimagemodel

17-266

imapprox

Purpose Approximate indexed image by one with fewer colors

Syntax [Y,newmap] = imapprox(X,map,n)
[Y,newmap] = imapprox(X,map,tol)
Y = imapprox(X,map,newmap)
Y = imapprox(...,dither_option)

Description [Y,newmap] = imapprox(X,map,n) approximates the colors in the
indexed image X and associated colormap map by using minimum
variance quantization. imapprox returns indexed image Y with
colormap newmap, which has at most n colors.

[Y,newmap] = imapprox(X,map,tol) approximates the colors in
X and map through uniform quantization. newmap contains at most
(floor(1/tol)+1)^3 colors. tol must be between 0 and 1.0.

Y = imapprox(X,map,newmap) approximates the colors in map by
using colormap mapping to find the colors in newmap that best match
the colors in map.

Y = imapprox(...,dither_option) enables or disables dithering.
dither_option is a string that can have one of these values. The
default value is enclosed in braces ({}).

Value Description

{'dither'} Dithers, if necessary, to achieve better color
resolution at the expense of spatial resolution.

'nodither' Maps each color in the original image to the
closest color in the new map. No dithering is
performed.

Class
Support

The input image X can be of class uint8, uint16, or double. The output
image Y is of class uint8 if the length of newmap is less than or equal to
256. If the length of newmap is greater than 256, Y is of class double.

Algorithm imapprox uses rgb2ind to create a new colormap that uses fewer colors.

17-267

imapprox

Examples Approximate the indexed image trees.tif by another indexed image
containing only 16 colors.

[X, map] = imread('trees.tif');
[Y, newmap] = imapprox(X, map, 16);
imshow(Y, newmap)

See Also cmunique, dither, rgb2ind

17-268

imattributes

Purpose Information about image attributes

Syntax attrs = imattributes
attrs = imattributes(himage)
attrs = imattributes(imgmodel)

Description attrs = imattributes returns information about an image in the
current figure. If the current figure does not contain an image,
imattributes returns an empty array.

attrs = imattributes(himage) returns information about the image
specified by himage, a handle to an image object. imattributes gets
the image attributes by querying the image object’s CData.

imattributes returns image attribute information in attrs, a 4-by-2
or 6-by-2 cell array, depending on the image type. The first column of
the cell array contains the name of the attribute as a text string. The
second column contains the value of the attribute, also represented as
a text string. The following table lists these attributes in the order
they appear in the cell array.

Attribute
Name Value

Width
(columns)

Number of columns in the image

Height (rows) Number of rows in the image

Class Data type used by the image, such as uint8.

Note For single or int16 images, imageinfo
returns a class value of double, because image
objects convert CData of these classes to double.

17-269

imattributes

Attribute
Name Value

Image type One of the image types identified by the Image
Processing Toolbox: 'intensity, 'truecolor',
'binary', or 'indexed'.

Minimum
intensity

For intensity images, this value represents the lowest
intensity value of any pixel.

For indexed images, this value represents the lowest
index value into a color map.

Not included for 'binary' or 'truecolor' images.

Maximum
intensity

For intensity images, this value represents the
highest intensity value of any pixel.

For indexed images, this value represents the highest
index value into a color map.

Not included for 'binary' or 'truecolor' images.

attrs = imattributes(imgmodel) returns information about the
image represented by the image model object, imgmodel.

Examples Retrieve the attributes of a grayscale image.

h = imshow('liftingbody.png');
attrs = imattributes(h)
attrs =

'Width (columns)' '512'
'Height (rows)' '512'
'Class' 'uint8'
'Image type' 'intensity'
'Minimum intensity' '0'
'Maximum intensity' '255'

Retrieve the attributes of a truecolor image.

17-270

imattributes

h = imshow('gantrycrane.png');
im = imagemodel(h);
attrs = imattributes(im)
attrs =

'Width (columns)' '400'
'Height (rows)' '264'
'Class' 'uint8'
'Image type' 'truecolor'

See Also imagemodel

17-271

imbothat

Purpose Bottom-hat filtering

Syntax IM2 = imbothat(IM,SE)
IM2 = imbothat(IM,NHOOD)

Description IM2 = imbothat(IM,SE) performs morphological bottom-hat filtering
on the grayscale or binary input image, IM, returning the filtered image,
IM2. The argument SE is a structuring element returned by the strel
function. SE must be a single structuring element object, not an array
containing multiple structuring element objects.

IM2 = imbothat(IM,NHOOD) performs morphological bottom-hat
filtering where NHOOD is an array of 0’s and 1’s that specifies the
size and shape of the structuring element. This is equivalent to
imbothat(IM,strel(NHOOD)).

Class
Support

IM can be numeric or logical and must be nonsparse. The output image
has the same class as the input image. If the input is binary (logical),
then the structuring element must be flat.

Examples Top-hat filtering and bottom-hat filtering can be used together to
enhance contrast in an image.

1 Read the image into the MATLAB workspace.

I = imread('pout.tif');
imshow(I)

17-272

imbothat

2 Create disk-shaped structuring element, needed for morphological
processing.

se = strel('disk',3);

3 Add the original image I to the top-hat filtered image, and then
subtract the bottom-hat filtered image.

J = imsubtract(imadd(I,imtophat(I,se)), imbothat(I,se));
figure, imshow(J)

See Also imtophat, strel

17-273

imclearborder

Purpose Suppress light structures connected to image border

Syntax IM2 = imclearborder(IM)
IM2 = imclearborder(IM,conn)

Description IM2 = imclearborder(IM) suppresses structures that are lighter than
their surroundings and that are connected to the image border. IM can
be a grayscale or binary image. The output image, IM2, is grayscale or
binary, respectively. The default connectivity is 8 for two dimensions,
26 for three dimensions, and conndef(ndims(BW),'maximal') for
higher dimensions.

Note For grayscale images, imclearborder tends to reduce the overall
intensity level in addition to suppressing border structures.

IM2 = imclearborder(IM,conn) specifies the desired connectivity.
conn can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can also be defined in a more general way for any
dimension by using for conn a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s.
The 1-valued elements define neighborhood locations relative to the

17-274

imclearborder

center element of conn. Note that conn must be symmetric about its
center element.

Note A pixel on the edge of the input image might not be considered to
be a border pixel if a nondefault connectivity is specified. For example, if
conn = [0 0 0; 1 1 1; 0 0 0], elements on the first and last row are
not considered to be border pixels because, according to that connectivity
definition, they are not connected to the region outside the image.

Class
Support

IM can be a numeric or logical array of any dimension, and it must be
nonsparse and real. IM2 has the same class as IM.

Examples The following examples use this simple binary image to illustrate the
effect of imclearborder when you specify different connectivities.

BW =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Using a 4-connected neighborhood, the pixel at (5,2) is not considered
connected to the border pixel (4,1), so it is not cleared.

BWc1 = imclearborder(BW,4)
BWc1 =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0

17-275

imclearborder

0 1 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Using an 8-connected neighborhood, pixel (5,2) is considered connected
to pixel (4,1) so both are cleared.

BWc2 = imclearborder(BW,8)

BWc2 =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Algorithm imclearborder uses morphological reconstruction where

• Mask image is the input image.

• Marker image is zero everywhere except along the border, where it
equals the mask image.

See Also conndef

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer, 1999, pp. 164-165.

17-276

imclose

Purpose Morphologically close image

Syntax IM2 = imclose(IM,SE)
IM2 = imclose(IM,NHOOD)

Description IM2 = imclose(IM,SE) performs morphological closing on the
grayscale or binary image IM, returning the closed image, IM2. The
structuring element, SE, must be a single structuring element object,
as opposed to an array of objects.

IM2 = imclose(IM,NHOOD) performs closing with the structuring
element strel(NHOOD), where NHOOD is an array of 0’s and 1’s that
specifies the structuring element neighborhood.

Class
Support

IM can be any numeric or logical class and any dimension, and must
be nonsparse. If IM is logical, then SE must be flat. IM2 has the same
class as IM.

Examples Use imclose to join the circles in the image together by filling in the
gaps between them and by smoothing their outer edges.

1 Read the image into the MATLAB workspace and view it.

originalBW = imread('circles.png');
imshow(originalBW);

17-277

imclose

2 Create a disk-shaped structuring element. Use a disk structuring
element to preserve the circular nature of the object. Specify a radius
of 10 pixels so that the largest gap gets filled.

se = strel('disk',10);

3 Perform a morphological close operation on the image.

closeBW = imclose(originalBW,se);
figure, imshow(closeBW)

See Also imdilate, imerode, imopen, strel

17-278

imcomplement

Purpose Complement image

Syntax IM2 = imcomplement(IM)

Description IM2 = imcomplement(IM) computes the complement of the image IM.
IM can be a binary, grayscale, or RGB image. IM2 has the same class
and size as IM.

In the complement of a binary image, zeros become ones and ones
become zeros; black and white are reversed. In the complement of
an intensity or RGB image, each pixel value is subtracted from the
maximum pixel value supported by the class (or 1.0 for double-precision
images) and the difference is used as the pixel value in the output
image. In the output image, dark areas become lighter and light areas
become darker.

If IM is an grayscale or RGB image of class double, you can use the
expression 1-IM instead of this function. If IM is a binary image, you can
use the expression ~IM instead of this function.

Examples Create the complement of a uint8 array.

X = uint8([255 10 75; 44 225 100]);
X2 = imcomplement(X)
X2 =

0 245 180
211 30 155

Reverse black and white in a binary image.

bw = imread('text.png');
bw2 = imcomplement(bw);
subplot(1,2,1),imshow(bw)
subplot(1,2,2),imshow(bw2)

Create the complement of an intensity image.

I = imread('glass.png');
J = imcomplement(I);

17-279

imcomplement

imshow(I), figure, imshow(J)

See Also imabsdiff, imadd, imdivide, imlincomb, immultiply, imsubtract

17-280

imcontour

Purpose Create contour plot of image data

Syntax imcontour(I)
imcontour(I,n)
imcontour(I,v)
imcontour(x,y,...)
imcontour(...,LineSpec)
[C,h] = imcontour(...)

Description imcontour(I) draws a contour plot of the grayscale image I,
automatically setting up the axes so their orientation and aspect ratio
match the image.

imcontour(I,n) draws a contour plot of the grayscale image I,
automatically setting up the axes so their orientation and aspect ratio
match the image. n is the number of equally spaced contour levels in
the plot; if you omit the argument, the number of levels and the values
of the levels are chosen automatically.

imcontour(I,v) draws a contour plot of I with contour lines at the data
values specified in vector v. The number of contour levels is equal to
length(v).

imcontour(x,y,...) uses the vectors x and y to specify the x- and
y-axis limits.

imcontour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. Marker symbols are ignored.

[C,h] = imcontour(...) returns the contour matrix C and a vector of
handles to the objects in the plot. (The objects are actually patches, and
the lines are the edges of the patches.) You can use the clabel function
with the contour matrix C to add contour labels to the plot.

Class
Support

The input image can be of class uint8, uint16, int16, single, double,
or logical.

Examples I = imread('circuit.tif');
imcontour(I,3)

17-281

imcontour

See Also clabel, contour, LineSpec in the MATLAB Function Reference

17-282

imcontrast

Purpose Adjust Contrast tool

Syntax imcontrast
imcontrast(h)
hfigure = imcontrast(...)

Description imcontrast creates an Adjust Contrast tool in a separate figure that
is associated with the grayscale image in the current figure, called the
target image. The Adjust Contrast tool is an interactive contrast and
brightness adjustment tool, shown in the following figure, that you can
use to adjust the black-to-white mapping used to display the image. The
tool works by modifying the CLim property.

Note The Adjust Contrast tool can handle grayscale images of class
double and single with data ranges beyond the default display range,
which is [0 1]. For these images, imcontrast sets the histogram limits
to fit the image data range, with padding at the upper and lower bounds.

17-283

imcontrast

imcontrast(h) creates the Adjust Contrast tool associated with the
image specified by the handle h. h can be a handle to a figure, axes,
uipanel, or image object. If h is an axes or figure handle, imcontrast
uses the first image returned by findobj(H,'Type','image').

hfigure = imcontrast(...) returns a handle to the Adjust Contrast
tool figure.

Remarks The Adjust Contrast tool presents a scaled histogram of pixel values
(overly represented pixel values are truncated for clarity). Dragging on
the left red bar in the histogram display changes the minimum value.
The minimum value (and any value less than the minimum) displays
as black. Dragging on the right red bar in the histogram changes the
maximum value. The maximum value (and any value greater than the
maximum) displays as white. Values in between the red bars display as
intermediate shades of gray.

Together the minimum and maximum values create a "window".
Stretching the window reduces contrast. Shrinking the window
increases contrast. Changing the center of the window changes the
brightness of the image. It is possible to manually enter the minimum,
maximum, width, and center values for the window. Changing one
value automatically updates the other values and the image.

Window/Level Interactivity

Clicking and dragging the mouse within the target image interactively
changes the image’s window values. Dragging the mouse horizontally
from left to right changes the window width (i.e., contrast). Dragging
the mouse vertically up and down changes the window center (i.e.,
brightness). Holding down the Ctrl key before clicking and dragging
the mouse accelerates the rate of change; holding down the Shift key
before clicking and dragging the mouse slows the rate of change.

Examples imshow('pout.tif')
imcontrast(gca)

See Also imadjust, imtool, stretchlim

17-284

imcrop

Purpose Crop image

Syntax I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

[...] = imcrop(x,y,...)
[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

Description imcrop crops an image to a specified rectangle. In the syntax below,
imcrop displays the input image and waits for you to specify the crop
rectangle with the mouse.

I2 = imcrop(I)
X2 = imcrop(X,map)
RGB2 = imcrop(RGB)

If you omit the input arguments, imcrop operates on the image in the
current axes.

To specify the rectangle,

• For a single-button mouse, press the mouse button and drag to define
the crop rectangle. Finish by releasing the mouse button.

• For a two- or three-button mouse, press the left mouse button and
drag to define the crop rectangle. Finish by releasing the mouse
button.

If you hold down the Shift key while dragging, or if you press the right
mouse button on a two- or three-button mouse, imcrop constrains the
bounding rectangle to be a square.

17-285

imcrop

When you release the mouse button, imcrop returns the cropped image
in the supplied output argument. If you do not supply an output
argument, imcrop displays the output image in a new figure.

You can also specify the cropping rectangle noninteractively, using
these syntax

I2 = imcrop(I,rect)
X2 = imcrop(X,map,rect)
RGB2 = imcrop(RGB,rect)

rect is a four-element vector with the form [xmin ymin width
height]; these values are specified in spatial coordinates.

To specify a nondefault spatial coordinate system for the input image,
precede the other input arguments with two, two-element vectors
specifying the XData and YData. For example:

[...] = imcrop(x,y,...)

If you supply additional output arguments, imcrop returns information
about the selected rectangle and the coordinate system of the input
image. For example:

[A,rect] = imcrop(...)
[x,y,A,rect] = imcrop(...)

A is the output image. x and y are the XData and YData of the input
image.

Class
Support

If you specify RECT as an input argument, the input image can be logical
or numeric, and must be real and nonsparse. RECT is of class double.

If you do not specify RECT as an input argument, imcrop calls imshow.
imshow expects I to be logical, uint8, uint16, int16, single, or
double. RGB can be uint8, int16, uint16, single, or double. X can be
logical, uint8, uint16, single, or double. The input image must be
real and nonsparse.

17-286

imcrop

If you specify an image as an input argument, the output image has
the same class as the input image.

If you don’t specify an image as an input argument, i.e., you call imcrop
with no input arguments, the output image has the same class as the
input image except for the int16 or single. The output image is
double if the input image is int16 or single.

Remarks Because rect is specified in terms of spatial coordinates, the width and
height elements of rect do not always correspond exactly with the
size of the output image. For example, suppose rect is [20 20 40 30],
using the default spatial coordinate system. The upper-left corner of the
specified rectangle is the center of the pixel (20,20) and the lower-right
corner is the center of the pixel (50,60). The resulting output image is
31-by-41, not 30-by-40, because the output image includes all pixels
in the input image that are completely or partially enclosed by the
rectangle.

Examples I = imread('circuit.tif');
I2 = imcrop(I,[75 68 130 112]);
imshow(I), figure, imshow(I2)

See Also zoom

17-287

imdilate

Purpose Dilate image

Syntax IM2 = imdilate(IM, SE)
IM2 = imdilate(IM, NHOOD)
IM2 = imdilate(IM, SE, PACKOPT)
IM2 = imdilate(...,PADOPT)

Description IM2 = imdilate(IM, SE) dilates the grayscale, binary, or packed
binary image IM, returning the dilated image, IM2. The argument SE is
a structuring element object, or array of structuring element objects,
returned by the strel function.

If IM is logical and the structuring element is flat, imdilate performs
binary dilation; otherwise, it performs grayscale dilation. If SE is an
array of structuring element objects, imdilate performs multiple
dilations of the input image, using each structuring element in SE in
succession.

IM2 = imdilate(IM, NHOOD) dilates the image IM, where NHOOD is a
matrix of 0’s and 1’s that specifies the structuring element neighborhood.
This is equivalent to the syntax imdilate(IM,strel(NHOOD)). The
imdilate function determines the center element of the neighborhood
by floor((size(NHOOD)+1)/2).

IM2 = imdilate(IM, SE, PACKOPT) or imdilate(IM,NHOOD,PACKOPT)
specifies whether IM is a packed binary image. PACKOPT can have either
of the following values. Default value is enclosed in braces ({}).

Value Description

'ispacked' IM is treated as a packed binary image as produced
by bwpack. IM must be a 2-D uint32 array and
SE must be a flat 2-D structuring element. If the
value of PACKOPT is 'ispacked', PADOPT must be
'same'.

{'notpacked'} IM is treated as a normal array.

17-288

imdilate

IM2 = imdilate(...,PADOPT) specifies the size of the output image.
PADOPT can have either of the following values. Default value is enclosed
in braces ({}).

Value Description

{'same'} Make the output image the same size as the input
image. If the value of PACKOPT is 'ispacked', PADOPT
must be 'same'.

'full' Compute the full dilation.

PADOPT is analogous to the optional SHAPE argument to the conv2 and
filter2 functions.

Class
Support

IM can be logical or numeric and must be real and nonsparse. It can
have any dimension. If IM is logical, SE must be flat. The output has
the same class as the input. If the input is packed binary, then the
output is also packed binary.

Examples Dilate a binary image with a vertical line structuring element.

bw = imread('text.png');
se = strel('line',11,90);
bw2 = imdilate(bw,se);
imshow(bw), title('Original')
figure, imshow(bw2), title('Dilated')

17-289

imdilate

Dilate a grayscale image with a rolling ball structuring element.

I = imread('cameraman.tif');
se = strel('ball',5,5);
I2 = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Dilated')

To determine the domain of the composition of two flat structuring
elements, dilate the scalar value 1 with both structuring elements in
sequence, using the 'full' option.

se1 = strel('line',3,0)
se1 =

Flat STREL object containing 3 neighbors.
Neighborhood:

1 1 1

se2 = strel('line',3,90)
se2 =

Flat STREL object containing 3 neighbors.
Neighborhood:

1
1
1

17-290

imdilate

composition = imdilate(1,[se1 se2],'full')
composition =

1 1 1
1 1 1
1 1 1

Algorithm imdilate automatically takes advantage of the decomposition of a
structuring element object (if it exists). Also, when performing binary
dilation with a structuring element object that has a decomposition,
imdilate automatically uses binary image packing to speed up the
dilation.

Dilation using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imerode, imopen, strel

References [1] Haralick, R.M., and L. G. Shapiro, Computer and Robot Vision, Vol.
I, Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, "Image Transforms Using
Bitmapped Binary Images," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 54, No. 3,
May, 1992, pp. 254-258.

17-291

imdisplayrange

Purpose Display Range tool

Syntax imdisplayrange
imdisplayrange(h)
imdisplayrange(hparent,himage)
hpanel=imdisplayrange(...)

Description imdisplayrange creates a Display Range tool in the current figure. The
Display Range tool shows the display range of the intensity image or
images in the figure.

The tool is a uipanel object, positioned in the lower-right corner of the
figure. It contains the text string Display range: followed by the
display range values for the image, as shown in the following figure.

For an indexed, truecolor, or binary image, the display range is not
applicable and is set to empty ([]).

imdisplayrange(h) creates a Display Range tool in the figure specified
by the handle h, where h is a handle to an image, axes, uipanel, or
figure object. Axes, uipanel, or figure objects must contain at least one
image object.

imdisplayrange(hparent,himage) creates a Display Range tool in
hparent that shows the display range of himage. himage is a handle
to an image or an array of image handles. hparent is a handle to the
figure or uipanel object that contains the display range tool.

hpanel=imdisplayrange(...) returns a handle to the Display Range
tool uipanel.

Note The Display Range tool can work with multiple images in a figure.
When the cursor is not in an image in a figure, the Display Range tool
displays the text string [black white].

17-292

imdisplayrange

Examples Display an image and include the Display Range tool.

imshow('bag.png');
imdisplayrange;

Import a 16-bit DICOM image and display it with its default range and
scaled range in the same figure.

dcm = dicomread('CT-MONO2-16-ankle.dcm');
subplot(1,2,1), imshow(dcm);
subplot(1,2,2), imshow(dcm,[]);
imdisplayrange;

See also imtool

17-293

imdistline

Purpose Distance tool

Syntax h = imdistline
h = imdistline(hparent)
h = imdistline(...,x,y)

Description h = imdistline creates a Distance tool on the current axes. The
function returns h, a handle to the Distance tool, which is an hggroup
object.

The Distance tool is a draggable, resizable line, superimposed on an
axes, that measures the distance between the two endpoints of the line.
Using the mouse, you can move and resize the Distance tool to measure
the distance between any two points in an image. The Distance tool
displays the distance in a text label superimposed over the line. The
tools specifies the distance in data units determined by the XData and
YData properties, which is pixels, by default. The following figure shows
a Distance tool on an axes.

You can move the Distance tool over an image by dragging it with the
mouse. You can also resize the Distance tool by selecting one of the
endpoints with the mouse and dragging the endpoint.

h = imdistline(hparent) creates a Distance tool on the object
specified by hparent. hparent specifies the Distance tool’s parent,
which is typically an axes object, but can also be any other object that
can be the parent of an hggroup object.

17-294

imdistline

h = imdistline(...,x,y) creates a Distance tool with endpoints
located at the locations specified by the vectors x and y, where x = [x1
x2] and y =[y1 y2].

Context
Menu

The Distance tool has a context menu associated with it that allows
you to

• Export endpoint and distance data to the workspace

• Toggle the distance label on/off

• Set the line color

• Specify horizontal and vertical drag constraints

• Delete the Distance tool object

Right-click to access the Distance tool context menu.

API
Functions

The Distance tool contains a structure of function handles, called an
API, that can be used to retrieve distance information and control other
aspects of Distance tool behavior. To retrieve this structure from the
Distance tool, use the iptgetapi function, where h is a handle to the
Distance tool.

api = iptgetapi(h)

The following table lists the functions in the API, with their syntax and
brief descriptions, in the order they appear in the structure.

Method Description

setPosition Sets the endpoint positions of the Distance tool.

setPosition(X,Y)
setPosition([X1 Y1; X2 Y2])

17-295

imdistline

Method Description

getPosition Returns the endpoint positions of the Distance tool,

pos = api.getPosition()

where pos is a 2-by-2 array [X1 Y1; X2 Y2].

delete Deletes the Distance tool associated with the API.

delete()

setColor Sets the color used to draw the Distance tool,

setColor(new_color)

where new_color can be a three-element vector
specifying an RGB triplet, or a text string specifying
the long or short names of a predefined color, such as
'white' or 'w'. For a complete list of these predefined
colors and their short names, see ColorSpec.

addNewPositionCallback Adds the function handle fcn to the list of new-position
callback functions.

id = addNewPositionCallback(fcn)

Whenever the Distance tool changes its position, each
function in the list is called with the syntax

fcn(pos)

where pos is a 2-by-2 array [X1 Y1; X2 Y2].

The return value, id, is used only with
removeNewPositionCallback.

17-296

imdistline

Method Description

removeNewPositionCallback Removes the corresponding function from the
new-position callback list,

removeNewPositionCallback(id)

where id is the identifier returned by
addNewPositionCallback.

getDragConstraintFcn Returns the function handle of the current drag
constraint function.

fcn = getDragConstraintFcn()

setDragConstraintFcn Sets the drag constraint function to be the specified
function handle, fcn.

setDragConstraintFcn(fcn)

Whenever the Distance tool is moved or resized because
of a mouse drag, the constraint function is called using
the syntax

constrained_position = fcn(new_position)

where new_position is a 2-by-2 array [X1 Y1; X2
Y2].

You can use the drag constraint function to control
where the Distance tool can be moved and resized.

getDistance Returns the distance between the endpoints of the
Distance tool.

dist = getDistance()

17-297

imdistline

Method Description

getAngleFromHorizontal Returns the angle in degrees between the line defined
by the Distance tool and the horizontal axis. The
angle returned is between 0 and 180 degrees. (For
information about how this angle is calculated, see
“Remarks” on page 17-298.)

angle = getAngleFromHorizontal()

getLabelHandle Returns a handle to the Distance tool text label.

hlabel = getLabelHandle()

getLabelTextFormatter Returns a character array specifying the format string
used to display the distance label,

str = getLabelTextFormatter()

where str is a character array specifying a format
string in the form expected by sprintf.

setLabelTextFormatter Sets the format string used in displaying the distance
label,

setLabelTextFormatter(str)

where str is a a character array specifying a format
string in the form expected by sprintf.

Remarks If you use imdistline with an axis that contains an image object, and
do not specify a drag constraint function, users can drag the point
outside the extent of the image and lose the point. When used with an
axis created by the plot function, the axis limits automatically expand
to accommodate the movement of the point.

To understand how imdistline calculates the angle returned by
getAngleToHorizontal, draw an imaginary horizontal vector from the
bottom endpoint of the distance line, extending to the right. The value

17-298

imdistline

returned by getAngleToHorizontal is the angle from this horizontal
vector to the distance line, which can range from 0 to 180 degrees.

Examples Example 1

Insert a Distance tool into an image. Use makeConstrainToRectFcn to
specify a drag constraint function that prevents the Distance tool from
being dragged outside the extent of the image.

figure, imshow('pout.tif');

h = imdistline(gca);

api = iptgetapi(h);

fcn = makeConstrainToRectFcn('imline',...

get(gca,'XLim'),get(gca,'YLim'));

api.setDragConstraintFcn(fcn);

Now, right-click the Distance tool and explore the context menu options.

Set the text formatter used to display the distance label.

close all, imshow('pout.tif');

h = imdistline;

api = iptgetapi(h);

api.setLabelTextFormatter('%02.1f pixels');

Example 2

Position endpoints of the Distance tool at the specified locations.

close all, imshow('pout.tif');
h = imdistline(gca,[10 100],[10 100]);

Delete the Distance tool.

api = iptgetapi(h);
api.delete();

Example 3

Use distance tool with XData and YData of associated image in
non-pixel units.

17-299

imdistline

hImg = imshow('boston.tif');

% Convert XData and YData to meters using conversion factor.

metersPerPixel = 620/139;

XDataInMeters = get(hImg,'XData')*metersPerPixel;

YDataInMeters = get(hImg,'YData')*metersPerPixel;

% Set XData and YData of image to reflect desired units.

set(hImg,'XData',XDataInMeters,'YData',YDataInMeters);

set(gca,'XLim',XDataInMeters,'YLim',YDataInMeters);

% Specify position of distance tool in terms of XData/YData units.

hline = imdistline(gca,[682 900],[1775 2356]);

api = iptgetapi(hline);

api.setLabelTextFormatter('%02.0f meters');

See Also iptgetapi

17-300

imdivide

Purpose Divide one image into another or divide image by constant

Syntax Z = imdivide(X,Y)

Description Z = imdivide(X,Y) divides each element in the array X by the
corresponding element in array Y and returns the result in the
corresponding element of the output array Z. X and Y are real, nonsparse
numeric arrays with the same size and class, or Y can be a scalar double.
Z has the same size and class as X and Y.

If X is an integer array, elements in the output that exceed the range of
integer type are truncated, and fractional values are rounded.

Note On Intel architecture processors, imdivide can take advantage
of the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated only if arrays X and Y are of class
uint8, int16, or single and are of the same size and class.

Examples Divide two uint8 arrays. Note that fractional values greater than or
equal to 0.5 are rounded up to the nearest integer.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 20 50; 50 50 50]);
Z = imdivide(X,Y)
Z =

5 1 2
1 5 2

Estimate and divide out the background of the rice image.

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imdivide(I,background);
imshow(Ip,[])

Divide an image by a constant factor.

17-301

imdivide

I = imread('rice.png');
J = imdivide(I,2);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See Also imabsdiff, imadd, imcomplement, imlincomb, immultiply,
imsubtract, ippl

17-302

imerode

Purpose Erode image

Syntax IM2 = imerode(IM,SE)
IM2 = imerode(IM,NHOOD)
IM2 = imerode(...,PACKOPT,M)
IM2 = imerode(...,PADOPT)

Description IM2 = imerode(IM,SE) erodes the grayscale, binary, or packed binary
image IM, returning the eroded image IM2. The argument SE is a
structuring element object or array of structuring element objects
returned by the strel function.

If IM is logical and the structuring element is flat, imerode performs
binary dilation; otherwise it performs grayscale erosion. If SE is an array
of structuring element objects, imerode performs multiple erosions of
the input image, using each structuring element in SE in succession.

IM2 = imerode(IM,NHOOD) erodes the image IM, where NHOOD is an
array of 0’s and 1’s that specifies the structuring element neighborhood.
This is equivalent to the syntax imerode(IM,strel(NHOOD)). The
imerode function determines the center element of the neighborhood
by floor((size(NHOOD)+1)/2)

IM2 = imerode(...,PACKOPT,M) specifies whether IM is a packed
binary image and, if it is, provides the row dimension M of the original
unpacked image. PACKOPT can have either of the following values.
Default value is enclosed in braces ({}).

Value Description

'ispacked' IM is treated as a packed binary image as
produced by bwpack. IM must be a 2-D uint32
array and SE must be a flat 2-D structuring
element.

{'notpacked'} IM is treated as a normal array.

If PACKOPT is 'ispacked', you must specify a value for M.

17-303

imerode

IM2 = imerode(...,PADOPT) specifies the size of the output image.
PADOPT can have either of the following values. Default value is enclosed
in braces ({}).

Value Description

{'same'} Make the output image the same size as the input
image. If the value of PACKOPT is 'ispacked',
PADOPT must be 'same'.

'full' Compute the full erosion.

PADOPT is analogous to the SHAPE input to the CONV2 and FILTER2
functions.

Class
Support

IM can be numeric or logical and it can be of any dimension. If IM is
logical and the structuring element is flat, the output image is logical;
otherwise the output image has the same class as the input. If the input
is packed binary, then the output is also packed binary.

Examples Erode a binary image with a disk structuring element.

originalBW = imread('circles.png');
se = strel('disk',11);
erodedBW = imerode(originalBW,se);
imshow(originalBW), figure, imshow(erodedBW)

17-304

imerode

Erode a grayscale image with a rolling ball.

I = imread('cameraman.tif');
se = strel('ball',5,5);
I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')

Algorithm
Notes

imerode automatically takes advantage of the decomposition of a
structuring element object (if a decomposition exists). Also, when
performing binary dilation with a structuring element object that has
a decomposition, imerode automatically uses binary image packing to
speed up the dilation.

Erosion using bit packing is described in [2].

See Also bwpack, bwunpack, conv2, filter2, imclose, imdilate, imopen, strel

References [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot
Vision, Vol. I, Addison-Wesley, 1992, pp. 158-205.

[2] van den Boomgaard and van Balen, "Image Transforms Using
Bitmapped Binary Images," Computer Vision, Graphics, and Image
Processing: Graphical Models and Image Processing, Vol. 54, No. 3,
May, 1992, pp. 254-258.

17-305

imextendedmax

Purpose Extended-maxima transform

Syntax BW = imextendedmax(I,H)
BW = imextendedmax(I,H,conn)

Description BW = imextendedmax(I,H) computes the extended-maxima transform,
which is the regional maxima of the H-maxima transform. H is a
nonnegative scalar.

Regional maxima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a lower
value.

By default, imextendedmax uses 8-connected neighborhoods for 2-D
images and 26-connected neighborhoods for 3-D images. For higher
dimensions, imextendedmax uses conndef(ndims(I),'maximal').

BW = imextendedmax(I,H,conn) computes the extended-maxima
transform, where conn specifies the connectivity. conn can have any of
the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-306

imextendedmax

Class
Support

I can be of any nonsparse numeric class and any dimension. BW has the
same size as I and is always logical.

Examples I = imread('glass.png');
BW = imextendedmax(I,80);
imshow(I), figure, imshow(BW)

See Also conndef, imextendedmin, imhmax, imreconstruct, imregionalmax

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer-Verlag, 1999, pp. 170-171.

17-307

imextendedmin

Purpose Extended-minima transform

Syntax BW = imextendedmin(I,h)
BW = imextendedmin(I,h,conn)

Description BW = imextendedmin(I,h) computes the extended-minima transform,
which is the regional minima of the H-minima transform. h is a
nonnegative scalar.

Regional minima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a higher
value.

By default, imextendedmin uses 8-connected neighborhoods for 2-D
images, and 26-connected neighborhoods for 3-D images. For higher
dimensions, imextendedmin uses conndef(ndims(I),'maximal').

BW = imextendedmin(I,h,conn) computes the extended-minima
transform, where conn specifies the connectivity. conn can have any of
the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by-...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-308

imextendedmin

Class
Support

I can be of any nonsparse numeric class and any dimension. BW has the
same size as I and is always logical.

Examples I = imread('glass.png');
BW = imextendedmin(I,50);
imshow(I), figure, imshow(BW)

See Also conndef, imextendedmax, imhmin, imreconstruct, imregionalmin

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer-Verlag, 1999, pp. 170-171.

17-309

imfill

Purpose Fill image regions and holes

Syntax BW2 = imfill(BW)
[BW2,locations] = imfill(BW)
BW2 = imfill(BW,locations)
BW2 = imfill(BW,'holes')
I2 = imfill(I)
BW2 = imfill(BW,locations,conn)

Description BW2 = imfill(BW) displays the binary image BW on the screen and
lets you define the region to fill by selecting points interactively on
using the mouse. To use this interactive syntax,BW must be a 2-D image.
Press Backspace or Delete to remove the previously selected point. A
shift-click, right-click, or double-click selects a final point and starts the
fill operation. Pressing Return finishes the selection without adding
a point.

[BW2,locations] = imfill(BW) returns the locations of points
selected interactively in locations. locations is a vector of linear
indices into the input image. To use this interactive syntax,BW must
be a 2-D image.

BW2 = imfill(BW,locations) performs a flood-fill operation on
background pixels of the binary image BW, starting from the points
specified in locations. If locations is a P-by-1 vector, it contains the
linear indices of the starting locations. If locations is a P-by-ndims(BW)
matrix, each row contains the array indices of one of the starting
locations.

BW2 = imfill(BW,'holes') fills holes in the binary image BW. A hole
is a set of background pixels that cannot be reached by filling in the
background from the edge of the image.

I2 = imfill(I) fills holes in the grayscale image I. In this syntax, a
hole is defined as an area of dark pixels surrounded by lighter pixels.

BW2 = imfill(BW,locations,conn) fills the area defined by
locations, where conn specifies the connectivity. conn can have any of
the following scalar values.

17-310

imfill

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

Specifying
Connectivity

By default, imfill uses 4-connected background neighbors for 2-D
inputs and 6-connected background neighbors for 3-D inputs. For
higher dimensions the default background connectivity is determined
by using conndef(NUM_DIMS,'minimal'). You can override the default
connectivity with these syntax:

BW2 = imfill(BW,locations,conn)
BW2 = imfill(BW,conn,'holes')
I2 = imfill(I,conn)

To override the default connectivity and interactively specify the
starting locations, use this syntax:

BW2 = imfill(BW,0,conn)

Class
Support

The input image can be numeric or logical, and it must be real and
nonsparse. It can have any dimension. The output image has the same
class as the input image.

17-311

imfill

Examples Fill in the background of a binary image from a specified starting
location.

BW1 = logical([1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 1
1 0 0 1 1 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 1 1 1 0]);

BW2 = imfill(BW1,[3 3],8)

Fill in the holes of a binary image.

BW4 = im2bw(imread('coins.png'));
BW5 = imfill(BW4,'holes');
imshow(BW4), figure, imshow(BW5)

Fill in the holes of a grayscale image.

I = imread('tire.tif');
I2 = imfill(I,'holes');
figure, imshow(I), figure, imshow(I2)

17-312

imfill

Algorithm imfill uses an algorithm based on morphological reconstruction [1].

See Also bwselect, imreconstruct, roifill

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer-Verlag, 1999, pp. 173-174.

17-313

imfilter

Purpose N-D filtering of multidimensional images

Syntax B = imfilter(A,H)
B = imfilter(A, H, option1, option2,...)

Description B = imfilter(A,H) filters the multidimensional array A with the
multidimensional filter H. The array A can be logical or a nonsparse
numeric array of any class and dimension. The result B has the same
size and class as A.

Each element of the output B is computed using double-precision
floating point. If A is an integer or logical array, then output elements
that exceed the range of the integer type are truncated, and fractional
values are rounded.

B = imfilter(A, H, option1, option2,...) performs
multidimensional filtering according to the specified options. Option
arguments can have the following values.

Boundary Options

Option Description

X Input array values outside the bounds of the array
are implicitly assumed to have the value X. When no
boundary option is specified, imfilter uses X = 0.

'symmetric' Input array values outside the bounds of the array are
computed by mirror-reflecting the array across the
array border.

'replicate' Input array values outside the bounds of the array are
assumed to equal the nearest array border value.

'circular' Input array values outside the bounds of the array
are computed by implicitly assuming the input array
is periodic.

17-314

imfilter

Output Size Options

Option Description

'same' The output array is the same size as the input array.
This is the default behavior when no output size
options are specified.

'full' The output array is the full filtered result, and so is
larger than the input array.

Correlation and Convolution Options

Option Description

'corr' imfilter performs multidimensional filtering using
correlation, which is the same way that filter2
performs filtering. When no correlation or convolution
option is specified, imfilter uses correlation.

'conv' imfilter performs multidimensional filtering using
convolution.

N-D convolution is related to N-D correlation by a reflection of the filter
matrix.

17-315

imfilter

Note On Intel architecture processors, imfilter can take advantage
of the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated only if A and H are both
two-dimensional and A is of class uint8, int16, or single.

When IPPL is used, imfilter has different rounding behavior on some
processors. Normally, when A is an integer class, filter outputs such as
1.5, 4.5, etc are rounded away from zero. However, when IPPL is used,
these values are rounded toward zero. This behavior may change in a
future release.

To disable IPPL, use this command:

iptsetpref('UseIPPL',false)

Examples Read a color image into the workspace and view it.

originalRGB = imread('peppers.png');
imshow(originalRGB)

Create a filter, h, that can be used to approximate linear camera motion.

h = fspecial('motion', 50, 45);

Apply the filter, using imfilter, to the image originalRGB to create a
new image, filteredRGB.

filteredRGB = imfilter(originalRGB, h);
figure, imshow(filteredRGB)

Note that imfilter is more memory efficient than some other filtering
operations in that it outputs an array of the same data type as the input
image array. In this example, the output is an array of uint8.

whos
Name Size Bytes Class Attributes

17-316

imfilter

filteredRGB 384x512x3 589824 uint8
h 37x37 10952 double
originalRGB 384x512x3 589824 uint8

Specify the replicate boundary option.

boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
figure, imshow(boundaryReplicateRGB)

See Also conv2, convn, filter2, fspecial, ippl

17-317

imfinfo

Purpose Information about graphics file

Note imfinfo is a MATLAB function.

17-318

imgca

Purpose Get handle to current axis containing image

Syntax hax = imgca
hax = imgca(hfig)

Description hax = imgca returns the handle of the of the current axis that contains
an image. The current axis may be in a regular figure window or in an
Image Tool window.

If no figure contains an axis that contains an image, imgca creates a
new axis.

hax = imgca(hfig) returns the handle to the current axis that contains
an image in the specified figure (it need not be the current figure).

Note imgca can be useful in getting the handle to the Image Tool axis.
Because the Image Tool turns graphics object handle visibility off, you
cannot retrieve a handle to the tool figure using gca.

Examples Label the coins in the image, compute their centroids, and superimpose
the centroid locations on the image. View the results using imtool
and imgca.

I = imread('coins.png');
figure, imshow(I)

bw = im2bw(I, graythresh(getimage));
figure, imshow(bw)

bw2 = imfill(bw,'holes');
L = bwlabel(bw2);
s = regionprops(L, 'centroid');
centroids = cat(1, s.Centroid);

Display original image and superimpose centroids.

imtool(I)
hold(imgca,'on')

17-319

imgca

plot(imgca,centroids(:,1), centroids(:,2), 'r*')
hold(imgca,'off')

See also gca, gcf, imgcf

17-320

imgcf

Purpose Get handle to current figure containing image

Syntax hfig = imgcf

Description hfig = imgcf returns the handle of the most recent current figure that
contains an image. The figure may be a regular figure window that
contains at least one image or an Image Tool window.

If none of the figures currently open contains an image, imgcf creates a
new figure.

Note imgcf can be useful in getting the handle to the Image Tool figure
window. Because the Image Tool turns graphics object handle visibility
off, you cannot retrieve a handle to the tool figure using gcf.

Examples imtool rice.png
cmap = copper(256);
set(imgcf,'Colormap',cmap)

See also gca, gcf, imgca

17-321

imgetfile

Purpose Open Image dialog box

Syntax [filename, user_canceled] = imgetfile

Description [filename, user_canceled] = imgetfile displays the Open Image
dialog box. You can use this dialog box in imaging applications to get
the name of the image file a user wants to open. The Open Image dialog
box includes only files using supported image file formats (listed in
imformats) and DICOM files. When the user selects a file and clicks
Open, imgetfile returns the full path of the file in the return value
filename and sets the user_canceled return value to FALSE. If the user
clicks Cancel, imgetfile returns an empty string in filename and sets
the user_canceled return value to TRUE.

Note The Open Image dialog box is modal; it blocks the MATLAB
command line until the user responds.

See Also imformats, imtool, uigetfile

17-322

imhandles

Purpose Get all image handles

Syntax himage = imhandles(h)

Description himage = imhandles(h) takes a graphics handle h as an input and
returns all of the image handles whose ancestor is h. h can be an array
of valid figure, axes, image, or uipanel handles.

himage is an array of image handles.

imhandles ignores colorbars in h and does not include its handle in
himage.

Note imhandles errors if the image objects in himage do not have the same
figure as their parent.

Examples Return the handle to the image object in the current axes.

figure, imshow('moon.tif');
himage = imhandles(gca)

Display two images in a figure and uses imhandles to get handles to
both of the image objects in the figure.

subplot(1,2,1), imshow('autumn.tif');
subplot(1,2,2), imshow('glass.png');
himages = imhandles(gcf)

See Also imgca, imgcf

17-323

imhist

Purpose Display histogram of image data

Syntax imhist(I)
imhist(I, n)
imhist(X, map)
[counts,x] = imhist(...)

Description imhist(I) displays a histogram for the image I above a grayscale
colorbar. The number of bins in the histogram is specified by the image
type. If I is a grayscale image, imhist uses a default value of 256 bins.
If I is a binary image, imhist uses two bins.

imhist(I, n) displays a histogram where n specifies the number of
bins used in the histogram. n also specifies the length of the colorbar. If
I is a binary image, n can only have the value 2.

imhist(X, map) displays a histogram for the indexed image X. This
histogram shows the distribution of pixel values above a colorbar of the
colormap map. The colormap must be at least as long as the largest
index in X. The histogram has one bin for each entry in the colormap.

[counts,x] = imhist(...) returns the histogram counts in counts
and the bin locations in x so that stem(x,counts) shows the histogram.
For indexed images, imhist returns the histogram counts for each
colormap entry; the length of counts is the same as the length of the
colormap.

Note For intensity images, the n bins of the histogram are each
half-open intervals of width . In particular, for intensity
images that are not int16, the th bin is the half-open interval

, where x is the intensity
value. For int16 intensity images, the th bin is the half-open interval

, where x is
the intensity value. The scale factor depends on the image class. is
1 if the intensity image is double or single, is 255 if the intensity
image is uint8, and is 65535 if the intensity image is uint16 or int16.

17-324

imhist

Class
Support

An input intensity image can be of class uint8, uint16, int16, single,
double, or logical. An input indexed image can be of class uint8,
uint16, single, double, or logical.

Examples I = imread('pout.tif');
imhist(I)

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

See Also histeq

hist in the MATLAB Function Reference

17-325

imhmax

Purpose H-maxima transform

Syntax I2 = imhmax(I,h)
I2 = imhmax(I,h,conn)

Description I2 = imhmax(I,h) suppresses all maxima in the intensity image I
whose height is less than h, where h is a scalar.

Regional maxima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a lower
value.

By default, imhmax uses 8-connected neighborhoods for 2-D images, and
26-connected neighborhoods for 3-D images. For higher dimensions,
imhmax uses conndef(ndims(I),'maximal').

I2 = imhmax(I,h,conn) computes the H-maxima transform, where
conn specifies the connectivity. conn can have any of the following
scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-326

imhmax

Class
Support

I can be of any nonsparse numeric class and any dimension. I2 has the
same size and class as I.

Examples a = zeros(10,10);
a(2:4,2:4) = 3; % maxima 3 higher than surround
a(6:8,6:8) = 8; % maxima 8 higher than surround
b = imhmax(a,4); % only the maxima higher than 4 survive.

See Also conndef, imextendedmax, imhmin, imreconstruct, imregionalmax

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer-Verlag, 1999, pp. 170-171.

17-327

imhmin

Purpose H-minima transform

Syntax I2 = imhmin(I,h)
I2 = imhmin(I,h,conn)

Description I2 = imhmin(I,h) suppresses all minima in I whose depth is less than
h. I is a grayscale image and h is a scalar.

Regional minima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a higher
value.

By default, imhmin uses 8-connected neighborhoods for 2-D images, and
26-connected neighborhoods for 3-D images. For higher dimensions,
imhmin uses conndef(ndims(I),'maximal').

I2 = imhmin(I,h,conn) computes the H-minima transform, where
conn specifies the connectivity. conn can have any of the following
scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-328

imhmin

Class
Support

I can be of any nonsparse numeric class and any dimension. I2 has the
same size and class as I.

Examples Create a sample image with two regional minima.

a = 10*ones(10,10);
a(2:4,2:4) = 7;
a(6:8,6:8) = 2

a =

10 10 10 10 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 7 7 7 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 2 2 2 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

Suppress all minima below a specified value. Note how the region with
pixel valued 7 disappears in the transformed image.

17-329

imhmin

b = imhmin(a,4)

b =

10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 6 6 6 10 10
10 10 10 10 10 6 6 6 10 10
10 10 10 10 10 6 6 6 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

See Also conndef, imextendedmin, imhmax, imreconstruct, imregionalmin

Reference [1] Soille, P., Morphological Image Analysis: Principles and
Applications, Springer-Verlag, 1999, pp. 170-171.

17-330

imimposemin

Purpose Impose minima

Syntax I2 = imimposemin(I,BW)
I2 = imimposemin(I,BW,conn)

Description I2 = imimposemin(I,BW) modifies the intensity image I using
morphological reconstruction so it only has regional minima wherever
BW is nonzero. BW is a binary image the same size as I.

By default, imimposemin uses 8-connected neighborhoods for 2-D
images and 26-connected neighborhoods for 3-D images. For higher
dimensions, imimposemin uses conndef(ndims(I),'minimum').

I2 = imimposemin(I,BW,conn) specifies the connectivity, where conn
can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can also be defined in a more general way for any
dimension by using for conn a 3-by-3-by-...-by-3 matrix of 0’s and 1’s.
The 1-valued elements define neighborhood locations relative to the
center element of conn. Note that conn must be symmetric about its
center element.

Class
Support

I can be of any nonsparse numeric class and any dimension. BW must be
a nonsparse numeric array with the same size as I. I2 has the same
size and class as I.

17-331

imimposemin

Examples Modify an image so that it only has regional minima at one location.

1 Read an image and display it. This image is called the mask image.

mask = imread('glass.png');
imshow(mask)

2 Create the marker image that will be used to process the mask image.

The example creates a binary image that is the same size as the mask
image and sets a small area of the binary image to 1. These pixels
define the location in the mask image where a regional minimum
will be imposed.

marker = false(size(mask));
marker(65:70,65:70) = true;

To show where these pixels of interest fall on the original image,
this code superimposes the marker over the mask. The small white
square marks the spot. This code is not essential to the impose
minima operation.

J = mask;
J(marker) = 255;
figure, imshow(J); title('Marker Image Superimposed on Mask');

17-332

imimposemin

3 Impose the regional minimum on the input image using the
imimposemin function.

The imimposemin function uses morphological reconstruction of the
mask image with the marker image to impose the minima at the
specified location. Note how all the dark areas of the original image,
except the marked area, are lighter.

K = imimposemin(mask,marker);
figure, imshow(K);

4 To illustrate how this operation removes all minima in the original
image except the imposed minimum, compare the regional minima
in the original image with the regional minimum in the processed
image. These calls to imregionalmin return binary images that
specify the locations of all the regional minima in both images.

BW = imregionalmin(mask);
figure, imshow(BW);

17-333

imimposemin

title('Regional Minima in Original Image');
BW2 = imregionalmin(K);
figure, imshow(BW2);
title('Regional Minima After Processing');

Algorithm imimposemin uses a technique based on morphological reconstruction.

See Also conndef, imreconstruct, imregionalmin

17-334

imlincomb

Purpose Linear combination of images

Syntax Z = imlincomb(K1,A1,K2,A2,...,Kn,An)
Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K)
Z = imlincomb(...,output_class)

Description Z = imlincomb(K1,A1,K2,A2,...,Kn,An) computes

K1*A1 + K2*A2 + ... + Kn*An

where K1, K2, through Kn are real, double scalars and A1, A2, through
An are real, nonsparse, numeric arrays with the same class and size. Z
has the same class and size as A1.

Z = imlincomb(K1,A1,K2,A2,...,Kn,An,K) computes

K1*A1 + K2*A2 + ... + Kn*An + K

where imlincomb adds K, a real, double scalar, to the sum of the
products of K1 through Kn and A1 through An.

Z = imlincomb(...,output_class) lets you specify the class of Z.
output_class is a string containing the name of a numeric class.

When performing a series of arithmetic operations on a pair of images,
you can achieve more accurate results if you use imlincomb to combine
the operations, rather than nesting calls to the individual arithmetic
functions, such as imadd. When you nest calls to the arithmetic
functions, and the input arrays are of an integer class, each function
truncates and rounds the result before passing it to the next function,
thus losing accuracy in the final result. imlincomb computes each
element of the output Z individually, in double-precision floating point.
If Z is an integer array, imlincomb truncates elements of Z that exceed
the range of the integer type and rounds off fractional values.

On Intel architecture processors, imlincomb can take advantage of the
Intel Performance Primitives Library (IPPL), thus accelerating its
execution time. IPPL is activated only in the following cases:

Z = imlincomb(1.0, A1, 1.0, A2)

17-335

imlincomb

Z = imlincomb(1.0, A1,-1.0, A2)
Z = imlincomb(-1.0, A1, 1.0, A2)
Z = imlincomb(1.0 , A1, K)

where A1, A2, and Z are of class uint8, int16, or single and are of
the same class.

Examples Example 1

Scale an image by a factor of 2.

I = imread('cameraman.tif');
J = imlincomb(2,I);
imshow(J)

Example 2

Form a difference image with the zero value shifted to 128.

I = imread('cameraman.tif');
J = uint8(filter2(fspecial('gaussian'), I));
K = imlincomb(1,I,-1,J,128); % K(r,c) = I(r,c) - J(r,c) + 128
figure, imshow(K)

Example 3

Add two images with a specified output class.

I = imread('rice.png');
J = imread('cameraman.tif');
K = imlincomb(1,I,1,J,'uint16');
figure, imshow(K,[])

Example 4

To illustrate how imlincomb performs all the arithmetic operations
before truncating the result, compare the results of calculating the
average of two arrays, X and Y, using nested arithmetic functions and
then using imlincomb.

17-336

imlincomb

In the version that uses nested arithmetic functions, imadd adds 255
and 50 and truncates the result to 255 before passing it to imdivide.
The average returned in Z(1,1) is 128.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 20 50; 50 50 50]);
Z = imdivide(imadd(X,Y),2)
Z =

128 15 63
47 128 75

imlincomb performs the addition and division in double precision and
only truncates the final result. The average returned in Z2(1,1) is 153.

Z2 = imlincomb(.5,X,.5,Y)
Z2 =

153 15 63
47 138 75

See Also imadd, imcomplement, imdivide, immultiply, imsubtract

17-337

imline

Purpose Create draggable, resizable line

Syntax h = imline(hparent, x, y)

Description h = imline(hparent, x, y) creates a line on the object
specified by hparent. The line can be dragged and resized interactively
using the mouse.

If you move the cursor the over the line, the cursor changes to the fleur

shape, , indicating in which directions it can be dragged. If you
move the cursor over the endpoints of the line, the cursor changes to the

pointing finger shape, . Press and hold the mouse to resize the line.

hparent specifies the parent of the line, which is typically an axes
object, but can be any object that can be the parent of an hggroup.

x and y specify the initial endpoint positions of the line in the form

X = [X1 X2], Y = [Y1 Y2]

If you specify empty matrices ([]) for x and y, you can place the line
interactively using the mouse.

The function returns h, a handle to the line, which is an hggroup object.

The line has a context menu associated with it that allows you to copy
the current endpoint positions to the clipboard in the form [X1 Y1;
X2 Y2] and change the color used to display the line. Right-click the
line to access the context menu.

API
Functions

Each line instance contains a structure of function handles, called an
API, that can be used to get the current position of the line and control
other aspects of its behavior and appearance. To access these functions,
retrieve this API from the line using the iptgetapi function, as follows:

api = iptgetapi(h)

17-338

imline

The following table lists these functions in the order they appear in the
structure. The table includes the syntax for each function and a brief
description. To see examples of their use, see the “Examples” on page
17-341 Examples section.

Method Description

setPosition Sets the endpoint positions of the line.

setPosition(X,Y)
setPosition([X1 Y1; X2 Y2])

getPosition Returns the endpoint positions of the line,

pos = getPosition()

where pos is a 2-by-2 array [X1 Y1; X2 Y2].

delete Deletes the line associated with the API.

delete()

setColor Sets the color used to draw the line,

setColor(new_color)

where new_color can be a three-element vector
specifying an RGB triplet, or a text string specifying
the long or short names of a predefined color, such as
'white' or 'w'. For a complete list of these predefined
colors and their short names, see ColorSpec.

17-339

imline

Method Description

addNewPositionCallback Adds the function handle fcn to the list of new-position
callback functions.

id = addNewPositionCallback(fcn)

Whenever the position of the line is changed, each
function in the list is called with the syntax

fcn(pos)

where pos is a 2-by-2 array [X1 Y1; X2 Y2].

The return value, id, is used only with the
removeNewPositionCallback function.

removeNewPositionCallback Removes the corresponding function from the
new-position callback list,

removeNewPositionCallback(id)

where id is the identifier returned by the
addNewPositionCallback function.

17-340

imline

Method Description

getDragConstraintFcn Returns the function handle of the current drag
constraint function.

fcn = getDragConstraintFcn()

setDragConstraintFcn Sets the drag constraint function to be the specified
function handle, fcn.

setDragConstraintFcn(fcn)

Whenever the line is moved or resized because of a
mouse drag, the constraint function is called using
the syntax

constrained_position = fcn(new_position)

where new_position is a 2-by-2 array [X1 Y1; X2
Y2].

You can use this function to control where the line can
be moved and resized.

Remarks If you use imline with an axis that contains an image object, and do
not specify a drag constraint function, users can drag the line outside
the extent of the image and lose the line. When used with an axis
created by the plot function, the axis limits automatically expand to
accommodate the movement of the line.

Examples Example 1

Create a line and specify a custom color for displaying the line.

figure, imshow('pout.tif');
h = imline(gca,[10 100], [100 100]);
api = iptgetapi(h);
api.setColor([0 1 0]);

To explore the context menu of the line, right-click the line.

17-341

imline

Example 2

Use the addNewPositionCallback function.

figure, imshow('pout.tif');
h = imline(gca,[10 100], [100 100]);
api = iptgetapi(h);
id = api.addNewPositionCallback(@(pos) title(mat2str(pos,3)));

Using the mouse, move the line. Note that the 2-by-2 position vector
of the line is displayed as a title over the axes. To remove the callback
use the removeNewPositionCallback function.

api.removeNewPositionCallback(id);

Example 3

Use the makeConstrainToRectFcn function to prevent dragging line
outside extent of image.

figure, imshow('pout.tif');
h = imline(gca,[10 100], [100 100]);
api = iptgetapi(h);
fcn = makeConstrainToRectFcn('imline',...

get(gca,'XLim'),get(gca,'YLim'));
api.setDragConstraintFcn(fcn);

Example 4

Interactively place a line by clicking and dragging over an image.

figure, imshow('pout.tif');
h = imline(gca,[],[]);

See Also iptgetapi, impoint, imrect

17-342

immagbox

Purpose Magnification box for scroll panel

Syntax hbox = immagbox(hparent,himage)

Description hbox = immagbox(hparent,himage) creates a Magnification box
for the image displayed in a scroll panel created by imscrollpanel.
hparent is a handle to the figure or uipanel object that will contain the
Magnification box. himage is a handle to the target image (the image
in the scroll panel). immagbox returns hbox, which is a handle to the
Magnification box uicontrol object

A Magnification box is an editable text box uicontrol that contains the
current magnification of the target image. When you enter a new value
in the magnification box, the magnification of the target image changes.
When the magnification of the target image changes for any reason, the
magnification box updates the magnification value.

API
Functions

A Magnification box contains a structure of function handles, called an
API. You can use the functions in this API to manipulate magnification
box. To retrieve this structure, use the iptgetapi function.

api = iptgetapi(hbox)

The API for the Magnification box includes the following function.

Field Description

setMagnification Sets the magnification in units of screen pixels per image pixel.

setMagnification(new_mag)

where new_mag is a scalar magnification factor. Multiply
new_mag by 100 to get percent magnification. For example if
you call setMagnification(2), the magnification box will
show the string '200%'.

Examples Add a magnification box to a scrollable image. Because the toolbox
scrollable navigation is incompatible with standard MATLAB figure

17-343

immagbox

window navigation tools, the example suppresses the toolbar and menu
bar in the figure window. The example positions the scroll panel in the
figure window to allow room for the magnification box.

hFig = figure(`Toolbar','none',...
'Menubar','none');

hIm = imshow('pears.png');
hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized',...

'Position',[0 .1 1 .9])

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])

Change the magnification of the image in the scroll panel, using
the scroll panel API function setMagnification. Notice how the
magnification box updates.

apiSP = iptgetapi(hSP);
apiSP.setMagnification(2)

See also imscrollpanel, iptgetapi

17-344

immovie

Purpose Make movie from multiframe image

Syntax mov = immovie(X,map)
mov = immovie(RGB)

Description mov = immovie(X,map) returns the movie structure array mov from
the images in the multiframe indexed image X with the colormap map.
You can play the movie using the MATLAB movie function. For details
about the movie structure array, see the reference page for getframe.

X comprises multiple indexed images, all having the same size and all
using the colormap map. X is an m-by-n-by-1-by-k array, where k is the
number of images.

mov = immovie(RGB) returns the movie structure array mov from the
images in the multiframe, truecolor image RGB.

RGB comprises multiple truecolor images, all having the same size. RGB
is an m-by-n-by-3-by-k array, where k is the number of images.

Remarks You can also use the MATLAB function avifile to make movies from
images. The avifile function creates AVI files. To convert an existing
MATLAB movie into an AVI file, use the movie2avi function.

Class
Support

An indexed image can be uint8, uint16, single, double, or logical.
A truecolor image can be uint8, uint16, single, or double. mov is a
MATLAB movie structure.

Examples load mri
mov = immovie(D,map);
movie(mov,3)

See Also avifile, getframe, montage, movie, movie2avi

17-345

immultiply

Purpose Multiply two images or multiply image by constant

Syntax Z = immultiply(X,Y)

Description Z = immultiply(X,Y) multiplies each element in array X by the
corresponding element in array Y and returns the product in the
corresponding element of the output array Z.

If X and Y are real numeric arrays with the same size and class, then Z
has the same size and class as X. If X is a numeric array and Y is a scalar
double, then Z has the same size and class as X.

If X is logical and Y is numeric, then Z has the same size and class as Y.
If X is numeric and Y is logical, then Z has the same size and class as X.

immultiply computes each element of Z individually in double-precision
floating point. If X is an integer array, then elements of Z exceeding
the range of the integer type are truncated, and fractional values are
rounded.

Note On Intel architecture processors, immultiply can take advantage
of the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated only if arrays X, Y, and Z are of
class logical, uint8, or single, and are of the same class.

Examples Multiply an image by itself. Note how the example converts the class of
the image from uint8 to uint16 before performing the multiplication to
avoid truncating the results.

I = imread('moon.tif');
I16 = uint16(I);
J = immultiply(I16,I16);
imshow(I), figure, imshow(J)

Scale an image by a constant factor:

I = imread('moon.tif');

17-346

immultiply

J = immultiply(I,0.5);
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(J)

See also imabsdiff, imadd, imcomplement, imdivide, imlincomb, imsubtract,
ippl

17-347

imnoise

Purpose Add noise to image

Syntax J = imnoise(I,type)
J = imnoise(I,type,parameters)
J = imnoise(I,'gaussian',m,v)
J = imnoise(I,'localvar',V)
J = imnoise(I,'localvar',image_intensity,var)
J = imnoise(I,'poisson')
J = imnoise(I,'salt & pepper',d)
J = imnoise(I,'speckle',v)

Description J = imnoise(I,type) adds noise of a given type to the intensity image
I. type is a string that can have one of these values.

Value Description

'gaussian' Gaussian white noise with constant mean and
variance

'localvar' Zero-mean Gaussian white noise with an
intensity-dependent variance

'poisson' Poisson noise

'salt &
pepper'

On and off pixels

'speckle' Multiplicative noise

J = imnoise(I,type,parameters) Depending on type, you can
specify additional parameters to imnoise. All numerical parameters are
normalized; they correspond to operations with images with intensities
ranging from 0 to 1.

J = imnoise(I,'gaussian',m,v) adds Gaussian white noise of mean
m and variance v to the image I. The default is zero mean noise with
0.01 variance.

J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of
local variance V to the image I. V is an array of the same size as I.

17-348

imnoise

J = imnoise(I,'localvar',image_intensity,var) adds zero-mean,
Gaussian noise to an image I, where the local variance of the
noise, var, is a function of the image intensity values in I. The
image_intensity and var arguments are vectors of the same size, and
plot(image_intensity,var) plots the functional relationship between
noise variance and image intensity. The image_intensity vector must
contain normalized intensity values ranging from 0 to 1.

J = imnoise(I,'poisson') generates Poisson noise from the data
instead of adding artificial noise to the data. If I is double precision,
then input pixel values are interpreted as means of Poisson distributions
scaled up by 1e12. For example, if an input pixel has the value 5.5e-12,
then the corresponding output pixel will be generated from a Poisson
distribution with mean of 5.5 and then scaled back down by 1e12. If I is
single precision, the scale factor used is 1e6. If I is uint8 or uint16,
then input pixel values are used directly without scaling. For example,
if a pixel in a uint8 input has the value 10, then the corresponding
output pixel will be generated from a Poisson distribution with mean 10.

J = imnoise(I,'salt & pepper',d) adds salt and pepper noise to
the image I, where d is the noise density. This affects approximately
d*numel(I) pixels. The default for d is 0.05.

J = imnoise(I,'speckle',v) adds multiplicative noise to the image I,
using the equation J = I+n*I, where n is uniformly distributed random
noise with mean 0 and variance v. The default for v is 0.04.

Note The mean and variance parameters for 'gaussian', 'localvar',
and 'speckle' noise types are always specified as if the image were of
class double in the range [0, 1]. If the input image is of class uint8 or
uint16, the imnoise function converts the image to double, adds noise
according to the specified type and parameters, and then converts the
noisy image back to the same class as the input.

17-349

imnoise

Class
Support

For most noise types, I can be of class uint8, uint16, int16, single, or
double. For Poisson noise, int16 is not allowed. The output image J is
of the same class as I. If I has more than two dimensions it is treated
as a multidimensional intensity image and not as an RGB image.

Examples I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
figure, imshow(I)
figure, imshow(J)

See Also rand, randn in the MATLAB Function Reference

17-350

imopen

Purpose Morphologically open image

Syntax IM2 = imopen(IM,SE)
IM2 = imopen(IM,NHOOD)

Description IM2 = imopen(IM,SE) performs morphological opening on the grayscale
or binary image IM with the structuring element SE. The argument SE
must be a single structuring element object, as opposed to an array of
objects.

IM2 = imopen(IM,NHOOD) performs opening with the structuring
element strel(NHOOD), where NHOOD is an array of 0’s and 1’s that
specifies the structuring element neighborhood.

Class
Support

IM can be any numeric or logical class and any dimension, and must
be nonsparse. If IM is logical, then SE must be flat. IM2 has the same
class as IM.

Examples Remove the smaller objects in an image.

1 Read the image into the MATLAB workspace and display it.

I = imread('snowflakes.png');
imshow(I)

2 Create a disk-shaped structuring element with a radius of 5 pixels.

se = strel('disk',5);

3 Remove snowflakes having a radius less than 5 pixels by opening it
with the disk-shaped structuring element created in step 2.

17-351

imopen

I_opened = imopen(I,se);
figure, imshow(I_opened,[])

See Also imclose, imdilate, imerode, strel

17-352

imoverview

Purpose Overview tool for image displayed in scroll panel

Syntax imoverview(himage)
hfig = imoverview(...)

Description imoverview(himage) creates an Overview tool associated with
the image specified by the handle himage, called the target image.
The target image must be contained in a scroll panel created by
imscrollpanel.

The Overview tool is a navigation aid for images displayed in a scroll
panel. imoverview creates the tool in a separate figure window that
displays the target image in its entirety, scaled to fit. Over this scaled
version of the image, the tool draws a rectangle, called the detail
rectangle, that shows the portion of the target image that is currently
visible in the scroll panel. To view portions of the image that are not
currently visible in the scroll panel, move the detail rectangle in the
Overview tool.

The following figure shows the Image Tool with the Overview tool.

17-353

imoverview

hfig = imoverview(...) returns a handle to the Overview tool figure.

Note To create an Overview tool that can be embedded in an existing figure
or uipanel object, use imoverviewpanel.

Examples Create a figure, disabling the toolbar and menubar, because the toolbox
navigation tools are not compatible with the standard MATLAB zoom
and pan tools. Then create a scroll panel in the figure and use scroll
panel API functions to set the magnification.

hFig = figure('Toolbar','none',...
'Menubar','none');
hIm = imshow('tape.png');
hSP = imscrollpanel(hFig,hIm);
api = iptgetapi(hSP);

17-354

imoverview

api.setMagnification(2) % 2X = 200%
imoverview(hIm)

See Also imoverviewpanel, imscrollpanel

17-355

imoverviewpanel

Purpose Overview tool panel for image displayed in scroll panel

Syntax hpanel=imoverviewpanel(hparent,himage)

Description hpanel=imoverviewpanel(hparent,himage) creates an Overview tool
panel associated with the image specified by the handle himage, called
the target image. himage must be contained in a scroll panel created by
imsrollpanel. hparent is a handle to the figure or uipanel object that
will contain the Overview tool panel. imoverviewpanel returns hpanel,
a handle to the Overview tool uipanel object

The Overview tool is a navigation aid for images displayed in a scroll
panel. imoverviewpanel creates the tool in a uipanel object that can
be embedded in a figure or uipanel object. The tool displays the target
image in its entirety, scaled to fit. Over this scaled version of image,
the tool draws a rectangle, called the detail rectangle, that shows the
portion of the target image that is currently visible in the scroll panel.
To view portions of the image that are not currently visible in the scroll
panel, move the detail rectangle in the Overview tool.

Note To create an Overview tool in a separate figure, use imoverview. When
created using imoverview, the Overview tool includes zoom-in and
zoom-out buttons.

Examples Create an Overview tool that is embedded in the same figure that
contains the target image.

hFig = figure('Toolbar','none','Menubar','none');
hIm = imshow('tissue.png');
hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized','Position',[0 .5 1 .5])
hOvPanel = imoverviewpanel(hFig,hIm);
set(hOvPanel,'Units','Normalized',...
'Position',[0 0 1 .5])

See Also imoverview, imscrollpanel

17-356

impixel

Purpose Pixel color values

Syntax P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

P = impixel(I,c,r)
P = impixel(X,map,c,r)
P = impixel(RGB,c,r)
[c,r,P] = impixel(...)

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)
[xi,yi,P] = impixel(x,y,...)

Description impixel returns the red, green, and blue color values of specified image
pixels. In the syntax below, impixel displays the input image and waits
for you to specify the pixels with the mouse.

P = impixel(I)
P = impixel(X,map)
P = impixel(RGB)

If you omit the input arguments, impixel operates on the image in
the current axes.

Use normal button clicks to select pixels. Press Backspace or Delete
to remove the previously selected pixel. A shift-click, right-click, or
double-click adds a final pixel and ends the selection; pressing Return
finishes the selection without adding a pixel.

When you finish selecting pixels, impixel returns an m-by-3 matrix of
RGB values in the supplied output argument. If you do not supply an
output argument, impixel returns the matrix in ans.

You can also specify the pixels noninteractively, using these syntax.

P = impixel(I,c,r)

17-357

impixel

P = impixel(X,map,c,r)
P = impixel(RGB,c,r)

r and c are equal-length vectors specifying the coordinates of the pixels
whose RGB values are returned in P. The kth row of P contains the RGB
values for the pixel (r(k),c(k)).

If you supply three output arguments, impixel returns the coordinates
of the selected pixels. For example,

[c,r,P] = impixel(...)

To specify a nondefault spatial coordinate system for the input image,
use these syntax.

P = impixel(x,y,I,xi,yi)
P = impixel(x,y,X,map,xi,yi)
P = impixel(x,y,RGB,xi,yi)

x and y are two-element vectors specifying the image XData and YData.
xi and yi are equal-length vectors specifying the spatial coordinates
of the pixels whose RGB values are returned in P. If you supply three
output arguments, impixel returns the coordinates of the selected
pixels.

[xi,yi,P] = impixel(x,y,...)

Class
Support

The input image can be of class uint8, uint16, int16, single, double,
or logical. All other inputs are of class double.

If the input is double, the output P is double. For all other input classes
the output is single. The rest of the outputs are double.

Remarks impixel works with indexed, intensity, and RGB images. impixel
always returns pixel values as RGB triplets, regardless of the image
type:

17-358

impixel

• For an RGB image, impixel returns the actual data for the pixel. The
values are either uint8 integers or double floating-point numbers,
depending on the class of the image array.

• For an indexed image, impixel returns the RGB triplet stored in the
row of the colormap that the pixel value points to. The values are
double floating-point numbers.

• For an intensity image, impixel returns the intensity value as an
RGB triplet, where R=G=B. The values are either uint8 integers or
double floating-point numbers, depending on the class of the image
array.

Examples RGB = imread('peppers.png');
c = [12 146 410];
r = [104 156 129];
pixels = impixel(RGB,c,r)

pixels =

62 34 63
166 54 60
59 28 47

See Also improfile, pixval

17-359

impixelinfo

Purpose Pixel Information tool

Syntax impixelinfo
impixelinfo(h)
impixelinfo(hparent,himage)
hpanel=impixelinfo(...)

Description impixelinfo creates a Pixel Information tool in the current figure. The
Pixel Information tool displays information about the pixel in an image
that the cursor is positioned over. The tool can display pixel information
for all the images in a figure.

The Pixel Information tool is a uipanel object, positioned in the lower-left
corner of the figure. The tool contains the text string Pixel info:
followed by the pixel information. Before you move the cursor over
the image, the tool contains the default pixel information text string
(X,Y) Pixel Value. Once you move the cursor over the image, the
information displayed varies by image type, as shown in the following
table. If you move the cursor off the image, the pixel information tool
displays the default pixel information string for that image type.

Image Type
Pixel
Information Example

Intensity (X,Y) Intensity (13,30) 82

Indexed (X,Y) <index> [R G
B]

(2,6) <4> [0.29
0.05 0.32]

Binary (X,Y) BW (12,1) 0

Truecolor (X,Y) [R G B] (19,10) [15 255
10]

Floating point image with
CDataMapping property set
to direct

(X,Y) value
<index> [R G B]

(19,10) 82 <4> [15
255 10]

17-360

impixelinfo

For example, for grayscale (intensity) images, the pixel information tool
displays the x and y coordinates of the pixel and its value, as shown in
the following figure.

If you want to display the pixel information without the “Pixel Info”
label, use the impixelinfoval function.

impixelinfo(h) creates a Pixel Information tool in the figure specified
by h, where h is a handle to an image, axes, uipanel, or figure object.
Axes, uipanel, or figure objects must contain at least one image object.

impixelinfo(hparent,himage) creates a Pixel Information tool in
hparent that provides information about the pixels in himage. himage is
a handle to an image or an array of image handles. hparent is a handle
to the figure or uipanel object that contains the pixel information tool.

hpanel=impixelinfo(...) returns a handle to the Pixel Information
tool uipanel.

Note To copy the pixel information string to the clipboard, right-click while
the cursor is positioned over a pixel. In the context menu displayed,
choose Copy pixel info.

Examples Display an image and add a Pixel Information tool to the figure. The
example shows how you can change the position of the tool in the figure
using properties of the tool uipanel object.

h = imshow('hestain.png');
hp = impixelinfo;
set(hp,'Position',[150 290 300 20]);

Use the Pixel Information tool in a figure containing multiple images of
different types.

17-361

impixelinfo

figure
subplot(1,2,1), imshow('liftingbody.png');
subplot(1,2,2), imshow('autumn.tif');
impixelinfo;

See Also impixelinfoval, imtool

17-362

impixelinfoval

Purpose Pixel Information tool without text label

Syntax hcontrol = impixelinfoval(hparent,himage)

Description hcontrol = impixelinfoval(hparent,himage) creates a Pixel
Information tool in hparent that provides information about the pixels
in the image specified by himage. hparent is a handle to a figure or
uipanel object. himage can be a handle to an image or an array of
image handles.

The Pixel Information tool displays information about the pixel in
an image that the cursor is positioned over. The tool displays pixel
information for all the images in a figure.

When created with impixelinfo, the tool is a uipanel object, positioned
in the lower-left corner of the figure, that contains the text label Pixel
Info: followed by the x- and y-coordinates of the pixel and its value.
When created with impixelinfoval, the tool is a uicontrol object
positioned in the lower-left corner of the figure, that displays the pixel
information without the text label, as shown in the following figure.

The information displayed depends on the image type. See impixelinfo
for details.

To copy the pixel value string to the Clipboard, right-click while the
cursor is positioned over a pixel. In the context menu displayed, choose
Copy pixel info.

Examples Add a Pixel Information tool to a figure. Note how you can change the
style and size of the font used to display the value in the tool using
standard Handle Graphics commands.

ankle = dicomread('CT-MONO2-16-ankle.dcm');
h = imshow(ankle,[]);

17-363

impixelinfoval

hText = impixelinfoval(gcf,h);
set(hText,'FontWeight','bold')
set(hText,'FontSize',10)

See also impixelinfo

17-364

impixelregion

Purpose Pixel Region tool

Syntax impixelregion
impixelregion(h)
hfig=impixelregion(...)

Description impixelregion creates a Pixel Region display tool associated with the
image displayed in the current figure, called the target image.

The Pixel Region tool opens a separate figure window containing an
extreme close-up view of a small region of pixels in the target image,
shown in the following figure. The tool superimposes the numeric value
of the pixel over each pixel. To define the region being examined, the
tool overlays a rectangle on the target image, called the pixel region
rectangle. To view pixels in a different region, click and drag the
rectangle over the target image.

17-365

impixelregion

impixelregion(h) creates a Pixel Region tool associated with the object
specified by the handle h. h can be a handle to a figure, axes, uipanel,
or image object. If h is a handle to an axes or figure, impixelregion
associates the tool with the first image found in the axes or figure.

hfig=impixelregion(...) returns hfig, a handle of the Pixel Region
tool figure.

Note To create a Pixel Region tool that can be embedded in an existing figure
window or uipanel, use impixelregionpanel.

Examples Display an image and then create a Pixel Region tool associated with
the image.

17-366

impixelregion

imshow peppers.png
impixelregion

See Also impixelinfo, impixelregionpanel, imtool

17-367

impixelregionpanel

Purpose Pixel Region tool panel

Syntax hpanel = impixelregionpanel(hparent,himage)

Description hpanel = impixelregionpanel(hparent,himage) creates a Pixel
Region tool panel associated with the image specified by the handle
himage, called the target image. This is the image whose pixels are
to be displayed. hparent is the handle to the figure or uipanel object
that will contain the Pixel Region tool panel. hpanel is the handle to
the Pixel Region tool scroll panel.

The Pixel Region tool is a uipanel object that contains an extreme
close-up view of a small region of pixels in the target image. The tool
superimposes the numeric value of the pixel over each pixel. To define
the region being examined, the tool overlays a rectangle on the target
image, called the pixel region rectangle. To view pixels in a different
region, click and drag the rectangle over the target image.

Note To create a Pixel Region tool in a separate figure window, use
impixelregion.

Examples himage = imshow('peppers.png');
hfigure = figure;
hpanel = impixelregionpanel(hfigure, himage);

Set the panel’s position to the lower-left quadrant of the figure.

set(hpanel, 'Position', [0 0 .5 .5])

See Also impixelregion, impositionrect, imtool

17-368

impoint

Purpose Create draggable point

Syntax h = impoint(hparent, x, y)

Description h = impoint(hparent, x, y) creates a point, , on the object
specified by hparent. The point is an hggroup object that can be moved
interactively using the mouse. If you move the cursor over the point, it

changes to the fleur shape, .

hparent specifies the hggroup’s parent, which is typically an axes object,
but can also be any other object that can be the parent of an hggroup.

x and y are both scalars that together specify the initial position of the
point. If you specify empty matrices ([]) for x and y, you can place the
point interactively using the mouse.

The function returns h, a handle to the point, which is an hggroup object.

The draggable point has a context menu associated with it that allows
you to copy the current position to the clipboard and change the color
used to display the point.

API
Functions

Each point instance contains a structure, called an API. This structure
contains function handles that support various operations on the point.
To access these functions, use the iptgetapi function, passing it a
handle to the point, as follows:

api = iptgetapi(h)

The following lists these functions in the order they appear in the API
structure.

17-369

impoint

Method Description

setPosition Sets the point to a new position.

setPosition(new_x, new_y)

setPosition([new_x new_y])

getPosition Returns the current position of the point,

pos = getPosition()

where pos is a two-element vector [x y].

delete Deletes the point associated with the API.

delete()

setColor Sets the color used to draw the point,

setColor(new_color)

where new_color can be a three-element vector
specifying an RGB triplet, or a text string specifying
the long or short names of a predefined color, such as
'white' or 'w'. For a complete list of these predefined
colors and their short names, see ColorSpec.

addNewPositionCallback Adds the function handle fcn to the list of new-position
callback functions.

id = addNewPositionCallback(fcn)

Whenever the point changes its position, each function
in the list is called with the syntax

fcn(pos)

where pos is a two-element vector [x y].

The return value, id, is used only with the
removeNewPositionCallback function.

17-370

impoint

Method Description

removeNewPositionCallback Removes the corresponding function from the
new-position callback list,

removeNewPositionCallback(id)

where id is the identifier returned by the
addNewPositionCallback function.

getDragConstraintFcn Returns the function handle of the current drag
constraint function.
fcn = getDragConstraintFcn()

setDragConstraintFcn Sets the drag constraint function to be the specified
function handle, fcn.

setDragConstraintFcn(fcn)

Whenever the draggable point is moved because of a
mouse drag, the constraint function is called using the
syntax

constrained_position = fcn(new_position)

where new_position is a two-element vector [new_x
new_y].

This allows a client, for example, to control where the
point may be dragged.

setString Sets the string for the optional text label,

setString(s)

where s is a string to be placed to the lower right of the
point.

Remarks If you use impoint with an axis that contains an image object, and do
not specify a drag constraint function, users can drag the point outside
the extent of the image and lose the point. When used with an axes
created by the plot function, the axes limits automatically expand
when the point is dragged outside the extent of the axes.

17-371

impoint

Examples Example 1

Display updated position in the title. Specify a drag constraint function
using makeConstainToRectFcn to keep the point inside the original
Xlim and Ylim ranges.

figure, imshow rice.png

h = impoint(gca,100,200);

api = iptgetapi(h);

api.addNewPositionCallback(@(p) ...

title(sprintf('(%1.0f,%1.0f)',p(1),p(2))));

fcn = makeConstrainToRectFcn('impoint',...

get(gca,'XLim'),get(gca,'YLim'));

api.setDragConstraintFcn(fcn);

Now drag the point using the mouse.

Example 2

Use a custom color for displaying the point. Specify a drag constraint
function using makeConstainToRectFcn to keep the point inside the
original Xlim and Ylim ranges.

figure, plot(1:10)
h = impoint(gca, 6, 4);
api = iptgetapi(h);
api.setColor([1 0 0]);
fcn = makeConstrainToRectFcn('impoint',...

get(gca,'XLim'),get(gca,'YLim'));
api.setDragConstraintFcn(fcn);

Example 3

Add string labels to each point.

figure, plot(1:10)
h1 = impoint(gca, 3, 6);
api1 = iptgetapi(h1);
api1.setString('1')

17-372

impoint

h2 = impoint(gca, 7, 2);
api2 = iptgetapi(h2);
api2.setString('2')

Example 4

Interactively place a point by clicking and dragging over an image.

figure, imshow('pout.tif');
h1 = impoint(gca, [], []);

See Also iptgetapi, imline, imrect

17-373

impositionrect

Purpose Create draggable position rectangle

Syntax H = impositionrect(hparent,position)

Note This function is obsolete and may be removed in future versions.
Use imrect instead.

Description H = impositionrect(hparent,position) creates a position rectangle
on the object specified by hparent. The function returns H, a handle to
the position rectangle, which is an hggroup object. hparent specifies
the hggroup’s parent, which is typically an axes object, but can also be
any other object that can be the parent of an hggroup. position is a
four-element position vector that specifies the initial location of the
rectangle. position has the form [XMIN YMIN WIDTH HEIGHT].

All measurements are in units specified by the Units property
axes object.When you do not specify the position argument,
impositionrect uses [0 0 1 1] as the default value.

Remarks A position rectangle can be dragged interactively using the mouse.
When the position rectangle occupies a small number of screen pixels,
its appearance changes to aid visibility.

The position rectangle has a context menu associated with it that you
can use to copy the current position to the clipboard and change the
color used to display the rectangle.

API
Function
Syntaxes

A position rectangle contains a structure of function handles, called an
API, that can be used to manipulate it. To retrieve this structure from
the position rectangle, use the iptgetapi function.

API = iptgetapi(H)

The following lists the functions in the position rectangle API in the
order they appear in the API structure.

17-374

impositionrect

Function Description

setPosition Sets the position rectangle to a new position.

api.setPosition(new_position)

where new_position is a four-element position vector.

getPosition Returns the current position of the position rectangle.

position = api.getPosition()

position is a four-element position vector.

delete Deletes the position rectangle associated with the API.

api.delete()

setColor Sets the color used to draw the position rectangle.

api.setColor(new_color)

where new_color can be a three-element vector
specifying an RGB triplet, or a text string specifying
the long or short names of a predefined color, such as
'white' or 'w'. For a complete list of these predefined
colors and their short names, see ColorSpec.

17-375

impositionrect

Function Description

addNewPositionCallback Adds the function handle fun to the list of new-position
callback functions.

id = api.addNewPositionCallback(fun)

Whenever the position rectangle changes its position,
each function in the list is called with the syntax:

fun(position)

The return value, id, is used only with
removeNewPositionCallback.

removeNewPositionCallback Removes the corresponding function from the
new-position callback list.

api.removeNewPositionCallback(id)

where id is the identifier returned by
api.addNewPositionCallback

setDragConstraintCallback Sets the drag constraint function to be the specified
function handle, fcn.

api.setDragConstraintCallback(fcn)

Whenever the position rectangle is moved because of
a mouse drag, the constraint function is called using
the syntax:

constrained_position = fcn(new_position)

where new_position is a four-element position vector.
This allows a client, for example, to control where the
position rectangle may be dragged.

17-376

impositionrect

Examples Display in the command window the updated position of the position
rectangle as it moves in the axes.

close all, plot(1:10)
h = impositionrect(gca, [4 4 2 2]);
api = iptgetapi(h);
api.addNewPositionCallback(@(p) disp(p));

Constrain the position rectangle to move only up and down.

close all, plot(1:10)
h = impositionrect(gca, [4 4 2 2]);
api = getappdata(h, 'API');
api.setDragConstraintCallback(@(p) [4 p(2:4)]);

Specify the color of the position rectangle.

close all, plot(1:10)
h = impositionrect(gca, [4 4 2 2]);
api = iptgetapi(h, 'API');
api.setColor([1 0 0]);

When the position rectangle occupies only a few pixels on the screen,
the rectangle is drawn in a different style to increase its visibility.

close all, imshow cameraman.tif
h = impositionrect(gca, [100 100 10 10]);

See Also iptgetapi

17-377

improfile

Purpose Pixel-value cross-sections along line segments

Syntax c = improfile
c = improfile(n)

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

[...] = improfile(...,method)

Description improfile computes the intensity values along a line or a multiline path
in an image. improfile selects equally spaced points along the path
you specify, and then uses interpolation to find the intensity value for
each point. improfile works with grayscale images and RGB images.

If you call improfile with one of these syntax, it operates interactively
on the image in the current axes.

c = improfile
c = improfile(n)

n specifies the number of points to compute the intensity value for. If
you do not provide this argument, improfile chooses a value for n,
roughly equal to the number of pixels the path traverses.

You specify the line or path using the mouse, by clicking points in the
image. Press Backspace or Delete to remove the previously selected
point. A shift-click, right-click, or double-click adds a final point and
ends the selection; pressing Return finishes the selection without
adding a point. When you finish selecting points, improfile returns
the interpolated data values in c. c is an n-by-1 vector if the input is

17-378

improfile

a grayscale intensity image, or an n-by-1-by-3 array if the input is an
RGB image.

If you omit the output argument, improfile displays a plot of the
computed intensity values. If the specified path consists of a single line
segment, improfile creates a two-dimensional plot of intensity values
versus the distance along the line segment; if the path consists of two or
more line segments, improfile creates a three-dimensional plot of the
intensity values versus their x- and y-coordinates.

You can also specify the path noninteractively, using these syntax.

c = improfile(I,xi,yi)
c = improfile(I,xi,yi,n)

xi and yi are equal-length vectors specifying the spatial coordinates of
the endpoints of the line segments.

You can use these syntax to return additional information.

[cx,cy,c] = improfile(...)
[cx,cy,c,xi,yi] = improfile(...)

cx and cy are vectors of length n, containing the spatial coordinates of
the points at which the intensity values are computed.

To specify a nondefault spatial coordinate system for the input image,
use these syntax.

[...] = improfile(x,y,I,xi,yi)
[...] = improfile(x,y,I,xi,yi,n)

x and y are two-element vectors specifying the image XData and YData.

[...] = improfile(...,method) uses the specified interpolation
method. method is a string that can have one of these values. The
default value is enclosed in braces ({}).

17-379

improfile

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

Class
Support

The input image can be uint8, uint16, int16, single, double, or
logical. All other inputs and outputs must be double.

Examples I = imread('liftingbody.png');
x = [19 427 416 77];
y = [96 462 37 33];
improfile(I,x,y),grid on;

17-380

improfile

See Also impixel

interp2 in the MATLAB Function Reference

17-381

imread

Purpose Read image from graphics file

Note imread is a MATLAB function.

17-382

imreconstruct

Purpose Morphological reconstruction

Syntax IM = imreconstruct(marker,mask)
IM = imreconstruct(marker,mask,conn)

Description IM = imreconstruct(marker,mask) performs morphological
reconstruction of the image marker under the image mask. marker
and mask can be two intensity images or two binary images with the
same size. The returned image IM is an intensity or binary image,
respectively. marker must be the same size as mask, and its elements
must be less than or equal to the corresponding elements of mask.

By default, imreconstruct uses 8-connected neighborhoods for 2-D
images and 26-connected neighborhoods for 3-D images. For higher
dimensions, imreconstruct uses conndef(ndims(I),'maximal').

IM = imreconstruct(marker,mask,conn) performs morphological
reconstruction with the specified connectivity. conn can have any of
the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ... -by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-383

imreconstruct

Morphological reconstruction is the algorithmic basis for several
other Image Processing Toolbox functions, including imclearborder,
imextendedmax, imextendedmin, imfill, imhmax, imhmin, and
imimposemin.

Class
Support

marker and mask must be nonsparse numeric or logical arrays with
the same class and any dimension. IM is of the same class as marker
and mask.

Algorithm imreconstruct uses the fast hybrid grayscale reconstruction algorithm
described in [1].

See Also imclearborder, imextendedmax, imextendedmin, imfill, imhmax,
imhmin, imimposemin

Reference [1] Vincent, L., "Morphological Grayscale Reconstruction in Image
Analysis: Applications and Efficient Algorithms," IEEE Transactions on
Image Processing, Vol. 2, No. 2, April, 1993, pp. 176-201.

17-384

imrect

Purpose Create draggable, resizable rectangle

Syntax h = imrect(hparent, position)

Description h = imrect(hparent, position) creates a rectangle on the object
specified by hparent The rectangle is an hggroup object that can be
dragged and resized interactively using the mouse.

*�����
��"
��
�-�
��"
���������

If you move the cursor into the rectangle, the cursor changes to the

fleur shape, , indicating in which directions it can be dragged. If
you move the cursor over any of the edges or corners of the rectangle, it
changes to a double-ended arrow shape, , indicating the directions
in which the rectangle can be resized.

hparent specifies the hggroup’s parent, which is typically an axes object,
but can also be any other object that can be the parent of an hggroup.

position is a four-element vector that specifies the initial size and
location of the rectangle. position has the form [xmin ymin width
height]. All measurements are in units specified by the Units property
of the parent object. To place the rectangle interactively using the
mouse, specify an empty matrix ([]) for position.

When the rectangle occupies a small number of screen pixels, its
appearance changes to aid visibility.

17-385

imrect

The function returns h, a handle to the rectangle, which is an hggroup
object.

The rectangle has a context menu associated with it that you can use to:

• Copy the current position of the rectangle to the clipboard

• Change the color used to display the rectangle

• Preserve the current aspect ratio of the rectangle during interactive
resizing

API
Functions

Each rectangle instance contains a structure of function handles, called
an API, that can be used to manipulate it. To retrieve this structure,
use the iptgetapi function.

API = iptgetapi(H)

The following lists the functions in the rectangle API in the order they
appear in the API structure.

Function Description

setPosition Sets the rectangle to a new position,

setPosition(new_position)

where new_position is a four-element position
vector.

getPosition Returns the current position of the rectangle.

position = getPosition()

delete Deletes the rectangle associated with the API.

delete()

17-386

imrect

Function Description

setColor Sets the color used to draw the rectangle,

setColor(new_color)

where new_color can be a three-element vector
specifying an RGB triplet, or a text string
specifying the long or short names of a predefined
color, such as 'white' or 'w'. For a complete list
of these predefined colors and their short names,
see ColorSpec.

addNewPositionCallback Adds the function handle fcn to the list of
new-position callback functions.

id = addNewPositionCallback(fcn)

Whenever the rectangle changes its position, each
function in the list is called with the syntax

fcn(position)

The return value, id, is used only with the
removeNewPositionCallback function.

removeNewPositionCallback Removes the corresponding function from the
new-position callback list,

removeNewPositionCallback(id)

where id is the identifier returned by
api.addNewPositionCallback.

getDragConstraintFcn Returns the handle of the current drag constraint
function.

fcn = getDragConstraintFcn()

17-387

imrect

Function Description

setDragConstraintFcn

Note For backward compatibility
with impositionrect, you
can also use the name
setDragConstraintCallback
for this function.

Sets the drag constraint function to be the specified
function handle, fcn.

setDragConstraintFcn(fcn)

Whenever the draggable rectangle is moved
because of a mouse drag, the constraint function is
called using the syntax

constrained_position = fcn(new_position)

where new_position is a four-element position
vector. This allows a client, for example, to control
where the rectangle can be dragged.

setResizable Sets whether the rectangle may be resized
interactively.

setResizable(TF)

where TF is a logical scalar, true or false.

setFixedAspectRatioMode Sets the interactive resize behavior.

setFixedAspectRatioMode(TF)

If set to true, the current aspect ratio of the
rectangle is preserved during interactive resizing.
If set to false, interactive resizing is not
constrained.

Remarks If you use imrect with an axis that contains an image object, and do
not specify a drag constraint function, users can drag the rectangle
outside the extent of the image. When used with an axis created by the
plot function, the axis limits automatically expand to accommodate the
movement of the rectangle.

When the API function setResizable is used to make the rectangle
non-resizable, the Fix Aspect Ratio context menu item is not provided.

17-388

imrect

Examples Example 1

Display updated position in the title. Specify a drag constraint function
using makeConstainToRectFcn to keep the rectangle inside the original
Xlim and Ylim ranges.

figure, imshow('cameraman.tif');
h = imrect(gca, [10 10 100 100]);
api = iptgetapi(h);
api.addNewPositionCallback(@(p) title(mat2str(p)));
fcn = makeConstrainToRectFcn('imrect',...

get(gca,'XLim'),get(gca,'YLim'));
api.setDragConstraintFcn(fcn);

Now drag the rectangle using the mouse.

Example 2

Use a custom color for displaying the rectangle.

figure, imshow('cameraman.tif')
h = imrect(gca, [10 10 100 100]);
api = iptgetapi(h);
api.setColor([1 0 0]);

Example 3

When the rectangle position occupies only a few pixels on the screen,
the rectangle is drawn in a different style to increase its visibility.

figure, imshow cameraman.tif
h = imrect(gca, [100 100 10 10]);

Example 4

Interactively place the rectangle by clicking and dragging the mouse
over an image.

figure, imshow('pout.tif');
h = imrect(gca, []);

See Also iptgetapi, imline, impoint

17-389

imregionalmax

Purpose Regional maxima

Syntax BW = imregionalmax(I)
BW = imregionalmax(I,conn)

Description BW = imregionalmax(I) finds the regional maxima of I.
imregionalmax returns the binary image BW that identifies the locations
of the regional maxima in I. BW is the same size as I. In BW, pixels that
are set to 1 identify regional maxima; all other pixels are set to 0.

Regional maxima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a lower
value.

By default, imregionalmax uses 8-connected neighborhoods for 2-D
images and 26-connected neighborhoods for 3-D images. For higher
dimensions, imregionalmax uses conndef(ndims(I),'maximal').

BW = imregionalmax(I,conn) computes the regional maxima of I
using the specified connectivity. conn can have any of the following
scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued

17-390

imregionalmax

elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

Class
Support

I can be any nonsparse, numeric class and any dimension. BW is
logical.

Examples Create a sample image with several regional maxima.

A = 10*ones(10,10);
A(2:4,2:4) = 22;
A(6:8,6:8) = 33;
A(2,7) = 44;
A(3,8) = 45;
A(4,9) = 44;
A =

10 10 10 10 10 10 10 10 10 10
10 22 22 22 10 10 44 10 10 10
10 22 22 22 10 10 10 45 10 10
10 22 22 22 10 10 10 10 44 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 33 33 33 10 10
10 10 10 10 10 33 33 33 10 10
10 10 10 10 10 33 33 33 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

Find the regional maxima.

17-391

imregionalmax

regmax = imregionalmax(A)
regmax =

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

See Also conndef, imextendedmax, imhmax, imreconstruct, imregionalmin

17-392

imregionalmin

Purpose Regional minima

Syntax BW = imregionalmin(I)
BW = imregionalmin(I,conn)

Description BW = imregionalmin(I) computes the regional minima of I. The
output binary image BW has value 1 corresponding to the pixels of I that
belong to regional minima and 0 otherwise. BW is the same size as I.

Regional minima are connected components of pixels with a constant
intensity value, and whose external boundary pixels all have a higher
value.

By default, imregionalmin uses 8-connected neighborhoods for 2-D
images and 26-connected neighborhoods for 3-D images. For higher
dimensions, imregionalmin uses conndef(ndims(I),'maximal').

BW = imregionalmin(I,conn) specifies the desired connectivity. conn
can have any of the following scalar values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued
elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

17-393

imregionalmin

Class
Support

I can be any nonsparse, numeric class and any dimension. BW is
logical.

Examples Create a 10-by-10 pixel sample image that contains two regional
minima.

A = 10*ones(10,10);
A(2:4,2:4) = 2;
A(6:8,6:8) = 7;
A =

10 10 10 10 10 10 10 10 10 10
10 2 2 2 10 10 10 10 10 10
10 2 2 2 10 10 10 10 10 10
10 2 2 2 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 7 7 7 10 10
10 10 10 10 10 7 7 7 10 10
10 10 10 10 10 7 7 7 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10

Pass the sample image A to imregionalmin. The function returns a
binary image, the same size as A, in which pixels with the value 1
represent the regional minima in A. imregionalmin sets all other pixels
in to zero (0).

17-394

imregionalmin

B = imregionalmin(A)
B =

0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

See Also conndef, imextendedmin, imhmin, imimposemin, imreconstruct,
imregionalmax

17-395

imresize

Purpose Resize image

Syntax B = imresize(A, scale)
B = imresize(A, [mrows ncols])
[Y newmap] = imresize(X, map, scale)
[...] = imresize(..., method)
[...] = imresize(..., parameter, value, ...)

Description B = imresize(A, scale) returns image B that is scale times the size
of A. The input image A can be a grayscale, RGB, or binary image. If
scale is between 0 and 1.0, B is smaller than A. If scale is greater
than 1.0, B is larger than A.

B = imresize(A, [mrows ncols]) returns image B that has the
number of rows and columns specified by [mrows ncols]. Either
NUMROWS or NUMCOLS may be NaN, in which case imresize computes
the number of rows or columns automatically to preserve the image
aspect ratio.

[Y newmap] = imresize(X, map, scale) resizes the indexed image X.
scale can either be a numeric scale factor or a vector that specifies the
size of the output image ([numrows numcols]). By default, imresize
returns a new, optimized colormap (newmap) with the resized image. To
return a colormap that is the same as the original colormap, use the
'Colormap' parameter (see below).

[...] = imresize(..., method) resizes the image where method is a
text string that specifies an interpolation method or interpolation kernel
or a two-element cell array of the form {f,w} that specifies a custom
kernel. The following tables list all of the supported interpolation
methods and kernels. When specifying a custom kernel, f is a function
handle for a custom interpolation kernel and w is the custom kernel’s
width.f(x) must be zero outside the interval -w/2 <= x < w/2. Your
function handle f may be called with a scalar or a vector input.

17-396

imresize

Interpolation Methods

Method Description

'nearest' Nearest-neighbor interpolation; the
output pixel is assigned the value of
the pixel that the point falls within.
No other pixels are considered.

'bilinear' Bilinear interpolation; the output pixel
value is a weighted average of pixels in
the nearest 2-by-2 neighborhood

'bicubic' Bicubic interpolation (the default);
the output pixel value is a weighted
average of pixels in the nearest 4-by-4
neighborhood

Interpolation Kernels

Kernel Name Description

'box' Box-shaped kernel

'triangle' Triangular kernel (equivalent to
'bilinear')

'cubic' Cubic kernel (equivalent to
'bicubic')

'lanczos2' Lanczos-2 kernel

'lanczos3' Lanczos-3 kernel

[...] = imresize(..., parameter, value, ...) you can control
various aspects of the resizing operation by specifying parameter/value
pairs with any of the previous syntaxes. The following table lists these
parameters.

17-397

imresize

Parameter Value

'Antialiasing' A Boolean value that specifies whether to
perform antialiasing when shrinking an image.
The default value depends on the interpolation
method. If the method is nearest-neighbor
('nearest'), the default is false; for all other
interpolation methods, the default is true.

’Colormap' A text string that specifies whether imresize
returns an optimized colormap or the original
colormap (Indexed images only). If set to
'original', the output colormap (newmap)
is the same as the input colormap (map). If
set to 'optimized', imresize returns a new
optimized colormap. The default value is
'optimized'.

'Dither' A Boolean value that specifies whether to
perform color dithering (Indexed images only).
The default value is true.

'Method' As described above

'OutputSize' A two-element vector, [MROWS NCOLS], that
specifies the size of the output image. If you
specify NaN for one of the values, imresize
computes the value of the dimension to preserve
the aspect ratio of the original image.

'Scale' A scalar or two-element vector that specifies
the resize scale factors. If you specify a scalar,
imresize uses the value as the scale factor
for each dimension. If you specify a vector,
imresize uses the individual values as the scale
factors for the row and column dimensions,
respectively.

17-398

imresize

Notes In previous releases, imresize used a somewhat different algorithm
by default. If you need the same results produced by the previous
implementation, call the function imresize_old.

Class
Support

The input image can be numeric or logical and it must be nonsparse.
The output image is of the same class as the input image. An input
image that is an indexed image can be uint8, uint16, or double.

Examples Shrink by factor of two using the defaults of bicubic interpolation and
antialiasing.

I = imread('rice.png');
J = imresize(I, 0.5);
figure, imshow(I), figure, imshow(J)

Shrink by factor of two using nearest-neighbor interpolation. (This is
the fastest method, but it has the lowest quality.)

J2 = imresize(I, 0.5, 'nearest');

Resize an indexed image

[X, map] = imread('trees.tif');
[Y, newmap] = imresize(X, map, 0.5);
imshow(Y, newmap)

Resize an RGB image to have 64 rows. The number of columns is
computed automatically.

RGB = imread('peppers.png');
RGB2 = imresize(RGB, [64 NaN]);

See Also imrotate, imtransform, tformarray

interp2 in the MATLAB Function Reference

17-399

imrotate

Purpose Rotate image

Syntax B = imrotate(A,angle)
B = imrotate(A,angle,method)
B = imrotate(A,angle,method,bbox)

Description B = imrotate(A,angle) rotates image A by angle degrees in a
counterclockwise direction around its center point. To rotate the
image clockwise, specify a negative value for angle. imrotate makes
the output image B large enough to contain the entire rotated image.
imrotate uses nearest neighbor interpolation, setting the values of
pixels in B that are outside the rotated image to 0 (zero).

B = imrotate(A,angle,method) rotates image A, using the
interpolation method specified by method. method is a text string that
can have one of these values. The default value is enclosed in braces
({}).

Value Description

{'nearest'} Nearest-neighbor interpolation

'bilinear' Bilinear interpolation

'bicubic' Bicubic interpolation

Note Bicubic interpolation can produce pixel
values outside the original range.

B = imrotate(A,angle,method,bbox) rotates image A, where bbox
specifies the size of the returned image. bbox is a text string that can
have one of the following values. The default value is enclosed in braces
({}).

17-400

imrotate

Value Description

'crop' Make output image B the same size as the input
image A, cropping the rotated image to fit

{'loose'} Make output image B large enough to contain the
entire rotated image. B is generally larger than A.

Class
Support

The input image can be numeric or logical. The output image is of the
same class as the input image.

Examples Read a solar spectra image, stored in FITS format, and rotate the image
to bring it into horizontal alignment. A rotation of -1 degree is all that
is required.

I = fitsread('solarspectra.fts');
I = mat2gray(I);
J = imrotate(I,-1,'bilinear','crop');
figure, imshow(I)
figure, imshow(J)

See Also imcrop, imresize, imtransform, tformarray

17-401

imscrollpanel

Purpose Scroll panel for interactive image navigation

Syntax hpanel = imscrollpanel(hparent, himage)

Description hpanel = imscrollpanel(hparent, himage) creates a scroll panel
containing the target image (the image to be navigated). himage is a
handle to the target image. hparent is a handle to the figure or uipanel
that will contain the new scroll panel. The function returnshpanel, a
handle to the scroll panel, which is a uipanel object.

A scroll panel makes an image scrollable. If the size or magnification
makes an image too large to display in a figure on the screen, the scroll
panel displays a portion of the image at 100% magnification (one screen
pixel represents one image pixel). The scroll panel adds horizontal and
vertical scroll bars to enable navigation around the image.

imscrollpanel changes the object hierarchy of the target image.
Instead of the familiar figure->axes->image object hierarchy,
imscrollpanel inserts several uipanel and uicontrol objects between
the figure and the axes object.

API
Functions

A scroll panel contains a structure of function handles, called an API.
You can use the functions in this API to manipulate the scroll panel. To
retrieve this structure, use the iptgetapi function, as in the following
example.

api = iptgetapi(hpanel)

This table lists the scroll panel API functions, in the order they appear
in the structure.

17-402

imscrollpanel

Scroll Panel API Function Description

setMagnification Sets the magnification of the target image in
units of screen pixels per image pixel.

mag = api.getMagnification(new_mag)

where new_mag is a scalar magnification factor.

getMagnification Returns the current magnification factor of the
target image in units of screen pixels per image
pixel.

mag = api.getMagnification()

Multiply mag by 100 to convert to percentage. For
example if mag=2, themagnification is 200%.

setMagnificationAndCenter Changes the magnification and makes the point
cx,cy in the target image appear in the center of
the scroll panel. This operation is equivalent to a
simultaneous zoom and recenter.

api.setMagnificationAndCenter(mag,cx,cy)

findFitMag Returns the magnification factor that would
make the target image just fit in the scroll panel.

mag = api.findFitMag()

setVisibleLocation Moves the target image so that the specified
location is visible. Scrollbars update.

api.setVisibleLocation(xmin, ymin)
api.setVisibleLocation([xmin ymin])

17-403

imscrollpanel

Scroll Panel API Function Description

getVisibleLocation Returns the location of the currently visible
portion of the target image.

loc = api.getVisibleLocation()

where loc is a vector [xmin ymin].

getVisibleImageRect Returns the current visible portion of the image.

r = api.getVisibleImageRect()

where r is a rectangle [xmin ymin width
height].

addNewMagnificationCallback Adds the function handle fcn to the list of
new-magnification callback functions.

id = api.addNewMagnificationCallback(fcn)

Whenever the scroll panel magnification changes,
each function in the list is called with the syntax:

fcn(mag)

where mag is a scalar magnification factor.

The return value, id, is used only with
removeNewMagnificationCallback.

removeNewMagnificationCallback Removes the corresponding function from the
new-magnification callback list.

api.removeNewMagnificationCallback(id)

where id is the identifier returned by
addNewMagnificationCallback.

17-404

imscrollpanel

Scroll Panel API Function Description

addNewLocationCallback Adds the function handle fcn to the list of
new-location callback functions.

id = api.addNewLocationCallback(fcn)

Whenever the scroll panel location changes, each
function in the list is called with the syntax:

fcn(loc)

where loc is [xmin ymin].

The return value, id, is used only with
removeNewLocationCallback.

removeNewLocationCallback Removes the corresponding function from the
new-location callback list.

api.removeNewLocationCallback(id)

where id is the identifier returned by
addNewLocationCallback.

replaceImage Replaces the existing image data in the scroll
panel with the image data specified.

api.replaceImage(I)
api.replaceImage(BW)
api.replaceImage(RGB)
api.replaceImage(I, MAP)
api.replaceImage(filename)

The new image data is displayed centered,
at 100% magnification. The image handle is
unchanged.

17-405

imscrollpanel

Note Scrollbar navigation as provided by imscrollpanel is incompatible
with the default MATLAB figure navigation buttons (pan, zoom in,
zoom out). The corresponding menu items and toolbar buttons should
be removed in a custom GUI that includes a scrollable uipanel created
by imscrollpanel.

When you run imscrollpanel, it appears to take over the entire figure
because, by default, an hpanel object has 'Units' set to 'normalized'
and 'Position' set to [0 0 1 1]. If you want to see other children of
hparent while using your new scroll panel, you must manually set the
'Position' property of hpanel.

Examples Create a scroll panel with a Magnification Box and an Overview tool.

1 Create a scroll panel.

hFig = figure('Toolbar','none',...
'Menubar','none');

hIm = imshow('saturn.png');
hSP = imscrollpanel(hFig,hIm);
set(hSP,'Units','normalized',...

'Position',[0 .1 1 .9])

2 Add a Magnification Box and an Overview tool.

hMagBox = immagbox(hFig,hIm);
pos = get(hMagBox,'Position');
set(hMagBox,'Position',[0 0 pos(3) pos(4)])
imoverview(hIm)

3 Get the scroll panel API to programmatically control the view.

api = iptgetapi(hSP);

4 Get the current magnification and position.

mag = api.getMagnification();
r = api.getVisibleImageRect();

17-406

imscrollpanel

5 View the top left corner of the image.

api.setVisibleLocation(0.5,0.5)

6 Change the magnification to the value that just fits.

api.setMagnification(api.findFitMag())

7 Zoom in to 1600% on the dark spot.

api.setMagnificationAndCenter(16,306,800)

See Also immagbox, imoverview, imoverviewpanel, imtool, iptgetapi

For more information about scroll panels, see “Adding Navigation Aids
to a GUI” on page 5-19.

17-407

imshow

Purpose Display image

Syntax imshow(I)
imshow(I,[low high])
imshow(RGB)
imshow(BW)
imshow(X,map)
imshow(filename)
himage = imshow(...)
imshow(..., param1, val1, param2, val2,...)

Description imshow(I) displays the grayscale image I.

imshow(I,[low high]) displays the grayscale image I, specifying the
display range for I in [low high]. The value low (and any value less
than low) displays as black; the value high (and any value greater
than high) displays as white. Values in between are displayed as
intermediate shades of gray, using the default number of gray levels. If
you use an empty matrix ([]) for [low high], imshow uses [min(I(:))
max(I(:))]; that is, the minimum value in I is displayed as black, and
the maximum value is displayed as white.

imshow(RGB) displays the truecolor image RGB.

imshow(BW) displays the binary image BW. imshow displays pixels with
the value 0 (zero) as black and pixels with the value 1 as white.

imshow(X,map) displays the indexed image X with the colormap map.
A color map matrix may have any number of rows, but it must have
exactly 3 columns. Each row is interpreted as a color, with the first
element specifying the intensity of red light, the second green, and the
third blue. Color intensity can be specified on the interval 0.0 to 1.0.

imshow(filename) displays the image stored in the graphics file
filename. The file must contain an image that can be read by imread or
dicomread. imshow calls imread or dicomread to read the image from
the file, but does not store the image data in the MATLAB workspace.
If the file contains multiple images, the first one will be displayed. The
file must be in the current directory or on the MATLAB path.

17-408

imshow

himage = imshow(...) returns the handle to the image object created
by imshow.

imshow(..., param1, val1, param2, val2,...) displays the image,
specifying parameters and corresponding values that control various
aspects of the image display. The following table lists all imshow
parameters in alphabetical order. Parameter names can be abbreviated,
and case does not matter.

Parameter Value

'Border' Text string that controls whether imshow includes a border
around the image displayed in the figure window. Valid
strings are 'tight' and 'loose'.

Note: There can still be a border if the image is very small,
or if there are other objects besides the image and its axes
in the figure.

By default, the border is set to the value returned by
iptgetpref('ImshowBorder').

'DisplayRange' Two-element vector [LOW HIGH] that controls the display
range of a grayscale image. See the imshow(I,[low high])
syntax for more details about how to set this parameter.

Note Including the parameter name is optional,
except when the image is specified by a filename.
The syntax imshow(I,[LOW HIGH]) is equivalent to
imshow(I,'DisplayRange',[LOW HIGH]). However,
the 'DisplayRange' parameter must be specified
when calling imshow with a filename, for example
imshow(filename,'DisplayRange'[LOW HIGH]).

17-409

imshow

Parameter Value

'InitialMagnification' A numeric scalar value, or the text string 'fit', that
specifies the initial magnification used to display the
image. When set to 100, imshow displays the image at
100% magnification (one screen pixel for each image pixel).
When set to 'fit', imshow scales the entire image to fit in
the window.

On initial display, imshow always displays the entire image.
If the magnification value is large enough that the image
would be too big to display on the screen, imshow warns
and displays the image at the largest magnification that
fits on the screen.

By default, the initial magnification
parameter is set to the value returned by
iptgetpref('ImshowInitialMagnification').

If the image is displayed in a figure with its 'WindowStyle'
property set to 'docked', imshow warns and displays the
image at the largest magnification that fits in the figure.

Note: If you specify the axes position (using subplot or
axes), imshow ignores any initial magnification you might
have specified and defaults to the 'fit' behavior.

'Parent' Handle of an axes that specifies the parent of the image
object that will be created by imshow.

'XData' Two-element vector that establishes a nondefault spatial
coordinate system by specifying the image XData. The value
can have more than two elements, but only the first and last
elements are actually used.

'YData' Two-element vector that establishes a nondefault spatial
coordinate system by specifying the image YData. The value
can have more than two elements, but only the first and last
elements are actually used.

17-410

imshow

Class
Support

A truecolor image can be uint8, uint16, single, or double. An indexed
image can be logical, uint8, single, or double. A grayscale image
can be logical, uint8, int16, uint16, single, or double. A binary
image must be of class logical.

For all grayscale images having integer types, the default display range
is [intmin(class(I)) intmax(class(I))].

For grayscale images of class single or double, the default display
range is [0 1]. If the data range of a single or double image is much
larger or smaller than the default display range, you might need to
experiment with setting the display range to see features in the image
that would not be visible using the default display range.

If your image is int8, int16, uint32, int32 or single, the CData in the
resulting image object will be double. For all other classes, the CData
matches the input image class.

Related
Toolbox
Preferences

You can use the iptsetpref function to set several toolbox preferences
that modify the behavior of imshow.

• 'ImshowBorder' controls whether imshow displays the image with
a border around it.

• 'ImshowAxesVisible' controls whether imshow displays the image
with the axes box and tick labels.

• 'ImshowInitialMagnification' controls the initial magnification
for image display, unless you override it in a particular call by
specifying imshow(...,'InitialMagnification',initial_mag).

For more information about these preferences, see iptsetpref.

Remarks imshow is the toolbox’s fundamental image display function, optimizing
figure, axes, and image object property settings for image display.
imtool provides all the image display capabilities of imshow but also
provides access to several other tools for navigating and exploring
images, such as the Pixel Region tool, Image Information tool, and the
Adjust Contrast tool. imtool presents an integrated environment for

17-411

imshow

displaying images and performing some common image processing
tasks.

Examples Display an image from a file.

imshow('pout.tif')

Display an indexed image.

[X,map] = imread('trees.tif');
imshow(X,map)

Display a grayscale image.

I = imread('cameraman.tif');
imshow(I)

Display an intensity image, adjusting the display range.

h = imshow(I,[0 80]);

Specify the axes that you want to be the parent of the image object
created by imshow.

% Display two images in single figure window using subplot.
hax1 = subplot(1,2,1), imshow('pout.tif')
hax2 = subplot(1,2,2), imshow('cameraman.tif')
% Use Parent parameter to change image displayed in first axes.
imshow('cameraman.tif','Parent',hax1);

See Also imread, imtool, iptgetpref, iptsetpref, subimage, truesize, warp

image, imagesc in the MATLAB Function Reference

17-412

imsubtract

Purpose Subtract one image from another or subtract constant from image

Syntax Z = imsubtract(X,Y)

Description Z = imsubtract(X,Y) subtracts each element in array Y from the
corresponding element in array X and returns the difference in the
corresponding element of the output array Z. X and Y are real, nonsparse
numeric arrays of the same size and class, or Y is a double scalar. The
array returned, Z, has the same size and class as X unless X is logical,
in which case Z is double.

If X is an integer array, elements of the output that exceed the range of
the integer type are truncated, and fractional values are rounded.

Note On Intel architecture processors, imsubtract can take advantage
of the Intel Performance Primitives Library (IPPL), thus accelerating
its execution time. IPPL is activated only if array X is of class uint8,
int16, or single.

Examples Subtract two uint8 arrays. Note that negative results are rounded to 0.

X = uint8([255 10 75; 44 225 100]);
Y = uint8([50 50 50; 50 50 50]);
Z = imsubtract(X,Y)
Z =

205 0 25
0 175 50

Estimate and subtract the background of an image:

I = imread('rice.png');
background = imopen(I,strel('disk',15));
Ip = imsubtract(I,background);
imshow(Ip,[])

17-413

imsubtract

Subtract a constant value from an image:

I = imread('rice.png');
Iq = imsubtract(I,50);
figure, imshow(I), figure, imshow(Iq)

See Also imabsdiff, imadd, imcomplement, imdivide, imlincomb, immultiply,
ippl

17-414

imtool

Purpose Image Tool

Syntax imtool
imtool(I)
imtool(I,[low high])
imtool(RGB)
imtool(BW)
imtool(X,map)
imtool(filename)
hfigure = imtool(...)
imtool close all
imtool(...,param1,val1,param2,val2,...)

Description imtool opens a new Image Tool in an empty state. Use the File menu
options Open or Import from Workspace to choose an image for
display.

imtool(I) displays the grayscale image I.

imtool(I,[low high]) displays the grayscale image I, specifying the
display range for I in the vector [low high]. The value low (and any
value less than low) is displayed as black, the value high (and any
value greater than high) is displayed as white. Values in between are
displayed as intermediate shades of gray. imtool uses the default
number of gray levels. If you use an empty matrix ([]) for [low high],
imtool uses [min(I(:)) max(I(:))]; the minimum value in I is
displayed as black, and the maximum value is displayed as white.

imtool(RGB) displays the truecolor image RGB.

imtool(BW) displays the binary image BW. Pixels with the value 0 are
displayed as black, and pixels with the value 1 are displayed as white.

imtool(X,map) displays the indexed image X with colormap map.

imtool(filename) displays the image contained in the graphics file
filename. The file must contain an image that can be read by imread or
dicomread. imtool calls imread or dicomread to read the image from
the file, but the image data is not stored in the MATLAB workspace.

17-415

imtool

If the file contains multiple images, the first one is displayed. The file
must be in the current directory or on the MATLAB path.

hfigure = imtool(...) returns hfigure, a handle to the figure
created by imtool. close(Hfigure) closes the Image Tool.

imtool close all closes all image tools.

imtool(...,param1,val1,param2,val2,...) displays the image,
specifying parameters and corresponding values that control various
aspects of the image display. The following table lists all imshow
parameters. Parameter names can be abbreviated, and case does not
matter.

17-416

imtool

Parameter Value

'DisplayRange' Two-element vector [LOW HIGH] that controls the display
range of a grayscale image. See the imtool(I,[low high])
syntax for more details about how to set this parameter..

Note Including the parameter name is optional,
except when the image is specified by a filename.
The syntax imtool(I,[LOW HIGH]) is equivalent to
imtool(I,'DisplayRange',[LOW HIGH]). However,
the 'DisplayRange' parameter must be specified
when calling imtool with a filename, as in the syntax
imtool(filename,'DisplayRange',[LOW HIGH]).

'InitialMagnification' One of two text strings: 'adaptive' or 'fit' or a numeric
scalar value that specifies the initial magnification used
to display the image.

When set to 'adaptive', the entire image is visible on
initial display. If the image is too large to display on
the screen, imtool displays the image at the largest
magnification that fits on the screen.

When set to 'fit', imtool scales the entire image to fit in
the window.

When set to a numeric value, the value specifies the
magnification as a percentage. For example, if you specify
100, the image is displayed at 100% magnification (one
screen pixel for each image pixel).

Note When the image aspect ratio is such that less than
one pixel would be displayed in either dimension at the
requested magnification, imtool issues a warning and
displays the image at 100%.

By default, the initial magnification
parameter is set to the value returned by
iptgetpref('ImtoolInitialMagnification').

17-417

imtool

Class
Support

A truecolor image can be uint8, uint16, single, or double. An indexed
image can be logical, uint8, single, or double. A grayscale image
can be uint8, uint16, int16, single, or double. A binary image must
be logical. A binary image is of class logical.

For all grayscale images having integer types, the default display range
is [intmin(class(I)) intmax(class(I))].

For grayscale images of class single or double, the default display
range is [0 1]. If the data range of a single or double image is much
larger or smaller than the default display range, you might need to
experiment with setting the display range to see features in the image
that would not be visible using the default display range.

Related
Toolbox
Preferences

You can use the 'ImtoolInitialMagnification' preference to control
the initial magnification for image display. Use the iptsetpref
function to set the this toolbox preference. You can override this toolbox
preference by specifying the 'InitialMagnification' parameter when
you call imtool, as follows:

imtool(...,'InitialMagnification',initial_mag).

For more information about toolbox preferences, see the reference page
for the iptsetpref function.

Remarks imshow is the toolbox’s fundamental image display function, optimizing
figure, axes, and image object property settings for image display.
imtool provides all the image display capabilities of imshow but also
provides access to several other tools for navigating and exploring
images, such as the Pixel Region tool, Image Information tool, and the
Adjust Contrast tool. imtool presents an integrated environment for
displaying images and performing some common image processing
tasks.

17-418

imtool

Examples Display an image from a file.

imtool('board.tif')

Display an indexed image.

[X,map] = imread('trees.tif');
imtool(X,map)

Display a grayscale image.

I = imread('cameraman.tif');
imtool(I)

Display a grayscale image, adjusting the display range.

h = imtool(I,[0 80]);
close(h)

See Also getimage, imageinfo, imcontrast, imdisplayrange, imdistline,
imgetfile, imoverview, impixelinfo, impixelregion, imread,
imshow, iptgetpref, ipticondir, iptsetpref, iptwindowalign

17-419

imtophat

Purpose Top-hat filtering

Syntax IM2 = imtophat(IM,SE)
IM2 = imtophat(IM,NHOOD)

Description IM2 = imtophat(IM,SE) performs morphological top-hat filtering on
the grayscale or binary input image IM using the structuring element SE,
where SE is returned by strel. SE must be a single structuring element
object, not an array containing multiple structuring element objects.

IM2 = imtophat(IM,NHOOD) where NHOOD is an array of 0’s and 1’s that
specifies the size and shape of the structuring element, is the same as
imptophat(IM,strel(NHOOD)).

Class
Support

IM can be numeric or logical and must be nonsparse. The output image
IM2 has the same class as the input image. If the input is binary
(logical), the structuring element must be flat.

Examples You can use top-hat filtering to correct uneven illumination when
the background is dark. This example uses top-hat filtering with a
disk-shaped structuring element to remove the uneven background
illumination from an image.

1 Read an image into the MATLAB workspace.

I = imread('rice.png');
imshow(I)

17-420

imtophat

2 Create the structuring element and perform top-hat filtering of the
image.

se = strel('disk',12);
J = imtophat(I,se);
figure, imshow(J)

3 Use imadjust to improve the visibility of the result.

K = imadjust(J);
figure, imshow(K)

17-421

imtophat

See Also imbothat, strel

17-422

imtransform

Purpose Apply 2-D spatial transformation to image

Syntax B = imtransform(A,TFORM)
B = imtransform(A,TFORM,INTERP)
[B,XDATA,YDATA] = imtransform(...)
[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,

...)

Description B = imtransform(A,TFORM) transforms the image A according to
the 2-D spatial transformation defined by TFORM, which is a spatial
transformation structure (TFORM) as returned by maketform or
cp2tform. If ndims(A) > 2, such as for an RGB image, then the same
2-D transformation is automatically applied to all 2-D planes along the
higher dimensions.

When you use this syntax, imtransform automatically shifts the origin
of your output image to make as much of the transformed image visible
as possible. If you are using imtransform to do image registration, this
syntax is not likely to give you the results you expect; you might want to
set 'XData' and 'YData' explicitly.

B = imtransform(A,TFORM,INTERP) specifies the form of interpolation
to use. INTERP can have one of these values. The default value is
enclosed in braces ({}).

Value Description

'bicubic' Bicubic interpolation

{'bilinear'} Bilinear interpolation

'nearest' Nearest-neighbor interpolation

Alternatively, INTERP can be a RESAMPLER structure returned by
makeresampler. This option allows more control over how resampling is
performed.

17-423

imtransform

[B,XDATA,YDATA] = imtransform(...) returns the location of
the output image B in the output X-Y space. XDATA and YDATA are
two-element vectors. The elements of XDATA specify the x-coordinates
of the first and last columns of B. The elements of YDATA specify the
y-coordinates of the first and last rows of B. Normally, imtransform
computes XDATA and YDATA automatically so that B contains the
entire transformed image A. However, you can override this automatic
computation; see below.

[B,XDATA,YDATA] =
imtransform(...,param1,val1,param2,val2,...) specifies
parameters that control various aspects of the spatial transformation.
This table lists all the parameters you can specify. Note that parameter
names can be abbreviated and are not case sensitive.

Parameter Description

'UData'

'VData'

Both of these parameters are two-element real vectors. 'UData'
and 'VData' specify the spatial location of the image A in the 2-D
input space U-V. The two elements of 'UData' give the u-coordinates
(horizontal) of the first and last columns of A, respectively. The two
elements of 'VData' give the v-coordinates (vertical) of the first and
last rows of A, respectively.
The default values for 'UData' and 'VData' are [1 size(A,2)]
and [1 size(A,1)], respectively.

'XData'

'YData'

Both of these parameters are two-element real vectors. 'XData' and
'YData' specify the spatial location of the output image B in the 2-D
output space X-Y. The two elements of 'XData' give the x-coordinates
(horizontal) of the first and last columns of B, respectively. The two
elements of 'YData' give the y-coordinates (vertical) of the first and
last rows of B, respectively.
If 'XData' and 'YData' are not specified, imtransform estimates
values for them that will completely contain the entire transformed
output image.

17-424

imtransform

Parameter Description

'XYScale' A one- or two-element real vector. The first element of 'XYScale'
specifies the width of each output pixel in X-Y space. The second
element (if present) specifies the height of each output pixel. If
'XYScale' has only one element, then the same value is used for
both width and height.

If 'XYScale' is not specified but 'Size' is, then 'XYScale' is
computed from 'Size', 'XData', and 'YData'. If neither 'XYScale'
nor 'Size' is provided, then the scale of the input pixels is used
for 'XYScale'.

'Size' A two-element vector of nonnegative integers. 'Size' specifies the
number of rows and columns of the output image B. For higher
dimensions, the size of B is taken directly from the size of A. In other
words, size(B,k) equals size(A,k) for k > 2. If 'Size' is not
specified, then it is computed from 'XData', 'YData', and 'XYScale'.

17-425

imtransform

Parameter Description

'FillValues' An array containing one or several fill values.

Fill values are used for output pixels when the corresponding
transformed location in the input image is completely outside the
input image boundaries. If A is 2-D, 'FillValues' must be a scalar.
However, if A’s dimension is greater than two, then 'FillValues'
can be an array whose size satisfies the following constraint:
size(fill_values,k) must equal either size(A,k+2) or 1.

For example, if A is a uint8 RGB image that is 200-by-200-by-3, then
possibilities for 'FillValues' include

0 Fill with black

[0;0;0] Fill with black

255 Fill with white

[255;255;255] Fill with white

[0;0;255] Fill with blue

[255;255;0] Fill with yellow

If A is 4-D with size 200-by-200-by-3-by-10, then 'FillValues' can
be a scalar, 1-by-10, 3-by-1, or 3-by-10.

Notes • When you do not specify the output-space location for B using 'XData'
and 'YData', imtransform estimates them automatically using the
function findbounds. For some commonly used transformations,
such as affine or projective, for which a forward mapping is easily
computable, findbounds is fast. For transformations that do not
have a forward mapping, such as the polynomial ones computed
by cp2tform, findbounds can take significantly longer. If you can
specify 'XData' and 'YData' directly for such transformations,
imtransform might run noticeably faster.

17-426

imtransform

• The automatic estimate of 'XData' and 'YData' using findbounds
is not guaranteed in all cases to completely contain all the pixels
of the transformed input image.

• The output values XDATA and YDATA might not exactly equal the
input 'XData' and 'YData' parameters. This can happen either
because of the need for an integer number of rows and columns, or
if you specify values for 'XData', 'YData', 'XYScale', and 'Size'
that are not entirely consistent. In either case, the first element of
XDATA and YDATA always equals the first element of 'XData' and
'YData', respectively. Only the second elements of XDATA and YDATA
might be different.

• imtransform assumes spatial-coordinate conventions for the
transformation TFORM. Specifically, the first dimension of the
transformation is the horizontal or x-coordinate, and the second
dimension is the vertical or y-coordinate. Note that this is the reverse
of the array subscripting convention in MATLAB.

• TFORM must be a 2-D transformation to be used with imtransform.
For arbitrary-dimensional array transformations, see tformarray.

Class
Support

The input image A can be of any nonsparse numeric class, real or
complex, or it can be of class logical. The class of B is the same as
the class of A.

Examples Example 1

Apply a horizontal shear to an intensity image.

I = imread('cameraman.tif');
tform = maketform('affine',[1 0 0; .5 1 0; 0 0 1]);
J = imtransform(I,tform);
imshow(I), figure, imshow(J)

Example 2

A projective transformation can map a square to a quadrilateral. In this
example, set up an input coordinate system so that the input image fills
the unit square and then transform the image into the quadrilateral

17-427

imtransform

with vertices (0 0), (1 0), (1 1), (0 1) to the quadrilateral with vertices
(-4 2), (-8 3), (-3 -5), (6 3). Fill with gray and use bicubic interpolation.
Make the output size the same as the input size.

I = imread('cameraman.tif');
udata = [0 1]; vdata = [0 1]; % input coordinate system
tform = maketform('projective',[0 0; 1 0; 1 1; 0 1],...

[-4 2; -8 -3; -3 -5; 6 3]);
[B,xdata,ydata] = imtransform(I, tform, 'bicubic', ...

'udata', udata,...
'vdata', vdata,...
'size', size(I),...
'fill', 128);

subplot(1,2,1), imshow(udata,vdata,I), axis on
subplot(1,2,2), imshow(xdata,ydata,B), axis on

Example 3

Register an aerial photo to an orthophoto.

Read in the aerial photo.

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

Read in the orthophoto.

figure, imshow('westconcordorthophoto.png')

Load control points that were previously picked.

load westconcordpoints

Create a transformation structure for a projective transformation.

t_concord = cp2tform(input_points,base_points,'projective');

Get the width and height of the orthophoto and perform the
transformation.

17-428

imtransform

info = imfinfo('westconcordorthophoto.png');

registered = imtransform(unregistered,t_concord,...
'XData',[1 info.Width], 'YData',[1 info.Height]);

figure, imshow(registered)

See Also checkerboard, cp2tform, imresize, imrotate, maketform,
makeresampler, tformarray

17-429

imview

Purpose Display image in image tool

Note This function is obsolete and may be removed in future versions.
Use imtool instead.

17-430

imwrite

Purpose Write image to graphics file

Note imwrite is a function in MATLAB.

17-431

ind2gray

Purpose Convert indexed image to grayscale image

Syntax I = ind2gray(X,map)

Description I = ind2gray(X,map) converts the image X with colormap map to
a grayscale image I. ind2gray removes the hue and saturation
information from the input image while retaining the luminance.

Note A grayscale image is also called a gray-scale, gray scale, or
gray-level image.

Class
Support

X can be of class uint8, uint16, single, or double. map is double. I
is of the same class as X.

Examples load trees
I = ind2gray(X,map);
imshow(X,map)
figure,imshow(I)

Algorithm ind2gray converts the colormap to NTSC coordinates using rgb2ntsc,
and sets the hue and saturation components (I and Q) to zero, creating a

17-432

ind2gray

gray colormap. ind2gray then replaces the indices in the image X with
the corresponding grayscale intensity values in the gray colormap.

See Also gray2ind, imshow, imtool, rgb2ntsc

17-433

ind2rgb

Purpose Convert indexed image to RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding
colormap map to RGB (truecolor) format.

Class
Support

X can be of class uint8, uint16, or double. RGB is an m-by-n-by-3 array
of class double.

See Also ind2gray, rgb2ind

17-434

interfileinfo

Purpose Read metadata from Interfile file

Syntax info = interfileinfo(filename)

Description info = interfileinfo(filename) returns a structure whose fields
contain information about an image in a Interfile file. filename is a
string that specifies the name of the file. The file must be in the current
directory or in a directory on the MATLAB path.

The Interfile file format was developed for the exchange of nuclear
medicine data. In Interfile 3.3, metadata is stored in a header file,
separate from the image data. The two files have the same name with
different file extensions. The header file has the file extension .hdr and
the image file has the file extension .img.

Examples Read metadata from an Interfile file. The following example uses an
Interfile header file available at http://www.keston.com/Phantoms/.

info = interfileinfo('dyna3.hdr');

See Also interfileread

17-435

http://www.keston.com/Phantoms/

interfileread

Purpose Read images in Interfile format

Syntax A = interfileread(filename)
A = interfileread(filename, window)

Description A = interfileread(filename) reads the images in the first energy
window of filename into A. The file must be in the current directory or
in a directory on the MATLAB path.

A = interfileread(filename, window) reads the images in energy
window of filename into A.

Examples Read image data from an Interfile file. The following example uses an
Interfile file available at http://www.keston.com/Phantoms/.

info = interfileinfo('dyna3.hdr');

See also interfileinfo

17-436

intlut

Purpose Convert integer values using lookup table

Syntax B = intlut(A, LUT)

Description B = intlut(A, LUT) converts values in array A based on lookup table
LUT and returns these new values in array B.

For example, if A is a vector whose kth element is equal to alpha,
then B(k) is equal to the LUT value corresponding to alpha, i.e.,
LUT(alpha+1).

Class
Support

A can be uint8, uint16, or int16. If A is uint8, LUT must be a uint8
vector with 256 elements. If A is uint16 or int16, LUT must be a vector
with 65536 elements that has the same class as A. B has the same size
and class as A.

Examples A = uint8([1 2 3 4; 5 6 7 8; 9 10 11 12])
LUT = repmat(uint8([0 150 200 255]),1,64);
B = intlut(A, LUT)

See Also ind2gray, rgb2ind

17-437

ippl

Purpose Check for presence of Intel Performance Primitives Library (IPPL)

Syntax TF = ippl
[TF B] = ippl

Description The Intel Performance Primitives Library (IPPL) provides a collection
of basic functions used in signal and image processing. The IPPL takes
advantage of the parallelism of the Single-Instruction, Multiple-Data
(SIMD) instructions that make up the core of the MMX technology and
Streaming SIMD Extensions. These instructions are available only on
the Intel architecture processors. IPPL is used by some of the Image
Processing Toolbox functions to accelerate their execution time.

TF = ippl returns true (1) if IPPL is available and false (0) otherwise.

[TF B] = ippl returns an additional column cell array B. Each row of
B contains a string describing a specific IPPL module.

When IPPL is available, the Image Processing Toolbox image arithmetic
functions (imabsdiff, imadd, imsubtract, imdivide, immultiply, and
imlincomb) and the imfilter function take advantage of it. Toolbox
functions that use these functions also benefit.

Notes IPPL is utilized only for some data types and only under specific
conditions. See the help sections of the functions listed above for
detailed information on when IPPL is activated.

To disable IPPL, use this command:

iptsetpref('UseIPPL', false)

To enable IPPL, use this command:

iptsetpref('UseIPPL', true)

Note that enabling or disabling IPPL has the effect of clearing all loaded
MEX-files. The ippl function is likely to change in the near future.

17-438

ippl

See Also imabsdiff, imadd, imdivide, imfilter, imlincomb, immultiply,
imsubtract

17-439

iptaddcallback

Purpose Add function handle to callback list

Syntax ID = iptaddcallback(h,callback,func_handle)

Description ID = iptaddcallback(h,callback,func_handle) adds the function
handle func_handle to the list of functions to be called when the
callback specified by callback executes. callback is a string specifying
the name of a callback property of the Handle Graphics object specified
by the handle h.

iptaddcallback returns a unique callback identifier, ID, that can be
used with iptremovecallback to remove the function from the callback
list.

iptaddcallback can be useful when you need to notify more than one
tool about the same callback event for a single object.

Note Callback functions that have already been added to an object using
the set command continue to work after you call iptaddcallback.
The first time you call iptaddcallback for a given object and callback,
the function checks to see if a different callback function is already
installed. If a callback is already installed, iptaddcallback replaces
that callback function with the iptaddcallback callback processor, and
then adds the preexisting callback function to the iptaddcallback list.

Examples Create a figure and register two callback functions. Whenever MATLAB
detects mouse motion over the figure, function handles f1 and f2 are
called in the order in which they were added to the list.

h = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
iptaddcallback(h, 'WindowButtonMotionFcn', f1);
iptaddcallback(h, 'WindowButtonMotionFcn', f2);

See Also iptremovecallback

17-440

iptcheckconn

Purpose Check validity of connectivity argument

Syntax iptcheckconn(conn, func_name, var_name, arg_pos)

Description iptcheckconn(conn, func_name, var_name, arg_pos) checks
whether conn is a valid connectivity argument. If it is invalid, the
function issues a formatted error message.

A connectivity argument can be one of the following scalar values: 1, 4,
6, 8, 18, or 26. A connectivity argument can also be a 3-by-3-by- ... -by-3
array of 0’s and 1s. The central element of a connectivity array must be
nonzero and the array must be symmetric about its center.

func_name is a string that specifies the name used in the formatted error
message to identify the function checking the connectivity argument.

var_name is a string that specifies the name used in the formatted error
message to identify the argument being checked.

arg_pos is a positive integer that indicates the position of the argument
being checked in the function argument list. iptcheckconn converts
this value to an ordinal number and includes this information in the
formatted error message.

Class
Support

conn must be of class double or logical and must be real and nonsparse.

Examples To trigger this error message, this example creates a 4-by-4 array and
passes it as the connectivity argument.

iptcheckconn(eye(4), 'func_name','var_name',2)

See Also iptnum2ordinal

17-441

iptcheckhandle

Purpose Check validity of handle

Syntax iptcheckhandle(H, valid_types, func_name, var_name, arg_pos)

Description iptcheckhandle(H, valid_types, func_name, var_name,
arg_pos) checks the validity of the handle H and issues a formatted
error message if the handle is invalid. H must be a handle to a single
figure, uipanel, hggroup, axes, or image object.

valid_types is a cell array of strings specifying the set of Handle
Graphics object types to which H is expected to belong. For example, if
you specify valid_types as {'uipanel','figure'}, H can be a handle to
either a uipanel object or a figure object.

func_name is a string that specifies the name used in the formatted
error message to identify the function checking the handle.

var_name is a string that specifies the name used in the formatted error
message to identify the argument being checked.

arg_pos is a positive integer that indicates the position of the argument
being checked in the function argument list. iptcheckhandle converts
this value to an ordinal number and includes this information in the
formatted error message.

Examples To trigger the error message, create a figure that does not contain an
axes object and then check for a valid axes handle.

fig = figure; % create figure without an axes
iptcheckhandle(fig,{'axes'},'my_function','my_variable',2)

The following shows the format of the error message and indicates
which parts you can customize using iptcheckhandle arguments.

17-442

iptcheckhandle

See Also iptcheckinput, iptcheckmap, iptchecknargin, iptcheckstrs,
iptnum2ordinal

17-443

iptcheckinput

Purpose Check validity of array

Syntax iptcheckinput(A, classes, attributes, func_name, var_name,
arg_pos)

Description iptcheckinput(A, classes, attributes, func_name, var_name,
arg_pos) checks the validity of the array A and issues a formatted error
message if it is invalid.

classes is a cell array of strings specifying the set of classes to
which A is expected to belong. For example, if you specify classes as
{'logical' 'cell'}, A is required to be either a logical array or a cell
array. The string 'numeric' is interpreted as an abbreviation for the
classes uint8, uint16, uint32, int8, int16, int32, single, and double.

attributes is a cell array of strings specifying the set of attributes that
A must satisfy. For example, if attributes is {'real' 'nonempty'
'finite'}, A must be real and nonempty, and it must contain only
finite values. The following table lists the supported attributes in
alphabetical order.

2d nonemptyvector odd twod

column nonnan positive vector

even nonnegative real

finite nonsparse row

integer nonzero scalar

func_name is a string that specifies the name used in the formatted
error message to identify the function checking the input.

var_name is a string that specifies the name used in the formatted error
message to identify the argument being checked.

arg_pos is a positive integer that indicates the position of the argument
being checked in the function argument list. iptcheckinput converts
this value to an ordinal number and includes this information in the
formatted error message.

17-444

iptcheckinput

Examples Create a three-dimensional array.

A = [1 2 3; 4 5 6];
B = [7 8 9; 10 11 12];
C = cat(3,A,B);
iptcheckinput(F,{'numeric'},{'2d'},'func_name','var_name',2)

The following shows the format of the error message and indicates
which parts you can customize using iptcheckinput arguments.

See Also iptcheckhandle, iptcheckmap, iptchecknargin, iptcheckstrs,
iptnum2ordinal

17-445

iptcheckmap

Purpose Check validity of colormap

Syntax iptcheckmap(map, func_name, var_name, arg_pos)

Description iptcheckmap(map, func_name, var_name, arg_pos) checks the
validity of the MATLAB colormap and issues an error message if it is
invalid.

func_name is a string that specifies the name used in the formatted
error message to identify the function checking the colormap.

var_name is a string that specifies the name used in the formatted error
message to identify the argument being checked.

arg_pos is a positive integer that indicates the position of the argument
being checked in the function argument list. iptcheckmap converts
this value to an ordinal number and includes this information in the
formatted error message.

Examples bad_map = ones(10);
iptcheckmap(bad_map,'func_name','var_name',2)

The following shows the format of the error message and indicates
which parts you can customize using iptcheckmap arguments.

See Also iptcheckhandle, iptcheckinput, iptchecknargin, iptcheckstrs,
iptnum2ordinal

17-446

iptchecknargin

Purpose Check number of input arguments

Syntax iptchecknargin(low, high, num_inputs, func_name)

Description iptchecknargin(low, high, num_inputs, func_name) checks
whether num_inputs is in the range indicated by low and high. If not,
iptchecknargin issues a formatted error message.

low should be a scalar nonnegative integer.

high should be a scalar nonnegative integer or Inf.

func_name is a string that specifies the name used in the formatted
error message to identify the function checking the handle.

Examples Create a function and use iptchecknargin to check that the number of
arguments passed to the function is within the expected range.

function test_function(varargin)
iptchecknargin(1,3,nargin,mfilename);

Trigger the error message by executing the function at the MATLAB
command line, specifying more than the expected number of arguments.

test_function(1,2,3,4)

See Also iptcheckhandle, iptcheckinput, iptcheckmap, iptcheckstrs,
iptnum2ordinal

17-447

iptcheckstrs

Purpose Check validity of option string

Syntax out = iptcheckstrs(in, valid_strs, func_name, var_name,
arg_pos)

Description out = iptcheckstrs(in, valid_strs, func_name, var_name,
arg_pos) checks the validity of the option string in. It returns
the matching string in valid_strs in out. iptcheckstrs looks for a
case-insensitive, nonambiguous match between in and the strings in
valid_strs.

valid_strs is a cell array containing strings.

func_name is a string that specifies the name used in the formatted
error message to identify the function checking the strings.

var_name is a string that specifies the name used in the formatted error
message to identify the argument being checked.

arg_pos is a positive integer that indicates the position of the argument
being checked in the function argument list. iptcheckstrs converts
this value to an ordinal number and includes this information in the
formatted error message.

Examples To trigger this error message, define a cell array of some text strings
and pass in another string that isn’t in the cell array.

iptcheckstrs('option3',{'option1','option2'},...
'func_name','var_name',2)

The following shows the format of the error message and indicates
which parts you can customize using iptcheckhandle arguments.

17-448

iptcheckstrs

See Also iptcheckhandle, iptcheckinput, iptcheckmap, iptchecknargin,
iptnum2ordinal

17-449

iptdemos

Purpose Index of Image Processing Toolbox demos

Syntax iptdemos

Description iptdemos displays the HTML page that lists all the Image Processing
demos. iptdemos displays the page in the MATLAB Help browser.

17-450

iptgetapi

Purpose Get Application Programmer Interface (API) for handle

Syntax API = iptgetapi(h)

Description API = iptgetapi(h) returns the API structure associated with handle
h if there is one. Otherwise, iptgetapi returns an empty array.

For more information about handle APIs, see the help for immagbox,
impositionrect, or imscrollpanel.

Examples hFig = figure('Toolbar','none',...
'Menubar','none');

hIm = imshow('tape.png');
hSP = imscrollpanel(hFig,hIm);
api = iptgetapi(hSP);
api.setMagnification(2) % 2X = 200%

See Also immagbox, imrect, imscrollpanel

17-451

iptGetPointerBehavior

Purpose Retrieve pointer behavior from HG object

Syntax pointerBehavior = iptGetPointerBehavior(h)

Description pointerBehavior = iptGetPointerBehavior(h) returns the pointer
behavior structure associated with the Handle Graphics object h. A
pointer behavior structure contains function handles that interact with
a figure’s pointer manager (see iptPointerManager) to control what
happens when the figure’s mouse pointer moves over and then exits the
object. See iptSetPointerBehavior for details.

If h does not contain a pointer behavior structure,
iptGetPointerBehavior returns [].

See Also iptPointerManager, iptSetPointerBehavior

17-452

iptgetpref

Purpose Get value of Image Processing Toolbox preference

Syntax prefs = iptgetpref
value = iptgetpref(prefname)

Description prefs = iptgetpref returns a structure containing all the Image
Processing Toolbox preferences with their current values. Each field in
the structure has the name of an Image Processing Toolbox preference.
See iptsetpref for a list.

value = iptgetpref(prefname) returns the value of the Image
Processing Toolbox preference specified by the string prefname. See
iptsetpref for a complete list of valid preference names. Preference
names are not case sensitive and can be abbreviated.

Examples value = iptgetpref('ImshowAxesVisible')

value =

off

See Also imshow, iptsetpref

17-453

ipticondir

Purpose Directories containing IPT and MATLAB icons

Syntax [D1, D2] = ipticondir

Description [D1, D2] = ipticondir returns the names of the directories
containing the Image Processing Toolbox icons (D1) and the MATLAB
icons (D2).

Examples [iptdir, MATLABdir] = ipticondir
dir(iptdir)

See Also imtool

17-454

iptnum2ordinal

Purpose Convert positive integer to ordinal string

Syntax string = iptnum2ordinal(number)

Description string = iptnum2ordinal(number) converts the positive integer
number to the ordinal text string string.

Examples The following example returns the string 'fourth'.

str = iptnum2ordinal(4)

The following example returns the string '23rd'.

str = iptnum2ordinal(23)

17-455

iptPointerManager

Purpose Create pointer manager in figure

Syntax iptPointerManager(hFigure)
iptPointerManager(hFigure, 'disable')
iptPointerManager(hFigure, 'enable')

Description iptPointerManager(hFigure) creates a pointer manager in the
specified figure. The pointer manager controls pointer behavior for any
Handle Graphics objects in the figure that contain pointer behavior
structures. Use iptSetPointerBehavior to associate a pointer behavior
structure with a particular object to define specific actions that occur
when the mouse pointer moves over and then leaves the object. See
iptSetPointerBehavior for more information.

iptPointerManager(hFigure, 'disable') disables the figure’s
pointer manager.

iptPointerManager(hFigure, 'enable') enables and updates the
figure’s pointer manager.

If the figure already contains a pointer manager,
iptPointerManager(hFigure) does not create a new one. It
has the same effect as iptPointerManager(hFigure, 'enable').

Examples Plot a line. Create a pointer manager in the figure. Then, associate
a pointer behavior structure with the line object in the figure that
changes the mouse pointer into a fleur whenever the pointer is over it.

h = plot(1:10);
iptPointerManager(gcf);
enterFcn = @(hFigure, currentPoint)...

set(hFigure, 'Pointer', 'fleur');
iptSetPointerBehavior(h, enterFcn);

See Also iptGetPointerBehavior, iptSetPointerBehavior

17-456

iptremovecallback

Purpose Delete function handle from callback list

Syntax iptremovecallback(h,callback,ID)

Description iptremovecallback(h,callback,ID) deletes a callback from the list
of callbacks created by imaddcallback for the object with handle h
and the associated callback string callback. ID is the identifier of the
callback to be deleted. This ID is returned by iptaddcallback when
you add the function handle to the callback list.

Examples Register three callbacks and try them interactively.

h = figure;
f1 = @(varargin) disp('Callback 1');
f2 = @(varargin) disp('Callback 2');
f3 = @(varargin) disp('Callback 3');
id1 = iptaddcallback(h, 'WindowButtonMotionFcn', f1);
id2 = iptaddcallback(h, 'WindowButtonMotionFcn', f2);
id3 = iptaddcallback(h, 'WindowButtonMotionFcn', f3);

Remove one of the callbacks and then move the mouse over the figure
again. Whenever MATLAB detects mouse motion over the figure,
function handles f1 and f3 are called in that order.

iptremovecallback(h, 'WindowButtonMotionFcn', id2);

See Also iptaddcallback

17-457

iptSetPointerBehavior

Purpose Store pointer behavior structure in Handle Graphics object

Syntax iptSetPointerBehavior(h, pointerBehavior)
iptSetPointerBehavior(h, [])
iptSetPointerBehavior(h, enterFcn)

Description iptSetPointerBehavior(h, pointerBehavior) stores the specified
pointer behavior structure in the specified Handle Graphics object, h.
If h is an array of objects, iptSetPointerBehavior stores the same
structure in each object.

When used with a figure’s pointer manager (see iptPointerManager),
a pointer behavior structure controls what happens when the figure’s
mouse pointer moves over and then exits an object in the figure. For
details about this structure, see “Pointer Behavior Structure” on page
17-458.

iptSetPointerBehavior(h, []) clears the pointer behavior from the
Handle Graphics object or objects.

iptSetPointerBehavior(h, enterFcn) creates a pointer behavior
structure for you, setting the enterFcn field to the function handle
specified, and setting the traverseFcn and exitFcn fields to []. See
“Pointer Behavior Structure” on page 17-458 for details about these
fields. This syntax is provided as a convenience because, for most
common uses, only the enterFcn is necessary.

Pointer Behavior Structure

A pointer behavior structure contains three fields: enterFcn,
traverseFcn, and exitFcn. You set the value of these fields to function
handles and use the iptSetPointerBehavior function to associate
this structure with an HG object in a figure. If the figure has a pointer
manager installed, the pointer manager calls these functions when the
following events occur. If you set a field to[], no action is taken.

17-458

iptSetPointerBehavior

Function Handle When Called

enterFcn Called when the mouse pointer moves
over the object.

traverseFcn Called once when the mouse pointer
moves over the object, and called again
each time the mouse moves within the
object.

exitFcn Called when the mouse pointer leaves
the object.

When the pointer manager calls the functions you create, it passes two
arguments: a handle to the figure and the current position of the pointer.

Examples Example 1

Change the mouse pointer to a fleur whenever it is over a specific object
and restore the original pointer when the mouse pointer moves off the
object. The example creates a patch object and associates a pointer
behavior structure with the object. Because this scenario requires
only an enterFcn, the example uses the iptSetPointerBehavior(n,
enterFcn) syntax. The example then creates a pointer manager in
the figure. Note that the pointer manager takes care of restoring the
original figure pointer.

hPatch = patch([.25 .75 .75 .25 .25],...
[.25 .25 .75 .75 .25], 'r');

xlim([0 1]);
ylim([0 1]);

enterFcn = @(figHandle, currentPoint)...
set(figHandle, 'Pointer', 'fleur');

iptSetPointerBehavior(hPatch, enterFcn);
iptPointerManager(gcf);

17-459

iptSetPointerBehavior

Example 2

Change the appearance of the mouse pointer, depending on where
it is within the object. This example sets up the pointer behavior
structure, setting the enterFcn and exitFcn fields to [], and setting
traverseFcn to a function named ipexOverMe that handles the
position-specific behavior. ipexOverMe is an example function (in
\toolbox\images\imdemos) that varies the mouse pointer depending
on the location of the mouse within the object. For more information,
edit ipexOverMe.

hPatch = patch([.25 .75 .75 .25 .25],...
[.25 .25 .75 .75 .25], 'r');

xlim([0 1])
ylim([0 1])

pointerBehavior.enterFcn = [];
pointerBehavior.exitFcn = [];
pointerBehavior.traverseFcn = @ipexOverMe;

iptSetPointerBehavior(hPatch, pointerBehavior);
iptPointerManager(gcf);

Example 3

Change the figure’s title when the mouse pointer is over the object. In
this scenario, enterFcn and exitFcn are used to achieve the desired
side effect, and traverseFcn is [].

hPatch = patch([.25 .75 .75 .25 .25],...
[.25 .25 .75 .75 .25], 'r');

xlim([0 1])
ylim([0 1])

pointerBehavior.enterFcn = ...
@(figHandle, currentPoint)...

set(figHandle, 'Name', 'Over patch');
pointerBehavior.exitFcn = ...

@(figHandle, currentPoint) set(figHandle, 'Name', '');

17-460

iptSetPointerBehavior

pointerBehavior.traverseFcn = [];

iptSetPointerBehavior(hPatch, pointerBehavior);
iptPointerManager(gcf)

See Also iptGetPointerBehavior, iptPointerManager

17-461

iptsetpref

Purpose Set Image Processing Toolbox preferences or display valid values

Syntax iptsetpref(prefname)
iptsetpref(prefname,value)

Description iptsetpref(prefname) displays the valid values for the Image
Processing Toolbox preference specified by prefname.

iptsetpref(prefname,value) sets the Image Processing Toolbox
preference specified by the string prefname to the value specified
by value. The setting persists until the end of the current MATLAB
session, or until you change the setting. (To make the value persist
between sessions, put the command in your startup.m file.)

This table describes the available preferences. Note that the preference
names are case insensitive and can be abbreviated. The default value
is enclosed in braces ({}).

17-462

iptsetpref

Preference Name Description

'ImshowBorder' Controls whether imshow includes a border
around the image in the figure window. Possible
values:

{'loose'} — Include a border between the image
and the edges of the figure window, thus leaving
room for axes labels, titles, etc.

'tight' — Adjust the figure size so that the
image entirely fills the figure.

Note There can still be a border if the image is
very small, or if there are other objects besides
the image and its axes in the figure.

You can override this preference by specifying the
'Border' parameter when you call imshow.

'ImshowAxesVisible' Controls whether imshow displays images with
the axes box and tick labels. Possible values:

'on' — Include axes box and tick labels.

{'off'} — Do not include axes box and tick
labels.

17-463

iptsetpref

Preference Name Description

'ImshowInitialMagnification' Controls the initial magnification of the image
displayed by imshow. Possible values:

Any numeric value — imshow interprets numeric
values as a percentage. The default value is 100.
One hundred percent magnification means that
there should be one screen pixel for every image
pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying the
'InitialMagnification' parameter when you
call imshow, or by calling the truesize function
manually after displaying the image.

17-464

iptsetpref

Preference Name Description

'ImtoolInitialMagnification' Controls the initial magnification of the image
displayed by imtool. Possible values:

{'adaptive'} — Display the entire image. If
the image is too large to display on the screen
at 100% magnification, display the image at the
largest magnification that fits on the screen. This
is the default.

Any numeric value — Specify the magnification as
a percentage. One hundred percent magnification
means that there should be one screen pixel for
every image pixel.

'fit' — Scale the image so that it fits into the
window in its entirety.

You can override this preference by specifying the
'InitialMagnification' parameter when you
call imtool.

'UseIPPL' Controls whether some toolbox functions use the
Intel Performance Primitives Library (IPPL) or
not. Possible values:

true — Enable use of IPPL

false — Disable use of IPPL.

Note: Setting this preference value clears all
loaded MEX-files.

Examples iptsetpref('ImshowBorder','tight')

See Also imshow, imtool, iptgetpref, truesize

axis in the MATLAB Function Reference

17-465

iptwindowalign

Purpose Align figure windows

Syntax iptwindowalign(fixed_fig, fixed_fig_edge, moving_fig,
moving_fig_edge)

Description iptwindowalign(fixed_fig, fixed_fig_edge, moving_fig,
moving_fig_edge) moves the figure moving_fig to align it with the
figure fixed_fig. moving_fig and fixed_fig are handles to figure
objects.

fixed_fig_edge and moving_fig_edge describe the alignment of the
figures in relation to their edges and can take any of the following
values: 'left', 'right', 'hcenter', 'top', 'bottom', or 'vcenter'.
'hcenter' means center horizontally and 'vcenter' means center
vertically. The following figure shows these alignments.

17-466

iptwindowalign

Notes The two specified locations must be consistent in terms of their
direction. For example, you cannot specify 'left' for fixed_fig_edge
and 'bottom' for moving_fig_edge.

iptwindowalign constrains the position adjustment of moving_fig to
keep it entirely visible on the screen.

Examples Create two figures: fig1 and fig2.

fig1 = figure;
fig2 = figure;

Move fig2 so its left edge is aligned with the right edge of fig1.

iptwindowalign(fig1,'right',fig2,'left');

Move fig2 so its top edge is aligned with fig1’s bottom edge, and then
move it so the two figures are vertically centered.

iptwindowalign(fig1, 'bottom', fig2, 'top');
iptwindowalign(fig1, 'vcenter', fig2, 'vcenter')pt

See Also imtool

17-467

iradon

Purpose Inverse Radon transform

Syntax I = iradon(R, theta)
I = iradon(P, theta, interp, filter, frequency_scaling,

output_size)
[I,H] = iradon(...)

Description I = iradon(R, theta) reconstructs the image I from projection data
in the two-dimensional array R. The columns of R are parallel beam
projection data. iradon assumes that the center of rotation is the center
point of the projections, which is defined as ceil(size(R,1)/2).

theta describes the angles (in degrees) at which the projections were
taken. It can be either a vector containing the angles or a scalar
specifying D_theta, the incremental angle between projections. If theta
is a vector, it must contain angles with equal spacing between them. If
theta is a scalar specifying D_theta, the projections were taken at
angles theta = m*D_theta, where m = 0,1,2,...,size(R,2)-1. If
the input is the empty matrix ([]), D_theta defaults to 180/size(R,2).

iradon uses the filtered back-projection algorithm to perform the
inverse Radon transform. The filter is designed directly in the
frequency domain and then multiplied by the FFT of the projections.
The projections are zero-padded to a power of 2 before filtering to
prevent spatial domain aliasing and to speed up the FFT.

I = iradon(P, theta, interp, filter, frequency_scaling,
output_size) specifies parameters to use in the inverse Radon
transform. You can specify any combination of the last four arguments.
iradon uses default values for any of these arguments that you omit.

interp specifies the type of interpolation to use in the back projection.
The available options are listed in order of increasing accuracy and
computational complexity.

17-468

iradon

Value Description

'nearest' Nearest-neighbor interpolation

'linear' Linear interpolation (the default)

'spline' Spline interpolation

'pchip' Shape-preserving piecewise cubic interpolation

'cubic' Same as ’pchip’

'v5cubic' Cubic interpolation from MATLAB 5, which does
not extrapolate and uses'spline' if X is not equally
spaced.

filter specifies the filter to use for frequency domain filtering. filter
can be any of the strings that specify standard filters.

Value Description

'Ram-Lak' Cropped Ram-Lak or ramp filter. This is the
default. The frequency response of this filter is |
f |. Because this filter is sensitive to noise in the
projections, one of the filters listed below might be
preferable. These filters multiply the Ram-Lak filter
by a window that deemphasizes high frequencies.

'Shepp-Logan' Multiplies the Ram-Lak filter by a sinc function

'Cosine' Multiplies the Ram-Lak filter by a cosine function

'Hamming' Multiplies the Ram-Lak filter by a Hamming
window

'Hann' Multiplies the Ram-Lak filter by a Hann window

'None' No filtering. When you specify this value, iradon
returns unfiltered backprojection data.

frequency_scaling is a scalar in the range (0,1] that modifies the filter
by rescaling its frequency axis. The default is 1. If frequency_scaling
is less than 1, the filter is compressed to fit into the frequency range

17-469

iradon

[0,frequency_scaling], in normalized frequencies; all frequencies
above frequency_scaling are set to 0.

output_size is a scalar that specifies the number of rows and columns
in the reconstructed image. If output_size is not specified, the size is
determined from the length of the projections.

output_size = 2*floor(size(R,1)/(2*sqrt(2)))

If you specify output_size, iradon reconstructs a smaller or larger
portion of the image but does not change the scaling of the data. If the
projections were calculated with the radon function, the reconstructed
image might not be the same size as the original image.

[I,H] = iradon(...) returns the frequency response of the filter in
the vector H.

Class
Support

R can be double or single. All other numeric input arguments must be
of class double. I has the same class as R. H is double.

Examples Compare filtered and unfiltered backprojection.

P = phantom(128);
R = radon(P,0:179);
I1 = iradon(R,0:179);
I2 = iradon(R,0:179,'linear','none');
subplot(1,3,1), imshow(P), title('Original')
subplot(1,3,2), imshow(I1), title('Filtered backprojection')
subplot(1,3,3), imshow(I2,[]), title('Unfiltered backprojection')

Compute the backprojection of a single projection vector. The iradon
syntax does not allow you to do this directly, because if theta is a scalar
it is treated as an increment. You can accomplish the task by passing in
two copies of the projection vector and then dividing the result by 2.

P = phantom(128);
R = radon(P,0:179);

17-470

iradon

r45 = R(:,46);
I = iradon([r45 r45], [45 45])/2;
imshow(I, [])
title('Backprojection from the 45-degree projection')

Algorithm iradon uses the filtered back projection algorithm to perform the
inverse Radon transform. The filter is designed directly in the
frequency domain and then multiplied by the FFT of the projections.
The projections are zero-padded to a power of 2 before filtering to
prevent spatial domain aliasing and to speed up the FFT.

See Also fan2para, fanbeam, ifanbeam, para2fan, phantom, radon

References [1] Kak, A. C., and M. Slaney, Principles of Computerized Tomographic
Imaging, New York, NY, IEEE Press, 1988.

17-471

isbw

Purpose True for binary image

Syntax flag = isbw(A)

Note This function is obsolete and may be removed in future versions.
Use islogical instead.

Description flag = isbw(A) returns 1 if A is a binary image and 0 otherwise.

The input image A is considered to be a binary image if it is a nonsparse
logical array.

Class
Support

The input image A can be any MATLAB array.

See Also isind, isgray, isrgb

17-472

isflat

Purpose True for flat structuring element

Syntax TF = isflat(SE)

Description TF = isflat(SE) returns true (1) if the structuring element SE is flat;
otherwise it returns false (0). If SE is an array of STREL objects, then
TF is the same size as SE.

Class
Support

SE is a STREL object. TF is a double-precision value.

See Also strel

17-473

isgray

Purpose True for grayscale image

Syntax flag = isgray(A)

Note This function is obsolete and may be removed in future versions.

Description flag = isgray(A) returns 1 if A is a grayscale intensity image and
0 otherwise.

isgray uses these criteria to decide whether A is an intensity image:

• If A is of class double, all values must be in the range [0,1], and the
number of dimensions of A must be 2.

• If A is of class uint16 or uint8, the number of dimensions of A must
be 2.

Note A four-dimensional array that contains multiple grayscale images
returns 0, not 1.

Class
Support

The input image A can be of class logical, uint8, uint16, or double.

See Also isbw, isind, isrgb

17-474

isicc

Purpose True for valid ICC color profile

Syntax TF = isicc(P)

Description TF = isicc(P) returns True if structure P is a valid ICC color profile;
otherwise False.

isicc checks if P has a complete set of the tags required for an ICC
profile. P must contain a Header field, which in turn must contain
a Version field and a DeviceClass field. These fields, and others,
are used to determine the set of required tags according to the ICC
Profile Specification, either Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12), which are available at www.color.org. The set of
required tags is given in Section 6.3 in either version.

Examples Read in an ICC profile and isicc returns True.

P = iccread('sRGB.icm');

TF = isicc(P)

TF =

1

This example creates a MATLAB structure and uses isicc to test if it’s
a valid ICC profile. isicc returns False.

S.name = 'Any Student';
S.score = 83;
S.grade = 'B+'

TF = isicc(S)

TF =

0

17-475

http://www.color.org

isicc

See Also applycform, iccread, iccwrite, makecform

17-476

isind

Purpose True for indexed image

Syntax flag = isind(A)

Note This function is obsolete and may be removed in future versions.

Description flag = isind(A) returns 1 if A is an indexed image and 0 otherwise.

isind uses these criteria to determine if A is an indexed image:

• If A is of class double, all values in A must be integers greater than or
equal to 1, and the number of dimensions of A must be 2.

• If A is of class uint8 or uint16, the number of dimensions of A must
be 2.

Note A four-dimensional array that contains multiple indexed images
returns 0, not 1.

Class
Support

A can be of class logical, uint8, uint16, or double.

See Also isbw, isgray, isrgb

17-477

isrgb

Purpose True for RGB image

Syntax flag = isrgb(A)

Note This function is obsolete and may be removed in future versions.

Description flag = isrgb(A) returns 1 if A is an RGB truecolor image and 0
otherwise.

isrgb uses these criteria to determine whether A is an RGB image:

• If A is of class double, all values must be in the range [0,1], and A
must be m-by-n-by-3.

• If A is of class uint16 or uint8, A must be m-by-n-by-3.

Note A four-dimensional array that contains multiple RGB images
returns 0, not 1.

Class
Support

A can be of class logical, uint8, uint16, or double.

See Also isbw, isgray, isind

17-478

lab2double

Purpose Convert L*a*b* data to double

Syntax labd = lab2double(lab)

Description labd = lab2double(lab) converts an M-by-3 or M-by-N-by-3 array of
L*a*b* color values to class double. The output array labd has the
same size as lab.

The Image Processing Toolbox follows the convention that
double-precision arrays contain 1976 CIE values.

arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for
representing values as unsigned 8-bit or 16-bit integers. The
ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 +
(25500/65280)

None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

Class
Support

lab is a uint8, uint16, or double array that must be real and
nonsparse. labd is double.

Examples Convert full intensity neutral color (white) from uint8 to double.

lab2double(uint8([255 128 128]))

17-479

lab2double

ans =

100 0 0

See Also applycform, lab2uint8, lab2uint16, makecform, whitepoint,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-480

lab2uint16

Purpose Convert L*a*b* data to uint16

Syntax lab16 = lab2uint16(lab)

Description lab16 = lab2uint16(lab) converts an M-by-3 or M-by-N-by-3 array of
color values to uint16. lab16 has the same size as lab.

The Image Processing Toolbox follows the convention that
double-precision arrays contain 1976 CIE values.

arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for
representing values as unsigned 8-bit or 16-bit integers. The
ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 + (25500/65280) None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

Class
Support

lab can be a uint8, uint16, or double array that must be real and
nonsparse. lab16 is of class uint16.

Examples Convert full intensity neutral color (white) from double to uint16.

lab2uint16(100 0 0)
ans =

17-481

lab2uint16

65280 32768 32768

See Also applycform, lab2double, lab2uint8, makecform, whitepoint,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-482

lab2uint8

Purpose Convert L*a*b* data to uint8

Syntax lab8 = lab2uint8(lab)

Description lab8 = lab2uint8(lab) converts an M-by-3 or M-by-N-by-3 array of
color values to uint8. lab8 has the same size as lab.

The Image Processing Toolbox follows the convention that
double-precision arrays contain 1976 CIE values.

arrays that are uint8 or uint16 follow the convention in
the ICC profile specification (ICC.1:2001-4, www.color.org) for
representing values as unsigned 8-bit or 16-bit integers. The
ICC encoding convention is illustrated by these tables.

Value (L*) uint8 Value uint16 Value

0.0 0 0

100.0 255 65280

100.0 +
(25500/65280)

None 65535

Value (a* or b*) uint8 Value uint16 Value

-128.0 0 0

0.0 128 32768

127.0 255 65280

127.0 + (255/256) None 65535

Class
Support

lab is a uint8, uint16, or double array that must be real and
nonsparse. lab8 is uint8.

Examples Convert full intensity neutral color (white) from double to uint8.

lab2uint8([100 0 0])
ans =

17-483

lab2uint8

255 128 128

See Also applycform, lab2double, lab2uint16, makecform, whitepoint,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-484

label2rgb

Purpose Convert label matrix into RGB image

Syntax RGB = label2rgb(L)
RGB = label2rgb(L, map)
RGB = label2rgb(L, map, zerocolor)
RGB = label2rgb(L, map, zerocolor, order)

Description RGB = label2rgb(L) converts a label matrix L, such as those returned
by bwlabel or watershed, into an RGB color image for the purpose of
visualizing the labeled regions. The label2rgb function determines the
color to assign to each object based on the number of objects in the label
matrix and range of colors in the colormap. The label2rgb function
picks colors from the entire range.

RGB = label2rgb(L, map) defines the colormap map to be used in the
RGB image. map can have any of the following values:

• n-by-3 colormap matrix

• String containing the name of a MATLAB colormap function, such as
'jet' or 'gray' (See colormap for a list of supported colormaps.)

• Function handle of a colormap function, such as @jet or @gray

If you do not specify map, the default value is 'jet'.

RGB = label2rgb(L, map, zerocolor) defines the RGB color of the
elements labeled 0 (zero) in the input label matrix L. As the value of
zerocolor, specify an RGB triple or one of the strings listed in this
table.

Value Color

'b' Blue

'c' Cyan

'g' Green

'k' Black

17-485

label2rgb

Value Color

'm' Magenta

'r' Red

'w' White

'y' Yellow

If you do not specify zerocolor, the default value for zero-labeled
elements is [1 1 1] (white).

RGB = label2rgb(L, map, zerocolor, order) controls how
label2rgb assigns colormap colors to regions in the label matrix. If
order is 'noshuffle' (the default), label2rgb assigns colormap colors
to label matrix regions in numerical order. If order is 'shuffle',
label2rgb assigns colormap colors pseudorandomly.

Class
Support

The input label matrix L can have any nonsparse, numeric class. It
must contain finite, nonnegative integers. The output of label2rgb is
of class uint8.

Examples I = imread('rice.png');
figure, imshow(I), title('original image')
BW = im2bw(I, graythresh(I));
L = bwlabel(BW);
RGB = label2rgb(L);
RGB2 = label2rgb(L, 'spring', 'c', 'shuffle');
imshow(RGB), figure, imshow(RGB2)

17-486

label2rgb

See Also bwlabel, colormap, ismember, watershed

17-487

makecform

Purpose Create color transformation structure

Syntax C = makecform(type)
C = makecform(type,'WhitePoint', WP)
C = makecform('icc', src_profile, dest_profile)
C = makecform('icc', src_profile, dest_profile,

'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
dest_intent)

C = makecform('clut', profile, LUTtype)
C = makecform('mattrc', MatTrc, 'Direction', direction)
C = makecform('graytrc', profile, 'Direction', direction)
C = makecform('named', profile, space)

Description C = makecform(type) creates the color transformation structure C that
defines the color space conversion specified by type. To perform the
transformation, pass the color transformation structure as an argument
to the applycform function.

The type argument specifies one of the conversions listed in the
following table. makecform supports conversions between members
of the family of device-independent color spaces defined by the CIE,
Commission Internationale de l’Éclairage (International Commission on
Illumination). In addition, makecform supports conversions to and from
the sRGB standard. For a list of the abbreviations used by the Image
Processing Toolbox for each color space, see the Remarks section of
this reference page.

Type Description

'lab2lch' Convert from to the color space.

'lab2srgb' Convert from to the color space.

'lab2xyz' Convert from to the color space.

'lch2lab' Convert from to the color space.

'srgb2lab' Convert from to the color space.

17-488

makecform

Type Description

'srgb2xyz' Convert from to the color space.

'upvpl2xyz' Convert from to the color space.

'uvl2xyz' Convert from to the color space.

'xyl2xyz' Convert from to the color space.

'xyz2lab' Convert from to the color space.

'xyz2srgb' Convert from to the color space.

'xyz2upvpl' Convert from to the color space.

'xyz2uvl' Convert from to the color space.

'xyz2xyl' Convert from to the color space.

C = makecform(type,'WhitePoint', WP) specifies the value of the
reference illuminant, known as the white point. type can be either
'xyz2lab' or 'lab2xyz'. WP is a 1-by-3 vector of XYZ values scaled
so that Y = 1. The default is the CIE illuminant D50, which is also
the default illuminant specified in the International Color Consortium
specifications ICC.1:2001-04 and ICC.1:2001-12. Use the whitepoint
function to create the WP vector.

C = makecform('icc', src_profile, dest_profile) creates a color
transform based on two ICC profiles. src_profile and dest_profile
are ICC profile structures returned by iccread.

C = makecform('icc', src_profile, dest_profile,
'SourceRenderingIntent', src_intent, 'DestRenderingIntent',
dest_intent) creates a color transform based on two ICC color profiles,
src_profile and dest_profile, specifying rendering intent arguments
for the source, src_intent, and the destination, dest_intent, profiles.

Rendering intents specify the style of reproduction that should be
used when these profiles are combined. For most devices, the range of
reproducible colors is much smaller than the range of colors represented
by the PCS. Rendering intents define gamut mapping techniques.

17-489

makecform

Possible values for these rendering intents are listed below. Each
rendering intent has distinct aesthetic and color-accuracy tradeoffs.

Value Description

'AbsoluteColorimetric' Maps all out-of-gamut colors to the nearest gamut
surface while maintaining the relationship of all
in-gamut colors. This absolute rendering contains color
data that is relative to a perfectly reflecting diffuser.

'Perceptual' (default) Employs vendor-specific gamut mapping techniques
for optimizing the range of producible colors of a given
device. The objective is to provide the most aesthetically
pleasing result even though the relationship of the
in-gamut colors might not be maintained. This
media-relative rendering contains color data that is
relative to the device’s white point.

'RelativeColorimetric' Maps all out-of-gamut colors to the nearest gamut
surface while maintaining the relationship of all
in-gamut colors. This media-relative rendering contains
color data that is relative to the device’s white point.

'Saturation' Employs vendor-specific gamut mapping techniques
for maximizing the saturation of device colors. This
rendering is generally used for simple business graphics
such as bar graphs and pie charts. This media-relative
rendering contains color data that is relative to the
device’s white point.

C = makecform('clut', profile, LUTtype) creates the color
transformation structure C based on a color lookup table (CLUT)
contained in an ICC color profile. profile is an ICC profile structure
returned by iccread. LUTtype specifies which clut in the profile
structure is to be used. Each LUTtype listed in the table below
contains the components of an 8-bit or 16-bit LUTtag that performs a
transformation between device colors and PCS colors using a particular
rendering. For more information about 'clut' transformations, see

17-490

makecform

Section 6.5.7 of the International Color Consortium specification
ICC.1:2001-04 (Version 2) or Section 6.5.9 of ICC.1:2001-12 (Version 4),
available at www.color.org.

LUT Type Description

'AToB0' Device to PCS: perceptual rendering intent

'AToB1' Device to PCS: media-relative colorimetric
rendering intent

'AToB2' Device to PCS: saturation rendering intent

'AToB3' Device to PCS: ICC-absolute rendering intent

'BToA0' PCS to device: perceptual rendering intent

'BToA1' PCS to device: media-relative colorimetric rendering
intent

'BToA2' PCS to device: saturation rendering intent

'BToA3' PCS to device: ICC-absolute rendering intent

'Gamut' Determines which PCS colors are out of gamut for
a given device

'Preview0' PCS colors to the PCS colors available for soft
proofing using the perceptual rendering

'Preview1' PCS colors available for soft proofing using the
media-relative colorimetric rendering.

'Preview2' PCS colors to the PCS colors available for soft
proofing using the saturation rendering.

C = makecform('mattrc', MatTrc, 'Direction', direction)
creates the color transformation structure C based on a Matrix/Tone
Reproduction Curve (MatTRC) model, contained in an ICC color profile.
direction can be either 'forward' or 'inverse' and specifies whether
the MatTRC is to be applied in the forward or inverse direction. For
more information, see section 6.3.1.2 of the International Color

17-491

http://www.color.org

makecform

Consortium specification ICC.1:2001-04 or ICC.1:2001-12, available at
www.color.org.

C = makecform('graytrc', profile, 'Direction', direction)
creates the color transformation structure C that specifies a
monochrome transform based on a single-channel Tone Reproduction
Curve (GrayTRC) contained in an ICC color profile. direction can
be either 'forward' or 'inverse' and specifies whether the grayTRC
transform is to be applied in the forward (device to PCS) or inverse
(PCS to device) direction.

C = makecform('named', profile, space) creates the color
transformation structure C that specifies the transformation from color
names to color-space coordinates. profile must be a profile structure
for a Named Color profile (with a NamedColor2 field). space is either
'PCS' or 'Device'. The 'PCS' option is always available and will return
L*a*b* or XYZ coordinates, depending on the 'ConnectionSpace' field
in profile.Header, in 'double' format. The 'Device' option, when
active, returns device coordinates, the dimension depending on the
'ColorSpace' field in profile.Header, also in 'double' format.

Remarks The Image Processing Toolbox uses the following abbreviations to
represent color spaces.

Abbreviation Description

xyz 1931 CIE XYZ tristimulus values (2° observer)

xyl 1931 CIE xyY chromaticity values (2° observer)

uvl 1960 CIE uvL values

upvpl 1976 CIE the values

lab 1976 CIE values

lch Polar transformation of CIE values, where
c = chroma and h = hue

srgb Standard computer monitor RGB values, (IEC
61966-2-1)

17-492

http://www.color.org

makecform

Examples Convert RGB image to L*a*b*, assuming input image is uint8.

rgb = imread('peppers.png');
cform = makecform('srgb2lab');
lab = applycform(rgb,cform);

Convert from a non-standard RGB color profile to the device-independent
XYZ profile connection space. Note that the ICC input profile must
includes a MatTRC value.

InputProfile = iccread('myRGB.icc');
C = makecform('mattrc',InputProfile.MatTRC, ...

'direction', 'forward');

See Also applycform, iccread, iccwrite, isicc, lab2double, lab2uint16,
lab2uint8, whitepoint, xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-493

makeConstrainToRectFcn

Purpose Create rectangularly bounded drag constraint function

Syntax fcn = makeConstrainToRectFcn(type, xlim, ylim)

Description fcn = makeConstrainToRectFcn(type, xlim, ylim) creates a drag
constraint function for draggable tools of a given type, where type is the
string: 'impoint', 'imline', or 'imrect'. The rectangular boundaries
of the drag constraint function are described by the vectors xlim and
ylim where xlim = [xmin xmax] and ylim = [ymin ymax].

Examples Constrain drag of impoint within axis limits.

figure, plot(1:10);
h = impoint(gca,2,6);
api = iptgetapi(h);
fcn = makeConstrainToRectFcn('impoint',...

get(gca,'XLim'),get(gca,'YLim'));
api.setDragConstraintFcn(fcn);

See Also impoint, imrect, imline, imdistline

17-494

makelut

Purpose Create lookup table for use with applylut

Syntax lut = makelut(fun,n)

Description lut = makelut(fun,n) returns a lookup table for use with applylut.
fun is a function that accepts an n-by-n matrix of 1’s and 0’s as input
and return a scalar. n can be either 2 or 3. makelut creates lut by
passing all possible 2-by-2 or 3-by-3 neighborhoods to fun, one at a time,
and constructing either a 16-element vector (for 2-by-2 neighborhoods)
or a 512-element vector (for 3-by-3 neighborhoods). The vector consists
of the output from fun for each possible neighborhood. fun must be a
function handle.

Class
Support

lut is returned as a vector of class double.

Examples Construct a lookup table for 2-by-2 neighborhoods. In this example, the
function passed to makelut returns TRUE if the number of 1’s in the
neighborhood is 2 or greater, and returns FALSE otherwise.

f = @(x) (sum(x(:)) >= 2);
lut = makelut(f,2)
lut =

0
0
0
1
0
1
1
1
0
1
1
1
1

17-495

makelut

1
1
1

See Also applylut

17-496

makeresampler

Purpose Create resampling structure

Syntax R = makeresampler(interpolant, padmethod)

Description R = makeresampler(interpolant, padmethod) creates a separable
resampler structure for use with tformarray and imtransform.

The interpolant argument specifies the interpolating kernel that the
separable resampler uses. In its simplest form, interpolant can have
any of the following strings as a value.

Interpolant Description

'cubic' Cubic interpolation

'linear' Linear interpolation

'nearest' Nearest-neighbor interpolation

If you are using a custom interpolating kernel, you can specify
interpolant as a cell array in either of these forms:

{half_width,
positive_half}

half_width is a positive scalar designating
the half width of a symmetric interpolating
kernel. positive_half is a vector of values
regularly sampling the kernel on the closed
interval [0 positive_half].

{half_width,
interp_fcn}

interp_fcn is a function handle that
returns interpolating kernel values, given
an array of input values in the interval
[0 positive_half].

To specify the interpolation method independently along each
dimension, you can combine both types of interpolant specifications.
The number of elements in the cell array must equal the number
of transform dimensions. For example, if you specify this value for
interpolant

{'nearest', 'linear', {2 KERNEL_TABLE}}

17-497

makeresampler

the resampler uses nearest-neighbor interpolation along the first
transform dimension, linear interpolation along the second dimension,
and a custom table-based interpolation along the third.

The padmethod argument controls how the resampler interpolates or
assigns values to output elements that map close to or outside the edge
of the input array. The following table lists all the possible values of
padmethod.

Pad Method Description

'bound' Assigns values from the fill value array to points
that map outside the array and repeats border
elements of the array for points that map inside the
array (same as 'replicate'). When interpolant
is 'nearest', this pad method produces the same
results as 'fill'. 'bound' is like 'fill', but
avoids mixing fill values and input image values.

'circular' Pads array with circular repetition of elements
within the dimension. Same as padarray.

'fill' Generates an output array with smooth-looking
edges (except when using nearest-neighbor
interpolation). For output points that map near the
edge of the input array (either inside or outside),
it combines input image and fill values. When
interpolant is 'nearest', this pad method
produces the same results as 'bound'.

'replicate' Pads array by repeating border elements of array.
Same as padarray.

'symmetric' Pads array with mirror reflections of itself. Same
as padarray.

In the case of 'fill', 'replicate', 'circular', or 'symmetric', the
resampling performed by tformarray or imtransform occurs in two
logical steps:

17-498

makeresampler

1 Pad the array A infinitely to fill the entire input transform space.

2 Evaluate the convolution of the padded A with the resampling kernel
at the output points specified by the geometric map.

Each nontransform dimension is handled separately. The padding is
virtual, (accomplished by remapping array subscripts) for performance
and memory efficiency. If you implement a custom resampler, you can
implement these behaviors.

Custom
Resamplers

The syntax described above construct a resampler structure that uses
the separable resampler function that ships with the Image Processing
Toolbox. It is also possible to create a resampler structure that uses a
user-written resampler by using this syntax:

R = makeresampler(PropertyName,PropertyValue,...)

The makeresampler function supports the following properties.

Property Description

'Type' Can have the value 'separable' or 'custom' and must always be
supplied. If 'Type' is 'separable', the only other properties that can
be specified are 'Interpolant' and 'PadMethod', and the result is
equivalent to using the makeresampler(interpolant,padmethod)
syntax. If 'Type' is 'custom', you must specify the 'NDims' and
'ResampleFcn' properties and, optionally, the 'CustomData' property.

'PadMethod' See the padmethod argument for more information.

'Interpolant' See the interpolant argument for more information.

'NDims' Positive integer indicating the dimensionality the custom resampler
can handle. Use a value of Inf to indicate that the custom resampler
can handle any dimension. If 'Type' is 'custom', NDims is required.

17-499

makeresampler

Property Description

'ResampleFcn' Handle to a function that performs the resampling. The function is
called with the following interface.

B = resample_fcn(A,M,TDIMS_A,TDIMS_B,FSIZE_A,FSIZE_B,F,R)

See the help for tformarray for information about the inputs A,
TDIMS_A, TDIMS_B, and F. The argument M is an array that maps the
transform subscript space of B to the transform subscript space of A.
If A has N transform dimensions (N = length(TDIMS_A)) and B has P
transform dimensions (P = length(TDIMS_B)), then ndims(M) = P +
1, if N > 1 and P if N == 1, and size(M,P + 1) = N.

The first P dimensions of M correspond to the output transform space,
permuted according to the order in which the output transform
dimensions are listed in TDIMS_B. (In general TDIMS_A and TDIMS_B
need not be sorted in ascending order, although such a limitation
might be imposed by specific resamplers.) Thus, the first P elements
of size(M) determine the sizes of the transform dimensions of B. The
input transform coordinates to which each point is mapped are arrayed
across the final dimension of M, following the order given in TDIMS_A.
M must be double. FSIZE_A and FSIZE_B are the full sizes of A and B,
padded with 1’s as necessary to be consistent with TDIMS_A, TDIMS_B,
and size(A).

'CustomData' User-defined.

Examples Stretch an image in the y-direction using a separable resampler that
applies cubic interpolation in the y-direction and nearest-neighbor
interpolation in the x-direction. (This is equivalent to, but faster than,
applying bicubic interpolation.)

A = imread('moon.tif');
resamp = makeresampler({'nearest','cubic'},'fill');
stretch = maketform('affine',[1 0; 0 1.3; 0 0]);
B = imtransform(A,stretch,resamp);

17-500

makeresampler

See Also imtransform, tformarray

17-501

maketform

Purpose Create spatial transformation structure (TFORM)

Syntax T = maketform(transformtype,...)
T = maketform('affine',A)
T = maketform('affine',U,X)
T = maketform('projective',A)
T = maketform('projective',U,X)
T = maketform('custom', NDIMS_IN, NDIMS_OUT, FORWARD_FCN,

INVERSE_FCN, TDATA)
T = maketform('box',tsize,LOW,HIGH)
T = maketform('box',INBOUNDS, OUTBOUNDS)
T = maketform('composite',T1,T2,...,TL)
T = maketform('composite', [T1 T2 ... TL])

Description T = maketform(transformtype,...) creates a multidimensional
spatial transformation structure (called a TFORM struct) that can be used
with the tformfwd, tforminv, fliptform, imtransform, or tformarray
functions.

transformtype can be any of the following spatial transformation
types. maketform supports a special syntax for each transformation
type. See the following sections for information about these syntax.

Transform
Type Description

'affine' Affine transformation in 2-D or N-D

'projective' Projective transformation in 2-D or N-D

'custom' User-defined transformation that can be N-D to M-D

'box' Independent affine transformation (scale and shift) in
each dimension

'composite' Composition of an arbitrary number of more basic
transformations

17-502

maketform

Transform
Types

Affine

T = maketform('affine',A) builds a TFORM struct T for an
N-dimensional affine transformation. A is a nonsingular real
(N+1)-by-(N+1) or (N+1)-by-N matrix. If A is (N+1)-by-(N+1), the last
column of A must be [zeros(N,1);1]. Otherwise, A is augmented
automatically, such that its last column is [zeros(N,1);1]. The
matrix A defines a forward transformation such that tformfwd(U,T),
where U is a 1-by-N vector, returns a 1-by-N vector X, such that X
= U * A(1:N,1:N) + A(N+1,1:N). T has both forward and inverse
transformations.

T = maketform('affine',U,X) builds a TFORM struct T for a
two-dimensional affine transformation that maps each row of U to the
corresponding row of X. The U and X arguments are each 3-by-2 and
define the corners of input and output triangles. The corners cannot
be collinear.

Projective

T = maketform('projective',A) builds a TFORM struct for an
N-dimensional projective transformation. A is a nonsingular real
(N+1)-by-(N+1) matrix. A(N+1,N+1) cannot be 0. The matrix A defines a
forward transformation such that tformfwd(U,T), where U is a 1-by-N
vector, returns a 1-by-N vector X, such that X = W(1:N)/W(N+1), where
W = [U 1] * A. The transformation structure T has both forward and
inverse transformations.

T = maketform('projective',U,X) builds a TFORM struct T for a
two-dimensional projective transformation that maps each row of U to
the corresponding row of X. The U and X arguments are each 4-by-2 and
define the corners of input and output quadrilaterals. No three corners
can be collinear.

Custom

T = maketform('custom', NDIMS_IN, NDIMS_OUT, FORWARD_FCN,
INVERSE_FCN, TDATA) builds a custom TFORM struct T based on
user-provided function handles and parameters. NDIMS_IN and
NDIMS_OUT are the numbers of input and output dimensions.

17-503

maketform

FORWARD_FCN and INVERSE_FCN are function handles to forward and
inverse functions. Those functions must support the following syntax:

Forward function: X = FORWARD_FCN(U,T)

Inverse function: U = INVERSE_FCN(X,T)

where U is a P-by-NDIMS_IN matrix whose rows are points in the
transformation’s input space, and X is a P-by-NDIMS_OUT matrix
whose rows are points in the transformation’s output space. The
TDATA argument can be any MATLAB array and is typically used
to store parameters of the custom transformation. It is accessible
to FORWARD_FCN and INVERSE_FCN via the tdata field of T. Either
FORWARD_FCN or INVERSE_FCN can be empty, although at least
INVERSE_FCN must be defined to use T with tformarray or imtransform.

Box

T = maketform('box',tsize,LOW,HIGH) or
T = maketform('box',INBOUNDS, OUTBOUNDS) builds an
N-dimensional affine TFORM struct T. The tsize argument is an
N-element vector of positive integers. LOW and HIGH are also N-element
vectors. The transformation maps an input box defined by the
opposite corners ones(1,N) and tsize or, alternatively, by corners
INBOUNDS(1,:) and INBOUND(2,:) to an output box defined by the
opposite corners LOW and HIGH or OUTBOUNDS(1,:) and OUTBOUNDS(2,:).
LOW(K) and HIGH(K) must be different unless tsize(K) is 1, in which
case the affine scale factor along the Kth dimension is assumed to be
1.0. Similarly, INBOUNDS(1,K) and INBOUNDS(2,K) must be different
unless OUTBOUNDS(1,K) and OUTBOUNDS(2,K) are the same, and vice
versa. The 'box' TFORM is typically used to register the row and column
subscripts of an image or array to some world coordinate system.

Composite

T = maketform('composite',T1,T2,...,TL) or
T = maketform('composite', [T1 T2 ... TL]) builds a TFORM

17-504

maketform

struct T whose forward and inverse functions are the functional
compositions of the forward and inverse functions of T1, T2, ..., TL.

For example, if L = 3, then tformfwd(U,T) is the same as
tformfwd(tformfwd(tformfwd(U,T3),T2),T1). The components T1
through TL must be compatible in terms of the numbers of input and
output dimensions. T has a defined forward transform function only if
all the component transforms have defined forward transform functions.
T has a defined inverse transform function only if all the component
functions have defined inverse transform functions.

Examples Make and apply an affine transformation.

T = maketform('affine',[.5 0 0; .5 2 0; 0 0 1]);
tformfwd([10 20],T)
I = imread('cameraman.tif');
I2 = imtransform(I,T);
imshow(I), figure, imshow(I2)

See Also tformfwd, tforminv, fliptform, imtransform, tformarray

17-505

mat2gray

Purpose Convert matrix to grayscale image

Syntax I = mat2gray(A, [amin amax])
I = mat2gray(A)

Description I = mat2gray(A, [amin amax]) converts the matrix A to the intensity
image I. The returned matrix I contains values in the range 0.0 (black)
to 1.0 (full intensity or white). amin and amax are the values in A that
correspond to 0.0 and 1.0 in I.

I = mat2gray(A) sets the values of amin and amax to the minimum
and maximum values in A.

Class
Support

The input array A can be logical or numeric. The output image I is
double.

Examples I = imread('rice.png');
J = filter2(fspecial('sobel'),I);
K = mat2gray(J);
imshow(I), figure, imshow(K)

See Also gray2ind

17-506

mean2

Purpose Average or mean of matrix elements

Syntax B = mean2(A)

Description B = mean2(A) computes the mean of the values in A.

Class
Support

The input image A can be numeric or logical. The output image B
is a scalar of class double.

Algorithm mean2 computes the mean of an array A using mean(A(:)).

See Also std2

mean, std in the MATLAB Function Reference

17-507

medfilt2

Purpose 2-D median filtering

Syntax B = medfilt2(A, [m n])
B = medfilt2(A)
B = medfilt2(A, 'indexed',...)

Description Median filtering is a nonlinear operation often used in image processing
to reduce "salt and pepper" noise. Median filtering is more effective
than convolution when the goal is to simultaneously reduce noise and
preserve edges.

B = medfilt2(A, [m n]) performs median filtering of the matrix A in
two dimensions. Each output pixel contains the median value in the
m-by-n neighborhood around the corresponding pixel in the input image.
medfilt2 pads the image with 0’s on the edges, so the median values for
the points within [m n]/2 of the edges might appear distorted.

B = medfilt2(A) performs median filtering of the matrix A using the
default 3-by-3 neighborhood.

B = medfilt2(A, 'indexed',...) processes A as an indexed image,
padding with 0’s if the class of A is uint8, or 1’s if the class of A is double.

Class
Support

The input image A can be of class logical, uint8, uint16, or double
(unless the 'indexed' syntax is used, in which case A cannot be of class
uint16). The output image B is of the same class as A.

Note For information about performance considerations, see ordfilt2.

Remarks If the input image A is of an integer class, all the output values are
returned as integers. If the number of pixels in the neighborhood (i.e.,
m*n) is even, some of the median values might not be integers. In
these cases, the fractional parts are discarded. Logical input is treated
similarly.

17-508

medfilt2

For example, suppose you call medfilt2 using 2-by-2 neighborhoods,
and the input image is a uint8 array that includes this neighborhood.

1 5
4 8

medfilt2 returns an output value of 4 for this neighborhood, although
the true median is 4.5.

Examples Add salt and pepper noise to an image and then restore the image
using medfilt2.

I = imread('eight.tif');
J = imnoise(I,'salt & pepper',0.02);
K = medfilt2(J);
imshow(J), figure, imshow(K)

Algorithm medfilt2 uses ordfilt2 to perform the filtering.

See Also filter2, ordfilt2, wiener2

Reference [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, pp. 469-476.

17-509

montage

Purpose Display multiple image frames as rectangular montage

Syntax montage(filenames)
montage(I)
montage(X, map)
montage(..., param1, value1, param2, value2, ...)
h = montage(...)

Description montage(filenames) displays a montage of the images specified in
filenames. filenames is an N-by-1 or 1-by-N cell array of filenames.
If the files are not in the current directory or in a directory on the
MATLAB path, you must specify the full pathname. See the imread
command for more information. If one or more of the image files
contains an indexed image, montage uses the colormap from the first
indexed image file. montage arranges the frames so that they roughly
form a square.

montage(I) displays all the frames of a multiframe image array I
in a single image object. I can be a sequence of binary, grayscale,
or truecolor images. A binary or grayscale image sequence must be
an M-by-N-by-1-by-K array. A truecolor image sequence must be an
M-by-N-by-3-by-K array.

montage(X, map) displays all the frames of the indexed image array X,
using the colormap map for all frames. X is an M-by-N-by-1-by-K array.

montage(..., param1, value1, param2, value2, ...) returns a
customized display of an image montage, depending on the values of
the optional parameter/value pairs. See “Parameters” on page 17-510
for a list of available parameters.

h = montage(...) returns the handle to the image object.

Parameters

The following table lists the parameters available, alphabetically by
name. Parameter names can be abbreviated, and case does not matter.

17-510

montage

Parameter Value

'DisplayRange' A 1-by-2 vector, [LOW HIGH] that controls the display range
of each image in a grayscale sequence. The value LOW (and
any value less than LOW) displays as black; the value HIGH
(and any value greater than HIGH) displays as white. If you
specify an empty matrix ([]), montage uses the minimum
and maximum values of the images to be displayed in
the montage as specified by 'Indices'. For example, if
'Indices' is 1:K and the 'DisplayRange' is set to [],
the minimum value in I (min(I(:)) is displayed as black,
and the maximum value (max(I(:)) is displayed as white.
Default: Range of the data type of I.

'Indices' A numeric array specifying which frames to display in the
montage. For example, to create a montage of the first four
frames in I, enter montage(I,'Indices',1:4);. You can use
this parameter to specify individual frames or skip frames.
For example, the value 1:2:20 displays every other frame.
Default: 1:K, where K is the total number of frames to display.

'Size' A 2-element vector, [NROWS NCOLS], specifying the number of
rows and number of columns in the montage. You can use NaNs
in the size vector to indicate that montage should calculate size
in a particular dimension in a way that includes all the images
in the montage. For example, if 'Size’ is [2 NaN], the montage
will have 2 rows, and the number of columns will be computed
automatically to include all of the images in the montage. The
images are displayed horizontally across columns.

Default: Calculated so the images in the montage roughly form a
square.montage considers the aspect ratio when calculating the
number of images to display horizontally and vertically.

Class
Support

A grayscale image array can be logical, uint8, uint16, int16, single,
or double. An indexed image can be logical, uint8, uint16, single,
or double. The colormap must be double. A truecolor image can be

17-511

montage

uint8, uint16, single, or double. The output is a handle to the image
object produced by montage.

Examples Create a montage from a series of files. By default, montage arranges
the images into a square.

fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}'
montage(fileNames);

Display the same set of images in two rows and five columns.

montage(fileNames, 'Size', [2 5]);

This example shows you how to customize the number of images in the
montage and the contrast in the montage.

load mri
montage(D,map)

17-512

montage

Create a new montage of the first 9 images.

figure
montage(D, map, 'Indices', 1:9);

Maximize the contrast of D without using the colormap.

figure
montage(D, 'DisplayRange', []);

See Also immovie, imshow

17-513

nlfilter

Purpose General sliding-neighborhood operations

Syntax B = nlfilter(A, [m n], fun)
B = nlfilter(A, 'indexed',...)

Description B = nlfilter(A, [m n], fun) applies the function fun to each m-by-n
sliding block of A. fun is a function that accepts an m-by-n matrix as
input and returns a scalar result.

c = fun(x)

fun must be a function handle.

c is the output value for the center pixel in the m-by-n block x. nlfilter
calls fun for each pixel in A. nlfilter zero-pads the m-by-n block at the
edges, if necessary.

B = nlfilter(A, 'indexed',...) processes A as an indexed image,
padding with 1’s if A is of class double and 0’s if A is of class uint8.

Class
Support

The input image A can be of any class supported by fun. The class of B
depends on the class of the output from fun.

Remarks nlfilter can take a long time to process large images. In some cases,
the colfilt function can perform the same operation much faster.

Examples This example produces the same result as calling medfilt2 with a
3-by-3 neighborhood.

A = imread('cameraman.tif');
fun = @(x) median(x(:));
B = nlfilter(A,[3 3],fun);
imshow(A), figure, imshow(B)

See Also blkproc, colfilt, function_handle

17-514

normxcorr2

Purpose Normalized 2-D cross-correlation

Syntax C = normxcorr2(template, A)

Description C = normxcorr2(template, A) computes the normalized
cross-correlation of the matrices template and A. The matrix A must be
larger than the matrix template for the normalization to be meaningful.
The values of template cannot all be the same. The resulting matrix
C contains the correlation coefficients, which can range in value from
-1.0 to 1.0.

Class
Support

The input matrices can be numeric. The output matrix C is double.

Algorithm normxcorr2 uses the following general procedure [1], [2]:

1 Calculate cross-correlation in the spatial or the frequency domain,
depending on size of images.

2 Calculate local sums by precomputing running sums. [1]

3 Use local sums to normalize the cross-correlation to get correlation
coefficients.

The implementation closely follows following formula from [1]:

γ(,)
, ,

,

,,

,

u v
f x y f t x u y v t

f x y f

u vx y

u vx

=
() −⎡⎣ ⎤⎦ − −() −⎡⎣ ⎤⎦

() −⎡⎣ ⎤⎦

∑

,, ,

.
(,)

y x y
t x u y v t∑ ∑ − − −⎡⎣ ⎤⎦{ }2 2

0 5

where

• f is the image.

• t is the mean of the template

17-515

normxcorr2

• fu v, is the mean of f x y(,) in the region under the template.

Examples template = .2*ones(11); % Make light gray plus on dark gray background

template(6,3:9) = .6;

template(3:9,6) = .6;

BW = template > 0.5; % Make white plus on black background

figure, imshow(BW), figure, imshow(template)

% Make new image that offsets the template

offsetTemplate = .2*ones(21);

offset = [3 5]; % Shift by 3 rows, 5 columns

offsetTemplate((1:size(template,1))+offset(1),...

(1:size(template,2))+offset(2)) = template;

figure, imshow(offsetTemplate)

% Cross-correlate BW and offsetTemplate to recover offset

cc = normxcorr2(BW,offsetTemplate);

[max_cc, imax] = max(abs(cc(:)));

[ypeak, xpeak] = ind2sub(size(cc),imax(1));

corr_offset = [(ypeak-size(template,1)) (xpeak-size(template,2))];

isequal(corr_offset,offset) % 1 means offset was recovered

See Also corrcoef

References [1] Lewis, J. P., "Fast Normalized Cross-Correlation," Industrial Light
& Magic

[2] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot
Vision, Volume II, Addison-Wesley, 1992, pp. 316-317.

17-516

http://www.idiom.com/%7Ezilla/Papers/nvisionInterface/nip.html

ntsc2rgb

Purpose Convert NTSC values to RGB color space

Syntax rgbmap = ntsc2rgb(yiqmap)
RGB = ntsc2rgb(YIQ)

Description rgbmap = ntsc2rgb(yiqmap) converts the m-by-3 NTSC (television)
color values in yiqmap to RGB color space. If yiqmap is m-by-3 and
contains the NTSC luminance (Y) and chrominance (I and Q) color
components as columns, then rgbmap is an m-by-3 matrix that contains
the red, green, and blue values equivalent to those colors. Both rgbmap
and yiqmap contain intensities in the range 0 to 1.0. The intensity 0
corresponds to the absence of the component, while the intensity 1.0
corresponds to full saturation of the component.

RGB = ntsc2rgb(YIQ) converts the NTSC image YIQ to the equivalent
truecolor image RGB.

ntsc2rgb computes the RGB values from the NTSC components using

Class
Support

The input image or colormap must be of class double. The output is
of class double.

Examples Convert RGB image to NTSC and back.

RGB = imread('board.tif');
NTSC = rgb2ntsc(RGB);
RGB2 = ntsc2rgb(NTSC);

See Also rgb2ntsc, rgb2ind, ind2rgb, ind2gray

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-517

ordfilt2

Purpose 2-D order-statistic filtering

Syntax B = ordfilt2(A, order, domain)
B = ordfilt2(A, order, domain, S)
B = ordfilt2(..., padopt)

Description B = ordfilt2(A, order, domain) replaces each element in A by the
orderth element in the sorted set of neighbors specified by the nonzero
elements in domain.

B = ordfilt2(A, order, domain, S) where S is the same size as
domain, uses the values of S corresponding to the nonzero values of
domain as additive offsets.

B = ordfilt2(..., padopt) controls how the matrix boundaries
are padded. Set padopt to 'zeros' (the default) or 'symmetric'. If
padopt is 'zeros', A is padded with 0’s at the boundaries. If padopt is
'symmetric', A is symmetrically extended at the boundaries.

Class
Support

The class of A can be logical, uint8, uint16, or double. The class of B
is the same as the class of A, unless the additive offset form of ordfilt2
is used, in which case the class of B is double.

Remarks domain is equivalent to the structuring element used for binary image
operations. It is a matrix containing only 1’s and 0’s; the 1’s define the
neighborhood for the filtering operation.

For example, B = ordfilt2(A,5,ones(3,3)) implements a 3-by-3
median filter; B = ordfilt2(A,1,ones(3,3)) implements a 3-by-3
minimum filter; and B = ordfilt2(A,9,ones(3,3)) implements a
3-by-3 maximum filter. B = ordfilt2(A,1,[0 1 0; 1 0 1; 0 1 0])
replaces each element in A by the minimum of its north, east, south,
and west neighbors.

The syntax that includes S (the matrix of additive offsets) can be used
to implement grayscale morphological operations, including grayscale
dilation and erosion.

17-518

ordfilt2

Performance Considerations

When working with large domain matrices that do not contain any
zero-valued elements, ordfilt2 can achieve higher performance if A is
in an integer data format (uint8, int8, uint16, int16). The gain in
speed is larger for uint8 and int8 than for the 16-bit data types. For
8-bit data formats, the domain matrix must contain seven or more rows.
For 16-bit data formats, the domain matrix must contain three or more
rows and 520 or more elements.

Examples This examples uses a maximum filter with a [5 5] neighborhood. This
is equivalent to imdilate(image,strel('square',5)).

A = imread('snowflakes.png');
B = ordfilt2(A,25,true(5));
figure, imshow(A), figure, imshow(B)

See Also medfilt2

Reference [1] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot
Vision, Volume I, Addison-Wesley, 1992.

[2] Huang, T.S., G.J.Yang, and G.Y.Tang. "A fast two-dimensional
median filtering algorithm.", IEEE transactions on Acoustics, Speech
and Signal Processing, Vol ASSP 27, No. 1, February 1979

17-519

otf2psf

Purpose Convert optical transfer function to point-spread function

Syntax PSF = otf2psf(OTF)
PSF = otf2psf(OTF, OUTSIZE)

Description PSF = otf2psf(OTF) computes the inverse Fast Fourier Transform
(IFFT) of the optical transfer function (OTF) array and creates a
point-spread function (PSF), centered at the origin. By default, the
PSF is the same size as the OTF.

PSF = otf2psf(OTF, OUTSIZE) converts the OTF array into a PSF
array, where OUTSIZE specifies the size of the output point-spread
function. The size of the output array must not exceed the size of the
OTF array in any dimension.

To center the PSF at the origin, otf2psf circularly shifts the values of
the output array down (or to the right) until the (1,1) element reaches
the central position, then it crops the result to match dimensions
specified by OUTSIZE.

Note that this function is used in image convolution/deconvolution when
the operations involve the FFT.

Class
Support

OTF can be any nonsparse, numeric array. PSF is of class double.

Examples PSF = fspecial('gaussian',13,1);
OTF = psf2otf(PSF,[31 31]); % PSF --> OTF
PSF2 = otf2psf(OTF,size(PSF)); % OTF --> PSF2
subplot(1,2,1); surf(abs(OTF)); title('|OTF|');
axis square; axis tight
subplot(1,2,2); surf(PSF2); title('Corresponding PSF');
axis square; axis tight

See Also psf2otf, circshift, padarray

17-520

padarray

Purpose Pad array

Syntax B = padarray(A, padsize)
B = padarray(A, padsize, padval)
B = padarray(A, padsize, padval, direction)

Description B = padarray(A, padsize) pads array A with 0’s (zeros). padsize is a
vector of positive integers that specifies both the amount of padding to
add and the dimension along which to add it. The value of an element
in the vector specifies the amount of padding to add. The order of the
element in the vector specifies the dimension along which to add the
padding.

For example, a padsize value of [2 3] means add 2 elements of
padding along the first dimension and 3 elements of padding along the
second dimension. By default, paddarray adds padding before the first
element and after the last element along the specified dimension.

B = padarray(A, padsize, padval) pads array A where padval
specifies the value to use as the pad value. padarray uses the value
0 (zero) as the default. padval can be a scalar that specifies the pad
value directly or one of the following text strings that specifies the
method padarray uses to determine the values of the elements added
as padding.

Value Meaning

'circular' Pad with circular repetition of elements within the
dimension.

'replicate' Pad by repeating border elements of array.

'symmetric' Pad array with mirror reflections of itself.

B = padarray(A, padsize, padval, direction) pads A in the
direction specified by the string direction. direction can be one of
the following strings. The default value is enclosed in braces ({}).

17-521

padarray

Value Meaning

{'both'} Pads before the first element and after the last array
element along each dimension. This is the default.

'post' Pad after the last array element along each dimension.

'pre' Pad before the first array element along each dimension.

Class
Support

When padding with a constant value, A can be numeric or logical. When
padding using the 'circular', 'replicate', or 'symmetric' methods,
A can be of any class. B is of the same class as A.

Examples Example 1

Add three elements of padding to the beginning of a vector. The padding
elements, indicated by the gray shading, contain mirror copies of the
array elements.

a = [1 2 3 4];
b = padarray(a,[0 3],'symmetric','pre')

b ==

Example 2

Add three elements of padding to the end of the first dimension of the
array and two elements of padding to the end of the second dimension.
The example uses the value of the last array element as the padding
value.

A = [1 2; 3 4];
B = padarray(A,[3 2],'replicate','post')

B =

17-522

padarray

Example 3

Add three elements of padding to the vertical and horizontal dimensions
of a three-dimensional array. Use default values for the pad value and
direction.

A = [1 2; 3 4];
B = [5 6; 7 8];
C = cat(3,A,B)
C(:,:,1) =

1 2
3 4

C(:,:,2) =

5 6
7 8

D = padarray(C,[3 3])

D(:,:,1) ==

17-523

padarray

D(:,:,2) ===

See Also circshift, imfilter

17-524

para2fan

Purpose Convert parallel-beam projections to fan-beam

Syntax F = para2fan(P, D)
I = para2fan(..., param1, val1, param2, val2,...)
[F, fan_positions, fan_rotation_angles] = fan2para(...)

Description F = para2fan(P, D) computes the fan-beam data (sinogram) F from
the parallel-beam data (sinogram) P. Each column of P contains the
parallel-beam sensor samples at one rotation angle. D is the distance in
pixels from the center of rotation to the center of the sensors.

The sensors are assumed to have a one-pixel spacing. The parallel-beam
rotation angles are assumed to be spaced equally to cover [0,180]
degrees. The calculated fan-beam rotation angles cover [0,360) with
the same spacing as the parallel-beam rotation angles. The calculated
fan-beam angles are equally spaced with the spacing set to the smallest
angle implied by the sensor spacing.

I = para2fan(..., param1, val1, param2, val2,...) specifies
parameters that control various aspects of the para2fan conversion.
Parameter names can be abbreviated, and case does not matter. Default
values are enclosed in braces like this: {default}. Parameters include

Parameter Description

'FanCoverage' String specifying the range through which the beams
are rotated.

Possible values: {'cycle'} or 'minimal'

See ifanbeam for details.

17-525

para2fan

Parameter Description

'FanRotationIncrement' Positive real scalar specifying the rotation angle
increment of the fan-beam projections in degrees.

If 'FanCoverage' is 'cycle',
'FanRotationIncrement' must be a factor
of 360.

If 'FanRotationIncrement' is not specified, then it is
set to the same spacing as the parallel-beam rotation
angles.

'FanSensorGeometry' Text string specifying how sensors are positioned.

Possible values: {'arc'} or 'line'

See fanbeam for details.

17-526

para2fan

Parameter Description

'FanSensorSpacing' Positive real scalar specifying the spacing of the fan
beams. Interpretation of the value depends on the
setting of 'FanSensorGeometry':

If 'FanSensorGeometry' is 'arc', the value defines
the angular spacing in degrees. Default value is 1.

If 'FanSensorGeometry' is 'line', the value defines
the linear spacing in pixels.

If 'FanSensorSpacing' is not specified, the
default is the smallest value implied by
'ParallelSensorSpacing' such that

If 'FanSensorGeometry' is 'arc',
'FanSensorSpacing' is

180/PI*ASIN(PSPACE/D)

where PSPACE is the value of
'ParallelSensorSpacing'.

If 'FanSensorGeometry' is 'line',
'FanSensorSpacing' is

D*ASIN(PSPACE/D)

'Interpolation' Text string specifying the type of interpolation used
between the parallel-beam and fan-beam data.

'nearest' — Nearest-neighbor

{'linear'} — Linear

'spline' — Piecewise cubic spline

'pchip' — Piecewise cubic Hermite (PCHIP)

'cubic' — Same as 'pchip'

17-527

para2fan

Parameter Description

'ParallelCoverage' Text string specifying the range of rotation.

'cycle' -- Parallel data covers 360 degrees

{'halfcycle'} — Parallel data covers 180 degrees

'ParallelRotationIncrement' Positive real scalar specifying the parallel-beam
rotation angle increment, measured in degrees. Parallel
beam angles are calculated to cover [0,180) degrees
with increment PAR_ROT_INC, where PAR_ROT_INC
is the value of 'ParallelRotationIncrement'.
180/PAR_ROT_INC must be an integer.

If 'ParallelRotationIncrement' is not specified, the
increment is assumed to be the same as the increment
of the fan-beam rotation angles.

'ParallelSensorSpacing' Positive real scalar specifying the spacing of the
parallel-beam sensors in pixels. The range of sensor
locations is implied by the range of fan angles and is
given by

[D*sin(min(FAN_ANGLES)),D*sin(max(FAN_ANGLES))]

If 'ParallelSensorSpacing' is not specified, the
spacing is assumed to be uniform and is set to the
minimum spacing implied by the fan angles and
sampled over the range implied by the fan angles.

[F, fan_positions, fan_rotation_angles] = fan2para(...)
returns the fan-beam sensor measurement angles in fan_positions,
if 'FanSensorGeometry' is 'arc'. If 'FanSensorGeometry’ is 'line',
fan_positions contains the fan-beam sensor positions along the line of
sensors. fan_rotation_angles contains rotation angles.

17-528

para2fan

Class
Support

P and D can be double or single, and must be nonsparse. The other
numeric input arguments must be double. The output arguments are
double.

Examples Generate parallel-beam projections

ph = phantom(128);
theta = 0:180;
[P,xp] = radon(ph,theta);
imshow(theta,xp,P,[],'n'), axis normal
title('Parallel-Beam Projections')
xlabel('\theta (degrees)')
ylabel('x''')
colormap(hot), colorbar

Convert to fan-beam projections

[F,Fpos,Fangles] = para2fan(P,100);
figure, imshow(Fangles,Fpos,F,[],'n'), axis normal
title('Fan-Beam Projections')
xlabel('\theta (degrees)')
ylabel('Sensor Locations (degrees)')
colormap(hot), colorbar

See Also fan2para, fanbeam, iradon, ifanbeam, phantom, radon

17-529

phantom

Purpose Create head phantom image

Syntax P = phantom(def, n)
P = phantom(E, n)
[P, E] = phantom(...)

Description P = phantom(def, n) generates an image of a head phantom that can
be used to test the numerical accuracy of radon and iradon or other
two-dimensional reconstruction algorithms. P is a grayscale intensity
image that consists of one large ellipse (representing the brain)
containing several smaller ellipses (representing features in the brain).

def is a string that specifies the type of head phantom to generate.
Valid values are

• 'Shepp-Logan' — Test image used widely by researchers in
tomography

• 'Modified Shepp-Logan' (default) — Variant of the Shepp-Logan
phantom in which the contrast is improved for better visual
perception

n is a scalar that specifies the number of rows and columns in P. If you
omit the argument, n defaults to 256.

P = phantom(E, n) generates a user-defined phantom, where each row
of the matrix E specifies an ellipse in the image. E has six columns, with
each column containing a different parameter for the ellipses. This
table describes the columns of the matrix.

Column Parameter Meaning

Column 1 A Additive intensity value of the ellipse

Column 2 a Length of the horizontal semiaxis of the
ellipse

Column 3 b Length of the vertical semiaxis of the
ellipse

17-530

phantom

Column Parameter Meaning

Column 4 x0 x-coordinate of the center of the ellipse

Column 5 y0 y-coordinate of the center of the ellipse

Column 6 phi Angle (in degrees) between the horizontal
semiaxis of the ellipse and the x-axis of
the image

For purposes of generating the phantom, the domains for the x- and
y-axes span [-1,1]. Columns 2 through 5 must be specified in terms of
this range.

[P, E] = phantom(...) returns the matrix E used to generate the
phantom.

Class
Support

All inputs and all outputs must be of class double.

Remarks For any given pixel in the output image, the pixel’s value is equal to the
sum of the additive intensity values of all ellipses that the pixel is a part
of. If a pixel is not part of any ellipse, its value is 0.

The additive intensity value A for an ellipse can be positive or negative;
if it is negative, the ellipse will be darker than the surrounding pixels.
Note that, depending on the values of A, some pixels can have values
outside the range [0,1].

Examples P = phantom('Modified Shepp-Logan',200);
imshow(P)

17-531

phantom

Reference [1] Jain, Anil K., Fundamentals of Digital Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1989, p. 439.

See Also radon, iradon

17-532

pixval

Purpose Display information about image pixels

Syntax pixval on
pixval off
pixval
pixval(fig, option)
pixval(ax, option)
pixval(H, option)

Note This function is obsolete and may be removed in a future version
of the Image Processing Toolbox. Instead, use impixelinfo for pixel
reporting and use imdistline for measuring distance.

Description pixval on turns on interactive display of information about image
pixels in the current figure. pixval installs a black bar at the bottom of
the figure, which displays the (x,y) coordinates for whatever pixel the
cursor is currently over and the color information for that pixel. If the
image is binary or intensity, the color information is a single intensity
value. If the image is indexed or RGB, the color information is an RGB
triplet. The values displayed are the actual data values, regardless of
the class of the image array, or whether the data is in normal image
range.

If you click the image and hold down the mouse button while you move
the cursor, pixval also displays the Euclidean distance between the
point you clicked and the current cursor location. pixval draws a line
between these points to indicate the distance being measured. When you
release the mouse button, the line and the distance display disappear.

You can move the display bar by clicking it and dragging it to another
place in the figure.

turns interactive display on in the current figure.

pixval off turns interactive display off in the current figure. You can
also turn off the display by clicking the button on the right side of the
display bar.

17-533

pixval

pixval toggles interactive display on or off in the current figure.

pixval(fig, option) applies the pixval command to the figure
specified by fig. option is a string containing 'on' or 'off'.

pixval(ax, option) applies the pixval command to the figure that
contains the axes ax. option is a string containing 'on' or 'off'.

pixval(H, option) applies the pixval command to the figure that
contains the image object H. option is a string containing 'on' or 'off'.

Examples figure, imshow peppers.png
pixval

See Also impixel, improfile,pixval

17-534

poly2mask

Purpose Convert region of interest (ROI) polygon to region mask

Syntax BW = poly2mask(x, y, m, n)

Description BW = poly2mask(x, y, m, n) computes a binary region of interest
(ROI) mask, BW, from an ROI polygon, represented by the vectors x and
y. The size of BW is m-by-n. poly2mask sets pixels in BW that are inside
the polygon (X,Y) to 1 and sets pixels outside the polygon to 0.

poly2mask closes the polygon automatically if it isn’t already closed.

Note on Rectangular Polygons

When the input polygon goes through the middle of a pixel, sometimes
the pixel is determined to be inside the polygon and sometimes it
is determined to be outside (see Algorithm for details). To specify a
polygon that includes a given rectangular set of pixels, make the edges
of the polygon lie along the outside edges of the bounding pixels, instead
of the center of the pixels.

For example, to include pixels in columns 4 through 10 and rows 4
through 10, you might specify the polygon vertices like this:

x = [4 10 10 4 4];

y = [4 4 10 10 4];

mask = poly2mask(x,y,12,12)

mask =

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0

17-535

poly2mask

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

In this example, the polygon goes through the center of the bounding
pixels, with the result that only some of the desired bounding pixels are
determined to be inside the polygon (the pixels in row 4 and column 4
and not in the polygon). To include these elements in the polygon, use
fractional values to specify the outside edge of the 4th row (3.5) and the
10th row (10.5), and the outside edge of the 4th column (3.5) and the
outside edge of the 10th column (10.5) as vertices, as in the following
example:

x = [3.5 10.5 10.5 3.5 3.5];

y = [3.5 3.5 10.5 10.5 3.5];

mask = poly2mask(x,y,12,12)

mask =

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Class
Suport

The class of BW is logical

Examples x = [63 186 54 190 63];
y = [60 60 209 204 60];
bw = poly2mask(x,y,256,256);

17-536

poly2mask

imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

Create a mask using random points.

x = 256*rand(1,4);
y = 256*rand(1,4);
x(end+1) = x(1);
y(end+1) = y(1);
bw = poly2mask(x,y,256,256);
imshow(bw)
hold on
plot(x,y,'b','LineWidth',2)
hold off

See Also roipoly

For more information about ROIs, see Chapter 12, “ROI-Based
Processing”.

Algorithm When creating a region of interest (ROI) mask, poly2mask must
determine which pixels are included in the region. This determination
can be difficult when pixels on the edge of a region are only partially
covered by the border line. The following figure illustrates a triangular
region of interest, examining in close-up one of the vertices of the ROI.
The figure shows how pixels can be partially covered by the border of
a region-of-interest.

17-537

poly2mask

Pixels on the Edge of an ROI Are Only Partially Covered by Border

To determine which pixels are in the region, poly2mask uses the
following algorithm:

1 Divide each pixel (unit square) into a 5-by-5 grid. See “Dividing
Pixels into a 5-by-5 Subpixel Grid” on page 17-539 for an illustration.

2 Adjust the position of the vertices to be on the intersections of the
subpixel grid. See “Adjusting the Vertices to the Subpixel Grid” on
page 17-539 for an illustration.

3 Draw a path from each adjusted vertex to the next, following the
edges of the subpixel grid. See “Drawing a Path Between the
Adjusted Vertices” on page 17-540 for an illustration.

4 Determine which border pixels are inside the polygon using this rule:
if a pixel’s central subpixel is inside the boundaries defined by the

17-538

poly2mask

path between adjusted vertices, the pixel is considered inside the
polygon. See “Determing Which Pixels Are in the Region” on page
17-541 for an illustration.

Dividing Pixels into a 5-by-5 Subpixel Grid

The following figure shows the pixel that contains the vertex of the ROI
shown previously with this 5-by-5 subpixel grid.

Adjusting the Vertices to the Subpixel Grid

poly2mask adjusts each vertex of the polygon so that the vertex lies on
the subpixel grid. Note how poly2mask rounds up x and y coordinates to
find the nearest grid corner. This creates a second, modified polygon,
slightly smaller, in this case, than the original ROI. A portion is shown
in the following figure.

17-539

poly2mask

Drawing a Path Between the Adjusted Vertices

poly2mask forms a path from each adjusted vertex to the next, following
the edges of the subpixel grid. In the following figure, a portion of this
modified polygon is shown by the thick dark lines.

17-540

poly2mask

Determing Which Pixels Are in the Region

poly2mask uses the following rule to determine which border pixels are
inside the polygon: if the pixel’s central subpixel is inside the modified
polygon, the pixel is inside the region.

In the following figure, the central subpixels of pixels on the ROI border
are shaded a dark gray color. Pixels inside the polygon are shaded a
lighter gray. Note that the pixel containing the vertex is not part of the
ROI because its center pixel is not inside the modified polygon.

17-541

poly2mask

17-542

psf2otf

Purpose Convert point-spread function to optical transfer function

Syntax OTF = psf2otf(PSF)
OTF = psf2otf(PSF,OUTSIZE)

Description OTF = psf2otf(PSF) computes the fast Fourier transform (FFT) of
the point-spread function (PSF) array and creates the optical transfer
function array, OTF, that is not influenced by the PSF off-centering. By
default, the OTF array is the same size as the PSF array.

OTF = psf2otf(PSF,OUTSIZE) converts the PSF array into an OTF
array, where OUTSIZE specifies the size of the OTF array. OUTSIZE cannot
be smaller than the PSF array size in any dimension.

To ensure that the OTF is not altered because of PSF off-centering,
psf2otf postpads the PSF array (down or to the right) with 0’s to match
dimensions specified in OUTSIZE, then circularly shifts the values of the
PSF array up (or to the left) until the central pixel reaches (1,1) position.

Note that this function is used in image convolution/deconvolution when
the operations involve the FFT.

Class
Support

PSF can be any nonsparse, numeric array. OTF is of class double.

Examples PSF = fspecial('gaussian',13,1);
OTF = psf2otf(PSF,[31 31]); % PSF --> OTF
subplot(1,2,1); surf(PSF); title('PSF');
axis square; axis tight
subplot(1,2,2); surf(abs(OTF)); title('Corresponding |OTF|');
axis square; axis tight

See Also otf2psf, circshift, padarray

17-543

qtdecomp

Purpose Quadtree decomposition

Syntax S = qtdecomp(I)
S = qtdecomp(I, threshold)
S = qtdecomp(I, threshold, mindim)
S = qtdecomp(I, threshold, [mindim maxdim])
S = qtdecomp(I, fun)

Description qtdecomp divides a square image into four equal-sized square
blocks, and then tests each block to see if it meets some criterion of
homogeneity. If a block meets the criterion, it is not divided any further.
If it does not meet the criterion, it is subdivided again into four blocks,
and the test criterion is applied to those blocks. This process is repeated
iteratively until each block meets the criterion. The result can have
blocks of several different sizes.

S = qtdecomp(I) performs a quadtree decomposition on the intensity
image I and returns the quadtree structure in the sparse matrix S. If
S(k,m) is nonzero, then (k,m) is the upper left corner of a block in the
decomposition, and the size of the block is given by S(k,m). By default,
qtdecomp splits a block unless all elements in the block are equal.

S = qtdecomp(I, threshold) splits a block if the maximum value of
the block elements minus the minimum value of the block elements is
greater than threshold. threshold is specified as a value between 0
and 1, even if I is of class uint8 or uint16. If I is uint8, the threshold
value you supply is multiplied by 255 to determine the actual threshold
to use; if I is uint16, the threshold value you supply is multiplied by
65535.

S = qtdecomp(I, threshold, mindim) will not produce blocks
smaller than mindim, even if the resulting blocks do not meet the
threshold condition.

S = qtdecomp(I, threshold, [mindim maxdim]) will not produce
blocks smaller than mindim or larger than maxdim. Blocks larger
than maxdim are split even if they meet the threshold condition.
maxdim/mindim must be a power of 2.

17-544

qtdecomp

S = qtdecomp(I, fun) uses the function fun to determine whether
to split a block. qtdecomp calls fun with all the current blocks of size
m-by-m stacked into an m-by-m-by-k array, where k is the number of
m-by-m blocks. fun returns a logical k-element vector, whose values
are 1 if the corresponding block should be split, and 0 otherwise. (For
example, if k(3) is 0, the third m-by-m block should not be split.) fun
must be a function_handle.

Class
Support

For the syntax that do not include a function, the input image can be of
class logical, uint8, uint16, int16, single, or double. For the syntax
that include a function, the input image can be of any class supported
by the function. The output matrix is always of class sparse.

Remarks qtdecomp is appropriate primarily for square images whose dimensions
are a power of 2, such as 128-by-128 or 512-by-512. These images can
be divided until the blocks are as small as 1-by-1. If you use qtdecomp
with an image whose dimensions are not a power of 2, at some point the
blocks cannot be divided further. For example, if an image is 96-by-96,
it can be divided into blocks of size 48-by-48, then 24-by-24, 12-by-12,
6-by-6, and finally 3-by-3. No further division beyond 3-by-3 is possible.
To process this image, you must set mindim to 3 (or to 3 times a power
of 2); if you are using the syntax that includes a function, the function
must return 0 at the point when the block cannot be divided further.

Examples I = uint8([1 1 1 1 2 3 6 6;...
1 1 2 1 4 5 6 8;...
1 1 1 1 7 7 7 7;...
1 1 1 1 6 6 5 5;...
20 22 20 22 1 2 3 4;...
20 22 22 20 5 4 7 8;...
20 22 20 20 9 12 40 12;...
20 22 20 20 13 14 15 16]);

S = qtdecomp(I,.05);
disp(full(S));

View the block representation of quadtree decomposition.

17-545

qtdecomp

I = imread('liftingbody.png');
S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];
numblocks = length(find(S==dim));
if (numblocks > 0)

values = repmat(uint8(1),[dim dim numblocks]);
values(2:dim,2:dim,:) = 0;
blocks = qtsetblk(blocks,S,dim,values);

end
end

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;

imshow(I), figure, imshow(blocks,[])

The following figure shows the original image and a representation of
the quadtree decomposition of the image.

17-546

qtdecomp

See Also function_handle, qtgetblk, qtsetblk

17-547

qtgetblk

Purpose Block values in quadtree decomposition

Syntax [vals, r, c] = qtgetblk(I, S, dim)
[vals, idx] = qtgetblk(I, S, dim)

Description [vals, r, c] = qtgetblk(I, S, dim) returns in vals an array
containing the dim-by-dim blocks in the quadtree decomposition of I.
S is the sparse matrix returned by qtdecomp; it contains the quadtree
structure. vals is a dim-by-dim-by-k array, where k is the number of
dim-by-dim blocks in the quadtree decomposition; if there are no blocks
of the specified size, all outputs are returned as empty matrices. r and
c are vectors containing the row and column coordinates of the upper
left corners of the blocks.

[vals, idx] = qtgetblk(I, S, dim) returns in idx a vector
containing the linear indices of the upper left corners of the blocks.

Class
Support

I can be of class logical, uint8, uint16, int16, single, or double.
S is of class sparse.

Remarks The ordering of the blocks in vals matches the columnwise order of the
blocks in I. For example, if vals is 4-by-4-by-2, vals(:,:,1) contains
the values from the first 4-by-4 block in I, and vals(:,:,2) contains
the values from the second 4-by-4 block.

17-548

qtgetblk

Examples I = [1 1 1 1 2 3 6 6
1 1 2 1 4 5 6 8
1 1 1 1 10 15 7 7
1 1 1 1 20 25 7 7

20 22 20 22 1 2 3 4
20 22 22 20 5 6 7 8
20 22 20 20 9 10 11 12
22 22 20 20 13 14 15 16];

S = qtdecomp(I,5);

[vals,r,c] = qtgetblk(I,S,4)

See Also qtdecomp, qtsetblk

17-549

qtsetblk

Purpose Set block values in quadtree decomposition

Syntax J = qtsetblk(I, S, dim, vals)

Description J = qtsetblk(I, S, dim, vals) replaces each dim-by-dim block in
the quadtree decomposition of I with the corresponding dim-by-dim
block in vals. S is the sparse matrix returned by qtdecomp; it contains
the quadtree structure. vals is a dim-by-dim-by-k array, where k is the
number of dim-by-dim blocks in the quadtree decomposition.

Class
Support

I can be of class logical, uint8, uint16, int16, single, or double.
S is of class sparse.

Remarks The ordering of the blocks in vals must match the columnwise order
of the blocks in I. For example, if vals is 4-by-4-by-2, vals(:,:,1)
contains the values used to replace the first 4-by-4 block in I, and
vals(:,:,2) contains the values for the second 4-by-4 block.

Examples I = [1 1 1 1 2 3 6 6
1 1 2 1 4 5 6 8
1 1 1 1 10 15 7 7
1 1 1 1 20 25 7 7

20 22 20 22 1 2 3 4
20 22 22 20 5 6 7 8
20 22 20 20 9 10 11 12
22 22 20 20 13 14 15 16];

S = qtdecomp(I,5);

newvals = cat(3,zeros(4),ones(4));
J = qtsetblk(I,S,4,newvals)

See Also qtdecomp, qtgetblk

17-550

radon

Purpose Radon transform

Syntax R = radon(I, theta)
[R,xp] = radon(...)

Description R = radon(I, theta) returns the Radon transform R of the intensity
image I for the angle theta degrees.

The Radon transform is the projection of the image intensity along a
radial line oriented at a specific angle. If theta is a scalar, R is a column
vector containing the Radon transform for theta degrees. If theta is a
vector, R is a matrix in which each column is the Radon transform for
one of the angles in theta. If you omit theta, it defaults to 0:179.

[R,xp] = radon(...) returns a vector xp containing the radial
coordinates corresponding to each row of R.

The radial coordinates returned in xp are the values along the x’-axis,
which is oriented at theta degrees counterclockwise from the x-axis.
The origin of both axes is the center pixel of the image, which is defined
as

floor((size(I)+1)/2)

For example, in a 20-by-30 image, the center pixel is (10,15).

Class
Support

I can be of class double, logical, or any integer class. All other inputs
and outputs are of class double.

Examples iptsetpref('ImshowAxesVisible','on')
I = zeros(100,100);
I(25:75, 25:75) = 1;
theta = 0:180;
[R,xp] = radon(I,theta);
imshow(R,[],'Xdata',theta,'Ydata',xp,...

'InitialMagnification','fit')
xlabel('\theta (degrees)')
ylabel('x''')

17-551

radon

colormap(hot), colorbar

See Also fan2para, fanbeam, ifanbeam, iradon, para2fan, phantom

References Bracewell, Ronald N., Two-Dimensional Imaging, Englewood Cliffs, NJ,
Prentice Hall, 1995, pp. 505-537.

Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, pp. 42-45.

Algorithm The Radon transform of an image is the sum of the Radon transforms of
each individual pixel.

The algorithm first divides pixels in the image into four subpixels and
projects each subpixel separately, as shown in the following figure.

17-552

radon

�����

��	.����	�

$��

Each subpixel’s contribution is proportionally split into the two nearest
bins, according to the distance between the projected location and the
bin centers. If the subpixel projection hits the center point of a bin, the
bin on the axes gets the full value of the subpixel, or one-fourth the
value of the pixel. If the subpixel projection hits the border between two
bins, the subpixel value is split evenly between the bins.

17-553

rangefilt

Purpose Local range of image

Syntax J = rangefilt(I)
J = rangefilt(I, NHOOD)

Description J = rangefilt(I) returns the array J, where each output pixel
contains the range value (maximum value - minimum value) of the
3-by-3 neighborhood around the corresponding pixel in the input image
I. I can have any dimension. The output image J is the same size as
the input image I.

J = rangefilt(I, NHOOD) performs range filtering of the input
image I where you specify the neighborhood in NHOOD. NHOOD is a
multidimensional array of zeros and ones where the nonzero elements
specify the neighborhood for the range filtering operation. NHOOD's size
must be odd in each dimension.

By default, rangefilt uses the neighborhood true(3).
rangefilt determines the center element of the neighborhood by
floor((size(NHOOD) + 1)/2). For information about specifying
neighborhoods, see Notes.

Class
Support

I can be logical or numeric and must be real and nonsparse. NHOOD can
be logical or numeric and must contain zeros or ones.

The output image J is the same class as I, except for signed integer
data types. The output class for signed data types is the corresponding
unsigned integer data type. For example, if the class of I is int8, then
the class of J is uint8.

Notes rangefilt uses the morphological functions imdilate and imerode
to determine the maximum and minimum values in the specified
neighborhood. Consequently, rangefilt uses the padding behavior
of these morphological functions.

In addition, to specify neighborhoods of various shapes, such as a disk,
use the strel function to create a structuring element object and

17-554

rangefilt

then use the getnhood function to extract the neighborhood from the
structuring element object.

Examples (2-D) Identify the two flying objects by measuring the local range.

I = imread('liftingbody.png');
J = rangefilt(I);
imshow(I), figure, imshow(J);

(3-D) Quantify land cover changes in an RGB image. The example
first converts the image to L*a*b* colorspace to separate intensity
information into a single plane of the image, and then calculates the
local range in each layer.

I = imread('autumn.tif');
cform = makecform('srgb2lab');
LAB = applycform(I, cform);
rLAB = rangefilt(LAB);
imshow(I);
figure, imshow(rLAB(:,:,1),[]);
figure, imshow(rLAB(:,:,2),[]);
figure, imshow(rLAB(:,:,3),[]);

See Also entropyfilt, getnhood, imdilate, imerode, stdfilt, strel

17-555

reflect

Purpose Reflect structuring element

Syntax SE2 = reflect(SE)

Description SE2 = reflect(SE) reflects a structuring element through its center.
The effect is the same as if you rotated the structuring element’s domain
180 degrees around its center (for a 2-D structuring element). If SE is
an array of structuring element objects, then reflect(SE) reflects each
element of SE, and SE2 has the same size as SE.

Class
Support

SE and SE2 are STREL objects.

Examples se = strel([0 0 1; 0 0 0; 0 0 0])
se2 = reflect(se)
se =
Flat STREL object containing 1 neighbor.

Neighborhood:
0 0 1
0 0 0
0 0 0

se2 =
Flat STREL object containing 1 neighbor.

Neighborhood:
0 0 0
0 0 0
1 0 0

See Also strel

17-556

regionprops

Purpose Measure properties of image regions (blob analysis)

Syntax STATS = regionprops(L, properties)

Description STATS = regionprops(L, properties) measures a set of properties
for each labeled region in the label matrix L. Positive integer elements
of L correspond to different regions. For example, the set of elements of
L equal to 1 corresponds to region 1; the set of elements of L equal to 2
corresponds to region 2; and so on. The return value STATS is a structure
array of length max(L(:)). The fields of the structure array denote
different measurements for each region, as specified by properties.

properties can be a comma-separated list of strings, a cell array
containing strings, the single string 'all', or the string 'basic'. This
table lists the set of valid property strings. Property strings are case
insensitive and can be abbreviated.

'Area' 'EulerNumber' 'Orientation'

'BoundingBox' 'Extent' 'Perimeter'

'Centroid' 'Extrema' 'PixelIdxList'’

'ConvexArea' 'FilledArea' 'PixelList'

'ConvexHull' 'FilledImage' 'Solidity'

'ConvexImage' 'Image' 'SubarrayIdx'

'Eccentricity' 'MajorAxisLength'

'EquivDiameter' 'MinorAxisLength'

If properties is the string 'all', regionprops computes all the
preceding measurements. If properties is not specified or if it is the
string 'basic', regionprops computes only the 'Area', 'Centroid',
and 'BoundingBox' measurements.

Definitions 'Area' — Scalar; the actual number of pixels in the region. (This value
might differ slightly from the value returned by bwarea, which weights
different patterns of pixels differently.)

17-557

regionprops

'BoundingBox' — 1-by-ndims(L)*2 vector; the smallest rectangle
containing the region. BoundingBox is [ul_corner width], where

ul_corner is in the form [x y z ...] and specifies the upper left
corner of the bounding box

width is in the form [x_width y_width ...] and specifies
the width of the bounding box along each dimension

'Centroid' – 1-by-ndims(L) vector; the center of mass of the region.
Note that the first element of Centroid is the horizontal coordinate
(or x-coordinate) of the center of mass, and the second element is the
vertical coordinate (or y-coordinate). All other elements of Centroid
are in order of dimension.

This figure illustrates the centroid and bounding box. The region
consists of the white pixels; the green box is the bounding box, and
the red dot is the centroid.

'ConvexHull' — p-by-2 matrix; the smallest convex polygon that
can contain the region. Each row of the matrix contains the x- and
y-coordinates of one vertex of the polygon. This property is supported
only for 2-D input label matrices.

'ConvexImage' — Binary image (logical); the convex hull, with
all pixels within the hull filled in (i.e., set to on). (For pixels that the
boundary of the hull passes through, regionprops uses the same logic
as roipoly to determine whether the pixel is inside or outside the hull.)
The image is the size of the bounding box of the region. This property
is supported only for 2-D input label matrices.

'ConvexArea' — Scalar; the number of pixels in 'ConvexImage'. This
property is supported only for 2-D input label matrices.

17-558

regionprops

'Eccentricity' — Scalar; the eccentricity of the ellipse that has the
same second-moments as the region. The eccentricity is the ratio of the
distance between the foci of the ellipse and its major axis length. The
value is between 0 and 1. (0 and 1 are degenerate cases; an ellipse
whose eccentricity is 0 is actually a circle, while an ellipse whose
eccentricity is 1 is a line segment.) This property is supported only for
2-D input label matrices.

'EquivDiameter' — Scalar; the diameter of a circle with the same
area as the region. Computed as sqrt(4*Area/pi). This property is
supported only for 2-D input label matrices.

'EulerNumber' — Scalar; equal to the number of objects in the region
minus the number of holes in those objects. This property is supported
only for 2-D input label matrices.

'Extent' — Scalar; the proportion of the pixels in the bounding box
that are also in the region. Computed as the Area divided by the area
of the bounding box. This property is supported only for 2-D input
label matrices.

'Extrema' — 8-by-2 matrix; the extrema points in the region. Each
row of the matrix contains the x- and y-coordinates of one of the
points. The format of the vector is [top-left top-right right-top
right-bottom bottom-right bottom-left left-bottom left-top].
This property is supported only for 2-D input label matrices.

This figure illustrates the extrema of two different regions. In the region
on the left, each extrema point is distinct; in the region on the right,
certain extrema points (e.g., top-left and left-top) are identical.

17-559

regionprops

'FilledArea' — Scalar; the number of on pixels in FilledImage.

'FilledImage' — Binary image (logical) of the same size as the
bounding box of the region. The on pixels correspond to the region,
with all holes filled in.

'Image' — Binary image (logical) of the same size as the bounding
box of the region; the on pixels correspond to the region, and all other
pixels are off.

'MajorAxisLength' — Scalar; the length (in pixels) of the major axis of
the ellipse that has the same normalized second central moments as the
region. This property is supported only for 2-D input label matrices.

'MinorAxisLength' — Scalar; the length (in pixels) of the minor axis of
the ellipse that has the same normalized second central moments as the
region. This property is supported only for 2-D input label matrices.

'Orientation' — Scalar; the angle (in degrees) between the x-axis and
the major axis of the ellipse that has the same second-moments as the
region. This property is supported only for 2-D input label matrices.

This figure illustrates the axes and orientation of the ellipse. The
left side of the figure shows an image region and its corresponding
ellipse. The right side shows the same ellipse, with features indicated
graphically; the solid blue lines are the axes, the red dots are the foci,

17-560

regionprops

and the orientation is the angle between the horizontal dotted line and

the major axis .

'perimeter' — p-element vector containing the distance around the
boundary of each contiguous region in the image, where p is the number
of regions. regionprops computes the perimeter by calculating the
distance between each adjoining pair of pixels around the border of
the region. If the image contains discontiguous regions, regionprops
returns unexpected results. The following figure shows the pixels
included in the perimeter calculation for this object

'PixelIdxList' — p-element vector containing the linear indices of
the pixels in the region.

'PixelList' — p-by-ndims(L) matrix; the actual pixels in the region.
Each row of the matrix has the form [x y z ...] and specifies the
coordinates of one pixel in the region.

17-561

regionprops

'Solidity' -— Scalar; the proportion of the pixels in the convex hull
that are also in the region. Computed as Area/ConvexArea. This
property is supported only for 2-D input label matrices.

Class
Support

The input label matrix L can have any numeric class.

Remarks Using the Comma-Separated List Syntax

The comma-separated list syntax for structure arrays is very useful
when you work with the output of regionprops. For example, for a
field that contains a scalar, you can use this syntax to create a vector
containing the value of this field for each region in the image.

For instance, if stats is a structure array with field Area, then the
following two expressions are equivalent:

stats(1).Area, stats(2).Area, ..., stats(end).Area

and

stats.Area

Therefore, you can use these calls to create a vector containing the area
of each region in the image.

stats = regionprops(L,'Area');
allArea = [stats.Area];

allArea is a vector of the same length as the structure array stats.

Selecting Regions Based on Certain Criteria

The function ismember is useful in conjunction with regionprops
for selecting regions based on certain criteria. For example, these
commands create a binary image containing only the regions whose
area is greater than 80.

idx = find([stats.Area] > 80);

17-562

regionprops

BW2 = ismember(L,idx);

Performance Considerations

Most of the measurements take very little time to compute. The
exceptions are these, which can take significantly longer, depending on
the number of regions in L:

• 'ConvexHull'

• 'ConvexImage'

• 'ConvexArea'

• 'FilledImage'

Note that computing certain groups of measurements takes about
the same amount of time as computing just one of them because
regionprops takes advantage of intermediate computations used in
both computations. Therefore, it is fastest to compute all the desired
measurements in a single call to regionprops.

Converting a Binary Image into a Label Matrix

You must convert a binary image into a label matrix before calling
regionprops. There are two common ways to convert a binary image
into a label matrix:

• Using the bwlabel function

L = bwlabel(BW);

• Using the double function

L = double(BW);

Note, however, that these functions produce different but equally valid
label matrices from the same binary image.

For example, given the following logical matrix, BW,

17-563

regionprops

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1

bwlabel creates a label matrix containing two contiguous regions
labeled by the integer values 1 and 2.

mylabel = bwlabel(BW)

mylabel =

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 2
0 0 0 0 2 2

The double function creates a label matrix containing one discontiguous
region labeled by the integer value 1.

mylabel2 = double(BW)

mylabel2 =

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1

Because each result is legitimately desirable in certain situations,
regionprops does not attempt to perform either type of conversion
on binary images and instead requires that you convert them using
either method.

17-564

regionprops

Examples Compute the centroids of all the labelled regions in an image and then
superimpose a plot of the centroids over the original image.

bw = imread('text.png');
L = bwlabel(bw);
s = regionprops(L, 'centroid');
centroids = cat(1, s.Centroid);
imshow(bw)
hold on
plot(centroids(:,1), centroids(:,2), 'b*')
hold off

See Also bwlabel, bwlabeln, ismember, watershed

ismember (MATLAB function)

17-565

rgb2gray

Purpose Convert RGB image or colormap to grayscale

Syntax I = rgb2gray(RGB)
newmap = rgb2gray(map)

Description I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale
intensity image I. rgb2gray converts RGB images to grayscale by
eliminating the hue and saturation information while retaining the
luminance.

newmap = rgb2gray(map) returns a grayscale colormap equivalent
to map.

Note A grayscale image is also called a gray-scale, gray scale, or
gray-level image.

Class
Support

If the input is an RGB image, it can be of class uint8, uint16, single,
or double. The output image I is of the same class as the input image.
If the input is a colormap, the input and output colormaps are both
of class double.

Examples Convert an RGB image to a grayscale image.

I = imread('board.tif');
J = rgb2gray(I);
figure, imshow(I), figure, imshow(J);

Convert the colormap to a grayscale colormap.

[X,map] = imread('trees.tif');
gmap = rgb2gray(map);
figure, imshow(X,map), figure, imshow(X,gmap);

Algorithm rgb2gray converts RGB values to grayscale values by forming a
weighted sum of the R, G, and B components:

17-566

rgb2gray

0.2989 * R + 0.5870 * G + 0.1140 * B

Note that these are the same weights used by the rgb2ntsc function to
compute the Y component.

See Also ind2gray, ntsc2rgb, rgb2ind, rgb2ntsc

17-567

rgb2hsv

Purpose Convert RGB values to hue-saturation-value (HSV) color space

Note rgb2hsv is a MATLAB function.

17-568

rgb2ind

Purpose Convert RGB image to indexed image

Syntax [X,map] = rgb2ind(RGB, n)
X = rgb2ind(RGB, map)
[X,map] = rgb2ind(RGB, tol)
[...] = rgb2ind(..., dither_option)

Description rgb2ind converts RGB images to indexed images using one of three
different methods:

• Uniform quantization

• Minimum variance quantization

• Colormap approximation

For all these methods, rgb2ind also dithers the image unless you specify
'nodither' for dither_option.

[X,map] = rgb2ind(RGB, n) converts the RGB image to an indexed
image X using minimum variance quantization. map contains at most n
colors. n must be less than or equal to 65536.

X = rgb2ind(RGB, map) converts the RGB image to an indexed image
X with colormap map by matching colors in RGB with the nearest color in
the colormap map. size(map,1) must be less than or equal to 65536.

[X,map] = rgb2ind(RGB, tol) converts the RGB image to an
indexed image X using uniform quantization. map contains at most
(floor(1/tol)+1)^3 colors. tol must be between 0.0 and 1.0.

[...] = rgb2ind(..., dither_option) enables or disables
dithering. dither_option is a string that can have one of these values:

• 'dither' (default) dithers, if necessary, to achieve better color
resolution at the expense of spatial resolution.

• 'nodither' maps each color in the original image to the closest color
in the new map. No dithering is performed.

17-569

rgb2ind

Note The values in the resultant image X are indexes into the colormap
map and cannot be used in mathematical processing, such as filtering
operations.

Class
Support

The input image can be of class uint8, uint16, single, or double. If
the length of map is less than or equal to 256, the output image is of
class uint8. Otherwise, the output image is of class uint16.

Remarks If you specify tol, rgb2ind uses uniform quantization to convert the
image. This method involves cutting the RGB color cube into smaller
cubes of length tol. For example, if you specify a tol of 0.1, the edges of
the cubes are one-tenth the length of the RGB cube. The total number
of small cubes is

n = (floor(1/tol)+1)^3

Each cube represents a single color in the output image. Therefore, the
maximum length of the colormap is n. rgb2ind removes any colors that
don’t appear in the input image, so the actual colormap can be much
smaller than n.

If you specify n, rgb2ind uses minimum variance quantization. This
method involves cutting the RGB color cube into smaller boxes (not
necessarily cubes) of different sizes, depending on how the colors are
distributed in the image. If the input image actually uses fewer colors
than the number you specify, the output colormap is also smaller.

If you specify map, rgb2ind uses colormap mapping, which involves
finding the colors in map that best match the colors in the RGB image.

Examples RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
imshow(X,map)

17-570

rgb2ind

See Also cmunique, dither, imapprox, ind2rgb, rgb2gray

17-571

rgb2ntsc

Purpose Convert RGB color values to NTSC color space

Syntax yiqmap = rgb2ntsc(rgbmap)
YIQ = rgb2ntsc(RGB)

Description yiqmap = rgb2ntsc(rgbmap) converts the m-by-3 RGB values in
rgbmap to NTSC color space. yiqmap is an m-by-3 matrix that contains
the NTSC luminance (Y) and chrominance (I and Q) color components
as columns that are equivalent to the colors in the RGB colormap.

YIQ = rgb2ntsc(RGB) converts the truecolor image RGB to the
equivalent NTSC image YIQ.

Remarks In the NTSC color space, the luminance is the grayscale signal used
to display pictures on monochrome (black and white) televisions. The
other components carry the hue and saturation information.

rgb2ntsc defines the NTSC components using

Class
Support

RGB can be of class uint8, uint16, int16, single, or double. RGBMAP
can be double. The output is double.

See Also ntsc2rgb, rgb2ind, ind2rgb, ind2gray

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-572

rgb2ycbcr

Purpose Convert RGB color values to YCbCr color space

Syntax ycbcrmap = rgb2ycbcr(map)
YCBCR = rgb2ycbcr(RGB)

Description ycbcrmap = rgb2ycbcr(map) converts the RGB values in map to the
YCbCr color space. map must be an M-by-3 array. ycbcrmap is an M-by-3
matrix that contains the YCbCr luminance (Y) and chrominance (Cb
and Cr) color values as columns. Each row in ycbcfmap represents the
equivalent color to the corresponding row in the RGB colormap, map.

YCBCR = rgb2ycbcr(RGB) converts the truecolor image RGB to the
equivalent image in the YCbCr color space. RGB must be a M-by-N-by-3
array.

If the input is uint8, YCBCR is uint8, where Y is in the range [16 235],
and Cb and Cr are in the range [16 240]. If the input is a double, Y is in
the range [16/255 235/255] and Cb and Cr are in the range [16/255
240/255]. If the input is uint16, Y is in the range [4112 60395] and
Cb and Cr are in the range [4112 61680].

Class
Support

If the input is an RGB image, it can be of class uint8, uint16, or
double. If the input is a colormap, it must be double. The output image
is of the same class as the input image.

Examples Convert RGB image to YCbCr.

RGB = imread('board.tif');
YCBCR = rgb2ycbcr(RGB);

Convert RGB color space to YCbCr.

map = jet(256);
newmap = rgb2ycbcr(map);

See Also ntsc2rgb, rgb2ntsc, ycbcr2rgb

17-573

rgb2ycbcr

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

References [1] Poynton, C. A.A Technical Introduction to Digital Video, John Wiley
& Sons, Inc., 1996, p. 175.

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital
Television for Standard 4:3 and Wide-screen 16:9 Aspect Ratios,
(1982-1986-1990-1992-1994-1995), Section 3.5.

17-574

rgbplot

Purpose Plot colormap

Note rgbplot is a MATLAB function.

17-575

roicolor

Purpose Select region of interest (ROI) based on color

Syntax BW = roicolor(A,low,high)
BW = roicolor(A,v)

Description roicolor selects a region of interest (ROI) within an indexed or
intensity image and returns a binary image. (You can use the returned
image as a mask for masked filtering using roifilt2.)

BW = roicolor(A,low,high) returns an ROI selected as those pixels
that lie within the colormap range [low high].

BW = (A >= low) & (A <= high)

BW is a binary image with 0’s outside the region of interest and 1’s inside.

BW = roicolor(A,v) returns an ROI selected as those pixels in A that
match the values in vector v. BW is a binary image with 1’s where the
values of A match the values of v.

Class
Support

The input image A must be numeric. The output image BW is of class
logical.

Examples I = imread('rice.png');
BW = roicolor(I,128,255);
imshow(I);
figure, imshow(BW)

17-576

roicolor

See Also roifilt2, roipoly

For more information about ROIs, see Chapter 12, “ROI-Based
Processing”.

17-577

roifill

Purpose Fill in specified region of interest (ROI) polygon in grayscale image

Syntax J = roifill(I, c, r)
J = roifill(I)
J = roifill(I, BW)
[J,BW] = roifill(...)
J = roifill(x, y, I, xi, yi)
[x, y, J, BW, xi, yi] = roifill(...)

Description roifill fills in a specified region of interest (ROI) polygon in a
grayscale image. roifill smoothly interpolates inward from the pixel
values on the boundary of the polygon by solving Laplace’s equation.
roifill can be used, for example, to erase small objects in an image.

J = roifill(I, c, r) fills in the polygon specified by c and r, which
are equal-length vectors containing the row-column coordinates of
the pixels on vertices of the polygon. The kth vertex is the pixel
(r(k),c(k)).

J = roifill(I) displays the image I on the screen and lets you specify
the region of interest (ROI) polygon using the mouse. If you omit I,
roifill operates on the image in the current axes. Use normal button
clicks to add vertices to the polygon. Pressing Backspace or Delete
removes the previously selected vertex. A shift-click, right-click, or
double-click adds a final vertex to the selection and then starts the fill;
pressing Return finishes the selection without adding a vertex.

J = roifill(I, BW) uses BW (a binary image the same size as I)
as a mask. roifill fills in the regions in I corresponding to the
nonzero pixels in BW. If there are multiple regions, roifill performs
the interpolation on each region independently.

[J,BW] = roifill(...) returns the binary mask used to determine
which pixels in I get filled. BW is a binary image the same size as I
with 1’s for pixels corresponding to the interpolated region of I and 0’s
elsewhere.

J = roifill(x, y, I, xi, yi) uses the vectors x and y to establish
a nondefault spatial coordinate system. xi and yi are equal-length

17-578

roifill

vectors that specify polygon vertices as locations in this coordinate
system.

[x, y, J, BW, xi, yi] = roifill(...) returns the XData and
YData in x and y, the output image in J, the mask image in BW, and
the polygon coordinates in xi and yi. xi and yi are empty if the
roifill(I,BW) form is used.

If roifill is called with no output arguments, the resulting image is
displayed in a new figure.

Class
Support

The input image I can of class uint8, uint16, int16, single, or double.
The input binary mask BW can be any numeric class or logical. The
output binary mask BW is always logical. The output image J is of the
same class as I. All other inputs and outputs are of class double.

Examples I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure, imshow(J)

See Also roifilt2, roipoly

For more information about ROIs, see Chapter 12, “ROI-Based
Processing”.

17-579

roifilt2

Purpose Filter region of interest (ROI) in image

Syntax J = roifilt2(h, I, BW)
J = roifilt2(I, BW, fun)

Description J = roifilt2(h, I, BW) filters the data in I with the two-dimensional
linear filter h. BW is a binary image the same size as I that defines
an ROI used as a mask for filtering. roifilt2 returns an image that
consists of filtered values for pixels in locations where BW contains 1’s,
and unfiltered values for pixels in locations where BW contains 0’s. For
this syntax, roifilt2 calls filter2 to implement the filter.

J = roifilt2(I, BW, fun) processes the data in I using the function
fun. The result J contains computed values for pixels in locations where
BW contains 1’s, and the actual values in I for pixels in locations where
BW contains 0’s.

fun must be a function handle.

Class
Support

For the syntax that includes a filter h, the input image can be logical or
numeric, and the output array J has the same class as the input image.
For the syntax that includes a function, I can be of any class supported
by fun, and the class of J depends on the class of the output from fun.

Examples This example continues the roipoly example, filtering the region of the
image I specified by the mask BW. The roifilt2 function returns the
filtered image J, shown in the following figure.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
H = fspecial('unsharp');
J = roifilt2(H,I,BW);
figure, imshow(I), figure, imshow(J)

17-580

roifilt2

See Also imfilter, filter2, function_handle, roipoly

For more information about ROIs, see Chapter 12, “ROI-Based
Processing”.

17-581

roipoly

Purpose Specify polygonal region of interest (ROI)

Syntax BW = roipoly(I, c, r)
BW = roipoly(I)
BW = roipoly(x, y, I, xi, yi)
[BW, xi, yi] = roipoly(...)
[x, y, BW, xi, yi] = roipoly(...)

Description Use roipoly to specify a polygonal region of interest (ROI) within an
image. roipoly returns a binary image that you can use as a mask
for masked filtering.

BW = roipoly(I, c, r) returns the ROI selected by the polygon
described by vectors c and r. BW is a binary image the same size as I
with 0’s outside the region of interest and 1’s inside.

BW = roipoly(I) displays the image I on the screen and lets you
specify the polygon using the mouse. If you omit I, roipoly operates on
the image in the current axes. Use normal button clicks to add vertices
to the polygon. Pressing Backspace or Delete removes the previously
selected vertex. A shift-click, right-click, or double-click adds a final
vertex to the selection and then starts the fill; pressing Return finishes
the selection without adding a vertex.

BW = roipoly(x, y, I, xi, yi) uses the vectors x and y to establish
a nondefault spatial coordinate system. xi and yi are equal-length
vectors that specify polygon vertices as locations in this coordinate
system.

[BW, xi, yi] = roipoly(...) returns the polygon coordinates in
xi and yi. Note that roipoly always produces a closed polygon. If
the points specified describe a closed polygon (i.e., if the last pair of
coordinates is identical to the first pair), the length of xi and yi is
equal to the number of points specified. If the points specified do not
describe a closed polygon, roipoly adds a final point having the same
coordinates as the first point. (In this case the length of xi and yi is one
greater than the number of points specified.)

17-582

roipoly

[x, y, BW, xi, yi] = roipoly(...) returns the XData and YData in
x and y, the mask image in BW, and the polygon coordinates in xi and yi.

If roipoly is called with no output arguments, the resulting image is
displayed in a new figure.

Class
Support

The input image I can be of class uint8, uint16, int16, single, or
double. The output image BW is of class logical. All other inputs and
outputs are of class double.

Remarks For any of the roipoly syntax, you can replace the input image I with
two arguments, m and n, that specify the row and column dimensions of
an arbitrary image. For example, these commands create a 100-by-200
binary mask.

c = [112 112 79 79];
r = [37 66 66 37];
BW = roipoly(100,200,c,r);

If you specify m and n with an interactive form of roipoly, an m-by-n
black image is displayed, and you use the mouse to specify a polygon
within this image.

Examples Use roipoly to create a mask image, BW, the same size as the input
image, I. The example in roifilt2 continues this example, filtering
the specified region in the image.

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
BW = roipoly(I,c,r);
imshow(I)
figure, imshow(BW)

17-583

roipoly

See Also roifilt2, roicolor, roifill, poly2mask

For more information about ROIs, see Chapter 12, “ROI-Based
Processing”.

17-584

std2

Purpose Standard deviation of matrix elements

Syntax b = std2(A)

Description b = std2(A) computes the standard deviation of the values in A.

Class
Support

A can be numeric or logical. B is a scalar of class double.

Algorithm std2 computes the standard deviation of the array A using std(A(:)).

See Also corr2, mean2

std, mean in the MATLAB Function Reference

17-585

stdfilt

Purpose Local standard deviation of image

Syntax J = stdfilt(I)
J = stdfilt(I, NHOOD)

Description J = stdfilt(I) returns the array J, where each output pixel
contains the standard deviation of the 3-by-3 neighborhood around the
corresponding pixel in the input image I. I can have any dimension.
The output image J is the same size as the input image I.

For pixels on the borders of I, stdfilt uses symmetric padding. In
symmetric padding, the values of padding pixels are a mirror reflection
of the border pixels in I.

J = stdfilt(I, NHOOD) calculates the local standard deviation of the
input image I, where you specify the neighborhood in NHOOD. NHOOD is a
multidimensional array of zeros and ones where the nonzero elements
specify the neighbors. NHOOD's size must be odd in each dimension.

By default, stdfilt uses the neighborhood ones(3). stdfilt
determines the center element of the neighborhood by
floor((size(NHOOD) + 1)/2).

Class
Support

I can be logical or numeric and must be real and nonsparse. NHOOD
can be logical or numeric and must contain zeros and/or ones. J is of
class double.

Notes To specify neighborhoods of various shapes, such as a disk, use the
strel function to create a structuring element object and then use the
getnhood function to extract the neighborhood from the structuring
element object.

Examples I = imread('circuit.tif');
J = stdfilt(I);
imshow(I);
figure, imshow(J,[]);

See also entropyfilt, getnhood, rangefilt, std2, strel

17-586

strel

Purpose Create morphological structuring element (STREL)

Syntax SE = strel(shape, parameters)
SE = strel('arbitrary', NHOOD)
SE = strel('arbitrary', NHOOD, HEIGHT)
SE = strel('diamond', R)
SE = strel('disk', R, N)
SE = strel('line', LEN, DEG)
SE = strel('octagon', R)
SE = strel('pair', OFFSET)
SE = strel('periodicline', P, V)
SE = strel('rectangle', MN)
SE = strel('square', W)

Description SE = strel(shape, parameters) creates a structuring element, SE, of
the type specified by shape. This table lists all the supported shapes.
Depending on shape, strel can take additional parameters. See the
syntax descriptions that follow for details about creating each type of
structuring element.

Flat Structuring Elements

'arbitrary' 'pair'

'diamond' 'periodicline'

'disk' 'rectangle'

'line' 'square'

'octagon'

Nonflat Structuring Elements

'arbitrary' 'ball'

SE = strel('arbitrary', NHOOD) creates a flat structuring element
where NHOOD specifies the neighborhood. NHOOD is a matrix containing
1’s and 0’s; the location of the 1’s defines the neighborhood for the

17-587

strel

morphological operation. The center (or origin) of NHOOD is its center
element, given by floor((size(NHOOD)+1)/2). You can omit the
'arbitrary' string and just use strel(NHOOD).

SE = strel('arbitrary', NHOOD, HEIGHT) creates a nonflat
structuring element, where NHOOD specifies the neighborhood. HEIGHT is
a matrix the same size as NHOOD containing the height values associated
with each nonzero element of NHOOD. The HEIGHT matrix must be real
and finite valued. You can omit the 'arbitrary' string and just use
strel(NHOOD,HEIGHT).

SE = strel('ball', R, H, N) creates a nonflat, ball-shaped
structuring element (actually an ellipsoid) whose radius in the X-Y
plane is R and whose height is H. Note that R must be a nonnegative
integer, H must be a real scalar, and N must be an even nonnegative
integer. When N is greater than 0, the ball-shaped structuring element
is approximated by a sequence of N nonflat, line-shaped structuring
elements. When N equals 0, no approximation is used, and the
structuring element members consist of all pixels whose centers are no
greater than R away from the origin. The corresponding height values
are determined from the formula of the ellipsoid specified by R and H. If
N is not specified, the default value is 8.

Note Morphological operations run much faster when the structuring
element uses approximations (N > 0) than when it does not (N = 0).

SE = strel('diamond', R) creates a flat, diamond-shaped structuring
element, where R specifies the distance from the structuring element
origin to the points of the diamond. R must be a nonnegative integer
scalar.

17-588

strel

SE = strel('disk', R, N) creates a flat, disk-shaped structuring
element, where R specifies the radius. R must be a nonnegative integer.
N must be 0, 4, 6, or 8. When N is greater than 0, the disk-shaped
structuring element is approximated by a sequence of N periodic-line
structuring elements. When N equals 0, no approximation is used, and
the structuring element members consist of all pixels whose centers are
no greater than R away from the origin. If N is not specified, the default
value is 4.

Note Morphological operations run much faster when the structuring
element uses approximations (N > 0) than when it does not (N = 0).
However, structuring elements that do not use approximations (N =
0) are not suitable for computing granulometries. Sometimes it is
necessary for strel to use two extra line structuring elements in the
approximation, in which case the number of decomposed structuring
elements used is N + 2.

17-589

strel

SE = strel('line', LEN, DEG) creates a flat, linear structuring
element, where LEN specifies the length, and DEG specifies the angle
(in degrees) of the line, as measured in a counterclockwise direction
from the horizontal axis. LEN is approximately the distance between the
centers of the structuring element members at opposite ends of the line.

SE = strel('octagon', R) creates a flat, octagonal structuring
element, where R specifies the distance from the structuring element
origin to the sides of the octagon, as measured along the horizontal and
vertical axes. R must be a nonnegative multiple of 3.

SE = strel('pair', OFFSET) creates a flat structuring element
containing two members. One member is located at the origin. The
second member’s location is specified by the vector OFFSET. OFFSET must
be a two-element vector of integers.

17-590

strel

SE = strel('periodicline', P, V) creates a flat structuring
element containing 2*P+1 members. V is a two-element
vector containing integer-valued row and column offsets. One
structuring element member is located at the origin. The other
members are located at 1*V, -1*V, 2*V, -2*V, ..., P*V, -P*V.

SE = strel('rectangle', MN) creates a flat, rectangle-shaped
structuring element, where MN specifies the size. MN must be a
two-element vector of nonnegative integers. The first element of MN is
the number of rows in the structuring element neighborhood; the second
element is the number of columns.

17-591

strel

SE = strel('square', W) creates a square structuring element
whose width is W pixels. W must be a nonnegative integer scalar.

Notes For all shapes except 'arbitrary', structuring elements are constructed
using a family of techniques known collectively as structuring element
decomposition. The principle is that dilation by some large structuring
elements can be computed faster by dilation with a sequence of smaller
structuring elements. For example, dilation by an 11-by-11 square
structuring element can be accomplished by dilating first with a 1-by-11
structuring element and then with an 11-by-1 structuring element.
This results in a theoretical performance improvement of a factor of 5.5,
although in practice the actual performance improvement is somewhat
less. Structuring element decompositions used for the 'disk' and
'ball' shapes are approximations; all other decompositions are exact.

Methods This table lists the methods supported by the STREL object.

Method Description

getheight Get height of structuring element

getneighbors Get structuring element neighbor locations and
heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring
elements

isflat Return true for flat structuring element

reflect Reflect structuring element

translate Translate structuring element

17-592

strel

Examples se1 = strel('square',11) % 11-by-11 square
se2 = strel('line',10,45) % length 10, angle 45 degrees
se3 = strel('disk',15) % disk, radius 15
se4 = strel('ball',15,5) % ball, radius 15, height 5

Algorithm The method used to decompose diamond-shaped structuring elements
is known as "logarithmic decomposition" [1].

The method used to decompose disk structuring elements is based
on the technique called "radial decomposition using periodic
lines" [2], [3]. For details, see the MakeDiskStrel subfunction in
toolbox/images/images/@strel/strel.m.

The method used to decompose ball structuring elements is the
technique called "radial decomposition of sphere" [2].

See Also imdilate, imerode

References [1] van den Boomgard, Rein, and Richard van Balen, "Methods for Fast
Morphological Image Transforms Using Bitmapped Images," Computer
Vision, Graphics, and Image Processing: Graphical Models and Image
Processing, Vol. 54, No. 3, May 1992, pp. 252-254.

[2] Adams, Rolf, "Radial Decomposition of Discs and Spheres,"
Computer Vision, Graphics, and Image Processing: Graphical Models
and Image Processing, Vol. 55, No. 5, September 1993, pp. 325-332.

[3] Jones, Ronald, and Pierre Soille, "Periodic lines: Definition,
cascades, and application to granulometrie," Pattern Recognition
Letters, Vol. 17, 1996, pp. 1057-1063.

17-593

stretchlim

Purpose Find limits to contrast stretch image

Syntax LOW_HIGH = stretchlim(I)
LOW_HIGH = stretchlim(I, TOL)
LOW_HIGH = stretchlim(RGB, TOL)

Description LOW_HIGH = stretchlim(I) returns LOW_HIGH, a two-element vector
of pixel values that specify lower and upper limits that can be used for
contrast stretching image I. By default, values in LOW_HIGH specify the
bottom 1% and the top 1% of all pixel values. The gray values returned
can be used by the imadjust function to increase the contrast of an
image.

LOW_HIGH = stretchlim(I, TOL) where TOL is a two-element vector
[LOW_FRACT HIGH_FRACT] that specifies the fraction of the image to
saturate at low and high pixel values.

If TOL is a scalar, LOW_FRACT = TOL, and HIGH_FRACT = 1 -
LOW_FRACT, which saturates equal fractions at low and high pixel values.

If you omit the argument, TOL defaults to [0.01 0.99], saturating 2%.

If TOL = 0, LOW_HIGH = [min(I(:)); max(I(:))].

LOW_HIGH = stretchlim(RGB, TOL) returns a 2-by-3 matrix of
intensity pairs to saturate each plane of the RGB image. TOL specifies
the same fractions of saturation for each plane.

Note If TOL is too big, such that no pixels would be left after saturating
low and high pixel values, stretchlim returns [0 1].

Class
Support

The input image can be of class uint8, uint16, int16, double, or
single. The output limits returned, LOW_HIGH, are of class double and
have values between 0 and 1.

17-594

stretchlim

Examples I = imread('pout.tif');
J = imadjust(I,stretchlim(I),[]);
imshow(I), figure, imshow(J)

See Also brighten, histeq, imadjust

17-595

subimage

Purpose Display multiple images in single figure

Syntax subimage(X, map)
subimage(I)
subimage(BW)
subimage(RGB)
subimage(x, y...)
h = subimage(...)

Description You can use subimage in conjunction with subplot to create figures
with multiple images, even if the images have different colormaps.
subimage works by converting images to truecolor for display purposes,
thus avoiding colormap conflicts.

subimage(X, map) displays the indexed image X with colormap map
in the current axes.

subimage(I) displays the intensity image I in the current axes.

subimage(BW) displays the binary image BW in the current axes.

subimage(RGB) displays the truecolor image RGB in the current axes.

subimage(x, y...) displays an image using a nondefault spatial
coordinate system.

h = subimage(...) returns a handle to an image object.

Class
Support

The input image can be of class logical, uint8, uint16, or double.

Examples load trees
[X2,map2] = imread('forest.tif');
subplot(1,2,1), subimage(X,map)
subplot(1,2,2), subimage(X2,map2)

See Also imshow

subplot in the MATLAB Function Reference

17-596

tformarray

Purpose Apply spatial transformation to N-D array

Syntax B = tformarray(A, T, R, TDIMS_A, TDIMS_B, TSIZE_B, TMAP_B, F)

Description B = tformarray(A, T, R, TDIMS_A, TDIMS_B, TSIZE_B, TMAP_B,
F) applies a spatial transformation to array A to produce array B.
The tformarray function is like imtransform, but is intended for
problems involving higher-dimensioned arrays or mixed input/output
dimensionality, or requiring greater user control or customization.
(Anything that can be accomplished with imtransform can be
accomplished with a combination of maketform, makeresampler,
findbounds, and tformarray; but for many tasks involving 2-D images,
imtransform is simpler.)

This table provides a brief description of all the input arguments. See
the following section for more detail about each argument. (Click an
argument in the table to move to the appropriate section.)

Argument Description

A Input array or image

T Spatial transformation structure, called a TFORM,
typically created with maketform

R Resampler structure, typically created with
makeresampler

TDIMS_A Row vector listing the input transform dimensions

TDIMS_B Row vector listing the output transform dimensions

TSIZE_B Output array size in the transform dimensions

TMAP_B Array of point locations in output space; can be used as
an alternative way to specify a spatial transformation

F Array of fill values

A can be any nonsparse numeric array, and can be real or complex.

17-597

tformarray

T is a TFORM structure that defines a particular spatial transformation.
For each location in the output transform subscript space (as defined by
TDIMS_B and TSIZE_B), tformarray uses T and the function tforminv
to compute the corresponding location in the input transform subscript
space (as defined by TDIMS_A and size(A)).

If T is empty, tformarray operates as a direct resampling function,
applying the resampler defined in R to compute values at each
transform space location defined in TMAP_B (if TMAP_B is nonempty), or
at each location in the output transform subscript grid.

R is a structure that defines how to interpolate values of the input
array at specified locations. R is usually created with makeresampler,
which allows fine control over how to interpolate along each dimension,
as well as what input array values to use when interpolating close to
the edge of the array.

TDIMS_A and TDIMS_B indicate which dimensions of the input and
output arrays are involved in the spatial transformation. Each element
must be unique, and must be a positive integer. The entries need not be
listed in increasing order, but the order matters. It specifies the precise
correspondence between dimensions of arrays A and B and the input
and output spaces of the transformer T. length(TDIMS_A) must equal
T.ndims_in, and length(TDIMS_B) must equal T.ndims_out.

For example, if T is a 2-D transformation, TDIMS_A = [2 1], and
TDIMS_B = [1 2], then the column dimension and row dimension
of A correspond to the first and second transformation input-space
dimensions, respectively. The row and column dimensions of B
correspond to the first and second output-space dimensions, respectively.

TSIZE_B specifies the size of the array B along the output-space
transform dimensions. Note that the size of B along nontransform
dimensions is taken directly from the size of A along those dimensions.
If, for example, T is a 2-D transformation, size(A) = [480 640 3 10],
TDIMS_B is [2 1], and TSIZE_B is [300 200], then size(B) is [200
300 3].

TMAP_B is an optional array that provides an alternative way of
specifying the correspondence between the position of elements of B

17-598

tformarray

and the location in output transform space. TMAP_B can be used, for
example, to compute the result of an image warp at a set of arbitrary
locations in output space. If TMAP_B is not empty, then the size of
TMAP_B takes the form

[D1 D2 D3 ... DN L]

where N equals length(TDIMS_B). The vector [D1 D2 ... DN] is used
in place of TSIZE_B. If TMAP_B is not empty, then TSIZE_B should be [].

The value of L depends on whether or not T is empty. If T is not empty,
then L is T.ndims_out, and each L-dimension point in TMAP_B is
transformed to an input-space location using T. If T is empty, then L
is length(TDIMS_A), and each L-dimensional point in TMAP_B is used
directly as a location in input space.

F is a double-precision array containing fill values. The fill values in F
can be used in three situations:

• When a separable resampler is created with makeresampler and its
padmethod is set to either 'fill' or 'bound'.

• When a custom resampler is used that supports the 'fill'
or 'bound' pad methods (with behavior that is specific to the
customization).

• When the map from the transform dimensions of B to the transform
dimensions of A is deliberately undefined for some points. Such
points are encoded in the input transform space by NaNs in either
TMAP_B or in the output of TFORMINV.

In the first two cases, fill values are used to compute values for output
locations that map outside or near the edges of the input array. Fill
values are copied into B when output locations map well outside the
input array. See makeresampler for more information about 'fill'
and 'bound'.

F can be a scalar (including NaN), in which case its value is replicated
across all the nontransform dimensions. F can also be a nonscalar, whose
size depends on size(A) in the nontransform dimensions. Specifically,

17-599

tformarray

if K is the Jth nontransform dimension of A, then size(F,J) must
be either size(A,K) or 1. As a convenience to the user, tformarray
replicates F across any dimensions with unit size such that after the
replication size(F,J) equals size(A,K).

For example, suppose A represents 10 RGB images and has size
200-by-200-by-3-by-10, T is a 2-D transformation, and TDIMS_A and
TDIMS_B are both [1 2]. In other words, tformarray will apply the same
2-D transform to each color plane of each of the 10 RGB images. In this
situation you have several options for F:

• F can be a scalar, in which case the same fill value is used for each
color plane of all 10 images.

• F can be a 3-by-1 vector, [R G B]'. Then R, G, and B are used as the
fill values for the corresponding color planes of each of the 10 images.
This can be interpreted as specifying an RGB fill color, with the same
color used for all 10 images.

• F can be a 1-by-10 vector. This can be interpreted as specifying a
different fill value for each of 10 images, with that fill value being
used for all three color planes.

• F can be a 3-by-10 matrix, which can be interpreted as supplying a
different RGB fill color for each of the 10 images.

Class
Support

A can be any nonsparse numeric array, and can be real or complex. It
can also be of class logical.

Examples Create a 2-by-2 checkerboard image where each square is 20 pixels
wide, then transform it with a projective transformation. Use a pad
method of 'circular’ when creating a resampler, so that the output
appears to be a perspective view of an infinite checkerboard. Swap the
output dimensions. Specify a 100-by-100 output image. Leave TMAP_B
empty, since TSIZE_B is specified. Leave the fill value empty, since it
won’t be needed.

I = checkerboard(20,1,1);
figure; imshow(I)

17-600

tformarray

T = maketform('projective',[1 1; 41 1; 41 41; 1 41],...
[5 5; 40 5; 35 30; -10 30]);

R = makeresampler('cubic','circular');
J = tformarray(I,T,R,[1 2],[2 1],[100 100],[],[]);
figure; imshow(J)

See Also findbounds, imtransform, makeresampler, maketform

17-601

tformfwd

Purpose Apply forward spatial transformation

Syntax [X, Y] = tformfwd(T, U, V)
[X1, X2, X3,...] = tformfwd(T, U1, U2, U3,...)
X = tformfwd(T, U)
X = tformfwd(T, U)
[X1, X2, X3,...] = tformfwd(T, U)
X = tformfwd(T, U1, U2, U3,...)
X = tformfwd(U,T)

Description [X, Y] = tformfwd(T, U, V) applies the 2D-to-2D spatial
transformation defined in T to coordinate arrays U and V, mapping the
point [U(k) V(k)] to the point [X(k) Y(k)].

T is a TFORM struct created with maketform, fliptform, or cp2tform.
Both T.ndims_in and T.ndims_out must equal 2. U and V are typically
column vectors matching in length. In general, U and V can have any
dimensionality, but must have the same size. In any case, X and Y will
have the same size as U and V.

[X1, X2, X3,...] = tformfwd(T, U1, U2, U3,...) applies the
ndims_in-to-ndims_out spatial transformation defined in TFORM
structure T to the coordinate arrays U1,U2,...,UNDIMS_IN (where
NDIMS_IN = T.ndims_in and NDIMS_OUT = T.ndims_out). The number
of output arguments must equal NDIMS_OUT. The transformation maps
the point

[U1(k) U2(k) ... UNDIMS_IN(k)]

to the point

[X1(k) X2(k) ... XNDIMS_OUT(k)].

U1,U2,U3,... can have any dimensionality, but must be the same size.

X1,X2,X3,... must have this size also.

X = tformfwd(T, U) applies the ndims_in-to-ndims_out spatial
transformation defined in TFORM structure T to each row of U, where

17-602

tformfwd

U is an M-by-NDIMS_IN matrix. It maps the point U(k,:) to the point
X(k,:). X is an M-by-NDIMS_OUT matrix.

X = tformfwd(T, U), where U is an (N+1)-dimensional array, maps
the point U(k1,k2,...,kN,:) to the point X(k1,k2,...,kN,:).
size(U,N+1) must equal NDIMS_IN. X is an (N+1)-dimensional array,
with size(X,I) equal to size(U,I) for I = 1,...,N and size(X,N+1)
equal to NDIMS_OUT.

[X1, X2, X3,...] = tformfwd(T, U) maps an (N+1)-dimensional
array to NDIMS_OUT equally sized N-dimensional arrays.

X = tformfwd(T, U1, U2, U3,...) maps NDIMS_IN N-dimensional
arrays to one (N+1)-dimensional array.

Note X = tformfwd(U,T) is an older form of the two-argument syntax that
remains supported for backward compatibility.

Examples Create an affine transformation that maps the triangle with vertices
(0,0), (6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tformfwd. Results should equal
[x, y]

[xm, ym] = tformfwd(tform, u, v)

See Also cp2tform, fliptform, maketform, tforminv

17-603

tforminv

Purpose Apply inverse spatial transformation

Syntax [U,V] = tforminv(T,X,Y)
[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...)
U = tforminv(T,X)
U = tforminv(T,X),
[U1,U2,U3,...] = tforminv(T,X)
U = tforminv(T,X1,X2,X3,...)

Description [U,V] = tforminv(T,X,Y) applies the 2D-to-2D inverse transformation
defined in TFORM structure T to coordinate arrays X and Y, mapping
the point [X(k) Y(k)] to the point [U(k) V(k)]. Both T.ndims_in
and T.ndims_out must equal 2. X and Y are typically column vectors
matching in length. In general, X and Y can have any dimensionality,
but must have the same size. In any case, U and V will have the same
size as X and Y.

[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...) applies the
NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM
structure T to the coordinate arrays X1,X2,...,XNDIMS_OUT (where
NDIMS_IN = T.ndims_in and NDIMS_OUT = T.ndims_out). The number
of output arguments must equal NDIMS_IN. The transformation maps
the point

[X1(k) X2(k) ... XNDIMS_OUT(k)]

to the point

[U1(k) U2(k) ... UNDIMS_IN(k)].

X1,X2,X3,... can have any dimensionality, but must be the same size.

U1,U2,U3,... have this size also.

U = tforminv(T,X) applies the NDIMS_OUT-to-NDIMS_IN inverse
transformation defined in TFORM structure T to each row of X, where
X is an M-by-NDIMS_OUT matrix. It maps the point X(k,:) to the point
U(k,:). U is an M-by-NDIMS_IN matrix.

17-604

tforminv

U = tforminv(T,X), where X is an (N+1)-dimensional array, maps
the point X(k1,k2,...,kN,:) to the point U(k1,k2,...,kN,:).
size(X,N+1) must equal NDIMS_OUT. U is an (N+1)-dimensional array,
with size(U,I) equal to size(X,I) for I = 1,...,N and size(U,N+1)
equal to NDIMS_IN.

[U1,U2,U3,...] = tforminv(T,X) maps an (N+1)-dimensional array
to NDIMS_IN equally-sized N-dimensional arrays.

U = tforminv(T,X1,X2,X3,...) maps NDIMS_OUT N-dimensional
arrays to one (N+1)-dimensional array.

Note U = tforminv(X,T) is an older form of the two-argument syntax that
remains supported for backward compatibility.

Examples Create an affine transformation that maps the triangle with vertices
(0,0), (6,3), (-2,5) to the triangle with vertices (-1,-1), (0,-10), (4,4).

u = [0 6 -2]';
v = [0 3 5]';
x = [-1 0 4]';
y = [-1 -10 4]';
tform = maketform('affine',[u v],[x y]);

Validate the mapping by applying tforminv. Results should equal
[u, v].

[um, vm] = tforminv(tform, x, y)

See Also cp2tform, tforminv, maketform, fliptform

17-605

translate

Purpose Translate structuring element (STREL)

Syntax SE2 = translate(SE,V)

Description SE2 = translate(SE,V) translates the structuring element SE in N-D
space. SE is an array of structuring elements, created using the strel
function.

V is an N-element vector that specifies the offsets of the desired
translation in each dimension, relative to the structuring element’s
origin. If you specify an array, translate reshapes the array into a
vector.

SE2 is an array of structuring elements the same size as SE. Each
individual structuring element in SE2 is the translation of the
corresponding structuring element in SE.

Class
Support

SE and SE2 are STREL objects; V is a vector of doubles that must contain
only integers.

Examples Translate a 3-by-3 structuring element.

se = strel(ones(3))

se2 = translate(se,[-2 -2])

The following figure shows the original structuring element and the
translated structuring element.

17-606

translate

Dilating with a translated version of strel(1) is a way to translate an
input image in space by an integer number of pixels. This example
translates the cameraman.tif image down and to the right by 25 pixels.

I = imread('cameraman.tif');
se = translate(strel(1), [25 25]);
J = imdilate(I,se);
imshow(I), title('Original')
figure, imshow(J), title('Translated');

See Also strel, reflect

17-607

truesize

Purpose Adjust display size of image

Syntax truesize(fig,[mrows mcols])

Description truesize(fig,[mrows mcols]) adjusts the display size of an image.
fig is a figure containing a single image or a single image with a
colorbar. [MROWS MCOLS] is a 1-by-2 vector that specifies the requested
screen area (in pixels) that the image should occupy.

truesize(fig) uses the image height and width for [MROWS MCOLS].
This results in the display having one screen pixel for each image pixel.

If you do not specify a figure, truesize uses the current figure.

Examples Fit image to figure window.

imshow(checkerboard,'InitialMagnification','fit')

Resize image and figure to show image at its 80-by-80 pixel size.

truesize

See Also imshow, iptsetpref, iptgetpref

17-608

uint16

Purpose Convert data to unsigned 16-bit integers

Note uint16 is a MATLAB built-in function.

17-609

uint8

Purpose Convert data to unsigned 8-bit integers

Note uint8 is a MATLAB built-in function.

17-610

uintlut

Purpose Compute new values of A based on lookup table (LUT)

Syntax B = uintlut(A,LUT)

Note uintlut is an obsolete version of intlut and may be removed
in a future version of the toolbox.

Class
Support

A must be uint8 or uint16. If A is uint8, then LUT must be a uint8
vector with 256 elements. If A is uint16, then LUT must be a uint16
vector with 65536 elements. B has the same size and class as A.

Examples A = uint8([1 2 3 4; 5 6 7 8;9 10 11 12]);
LUT = repmat(uint8([0 150 200 255]),1,64);
B = uintlut(A,LUT);
imshow(A), figure, imshow(B);

See Also impixel, improfile

17-611

warp

Purpose Display image as texture-mapped surface

Syntax warp(X,map)
warp(I,n)
warp(BW)
warp(RGB)
warp(z,...)
warp(x,y,z...)
h = warp(...)

Description warp(X,map) displays the indexed image X with colormap map as a
texture map on a simple rectangular surface.

warp(I,n) displays the intensity image I with grayscale colormap of
length n as a texture map on a simple rectangular surface.

warp(BW) displays the binary image BW as a texture map on a simple
rectangular surface.

warp(RGB) displays the RGB image in the array RGB as a texture map
on a simple rectangular surface.

warp(z,...) displays the image on the surface z.

warp(x,y,z...) displays the image on the surface (x,y,z).

h = warp(...) returns a handle to a texture-mapped surface.

Class
Support

The input image can be of class logical, uint8, uint16, or double.

Remarks Texture-mapped surfaces are generally rendered more slowly than
images.

Examples Map an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpat1.png');
warp(x,y,z,I);

17-612

warp

See Also imshow

image, imagesc, surf in the MATLAB Function Reference

17-613

watershed

Purpose Watershed transform

Syntax L = watershed(A)
L = watershed(A, conn)

Description L = watershed(A) computes a label matrix identifying the watershed
regions of the input matrix A, which can have any dimension. The
elements of L are integer values greater than or equal to 0. The
elements labeled 0 do not belong to a unique watershed region. These
are called watershed pixels. The elements labeled 1 belong to the
first watershed region, the elements labeled 2 belong to the second
watershed region, and so on.

By default, watershed uses 8-connected neighborhoods for 2-D
inputs and 26-connected neighborhoods for 3-D inputs. For
higher dimensions, watershed uses the connectivity given by
conndef(ndims(A),'maximal').

L = watershed(A, conn) specifies the connectivity to be used in the
watershed computation. conn can have any of the following scalar
values.

Value Meaning

Two-dimensional connectivities

4 4-connected neighborhood

8 8-connected neighborhood

Three-dimensional connectivities

6 6-connected neighborhood

18 18-connected neighborhood

26 26-connected neighborhood

Connectivity can be defined in a more general way for any dimension by
using for conn a 3-by-3-by- ...-by-3 matrix of 0’s and 1’s. The 1-valued

17-614

watershed

elements define neighborhood locations relative to the center element of
conn. Note that conn must be symmetric about its center element.

Remarks

The watershed transform algorithm used by this function changed in
version 5.4 (R2007a) of the Image Processing Toolbox. The previous
algorithm occasionally produced labeled watershed basins that were
not contiguous. If you need to obtain the same results as the previous
algorithm, use the function watershed_old.

Class
Support

A can be a numeric or logical array of any dimension, and it must be
nonsparse. The output array L is of class double.

Examples 2-D Example

1 Make a binary image containing two overlapping circular objects.

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw,'InitialMagnification','fit'), title('bw')

2 Compute the distance transform of the complement of the binary
image.

D = bwdist(~bw);
figure, imshow(D,[],'InitialMagnification','fit')
title('Distance transform of ~bw')

3 Complement the distance transform, and force pixels that don’t
belong to the objects to be at -Inf.

17-615

watershed

D = -D;
D(~bw) = -Inf;

4 Compute the watershed transform and display the resulting label
matrix as an RGB images.

L = watershed(D);
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure, imshow(rgb,'InitialMagnification','fit')
title('Watershed transform of D')

3-D Example

1 Make a 3-D binary image containing two overlapping spheres.

center1 = -10;
center2 = -center1;
dist = sqrt(3*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y,z] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2 + ...

(z-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2 + ...

(z-center2).^2) <= radius;
bw = bw1 | bw2;
figure, isosurface(x,y,z,bw,0.5), axis equal, title('BW')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

2 Compute the distance transform.

D = bwdist(~bw);
figure, isosurface(x,y,z,D,radius/2), axis equal
title('Isosurface of distance transform')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)

17-616

watershed

view(3), camlight, lighting gouraud

3 Complement the distance transform, force nonobject pixels to be
-Inf, and then compute the watershed transform.

D = -D;
D(~bw) = -Inf;
L = watershed(D);
figure, isosurface(x,y,z,L==2,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud
figure, isosurface(x,y,z,L==3,0.5), axis equal
title('Segmented object')
xlabel x, ylabel y, zlabel z
xlim(lims), ylim(lims), zlim(lims)
view(3), camlight, lighting gouraud

Algorithm watershed uses the Fernand Meyer algorithm [1].

See Also bwlabel, bwlabeln, bwdist, regionprops

Reference [1] Meyer, Fernand, "Topographic distance and watershed lines,” Signal
Processing , Vol. 38, July 1994, pp. 113-125.

17-617

whitepoint

Purpose XYZ color values of standard illuminants

Syntax xyz = whitepoint(string)
xyz = whitepoint

Description xyz = whitepoint(string) returns xyz, a three-element row vector of
values scaled so that Y = 1. string specifies the white reference

illuminant. The following table lists all the possible values for string.
The default value is enclosed in braces ({}).

Value Description

'a' CIE standard illuminant A

'c' CIE standard illuminant C

'd50' CIE standard illuminant D50

'd55' CIE standard illuminant D55

'd65' CIE standard illuminant D65

{'icc'} ICC standard profile connection space illuminant; a
16-bit fractional approximation of D50

xyz = whitepoint is the same as xyz = whitepoint('icc').

Class
Support

string is a character array. xyz is of class double.

Examples Return the XYZ color space representation of the default white
reference illuminant 'icc'.

wp_icc = whitepoint

wp_icc =

0.9642 1.0000 0.8249

17-618

whitepoint

See Also applycform, lab2double, lab2uint8, lab2uint16, makecform,
xyz2double, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-619

wiener2

Purpose 2-D adaptive noise-removal filtering

Syntax J = wiener2(I, [m n], noise)
[J, noise] = wiener2(I, [m n])

Description wiener2 lowpass-filters a grayscale image that has been degraded
by constant power additive noise. wiener2 uses a pixelwise adaptive
Wiener method based on statistics estimated from a local neighborhood
of each pixel.

J = wiener2(I, [m n], noise) filters the image I using pixelwise
adaptive Wiener filtering, using neighborhoods of size m-by-n to estimate
the local image mean and standard deviation. If you omit the [m n]
argument, m and n default to 3. The additive noise (Gaussian white
noise) power is assumed to be noise.

[J, noise] = wiener2(I, [m n]) also estimates the additive noise
power before doing the filtering. wiener2 returns this estimate in noise.

Class
Support

The input image I is a two-dimensional image of class uint8, uint16,
int16, single, or double. The output image J is of the same size and
class as I.

Examples For an example, see “Using Adaptive Filtering” on page 11-50.

Algorithm wiener2 estimates the local mean and variance around each pixel,

where is the N-by-M local neighborhood of each pixel in the image A.
wiener2 then creates a pixelwise Wiener filter using these estimates,

17-620

wiener2

where ν2 is the noise variance. If the noise variance is not given,
wiener2 uses the average of all the local estimated variances.

See Also filter2, medfilt2

Reference Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood
Cliffs, NJ, Prentice Hall, 1990, p. 548, equations 9.44 -- 9.46.

17-621

xyz2double

Purpose Convert XYZ color values to double

Syntax xyxd = xyz2double(XYZ)

Description xyxd = xyz2double(XYZ) converts an M-by-3 or M-by-N-by-3 array of
XYZ color values to double. xyzd has the same size as XYZ.

The Image Processing Toolbox follows the convention that
double-precision XYZ arrays contain 1931 CIE XYZ values. XYZ arrays
that are uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing XYZ values as
unsigned 16-bit integers. There is no standard representation of XYZ
values as unsigned 8-bit integers. The ICC encoding convention is
illustrated by this table.

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535

Class
Support

xyz is a uint16 or double array that must be real and nonsparse. xyzd
is of class double.

Examples Convert uint16-encoded XYZ values to double.

xyz2double(uint16([100 32768 65535]))
ans =

3.0518e-003 1.0000e+000 2.0000e+000

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform,
whitepoint, xyz2uint16

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-622

xyz2uint16

Purpose Convert XYZ color values to uint16

Syntax xyz16 = xyz2uint16(xyz)

Description xyz16 = xyz2uint16(xyz) converts an M-by-3 or M-by-N-by-3 array of
XYZ color values to uint16. xyz16 has the same size as xyz.

The Image Processing Toolbox follows the convention that
double-precision XYZ arrays contain 1931 CIE XYZ values. XYZ arrays
that are uint16 follow the convention in the ICC profile specification
(ICC.1:2001-4, www.color.org) for representing XYZ values as
unsigned 16-bit integers. There is no standard representation of XYZ
values as unsigned 8-bit integers. The ICC encoding convention is
illustrated by this table.

Value (X, Y, or Z) uint16 Value

0.0 0

1.0 32768

1.0 + (32767/32768) 65535

Class
Support

xyz is a uint16 or double array that must be real and nonsparse.
xyz16 is uint8.

Examples Convert XYZ values to uint16 encoding.

xyz2uint16([0.1 0.5 1.0])
ans =

3277 16384 32768

See Also applycform, lab2double, lab2uint16, lab2uint8, makecform,
whitepoint, xyz2double

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

17-623

ycbcr2rgb

Purpose Convert YCbCr color values to RGB color space

Syntax rgbmap = ycbcr2rgb(ycbcrmap)
RGB = ycbcr2rgb(YCBCR)

Description rgbmap = ycbcr2rgb(ycbcrmap) converts the YCbCr values in the
colormap ycbcrmap to the RGB color space. If ycbcrmap is M-by-3 and
contains the YCbCr luminance (Y) and chrominance (Cb and Cr) color
values as columns, rgbmap is returned as an M-by-3 matrix that contains
the red, green, and blue values equivalent to those colors.

RGB = ycbcr2rgb(YCBCR) converts the YCbCr image YCBCR to the
equivalent truecolor image RGB.

Class
Support

If the input is a YCbCr image, it can be of class uint8, uint16, or
double. The output image is of the same class as the input image. If
the input is a colormap, the input and output colormaps are both of
class double.

Remarks The YUV color space used by many video devices is similar, but not
identical, to the YCbCr color space. If you need to convert YUV data to
the RGB color space, try the ycbcr2rgb function.

Examples Convert image from RGB space to YCbCr space and back.

rgb = imread('board.tif');
ycbcr = rgb2ycbcr(rgb);
rgb2 = ycbcr2rgb(ycbcr);

See Also ntsc2rgb, rgb2ntsc, rgb2ycbcr

For a full list of the toolbox color space conversion functions, see “Color
Space Conversions” on page 16-21.

References [1] Poynton, C. A.A Technical Introduction to Digital Video, John Wiley
& Sons, Inc., 1996, p. 175.

17-624

ycbcr2rgb

[2] Rec. ITU-R BT.601-5, Studio Encoding Parameters of Digital
Television for Standard 4:3 and Wide-screen 16:9 Aspect Ratios,
(1982-1986-1990-1992-1994-1995), Section 3.5.

17-625

zoom

Purpose Zoom in and out on image

zoom is a MATLAB function.

17-626

A

Examples

Use this list to find examples in the documentation.

A Examples

Introductory Examples
“Example 1 — Some Basic Concepts” on page 1-4
“Example 2 — Advanced Topics” on page 1-10
“Reading Image Data” on page 3-3

Image Display
“Displaying Indexed Images” on page 4-51
“Displaying Grayscale Images” on page 4-52
“Displaying Binary Images” on page 4-54
“Displaying Truecolor Images” on page 4-56
“Special Display Techniques” on page 4-58

Modular Tools
“Example: Embedding the Pixel Region Tool in an Existing Figure” on
page 5-13
“Example: Building a Pixel Information GUI” on page 5-17
“Example: Building a Navigation GUI for Large Images” on page 5-23
“Example: Building an Image Comparison Tool” on page 5-26

Morphology Examples
“Creating a Structuring Element” on page 10-7
“Dilating an Image” on page 10-10
“Eroding an Image” on page 10-11
“Combining Dilation and Erosion” on page 10-13
“Filling Holes” on page 10-26
“Finding Peaks and Valleys” on page 10-27
“Viewing a Label Matrix” on page 10-41
“Selecting Objects in a Binary Image” on page 10-42
“Finding the Area of the Foreground of a Binary Image” on page 10-42

A-2

Image Analysis

“Finding the Euler Number of a Binary Image” on page 10-43

Image Analysis
“Detecting Edges” on page 11-11
“Using Quadtree Decomposition” on page 11-21

Image Enhancement
“Adjusting Intensity Values to a Specified Range” on page 11-35
“Contrast-Limited Adaptive Histogram Equalization” on page 11-41
“Decorrelation Stretching” on page 11-42
“Noise Removal” on page 11-47
“Using Median Filtering” on page 11-48
“Using Adaptive Filtering” on page 11-50

Working with Regions of Interest
“Selecting a Polygonal ROI Interactively” on page 12-2
“Filtering an ROI” on page 12-6

Working with Color
“Determining Screen Bit Depth” on page 14-2
“Reducing the Number of Colors in an Image” on page 14-5
“Reducing Colors in an Indexed Image” on page 14-11
“Dithering” on page 14-12
“Example: Performing a Color Space Conversion” on page 14-16
“Example: Performing a Profile-Based Conversion” on page 14-20

A-3

A Examples

A-4

Index

Index1-bit image files 3-6
16-bit image files

creating 3-7
reading 3-3

24-bit image files 2-11
4-bit image files 3-5
8-bit image files

creating 3-7
reading 3-3

A
adapthisteq 17-2

increasing contrast 11-42
using 11-41

adaptive filters 11-50
Adjust Contrast tool

creating 5-2
overview 4-36
using 4-40
using the dropper button 4-39

affine transformations
definition 17-84
using imtransform 6-9

aliasing
definition 6-4

alpha channel 14-3
analyze75info 17-6
analyze75read 17-8
analyzing images

edge detection 17-134
intensity profiles 17-378
pixel values 17-357
quadtree decomposition 17-544

antialiasing 6-4
applycform 17-10
applylut 17-12
approximation

in indexed images 14-11
of an image background 1-11

of colors 14-5
area

of binary images 10-42
of image regions 11-10

arrays
storing images 2-2

averaging filter
creating 17-166
example 8-5

axes2pix 17-15

B
background

of an grayscale image 1-11
basicimageinfo 17-269
bestblk 17-16
binary images 2-8

applying a lookup table 17-12
calculating the Euler number 10-43
changing the display colors of 4-54
constructing lookup tables 17-495
displaying 4-54
feature measurement 10-40
flood fill operation 10-24
image area 10-42
labeling connected components 17-41
labeling connected components

labeling 10-40
lookup table operations 10-44
morphological operations 10-3
object selection 17-58
perimeter determination 10-17
selecting objects in 10-42
using neighborhood operations 17-12

binary masks
creating 12-2

bit depth
1-bit images 3-6
screen bit depth 14-2

Index-1

Index

blind deconvolution algorithm
used for deblurring 13-16

blkproc 17-17
block processing 15-2

block size 17-16
column processing 15-12
distinct blocks 15-8
padding borders in block processing 15-5
sliding neighborhoods 15-4
using nlfilter 17-514

border padding
in block processing 15-5

border replication
in image processing 8-10

borders
controlling in figure window 4-7

boundary padding. See border padding
boundary ringing

in image deblurring 13-24
boundary tracing 11-13
bounding box

finding for a region 11-10
brightness

adjusting interactively 4-36
adjusting the window/level 4-43

brightness adjustment 11-36
bwarea 17-15 17-21

using 10-42
bwareaopen 17-23
bwboundaries 17-26
bwdist 17-31

using 10-37
bweuler 17-37
bwhitmiss 17-39
bwlabel 17-41
bwlabeln 17-44
bwmorph 17-47

skeletonization example 10-16
bwpack 17-53
bwperim 17-56

bwselect 17-58
bwtraceboundary 17-60

using 11-14
bwulterode 17-63
bwunpack 17-65

C
camera read-out noise 13-11
Canny edge detector 17-134

using the edge function 11-11
center of mass

calculating for region 11-10
center pixel

calculating 15-5
in sliding neighborhood operations 15-4

checkerboard 17-66
Choose Colormap tool

using 4-13
chrominance

in CIE color spaces 14-15
in NTSC color space 14-22
in YCbCr color space 14-23

CIE color spaces 14-14
CIELAB color space 14-14
closing 17-47

morphology 10-13
cmpermute 17-68
cmunique 17-69
col2im 17-72
colfilt 17-73
color

approximation 14-6
dithering 14-12
quantization 14-6
quantization performed by rgb2ind 17-570
reducing number of colors 14-5

color approximation
performed by rgb2ind 17-570

color cube

Index-2

Index

description of 14-6
quantization of 14-7

color planes
of an HSV image 14-25
of an RGB image 2-13
slice of color cube 14-8

color reduction 14-5
color spaces

converting among 14-14
converting between 17-517 17-572
data encodings 14-17
device-independent color spaces 14-15
HSV 14-24
NTSC 14-22 17-517 17-572
YCbCr 14-23
YIQ 14-22

colorbars
adding 4-58

colorcube 14-11
colormap mapping 14-10
colormaps

brightening 17-20
choosing in Image Tool 4-13
creating a colormap using colorcube 14-11
darkening 17-20
rearranging colors in 17-68
removing duplicate entries in 17-69

column processing 17-73
in neighborhood operations 15-12
reshaping columns into blocks 17-72

composite transformations 6-9
conformal transformations 17-84
conndef 17-77
connected components

labeling 10-40
using bwlabel 17-41

connectivity
overview 10-22
specifying custom 10-24

constant component. See zero-frequency
component

contour plots
text labels 11-8

contrast
adjusting interactively 4-36
adjusting the window/level 4-43

contrast adjustment
decreasing contrast 11-36
increasing contrast 11-34
specifying limits automatically 11-37

contrast stretching 11-34
understanding 4-45
with decorrelation stretching 11-45
See also contrast adjustment

contrast-limited adaptive histogram equalization
(CLAHE) 11-41

Control Point Selection Tool
changing view of images 7-15
saving a session 7-27
saving control points 7-26
specifying control points 7-20
starting 7-15
using 7-13
using point prediction 7-23

control points
prediction 7-23
saving 7-26
selecting 7-13
specifying 7-20

conv2
compared to imfilter 8-13

conversions between image types 2-15
convmtx2 17-80
convn

compared to imfilter 8-13
convolution

convolution matrix 17-80
definition 8-2
Fourier transform and 9-12

Index-3

Index

two-dimensional 8-2
using sliding neighborhood operations 15-6
with imfilter 8-7

convolution kernel
definition 8-2

coordinate systems
pixel coordinates 2-3
spatial coordinates 2-4

corr2 17-82
calculating summary statistics 11-10

correlation
definition 8-4
Fourier transform 9-13
with imfilter 8-7

correlation coefficient 17-82
correlation kernel

definition 8-4
cp2tform 17-83

using 7-12
cpcorr 17-92

example 7-29
cpselect 17-94

using 7-7
cpstruct2pairs 17-98
cropping an image 6-7
cross-correlation

improving control point selection 7-29

D
damping

for noise reduction 13-10
data types

converting between 3-7
double-precision (double) 3-7
in image filtering 8-6

DC component. See zero-frequency component
dct2 17-99

equations 9-16
dctmtx 17-102

using 9-18
deblurring

avoiding boundary ringing 13-24
conceptual model 13-2
overview 13-2
overview of functions 13-4
use of frequency domain 13-23
using the blind deconvolution

algorithm 13-16
using the Lucy-Richardson algorithm 13-10
with regularized filter 13-8
with the Wiener filter 13-6

decomposition of structuring elements
example 10-8
getting sequence 17-194

deconvblind 17-103
example 13-16

deconvlucy 17-106
example 13-10

deconvreg 17-109
example 13-8

deconvwnr 17-111
example 13-6

decorrelation stretching 11-42
See also contrast adjustment

decorrstretch 17-114
detail rectangle

getting position of 4-20
in Control Point Selection Tool 7-15
specifying color in Image Tool 4-20

DICOM files
reading and writing 3-9

DICOM unique identifier
generating 3-15

dicomanon 17-115
dicomdict 17-117
dicominfo 17-118
dicomlookup 17-120
dicomread 17-121
dicomuid 17-123

Index-4

Index

dicomwrite 17-124
Digital Imaging and Communications in

Medicine. See DICOM files
dilation 10-3

grayscale 17-518
discrete cosine transform 9-16

image compression 9-18
transform matrix 9-18 17-102

discrete Fourier transform 9-8
disk filter 17-166
display depth 14-2

See also screen color resolution
display range

getting information about 4-26
Display Range tool

creating 5-2
in Image Tool 4-26
overview 4-24

display techniques
displaying images at true size 17-608
multiple images 17-596

displaying images
adding a colorbar 4-58
binary 4-54
binary images with different colors 4-54
comparison of functions 4-3
controlling figure window 4-7
grayscale images 4-52
indexed images 4-51
initial size 4-6
multiple images 4-47
multiple images in figure 4-48
special techniques 4-58
texture mapping 4-62
toolbox preferences for 4-65
truecolor 4-56
unconventional ranges of data 4-52
using imshow 4-5
using the Image Tool 4-9

distance

between pixels 4-31
Euclidean 4-31

Distance tool
creating 5-3

distance transform 10-37
distinct block operations 15-8

overlap 15-10
zero padding 15-8

distortion operator 13-2
dither 17-130
dithering 14-12

example 14-12
dropper button

in Adjust Contrast tool 4-39

E
edge 17-133

example 11-12
edge detection 11-11

Canny method 11-11
example 11-12
methods 17-134
Sobel method 11-12

edgetaper 17-140
avoiding boundary ringing 13-24

enhancing images
decorrelation stretching 11-42
intensity adjustment 11-35
noise removal 11-47

entropy 17-141
entropyfilt 17-142
erosion 10-3

grayscale 17-518
Euclidean distance 4-31 17-533
Euler number

calculating 10-43
exploring images

using Image Tool 4-18
exporting data

Index-5

Index

in Image Tool 4-16
eye dropper button

in Adjust Contrast tool 4-39

F
fan-beam projection data

arc geometry 9-37
computing 9-36
line geometry 9-38
reconstructing image from 9-39

fan2para 17-144
fanbeam 17-149

using 9-36
fast Fourier transform 9-8

zero padding 9-10
See also Fourier transform

feature measurement 1-19
area 11-10
binary images 10-40
bounding box 11-10
center of mass 11-10

fft 9-8
fft2 9-8

example 9-9
using 9-11

fftn 9-8
fftshift

example 8-17
using 9-11

figure
controlling borders 4-7

files
displaying images from disk 4-5

filling a region 12-9
filling holes in images 10-26
filter design 8-15

frequency sampling method 8-18 17-163
frequency transformation method 8-16

17-172

windowing method 8-19 17-179
filter2

compared to imfilter 8-13
example 11-49

filtering
a region 12-6
masked filtering 12-6

filters
adaptive 11-50
averaging 17-166
binary masks 12-6
computing frequency response 9-11
designing 8-15
disk 17-166
finite impulse response (FIR) 8-16
frequency response 8-22
Gaussian 17-166
imfilter 8-5
Infinite Impulse Response (IIR) 8-16
Laplacian 17-166
linear 8-2
Log 17-166
median 11-48 17-508
motion 17-166
multidimensional 8-12
order-statistic 17-518
Prewitt 17-166
Sobel 17-166
unsharp 17-166
unsharp masking 8-13

findbounds 17-158
FIR filters 8-16

transforming from one-dimensional to
two-dimensional 8-16

flat-field correction 13-11
fliptform 17-159
flood-fill operation 10-24
Fourier transform 9-3

applications of the Fourier transform 9-11
centering the zero-frequency coefficient 9-11

Index-6

Index

computing frequency response 9-11
convolution and 9-12
correlation 9-13
DFT coefficients 9-9
examples of transform on simple shapes 9-6
fast convolution with 9-12
for performing correlation 9-13
frequency domain 9-3
increasing resolution 9-10
padding before computation 9-10
two-dimensional 9-3
zero-frequency component 9-3

freqspace 8-21
example 8-18

frequency domain 9-3
frequency response

computing 8-22 17-161
desired response matrix 8-21
of linear filters 9-11

frequency sampling method (filter design) 8-18
using fsamp2 17-163

frequency transformation method (filter
design) 8-16
using ftrans2 17-172

freqz
example 8-17

freqz2 17-161
computing frequency response of linear

filters 9-11
example 8-18

fsamp2 17-163
example 8-18

fspecial 17-166
creating predefined filters 8-13

ftrans2 17-172
example 8-17

fwind1 17-175
example 8-20

fwind2 17-179
example 8-19

G
gamma correction 11-37
Gaussian convolution kernel

frequency response of 9-11
Gaussian filter 17-166
Gaussian noise 11-50

adding 17-348
geocoded images 7-5
geometric operations

cropping 6-7
resizing 6-2

georegistered images 7-5
getheight 17-183
getimage 17-184

example 4-6
using with Image Tool 4-16

getimagemodel 17-187
getline 17-188
getneighbors 17-189
getnhood 17-190
getpts 17-191
getrangefromclass 17-192
getrect 17-193
getsequence 17-194
graphical user interfaces (GUIs)

building 5-2
graphics card 14-4
graphics file formats

converting from one format to another 3-8
writing data 3-5

gray2ind 17-196
grayscale images

displaying 4-52
flood-fill operation 10-24

grayscale morphological operations 17-518
grayslice 17-206
graythresh 17-208

thresholding image values 1-15

Index-7

Index

H
histeq 17-209

example 11-40
increase contrast example 11-39

histogram equalization 11-39 17-209
histograms 11-9
holes

filling 10-24
tracing boundaries 11-13

hough 17-214
using 11-19

houghlines 17-216
using 11-20

houghpeaks 17-219
using 11-19

HSV color space 14-24
color planes of 14-25

hsv2rgb 14-24
hue

in HSV color space 14-24
in NTSC color space 14-22

I
ICC profiles

processing 14-18
iccfind 17-222
iccread 17-224
iccroot 17-228
iccwrite 17-229
idct2 17-231
ifanbeam 17-233

using 9-39
ifft 9-8
ifft2 9-8
ifftn 9-8
IIR filters 8-16
im2bw 17-240
im2col 17-242
im2double 17-244

im2int16 17-245 17-248
im2java2d 17-247
im2single 17-248
im2uint16 17-249
im2uint8 17-250
imabsdiff 17-251
imadd 17-253
imadjust 17-255

brightening example 11-36
example 11-35
gamma correction and 11-37
gamma correction example 11-38
increase contrast example 11-35
setting limits automatically 11-37

image analysis
contour plots 11-7
edge detection 11-11
histograms 11-9
intensity profiles 11-3
overview 11-11
pixel values 11-2
quadtree decomposition 11-21
summary statistics 11-10

image arithmetic
combining functions 2-26
overview 2-25
truncation rules 2-25

image display
special techniques 4-58

image editing 12-9
image filtering

data types 8-6
unsharp masking 8-13
with imfilter 8-5

Image Information tool
creating 5-3
using 4-34

image metadata
viewing 4-34

image properties

Index-8

Index

set by imshow 4-4
image registration

fine-tuning point placement 7-29
overview 7-2
procedure 7-2
selecting control points 7-13
specifying control point pairs 7-20
types of transformations 7-12
using control point prediction 7-23

image rotation 6-5
specifying interpolation method 6-5
specifying size of output image 6-5

Image Tool
choosing a colormap 4-13
closing 4-17
compared to imshow 4-3
controlling initial magnification 4-12
exploring images 4-18
exporting data 4-16
importing data 4-15
opening 4-11
overview 4-9
panning images 4-21
printing 4-17
specifying image magnification 4-22
using the Pixel Region tool 4-24
zoom tools 4-22

image transformations
affine 17-84
custom 6-9
local weighted mean 17-85
piecewise linear 17-85
polynomial 17-85
projective 17-84
supported by cp2tform 7-12
types of 17-84
using imtransform 6-9

image types 2-7
binary 2-8
converting 2-15

grayscale 2-10
indexed 2-8
multiframe images 2-19
supported by the toolbox 2-7
truecolor 2-11
See also binary images, grayscale images,

indexed images, multiframe images,
truecolor images

imageinfo 17-258
imagemodel 17-261
images

adjusting contrast 4-36
analyzing 11-2
arithmetic operations 2-25
brightness control 4-36
causes of blurring 13-2
creating movies 17-345
data types 3-7
displaying multiple images 4-47 17-596
displaying multiple images in figure 4-48
feature measurement 1-19
filling holes in 10-26
finding image minima and maxima 10-27
getting data from axes 17-184
getting information about 4-34
getting information about display range 4-26
how MATLAB stores 2-2
image types 2-7
improving contrast 1-14
printing 4-63
reducing number of colors 14-5
registering 7-2
restoring blurred images 13-2
returning information about 3-2
statistical analysis of 1-21
using imshow 4-5
viewing as a surface plot 1-12
viewing metadata 4-34

imapprox 17-267
example 14-11

Index-9

Index

imbothat 17-272
imclearborder 17-274
imclose 17-277

using 10-13
imcomplement 17-279
imcontour 17-281

example 11-8
imcontrast 17-283
imcrop 17-285

example 6-7
imdilate 17-288
imdisplayrange 17-292
imdistline 17-294 17-369
imdivide 17-301
imerode 17-303

closure example 10-14
imextendedmax 17-306

example 10-31
imextendedmin 17-308
imfill 17-310

example 10-26
imfilter 17-314

compared to other filtering functions 8-13
convolution option 8-7
correlation option 8-7
padding options 8-8
using 8-5

imfinfo 3-2
example 3-6

imgca 17-319
imgcf 17-321
imgetfile 17-322
imhandles 17-323
imhist 17-324

creating a histogram 11-9
imhmax 17-326
imhmin 17-328
imimposemin 17-331
imlincomb 17-335

example 2-26

imline 17-338
immagbox 17-343
immovie 17-345

example 4-61
immultiply 17-346
imnoise 17-348

example 11-50
salt & pepper example 11-49

imopen 17-351
using 10-13

imoverview 17-353
imoverviewpanel 17-356
impixel 17-357

example 11-2
impixelinfo 17-360
impixelinfoval 17-363
impixelregion 17-365
impixelregionpanel 17-368
importing data

in Image Tool 4-15
impositionrect 17-374 17-385
improfile 17-378

example 11-5
grayscale example 11-4

imread 3-3
example for multiframe image 3-4

imreconstruct 17-383
example 10-19

imregionalmax 17-390
imregionalmin 17-393
imresize 17-396

using 6-2
imrotate 17-400

specifying interpolation method 6-5
specifying size of output image 6-5
using 6-5

imscrollpanel 17-402
imshow 17-408

compared to Image Tool 4-3
displaying images 4-5

Index-10

Index

displaying unconventional range data 4-53
example for binary images 4-54
example for grayscale images 4-52
example for truecolor images 4-56
used with indexed images 4-51

imsubtract 17-413
imtool 17-415

compared to imshow 4-3
displaying unconventional range data 4-53
example for binary images 4-54
example for grayscale images 4-52
example for truecolor images 4-56
overview 4-9
used with indexed images 4-51

imtophat 17-420
imtransform 17-423

using 6-9
imview 17-430
imwrite

example 3-6
ind2gray 17-432
ind2rgb 17-434
indexed images 2-8

converting from intensity 17-196
converting from RGB 17-569
displaying 4-51
reducing number of colors in 14-11

infinite impulse response (IIR) filter 8-16
Intel Performance Primitives Library 17-438
intensity adjustment 11-35

gamma correction 11-37
histogram equalization 11-39
specifying limits automatically 11-37
See also contrast adjustment

intensity images
converting from matrices 17-506
converting from RGB 17-566
converting to indexed 17-196
. See grayscale images

intensity profiles 11-3 17-378
interfileinfo 17-435
interfileread 17-436
interpolation

intensity profiles 11-3
within a region of interest 12-9

intlut 17-437
inverse Radon transform 9-29

example 9-34
filtered backprojection algorithm 9-31

ippl 17-438
iptaddcallback 17-440
iptcheckconn 17-441
iptcheckhandle 17-442
iptcheckinput 17-444
iptcheckmap 17-446
iptchecknargin 17-447
iptcheckstrs 17-448
iptcondir 17-454
iptdemos 17-450
iptgetapi 17-451
iptGetPointerBehavior 17-452
iptgetpref 17-453

using 4-65
iptnum2ordinal 17-455
iptPointerManager 17-456
iptremovecallback 17-457
iptSetPointerBehavior 17-458
iptsetpref 17-462

using 4-66
iptwindowalign 17-466
iradon 9-29 17-468

example 9-29
isbw 17-472
isflat 17-473
isgray 17-474
isicc 17-475
isind 17-477
isrgb 17-478

Index-11

Index

J
JPEG compression

discrete cosine transform and 9-18

L
lab2double 17-479
lab2uint16 17-481
lab2uint8 17-483
label matrix

creating 10-40
viewing as pseudocolor image 10-41

label2rgb 17-485
labeling

connected components 10-40
levels of contours 11-8

Laplacian filter 17-166
Laplacian of Gaussian edge detector 17-134
line detection 9-25
line segment

pixel values along 11-3
linear conformal transformations 17-84
linear filtering 8-2

convolution 8-2
filter design 8-15
FIR filters 8-16
IIR filters 8-16
noise removal and 11-47
using sliding neighborhood operations 15-6

local weighted mean transformations 17-85
Log filters 17-166
lookup tables

constructing 17-495
using 10-44

Lucy-Richardson algorithm
used for deblurring 13-10

luminance
in NTSC color space 14-22
in YCbCr color space 14-23

M
magnification

specifying in Image Tool 4-22
specifying initial value in Image Tool 4-12

Magnification box
creating 5-3

magnifying. See resizing images
makecform 17-488
makeConstrainToRectFcn 17-494
makelut 17-495
makeresampler 17-497
maketform 17-502
marker image

creating 10-34
definition 10-18

mask image
definition 10-18

masked filtering 12-6
mat2gray 17-506
matrices

converting to intensity images 17-506
storing images in 2-2

maxima
finding in images 10-29
imposing 10-33
suppressing 10-31

McClellan transform 17-172
mean2 11-10 17-507
medfilt2 17-508

example 11-50
using 11-48

median filtering 11-48 17-508
metadata

viewing 4-34
minima

finding in images 10-29
imposing 10-33
suppressing 10-31

minimum variance quantization 14-9
modular tools

Index-12

Index

connecting 5-25
creating your own 5-31
embedding in existing figures 5-12
navigation aids 5-19
overview 5-2
positioning in a GUI 5-15
specifying parent of 5-12
using 5-6
utility functions 5-31

moir\x8e patterns 6-4
montage 17-510

example 4-60
morphological operations 10-3

closing 17-47
diagonal fill 17-48
dilation 10-3
erosion 10-3
grayscale 17-518
opening 10-13
overview 10-1
predefined operations 10-15
shrinking objects 17-50
skeletonization 10-16

morphological reconstruction
finding peaks and valleys 10-27
overview 10-18

morphology 10-18
See also morphological reconstruction

motion filters 17-166
movies

creating from images 4-61 17-345
playing 4-61

multidimensional filters 8-12
multiframe images

about 2-19
displaying 17-510

multilevel thresholding 17-206

N
navigational aids

creating 5-19
neighborhoods

binary image operations 17-12
neighborhood operations 15-2

nlfilter 17-514
noise

adding to an image 17-348
noise amplification

reducing 13-10
noise removal 11-47

adaptive filtering (Weiner) and 11-50
Gaussian noise 11-50
grain noise 11-47
linear filtering and 11-47
median filter and 11-48
salt and pepper noise 11-48

nonimage data
displaying as image 4-52

nonlinear filtering
using sliding neighborhood operations 15-6

normalized cross-correlation 7-29
normxcorr2 17-515
NTSC color space 14-22 17-517 17-572
ntsc2rgb 14-22 17-517

O
object selection 17-58
objects

tracing boundaries 11-13
observed image

in image registration 7-13
opening

morphology 10-13
optical transfer function (OTF) 13-2
order-statistic filtering 17-518
ordfilt2 17-518
orthonormal matrix 9-18

Index-13

Index

orthophoto
defined 7-5

orthorectified image 7-5
otf2psf 17-520

use of 13-23
overlap

in distinct block operations 15-8
Overview tool

creating 5-4
customizing 4-20
getting position of detail rectangle 4-20
printing image in 4-21
starting in Image Tool 4-20
using 4-18

P
padarray 17-521
padding borders

in block processing 15-5
options with imfilter 8-8

panning images
using the Image Tool 4-21

para2fan 17-525
parallel beam projections 9-29
perimeter determination

in binary images 10-17
phantom 9-32 17-530
piecewise linear transformations 17-85
Pixel Information tool

creating 5-4
overview 4-24

Pixel Region tool
creating 5-5
customizing 4-29
determining location of cursor 4-29
overview 4-24
printing contents 4-30
selecting a region 4-28
using 4-24

using in Image Tool 4-27
pixel regions

viewing 4-27
pixel values

along a line segment 11-3
using impixel 17-357
using pixval 17-533
using the Pixel Region tool 4-24

pixels
correcting for bad pixels 13-11
defining connectivity 10-22
definition 2-2
Euclidean distance between 4-31
getting pixel value information in Image

Tool 4-25
getting value of using Pixel Information

tool 4-24
getting values of 11-2
selecting 11-2
viewing values of pixel regions 4-27

pixval 17-533
using 11-2

PNG (Portable Network Graphics) files
writing as 16-bit 3-5

point mapping
for image registration 7-2

point spread function (PSF) 13-2
importance of in deblurring 13-3

Poisson noise
adding 17-348

poly2mask 17-535
polygon

pixels inside 12-2
selecting a polygonal region of interest 12-2

polynomial transformations 17-85
predicting control point locations

in image registration 7-23
preferences

getting value of 4-65

Index-14

Index

Image Processing Toolbox display
preferences 4-65

setting value of 4-66
Prewitt edge detector 17-134
Prewitt filters 17-166
printing

contents of Overview tool 4-21
contents of Pixel Region tool 4-30

printing images 4-63
from Image Tool 4-17

profiles
reading ICC color profiles 14-18

projections
parallel beam 9-29

projective transformations 6-9 17-84
psf2otf 17-543

use of 13-23

Q
qtdecomp 17-544

example 11-22
qtgetblk 17-548
qtsetblk 17-550
quadtree decomposition 11-21 17-544

getting block values 17-548
setting block values 17-550

quantization 14-6
minimum variance 14-9
performed by rgb2ind 17-570
tradeoffs between using minimum variance

and uniform quantization methods 14-10

R
radon 17-551

example 9-23
Radon transform

center pixel 9-22
description of 9-20

example 9-32
inverse Radon transform 9-29
line detection example 9-25
of the Shepp-Logan Head phantom 9-32
relationship to Hough transform 9-25

rangefilt 17-554
rank filtering 11-48

See also order-statistic filtering
read-out noise

correcting 13-11
real orthonormal matrix 9-18
reconstruction

morphological 10-18
reference image

in image registration 7-13
reflect 17-556
region labeling 10-40
region of interest

based on color or intensity 12-5
binary masks 12-2
filling 12-9
filtering 12-6
polygonal 12-2
selecting 12-2
using arbitrary binary masks 12-4

region property measurement 11-10
regional maxima

definition 10-29
imposing 10-33
suppressing 10-31

regional minima
definition 10-29
imposing 10-33
suppressing 10-31

regionprops 17-557
using 1-19 11-10

registering an image 7-2
regularized filter

used for deblurring 13-8
replication

Index-15

Index

to avoid border effect 8-10
resizing images 6-2

antialiasing 6-4
resolution

screen color resolution 14-2
See also bit depth 14-2

RGB color cube
description of 14-6
quantization of 14-7

RGB images 2-11
converting to indexed 17-569
converting to intensity 17-566
See also truecolor images

rgb2gray 17-566
rgb2hsv 14-24

converting RGB to HSV color space 14-24
example 14-25

rgb2ind 17-569
colormap mapping example 14-11
example 14-11
in minimum variance quantization 14-9
minimum variance quantization

example 14-9
specifying a colormap to use 14-10
uniform quantization example 14-8
used in dithering 14-12

rgb2ntsc 17-572
example 14-22

rgb2ycbcr 17-573
example 14-23

Richardson-Lucy algorithm. See
Lucy-Richardson

ringing
in image deblurring 13-24

Roberts edge detector 17-134
roicolor 12-5 17-576
roifill 17-578

example 12-9
roifilt2 17-580

contrast example 12-7

roipoly 17-582
example 12-3

rotation
of images 6-5

S
salt and pepper noise 11-48

adding 17-348
sampling

handling undersampled images 13-12
saturation

in HSV color space 14-24
in NTSC color space 14-22

screen bit depth 14-2
screen color resolution 14-2
ScreenDepth 14-2
Scroll Panel tool

creating 5-5
scroll panels

understanding 5-20
Shepp-Logan head phantom 9-32
shrinking. See resizing images
Signal Processing Toolbox

hamming function 8-20
skeletonization 10-16
sliding neighborhood operations 15-4

center pixel in 15-5
padding in 15-5

Sobel edge detector 17-134
Sobel filters 17-166
spatial coordinates 2-4
speckle noise

adding 17-348
statistical properties

mean 17-507
of image objects 1-21
standard deviation 17-585

std2 11-10 17-585
stdfilt 17-586

Index-16

Index

storage classes
converting between 2-17

strel 17-587
stretchlim 17-594

adjusting image contrast 1-14
using 11-37

structuring elements 10-6
creating 10-7
decomposition of 10-8
decomposition sequence 17-194
determining composition 17-290

subimage 17-596
subtraction

of one image from another 1-14
surf

viewing images 1-12

T
target images

definition 5-2
displaying 5-7
getting handle to 5-11
specifying 5-8

template matching 9-13
texture mapping 4-62
tformarray 17-597
tformfwd 17-602
tforminv 17-604
thresholding

to create a binary image 1-15
to create indexed image from intensity

image 17-206
tomography 9-29
tools

creating your own 5-31
modular 5-2

tracing boundaries 11-13
transformation matrix 8-16
transforms 9-1

discrete cosine 9-16 17-99
discrete Fourier transform 9-8
Fourier 9-3
inverse Radon 9-29
Radon 9-20
two-dimensional Fourier transform 9-3

translate 17-606
transparency 14-3
truecolor images

displaying 4-56
measuring the intensities of each color

plane 11-5
reducing number of colors 14-5

truesize 17-608
truncation rules

for image arithmetic operators 2-25

U
uint16

storing images in 3-3
uint8

storing images in 3-3
uintlut 17-611
undersampling

correcting 13-12
uniform quantization. See quantization
unsharp filters 17-166
unsharp masking 8-13

W
warp 17-612

example 4-62
watershed 17-614
weight array

in deblurring 13-11
whitepoint 17-618
Wiener filter

deblurring with 13-6

Index-17

Index

wiener2 17-620
adaptive filtering 11-50
using 11-50

window/level
adjusting 4-43

windowing method (filter design) 8-19 17-179

X
X-ray absorption tomography 9-29
XYZ color space 14-14
xyz2double 17-622
xyz2uint16 17-623

Y
YCbCr color space 14-23

ycbcr2rgb 17-624
using 14-23

YIQ color space 14-22

Z
zero padding 9-13

and the fast Fourier transform 9-10
image boundaries 8-9

zero-cross edge detector 17-134
zero-frequency component 9-3
zooming

Control Point Selection Tool 7-18
in Image Tool 4-22

Index-18

	toc
	Getting Started
	What Is Image Processing Toolbox?
	Configuration Notes
	Related Products
	Compilability

	Example 1 — Some Basic Concepts
	Step 1: Read and Display an Image
	Step 2: Check How the Image Appears in the Workspace
	Step 3: Improve Image Contrast
	Step 4: Write the Image to a Disk File
	Step 5: Check the Contents of the Newly Written File

	Example 2 — Advanced Topics
	Step 1: Read and Display an Image
	Step 2: Estimate the Value of Background Pixels
	Step 3: View the Background Approximation as a Surface
	Step 4: Create an Image with a Uniform Background
	Step 5: Adjust the Contrast in the Processed Image
	Step 6: Create a Binary Version of the Image
	Step 7: Determine the Number of Objects in the Image
	Step 8: Examine the Label Matrix
	Step 9: Display the Label Matrix as a Pseudocolor Indexed Image
	Step 10: Measure Object Properties in the Image
	Step 11: Compute Statistical Properties of Objects in the Image

	Getting Help
	Online Help
	Image Processing Demos
	MATLAB Newsgroup

	Image Credits

	Introduction
	Images in MATLAB and Image Processing Toolbox
	Coordinate Systems
	Pixel Coordinates
	Spatial Coordinates
	Using a Nondefault Spatial Coordinate System

	Image Types in the Toolbox
	Binary Images
	Indexed Images
	Grayscale Images
	Truecolor Images

	Converting Between Image Types
	Color Space Conversions

	Converting Between Image Classes
	Losing Information in Conversions
	Converting Indexed Images

	Working with Image Sequences
	Example: Processing Image Sequences
	Multi-Frame Image Arrays

	Image Arithmetic
	Image Arithmetic Saturation Rules
	Nesting Calls to Image Arithmetic Functions

	Reading and Writing Image Data
	Getting Information About a Graphics File
	Reading Image Data
	Reading Multiple Images from a Graphics File

	Writing Image Data
	Specifying Additional Format-Specific Parameters
	Reading and Writing Binary Images in 1-Bit Format
	Determining the Storage Class of the Output File

	Converting Graphics File Formats
	Reading and Writing Data in Medical File Formats
	Reading Metadata from a DICOM File
	Reading Image Data from a DICOM File
	Viewing Images from DICOM Files

	Writing Image Data or Metadata to a DICOM File
	Writing Metadata with the Image Data
	Removing Confidential Information from a DICOM File
	Example: Creating a New Series

	Using the Mayo Analyze 7.5 Format
	Using the Interfile Format

	Displaying and Exploring Images
	Overview
	Understanding Handle Graphics Object Property Settings

	Using imshow to Display Images
	Specifying the Initial Image Magnification
	Controlling the Appearance of the Figure

	Using the Image Tool to Explore Images
	Opening the Image Tool
	Specifying the Initial Image Magnification
	Specifying the Colormap
	Importing Image Data from the Workspace
	Exporting Image Data to the Workspace
	Using the getimage Function to Export Image Data

	Closing the Image Tool
	Printing the Image in the Image Tool

	Using Image Tool Navigation Aids
	Overview Navigation
	Starting the Overview Tool
	Using the Overview Tool
	Specifying the Color of the Detail Rectangle
	Getting the Position and Size of the Detail Rectangle
	Printing the View of the Image in the Overview Tool

	Panning the Image Displayed in the Image Tool
	Zooming In and Out on an Image
	Specifying the Magnification of the Image

	Getting Information about the Pixels in an Image
	Determining the Value of Individual Pixels
	Saving the Pixel Value and Location Information

	Getting the Display Range of an Image
	Viewing Pixel Values with the Pixel Region Tool
	Starting the Pixel Region Tool
	Selecting a Region
	Customizing the View
	Determining the Location of the Pixel Region Rectangle
	Printing the View of the Image in the Pixel Region Tool

	Measuring Features in an Image
	Using the Distance Tool
	Exporting Endpoint and Distance Data
	Customizing the Appearance of the Distance Tool

	Getting Information About an Image
	Adjusting the Contrast and Brightness of an Image
	Using the Adjust Contrast Tool
	Starting the Adjust Contrast Tool
	Changing the Size of the Adjust Contrast Tool Window

	Example: Adjusting Contrast and Brightness
	Using the Window/Level Tool
	Example: Adjusting Contrast with the Window/Level Tool

	Understanding Contrast Adjustment

	Viewing Multiple Images
	Displaying Each Image in a Separate Figure
	Displaying Multiple Images in the Same Figure
	Dividing a Figure Window into Multiple Display Regions
	Using the subimage Function to Display Multiple Images

	Displaying Different Image Types
	Displaying Indexed Images
	Displaying Grayscale Images
	Displaying Grayscale Images That Have Unconventional Ranges

	Displaying Binary Images
	Changing the Display Colors of a Binary Image

	Displaying Truecolor Images

	Special Display Techniques
	Adding a Colorbar
	Displaying Multiple Image Frames at Once
	Converting a Multiframe Image to a Movie
	Texture Mapping

	Printing Images
	Printing and Handle Graphics Object Properties

	Setting Toolbox Display Preferences
	Retrieving the Values of Toolbox Preferences
	Setting the Values of Toolbox Preferences

	Building GUIs with Modular Tools
	Overview
	Using Modular Tools
	Displaying the Target Image
	Specifying the Target Image
	Associating Modular Tools with the Default Target Image
	Associating Modular Tools with a Particular Image
	Getting the Handle of the Target Image

	Specifying the Parent of a Modular Tool
	Tools With Separate Creation Functions
	Example: Embedding the Pixel Region Tool in an Existing Figure

	Positioning the Modular Tools in a GUI
	Specifying the Position with a Position Vector

	Example: Building a Pixel Information GUI
	Adding Navigation Aids to a GUI
	Understanding Scroll Panels
	Example: Building a Navigation GUI for Large Images

	Making Connections for Interactivity
	Using Modular Tool APIs
	Example: Building an Image Comparison Tool

	Creating Your Own Modular Tools

	Spatial Transformations
	Resizing an Image
	Specifying the Size of the Output Image
	Using the Magnification Factor
	Specifying the Size of the Output Image

	Specifying the Interpolation Method
	Using Filters to Prevent Aliasing

	Rotating an Image
	Image Rotation Basics
	Specifying the Size of the Output Image
	Specifying the Interpolation Method

	Cropping an Image
	Performing General 2-D Spatial Transformations
	Example: Performing a Translation
	Step 1: Import the Image to Be Transformed
	Step 2: Define the Spatial Transformation
	Step 3: Create the TFORM Structure
	Step 4: Perform the Transformation
	Step 5: View the Output Image

	Defining the Transformation Data
	Using a Transformation Matrix
	Using Sets of Points

	Creating TFORM Structures
	Performing the Spatial Transformation
	Specifying Fill Values

	Performing N-Dimensional Spatial Transformations
	Example: Performing Image Registration
	Step 1: Read in Base and Unregistered Images
	Step 2: Display the Unregistered Image
	Step 3: Create a TFORM Structure
	Step 4: Transform the Unregistered Image
	Step 5: Overlay Registered Image Over Base Image
	Step 6: Using XData and YData Input Parameters
	Step 7: Using XData and YData Output Values

	Image Registration
	Registering an Image
	Point Mapping
	Using cpselect in a Script
	Example: Registering to a Digital Orthophoto
	Step 1: Read the Images into MATLAB
	Step 2: Choose Control Points in the Images
	Step 3: Save the Control Point Pairs to the MATLAB Workspace
	Step 4: Fine-Tune the Control Point Pair Placement (Optional)
	Step 5: Specify the Type of Transformation and Infer Its Paramet
	Step 6: Transform the Unregistered Image

	Transformation Types
	Selecting Control Points
	Using the Control Point Selection Tool: An Overview
	Starting the Control Point Selection Tool
	Using Navigation Tools to Explore the Images
	Using Scroll Bars to View Other Parts of an Image
	Using the Detail Rectangle to Change the View
	Panning the Image Displayed in the Detail Window
	Zooming In and Out on an Image
	Specifying the Magnification of the Images
	Locking the Relative Magnification of the Input and Base Images

	Specifying Matching Control Point Pairs
	Picking Control Point Pairs Manually
	Using Control Point Prediction
	Moving Control Points
	Deleting Control Points

	Exporting Control Points to the Workspace
	Saving Your Control Point Selection Session

	Using Correlation to Improve Control Points

	Linear Filtering and Filter Design
	Linear Filtering
	Convolution
	Correlation
	Filtering Using imfilter
	Data Types
	Correlation and Convolution Options
	Boundary Padding Options
	Multidimensional Filtering
	Relationship to Other Filtering Functions

	Using Predefined Filter Types

	Filter Design
	FIR Filters
	Frequency Transformation Method
	Frequency Sampling Method
	Windowing Method
	Creating the Desired Frequency Response Matrix
	Computing the Frequency Response of a Filter

	Transforms
	Fourier Transform
	Definition of Fourier Transform
	Visualizing the Fourier Transform

	Discrete Fourier Transform
	Relationship to the Fourier Transform
	Example

	Applications of the Fourier Transform
	Frequency Response of Linear Filters
	Fast Convolution
	Locating Image Features

	Discrete Cosine Transform
	DCT Definition
	The DCT Transform Matrix
	DCT and Image Compression

	Radon Transform
	Radon Transformation Definition
	Plotting the Radon Transform
	Viewing the Radon Transform as an Image
	Using the Radon Transform to Detect Lines

	The Inverse Radon Transformation
	Inverse Radon Transform Definition
	Improving the Results

	Example: Reconstructing an Image from Parallel Projection Data

	Fan-Beam Projection Data
	Computing Fan-Beam Projection Data
	Reconstructing an Image from Fan-Beam Projection Data
	Example: Using Reconstructing an Image From Fan-Beam Projection

	Morphological Operations
	Dilation and Erosion
	Understanding Dilation and Erosion
	Processing Pixels at Image Borders (Padding Behavior)

	Structuring Elements
	The Origin of a Structuring Element
	Creating a Structuring Element
	Structuring Element Decomposition

	Dilating an Image
	Eroding an Image
	Combining Dilation and Erosion
	Morphological Opening

	Dilation- and Erosion-Based Functions
	Skeletonization
	Perimeter Determination

	Morphological Reconstruction
	Marker and Mask
	Understanding Morphological Reconstruction

	Pixel Connectivity
	Defining Connectivity in an Image
	Choosing a Connectivity
	Specifying Custom Connectivities

	Flood-Fill Operations
	Specifying Connectivity
	Specifying the Starting Point
	Filling Holes

	Finding Peaks and Valleys
	Terminology
	Understanding the Maxima and Minima Functions
	Finding Areas of High or Low Intensity
	Suppressing Minima and Maxima
	Imposing a Minimum
	Creating a Marker Image
	Applying the Marker Image to the Mask

	Distance Transform
	Objects, Regions, and Feature Measurement
	Connected-Component Labeling
	Viewing a Label Matrix

	Selecting Objects in a Binary Image
	Finding the Area of the Foreground of a Binary Image
	Finding the Euler Number of a Binary Image

	Lookup Table Operations
	Creating a Lookup Table
	Using a Lookup Table

	Analyzing and Enhancing Images
	Getting Information about Pixel Values and Statistics
	Getting Information About Image Pixels
	Getting the Intensity Profile of an Image
	Displaying a Contour Plot of Image Data
	Creating an Image Histogram
	Getting Summary Statistics About an Image
	Computing Properties for Image Regions

	Analyzing an Image
	Detecting Edges
	Tracing Boundaries
	Choosing the First Step and Direction for Boundary Tracing

	Detecting Lines Using the Hough Transform
	Using Quadtree Decomposition
	Example: Performing Quadtree Decomposition

	Analyzing the Texture of an Image
	Using Texture Filter Functions
	Understanding the Texture Filter Functions
	Example: Using the Texture Functions

	Using a Gray-Level Co-Occurrence Matrix (GLCM)
	Creating a Gray-Level Co-Occurrence Matrix
	Specifying the Offsets
	Deriving Statistics from a GLCM
	Example: Plotting the Correlation

	Intensity Adjustment
	Adjusting Intensity Values to a Specified Range
	Specifying the Adjustment Limits
	Setting the Adjustment Limits Automatically
	Gamma Correction

	Histogram Equalization
	Contrast-Limited Adaptive Histogram Equalization
	Decorrelation Stretching
	Simple Decorrelation Stretching
	Adding a Linear Contrast Stretch

	Noise Removal
	Using Linear Filtering
	Using Median Filtering
	Using Adaptive Filtering

	ROI-Based Processing
	Specifying a Region of Interest (ROI)
	Selecting a Polygonal ROI Interactively
	Specifying an ROI Noninteractively
	Creating an ROI Without an Associated Image
	Creating an ROI Based on Color Values

	Filtering an ROI
	Filtering a Region in an Image
	Specifying the Filtering Operation

	Filling an ROI

	Image Deblurring
	Understanding Deblurring
	Causes of Blurring
	Deblurring Model
	Importance of the PSF

	Deblurring Functions

	Deblurring with the Wiener Filter
	Refining the Result

	Deblurring with a Regularized Filter
	Refining the Result

	Deblurring with the Lucy-Richardson Algorithm
	Reducing the Effect of Noise Amplification
	Accounting for Nonuniform Image Quality
	Handling Camera Read-Out Noise
	Handling Undersampled Images
	Example: Using the deconvlucy Function to Deblur an Image
	Refining the Result

	Deblurring with the Blind Deconvolution Algorithm
	Example: Using the deconvblind Function to Deblur an Image
	Refining the Result

	Creating Your Own Deblurring Functions
	Avoiding Ringing in Deblurred Images

	Color
	Working with Different Screen Bit Depths
	Determining Screen Bit Depth
	Choosing a Screen Bit Depth

	Reducing the Number of Colors in an Image
	Color Approximation
	Quantization
	Colormap Mapping

	Reducing Colors in an Indexed Image
	Dithering

	Converting Color Data Between Color Spaces
	Converting Between Device-Independent Color Spaces
	Supported Conversions
	Example: Performing a Color Space Conversion
	Color Space Data Encodings

	Performing Profile-Based Color Space Conversions
	Understanding Device Profiles
	Reading ICC Profiles
	Writing Profile Information to a File
	Example: Performing a Profile-Based Conversion
	Specifying the Rendering Intent

	Converting Between Device-Dependent Color Spaces
	YIQ Color Space
	YCbCr Color Space
	HSV Color Space

	Neighborhood and Block Operations
	Block Processing Operations
	Types of Block Processing Operations

	Sliding Neighborhood Operations
	Determining the Center Pixel
	Performing a Sliding Neighborhood Operation
	Padding Borders
	Implementing Linear and Nonlinear Filtering

	Distinct Block Operations
	Specifying Overlap
	Overlap and Zero-padding

	Column Processing Operations
	Sliding Neighborhoods
	Using Column Processing with Distinct Block Operations
	Restrictions

	Functions — By Category
	Image Display and Exploration
	Image Display and Exploration
	Image File I/O
	Image Types and Type Conversions

	GUI Tools
	Modular Interactive Tools
	Navigational tools for Image Scroll Panel
	Utility Functions for Interactive Tools

	Spatial Transformation and Image Registration
	Spatial Transformations
	Image Registration

	Image Analysis and Statistics
	Image Analysis
	Texture Analysis
	Pixel Values and Statistics

	Image Arithmetic
	Image Enhancement and Restoration
	Image Enhancement
	Image Restoration (Deblurring)

	Linear Filtering and Transforms
	Linear Filtering
	Linear 2-D Filter Design
	Image Transforms

	Morphological Operations
	Intensity and Binary Images
	Binary Images
	Structuring Element (STREL) Creation and Manipulation

	ROI-Based, Neighborhood, and Block Processing
	ROI-Based Processing
	Neighborhood and Block Processing

	Colormap and Color Space Functions
	Colormap Manipulation
	Color Space Conversions

	Miscellaneous Functions
	Toolbox Preferences
	Toolbox Utility Functions
	Interactive Mouse Utility Functions
	Array Operations
	Demos
	Performance

	Functions — Alphabetical List
	Examples

	Examples
	Introductory Examples
	Image Display
	Modular Tools
	Morphology Examples
	Image Analysis
	Image Enhancement
	Working with Regions of Interest
	Working with Color

	Index

	tables
	Rules for Dilation and Erosion
	Rules for Padding Images
	Dilation- and Erosion-Based Functions
	Supported Connectivities
	Distance Metrics
	Boundary Options
	Output Size Options
	Correlation and Convolution Options
	Interpolation Methods
	Interpolation Kernels

