Image Processing Toolbox 5
User’s Guide

MATLAB

‘\The MathWorks

Accelorating the poce of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Image Processing Toolbox User’s Guide
© COPYRIGHT 1993-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
August 1993 First printing

May 1997 Second printing
April 2001 Third printing
June 2001 Online only
July 2002 Online only
May 2003 Fourth printing
September 2003 Online only
June 2004 Online only

August 2004 Online only
October 2004 Fifth printing

March 2005 Online only
September 2005 Online only
March 2006 Online only

September 2006 Online only
March 2007 Online only

Version 1

Version 2

Revised for Version 3.0

Revised for Version 3.1 (Release 12.1)
Revised for Version 3.2 (Release 13)
Revised for Version 4.0 (Release 13.0.1)
Revised for Version 4.1 (Release 13.SP1)
Revised for Version 4.2 (Release 14)
Revised for Version 5.0 (Release 14+)
Revised for Version 5.0.1 (Release 14SP1)
Revised for Version 5.0.2 (Release 14SP2)
Revised for Version 5.1 (Release 14SP3)
Revised for Version 5.2 (Release 2006a)
Revised for Version 5.3 (Release 2006b)
Revised for Version 5.4 (Release 2007a)

Getting Started

What Is Image Processing Toolbox?

Configuration Notesciiiiiiiieno...
Related Products i,
Compilability

Example 1 — Some Basic Concepts

Step 1: Read and Display an Image
Step 2: Check How the Image Appears in the Workspace ..
Step 3: Improve Image Contrast
Step 4: Write the Imagetoa Disk File
Step 5: Check the Contents of the Newly Written File

Example 2 — Advanced Topics

Step 1: Read and Display an Image
Step 2: Estimate the Value of Background Pixels
Step 3: View the Background Approximation as a
SuUrfacei i e e
Step 4: Create an Image with a Uniform Background
Step 5: Adjust the Contrast in the Processed Image
Step 6: Create a Binary Version of the Image
Step 7: Determine the Number of Objects in the Image . ..
Step 8: Examine the Label Matrix
Step 9: Display the Label Matrix as a Pseudocolor Indexed
Image
Step 10: Measure Object Properties in the Image
Step 11: Compute Statistical Properties of Objects in the
Image i e

GettingHelp i

OnlineHelp i,
Image Processing Demos
MATLAB NeWSZroup . ..vvtttttnnnniineeeeennnnnnns

Image Credits

1-2
1-3
1-3
1-3

1-4

vi

Introduction

2

Images in MATLAB and Image Processing Toolbox ... 2-2
Coordinate Systemscciiiiiiiinnnnnnnn. 2-2
Image Typesin the Toolbox 2-7
BinaryImagesciiiiiiiiiiii i 2-8
Indexed Images 2-8
GrayscaleImages 2-10
Truecolor Images 2-11
Converting Between Image Types 2-15
Color Space Conversionsceeeeemmnuneeen.. 2-16
Converting Between Image Classes 2-17
Losing Information in Conversions 2-17
Converting Indexed Images 2-17
Working with Image Sequences 2-19
Example: Processing Image Sequences 2-22
Multi-Frame Image Arrayscccvuuuuuunnnn. 2-23
Image Arithmetic 2-25
Image Arithmetic Saturation Rules 2-25
Nesting Calls to Image Arithmetic Functions 2-26

Reading and Writing Image Data

3

Contents

Getting Information About a Graphics File 3-2
ReadingImageData 3-3
Reading Multiple Images from a Graphics File 3-4
Writing ImageData 3-5
Specifying Additional Format-Specific Parameters 3-5

Reading and Writing Binary Images in 1-Bit Format 3-6

Determining the Storage Class of the Output File 3-7
Converting Graphics File Formats 3-8
Reading and Writing Data in Medical File Formats ... 3-9

Reading Metadata from a DICOM File 3-9

Reading Image Data from a DICOM File 3-10

Writing Image Data or Metadata to a DICOM File 3-11

Using the Mayo Analyze 7.5 Format 3-16

Using the Interfile Format 3-17

Displaying and Exploring Images

OVerVIEW ... e e e 4-3
Understanding Handle Graphics Object Property
SettINgS .o e e e 4-4
Using imshow to Display Images 4-5
Specifying the Initial Image Magnification 4-6
Controlling the Appearance of the Figure 4-7
Using the Image Tool to Explore Images 4-9
Opening the Image Tool 4-11
Specifying the Initial Image Magnification 4-12
Specifying the Colormapc.ccviiun.... 4-13
Importing Image Data from the Workspace 4-15
Exporting Image Data to the Workspace 4-16
Closing the Image Toolo, 4-17
Printing the Image in the Image Tool 4-17
Using Image Tool Navigation Aids 4-18
Overview Navigationiiiiiininnnnne... 4-18
Panning the Image Displayed in the Image Tool 4-21
Zooming In and OutonanImage 4-22
Specifying the Magnification of the Image 4-22

vii

viii

Contents

Getting Information about the Pixels in an Image 4-24

Determining the Value of Individual Pixels 4-24
Getting the Display Range of an Image 4-26
Viewing Pixel Values with the Pixel Region Tool 4-27
Measuring FeaturesinanImage 4-31
Using the Distance Tool 4-31
Exporting Endpoint and Distance Data 4-32
Customizing the Appearance of the Distance Tool 4-33
Getting Information About an Image 4-34
Adjusting the Contrast and Brightness of an Image ... 4-36
Using the Adjust Contrast Tool 4-38
Example: Adjusting Contrast and Brightness 4-40
Using the Window/Level Tool 4-43
Understanding Contrast Adjustment 4-45
Viewing Multiple Images 4-47
Displaying Each Image in a Separate Figure 4-47
Displaying Multiple Images in the Same Figure 4-48
Displaying Different Image Types 4-51
Displaying Indexed Images 4-51
Displaying Grayscale Images 4-52
Displaying Binary Images 4-54
Displaying Truecolor Images 4-56
Special Display Techniques 4-58
Addinga Colorbar i, 4-58
Displaying Multiple Image Frames at Once 4-60
Converting a Multiframe Image to a Movie 4-61
Texture Mappingc.coiiiiiiiiiirnnnnnnnn 4-62
Printing Images 4-63
Printing and Handle Graphics Object Properties 4-63
Setting Toolbox Display Preferences 4-65
Retrieving the Values of Toolbox Preferences 4-65
Setting the Values of Toolbox Preferences 4-66

Building GUIs with Modular Tools

5

OVerVIEW ... e e e 5-2
Using Modular Tools 5-6
Displaying the Target Image 5-7
Specifying the Target Image 5-8
Specifying the Parent of a Modular Tool 5-12
Positioning the Modular Toolsina GUI 5-15
Example: Building a Pixel Information GUI 5-17
Adding Navigation Aidstoa GUI 5-19
Making Connections for Interactivity 5-25
Creating Your Own Modular Tools 5-31

Spatial Transformations

6

ResizinganImage 6-2
Specifying the Size of the Output Image 6-2
Specifying the Interpolation Method 6-3
Using Filters to Prevent Aliasing 6-4

RotatinganImage 6-5
Image Rotation Basics 6-5
Specifying the Size of the Output Image 6-5
Specifying the Interpolation Method 6-5

CroppinganImage, 6-7

Performing General 2-D Spatial Transformations 6-8
Example: Performing a Translation 6-9
Defining the TransformationData 6-14
Creating TFORM Structures 6-16
Performing the Spatial Transformation 6-17

ix

Performing N-Dimensional Spatial Transformations .. 6-20

Example: Performing Image Registration 6-22
Step 1: Read in Base and Unregistered Images 6-22
Step 2: Display the Unregistered Image 6-22
Step 3: Create a TFORM Structure 6-23
Step 4: Transform the Unregistered Image 6-23
Step 5: Overlay Registered Image Over Base Image 6-24
Step 6: Using XData and YData Input Parameters 6-25
Step 7: Using XData and YData Output Values 6-26

Image Registration

7

RegisteringanImage 7-2
Point Mappingc.ouiiiiiiiiiiiii ittt 7-2
Using cpselectina Scriptcoviiiiiinnnn. 7-4
Example: Registering to a Digital Orthophoto 7-5

Transformation Types 7-12

Selecting Control Points 7-13
Using the Control Point Selection Tool: An Overview 7-13
Starting the Control Point Selection Tool 7-15
Using Navigation Tools to Explore the Images 7-16
Specifying Matching Control Point Pairs 7-20
Exporting Control Points to the Workspace 7-26

Using Correlation to Improve Control Points 7-29

Linear Filtering and Filter Design

8|

Linear Filtering i i, 8-2
Convolution, 8-2

X Contents

Correlationcoiiiiiiiiiiiii it 8-4

Filtering Using imfilter 8-5
Using Predefined Filter Types 8-13
Filter Design 0. 8-15
FIR Filtersciii e iie e 8-16
Frequency Transformation Method 8-16
Frequency Sampling Method 8-18
Windowing Method, 8-19
Creating the Desired Frequency Response Matrix 8-21
Computing the Frequency Response of a Filter 8-22
Transforms
Fourier Transform 9-3
Definition of Fourier Transform 9-3
Discrete Fourier Transform 9-8
Applications of the Fourier Transform 9-11
Discrete Cosine Transform 9-16
DCT Definitionc0i i, 9-16
The DCT Transform Matrix, 9-18
DCT and Image Compressionc.ccvvuuuunnn. 9-18
Radon Transform 9-20
Radon Transformation Definition 9-20
Plotting the Radon Transform 9-22
Viewing the Radon Transform as an Image 9-24
Using the Radon Transform to Detect Lines 9-25
The Inverse Radon Transformation 9-29
Inverse Radon Transform Definition 9-29
Example: Reconstructing an Image from Parallel Projection
Data e 9-32
Fan-Beam ProjectionData 9-36
Computing Fan-Beam Projection Data 9-37

xi

xii

Contents

Reconstructing an Image from Fan-Beam Projection

Data ... e 9-39
Example: Using Reconstructing an Image From Fan-Beam
ProjectionData i i, 9-40

10|

Dilation and Erosion 10-3
Understanding Dilation and Erosion 10-3
Structuring Elements 10-6
DilatinganImage 10-10
ErodinganImage i, 10-11
Combining Dilation and Erosion 10-13
Dilation- and Erosion-Based Functions 10-15

Morphological Reconstruction 10-18
Markerand Maskot 10-18
Pixel Connectivity 10-22
Flood-Fill Operationsciiiiieiiinnnnnnn. 10-24
Finding Peaks and Valleys 10-27

Distance Transform 10-37

Objects, Regions, and Feature Measurement 10-40
Connected-Component Labeling 10-40
Selecting Objects in a Binary Image 10-42
Finding the Area of the Foreground of a Binary Image ... 10-42
Finding the Euler Number of a Binary Image 10-43

Lookup Table Operations 10-44
Creating a LookupTable 10-44
Usinga LookupTable, 10-45

Analyzing and Enhancing Images

Getting Information about Pixel Values and

Statistics 11-2
Getting Information About Image Pixels 11-2
Getting the Intensity Profile of an Image 11-3
Displaying a Contour Plot of Image Data 11-7
Creating an Image Histogram 11-9
Getting Summary Statistics About an Image 11-10
Computing Properties for Image Regions 11-10
AnalyzinganImage, 11-11
Detecting Edges ...ttt i 11-11
Tracing Boundariescuiiiiiiiiinnnnnnn. 11-13
Detecting Lines Using the Hough Transform 11-17
Using Quadtree Decomposition 11-21
Analyzing the Texture ofanImage 11-24
Using Texture Filter Functions 11-24
Using a Gray-Level Co-Occurrence Matrix (GLCM) 11-28
Intensity Adjustment 11-34
Adjusting Intensity Values to a Specified Range 11-35
Histogram Equalization 11-39
Contrast-Limited Adaptive Histogram Equalization 11-41
Decorrelation Stretching 11-42
Noise Removal 11-47
Using Linear Filtering 11-47
Using Median Filtering 11-48
Using Adaptive Filtering 11-50

ROI-Based Processing

12|

Specifying a Region of Interest (ROI) 12-2
Selecting a Polygonal ROI Interactively 12-2

xiii

Specifying an ROI Noninteractively 12-4

Creating an ROI Without an Associated Image 12-4
Creating an ROI Based on Color Values 12-5
FilteringanROI 12-6
Filtering a RegioninanImage 12-6
Specifying the Filtering Operation 12-7
Fillingan ROI i, 12-9

13

Understanding Deblurring 13-2
Causesof Blurring 13-2
Deblurring Model i i i 13-2
Deblurring Functions 13-4

Deblurring with the Wiener Filter 13-6
Refiningthe Result 13-7

Deblurring with a Regularized Filter 13-8
Refiningthe Result 13-9

Deblurring with the Lucy-Richardson Algorithm 13-10
Reducing the Effect of Noise Amplification 13-10
Accounting for Nonuniform Image Quality 13-11
Handling Camera Read-Out Noise 13-11
Handling Undersampled Images 13-12
Example: Using the deconvlucy Function to Deblur an

Imagec i e e 13-12
Refiningthe Result 13-15

Deblurring with the Blind Deconvolution Algorithm .. 13-16
Example: Using the deconvblind Function to Deblur an

Image ... i e e 13-16

Refiningthe Result 13-21

xiv Contents

Creating Your Own Deblurring Functions 13-23

Avoiding Ringing in Deblurred Images 13-24
Color

Working with Different Screen Bit Depths 14-2
Determining Screen Bit Depth 14-2
Choosing a Screen Bit Depth 14-4
Reducing the Number of Colors in an Image 14-5
Color Approximationc. i, 14-5
Reducing Colors in an Indexed Image 14-11
Dithering i i e 14-12
Converting Color Data Between Color Spaces 14-14
Converting Between Device-Independent Color Spaces ... 14-14
Performing Profile-Based Color Space Conversions 14-18
Converting Between Device-Dependent Color Spaces 14-22

Neighborhood and Block Operations

15

Block Processing Operations 15-2
Types of Block Processing Operations 15-2
Sliding Neighborhood Operations 15-4
Determining the Center Pixel 15-4
Performing a Sliding Neighborhood Operation 15-5
Padding Borders, 15-5
Implementing Linear and Nonlinear Filtering 15-6
Distinct Block Operations 15-8
Specifying Overlap 15-10

XV

xvi

Column Processing Operations 15-12

Sliding Neighborhoods 15-12
Using Column Processing with Distinct Block
Operationscuiiiiiiniiiiieennnnnnnns 15-13

Functions — By Category

16

Image Display and Exploration 16-2
Image Display and Exploration 16-2
ImageFileI/O i e i 16-2
Image Types and Type Conversions 16-3

GUITools e e 16-5
Modular Interactive Tools o... 16-5
Navigational tools for Image Scroll Panel 16-5
Utility Functions for Interactive Tools 16-6

Spatial Transformation and Image Registration 16-8
Spatial Transformations 16-8
Image Registration 16-9

Image Analysis and Statistics 16-10
Image Analysist i 16-10
Texture Analysisccciiiiiiiiieeeernnnnnnns 16-10
Pixel Values and Statistics 16-11

Image Arithmetic 16-12

Image Enhancement and Restoration 16-13
Image Enhancement 16-13
Image Restoration (Deblurring) 16-13

Linear Filtering and Transforms 16-15
Linear Filtering, 16-15
Linear 2-D Filter Designciiiiiiinnna.. 16-15
Image Transforms 16-16

Contents

Morphological Operations 16-17

Intensity and Binary Images 16-17
BinaryImagesciiiiiiiiiiiiii i 16-18
Structuring Element (STREL) Creation and
Manipulation i, 16-19
ROI-Based, Neighborhood, and Block Processing 16-20
ROI-Based Processingc.oviiiiieennnnnnnnnn 16-20
Neighborhood and Block Processing 16-20
Colormap and Color Space Functions 16-21
Colormap Manipulation 16-21
Color Space Conversionseeeeennnuneeen.. 16-21
Miscellaneous Functions 16-23
Toolbox Preferences 16-23
Toolbox Utility Functions 16-23
Interactive Mouse Utility Functions 16-24
Array Operationsuviiiitenennnnnnnneenn. 16-24
Demos ... e e 16-24
Performancet 16-24

Functions — Alphabetical List

17

Al

Examples
Introductory Examples A-2
ImageDisplay A-2
Modular Toolst A-2
Morphology Examples A-2

xXVvii

xviii

Contents

Image Analysis, A-3

Image Enhancement A-3
Working with Regions of Interest A-3
Working with Color A-3

Index

Getting Started

This chapter contains two examples to get you started doing image processing
using MATLAB® and Image Processing Toolbox. The examples contain
cross-references to other sections in the documentation manual that have
in-depth discussions on the concepts presented in the examples.

What Is Image Processing Toolbox?
(p. 1-2)

Example 1 — Some Basic Concepts
(p. 1-4)

Example 2 — Advanced Topics
(p. 1-10)

Getting Help (p. 1-23)

Image Credits (p. 1-25)

Introduces Image Processing Toolbox
and its capabilities

Guides you through an example of
some of the basic image processing
capabilities of the toolbox, including
reading, writing, and displaying
images

Guides you through some advanced
image processing topics, including
components labeling, object property
measurement, image arithmetic,
morphological image processing, and
contrast enhancement

Provides pointers to additional
sources of information

Provides information about the
sources of the images used in the
documentation

1 Getting Started

What Is Image Processing Toolbox?

Image Processing Toolbox is a collection of functions that extend the capability
of the MATLAB numeric computing environment. The toolbox supports a
wide range of image processing operations, including

e Spatial image transformations

® Morphological operations

e Neighborhood and block operations

¢ Linear filtering and filter design

¢ Transforms

¢ Image analysis and enhancement

* Image registration

¢ Deblurring

® Region of interest operations

Many of the toolbox functions are MATLAB M-files, a series of MATLAB

statements that implement specialized image processing algorithms. You can
view the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of Image Processing Toolbox by writing your
own M-files, or by using the toolbox in combination with other toolboxes, such
as Signal Processing Toolbox and Wavelet Toolbox.

For a list of the new features in this version of Image Processing Toolbox, see
the Release Notes documentation.

This section also covers the following topics:

¢ “Configuration Notes” on page 1-3
¢ “Related Products” on page 1-3
® “Compilability” on page 1-3

What Is Image Processing Toolbox?

Configuration Notes

To determine if Image Processing Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

Related Products

The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with Image Processing Toolbox and that extend the

capabilities of MATLAB. For information about these related products, see

www.mathworks.com/products/image/related.html

Compilability

Image Processing Toolbox is compilable with the MATLAB Compiler except
for the following two functions that launch GUIs:

® cpselect

® imtool

http://www.mathworks.com
http://www.mathworks.com/products/image/related.html

1 Getting Started

Example 1 — Some Basic Concepts

This example introduces some basic image processing concepts, including
reading and writing images, performing histogram equalization on an image,
and getting information about an image. The example breaks this process
into the following steps:

“Step 1: Read and Display an Image” on page 1-4

e “Step 2: Check How the Image Appears in the Workspace” on page 1-5

e “Step 3: Improve Image Contrast” on page 1-6

e “Step 4: Write the Image to a Disk File” on page 1-8

e “Step 5: Check the Contents of the Newly Written File” on page 1-8

Before beginning with this example, you should already have installed Image
Processing Toolbox and have started MATLAB. If you are new to MATLAB,

read the MATLAB Getting Started documentation to learn about basic
MATLAB concepts.

Step 1: Read and Display an Image
Clear the MATLAB workspace of any variables and close open figure windows.

close all

To read an image, use the imread command. The example reads one of the
sample images included with Image Processing Toolbox, pout.tif, and stores
it in an array named I.

I = imread('pout.tif');

imread infers from the file that the graphics file format is Tagged Image File
Format (TIFF). For the list of supported graphics file formats, see the imread
function reference documentation.

Now display the image. The toolbox includes two image display functions:
imshow and imtool. imshow is the toolbox’s fundamental image display
function. imtool starts the Image Tool which presents an integrated
environment for displaying images and performing some common image

Example 1 — Some Basic Concepts

processing tasks. The Image Tool provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and
exploring images, such as scroll bars, the Pixel Region tool, Image Information
tool, and the Contrast Adjustment tool. For more information, see Chapter 4,
“Displaying and Exploring Images”. You can use either function to display an
image. This example uses imshow.

imshow(I)

Grayscale Image pout.tif

Step 2: Check How the Image Appears in the
Workspace

To see how the imread function stores the image data in the workspace, check
the Workspace browser in the MATLAB desktop. The Workspace browser
displays information about all the variables you create during a MATLAB
session. The imread function returned the image data in the variable I, which
is a 291-by-240 element array of uint8 data. MATLAB can store images

as uint8, uint16, or double arrays.

You can also get information about variables in the workspace by calling the
whos command.

whos
Name Size Bytes Class
I 291x240 69840 uint8 array

1 Getting Started

Grand total is 69840 elements using 69840 bytes

For more information about image storage classes, see “Converting Between
Image Classes” on page 2-17.

Step 3: Improve Image Contrast

pout.tif is a somewhat low contrast image. To see the distribution of
intensities in pout.tif, you can create a histogram by calling the imhist
function. (Precede the call to imhist with the figure command so that the
histogram does not overwrite the display of the image I in the current figure
window.)

figure, imhist(I)

w00 T T T]
1400 - E
1200

1000 -

00

a0

400

200

]

0 0 100 150 200 250

Notice how the intensity range is rather narrow. It does not cover the
potential range of [0, 255], and is missing the high and low values that would
result in good contrast.

The toolbox provides several ways to improve the contrast in an image. One
way is to call the histeq function to spread the intensity values over the full
range of the image, a process called histogram equalization.

I2 = histeq(I);

Example 1 — Some Basic Concepts

Display the new equalized image, 12, in a new figure window.

figure, imshow(I2)

Equalized Version of pout.tif

Call imhist again to create a histogram of the equalized image I2. If you
compare the two histograms, the histogram of I2 is more spread out than
the histogram of I1.

figure, imhist(I2)

1800 1

1400 1

400 i

200 i

0 50 100 150 200 250

1 Getting Started

The toolbox includes several other functions that perform contrast
adjustment, including the imadjust and adapthisteq functions. See
“Intensity Adjustment” on page 11-34 for more information. In addition, the
toolbox includes an interactive tool, called the Adjust Contrast tool, that you
can use to adjust the contrast and brightness of an image displayed in the
Image Tool. To use this tool, call the imcontrast function or access the tool
from the Image Tool. For more information, see “Adjusting the Contrast and
Brightness of an Image” on page 4-36.

Step 4: Write the Image to a Disk File

To write the newly adjusted image I2 to a disk file, use the imwrite function.
If you include the filename extension '.png', the imwrite function writes
the image to a file in Portable Network Graphics (PNG) format, but you can
specify other formats.

imwrite (I2, 'pout2.png');

See the imwrite function reference page for a list of file formats it supports.
See also “Writing Image Data” on page 3-5 for a tutorial discussion on writing
images using Image Processing Toolbox.

Step 5: Check the Contents of the Newly Written File

To see what imwrite wrote to the disk file, use the imfinfo function.
imfinfo('pout2.png')

The imfinfo function returns information about the image in the file, such
as its format, size, width, and height. See “Getting Information About a
Graphics File” on page 3-2 for more information about using imfinfo.

ans =

Filename: 'pout2.png’
FileModDate: '29-Dec-2005 09:34:39'
FileSize: 36938
Format: 'png'
FormatVersion: []
Width: 240

Example 1 — Some Basic Concepts

Height:
BitDepth:
ColorType:
FormatSignature:
Colormap:
Histogram:
InterlaceType:
Transparency:
SimpleTransparencyData:
BackgroundColor:
RenderingIntent:
Chromaticities:
Gamma:
XResolution:
YResolution:
ResolutionUnit:
XOffset:
YOffset:
OffsetUnit:
SignificantBits:
ImageModTime:
Title:

Author:
Description:
Copyright:
CreationTime:
Software:
Disclaimer:
Warning:

Source:

Comment:
OtherText:

291

8
‘grayscale’
[137 80 78 71 13 10 26 10]
[]

[]
"'none’
'none’
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
'29 Dec 2005 14:34:39 +0000'
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

1-9

1 Getting Started

Example 2 — Advanced Topics

This example introduces some advanced image processing concepts. The
example calculates statistics about objects in the image but, before it performs
these calculations, it preprocesses the image to achieve better results. The
preprocessing involves creating a uniform background in the image and
converting the image into a binary image. The example breaks this process
into the following steps:

e “Step 1: Read and Display an Image” on page 1-11

e “Step 2: Estimate the Value of Background Pixels” on page 1-11

® “Step 3: View the Background Approximation as a Surface” on page 1-12
e “Step 4: Create an Image with a Uniform Background” on page 1-14

e “Step 5: Adjust the Contrast in the Processed Image” on page 1-14

e “Step 6: Create a Binary Version of the Image” on page 1-15

e “Step 7: Determine the Number of Objects in the Image” on page 1-16

e “Step 8: Examine the Label Matrix” on page 1-17

e “Step 9: Display the Label Matrix as a Pseudocolor Indexed Image” on
page 1-18

e “Step 10: Measure Object Properties in the Image” on page 1-19

e “Step 11: Compute Statistical Properties of Objects in the Image” on page
1-21

1-10

Example 2 — Advanced Topics

Step 1: Read and Display an Image

Clear the MATLAB workspace of any variables, close open figure windows,
and close all open Image Tools.

Read and display the grayscale image rice.png.

Grayscale Image rice.png

Step 2: Estimate the Value of Background Pixels

In the sample image, the background illumination is brighter in the

center of the image than at the bottom. In this step, the example uses a
morphological opening operation to estimate the background illumination.
Morphological opening is an erosion followed by a dilation, using the same
structuring element for both operations. The opening operation has the effect
of removing objects that cannot completely contain the structuring element.
For more information about morphological image processing, see Chapter 10,
“Morphological Operations”.

1-11

1 Getting Started

1-12

The example calls the imopen function to perform the morphological opening

operation and then calls the imshow function to view the results. Note how the
example calls the strel function to create a disk-shaped structuring element
with a radius of 15. To remove the rice grains from the image, the structuring
element must be sized so that it cannot fit entirely inside a single grain of rice.

Step 3: View the Background Approximation as a
Surface

Use the surf command to create a surface display of the background
approximation background. The surf command creates colored parametric
surfaces that enable you to view mathematical functions over a rectangular
region. The surf function requires data of class double, however, so you first
need to convert background using the double command.

The example uses MATLAB indexing syntax to view only 1 out of 8 pixels in
each direction; otherwise the surface plot would be too dense. The example
also sets the scale of the plot to better match the range of the uint8 data and
reverses the y-axis of the display to provide a better view of the data (the
pixels at the bottom of the image appear at the front of the surface plot).

In the surface display, [0, 0] represents the origin, or upper left corner of the
image. The highest part of the curve indicates that the highest pixel values
of background (and consequently rice.png) occur near the middle rows of
the image. The lowest pixel values occur at the bottom of the image and are
represented in the surface plot by the lowest part of the curve.

Example 2 — Advanced Topics

The surface plot is a Handle Graphics® object. You can use object properties to
fine-tune its appearance. For information on working with MATLAB graphics,
see the MATLAB graphics documentation.

250 4.

2000

1-13

1 Getting Started

Step 4: Create an Image with a Uniform Background

To create a more uniform background, subtract the background image,
background, from the original image, I, and then view the image.

Image with Uniform Background

Step 5: Adjust the Contrast in the Processed Image

After subtraction, the image has a uniform background but is now a bit too
dark. Use imadjust to adjust the contrast of the image.imadjust increases
the contrast of the image by saturating 1% of the data at both low and high
intensities of I2 and by stretching the intensity values to fill the uint8
dynamic range. See the reference page for imadjust for more information.

1-14

Example 2 — Advanced Topics

The following example adjusts the contrast in the image created in the
previous step and displays it.

Image After Intensity Adjustment

Step 6: Create a Binary Version of the Image

Create a binary version of the image so that you can use toolbox functions
to count the number of rice grains. Use the im2bw function to convert the
grayscale image into a binary image by using thresholding. The function
graythresh automatically computes an appropriate threshold to use to
convert the grayscale image to binary.

Binary Version of the Image

1-15

1 Getting Started

1-16

The binary image bw returned by im2bw is of class logical, as can be seen in
this call to whos. Image Processing Toolbox uses logical arrays to represent
binary images. For more information, see “Binary Images” on page 2-8.

whos

MATLAB responds with

Name Size Bytes Class

I 256x256 65536 uint8 array
I2 256x256 65536 uint8 array
I3 256x256 65536 uint8 array
background 256x256 65536 uint8 array
bw 256x256 65536 logical array
level 1x1 8 double array

Grand total is 327681 elements using 327688 bytes

Step 7: Determine the Number of Objects in the
Image

After converting the image to a binary image, you can use the bwlabel
function to determine the number of grains of rice in the image. The bwlabel
function labels all the components in the binary image bw and returns the
number of components it finds in the image in the output value, numObjects.

The accuracy of the results depends on a number of factors, including

¢ The size of the objects

e Whether or not any objects are touching (in which case they might be
labeled as one object)

¢ The accuracy of the approximated background

¢ The connectivity selected. The parameter 4, passed to the bwlabel
function, means that pixels must touch along an edge to be considered
connected. For more information about the connectivity of objects, see
“Pixel Connectivity” on page 10-22.

Example 2 — Advanced Topics

Step 8: Examine the Label Matrix

To better understand the label matrix returned by the bwlabel function, this
step explores the pixel values in the image. There are several ways to get a
close-up view of pixel values. For example, you can use imcrop to select a
small portion of the image. Another way is to use toolbox Pixel Region tool to
examine pixel values. The following example displays the label matrix, using
imshow, and then starts a Pixel Region tool associated with the displayed
image.

By default, it automatically associates itself with the image in the current
figure. The Pixel Region tool draws a rectangle, called the pixel region
rectangle, in the center of the visible part of the image. This rectangle defines
which pixels are displayed in the Pixel Region tool. As you move the rectangle,
the Pixel Region tool updates the pixel values displayed in the window. For
more information about using the toolbox modular interactive tools, see
Chapter 5, “Building GUIs with Modular Tools”.

1-17

1 Getting Started

1-18

The following figure shows the Image Viewer with the Pixel Region rectangle
positioned over the edges of two rice grains. Note how all the pixels in the rice
grains have the values assigned by the bwlabel function and the background

pixels have the value 0 (zero).

Pixel Region rectangle

File Edit Wiew Insert Tools Desktop Window Help

DEedE k|aRame @ 0B =3

A8} Region displayed in Pixel Region Tool
k|
il
File Edit Window Help ~
ma?

| 70 | 70 | 70 | 70
.........................
| 70

| 70 | 7o

Pixel info: (181, 118) 70

Examining the Label Matrix with the Pixel Region Tool

Step 9: Display the Label Matrix as a Pseudocolor

Indexed Image

A good way to view a label matrix is to display it as a pseudocolor indexed

image. In the pseudocolor image, the number that identifies each object in the
label matrix maps to a different color in the associated colormap matrix. The

colors in the image make objects easier to distinguish.

Example 2 — Advanced Topics

To view a label matrix in this way, use the label2rgb function. Using this
function, you can specify the colormap, the background color, and how objects
in the label matrix map to colors in the colormap.

r "l - I 4
\ ~ 7
;\\"‘5‘\ ’/4
\) '| s

\-‘
.,/ -~ \ ~

YO

Label Matrix Displayed as Pseudocolor Image

Step 10: Measure Object Properties in the Image

The regionprops command measures object or region properties in an image
and returns them in a structure array. When applied to an image with labeled
components, it creates one structure element for each component.

The following example uses regionprops to create a structure array
containing some basic properties for labeled. When you set the properties
parameter to 'basic', the regionprops function returns three commonly
used measurements: area, centroid (or center of mass), and bounding box.
The bounding box represents the smallest rectangle that can contain a region,
or in this case, a grain of rice.

MATLAB responds with

graindata =

101x1 struct array with fields:
Area
Centroid
BoundingBox

1-19

Getting Started

1-20

To find the area of the 51st labeled component, access the Area field in the
51st element in the graindata structure array. Note that structure field
names are case sensitive.

returns the following results
ans =

140

To find the smallest possible bounding box and the centroid (center of mass)
for the same component, use this code:

graindata(51).BoundingBox, graindata(51).Centroid
ans =

107.5000 4.5000 13.0000 20.0000
ans =

114.5000 15.4500

Example 2 — Advanced Topics

Step 11: Compute Statistical Properties of Objects
in the Image

Now use MATLAB functions to calculate some statistical properties of the
thresholded objects. First use max to find the size of the largest grain. (In this
example, the largest grain is actually two grains of rice that are touching.)

returns
ans =

404

Use the find command to return the component label of the grain of rice
with this area.

returns
biggrain =

59

Find the mean of all the rice grain sizes.

returns
ans =

175.0396

1-21

1 Getting Started

Make a histogram containing 20 bins that show the distribution of rice grain
sizes. The histogram shows that the most common sizes for rice grains in this
image are in the range of 150 to 250 pixels.

o0 am 400 430

1-22

Getting Help

Getting Help

For more information about the topics covered in these exercises, read

the tutorial chapters that make up the remainder of this documentation.
For reference information about any of the Image Processing Toolbox
functions, see the online Chapter 17, “Functions — Alphabetical List”, which
complements the M-file help that is displayed in the MATLAB command
window when you type

help functionname

For example,

help imtool

This section covers the following topics:

¢ “Online Help” on page 1-23
¢ “Image Processing Demos” on page 1-23

e “MATLAB Newsgroup” on page 1-24

Online Help

The Image Processing Toolbox documentation is available online in both
HTML and PDF formats. To access the HTML help, select Help from the
menu bar of the MATLAB desktop. In the Help Navigator pane, click the
Contents tab and expand the Image Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents
tab of the Help browser and go to the link under “Printable Documentation
(PDF).” (Note that to view the PDF help, you must have Adobe’s Acrobat
Reader installed.)

Image Processing Demos

Image Processing Toolbox is supported by a full complement of demo
applications. These are very useful as templates for your own end-user
applications, or for seeing how to use and combine your toolbox functions for
powerful image analysis and enhancement.

1-23

1 Getting Started

1-24

To view all the Image Processing Toolbox demos, call the iptdemos function.
This displays an HTML page in the MATLAB Help browser that lists all
the Image Processing Toolbox demos.

You can also view this page by starting the MATLAB Help browser and
clicking the Demos tab in the Help Navigator pane. From the list of products
with demos, select Image Processing Toolbox.

The toolbox demos are located under the subdirectory

matlabroot\toolbox\images\imdemos

where matlabroot represents your MATLAB installation directory.

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the
MATLAB newsgroup (comp.soft-sys.matlab). This newsgroup gives you
access to an active MATLAB user community. It is an excellent way to seek
advice and to share algorithms, sample code, and M-files with other MATLAB
users.

Image Credits

Image Credits

This table lists the copyright owners of the images used in the Image
Processing Toolbox documentation.

Image Source

cameraman Copyright Massachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate, courtesy of
Alan W. Partin, M.D., Ph.D., Johns Hopkins
University School of Medicine.

circuit Micrograph of 16-bit A/D converter circuit,
courtesy of Steve Decker and Shujaat Nadeem,
MIT, 1993.

concordaerial and Visible color aerial photographs courtesy of

westconcordaerial mPower3/Emerge.

concordorthophoto and | Orthoregistered photographs courtesy
westconcordorthophoto | of Massachusetts Executive Office of
Environmental Affairs, MassGIS.

forest Photograph of Carmanah Ancient Forest,
British Columbia, Canada, courtesy of Susan
Cohen.

LAN files Permission to use Landsat data sets provided by
Space Imaging, LL.C, Denver, Colorado.

liftingbody Picture of M2-F1 lifting body in tow, courtesy of
NASA (Image number E-10962).

m83 MS83 spiral galaxy astronomical image courtesy

of Anglo-Australian Observatory, photography
by David Malin.

moon Copyright Michael Myers. Used with
permission.

saturn Voyager 2 image, 1981-08-24, NASA catalog
#PIA01364.

solarspectra Courtesy of Ann Walker. Used with permission.

1-25

1 Getting Started

Image Source

tissue Courtesy of Alan W. Partin, M.D., PhD., Johns
Hopkins University School of Medicine.

trees Trees with a View, watercolor and ink on paper,
copyright Susan Cohen. Used with permission.

1-26

Introduction

This chapter introduces you to the fundamentals of image processing using
MATLAB and Image Processing Toolbox.

Images in MATLAB and Image
Processing Toolbox (p. 2-2)

Image Types in the Toolbox (p. 2-7)

Converting Between Image Types
(p. 2-15)

Converting Between Image Classes
(p. 2-17)

Working with Image Sequences
(p. 2-19)

Image Arithmetic (p. 2-25)

How images are represented in
MATLAB and Image Processing
Toolbox

Fundamental image types supported
by Image Processing Toolbox

Converting between the image types

Converting image data from one
class to another

Working with sequences of images

Adding, subtracting, multiplying,
and dividing images

2 Introduction

Images in MATLAB and Image Processing Toolbox

The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. (Pixel is derived from picture element and usually denotes a single
dot on a computer display.)

For example, an image composed of 200 rows and 300 columns of different
colored dots would be stored in MATLAB as a 200-by-300 matrix. Some
images, such as truecolor images, require a three-dimensional array, where
the first plane in the third dimension represents the red pixel intensities,
the second plane represents the green pixel intensities, and the third plane
represents the blue pixel intensities. This convention makes working with
images in MATLAB similar to working with any other type of matrix data, and
makes the full power of MATLAB available for image processing applications.

Coordinate Systems

Locations in an image can be expressed in various coordinate systems,
depending on context. This section discusses the two main coordinate systems
used in Image Processing Toolbox and the relationship between them. These
two coordinate systems are described in

¢ “Pixel Coordinates” on page 2-3

e “Spatial Coordinates” on page 2-4
¢ “Using a Nondefault Spatial Coordinate System” on page 2-5

Images in MATLAB and Image Processing Toolbox

Pixel Coordinates

Generally, the most convenient method for expressing locations in an image is
to use pixel coordinates. In this coordinate system, the image is treated as

a grid of discrete elements, ordered from top to bottom and left to right, as
illustrated by the following figure.

1 2 3 c

-

r

Y

The Pixel Coordinate System

For pixel coordinates, the first component r (the row) increases downward,
while the second component ¢ (the column) increases to the right. Pixel
coordinates are integer values and range between 1 and the length of the
row or column.

There is a one-to-one correspondence between pixel coordinates and the
coordinates MATLAB uses for matrix subscripting. This correspondence
makes the relationship between an image’s data matrix and the way the
image is displayed easy to understand. For example, the data for the pixel
in the fifth row, second column is stored in the matrix element (5,2). You use
normal MATLAB matrix subscripting to access values of individual pixels.
For example, the MATLAB code

I(2,15)

returns the value of the pixel at row 2, column 15 of the image I.

2 Introduction

Spatial Coordinates

In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely
identified by a single coordinate pair, such as (5,2). From this perspective, a
location such as (5.3,2.2) is not meaningful.

At times, however, it is useful to think of a pixel as a square patch. From this
perspective, a location such as (5.3,2.2) is meaningful, and is distinct from
(5,2). In this spatial coordinate system, locations in an image are positions
on a plane, and they are described in terms of x and y (not r and ¢ as in
the pixel coordinate system).

The following figure illustrates the spatial coordinate system used for images.
Notice that y increases downward.

x
0.s 1 1. 2 235 3 3.5
| 1 | 1 | l N

0.5 1 1 1

1 1 1

1 1 1

17 i i i

1 1 1

1 1 1

B R e et

1 1 1

1 1 1

2 i i i

1 1 1

1 1 1

1 1 1

3 i : :

1 1 1

1 1 1

- R L
Y ¥

The Spatial Coordinate System

This spatial coordinate system corresponds closely to the pixel coordinate
system in many ways. For example, the spatial coordinates of the center point
of any pixel are identical to the pixel coordinates for that pixel.

There are some important differences, however. In pixel coordinates, the
upper left corner of an image is (1,1), while in spatial coordinates, this location
by default is (0.5,0.5). This difference is due to the pixel coordinate system’s
being discrete, while the spatial coordinate system is continuous. Also, the
upper left corner is always (1,1) in pixel coordinates, but you can specify a
nondefault origin for the spatial coordinate system. See “Using a Nondefault
Spatial Coordinate System” on page 2-5 for more information.

Images in MATLAB and Image Processing Toolbox

Another potentially confusing difference is largely a matter of convention: the
order of the horizontal and vertical components is reversed in the notation for
these two systems. As mentioned earlier, pixel coordinates are expressed as
(r,c), while spatial coordinates are expressed as (x,y). In the reference pages,
when the syntax for a function uses r and c, it refers to the pixel coordinate
system. When the syntax uses x and vy, it refers to the spatial coordinate
system.

Using a Nondefault Spatial Coordinate System

By default, the spatial coordinates of an image correspond with the pixel
coordinates. For example, the center point of the pixel in row 5, column 3
has spatial coordinates x=3, y=5. (Remember, the order of the coordinates

is reversed.) This correspondence simplifies many of the toolbox functions
considerably. Several functions primarily work with spatial coordinates
rather than pixel coordinates, but as long as you are using the default spatial
coordinate system, you can specify locations in pixel coordinates.

In some situations, however, you might want to use a nondefault spatial
coordinate system. For example, you could specify that the upper left corner
of an image is the point (19.0,7.5), rather than (0.5,0.5). If you call a function
that returns coordinates for this image, the coordinates returned will be
values in this nondefault spatial coordinate system.

To establish a nondefault spatial coordinate system, you can specify the XData
and YData image properties when you display the image. These properties
are two-element vectors that control the range of coordinates spanned by the
image. By default, for an image A, XData is [1 size(A,2)], and YData is

[1 size(A,1)].

For example, if A is a 100 row by 200 column image, the default XData is

[1 200], and the default YDatais [1 100]. The values in these vectors are
actually the coordinates for the center points of the first and last pixels (not
the pixel edges), so the actual coordinate range spanned is slightly larger;
for instance, if XData is [1 200], the x-axis range spanned by the image is
[0.5 200.5].

2 Introduction

These commands display an image using nondefault XData and YData.

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];

image (A, 'XData',x, 'YData',y), axis image, colormap(jet(25))

TS

[

123
1 L] Al et I = Fa R Era] i A #d

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

Image Types in the Toolbox

Image Types in the Toolbox

Image Processing Toolbox defines four basic types of images, summarized

in the following table. These image types determine the way MATLAB
interprets data matrix elements as pixel intensity values. The sections that
follow provide more information about each image type. See also “Converting
Between Image Types” on page 2-15.

Image Type

Interpretation

Binary
(Also known as a
bilevel image)

Logical array containing only Os and 1s, interpreted
as black and white, respectively. See “Binary
Images” on page 2-8 for more information.

Indexed
(Also known as a
pseudocolor image)

Array of class logical, uint8, uint16, single, or

double whose pixel values are direct indices into a
colormap. The colormap is an m-by-3 array of class
double.

For single or double arrays, integer values range
from [1, p]. For logical, uint8, or uint16 arrays,
values range from [0, p-1]. See “Indexed Images” on
page 2-8 for more information.

Grayscale

(Also known as an
intensity, gray scale,
or gray level image)

Array of class uint8, uint16, int16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from
[0, 1]. For uint8, values range from [0,255]. For
uint16, values range from [0, 65535]. For int16,
values range from [-32768, 32767]. See “Grayscale
Images” on page 2-10 for more information.

Truecolor
(Also known as an
RGB image)

m-by-n-by-3 array of class uint8, uint16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from

[0, 1]. For uint8, values range from [0, 255]. For
uint16, values range from [0, 65535]. See “Truecolor
Images” on page 2-11 for more information.

2 Introduction

Binary Images

In a binary image, each pixel assumes one of only two discrete values: 1
or 0. A binary image is stored as a 1logical array. By convention, this
documentation uses the variable name BW to refer to binary images.

The following figure shows a binary image with a close-up view of some of
the pixel values.

e el

|l Al Ll Rl el
I
[N

|

= L

i

Fle e

Pixel Values in a Binary Image

Indexed Images

An indexed image consists of an array and a colormap matrix. The pixel
values in the array are direct indices into a colormap. By convention, this
documentation uses the variable name X to refer to the array and map to refer
to the colormap.

The colormap matrix is an m-by-3 array of class double containing
floating-point values in the range [0,1]. Each row of map specifies the red,
green, and blue components of a single color. An indexed image uses direct
mapping of pixel values to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an index into map.

Image Types in the Toolbox

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. After you read the image
and the colormap into the MATLAB workspace as separate variables, you
must keep track of the association between the image and colormap. However,
you are not limited to using the default colormap--you can use any colormap
that you choose.

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
single or double, it normally contains integer values 1 through p, where p is
the length of the colormap. the value 1 points to the first row in the colormap,
the value 2 points to the second row, and so on. If the image matrix is of class
logical, uint8 or uint16, the value 0 points to the first row in the colormap,
the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the
figure, the image matrix is of class double, so the value 5 points to the fifth
row of the colormap.

14 17 21 21 53

5 BEE3E 10 30 15

mage Courtesy ol Susan Cohen

Pixel Values Index to Colormap Entries in Indexed Images

2 Introduction

2-10

Grayscale Images

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data
matrix whose values represent intensities within some range. MATLAB
stores a grayscale image as a individual matrix, with each element of the
matrix corresponding to one image pixel. By convention, this documentation
uses the variable name I to refer to grayscale images.

The matrix can be of class uint8, uint16, int16, single, or double.While
grayscale images are rarely saved with a colormap, MATLAB uses a colormap
to display them.

For a matrix of class single or double, using the default grayscale colormap,
the intensity 0 represents black and the intensity 1 represents white. For a
matrix of type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax (class(I)) represents white.

The figure below depicts a grayscale image of class double.

g 0.2563 0.2826 0.2826 T3
U.5342 0.2051 0.2157 0.2826 0.3822 0.4351 0.438
0.5342 0.1785 0.1307 0.1789 0.2051 0.3256 0.2483
0,4308 0.2483 0.2624 0.3344 0.3344 0.2624 0.2548
d344 0.2624 0.3344 0,334 13—

Pixel Values in a Grayscale Image Define Gray Levels

Image Types in the Toolbox

Truecolor Images

A truecolor image is an image in which each pixel is specified by three values
— one each for the red, blue, and green components of the pixel’s color.
MATLAB store truecolor images as an m-by-n-by-3 data array that defines
red, green, and blue color components for each individual pixel. Truecolor
images do not use a colormap. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane
at the pixel’s location.

Graphics file formats store truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16
million colors. The precision with which a real-life image can be replicated
has led to the commonly used term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a
truecolor array of class single or double, each color component is a value
between 0 and 1. A pixel whose color components are (0,0,0) is displayed

as black, and a pixel whose color components are (1,1,1) is displayed as
white. The three color components for each pixel are stored along the third
dimension of the data array. For example, the red, green, and blue color
components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

2-11

2 Introduction

The following figure depicts a truecolor image of class double.

TT%35 0.1294 Blue 0.4

04 0.2802 0.0627 0.2202 0.2002 0.4
0.5804 ©0.0827 0.0627 0.0827 0.2235 0.2588
75176 0.1222 0.0627 Green p,1932 0.2588 0.258E

0.5176 ©0.1224 0.1608 0©.1224 0.71224 0.2588 0.2588(0
0.5176 ©0.1608 0.0627 0.1608 0.1222 0.2588 0.2588
.5480 0.2235 .5450 Red 0.7412 0.7765
0.3882 5176 0.5804 0.5804 O0.7765
0.2588 2802 0.2588 0.2235 0.4824
L1608 0.2588 0.2588 0.1608
L1608 0.2588 0.2588 0.2588

oo o o
oo oo o

The Color Planes of a Truecolor Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

2-12

Image Types in the Toolbox

To further illustrate the concept of the three separate color planes used in a
truecolor image, the code sample below creates a simple image containing
uninterrupted areas of red, green, and blue, and then creates one image for
each of its separate color planes (red, green, and blue). The example displays
each color plane image separately, and also displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

R=RGB(:,:,1);
G=RGB(:,:,2);
B=RGB(:,:,3);
imshow(R)

figure, imshow(G)
figure, imshow(B)
figure, imshow(RGB)

Red Pla-s Cres- Flane

3um Plena Cricinal Imege

The Separated Color Planes of an RGB Image

2-13

2 Introduction

2-14

Notice that each separated color plane in the figure contains an area of white.
The white corresponds to the highest values (purest shades) of each separate
color. For example, in the Red Plane image, the white represents the highest
concentration of pure red values. As red becomes mixed with green or blue,
gray pixels appear. The black region in the image shows pixel values that
contain no red values, i.e., R ==

Converting Between Image Types

Converting Between Image Types

You might need to convert an image from one type to another. For example, if
you want to filter a color image that is stored as an indexed image, you must
first convert it to truecolor format. When you apply the filter to the truecolor
image, MATLAB filters the intensity values in the image, as is appropriate. If
you attempt to filter the indexed image, MATLAB simply applies the filter

to the indices in the indexed image matrix, and the results might not be
meaningful.

Note When you convert an image from one format to another, the resulting
image might look different from the original. For example, if you convert a
color indexed image to a grayscale image, the resulting image is grayscale,
not color.

The following table lists all the image type conversion functions in Image
Processing Toolbox.

Function Description

dither Use dithering to convert a grayscale image to a binary
image or to convert a truecolor image to an indexed image

gray2ind Convert a grayscale image to an indexed image

grayslice Convert a grayscale image to an indexed image by using
multilevel thresholding

im2bw Convert a grayscale image, indexed image, or truecolor
image, to a binary image, based on a luminance threshold

ind2gray Convert an indexed image to a grayscale image

ind2rgb Convert an indexed image to a truecolor image

mat2gray Convert a data matrix to a grayscale image, by scaling
the data

rgb2gray Convert a truecolor image to a grayscale image

rgb2ind Convert a truecolor image to an indexed image

2-15

2 Introduction

2-16

You can perform certain conversions just using MATLAB syntax. For example,
you can convert a grayscale image to truecolor format by concatenating three
copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and
blue planes, so the image displays as shades of gray.

In addition to these standard conversion functions, there are other functions
that return a different image type as part of the operation they perform. For
example, the region of interest functions return a binary image that you can
use to mask an image for filtering or for other operations.

Color Space Conversions

Image Processing Toolbox represents colors as RGB values in both truecolor
and indexed images. However, there are other methods for representing
colors. For example, a color can be represented by its hue, saturation, and
value components (HSV). Different methods for representing colors are called
color spaces.

The toolbox provides functions to convert between color spaces. The image
processing functions themselves assume all color data is RGB, but you can
process an image that uses a different color space by first converting it to
RGB, and then converting the processed image back to the original color
space. For more information about color space conversion routines, see
Chapter 14, “Color”.

Converting Between Image Classes

Converting Between Image Classes

You can convert uint8 and uint16 image data to double using the MATLAB
double function. However, converting between classes changes the way
MATLAB and the toolbox interpret the image data. If you want the resulting
array to be interpreted properly as image data, you need to rescale or offset
the data when you convert it.

For easier conversion of classes, use one of these toolbox functions:
im2uint8, im2uint16, im2int16, im2single, or im2double. These functions
automatically handle the rescaling and offsetting of the original data of any
image class. For example, this command converts a double-precision RGB
image with data in the range [0,1] to a uint8 RGB image with data in the
range [0,255].

RGB2 = im2uint8(RGB1);

This section covers the following additional topics:

¢ “Losing Information in Conversions” on page 2-17

e “Converting Indexed Images” on page 2-17

Losing Information in Conversions

When you convert to a class that uses fewer bits to represent numbers, you
generally lose some of the information in your image. For example, a uint16
grayscale image is capable of storing up to 65,536 distinct shades of gray, but
a uint8 grayscale image can store only 256 distinct shades of gray. When
you convert a uint16 grayscale image to a uint8 grayscale image, im2uint8
quantizes the gray shades in the original image. In other words, all values
from O to 127 in the original image become 0 in the uint8 image, values from
128 to 385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage class
to another. In an indexed image, the image matrix contains only indices into
a colormap, rather than the color data itself, so no quantization of the color
data is possible during the conversion.

2-17

2 Introduction

2-18

For example, a uint16 or double indexed image with 300 colors cannot be
converted to uint8, because uint8 arrays have only 256 distinct values. If
you want to perform this conversion, you must first reduce the number of the
colors in the image using the imapprox function. This function performs the
quantization on the colors in the colormap, to reduce the number of distinct
colors in the image. See “Reducing Colors in an Indexed Image” on page 14-11
for more information.

Working with Image Sequences

Working with Image Sequences

Some applications work with collections of images related by time, such as
frames in a movie, or by view (spatial location), such as magnetic resonance
imaging (MRI) slices. These collections of images are referred to by a variety
of names, such as image sequences or image stacks.

The ability to create N-dimensional arrays can provide a convenient way to
store image sequences. For example, an m-by-n-by-p array can store an array
of p two-dimensional images, such as grayscale or binary images, as shown in
the following figure. An m-by-n-by-3-by-p array can store truecolor images
where each image is made up of three planes.

| - |maoge p
|mage Imoge 2

Imoge 1

Multidimensional Array Containing an Image Sequence

Many toolbox functions can operate on multi-dimensional arrays and,
consequently, can operate on image sequences. For example, if you pass a
multi-dimensional array to the imtransform function, it applies the same 2-D
transformation to all 2-D planes along the higher dimension.

Some toolbox functions that accept multi-dimensional arrays, however, do
not by default interpret an m-by-n-by-p or an m-by-n-by-3-by-p array as an
image sequence. To use these functions with image sequences, you must
use particular syntax and be aware of other limitations. The following table
lists these toolbox functions and provides guidelines about how to use them
to process image sequences. For more information about image sequence,
see these additional topics:

¢ “Example: Processing Image Sequences” on page 2-22

o “Multi-Frame Image Arrays” on page 2-23

2-19

2 Introduction

2-20

Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
bwlabeln m-by-n-by-p only Must use the bwlabeln(BW,conn)
syntax with a 2-D connectivity.
deconvblind m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
deconvlucy m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
edgetaper m-by-n-by-p or PSF argument can be either 1-D
m-by-n-by-3-by-p or 2-D.
entropyfilt m-by-n-by-p only nhood argument must be 2-D.
imabsdiff m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imadd m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size. Cannot add scalar to image
sequence.
imbothat m-by-n-by-p only SE argument must be 2-D.
imclose m-by-n-by-p only SE argument must be 2-D.
imdilate m-by-n-by-p only SE argument must be 2-D.
imdivide m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imerode m-by-n-by-p only SE argument must be 2-D.
imextendedmax | m-by-n-by-p only Must use the
imextendedmax(I,h,conn)
syntax with a 2-D connectivity.
imextendedmin | m-by-n-by-p only Must use the
imextendedmin(I,h,conn)
syntax with a 2-D connectivity.
imfilter m-by-n-by-p or With grayscale images, h can be

m-by-n-by-3-by-p

2-D. With truecolor images (RGB),
h can be 2-D or 3-D.

Working with Image Sequences

Image Sequence

Guideline When Used with an

Function Dimensions Image Sequence
imhmax m-by-n-by-p only Must use the imhmax(I,h,conn)
syntax with a 2-D connectivity.
imhmin m-by-n-by-p only Must use the imhmin(I,h,conn)
syntax with a 2-D connectivity.
imlincomb m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
immultiply m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imopen m-by-n-by-p only SE argument must be 2-D.
imregionalmax | m-by-n-by-p only Must use the
imextendedmax(I,conn)
syntax with a 2-D connectivity.
imregionalmin | m-by-n-by-p only Must use the
imextendedmin(I,conn)
syntax with a 2-D connectivity.
imtransform m-by-n-by-p or TFORM argument must be 2-D.
m-by-n-by-3-by-p
imsubtract m-by-n-by-p or Image sequences must be the same
m-by-n-by-3-by-p size.
imtophat m-by-n-by-p only SE argument must be 2-D.
padarray m-by-n-by-p or PADSIZE argument must be a
m-by-n-by-3-by-p two-element vector.
rangefilt m-by-n-by-p only NHOOD argument must be 2-D.
stdfilt m-by-n-by-p only NHOOD argument must be 2-D.

2-21

2 Introduction

Image Sequence | Guideline When Used with an
Function Dimensions Image Sequence

tformarray m-by-n-by-p or T must be 2-D to 2-D (compatible
m-by-n-by-3-by-p with imtransform).

R must be 2-D.

TDIMS_A and TDIMS_B

must be 2-D, i.e., [2 1] or

[1 2]

TSIZE_B must be a two-element
array [D1 D2], where D1 and D2
are the first and second transform
dimensions of the output space.
TMAP_B must be [TSIZE_B 2]

F can be a scalar or a p-by-1
array for m-by-n-by-p arrays, or
it can be a scalar, 1-by-p array,
3-by-1 array, or 3-by-p array, for
m-by-n-by-3-by-p arrays.

watershed m-by-n-by-p only Must use watershed(I,conn)
syntax with a 2-D connectivity.

Example: Processing Image Sequences

This example starts by reading a series of images from a directory into
the MATLAB workspace, storing the images in an m-by-n-by-p array. The
example then passes the entire array to the stdfilt function and performs
standard deviation filtering on each image in the sequence. Note that, to
use stdfilt with an image sequence, you must use the nhood argument,
specifying a 2-D neighborhood.

% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot, 'toolbox','images', 'imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirQutput.name}';

numFrames = numel(fileNames);

I = imread(fileNames{1});

% Preallocate the array

2-22

Working with Image Sequences

sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

% Create image sequence array
for p = 2:numFrames

sequence(:,:,p) = imread(fileNames{p});
end

% Process sequence
sequenceNew = stdfilt(sequence,ones(3));

% View results

figure;

for k = 1:numFrames
imshow(sequence(:,:,k));
title(sprintf('Original Image # %d',k));
pause(1);
imshow(sequenceNew(:,:,k),[1);
title(sprintf('Processed Image # %d',k));
pause(1);

end

Multi-Frame Image Arrays

The toolbox includes two functions, immovie and montage, that work with a
specific type of multi-dimensional array called a multi-frame array. In this
array, images, called frames in this context, are concatenated along the fourth
dimension. Multi-frame arrays are either m-by-n-by-1-by-p, for grayscale,
binary, or indexed images, or m-by-n-by-3-by-p, for truecolor images, where

p is the number of frames.

For example, a multi-frame array containing five, 480-by-640 grayscale or
indexed images would be 480-by-640-by-1-by-5. An array with five 480-by-640
truecolor images would be 480-by-640-by-3-by-5.

Note To process a multi-frame array of grayscale images as an image
sequence, as described in “Working with Image Sequences” on page 2-19, you
can use the squeeze function to remove the singleton dimension.

2-23

2 Introduction

You can use the cat command to create a multi-frame array. For example, the
following stores a group of images (A1, A2, A3, A4, and A5) in a single array.

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you
have a multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size
and have the same number of planes. In a multiframe indexed image, each
image must also use the same colormap.

2-24

Image Arithmetic

Image Arithmetic

Image arithmetic is the implementation of standard arithmetic operations,
such as addition, subtraction, multiplication, and division, on images. Image
arithmetic has many uses in image processing both as a preliminary step in
more complex operations and by itself. For example, image subtraction can
be used to detect differences between two or more images of the same scene
or object.

You can do image arithmetic using the MATLAB arithmetic operators. Image
Processing Toolbox also includes a set of functions that implement arithmetic
operations for all numeric, nonsparse data types. The toolbox arithmetic
functions accept any numeric data type, including uint8, uint16, and double,
and return the result image in the same format. The functions perform

the operations in double precision, on an element-by-element basis, but do
not convert images to double-precision values in the MATLAB workspace.
Overflow is handled automatically. The functions saturate return values to fit
the data type. For more information, see these additional topics:

¢ “Image Arithmetic Saturation Rules” on page 2-25

® “Nesting Calls to Image Arithmetic Functions” on page 2-26

Note On Intel architecture processors, the image arithmetic functions can
take advantage of the Intel Performance Primitives Library (IPPL), thus
accelerating their execution time. IPPL is only activated, however, when the
data passed to these functions is of specific classes. See the reference pages
for the individual arithmetic functions for more information.

Image Arithmetic Saturation Rules

The results of integer arithmetic can easily overflow the data type allotted
for storage. For example, the maximum value you can store in uint8 data is
255. Arithmetic operations can also result in fractional values, which cannot
be represented using integer arrays.

MATLAB arithmetic operators and the Image Processing Toolbox arithmetic
functions use these rules for integer arithmetic:

2-25

2 Introduction

2-26

® Values that exceed the range of the integer type are saturated to that range.

® Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including
Inf) are set to 255. The following table lists some additional examples.

Result Class Truncated Value
300 uint8 255

-45 uint8 0

10.5 uint8 11

Nesting Calls to Image Arithmetic Functions

You can use the image arithmetic functions in combination to perform a series
of operations. For example, to calculate the average of two images,

_A+E
C= 2

You could enter

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % not recommended

When used with uint8 or uint16 data, each arithmetic function rounds

and saturates its result before passing it on to the next operation. This can
significantly reduce the precision of the calculation. A better way to perform
this calculation is to use the imlincomb function. imlincomb performs all the
arithmetic operations in the linear combination in double precision and only
rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended

Reading and Writing Image
Data

This chapter describes how to get information about the contents of a graphics
file, read image data from a file, and write image data to a file, using standard

graphics and medical file formats.

Getting Information About a
Graphics File (p. 3-2)

Reading Image Data (p. 3-3)

Writing Image Data (p. 3-5)

Converting Graphics File Formats
(p. 3-8)

Reading and Writing Data in
Medical File Formats (p. 3-9)

Describes how to get information
about the contents of a graphics file
by reading the metadata contained
in the file

Describes how to read image data
from a file

Describes how to write image data
to a file

Describes how to change the file
format used to store an image

Describes how to import image data
into the MATLAB workspace and
write image data to graphics files

3 Reading and Writing Image Data

Getting Information About a Graphics File

The imfinfo function enables you to obtain information about a graphics file
and its contents. You can use imfinfo with any of the formats supported

by MATLAB. Use the imformats function to determine which formats are
supported.

Note You can also get information interactively about an image displayed in
the Image Tool — see “Getting Information About an Image” on page 4-34.

The information returned by imfinfo depends on the file format, but it always
includes at least the following:

Name of the file

File format

Version number of the file format

File modification date

File size in bytes

Image width in pixels

Image height in pixels

Number of bits per pixel

Image type: truecolor (RGB), grayscale (intensity), or indexed

See imfinfo for more information about getting information about graphics
files. For information about adding support for a new file format, see
imformats.

Reading Image Data

Reading Image Data

The imread function reads an image from any supported graphics image file
format, in any of the supported bit depths. Most image file formats use 8 bits
to store pixel values. When these are read into memory, MATLAB stores them
as class uint8. For file formats that support 16-bit data, PNG and TIFF,
MATLAB stores the images as class uint16.

For example, this code reads a truecolor image into the MATLAB workspace
as the variable RGB.

RGB = imread('football.jpg');

This code reads an indexed image with its associated colormap into the
MATLAB workspace in two separate variables.

[X,map] = imread('trees.tif');

Note For indexed images, imread always reads the colormap into a matrix
of class double, even though the image array itself may be of class uint8 or
uint16.

In these examples, imread infers the file format to use from the contents of the
file. You can also specify the file format as an argument to imread. MATLAB
supports many common graphics file formats, such as Microsoft Windows
Bitmap (BMP), Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), Portable Network Graphics (PNG), and Tagged
Image File Format (TIFF) formats. For the latest information concerning

the bit depths and/or image formats supported, see the reference pages for
the imread and imformats functions.

3 Reading and Writing Image Data

Reading Multiple Images from a Graphics File

MATLAB supports several graphics file formats, such as HDF and TIFF,
that can contain multiple images. By default, imread imports only the first
image from a file. To import additional images from the file, use the syntax
supported by the file format.

For example, when used with TIFF files, you can use an index value with
imread that identifies the image in the file you want to import. This example
reads a series of 27 images from a TIFF file and stores the images in a
four-dimensional array. You can use imfinfo to determine how many images
are stored in the file.

mri = uint8(zeros(128,128,1,27)); % preallocate 4-D array

for frame=1:27
[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

When a file contains multiple images that are related in some way, such as
a time sequence, you can store the images in MATLAB as a 4-D array. All
the images must be the same size. For more information, see “Working with
Image Sequences” on page 2-19.

Writing Image Data

Writing Image Data

The imwrite function writes an image to a graphics file in one of the
supported formats. The most basic syntax for imwrite takes the image
variable name and a filename. If you include an extension in the filename,
MATLAB infers the desired file format from it. (For more information, see the
reference page for the imwrite function.)

This example loads the indexed image X from a MAT-file, clown.mat, that
contains the data matrix and the associated colormap and then writes the
image to a BMP file.

load clown

whos
Name Size Bytes Class
X 200x320 512000 double array
caption 2x1 4 char array
map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes
imwrite (X, map, 'clown.bmp')
This section includes the following additional topics:

* “Specifying Additional Format-Specific Parameters” on page 3-5
® “Reading and Writing Binary Images in 1-Bit Format” on page 3-6
* “Determining the Storage Class of the Output File” on page 3-7

Specifying Additional Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional
parameters. For example, with PNG files, you can specify the bit depth as an
additional parameter. This example writes a grayscale image I to a 4-bit
PNG file.

imwrite(I, 'clown.png', 'BitDepth',4);

3 Reading and Writing Image Data

This example writes an image A to a JPEG file, using an additional parameter
to specify the compression quality parameter.

imwrite (A, 'myfile.jpg', 'Quality', 100);

For more information about the additional parameters associated with certain
graphics formats, see the reference pages for imwrite.

Reading and Writing Binary Images in 1-Bit Format

In certain file formats, a binary image can be stored in a 1-bit format. If
the file format supports it, MATLAB writes binary images as 1-bit images
by default. When you read in a binary image in 1-bit format, MATLAB
represents it in the workspace as a logical array.

This example reads in a binary image and writes it as a TIFF file. Because the
TIFF format supports 1-bit images, the file is written to disk in 1-bit format.

BW = imread('text.png');
imwrite (BW, 'test.tif');

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.
info = imfinfo('test.tif');

info.BitDepth
ans =

Note When writing binary files, MATLAB sets the ColorType field to
‘grayscale’.

Writing Image Data

Determining the Storage Class of the Output File

imwrite uses the following rules to determine the storage class used in the

output image.

Storage Class
of Image

Storage Class of Output Image File

logical

If the output image file format specified supports 1-bit
images, imwrite creates a 1-bit image file.

If the output image file format specified does not
support 1-bit images, imwrite converts the image to a
class uint8 grayscale image.

uint8

If the output image file format specified supports
unsigned 8-bit images, imwrite creates an unsigned
8-bit image file.

uinti6

If the output image file format specified supports
unsigned 16-bit images (PNG or TIFF), imwrite creates
an unsigned 16-bit image file.

If the output image file format specified does not
support 16-bit images, imwrite scales the image data to
class uint8 and creates an 8-bit image file.

int16

Partially supported; depends on file format.

single

Partially supported; depends on file format.

double

MATLAB scales the image data to uint8 and creates an
8-bit image file, because most image file formats use
8 bits.

3 Reading and Writing Image Data

Converting Graphics File Formats

To change the graphics format of an image, use imread to import the image
into the MATLAB workspace and then use the imwrite function to export the
image, specifying the appropriate file format.

To illustrate, this example uses the imread function to read an image in
bitmap (BMP) format into the workspace. The example then writes the
bitmap image to a file using Portable Network Graphics (PNG) format.

bitmap = imread('mybitmap.bmp', 'bmp');
imwrite(bitmap, 'mybitmap.png', 'png');

For the specifics of which bit depths are supported for the different graphics
formats, and for how to specify the format type when writing an image to file,
see the reference pages for imread and imwrite.

Reading and Writing Data in Medical File Formats

Reading and Writing Data in Medical File Formats

The Image Processing Toolbox includes support for working with image data
in the many commonly used medical file formats, described in the following
sections:

¢ “Reading Metadata from a DICOM File” on page 3-9
¢ “Reading Image Data from a DICOM File” on page 3-10

* “Writing Image Data or Metadata to a DICOM File” on page 3-11, including
an example that reads image data and metadata from a DICOM file,
modifies the image data, and writes the modified data to a new DICOM file

e “Using the Mayo Analyze 7.5 Format” on page 3-16
¢ “Using the Interfile Format” on page 3-17

Reading Metadata from a DICOM File

DICOM files contain metadata that provide information about the image
data, such as the size, dimensions, bit depth, modality used to create the data,
the equipment settings used to capture the image, and information about the
study. The DICOM specification defines many of these metadata fields, but
files can contain additional fields, called private metadata.

To read metadata from a DICOM file, use the dicominfo function. dicominfo
returns the information in a MATLAB structure where every field contains

a specific piece of DICOM metadata. You can use the metadata structure
returned by dicominfo to specify the DICOM file you want to read using
dicomread — see “Reading Image Data from a DICOM File” on page 3-10.

3-9

3 Reading and Writing Image Data

3-10

The following example reads the metadata from a sample DICOM file that

is included with the toolbox.

info = dicominfo('CT-MONO2-16-ankle.dcm')
info =
Filename: [1x47 char]
FileModDate: '24-Dec-2000 19:54:47'
FileSize: 525436
Format: 'DICOM'
FormatVersion: 3
Width: 512
Height: 512
BitDepth: 16
ColorType: 'grayscale'
SelectedFrames: []
FileStruct: [1x1 struct]
StartOfPixelData: 1140
MetaElementGroupLength: 192
FileMetaInformationVersion: [2x1 double]
MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'
MediaStorageSOPInstanceUID: [1x50 char]

TransferSyntaxUID:
ImplementationClassUID:

'1.2.840.10008.1.2"
'1.2.840.113619.6.5"

Reading Image Data from a DICOM File

To read image data from a DICOM file, use the dicomread function. The
dicomread function reads files that comply with the DICOM specification but
can also read certain common noncomplying files.

When using dicomread, you can specify the filename as an argument, as
in the following example. The example reads the sample DICOM file that

is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

Reading and Writing Data in Medical File Formats

You can also use the metadata structure returned by dicominfo to specify the
file you want to read, as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);

Viewing Images from DICOM Files

To view the image data imported from a DICOM file, use one of the toolbox
image display functions imshow or imtool. Note, however, that because
the image data in this DICOM file is signed 16-bit data, you must use the
autoscaling syntax with either display function to make the image viewable.

imshow(I, 'DisplayRange’',[])

Writing Image Data or Metadata to a DICOM File

To write image data or metadata to a file in DICOM format, use the
dicomwrite function. This example writes the image I to the DICOM file
ankle.dcm.

dicomwrite(I, 'h:\matlab\work\ankle.dcm')

3-11

3 Reading and Writing Image Data

3-12

Writing Metadata with the Image Data
When writing image data to a DICOM file, dicomwrite automatically
includes the minimum set of metadata fields required by the type of DICOM

information object (IOD) you are creating. dicomwrite supports the following
DICOM IODs with full validation.

¢ Secondary capture (default)
® Magnetic resonance

¢ Computed tomography

dicomwrite can write many other types of DICOM data (e.g. X-ray,
radiotherapy, nuclear medicine) to a file; however, dicomwrite does not
perform any validation of this data. See dicomwrite for more information.

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo. In the following example, the dicomwrite function writes the
relevant information in the metadata structure info to the new DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');
I = dicomread(info);
dicomwrite(I, 'h:\matlab\tmp\ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in
the info structure. When writing metadata to a file, there are certain fields
that dicomwrite must update. To illustrate, look at the instance ID in the
original metadata with the ID in the new file.

info.SOPInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244

Reading and Writing Data in Medical File Formats

Now, read the metadata from the newly created DICOM file, using dicominfo,
and check the SOPInstanceUID field. Note that they contain different values.

info2 = dicominfo('h:\matlab\tmp\ankle.dcm');
info2.SOPInstanceUID
ans =

1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Removing Confidential Information from a DICOM File

When using a DICOM file as part of a training set, blinded study, or a
presentation, you might want to remove confidential patient information, a
process called anonymizing the file. To do this, use the dicomanon function.

The dicomanon function creates a new series with new study values, changes
some of the metadata, and then writes the file. For example, you could replace
steps 4, 5, and 6 in the example in “Example: Creating a New Series” on page
3-13 with a call to the dicomanon function.

Example: Creating a New Series

When writing a modified image to a DICOM file, you might want to make the
modified image the start of a new series. In the DICOM standard, images
can be organized into series. When you write an image with metadata to a
DICOM file, dicomwrite puts the image in the same series by default. To
create a new series, you must assign a new DICOM unique identifier to the
SeriesInstanceUID metadata field. The following example illustrates this
process.

1 Read an image from a DICOM file into the MATLAB workspace.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions imshow or
imtool. Because the DICOM image data is signed 16-bit data, you must
use the autoscaling syntax.

imtool(I, 'DisplayRange’',[])

3-13

3 Reading and Writing Image Data

2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID
ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in
some way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in
the image. The pixels that form the white text characters are set to the
maximum pixel value.

max(I(:))
ans =

4080

3-14

Reading and Writing Data in Medical File Formats

min(I(:))
ans =
32

To remove these text characters, the example sets all pixels with the
maximum value to the minimum value.

Imodified = I;
Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified)

4 Generate a new DICOM unique identifier (UID) using the dicomuid
function. You need a new UID to write the modified image as a new series.

uid dicomuid

uid
1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.

3-15

3 Reading and Writing Image Data

3-16

5 Set the value of the SeriesInstanceUID field in the metadata associated
with the original DICOM file to the generated value.

info.SeriesInstanceUID = uid;

6 Write the modified image to a new DICOM file, specifying the modified
metadata structure, info, as an argument. Because you set the
SeriesInstanceUID value, the image you write is part of a new series.

dicomwrite(Imodified, 'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID
metadata field in the new file.

For information about the syntax variations that specify nondefault spatial
coordinates, see the reference page for imshow.

Using the Mayo Analyze 7.5 Format

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI
data. An Analyze 7.5 data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification, and processing history. You use the analyze75info function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use analyze75read to read the image
data into the MATLAB workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization
and the same filename extensions as the Interfile format; however, the file
formats are not interchangeable. To learn how to read data from an Interfile
data set, see “Using the Interfile Format” on page 3-17.

The following example calls the analyze75info function to read the metadata
from the Analyze 7.5 header file. The example then passes the info structure
returned by analyze75info to the analyze75read function to read the image

Reading and Writing Data in Medical File Formats

data from the image file. The file used in the example can be downloaded from
http://www.radiology.uiowa.edu/downloads/.

info = analyze75info('CT_HAND.hdr');
X = analyze75read(info);

Using the Interfile Format

Interfile is a file format that was developed for the exchange of nuclear
medicine image data.

An Interfile data set consists of two files:

e Header file (filename.hdr) — Provides information about dimensions,
identification and processing history. You use the interfileinfo function
to read the header information.

® Image file (filename.img) — Image data, whose data type and ordering
are described by the header file. You use interfileread to read the image
data into the MATLAB workspace.

Note The Interfile format uses the same dual-file data set organization and
the same filename extensions as the Analyze 7.5 format; however, the file
formats are not interchangeable. To learn how to read data from an Analyze
7.5 data set, see “Using the Mayo Analyze 7.5 Format” on page 3-16.

The following example calls the interfileinfo function to read the metadata
from the Interfile header file. The example then reads the image data from
the corresponding image file in the Interfile data set. The file used in the
example can be downloaded from http://www.keston.com/Phantoms/.

info = interfileinfo('dyna');
X = interfileread('dyna');

3-17

http://www.radiology.uiowa.edu/downloads/
http://www.keston.com/Phantoms/

3 Reading and Writing Image Data

3-18

Displaying and Exploring
Images

This chapter describes the image display and exploration tools provided by

Image Processing Toolbox.

Overview (p. 4-3)

Using imshow to Display Images
(p. 4-5)

Using the Image Tool to Explore
Images (p. 4-9)

Using Image Tool Navigation Aids
(p. 4-18)

Getting Information about the Pixels
in an Image (p. 4-24)

Measuring Features in an Image
(p. 4-31)

Getting Information About an Image
(p. 4-34)

Adjusting the Contrast and
Brightness of an Image (p. 4-36)

Viewing Multiple Images (p. 4-47)

Comparison of toolbox display
functions

How to use the imshow display
function

How to use the Image Tool integrated
display and exploration environment

Image Tool navigation aids including
the Overview tool, panning, and
zooming

Image Tool pixel information tools,
including the Pixel Region tool and
the Pixel Information tool

Image Tool includes the Distance
tool to measure regions in an image

Image Tool’s Image Information tool

Image Tool’s Adjust Contrast tool

Using imshow and imtool to view
multiple images

4 Displaying and Exploring Images

Displaying Different Image Types
(p. 4-51)

Special Display Techniques (p. 4-58)

Printing Images (p. 4-63)

Setting Toolbox Display Preferences
(p. 4-65)

Using imshow and imtool with each
image type

Using the colorbar, montage, and
warp functions

Print images from imshow and the
Image Tool

Setting toolbox preferences

Overview

Overview

Image Processing Toolbox includes two display functions, imshow and imtool.
Both functions work within the Handle Graphics architecture: they create
an image object and display it in an axes object contained in a figure object.
The toolbox functions automatically set the values of certain figure, axes, and
image object properties to control how the image data is displayed — see
“Understanding Handle Graphics Object Property Settings” on page 4-4.

imshow is the toolbox’s fundamental image display function. Use imshow when
you want to display any of the different image types supported by the toolbox,
such as grayscale (intensity), truecolor (RGB), binary, and indexed. For more
information, see “Using imshow to Display Images” on page 4-5. The imshow
function is also a key building block for image applications you might want to
create using the toolbox modular tools. For more information, see Chapter 5,
“Building GUIs with Modular Tools”.

The other toolbox display function, imtool, launches the Image Tool, which
presents an integrated environment for displaying images and performing
some common image processing tasks. The Image Tool provides all the image
display capabilities of imshow but also provides access to several other tools
for navigating and exploring images, such as scroll bars, the Pixel Region
tool, the Image Information tool, and the Adjust Contrast tool. For more
information, see “Using the Image Tool to Explore Images” on page 4-9.

In general, using the toolbox functions to display images is preferable to
using the MATLAB image display functions image and imagesc. The toolbox
functions are easier to use and are optimized for displaying images.

4 Displaying and Exploring Images

Understanding Handle Graphics Object Property

Settings

When you display an image, imshow and imtool set the Handle Graphics
properties that control how the image is displayed. The following table lists
the relevant properties and their settings for each image type. The table uses
standard toolbox terminology to refer to the various image types: X represents
an indexed image, I represents a grayscale image, BW represents a binary
image, and RGB represents a truecolor image.

Note Both imshow and imtool can perform automatic scaling of image

data. When called with the syntax imshow(I, 'DisplayRange',[]), and
similarly for imtool, the functions set the axes CLim property to [min(I(:))
max(I(:))]. CDataMapping is always scaled for grayscale images, so that
the value min(I(:)) is displayed using the first colormap color, and the value
max(I(:)) is displayed using the last colormap color.

Handle
Graphics
Property

Indexed
Images

Grayscale
Images

Binary Images

Truecolor
Images

CData (Image)

Set to the data in
X

Set to the data in
I

Set to data in BW

Set to data in RGB

CDataMapping Set to 'direct’ Set to 'scaled’ Set to 'direct’ Ignored when
(Image) CDatais 3-D
CLim (Axes) Does not apply double: [0 1] |Setto [0 1] Ignored when
uint8: [0 255] CData is 3-D
uinti6: [0
65535]
Colormap Set to data in map | Set to grayscale | Set to a grayscale | Ignored when
(Figure) colormap colormap whose | CData is 3-D

values range
from black to
white

Using imshow to Display Images

Using imshow to Display Images

You can use the imshow function to display an image that has already been
imported into the MATLAB workspace or to display an image stored in a
graphics file. For example, this code reads an image into the MATLAB
workspace and then displays it in a MATLAB figure window.

moon = imread('moon.tif');
imshow(moon) ;

The imshow function displays the image in a MATLAB figure window, as
shown in the following figure.

-ioix
-

File Edit Wiew Insert Tools Deskfop Window Help

e heaMe || 08O

Image Displayed in a Figure Window by imshow

4 Displaying and Exploring Images

The imshow filename syntax

imshow('moon.tif');

can be useful for scanning through images. Note, however, that when you
use this syntax, the image data is not stored in the MATLAB workspace. If
you want to bring the image into the workspace, you must use the getimage
function, which retrieves the image data from the current Handle Graphics
image object. For example,

moon = getimage;

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.

For more information about using imshow, see these additional topics.

® “Specifying the Initial Image Magnification” on page 4-6
® “Controlling the Appearance of the Figure” on page 4-7

For more information about using imshow to display the various image types
supported by the toolbox, see “Displaying Different Image Types” on page 4-51.

Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100%
magnification (one screen pixel for each image pixel). However, if an image
is too large to fit in a figure window on the screen at 100% magnification,
imshow scales the image to fit onto the screen and issues a warning message.

To override the default initial magnification behavior for a particular call to
imshow, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the
image does not fit on the screen at the specified magnification, imshow scales
the image to fit and issues a warning message. You can also specify the text

Using imshow to Display Images

string 'fit' as the initial magnification value. In this case, imshow scales the
image to fit the current size of the figure window.

You can also change the default initial magnification behavior of imshow
by setting the ImshowInitialMagnification toolbox preference. To make
this preference persist between sessions, include the command to set the
preference in your startup.m file. To learn more about toolbox preferences,
see “Setting the Values of Toolbox Preferences” on page 4-66.

When imshow scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the image
with a gray border. You can change this default and suppress the border using
the 'border' parameter with imshow, as shown in the following example.

imshow('moon.tif', ‘Border','tight"')

4-7

4 Displaying and Exploring Images

The following figure shows the same image displayed with and without a
border.

R
File Edit Wiew Insert Tools Desktop Window Help Ll _|EI|1|
DEldS | b | # = i"? o) | _EI | 0 E3 | =2 O File Edit Yiew Inserl Took Deskko Windoy Help ~

3

DEES| K RATS|

"tight'

'loose’

Image Displayed With and Without a Border

The 'border' parameters affects only the image being displayed in the call to
imshow. If you want all the images that you display using imshow to appear
without the gray border, set the Image Processing Toolbox ' ImshowBorder'
preference to 'tight'. When you set a preference, it affects only the current
MATLAB session. You can also use preferences to include a visible axes in
the figure. For more information about preferences, see “Setting Toolbox
Display Preferences” on page 4-65.

Using the Image Tool to Explore Images

Using the Image Tool to Explore Images

The Image Tool is an image display tool that also provides access to several
other related tools, such as the Pixel Region tool, the Image Information tool,
and the Adjust Contrast tool. The Image Tool also provides navigation aids
that can help explore large images, such as scroll bars, the Overview tool, pan
tool, and zoom buttons. The Image Tool presents an integrated environment
for displaying images and performing common image processing tasks.

For example, this code reads the image from the file moon.tif and then
displays it in the Image Tool.

imtool('moon.tif');

The following figure shows the image displayed in the Image Tool, with all of
the related tools active. For more information about using the Image Tool,
see the topics in the following list.

® “Opening the Image Tool” on page 4-11

* “Specifying the Initial Image Magnification” on page 4-12

* “Specifying the Colormap” on page 4-13

¢ “Importing Image Data from the Workspace” on page 4-15

e “Exporting Image Data to the Workspace” on page 4-16

e “Closing the Image Tool” on page 4-17

¢ “Printing the Image in the Image Tool” on page 4-17

For information about using the related tools that the Image Tool makes
available, see the following additional topics:

® “Using Image Tool Navigation Aids” on page 4-18

® “Getting Information about the Pixels in an Image” on page 4-24.

e “Measuring Features in an Image” on page 4-31

® “Getting Information About an Image” on page 4-34

¢ “Adjusting the Contrast and Brightness of an Image” on page 4-36

¢ “Displaying Different Image Types” on page 4-51

4 Displaying and Exploring Images

4-10

) Dverview (Imag

File Edit Window Help

=0l x|

) Image Tool 1 - mo:

File Tools ‘Window Help

=lol

x|

L]

L'l

ey

EREC OO 7 RAM

‘fi;|110%

[]

.} Pirel Regiol =10l x|

File Edit ‘Window Help £l

mE 7

Pixel info; (4, %) Intensity

Pixel info: (4, ¥ Intensity

Dizplay range: [65 214]

) Image Information {Image Tool) Adjust Contrast {Image Tool - |E||i|
File Edit ‘Window Help]
Image details {(Image Tool 1 - moontih Data Range Wincoyy Scale Display Range
Miritrurn: | 0| | 55 Whicith: 149
Attribute “alue Meimum; |2 | M _E’ - & Match Data Range

1 Wicth (columns) 33| || : £ |) =14 *"/* 140 £ Eliminate autliers: I 2 %
2 Height (rowes) 237 o]
3 Class uiritd 2 |
4 Image type intensity
3 inimurm intensity al ' T j
5] Maximum intensity 253 :
Metadata (maon. i [| : [|

Figldrame |
1 Filenatne| Wristtwvork shdeve L Wﬂ“ﬂuﬂﬂnﬂm- i||
2 FileModDate 0 50 100 150 200 250
3 FileSize Adjust the histogram above, or click and drag the mouse over the image.
.1 [=——

Image Tool and Related Tools

Using the Image Tool to Explore Images

Opening the Image Tool

To start the Image Tool, use the imtool function. You can also start another
Image Tool from within an existing Image Tool by using the New option
from the File menu.

The imtool function supports many syntax options. For example, when called
without any arguments, it opens an empty Image Tool.

imtool

To bring image data into this empty Image Tool, you can use either the Open
or Import from Workspace options from the File menu — see “Importing
Image Data from the Workspace” on page 4-15.

You can also specify the name of the MATLAB workspace variable that
contains image data when you call imtool, as follows:

moon = imread('moon.tif');
imtool(moon)

Alternatively, you can specify the name of the graphics file containing the
image. This syntax can be useful for scanning through graphics files.

imtool('moon.tif');

Note When you use this syntax, the image data is not stored in a MATLAB
workspace variable. To bring the image displayed in the Image Tool into
the workspace, you must use the getimage function or the Export from
Workspace option from the Image Tool File menu — see “Exporting Image
Data to the Workspace” on page 4-16.

For more information about these syntax, see the imtool function reference
page.

4-11

4 Displaying and Exploring Images

4-12

Specifying the Initial Image Magnification

Like imshow, the imtool function attempts to display an image in its entirety
at 100% magnification (one screen pixel for each image pixel). Unlike imshow,
imtool always honors the specified numeric magnification, showing only a
portion of the image if it is too big to fit in a figure on the screen and adding
scroll bars to allow navigation to parts of the image that are not currently
visible. If the specified magnification would make the image too large to fit on
the screen, imtool scales the image to fit, without issuing a warning. This

is the default behavior, specified by the imtool 'InitialMagnification’
parameter value 'adaptive'.

To override this default initial magnification behavior for a particular call to
imtool, specify the InitialMagnification parameter. For example, to view
an image at 150% magnification, use this code.

pout = imread('pout.tif');
imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value.
In this case, imtool scales the image to fit the default size of a figure window.

You can also change the default initial magnification behavior of imtool

by setting the ImtoolInitialMagnification toolbox preference. The
magnification value you specify affects every call to imtool for the current
MATLAB session. To make this preference persist between sessions, include
the command to set the preference in your startup.m file. To learn more
about toolbox preferences, see “Setting the Values of Toolbox Preferences”
on page 4-66.

When imtool scales an image, it uses interpolation to determine the values
for screen pixels that do not directly correspond to elements in the image
matrix. For more information, see .

Using the Image Tool to Explore Images

Specifying the Colormap

A colormap is a matrix that can have any number of rows, but must have three
columns. Each row in the colormap is interpreted as a color, with the first
element specifying the intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or a grayscale
image in the Image Tool, select the Choose Colormap option on the Tools
menu. This activates the Choose Colormap tool, shown below. Using this tool
you can select one of the MATLAB colormaps or select a colormap variable
from the MATLAB workspace.

When you select a colormap, the Image Tool executes the colormap function
you specify and updates the image displayed. You can edit the colormap
command in the Evaluate Colormap text box; for example, you can change
the number of entries in the colormap (default is 256). You can enter your own
colormap function in this field. Press Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you

click OK, the Image Tool applies the colormap and closes the Choose Colormap
tool. If you click Cancel, the image reverts to the previous colormap.

4-13

4 Displaying and Exploring Images

) Choose Colormap {Im I]
Choose from MATLAB Source
ED'DFWUIJS- — % MATLAB colormap functions

SpEtif]ﬂ — " ‘\Workspace variables

tolormup in the
WDFkSpUEB. Caolarmap functions:

| »

E0 (Rl
bone
colorcube —
ool |
copper

flag

Beolunten — pciete Colormnag: Icgg|(258)

eolormap function.

QK | Cancel |

Click OK to select the
eolormop ond elose the
tinlog box.

Choose Colormap Tool

4-14

Using the Image Tool to Explore Images

Importing Image Data from the Workspace

To import image data from the MATLAB workspace into the Image Tool, use
the Import from Workspace option on the Image Tool File menu. In the
dialog box, shown below, you select the workspace variable that you want to

import into the workspace.

The following figure shows the Import from Workspace dialog box. You can
use the Filter menu to limit the images included in the list to certain image
types, i.e., binary, indexed, intensity (grayscale), or truecolor.

Import From Workspace

Filter: IAII EM-bry-F, W-by-hl-bry-3) |

Yarighles:

2 ox3 dounle Y|
SElEETU circhir ZE0xE7E logical
workspate _— |uoom E37x3E8 wints
'.rur'll:lhle. peppers 384xblEx3 uints

=
QK Cancel |

x|

Import from Workspace Dialog Box

4-15

4 Displaying and Exploring Images

4-16

Exporting Image Data to the Workspace

To export the image displayed in the Image Tool to the MATLAB workspace,
you can use the Export to Workspace option on the Image Tool File menu.
In the dialog box, shown below, you specify the name you want to assign to the
variable in the workspace. By default, the Image Tool prefills the variable
name field with BW, for binary images, RGB, for truecolor images, and I for
grayscale or indexed images.

If the Image Tool contains an indexed image, this dialog box also contain a
field where you can specify the name of the associated colormap.

Spedfy nume of —

the 'ui'[]l’|-ES|JIJI:B Image variahle name:

vorighle, ———RGE
oo |

Export Image to Workspace Dialog Box

Using the getimage Function to Export Image Data

You can also use the getimage function to bring image data from the Image
Tool into the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current
Handle Graphics image object. Because, by default, the Image Tool does not
make handles to objects visible, you must use the toolbox function imgca to
get a handle to the image axes displayed in the Image Tool. For example,

moon = getimage(imgca);

assigns the image data from moon.tif to the variable moon if the figure
window in which it is displayed is currently active.

Using the Image Tool to Explore Images

Closing the Image Tool

To close the Image Tool window, use the Close button in the window title bar
or select the Close option from the Image Tool File menu. You can also use
the imtool function to return a handle to the Image Tool and use the handle
to close the Image Tool. When you close the Image Tool, any related tools that
are currently open also close.

Because the Image Tool does not make the handles to its figure objects
visible, the Image Tool does not close when you call the MATLAB close all
command. If you want to close multiple Image Tools, use the syntax

imtool close all

or select Close all from the Image Tool File menu.

Printing the Image in the Image Tool

To print the image displayed in the Image Tool, select the Print to Figure
option from the File menu. The Image Tool opens another figure window and
displays the image. Use the Print option on the File menu of this figure
window to print the image. See “Printing Images” on page 4-63 for more
information.

4-17

4 Displaying and Exploring Images

4-18

Using Image Tool Navigation Aids

If an image is large or viewed at a large magnification, the Image Tool
displays only a portion of the entire image. When this occurs, the Image Tool
includes scroll bars to allow navigation around the image. In some cases,
scroll bars might not be sufficient. To help navigate large images, the Image
Tool includes the following navigation aids:

® QOverview tool — Provides a view of the entire image to help you understand
which portion of the image is currently displayed in the Image Tool. See
“Overview Navigation” on page 4-18 for more information.

¢ Pan tool — Lets you click and grab the image displayed and move it in the
Image Tool. See “Panning the Image Displayed in the Image Tool” on page
4-21 for more information.

® Zoom tools — Lets you zoom in or out on the image. See “Zooming In and
Out on an Image” on page 4-22 for more information.

e Magnification Box — Lets you specify the exact magnification of the image.
See “Specifying the Magnification of the Image” on page 4-22 for more
information.

Overview Navigation

To get an overview of the image displayed in the Image Tool, use the Overview
tool. The Overview tool displays a view of the entire image, scaled to fit, in a
separate window. Superimposed over this view of the image is a rectangle,
called the detail rectangle. The detail rectangle shows which part of the image
is currently visible in the Image Tool window. You can change the portion of
the image visible in the Image Tool by moving the detail rectangle over the
image in the Overview tool.

The following figure shows the Image Tool with the Overview tool.

Using Image Tool Navigation Aids

Overview -} Image Tool _(o] x|
navigotion File Tools ‘Window Help -
tool button ————— [By & & @ @ |@laiﬂ?*55|wu% LI

i x

File Edit ‘Window Help N

Overview
novigation
tool

Detuil
rectongle

Pizel info: (80,1203 3 Display range: [0 255]

Image Tool with Overview Tool

The following sections provide more information about using the Overview
tool.

e “Starting the Overview Tool” on page 4-19

® “Using the Overview Tool” on page 4-20

* “Specifying the Color of the Detail Rectangle” on page 4-20

® “Getting the Position and Size of the Detail Rectangle” on page 4-20

* “Printing the View of the Image in the Overview Tool” on page 4-21

Starting the Overview Tool

The Overview tool starts automatically when you start the Image Tool. For
example, execute the following command.

imtool('moon.tif")

4-19

4 Displaying and Exploring Images

4-20

You can also start the Overview tool by clicking the Overview button L in
the Image Tool toolbar or by selecting the Overview option from the Tools
menu in the Image Tool.

Using the Overview Tool

To use the Overview tool to explore an image displayed in the Image Tool,
follow this procedure:

1 Start the Overview tool by clicking the Overview button L3 in the Image
Tool toolbar or by selecting Overview from the Tools menu. The Overview
tool opens in a separate window containing a view of the entire image,
scaled to fit.

The Image Tool opens the Overview tool, by default. If the Overview tool is
already active, clicking the Overview button brings the tool to the front of
the windows open on your screen.

2 Using the mouse, move the cursor into the detail rectangle. The cursor

changes to the fleur shape, **.

3 Press and hold the mouse button to drag the detail rectangle anywhere on
the image. The Image Tool updates the view of the image to make the
specified region visible.

Specifying the Color of the Detail Rectangle

By default, the color of the detail rectangle in the Overview tool is blue. You
might want to change the color of the rectangle to achieve better contrast
with the predominant color of the underlying image. To do this, right-click
anywhere inside the boundary of the detail rectangle and select a color from
the Set Rectangle Color option on the context menu.

Getting the Position and Size of the Detail Rectangle

To get the current position and size of the detail rectangle, right-click
anywhere inside it and select Copy Position from the context menu. You can
also access this option from the Edit menu of the Overview tool.

This option copies the position information to the clipboard. The position
information is a vector of the form [xmin ymin width height]. To paste

Using Image Tool Navigation Aids

this position vector into the MATLAB workspace or another application,
right-click and select Paste from the context menu.

Printing the View of the Image in the Overview Tool

You can print the view of the image displayed in the Overview tool. Select
the Print to Figure option from the Overview tool File menu. See “Printing
Images” on page 4-63 for more information.

Panning the Image Displayed in the Image Tool

To change the portion of the image displayed in the Image Tool, you can
use the Pan tool to move the image displayed in the window. This is called
panning the image.

To pan an image displayed in the Image Tool,

1 Click the Pan tool button |ﬂ| in the toolbar or select Pan from the Tools
menu. When the Pan tool is active, a checkmark appears next to the Pan
selection in the menu.

2 Move the cursor over the image in the Image Tool, using the mouse. The
cursor changes to an open-hand shape 7.

3 Press and hold the mouse button and drag the image in the Image Tool.
When you drag the image, the cursor changes to the closed-hand shape /.

4 To turn off panning, click the Pan tool button again or click the Pan option
in the Tools menu.

Note As you pan the image in the Image Tool, the Overview tool updates the
position of the detail rectangle — see “Overview Navigation” on page 4-18.

4-21

4 Displaying and Exploring Images

4-22

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, use the Zoom buttons on the toolbar. (You can also zoom
in or out on an image by changing the magnification — see “Specifying the
Magnification of the Image” on page 4-22.)

To zoom in or zoom out on an image,

1 Click the appropriate magnifying glass button in the Image Tool toolbar
or select the Zoom In or Zoom Out option in the Tools menu. When the
Zoom tool is active, a checkmark appears next to the appropriate Zoom
selection in the menu.

Zoom in Zoom out
& | a|

2 Move the cursor over the image you want to zoom in or out on, using the
mouse. The cursor changes to the appropriate magnifying glass icon.
With each click, the Image Tool changes the magnification of the image,
centering the new view of the image on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed
in the magnification edit box changes and the Overview window updates
the position of the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it or
click the Zoom option in the Tools menu.

Specifying the Magnification of the Image

To enlarge an image to get a closer look or to shrink an image to see the
whole image in context, you can use the magnification edit box, shown in the
following figure. (You can also use the Zoom buttons to enlarge or shrink
an image. See “Zooming In and Out on an Image” on page 4-22 for more
information.)

Using Image Tool Navigation Aids

Magnification edit box Magnification me nu
«) Image Tool 1 - moon =10l]
File Tools ‘Window Help ~

§30@|@\@\{"?‘3i;|100%l LI

| Fit to wincow

Pixel info: (339, 111) 2 Dizplay range: [0 255]

Image Tool Magnification Edit Box and Menu

To change the magnification of an image,

1 Move the cursor into the magnification edit box. The cursor changes to
the text entry cursor.

2 Type a new value in the magnification edit box and press Enter. The
Image Tool changes the magnification of the image and displays the new
view in the window.

You can also specify a magnification by clicking the menu associated with
the magnification edit box and selecting from a list of preset magnifications.
If you choose the Fit to Window option, the Image Tool scales the image
so that the entire image is visible.

4-23

4 Displaying and Exploring Images

4-24

Getting Information about the Pixels in an Image

Often, you need to get information about the pixels in an image, such as
their location and value. The Image Tool provides several ways to get this
information, including:

¢ Pixel Information tool — Displays the location and value of the pixel under
the cursor in the Image Tool window. See “Determining the Value of
Individual Pixels” on page 4-24 for more information.

* Display Range tool — Displays the display range of the image in the Image
Tool window. See “Getting the Display Range of an Image” on page 4-26
for more information.

¢ Pixel Region tool — Displays an extreme close-up view of the pixels in
a specific region of an image. See “Viewing Pixel Values with the Pixel
Region Tool” on page 4-27 for more information.

Determining the Value of Individual Pixels

The Image Tool provides information about the location and value of
individual pixels in an image. This information is displayed in the Pixel
Information tool at the bottom left corner of the Image Tool window. The
pixel value and location information represent the pixel under the current
location of the cursor. The Image Tool updates this information as you move
the cursor over the image.

For example, view an image in the Image Tool.

imtool('moon.tif")

Getting Information about the Pixels in an Image

The following figure shows the Image Tool with pixel location and value
displayed in the Pixel Information tool. For more information, see “Saving the
Pixel Value and Location Information” on page 4-25.

+) Image Tool 1 - moon i

File Tools ‘Window Help a

bk & O ﬁ?|@la@?'3b|1uu%l

Pixel
informution
tool

Pizel info: (282, 117) 62 Display range: [0 253]

Pixel Information in Image Tool

Saving the Pixel Value and Location Information

To save the pixel location and value information displayed, right-click a pixel
in the image and choose the Copy pixel info option. The Image Tool copies
the x- and y-coordinates and the pixel value to the clipboard.

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

4-25

4 Displaying and Exploring Images

4-26

Getting the Display Range of an Image

The Image Tool provides information about the display range of pixels in a
grayscale image. The display range is the value of the axes CLim property,
which controls the mapping of image CData to the figure colormap. CLim is

a two-element vector [cmin cmax] specifying the CData value to map to the
first color in the colormap (cmin) and the CData value to map to the last color
in the colormap (cmax). Data values in between are linearly scaled.

The Image Tool displays this information in the Display Range tool at the
bottom right corner of the window. The Image Tool does not show the display

range for indexed, truecolor, or binary images.

For example, view an image in the Image Tool.

imtool('moon.tif")

The following figure shows the Image Tool displaying the image with display
range information.

<) Image Tool 1 - moon i =]
k]

File Tools Window Help

B¢ 80 7 &Y 5% 0y

Pixel info: (282, 117) 62 Display range: [0 255]—— Displuy Range ool

Display Range Information in Image Tool

Getting Information about the Pixels in an Image

Viewing Pixel Values with the Pixel Region Tool

To view the values of pixels in a specific region of an image displayed in the
Image Tool, use the Pixel Region tool. The Pixel Region tool superimposes a
rectangle, called the pixel region rectangle, over the image displayed in the
Image Tool. This rectangle defines the group of pixels that are displayed, in
extreme close-up view, in the Pixel Region tool window. The following figure
shows the Image Tool with the Pixel Region tool.

) Image Tool 1 - moon.tif 101 =l
Pixel Regiun File Tools ‘Window Help a

toolbor button & 00 % |@l &, *f*nlmu%

) Pixel Region {(Image Tool 1) 1O =l
a

File Edit ‘Window Help
Pixel Region

tool

mE 7

Pixel region
rectungle

——

Pizel info: (X, ¥ Intensity Dizplay range: [0 255]

Image Tool with Pixel Region Tool and Pixel Region Rectangle

The following sections provide more information about using the Pixel Region
tool.

¢ “Starting the Pixel Region Tool” on page 4-28
® “Selecting a Region” on page 4-28

4-27

4 Displaying and Exploring Images

4-28

e “Customizing the View” on page 4-29
® “Determining the Location of the Pixel Region Rectangle” on page 4-29
¢ “Printing the View of the Image in the Pixel Region Tool” on page 4-30

Starting the Pixel Region Tool

To start the Pixel Region tool, click the Pixel Region button in the Image
Tool toolbar or by selecting the Pixel Region option from the Tools menu in
the Image Tool.

Selecting a Region
To examine pixels in specific regions of an image, use the Pixel Region
rectangle, as follows:

1 Start the Pixel Region tool by clicking the Pixel Region button in the
Image Tool toolbar or by selecting the Pixel Region option from the Tools

menu. The Image Tool displays the pixel region rectangle T in the center
of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part
of the image that is currently displayed. To bring the pixel region rectangle
back to the center of the part of the image that is currently visible, click
the Pixel Region button again. For help finding the Pixel Region tool in
large images, see “Determining the Location of the Pixel Region Rectangle”
on page 4-29.

2 Using the mouse, position the pointer over the pixel region rectangle. The
pointer changes to the fleur shape, <.

3 Click the left mouse button and drag the pixel region rectangle to any part
of the image. As you move the pixel region rectangle over the image, the
Pixel Region tool updates the pixel values displayed. You can also move
the pixel region rectangle by moving the scroll bars in the Pixel Region
tool window.

Getting Information about the Pixels in an Image

Customizing the View

The pixel region rectangle defines the group of pixels that are displayed in the
Pixel Region tool. To view a larger region, grab any side of the Pixel Region
tool figure window and resize it, or use the zoom tools in the Pixel Region
toolbar to zoom in or out on the image.

The Pixel Region tool displays the pixels at high magnification, overlaying
each pixel with its numeric value. For RGB images, this information includes
three numeric values, one for each band of the image. For indexed images,
this information includes the index value and the associated RGB value.

If you would rather not see the numeric values in the display, go to the Pixel
Region tool Edit menu and clear the Superimpose Pixel Values option.

=) Pixel Region (Image Tool 1} - |EI|1|

FI|E Edit ‘Window Hel u
Deselect fo . v
s ppress pixel
value displuy. 7 DT -
41195 207 (212 |0z 188 | 193 188 189 190, EE= T2 6T 162 1

_L__J___,___r__1___+___L__J___,___r__j___,___L__J___+

3196 211-221 |z16 205 195 | 189 193, (196 188 173 16T | 185 157 i1

_.___,__1___1___L__ﬁ___.___,__ﬁ___a___L__ﬁ___,___h__ﬁ_

3197 (206|214 /209197 193 {195 192 (204183 159 160 158 155 1

_?.-.r__J.--+__.p.-J__-V-._r_-J--_+_--p-.J_-.T.-_r_.J-

71192 199 202 {18219z | 87 193 195 187 72183 ST ST 151 1

.L__.l---a---,—---|---a---L__.l---a---l----i---o---L-__l...

4188 192, 1190180180 (188 | a4 194173 164 164 152 151 146

—|———+———,———J———l———|————c———+———,———J———l———r——«———

31185 186|183 185189 192 1190 120 168 189 155 147 145

ﬁ_--T--_L_-q--_+_..L._ﬁ_..T.__L--q-__+---L__

1186 181 182, 187 182 | 193 181 171169, 186 152 146

-L--J---'---r--1---+---L--J---'---r--ﬁ---'---

Pixel Region Tool Edit Menu

Determining the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you
can use the pixel information given at the bottom of the tool. This information
includes the x- and y-coordinates of pixels in the target image coordinate
system. When you move the pixel region rectangle over the target image, the
pixel information given at the bottom of the tool is not updated until you move
the cursor back over the Pixel Region tool.

4-29

4 Displaying and Exploring Images

4-30

You can also retrieve the current position of the pixel region rectangle by
selecting the Copy Position option from the Pixel Region tool Edit menu.
This option copies the position information to the clipboard. The position

information is a vector of the form [xmin ymin width height].

To paste this position vector into the MATLAB workspace or another
application, right-click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.

-} Pizel Region (Image Tool 1} - |EI|5|

i i File |Edit Window Hel
Get pixel region ile | Edit Window Help N

recngle position ——— o I

Fivee W Supetimpase Pixel Yalues T e

- *---*---L--ﬂ---r-

41195 207 212 |zo2 198 11932 182 129 190, 1122177 T2 6T 162

_L__J___+___r__1___+___L__J___.___r__1___ =

-|---o---'---_l...J._--l_---c---o---'----I ________

_+___h__j___1___L__1___,___P__ ________
3i 1?8 '17-'? 194 199 198 188 '17-'4 162
. L DT DR A I
Location of pixel in Eims _re
the torget imoge —— pixel info: (140, 272) 194

Pixel Region Rectangle Location Information

Printing the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select

the Print to Figure option from the Pixel Region tool File menu. See
“Printing Images” on page 4-63 for more information.

Measuring Features in an Image

Measuring Features in an Image

This section describes how to use the Distance tool to calculate the Euclidean
distance between two points in an image displayed in the Image Tool. Topics
covered include:

¢ “Using the Distance Tool” on page 4-31

¢ “Exporting Endpoint and Distance Data” on page 4-32

® “Customizing the Appearance of the Distance Tool” on page 4-33

Using the Distance Tool
To use the Distance tool, follow this procedure.

1 Display an image in the Image Tool.

imtool('moon.tif"')

2 Click the Distance tool button < in the Image Tool toolbar or select
Distance Tool from the Tools menu. The Distance tool appears as a
horizontal line displayed over the image, as shown in the following figure.

The Distance tool displays the distance between the two endpoints of the
line in a label superimposed over the line. The tools specifies the distance
in data units determined by the XData and YData properties, which is
pixels, by default.

4-31

4 Displaying and Exploring Images

4-32

<) Image Tool 1 - moon _ Ol x|
k]

File Tools MWindow Help

§30?|@la@°55|100% =

Distance 1ool

Label disploying
distance between
the endpoints

Pixelinfo: (160,121) 196 Display range: [0 255]

3 Using the mouse, you can move the Distance tool over the image or, by
grabbing either one of its endpoints, resize the tool.

Exporting Endpoint and Distance Data

To save the endpoint locations and distance information, right-click the
Distance tool and choose the Copy pixel info option from the context menu.

The Distance tool opens the Export to Workspace dialog box. You can use this
dialog box to specify the names of the variables used to store this information.

-loix
[Paint 1 Foinﬂ
[Paint 2 Fointz
[Distance W

OK | Cancel I

Measuring Features in an Image

After you click OK, the Distance tool creates the variables in the workspace,
as in the following example.

whos

Name Size Bytes
distance 1x1 8
moon 537x358 192246
point1 1x2 16
point2 1x2 16

Class

double array
uint8 array
double array
double array

Customizing the Appearance of the Distance Tool

Using the Distance tool context menu, you can customize many aspects of the
Distance tool appearance and behavior, including:

Deleting the distance tool object using the Delete option.

Right-click the Distance tool to access this context menu.

Toggling the distance tool label on and off using the Show Distance Label
option.

Changing the color used to display the Distance tool line using the Set
line color option.

Constraining movement of the tool to either horizontal or vertical using
the Constrain drag option.

4-33

4 Displaying and Exploring Images

Getting Information About an Image

To get information about the image displayed in the Image Tool, use the
Image Information tool. The Image Information tool can provide two types of
information about an image:

¢ Basic information — Includes width, height, class, and image type. For
grayscale and indexed images, this information also includes the minimum
and maximum intensity values.

* Image metadata — Displays all the metadata from the graphics file that
contains the image. This is the same information returned by the imfinfo
function or the dicominfo function.

Note The Image Information tool can display image metadata only
when you specify the filename containing the image to Image Tool, e.g.,
imtool('moon.tif').

For example, view an image in the Image Tool.

imtool('moon.tif"')

Start the Image Information tool by clicking the Image Information button @
in the Image Tool toolbar or by selecting the Image Information option from
the Tools menu in the Image Tool.

4-34

Getting Information About an Image

The following figure shows the Image Tool with the Image Information tool. In
the figure, the Image Information tool displays both basic image information
and image metadata because a file name was specified with imtool.

Image
information
tool

Basic image —
information

Image
mefadata

) Image Tool 1 - moo

File Tools ‘Window Help

=10l x|

OB 007 RAD %

PN -} Image Information {Image Tool 1)

_lol x|
k|

Image details {Image Toal 1 - moon tify

Aftribute Walue

1] Width (Columns 358

2 Height (rowes) 537

3 Class uints

4 Image type intensity

S Minirnurn irntensity u]

= Maimum intensity 253

Metadata {moon tif)

Figldname | Walue

1 | Filenamel Wbat1 48 nighthynstlabtoolboxiimagesimdemosmoon Hif -
2 FileModDate 04-Dec-2000 12:57:59
3 FileSize 183950
4 Format tif
S Format'ersion Il
5] Wicith 358
7 Height 237
g EitDepth g
9 ColorType grayscale
10 FormatSignature [F373420]
11 BiyteCrder

4

I'rt'tle-endianlll
| »

Image Tool with Image Information Tool

4-35

4 Displaying and Exploring Images

4-36

Adjusting the Contrast and Brightness of an Image

To adjust the contrast and brightness of the image displayed in the Image
Tool, use the Adjust Contrast tool.

When you start the Adjust Contrast tool, it opens a separate window
containing a histogram of the image displayed in the Image Tool. The
histogram shows the data range of the image and the display range of the
image. The data range is the range of intensity values actually used in the
image. The display range is the black-to-white mapping used to display
the image, which is determined by the image class. The Adjust Contrast
tool works by manipulating the display range; the data range of the image
remains constant.

For example, in the following figure, the histogram for the image shows that
the data range of the image is 74 to 224 and the display range is the default
display range for the uint8 class, 0 to 255. Over this histogram, the Adjust
Contrast tool overlays a red-tinted rectangular box, called a window. By
changing the size of this window, you can modify the display range of the
image and improve its contrast and brightness.

Note The Adjust Contrast tool just affects the display of the image; it does
not change the values of pixels in the image. To change the intensity values
and create a new output image, use imadjust.

For more information about using the Adjust Contrast tool, see these
additional topics:

¢ “Using the Adjust Contrast Tool” on page 4-38

¢ “Example: Adjusting Contrast and Brightness” on page 4-40

® “Using the Window/Level Tool” on page 4-43

¢ “Understanding Contrast Adjustment” on page 4-45

Adjusting the Contrast and Brightness of an Image

) Image Tool 1 - pout.tif

File Tools

(=] 3
Window Help
@00?|@\@\5¢?'55|100% -]

L'l

Pixel info: (X, ¥ Intensity

Display
Display range: [0 255]—— range
) Adjust Contrast {Image Tool 1} 1Ol x|
File Edit ‘Window Help al
I]utu — Data Rahge - — Wincdow Scale Display Range
range LV —— F‘”‘m”mi 0ol | Wicth: 255 || & Match Data Range
fdzirmum; | hotcirmuim: Center:
224 25 A 128 1| Eirirate outliers:| 2 ®
Apply |
hd
|
Window
d.as
0 a0 100 150 200 2450
Adjust the histogram abave, or click and drag the mouse pyer the image.
Histogram

Image Tool with Adjust Contrast Tool

4-37

4 Displaying and Exploring Images

4-38

Using the Adjust Contrast Tool

This section describes how to use the Adjust Contrast tool. Topics covered
include:

e “Starting the Adjust Contrast Tool” on page 4-38
® “Changing the Size of the Adjust Contrast Tool Window” on page 4-39

Note This section describes how to use the Adjust Contrast tool in the Image
Tool. You can also use the Adjust Contrast tool independent of the Image Tool
by calling the imcontrast function. See Chapter 5, “Building GUIs with
Modular Tools” for more information.

Starting the Adjust Contrast Tool
To start the Adjust Contrast tool, follow this procedure:

1 View an image in the Image Tool.

imtool('pout.tif')

2 Click the Adjust Contrast button ® in the Image Tool toolbar, or select
the Adjust Contrast option from the Image Tool Tools menu.

When you start the Adjust Contrast tool, the Image Tool also activates the
Window/Level tool, changing the cursor to the Window/Level cursor “¢. The
Window/Level tool provides another way to adjust contrast and brightness
using the mouse — see “Using the Window/Level Tool” on page 4-43.

Note When you close the Adjust Contrast tool, the Window/Level tool remains
active. To turn off the Window/Level tool, click the Window/Level button or
one of the navigation buttons in the Image Tool toolbar.

Adjusting the Contrast and Brightness of an Image

Changing the Size of the Adjust Contrast Tool Window

You adjust the contrast and brightness of the displayed image by manipulating
the window over the histogram in the Adjust Contrast tool. The tool provides
several ways that you can modify the size and position of the window
interactively:

By grabbing one of the red handles on the right and left edges of the
window and dragging it. You can also change the position of the window by
grabbing the center line and dragging the window to the right or left.

By specifying the size and position of the window in the Minimum and
Maximum fields. You can also define these values by clicking the dropper
button associated with these fields. When you do this, the cursor becomes
an eye dropper shape. Position this cursor over the pixel in the image that
you want to be the minimum (or maximum) value and click the mouse
button.

By specifying the size and position of the window in the Width and Center
fields.

By automatically scaling the display range to match the image data range.
For example, with the pout.tif image, if you select the Match data range
option, the window changes from the default display range (0 to 255) to the
data range of the image (74 to 224).

By automatically trimming outliers at the top and bottom of the image data
range. If you select the Eliminate outliers option, the Adjust Contrast
tool removes the top 1% and the bottom 1%, but you can specify other
percentages. When you specify a percentage, the Adjust Contrast tool
applies half the percentage to the top and half to the bottom. (You can
perform this same operation from the command line using the stretchlim
function.)

4-39

4 Displaying and Exploring Images

The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.

Choose autoscaling option

Specify midpoint
and width.
<) Adjust Contrast {Image Tool 1} = |EI|1|
File Edit Window Help ~
|
Data Rang — Winco Scale Display Range
’:ﬂinimum: I 74 | |Minimurn: 28 | A0 | Vwioth: 161 % Match Data Range
Masdimurn: [200 | | Maximum: 163 | Center 109 o - %
Specn"y minimum | | " Eliminate outliers: I 2
. Appl
and maximum P
values.
-
|
|
Drag handle to . | .
change size. |
1 [TIT Y L 1
1] a0 100 150 200 250
Adjust the histogram above, or click and drag the mogze over the image.

Drag midline to
change position.

Example: Adjusting Contrast and Brightness

This example shows how to use the Adjust Contrast tool to change how pixel
values display as black and white.

1 View an image in the Image Tool. This example opens the image pout.tif,
which is a low-contrast image.

imtool('pout.tif')
2 Start the Adjust Contrast tool by clicking the Adjust Contrast button @

in the Image Tool toolbar, or by selecting Adjust Contrast from the Tools
menu in the Image Tool.

4-40

Adjusting the Contrast and Brightness of an Image

The following figure shows the image displayed in the Image Tool with the
Adjust Contrast tool open in a separate window. In the figure, note how the
image histogram shows that pixel values are clustered in the middle of the
display range. The display range, shown in the lower right corner of the
Image Tool, is the default display range for uints8.

) Image Tool 1 - pouk.tif 10l =|
File Tools ‘Window Help ~

§30@|@\@\§"?|‘3b|100% LI

Pixel info: (X, ¥ Intensity Dizplay range: [0 255]
-} Adjust Contrast (Image Tool 1} - |EI|1|
File Edit ‘Window Help ~
Data Range - — Wyincoy Scale Display Range
’;ﬁnimum: [74 | [Minimum: 0ot | it 255 | | & Match Data Range
faxirnum: | hdadirmum: Center:
| 2 5 A] | | g e outliers:l 2 %
Apply |
hd
|
bidees
1] a0 100 150 200 250
Adjust the histogram ahove, or click and drag the mouse over the image.

Image with Default Pixel Value to Display Intensity Mapping

4-41

4 Displaying and Exploring Images

4-42

3 Adjust the contrast and brightness by changing the size and position of

the window overlaid on the image histogram, using any of the methods
described in “Changing the Size of the Adjust Contrast Tool Window” on
page 4-39.

For example, you can grab either of the handles and resize the window,
and grab the center line and reposition the window. Alternatively, you
can adjust the contrast automatically by trimming outliers at the top and
bottom of the image data range. Select the Eliminate outliers option and
click the Apply button. By default, the Adjust Contrast tool removes the
top 1% and the bottom 1%, but you can specify other percentages. (You can
perform this same operation from the command line using the stretchlim
function.)

The following figure shows the Adjust Contrast tool after some interactive
contrast adjustments.

) Adjust Contrast {(Image Tool 1)

File Edit ‘Window Help

=10l x|

Data Range - — Wyincoy Scale Display Range
’;ﬁnimum: [74 | [Minimum: x A | it 161 || & Match Data Range
i : i : Cent
Speci P Maimun: |24 | {Maimum 1as gh| Certer 199 ||~ Biminate outiers: |2_%
pecify minimum |
. Appl
and maximum ey |
values.
-
|
|
Change the |
window size by . | .
dragging the 1 '
handles. bt . .
] 50 100 150 200 250

Adjust the histogram above, or click and drag the mouse over the image.

Adjust Contrast Tool with Window Resized

Adjusting the Contrast and Brightness of an Image

The following figure shows the pout.tif image after contrast adjustment.

In this version, note how the adjusted contrast reveals much more detail in
the image background. The Image Tool updates the display range values
displayed in the lower right corner of the Image Tool as you change the size of
the window.

) Image Tool 1 - pouk.tif 10l =|
k|

File Tools ‘Window Help

§30@|@\@\{"?|‘3i;|100% LI

Pixelinfo: (101, 2) &7 Dizplay range: [25 162]

Contrast Adjusted Image

Using the Window/Level Tool

When you start the Adjust Contrast tool you also activate Wipdow/Level
mode; the cursor changes shape to the Window/Level cursor “t. You can also
start the Window/Level tool by clicking the Window/Level button “® in the
Image Tool toolbar. (The name comes from medical applications.)

Using the Window/Level tool, you can change the contrast and brightness of
an image by simply dragging the mouse over the image. Moving the mouse

horizontally affects contrast; moving the mouse vertically affects brightness.

The following table summarizes how these mouse motions affect the size and
position of the window in the Adjust Contrast tool.

4-43

4 Displaying and Exploring Images

4-44

Mouse Motion Effect
Horizontally to the left | #—— | Shrinks the window from both sides.
Horizontally to the — = | Expands the window from both sides.
right
Vertically up Moves the window to the right over the
histogram, increasing brightness.
Vertically down Moves the window to the left over
the image histogram, decreasing
brightness.

To stop the Window/Level tool, click on the Window/Level button in the Image
Tool toolbar, or click any of the navigation buttons in the toolbar.

Example: Adjusting Contrast with the Window/Level Tool

The following example shows how to use the Window/Level tool to improve
the contrast of an image.

1 Read an image from a sample DICOM file included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Tool. Because the image data is
signed 16-bit data, this example uses the autoscaling syntax.

imtool(I, 'DisplayRange',[])

Adjusting the Contrast and Brightness of an Image

SHLLAL R

3 Click the Window/Level button “ to start the tool, or select
Window/Level from the Tools menu in the Image Tool. The Window/Level
tool also starts when you start the Adjust Contrast tool.

4 Move the cursor over the image. The cursor changes to the Window/Level
cursor e,

5 Press and hold the left (or right) mouse button and move the cursor
horizontally to the left or right to adjust the contrast, or vertically up or
down to change the brightness.

Understanding Contrast Adjustment

An image lacks contrast when there are no sharp differences between black
and white. Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool
performs contrast stretching. In this process, pixel values below a specified
value are displayed as black, pixel values above a specified value are displayed
as white, and pixel values in between these two values are displayed as shades
of gray. The result is a linear mapping of a subset of pixel values to the entire
range of grays, from black to white, producing an image of higher contrast.

4-45

4 Displaying and Exploring Images

4-46

The following figure shows this mapping. Note that the lower limit and
upper limit mark the boundaries of the window, displayed graphically as the
red-tinted window in the Adjust Contrast tool.

=
N [
=3
= [
& [
S |
[
- [
= 1
Dark Minimum Maximum Light
Value value
Pixel Volues

Relationship of Pixel Values to Display Range

The Adjust Contrast tool accomplishes this contrast stretching by modifying
the CLim property of the axes object that contains the image. The CLim
property controls the mapping of image pixel values to display intensities.

By default, the Image Tool sets the CLim property to the default display range
according to the data type. For example, the display range of an image of class
uint8is from 0 to 255. When you use the Adjust Contrast tool, you change
the contrast in the image by changing the display range which affects the
mapping between image pixel values and the black-to-white range. You create
a window over the range that defines which pixels in the image map to the
black in the display range by shrinking the range from the bottom up.

Viewing Multiple Images

Viewing Multiple Images

If you specify a file that contains multiple images, imshow and imtool only
display the first image in the file. To view all the images in the file, import the
images into the MATLAB workspace by calling imread. See “Reading Image
Data” on page 3-3 for more information.

Some applications create collections of images related by time or view, such as
magnetic resonance imaging (MRI) slices or frames of data acquired from a
video stream. Image Processing Toolbox supports these collections of images
as four-dimensional arrays, where each separate image is called a frame and
the frames are concatenated along the fourth dimension. All the frames in a
multiframe image must be the same size.

Once the images are in the MATLAB workspace, there are two ways to
display them using imshow:

¢ “Displaying Each Image in a Separate Figure” on page 4-47
¢ “Displaying Multiple Images in the Same Figure” on page 4-48
To view all the frames in a multiframe image at once, you can also use the

montage function. See “Displaying Multiple Image Frames at Once” on page
4-60 for more information.

Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in separate
figure windows. MATLAB does not place any restrictions on the number of
images you can display simultaneously.

The Image Tool can only display one image frame at a time. Each time you
call imtool, it opens a new figure window. Use standard MATLAB indexing
syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

In contrast, imshow always displays an image in the current figure. If you
display two images in succession, the second image replaces the first image.
To view multiple figures with imshow, use the figure command to explicitly

4-47

4 Displaying and Exploring Images

create a new empty figure before calling imshow for the next image. For
example, to view the first three frames in an array of grayscale images I,

imshow(I(:,:,:,1))
figure, imshow(I(:,:,:,2))
figure, imshow(I(:,:,:,3))

The Image Tool can only display one image frame at a time. Use standard
MATLAB indexing syntax to specify the frame to display.

imtool(multiframe_array(:,:,:,1));

Displaying Multiple Images in the Same Figure

You can use the imshow function with the MATLAB subplot function or the
MATLAB subimage function to display multiple images in a single figure
window.

Note imtool does not support this capability.

Dividing a Figure Window into Multiple Display Regions
subplot divides a figure into multiple display regions. The syntax of subplot
is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and
makes the pth display region active.

Note When you use subplot to display multiple color images in one figure
window, the images must share the colormap of the last image displayed. In
some cases, as illustrated by the following example, the display results can be
unacceptable. As an alternative, you can use the subimage function, described
in “Using the subimage Function to Display Multiple Images” on page 4-50, or
you can map all images to the same colormap as you load them.

4-48

Viewing Multiple Images

For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');

subplot(1,2,1), imshow(X1,map1)
subplot(1,2,2), imshow(X2,map2)

In the figure, note how the first image displayed, X1, appears dark after the
second image is displayed.

TSN —ipix]

File Edit Wiew Insett Tools Desktop ‘window Help

DEES KRAOMS®|E 08B 1O

Two Images in Same Figure Using the Same Colormap

4-49

4 Displaying and Exploring Images

4-50

Using the subimage Function to Display Multiple Images
subimage converts images to truecolor before displaying them and therefore
circumvents the colormap sharing problem. This example uses subimage to
display the forest and the trees images with better results.

[X1,map1]=imread('forest.tif');
[X2,map2]=imread('trees.tif');
subplot(1,2,1), subimage(X1,map1)
subplot(1,2,2), subimage(X2,map2)

drguet ~lolx|

File Edit Wiew Insett Tools Desktop ‘window Help a

DEES KRAMS®|E 0B 1O

100

200 8

300

100 200 300 400

Two Images in Same Figure Using Separate Colormaps

Displaying Different Image Types

Displaying Different Image Types

This section describes how to use imshow and imtool with the different types
of images supported by Image Processing Toolbox. Topics include:

* “Displaying Indexed Images” on page 4-51
¢ “Displaying Grayscale Images” on page 4-52
® “Displaying Binary Images” on page 4-54

¢ “Displaying Truecolor Images” on page 4-56

If you need help determining what type of image you are working with, see
“Image Types in the Toolbox” on page 2-7.

Displaying Indexed Images

To display an indexed image, using either imshow or imtool, specify both
the image matrix and the colormap. This documentation uses the variable
name X to represent an indexed image in the workspace, and map to represent
the colormap.

imshow (X, map)
or
imtool (X, map)

For each pixel in X, these functions display the color stored in the
corresponding row of map. If the image matrix data is of class double, the
value 1 points to the first row in the colormap, the value 2 points to the second
row, and so on. However, if the image matrix data is of class uint8 or uint16,
the value 0 (zero) points to the first row in the colormap, the value 1 points to
the second row, and so on. This offset is handled automatically by the imtool
and imshow functions.

If the colormap contains a greater number of colors than the image, the
functions ignore the extra colors in the colormap. If the colormap contains
fewer colors than the image requires, the functions set all image pixels over
the limits of the colormap’s capacity to the last color in the colormap. For
example, if an image of class uint8 contains 256 colors, and you display it

4-51

4 Displaying and Exploring Images

4-52

with a colormap that contains only 16 colors, all pixels with a value of 15 or
higher are displayed with the last color in the colormap.

Displaying Grayscale Images

To display a grayscale image, using either imshow or imtool, specify the
image matrix as an argument. This documentation uses the variable name I
to represent a grayscale image in the workspace.

imshow(I)

or

imtool(I)

Both functions display the image by scaling the intensity values to serve
as indices into a grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0
is displayed as white, and pixel values in between are displayed as shades
of gray. If I is uint8, then a pixel value of 255 is displayed as white. If I is
uint16, then a pixel value of 65535 is displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3
RGB colormap, but you normally do not specify a colormap for a grayscale
image. MATLAB displays grayscale images by using a grayscale system
colormap (where R=G=B). By default, the number of levels of gray in the
colormap is 256 on systems with 24-bit color, and 64 or 32 on other systems.
(See “Working with Different Screen Bit Depths” on page 14-2 for a detailed
explanation.)

Displaying Grayscale Images That Have Unconventional
Ranges

In some cases, the image data you want to display as a grayscale image
might have a display range that is outside the conventional toolbox range
(i.e., [0,1] for single or double arrays, [0,255] for uint8 arrays, [0,65535] for
uint16 arrays, or [-32767,32768] for int16 arrays). For example, if you filter
a grayscale image, some of the output data might fall outside the range of
the original data.

Displaying Different Image Types

To display unconventional range data as an image, you can specify the display
range directly, using this syntax for both the imshow and imtool functions.

imshow(I, 'DisplayRange’',[low high])
or
imtool (I, 'DisplayRange',[low high])

If you use an empty matrix ([]) for the display range, these functions scale
the data automatically, setting 1ow and high to the minimum and maximum
values in the array.

The next example filters a grayscale image, creating unconventional range
data. The example calls imtool to display the image, using the automatic
scaling option. If you execute this example, note the display range specified in
the lower right corner of the Image Tool window.

I imread('testpati.png');
J = filter2([1 2;-1 -21,1);
imtool(J, 'DisplayRange',[]);

i
a

File Tools ‘Window Help

ﬂﬁ?|@laiﬂ?|1uu% LI

Pizel info: (4, %) Intensity Display range: [-631 763]
1

Disploy runge

4-53

4 Displaying and Exploring Images

4-54

Displaying Binary Images

In MATLAB, a binary image is of class 1logical. Binary images contain only
0’s and 1’s. Pixels with the value 0 are displayed as black; pixels with the
value 1 are displayed as white.

Note For the toolbox to interpret the image as binary, it must be of class
logical. Grayscale images that happen to contain only 0’s and 1’s are not
binary images.

To display a binary image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a binary image into the
MATLAB workspace and then displays the image. This documentation uses
the variable name BW to represent a binary image in the workspace

BW = imread('circles.png');
imshow (BW)

or

imtool (BW)

Changing the Display Colors of a Binary Image

You might prefer to invert binary images when you display them, so that 0
values are displayed as white and 1 values are displayed as black. To do this,
use the NOT (~) operator in MATLAB. (In this figure, a box is drawn around
the image to show the image boundary.) For example:

Displaying Different Image Types

imshow (~BW)
or

imtool (~BW)

You can also display a binary image using the indexed image colormap
syntax. For example, the following command specifies a two-row colormap
that displays 0’s as red and 1’s as blue.

imshow(BW,[1 0 0; 0 0 1])

imtool(BW,[1 0 0; 0 0 11])

4-55

4 Displaying and Exploring Images

4-56

Displaying Truecolor Images

Truecolor images, also called RGB images, represent color values directly,
rather than through a colormap. A truecolor image is an m-by-n-by-3 array.
For each pixel (r,c) in the image, the color is represented by the triplet
(r,c,1:3).

To display a truecolor image, using either imshow or imtool, specify the image
matrix as an argument. For example, this code reads a truecolor image into
the MATLAB workspace and then displays the image. This documentation
uses the variable name RGB to represent a truecolor image in the workspace

RGB = imread(peppers.png');
imshow (RGB)

or

imtool (RGB)

Displaying Different Image Types

Systems that use 24 bits per screen pixel can display truecolor images
directly, because they allocate 8 bits (256 levels) each to the red, green, and
blue color planes. On systems with fewer colors, imshow displays the image
using a combination of color approximation and dithering. See “Working with
Different Screen Bit Depths” on page 14-2 for more information.

Note If you display a color image and it appears in black and white, check if
the image is an indexed image. With indexed images, you must specify the
colormap associated with the image. For more information, see “Displaying
Indexed Images” on page 4-51.

4-57

4 Displaying and Exploring Images

4-58

Special Display Techniques

In addition to imshow and imtool, the toolbox includes functions that perform
specialized display operations, or exercise more direct control over the display
format. These functions, together with the MATLAB graphics functions,
provide a range of image display options.

This section includes the following topics:

¢ “Adding a Colorbar” on page 4-58
¢ “Displaying Multiple Image Frames at Once” on page 4-60
¢ “Converting a Multiframe Image to a Movie” on page 4-61

e “Texture Mapping” on page 4-62

Adding a Colorbar

To display an image with a colorbar that indicates the range of intensity
values, first use the imshow function to display the image in a MATLAB figure
window and then call the colorbar function to add the colorbar to the image.

When you add a colorbar to an axes object that contains an image object,
the colorbar indicates the data values that the different colors in the image
correspond to.

If you want to add a colorbar to an image displayed in the Image Tool, select
the Print to Figure option from the Image Tool File menu. The Image
Tool displays the image in a separate figure window to which you can add a
colorbar.

Seeing the correspondence between data values and the colors displayed by
using a colorbar is especially useful if you are displaying unconventional
range data as an image, as described under “Displaying Grayscale Images
That Have Unconventional Ranges” on page 4-52.

Special Display Technigues

In the example below, a grayscale image of class uint8 is filtered, resulting in
data that is no longer in the range [0,255].

RGB = imread('saturn.png');

I = rgb2gray(RGB);

h=1[121; 000; -1 -2 -1];

I2 = filter2(h,I);

imshow(I2, 'DisplayRange',[]), colorbar

oo

200

100

L)

=100

-200

~300

-4

-500

4-59

4 Displaying and Exploring Images

4-60

Displaying Multiple Image Frames at Once

To view multiple frames in a multiframe array at one time, use the montage
function. montage displays all the image frames, arranging them into a
rectangular grid. The montage of images is a single image object. The image
frames can be grayscale, indexed, or truecolor images. If you specify indexed
images, they all must use the same colormap.

This example creates an array of truecolor images and uses montage to display
them all at once. Note how montage displays the images in a 2-by-2 grid. The
first image frame is displayed in the first position of the first row, the next
frame in the second position of the first row, and so on.

onion = imread('onion.png');
onionArray = repmat(onion, [1 1 1 4]);
montage (onionArray);

=0l]

File Edit ‘iew Insert Tools Deskbop Window Help o

DeE&E | K|RaM®|E 0B 8O

Special Display Techniques

montage supports several optional parameters that you can use to customize
the display. For example, using the 'size' parameter, you can specify the
number of rows and columns montage uses to display the images. To display
the onion images in one horizontal row, specify the 'size' parameter with the
value [1 NaN]. When you specify NaN for a dimension, montage calculates the
number of images to display along that dimension. Using montage parameters
you can also specify which images in the image array you want to display, and
adjust the contrast of the images displayed. See montage for more information.

Converting a Multiframe Image to a Movie

To create a MATLAB movie from a multiframe image array, use the immovie
function. This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to
use for the movie.

You can play the movie in MATLAB using the movie function.

movie(mov);

This example loads the multiframe image mri.tif and makes a movie out of
it. It won’t do any good to show the results here, so try it out; it’s fun to watch.

mri = uint8(zeros(128,128,1,27));
for frame=1:27

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

mov = immovie(mri,map);
movie(mov);

Note To view a MATLAB movie, you must have MATLAB installed. To
make a movie that can be run outside MATLAB, use the MATLAB avifile
and addframe functions to create an AVI file. AVI files can be created using
indexed and RGB images of classes uint8 and double, and don’t require

a multiframe image.

4-61

4 Displaying and Exploring Images

4-62

Texture Mapping

When you use imshow or imtool to view an image, MATLAB displays

the image in two dimensions. However, it is also possible to map an
image onto a parametric surface, such as a sphere, or below a surface plot.
The warp function creates these displays by texture mapping the image.
Texture mapping is a process that maps an image onto a surface grid using
interpolation.

This example texture-maps an image of a test pattern onto a cylinder.

[x,y,z] = cylinder;
I = imread('testpati.png');
warp(x,y,z,I);

An Image Texture-Mapped onto a Cylinder

The image might not map onto the surface in the way that you expect. One
way to modify the way the texture map appears is to change the settings of
the Xdir, Ydir, and Zdir properties. For more information, see Changing Axis
Direction in the MATLAB Graphics documentation.

For more information about texture mapping, see the reference entry for
the warp function.

Printing Images

Printing Images

If you want to output a MATLAB image to use in another application (such as
a word-processing program or graphics editor), use imwrite to create a file in
the appropriate format. See “Writing Image Data” on page 3-5 for details.

If you want to print an image, use imshow to display the image in a MATLAB
figure window. If you are using the Image Tool, you must use the Print to
Figure option on the Image Tool File menu. When you choose this option, the
Image Tool opens a separate figure window and displays the image in it. You
can access the standard MATLAB printing capabilities in this figure window.
You can also use the Print to Figure option to print the image displayed in
the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the
MATLAB print command or the Print option from the File menu of the
figure window to print the image. When you print from the figure window,
the output includes nonimage elements such as labels, titles, and other
annotations.

Printing and Handle Graphics Object Properties

The output reflects the settings of various properties of Handle Graphic
objects. In some cases, you might need to change the settings of certain
properties to get the results you want. Here are some tips that might be
helpful when you print images:

® Image colors print as shown on the screen. This means that images are not
affected by the figure object’s InvertHardcopy property.

¢ To ensure that printed images have the proper size and aspect ratio,
set the figure object’s PaperPositionMode property to auto. When
PaperPositionMode is set to auto, the width and height of the printed
figure are determined by the figure’s dimensions on the screen. By default,
the value of PaperPositionMode is manual. If you want the default value of
PaperPositionMode to be auto, you can add this line to your startup.m file.

set (0, 'DefaultFigurePaperPositionMode’', 'auto')

4-63

4 Displaying and Exploring Images

4-64

For detailed information about printing with File/Print or the print
command (and for information about Handle Graphics), see “Printing and
Exporting” in the MATLAB Graphics documentation. For a complete list
of options for the print command, enter help print at the MATLAB
command-line prompt or see the print command reference page in the
MATLAB documentation.

Setting Toolbox Display Preferences

Setting Toolbox Display Preferences

You can use Image Processing Toolbox preferences to control certain
characteristics of how imshow and imtool display images on your screen. For
example, using toolbox preferences, you can specify the initial magnification
used by imtool and imshow. This section covers these topics:

® “Retrieving the Values of Toolbox Preferences” on page 4-65

® “Setting the Values of Toolbox Preferences” on page 4-66
For a complete list of toolbox preferences, see the iptsetpref reference page.

Retrieving the Values of Toolbox Preferences
To determine the current value of a preference, use the iptgetpref

function. This example uses iptgetpref to determine the value of the
ImtoolInitialMagnification preference.
iptgetpref('ImtoolInitialMagnification')

ans =

100

Preference names are case insensitive and can be abbreviated. For more
information, see the iptgetpref reference page.

4-65

4 Displaying and Exploring Images

Setting the Values of Toolbox Preferences

To specify the value of a toolbox preference, use the iptsetpref function. This
example calls iptsetpref to specify that imshow resize the figure window so
that it fits tightly around displayed images.

iptsetpref('ImshowBorder', 'tight');

For detailed information about toolbox preferences and their values, see the
iptsetpref reference page.

The value you specify lasts for the duration of the current MATLAB session.

To preserve your preference settings from one session to the next, include the
iptsetpref commands in your startup.m file.

4-66

Building GUIs with
Modular Tools

This chapter describes how to use the toolbox modular tools to create custom
image processing applications.

Overview (p. 5-2) Lists the modular interactive tools

Using Modular Tools (p. 5-6) Describes how to use the modular
tools to create GUIs

Creating Your Own Modular Tools Describes the utility function the
(p. 5-31) toolbox provides to help you create
your own modular tools

5 Building GUIs with Modular Tools

Overview

The toolbox includes several new modular interactive tools that you can
activate from the command line and use with images displayed in a MATLAB
figure window, called the target image in this documentation. The tools are
modular because they can be used independently or in combination to create
custom graphical user interfaces (GUIs) for image processing applications.
The Image Tool uses these modular tools — see “Using the Image Tool to
Explore Images” on page 4-9

The following table lists the modular tools in alphabetical order. The table
includes an illustration of each tool and the function you use to create it. For
more information about how the tools operate, see “Using the Image Tool to
Explore Images” on page 4-9. For more information about using tools to create
GUIs, see “Using Modular Tools” on page 5-6.

Modular Tool

Example Description

Adjust Contrast
tool

Displays a histogram of the target image

b E WD GelF # | and enables interactive adjustment of
Mlﬁf"j:f”fe_u' i T ek | v contrast and brightness by manipulation
’;aximum- [| [Masimurn WZ’ Certer, of the display range.

' ¢

Use the imcontrast function to create

Mm ‘:' / the tool in a separate figure window and
Pe associate it with an image.
2 - 2 g7
Display Range Display range: [0 255] Displays a text string identifying the
tool display range values of the associated
image.

Use the imdisplayrange function to
create the tool, associate it with an image,
and embed it in a figure or uipanel.

Overview

Modular Tool

Example

Description

Distance tool

Displays a draggable, resizable line on

an image. Superimposed on the line is

the distance between the two endpoints
of the line. The distance is measured in
units specified by the XData and YData

properties, which is pixels by default.

Use the imdistline function to create the
tool and associate it with an image.

Image
Information tool

-} Image Information {Image Tool 1}
3

Image details (mage Toal 1 - moon tif

Aftribute

“alue

1 Eﬂmh {calurmns)

356

2 Height (rows)

537

3 Class

uirtd

4 Inage type

intensity

S Minimum intensity

0

B Mzximum intensity

253

Metadata (moon.tif)

{
{
!

Displays basic attributes about the
target image. If the image displayed
was specified as a graphics file, the tool
displays any metadata that the image file
might contain.

Use the imageinfo function to create
the tool in a separate figure window and

Fieiohame associate it with an image.
1_E\Isname \wﬁhwurks\develwaﬂy
2 |FileModDate 04-Dec-2000 135759
3 [FileSize 183950 P
4 |Format it
5 |FormatVersion 0n)
it n _ ameeminton o got mgg)
Magnification [Creates a text edit box containing the
100% o . .
box current magnification of the target image.

Users can change the magnification of the
image by entering a new magnification
value.

Use immagbox to create the tool, associate
it with an image, and embed it in a figure
or uipanel.

Note The target image must be contained
in a scroll panel.

5 Building GUIs with Modular Tools

Modular Tool | Example Description
Overview tool Displays the target image in its entirety

File Edit ‘Window Help

=10l x|

~ P

with the portion currently visible in

the scroll panel outlined by a rectangle
superimposed on the image. Moving the
rectangle changes the portion of the target
image that is currently visible in the scroll
panel.

Use imoverview to create the tool in a
separate figure window and associate it
with an image.

Use imoverviewpanel to create the tool
in a uipanel that can be embedded within
another figure or uipanel.

Note The target image must be contained
in a scroll panel.

Pixel
Information tool

Pixel infa: (418, 261) 143

Displays information about the pixel the
mouse is over in the target image.

Use impixelinfo to create the tool,
associate it with an image, and display it
in a figure or uipanel.

If you want to display only the pixel
values, without the Pixel info label, use
impixelinfoval.

Overview

Modular Tool | Example Description
Pixel Region tool o) x| Display pixel values for a specified region
Fle Edt Window Help ¥ in the target image.

| U U DO D PR R PO
1191|188 188 199 211213 199 18
[Tl

Pixel info: (134, 230) 183

Use impixelregion to create the tool in a
separate figure window and associate it
with an image.

Use impixelregionpanel to create the
tool as a uipanel that can be embedded
within another figure or uipanel.

Scroll Panel tool

) Figuel =IOl x|

File Edit Wiew Insert Tools Deskbop Window Help

DSEE h|RAMHB|E|”

Display target image in a scrollable panel.

Use imscrollpanel to add a scroll panel
to an image displayed in a figure window.

5-5

5 Building GUIs with Modular Tools

Using Modular Tools

To use the modular tools to create custom graphical user interfaces (GUIs) for
image processing applications, follow this general procedure:

1 Display the target image in a figure window.

Image processing applications typically use the imshow function to display
the target image, i.e., the image being processed. See “Displaying the
Target Image” on page 5-7 for more information.

Create the modular tool, specifying the target image.

When you create a tool, you must associate it with a target image. Most
of the tools associate themselves with the image in the current axes, by
default. But you can specify the handle to a specific image object, or a
handle to a figure, axes, or uipanel object that contains an image. See
“Specifying the Target Image” on page 5-8 for more information.

Depending on how you designed your GUI, you might also want to specify

the parent object of the modular tool itself. This is optional; by default, the
tools either use the same parent as the target image or open in a separate

figure window. See “Specifying the Parent of a Modular Tool” on page 5-12
for more information.

In addition, when you create custom GUIs, you might need to specify the
position of the graphics objects in the GUI, including the modular tools. See
“Positioning the Modular Tools in a GUI” on page 5-15 for more information.

Set up interactivity between the tool and the target image.

This is an optional step. The modular tools all set up their interactive
connections to the target image automatically. However, your GUI might
require some additional connectivity. See “Making Connections for
Interactivity” on page 5-25.

Using Modular Tools

Many of the modular tools support application programmer interfaces
(APIs) that let you assign values to their properties, get the values of
their properties, and control other aspects of their functioning. See “Using
Modular Tool APIs” on page 5-26 for more information.

The following sections provide more detail on these steps. For a complete
illustration, see “Example: Building a Pixel Information GUI” on page 5-17.

Displaying the Target Image

As the foundation for any image processing GUI you create, use imshow to
display the target image (or images) in a MATLAB figure window. (You
can also use the MATLAB image or imagesc functions.) Once the image is
displayed in the figure, you can associate any of the modular tools with the
image displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow('pout.tif');

Because some of the modular tools add themselves to the figure window
containing the image, make sure that the Image Processing Toolbox
ImshowBorder preference is set to 'loose’, if you are using the imshow
function. (This is the default setting.) By including a border, you ensure that
the modular tools are not displayed over the image in the figure.

5 Building GUIs with Modular Tools

Specifying the Target Image

To associate a modular tool with a target image displayed in a MATLAB
figure window, create the tool using the appropriate tool creation function,
specifying a handle to the target image as an argument. The function creates
the tool and automatically sets up the interactivity connection between the
tool and the target image.

This section covers the following topics:

® “Associating Modular Tools with the Default Target Image” on page 5-8
® “Associating Modular Tools with a Particular Image” on page 5-10

® “Getting the Handle of the Target Image” on page 5-11

Associating Modular Tools with the Default Target Image

By default, most of the modular tool creation functions support a no-argument
syntax that uses the image in the current figure as the target image. If

the current figure contains multiple images, the tools associate themselves
with the first image in the figure object’s children (the last image created).
impixelinfo, impixelinfoval and imdisplayrange can work with multiple
images in a figure.

For example, to use the Pixel Information tool with a target image, display
the image in a figure window, using imshow, and then call the impixelinfo
function to create the tool. In this example, the image in the current figure is
the target image.

imshow('pout.tif');
impixelinfo

Using Modular Tools

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner of the window. The Pixel Information
tool automatically sets up a connection to the target image: when you move
the cursor over the image, the tool displays the x- and y-coordinates and value
of the pixel under the cursor.

) Fgurer R (=

File Edit Yiew Insert Tools Deskbop Window Help u

DEeE&S| kRO (€ 08|80

Target image

Pixel

information tool ————— Pixelinto: x,) Intensity

Figure Window with Pixel Information Tool

5 Building GUIs with Modular Tools

5-10

Associating Modular Tools with a Particular Image

You can specify the target image of the modular tool when you create it by
passing a handle to the target image as an argument to the modular tool
creation function. You can also specify a handle to a figure, axes, or uipanel
object that contains the target image.

Continuing the example in the previous section, you might want to add the
Display Range tool to the figure window that already contains the Pixel
Information tool. To do this, call the imdisplayrange function, specifying the
handle to the target image. You could also have specified the handle of the
figure, axes, or uipanel object containing the target image.

himage = imshow('pout.tif');
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);

Note that the example retrieves handles to the uipanel objects created by
the impixelinfo and imdisplayrange functions; both tools are uipanel
objects. It can be helpful to get handles to the tools if you want to change
their positioning. See “Positioning the Modular Tools in a GUI” on page 5-15
for more information.

The following figure shows the target image in a figure with the Pixel
Information tool in the lower left corner and the Display Range tool in the
lower right corner of the window. The Display Range tool automatically sets
up a connection to the target image: when you move the cursor over the image
(or images) in the figure, the Display Range tool shows the display range

of the image.

Using Modular Tools

Drgwer eI

Flle Edit “iew Insert Tools Desktop ‘Window Help L

D& k| RAO® | E|0E 5O

Target image

Pixel
Information fool

Pixel info: (X, ¥ Intensity Display range: [0 255]
1

Display Range
tool

Figure Window with Pixel Information and Display Range Tools

Getting the Handle of the Target Image

The examples in the previous section use the optional imshow syntax that
returns a handle to the image displayed, himage. When creating GUIs with
the modular tools, having a handle to the target image can be useful. You can
get the handle when you first display the image, using this optional imshow
syntax. You can also get a handle to the target image using the imhandles
function. The imhandles function returns all the image objects that are
children of a specified figure, axes, uipanel, or image object.

5-11

5 Building GUIs with Modular Tools

5-12

For example, imshow returns a handle to the image in this syntax.

hfig = figure;
himage = imshow('moon.tif"')
himage

152.0055

When you call the imhandles function, specifying a handle to the figure (or
axes) containing the image, it returns a handle to the same image.

himage?2
himage?2

imhandles (hfig)

152.0055

Specifying the Parent of a Modular Tool

When you create a modular tool, in addition to specifying the target image,
you can optionally specify the object that you want to be the parent of the
tool. By specifying the parent, you determine where the tool appears on your
screen. Using this syntax of the modular tool creation functions, you can add
the tool to the figure window containing the target image, open the tool in a
separate figure window, or create some other combination.

Specifying the parent is optional; the modular tools all have a default
behavior. Some of the smaller tools, such as the Pixel Information tool, use
the parent of the target image as their parent, inserting themselves in the
same figure window as the target image. Other modular tools, such as the
Pixel Region tool or the Overview tool, open in separate figures of their own.

Tools With Separate Creation Functions

Two of the tools, the Pixel Region tool and the Overview tool, have a separate
creation function to provide this capability. Their primary creation functions,
imoverview and impixelregion, open the tools in a separate figure window.
To specify a different parent, you must use the imoverviewpanel and
impixelregionpanel functions.

Using Modular Tools

Note The Overview tool and the Pixel Region tool provide additional
capabilities when created in their own figure windows. For example, both
tools include zoom buttons that are not part of their uipanel versions.

Example: Embedding the Pixel Region Tool in an Existing
Figure

This example shows the default behavior when you create the Pixel Region
tool using the impixelregion function. The tool opens in a separate figure
window, as shown in the following figure.

himage = imshow('pout.tif')
hpixelinfopanel = impixelinfo(himage);
hdrangepanel = imdisplayrange(himage);
hpixreg = impixelregion(himage);

BT o]
File Edit WYiew Insert Tools Deskbop ‘Window Help £ FIlE|RBg'IDFI
NS h|RAN®|(E 0B » ool
1=
File Edit ‘Wwindow Help £

BE 7

Pixel Region
rectungle

Pixel info: (122, 148) 121

Pixcel info: 0, %) Intensity Display range: [0 255]

Target Image with Pixel Region Tool in Separate Window (Default)

5-13

5 Building GUIs with Modular Tools

5-14

To embed the Pixel Region tool in the same window as the target image, you
must specify the handle of the target image’s parent figure as the parent of
the Pixel Region tool when you create it.

The following example creates a figure and an axes object, getting handles to
both objects. The example needs these handles to perform some repositioning
of the objects in the figure to ensure their visibility. See “Positioning the
Modular Tools in a GUI” on page 5-15 for more information. The example
then creates the modular tools, specifying the figure containing the target
image as the parent of the Pixel Region tool. Note that the example uses the
impixelregionpanel function to create the tool.

hfig = figure;

hax = axes('units', 'normalized', 'position',[0 .5 1 .5]);
himage = imshow('pout.tif')

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

hpixreg = impixelregionpanel(hfig,himage);

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4]);

Using Modular Tools

The following figure shows the Pixel Region embedded in the same figure
as the target image.

File Edit Wiew Insert Tools Desktop ‘Window Help

D& K &RaAN® | 0| O

g =

Pixel Region
tool embedded
in figure
window

Pixelinfo: (106, 4) 89 Display range: [0 255]

Target Image with Embedded Pixel Region Tool

Positioning the Modular Tools in a GUI

When you create the modular tools, they have default positioning behavior.
For example, the impixelinfo function creates the tool as a uipanel object
that is the full width of the figure window, positioned in the lower left corner
of the target image figure window.

Because the modular tools are constructed from standard Handle Graphics
objects, such as uipanel objects, you can use properties of the objects to change

their default positioning or other characteristics.

For example, in “Specifying the Parent of a Modular Tool” on page 5-12, when
the Pixel Region tool was embedded in the same figure window as the target

5-15

5 Building GUIs with Modular Tools

5-16

image, the example had to reposition both the image object and the Pixel
Region tool uipanel object to make them both visible in the figure window.

Specifying the Position with a Position Vector

To specify the position of a modular tool or other graphics object, set the
value of the Position property of the object. As the value of this property,
you specify a four-element position vector [left bottom width height],
where left and bottom specify the distance from the lower left corner of
the parent container object, such as a figure. The width and height specify
the dimensions of the object.

When you use a position vector, you can specify the units of the values in
the vector by setting the value of the Units property of the object. To allow
better resizing behavior, use normalized units because they specify the
relative position, not the exact location in pixels. See the reference page for
the Handle Graphics object for more details.

For example, when you first create an embedded Pixel Region tool in a figure,
it appears to take over the entire figure because, by default, the position
vector is set to [0 0 1 1], in normalized units. This position vector tells the
tool to align itself with the bottom left corner of its parent and fill the entire
object. To accommodate the image and the Pixel Information tool and Display
Range tools, change the position of the Pixel Region tool in the lower half of
the figure window, leaving room at the bottom for the Pixel Information and
Display Range tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units', 'normalized', 'Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it
fits in the upper half of the figure window, using the following position vector.
To reposition the image, you must specify the Position property of the axes
object that contains it; image objects do not have a Position property.

set(hax, 'Units', 'normalized', 'Position',[0 0.5 1 0.5])

Using Modular Tools

Example: Building a Pixel Information GUI

This example shows how to use the tools to create a simple GUI that provides
information and pixels and features in an image. The GUI displays an image
and includes the following modular pixel information tools:

Display Range tool

Distance tool

Pixel Information tool

Pixel Region tool panel

The example suppresses the figure window toolbar and menu bar because
the standard figure zoom tools are not compatible with the toolbox modular
navigation tools — see “Adding Navigation Aids to a GUI” on page 5-19.

function my_pixinfotool(im)

% Create figure, setting up properties

hfig = figure('Toolbar', 'none’',...
'Menubar', 'none',...
"Name', 'My Pixel Info Tool',...
"NumberTitle', 'off',...
'IntegerHandle’', 'off');

% Create axes and reposition the axes

to accommodate the Pixel Region tool panel
hax = axes('Units', 'normalized’,...
"Position',[0 .5 1 .5]);

% Display image in the axes and get a handle to the image
himage = imshow(im);

% Add Distance tool, specifying axes as parent
hdist = imdistline(hax);

% Add Pixel Information tool, specifying image as parent
hpixinfo = impixelinfo(himage);

% Add Display Range tool, specifying image as parent
hdrange = imdisplayrange(himage);

5-17

5 Building GUIs with Modular Tools

5-18

% Add Pixel Region tool panel, specifying figure as parent
% and image as target
hpixreg = impixelregionpanel(hfig,himage);

% Reposition the Pixel Region tool to fit in the figure
window, leaving room for the Pixel Information and

% Display Range tools.

set(hpixreg, 'units', 'normalized', 'position',[0 .08 1 .4])

o°

To use the tool, pass it an image that is already in the MATLAB workspace.

pout = imread('pout.tif');
my_pixinfotool(pout)

The tool opens a figure window, displaying the image in the upper half, with
the Distance tool overlaid on the image, and the Pixel Information tool,
Display Range tool, and the Pixel Region tool panel in the lower half of the
figure.

Using Modular Tools

rypmeimotoo e

Pixel info: (X, %) Intensity Display range: [0 255]

Custom Image Display Tool with Pixel Information

Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard
MATLAB figure window navigation tools. When using these tools in a GUI,
suppress the toolbar and menu bar in the figure windows to avoid conflicts
between the tools.

The toolbox includes several modular tools that you can use to add navigation
aids to a GUI application:

e Scroll Panel
e Overview tool

® Magnification box

5-19

5 Building GUIs with Modular Tools

5-20

The Scroll Panel is the primary navigation tool; it is a prerequisite for the
other navigation tools. When you display an image in a Scroll Panel, the
tool displays only a portion of the image, if it is too big to fit into the figure
window. When only a portion of the image is visible, the Scroll Panel adds
horizontal and vertical scroll bars, to enable viewing of the parts of the image
that are not currently visible.

Once you create a Scroll Panel, you can optionally add the other modular
navigation tools: the Overview tool and the Magnification tool. The Overview
tool displays a view of the entire image, scaled to fit, with a rectangle
superimposed over it that indicates the part of the image that is currently
visible in the scroll panel. The Magnification Box displays the current
magnification of the image and can be used to change the magnification.

The following sections provide more details.

¢ “Understanding Scroll Panels” on page 5-20 — Adding a scroll panel to an
image display changes the relationship of the graphics objects used in the
display. This section provides some essential background.

¢ “Example: Building a Navigation GUI for Large Images” on page 5-23 —
This section shows how to add a scroll panel to an image display.

Understanding Scroll Panels

When you display an image in a scroll panel, it changes the object hierarchy
of your displayed image. This diagram illustrates the typical object hierarchy
for an image displayed in an axes object in a figure object.

hfig = figure;
himage = imshow('concordaerial.png');

Using Modular Tools

The following figure shows this object hierarchy.

Figure

lmage

Object Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a
scrollable window, this object hierarchy changes. For example, this code
adds a scroll panel to an image displayed in a figure window, specifying the
parent of the scroll panel and the target image as arguments. The example
suppresses the figure window toolbar and menu bar because they are not
compatible with the scroll panel navigation tools.

hfig = figure('Toolbar', 'none’',...
"Menubar', 'none');

himage = imshow('concordaerial.png');

hpanel imscrollpanel(hfig,himage);

5-21

5 Building GUIs with Modular Tools

The following figure shows the object hierarchy after the call to
imscrollpanel. Note how imscrollpanel inserts new objects (shaded

in gray) into the hierarchy between the figure object and the axes object
containing the image. (To change the image data displayed in the scroll bar,
use the replaceImage function in the imscrollpanel API.)

Figure

Uipanel
[Scrall panel)
|

I [|
Uipanel uicantral vicntral frame [
Berallablk) [Harizantal Slider) [Verfical Slider) rame

hxes

Image

Object Hierarchy of Image Displayed in Scroll Panel

5-22

Using Modular Tools

The following figure shows how these graphics objects appear in the scrollable
image as it is displayed on the screen.

Serolloble imoge

Seroll panel

.

Slider

Corner

Slider

Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images

If your work typically requires that you view large images, you might want to
create a custom image display function that includes the modular navigation
tools.

This example creates a tool that accepts an image as an argument and displays
the image in a scroll panel with an Overview tool and a Magnification box.

5-23

5 Building GUIs with Modular Tools

Note Because the toolbox scrollable navigation is incompatible with standard
MATLAB figure window navigation tools, the example suppresses the toolbar
and menu bar in the figure window.

function my_large_image_display(im)

% Create a figure without toolbar and menubar.
hfig = figure('Toolbar', 'none’,...
'Menubar', 'none',...
"Name', 'My Large Image Display Tool',...
"NumberTitle', 'off',...
"IntegerHandle', 'off');

% Display the image in a figure with imshow.
himage = imshow(im);

% Add the scroll panel.
hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools.
set(hpanel, 'Units', 'normalized', 'Position',[0 .1 1 .9]1);

% Add the Magnification box.
hMagBox = immagbox(hfig,himage);

% Position the Magnification box
pos = get(hMagBox, 'Position');
set(hMagBox, 'Position',[0 O pos(3) pos(4)]);

% Add the Overview tool.
hovervw = imoverview(himage);

To use the tool, pass it a large image that is already in the MATLAB
workspace.

big image = imread('peppers.png');
my_large_image_display(big_image)

5-24

Using Modular Tools

The tool opens a figure window, displaying the image in a scroll panel with
the Overview tool and the Magnification Box tool.

) My Large Image Display Tool

Overview tool
) overvien SOSSSRNI=TEY
File Edit ‘Windomw Help L
L s @

Muognifiention

box 100%

Custom Image Display Tool with Navigation Aids

Making Connections for Interactivity

When you create a modular tool and associate it with a target image, the
tool automatically makes the necessary connections to the target image to
do its job.

For example, the Pixel Information tool sets up a connection to the target
image so that it can display the location and value of the pixel currently

under the cursor. The Overview tool sets up a two-way connection to the

target image:

¢ Target image to the Overview tool — If the visible portion of the image
changes, by scrolling, panning, or by changing the magnification, the

5-25

5 Building GUIs with Modular Tools

5-26

Overview tool changes the size and location of the detail rectangle to the
indicate the portion of the image that is now visible.

* Overview tool to the target image — If a user moves the detail
rectangle in the Overview tool, the portion of the target image visible in
the scroll panel is updated.

The modular tools accomplish this interactivity by using callback
properties of the graphics objects. For example, the figure object supports a
WindowButtonMotionFcn callback that executes whenever the mouse button
is depressed.

Using Modular Tool APIs

Many of the modular tools support an application programmer interface
(API). This API is a set of functions that let you get information about the tool
as it operates and set up callbacks to get notification of events.

For example, the Magnification box supports a single API function:
setMagnification. You can use this API function to set the magnification
value displayed in the Magnification box. The Magnification box automatically
notifies the scroll panel to change the magnification of the image based on the
value. The scroll panel also supports an extensive set of API functions. To get
information about these APIs, see the reference page for the modular tool.

Example: Building an Image Comparison Tool

To illustrate how to use callbacks to make the connections required for
interactions between tools, this example uses the Scroll Panel API to build a
simple image comparison GUI. This custom tool displays two images side by
side in scroll panels that are synchronized in location and magnification. The
custom tool also includes an Overview tool and a Magnification box.

function my_image_compare_tool(left_image, right_image)

% Create the figure

hFig = figure('Toolbar', 'none',...
‘Menubar', 'none', ...
‘Name', 'My Image Compare Tool',...
‘NumberTitle','off',...
‘IntegerHandle', 'off"');

Using Modular Tools

% Display left image
subplot(121)
hImL = imshow(left_image);

% Display right image
subplot(122)
hImR = imshow(right_image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set (hSpL, 'Units', 'normalized’,...
'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig,hImR);

set(hSpR, 'Units', 'normalized’,...
'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box

hMagBox = immagbox (hFig,hImL);

pos = get(hMagBox, 'Position');

set(hMagBox, 'Position',[0 O pos(3) pos(4)])

%% Add an Overview tool
imoverview(hImL)

%% Get APIs from the scroll panels
= iptgetapi(hSpL);
iptgetapi(hSpR);

[
T T
'—l. '—l.
D
1

%% Synchronize left and right scroll panels
apiL.setMagnification(apiR.getMagnification())
apilL.setVisiblelLocation(apiR.getVisiblelLocation())

% When magnification changes on left scroll panel,
% tell right scroll panel
apiL.addNewMagnificationCallback(apiR.setMagnification);

% When magnification changes on right scroll panel,

5-27

5 Building GUIs with Modular Tools

% tell left scroll panel
apiR.addNewMagnificationCallback(apiL.setMagnification);

% When location changes on left scroll panel,
% tell right scroll panel
apilL.addNewLocationCallback(apiR.setVisiblelLocation);

% When location changes on right scroll panel,
% tell left scroll panel
apiR.addNewLocationCallback(apiL.setVisiblelLocation);

The tool sets up a complex interaction between the scroll panels with just

a few calls to Scroll Panel API functions. In the code, the tool specifies

a callback function to execute every time the magnification changes. The
function specified is the setMagnification API function of the other scroll
panel. Thus, whenever the magnification changes in one of the scroll panels,
the other scroll panel changes its magnification to match. The tool sets up a
similar connection for position changes.

The following figure is a sequence diagram that shows the interaction

between the two scroll panels set up by the comparison tool for both changes
in magnification and location.

5-28

Using Modular Tools

Left Scrall Panel

Right Scroll Panel

Change magnification

. [,

call setMognification[)

Change magnificatian

. [
" all s=tMognifiatian()
Change location
. [
all sefViiblelocation|)
Change Locatian
. [
T all stViibleLocatian])

Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');

right_image = edge(left_image(:,:,1),'canny');
my_image_compare_tool(left_image,right_image);

5-29

5 Building GUIs with Modular Tools

The tool opens a figure window, displaying the two images side by side, in
separate scroll panels. The custom compare tool also includes an Overview
tool and a Magnification box. When you move the detail rectangle in the
Overview tool or change the magnification in one image, both images respond.

<) My Image Compare Tool ;lglll

) oves it

File Edit ‘Windomw Help L

&m@

100%

Custom Image Comparison Tool with Synchronized Scroll Panels

5-30

Creating Your Own Modular Tools

Creating Your Own Modular Tools

Because the toolbox uses an open architecture for the modular interactive
tools, you can extend the toolbox by creating your own modular interactive
tools, using standard Handle Graphics concepts and techniques. To help you
create tools that integrate well with the existing modular interactive tools, the
toolbox includes many utility functions that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add
callback functions to a callback list or remove them from a list, draw a
draggable point, line, or rectangle over an image, and align figure windows
in relation to a fixed window. The following table lists these utility functions
in alphabetical order. See the function’s reference page for more detailed

information.

Utility Function Description

getimagemodel Retrieve image model objects from image handles

getrangefromclass Get default display range of image, based on its
class

imagemodel Access to properties of an image relevant to its
display

imattributes Return information about image attributes

imgca Get handle to most recent current axis containing
an image

imgcf Get handle to most recent current figure
containing an image

imgetfile Display Open Image dialog box

imhandles Get all image handles

imline Create a line that can be dragged and resized
interactively

impoint Create a point that can be dragged interactively

imrect Create a rectangle that can be dragged
interactively

iptaddcallback Add function handle to a callback list

5-31

5 Building GUIs with Modular Tools

5-32

Utility Function

Description

iptcheckconn Check validity of connectivity argument
iptcheckhandle Check validity of image handle argument
iptcheckinput Check validity of input argument

iptcheckmap Check validity of colormap argument
iptchecknargin Check number of input arguments
iptcheckstrs Check validity of string argument

iptgetapi Get application programmer interface (API) for

a handle

iptGetPointerBehavior

Retrieve pointer behavior from HG object

ipticondir Return names of directories containing IPT and
MATLAB icons

iptnum2ordinal Convert positive integer to ordinal string

iptPointerManager Install mouse pointer manager in figure

iptremovecallback Delete function handle from callback list

iptSetPointerBehavior

Store pointer behavior in HG object

iptwindowalign

Align figure windows

Spatial Transformations

This chapter describes the spatial transformation functions in Image
Processing Toolbox. A spatial transformation (also known as a geometric
operation) modifies the spatial relationship between pixels in an image,
mapping pixel locations in an input image to new locations in an output
image. The toolbox includes functions that perform certain specialized spatial
transformations, such as resizing and rotating an image. In addition, the
toolbox includes functions that you can use to perform many types of 2-D and
N-D spatial transformations, including custom transformations.

Resizing an Image (p. 6-2)

Rotating an Image (p. 6-5)

Cropping an Image (p. 6-7)

Performing General 2-D Spatial
Transformations (p. 6-8)

Performing N-Dimensional Spatial
Transformations (p. 6-20)

Example: Performing Image
Registration (p. 6-22)

Describes how to use the imresize
function to change the size of an
image

Describes how to use the imrotate
function to rotate an image

Describes how to use the imcrop
function to extract a rectangular
portion of an image

Describes how to perform a general
spatial transformation of a 2-D
image

Describes the toolbox functions you
can use to perform N-D spatial
transformations of arrays

Shows how to use some capabilities
of imtransform to view the results of
image registration

6 Spatial Transformations

Resizing an

Image

This section describes how to use the imresize function to change the size
of an image. Topics covered include:

® “Specifying the Size of the Output Image” on page 6-2

® “Specifying the Interpolation Method” on page 6-3

e “Using Filters to Prevent Aliasing” on page 6-4

Specifying the Size of the Output Image

Using imresize, you can specify the size of the output image in two ways:

® By specifying the magnification factor to be used on the image

® By specifying the dimensions of the output image

Using the Magnification Factor

To enlarge an image, specify a magnification factor greater than 1. To reduce
an image, specify a magnification factor between 0 and 1. For example, the
command below increases the size of an image by 1.25 times.

I = imread('circuit.tif');
J = imresize(I,1.25);
imshow(I)

figure, imshow(J)

Resizing an Image

Image Courtesy of Steve Decker and Shujoat Nadeem

Specifying the Size of the Output Image

You can specify the size of the output image by passing a vector that contains
the number of rows and columns in the output image. If the specified size
does not produce the same aspect ratio as the input image, the output image
will be distorted. If you specify one of the elements in the vector as NaN,
imresize calculates the value for that dimension to preserve the aspect ratio
of the image.

The following command creates an output image with 100 rows and 150
columns.

I = imread('circuit.tif');
J imresize(I,[100 1501]);
imshow(I)

figure, imshow(dJ)

Specifying the Interpolation Method

Interpolation is the process used to estimate an image value at a location in
between image pixels. When imresize enlarges an image, the output image
contains more pixels than the original image. The imresize function uses
interpolation to determine the values for the additional pixels.

6 Spatial Transformations

Interpolation methods determine the value for an interpolated pixel by finding
the point in the input image that corresponds to a pixel in the output image
and then calculating the value of the output pixel by computing a weighted
average of some set of pixels in the vicinity of the point. The weightings are
based on the distance each pixel is from the point.

By default, imresize uses bicubic interpolation to determine the values of
pixels in the output image, but you can specify other interpolation methods
and interpolation kernels. In the following example, imresize uses the
bilinear interpolation method. See the imresize reference page for a complete
list of interpolation methods and interpolation kernels available. You can also
specify your own custom interpolation kernel. .

Y = imresize(X,[100 150], 'bilinear"')

Using Filters to Prevent Aliasing

When you reduce the size of an image, you lose some of the original pixels
because there are fewer pixels in the output image. Aliasing that occurs as a
result of size reduction normally appears as “stair-step“ patterns (especially in
high-contrast images), or as moiré (ripple-effect) patterns in the output image.

By default, imresize uses antialiasing to limit the impact of aliasing on the
output image for all interpolation types except nearest neighbor. To turn
off antialiasing, specify the 'Antialiasing' parameter and set the value
to false.

Note Even with antialiasing, resizing an image can introduce artifacts,
because information is always lost when you reduce the size of an image.

For more information, see the reference page for imresize.

Rotating an Image

Rotating an Image

This section describes how to use the imrotate function to rotate an image.
Topics covered include:

¢ “Image Rotation Basics” on page 6-5
® “Specifying the Size of the Output Image” on page 6-5
® “Specifying the Interpolation Method” on page 6-5

Image Rotation Basics
The imrotate function accepts two primary arguments:

® The image to be rotated

¢ The rotation angle

You specify the rotation angle in degrees. If you specify a positive value,
imrotate rotates the image counterclockwise; if you specify a negative value,
imrotate rotates the image clockwise. This example rotates the image I 35
degrees in the counterclockwise direction.

J = imrotate(I,35);

Specifying the Size of the Output Image

By default, imrotate creates an output image large enough to include the
entire original image. Pixels that fall outside the boundaries of the original
image are set to 0 and appear as a black background in the output image. If
you specify the text string “crop' as an argument, imrotate crops the output
image to be the same size as the input image. (See the reference page for
imrotate for an example of cropping.)

Specifying the Interpolation Method

By default, imrotate uses nearest-neighbor interpolation to determine the
value of pixels in the output image, but you can specify other interpolation
methods. See the imrotate reference page for a list of supported interpolation
methods.

6 Spatial Transformations

For example, these commands rotate an image 35° counterclockwise and use
bilinear interpolation.

imread('circuit.tif');
imrotate(I,35, 'bilinear');

I
J

imshow(I)
figure, imshow(J)

6-6

Cropping an Image

Cropping an Image

To extract a rectangular portion of an image, use the imcrop function. imcrop
accepts two primary arguments:

® The image to be cropped

® The coordinates of a rectangle that defines the crop area

If you call imcrop without specifying the crop rectangle, you can specify the
crop rectangle interactively. In this case, the cursor changes to crosshairs
when it is over the image. Position the crosshairs over a corner of the
crop region and press and hold the left mouse button. When you drag the
crosshairs over the image you specify the rectangular crop region. imcrop
draws a rectangle around the area you are selecting. When you release the
mouse button, imcrop creates a new image from the selected region.

In this example, you display an image and call imcrop. The imcrop function
displays the image in a figure window and waits for you to draw the cropping
rectangle on the image. In the figure, the rectangle you select is shown in red.
The example then calls imshow to view the cropped image.

imshow circuit.tif
I = imcrop;
imshow(I);

6 Spatial Transformations

Performing General 2-D Spatial Transformations

6-8

This section describes two toolbox functions that you can use to perform
general 2-D spatial transformations. (For information about performing
transformations of arrays of higher dimension, see “Performing N-Dimensional
Spatial Transformations” on page 6-20.)

® maketform

e imtransform

You use the maketform function to define the 2-D spatial transformation you
want to perform. maketform creates a MATLAB structure called a TFORM
that contains all the parameters required to perform the transformation.
You can define many types of spatial transformations in a TFORM, including
affine transformations, such as translation, scaling, rotation, and shearing,
projective transformations, and custom transformations. For more
information, see “Creating TFORM Structures” on page 6-16. (You can

also create a TFORM using the cp2tform function — see Chapter 7, “Image
Registration”.)

After you create the TFORM, you use the imtransform function to perform the
transformation, passing imtransform the image to be transformed and the
TFORM structure. The following figure illustrates this process.

Spafial transtarmatian structure
[TFORM), created using
maketform{arcp2tform)

Input
|mage

¥ ¥

imtransform

!

Transfarmed
image

Overview of General 2-D Spatial Transformation Process

For more information about 2-D spatial transformations, see these additional
topics:

e “Example: Performing a Translation” on page 6-9

Performing General 2-D Spatial Transformations

® “Defining the Transformation Data” on page 6-14
® “Creating TFORM Structures” on page 6-16

o “Performing the Spatial Transformation” on page 6-17

Example: Performing a Translation

This example illustrates how to use the maketform and imtransform
functions to perform a 2-D spatial transformation of an image. The example
performs a simple affine transformation called a translation. In a translation,
you shift an image in coordinate space by adding a specified value to the x-
and y-coordinates. The example illustrates the following steps:

e “Step 1: Import the Image to Be Transformed” on page 6-9
® “Step 2: Define the Spatial Transformation” on page 6-9

® “Step 3: Create the TFORM Structure” on page 6-10

e “Step 4: Perform the Transformation” on page 6-10

® “Step 5: View the Output Image” on page 6-12

Step 1: Import the Image to Be Transformed

Bring the image to be transformed into the MATLAB workspace. This
example creates a checkerboard image, using the checkerboard function. By
default, checkerboard creates an 80-by-80 pixel image.

cb = checkerboard;
imshow(ch)

Original Image

Step 2: Define the Spatial Transformation

You must define the spatial transformation that you want to perform. For
many types of 2-D spatial transformations, such as affine transformations,

6 Spatial Transformations

6-10

you can use a 3-by-3 transformation matrix to specify the transformation.
You can also use sets of points in the input and output images to specify the
transformation and let maketform create the transformation matrix. For more
information, see “Defining the Transformation Data” on page 6-14.

This example uses the following transformation matrix to define a spatial
transformation called a translation.

xform = [

- O

1
0
0

- O O

40 4

o

In this matrix, xform(3,1) specifies the number of pixels to shift the image
in the horizontal direction and xform(3,2) specifies the number of pixels to
shift the image in the vertical direction.

Step 3: Create the TFORM Structure

You use the maketform function to create a TFORM structure. As arguments,
you specify the type of transformation you want to perform and the
transformation matrix (or set of points) that you created to define the
transformation. For more information, see “Creating TFORM Structures”
on page 6-16.

This example calls maketform, specifying 'affine' as the type of
transformation, because translation is a type of affine transformation, and
xform, the transformation matrix created in step 2.

tform_translate = maketform('affine',xform);

Step 4: Perform the Transformation

To perform the transformation, call the imtransform function, specifying
the image you want to transform and the TFORM structure that stores all the
required transformation parameters. For more information, see “Performing
the Spatial Transformation” on page 6-17.

The following example passes to the imtransform function the checkerboard
image, created in Step 1, and the TFORM structure created in Step 3.
imtransform returns the transformed image.

Performing General 2-D Spatial Transformations

[cb_trans xdata ydata]= imtransform(cb, tform_translate);

The example includes two optional output arguments: xdata and ydata.
These arguments return the location of the output image in output coordinate
space. xdata contains the x-coordinates of the pixels at the corners of the
output image. ydata contains the y-coordinates of these same pixels.

Note This section uses the spatial coordinate system when referring to pixel
locations. In the spatial coordinates system, the x- and y-coordinates specify
the center of the pixel. For more information about the distinction between
spatial coordinates and pixel coordinates, see “Coordinate Systems” on page
2-2.

The following figure illustrates this translation graphically. By convention,
the axes in input space are labeled © and v and the axes in output space are
labelled x and y. In the figure, note how imtransform modifies the spatial
coordinates that define the locations of pixels in the input image. The pixel
at (1,1) is now positioned at (41,41). (In the checkerboard image, each black,
white, and gray square is 10 pixels high and 10 pixels wide.)

Input Goardinate S pace Dutput Goardinate Space

11,1

[ETAT

Input Image Translated

6-11

6 Spatial Transformations

6-12

Pixel Values and Pixel Locations. The previous figure shows how
imtransform changes the locations of pixels between input space and output
space. The pixel located at (1,1) in the input image is now located at (41,41)
in the output image. Note, however, that the value at that pixel location has
not changed. Pixel (1,1) in the input image is black and so is pixel (41,41)
in the output image.

imtransform determines the value of pixels in the output image by mapping
the new locations back to the corresponding locations in the input image
(inverse mapping). In a translation, because the size and orientation of the
output image is the same as the input image, this is a one to one mapping

of pixel values to new locations. For other types of transformations, such

as scaling or rotation, imtransform interpolates within the input image to
compute the output pixel value. For more information about the interpolation
methods used by imtransform, see .

Step 5: View the Output Image

After performing the transformation, you might want to view the transformed
image. The example uses the imshow function to display the transformed
image.

figure, imshow(cb_trans)

Translated Image

Understanding the Display of the Transformed Image. When viewing
the transformed image, especially for a translation operation, it might appear
that the transformation had no effect. The transformed image looks identical
to the original image. However, if you check the xdata and ydata values
returned by imtransform, you can see that the spatial coordinates have
changed. The upper left corner of the input image with spatial coordinates
(1,1) is now (41,41). The lower right corner of the input image with spatial
coordinates (80,80) is now (120,120). The value 40 has been added to each,
as expected.

Performing General 2-D Spatial Transformations

xdata =

41 120
ydata =

41 120

The reason that no change is apparent in the visualization is because
imtransform sizes the output image to be just large enough to contain the
entire transformed image but not the entire output coordinate space. To see
the effect of the translation in relation to the original image, you can use
several optional input parameters that specify the size of output image and
how much of the output space is included in the output image.

The example uses two of these optional input parameters, XData and YData,
to specify how much of the output coordinate space to include in the output
image. The example sets the XData and YData to include the origin of the
original image and be large enough to contain the entire translated image.

Note All the pixels that are now in the output image that do not correspond
to locations in the input image are black. imtransform assigns a value, called
a fill value, to these pixels. This example uses the default fill value but you
can specify a different one — see “Specifying Fill Values” on page 6-18.

cb_trans2 = imtransform(cb, tform_translate,...
‘XData',[1 (size(cb,2)+xform(3,1)],...
'YData', [1 (size(cb,1)+xform(3,2)]);
figure, imshow(cb_trans2)

6-13

6 Spatial Transformations

6-14

View of the Translated Image in Relation to Original Coordinate Space

Defining the Transformation Data

Before you can perform a spatial transformation, you must first define the
parameters of the transformation. The following sections describe two ways
you can define a spatial transformation.

® “Using a Transformation Matrix” on page 6-14

® “Using Sets of Points” on page 6-15

With either method, you pass the result to the maketform function to create
the TFORM structure required by imtransform.

Using a Transformation Matrix

The maketform function can accept transformation matrices of various
sizes for N-D transformations. Because imtransform only performs 2-D
transformations, you can only specify 3-by-3 transformation matrices.

For example, you can use a 3-by-3 matrix to specify any of the affine
transformations. For affine transformations, the last column must contain
00 1([zeros(N,1); 11). You can specify a 3-by-2 matrix. In this case,
imtransform automatically adds this third column.

The following table lists the affine transformations you can perform with
imtransform along with the transformation matrix used to define them. You
can combine multiple affine transformations into a single matrix.

Performing General 2-D Spatial Transformations

Affine
Transform Example | Transformation Matrix
Translation KR t_ specifies the
displacement along
e 1.0 the x axis
_t"‘ Ty 1 t, specifies the
displacement along
the y axis.
Scale _Sx 0 0 s specifies the scale
factor along the x axis
0 s, 0 .
s specifies the scale
_U 01 factor along the y axis.
Shear 1 sh. 0 sh_specifies the shear
o factor along the x axis
sh, 1 0 .
sh,_ specifies the shear
_U 0 1 factor along the y axis.
Rotation /A\ [cos (q) sinfq) 0 g specifies the angle
{\ ’,} _ of rotation.
v -s1nf{qg) cos(q) O
0 4] 1

Using Sets of Points

Instead of specifying a transformation matrix, you optionally use sets of points
to specify a transformation and let maketform infer the transformation matrix.

To do this for an affine transformation, you must pick three non-collinear
points in the input image and in the output image. (The points form a
triangle.) For a projective transformation, you must pick four points. (The
points form a quadrilateral.)

This example picks three points in the input image and three points in the
output image created by the translation performed in “Example: Performing a
Translation” on page 6-9. The example passes these points to maketform and
lets maketform infer the transformation matrix. The three points mark three

6-15

6 Spatial Transformations

6-16

corners of one of the checkerboard squares in the input image and the same
square in the output image.

in_points = [11 11;21 11; 21 21]
out_points = [51 51;61 51;61 61]

tform2 = maketform('affine',inpts,outpts)

Creating TFORM Structures

After defining the transformation data (“Defining the Transformation
Data” on page 6-14), you must create a TFORM structure to specify the
spatial transformation. You use the maketform function to create a TFORM
structure. You pass the TFORM structure to the imtransform to perform the
transformation. (You can also create a TFORM using the cp2tform function.
For more information, see Chapter 7, “Image Registration”.)

The example creates a TFORM structure that specifies the parameters
necessary for the translation operation.

tform_translate = maketform('affine',xform)

To create a TFORM you must specify the type of transformation you want to
perform and pass in the transformation data. The example specifies 'affine’
as the transformation type because translation is an affine transformation but
maketform also supports projective transformations. In addition, by using the
custom and composite options you can specify a virtually limitless variety

of spatial transformations to be used with imtransform. The following table
lists the transformation types supported by maketform.

Performing General 2-D Spatial Transformations

Transformation

Type Description

‘affine’ Transformation that can include translation, rotation,
scaling, and shearing. Straight lines remain straight,
and parallel lines remain parallel, but rectangles might
become parallelograms.

'projective’ Transformation in which straight lines remain straight
but parallel lines converge toward vanishing points.
(The vanishing points can fall inside or outside the
image -- even at infinity.)

"box' Special case of an affine transformation where each
dimension is shifted and scaled independently.

'custom' User-defined transformation, providing the
forward and/or inverse functions that are called by
imtransform.

'composite’ Composition of two or more transformations.

Performing the Spatial Transformation

Once you specify the transformation in a TFORM struct, you can perform the
transformation by calling imtransform. The imtransform function performs
the specified transformation on the coordinates of the input image and creates
an output image.

The translation example called imtransform to perform the transformation,
passing it the image to be transformed and the TFORM structure. imtransform
returns the transformed image.

cb_trans = imtransform(cb, tform_translate);

imtransform supports several optional input parameters that you can use
to control various aspects of the transformation so as the size of the output
image and the fill value used. To see an example of using the XData and
YData input parameters, see “Example: Performing Image Registration” on
page 6-22. For more information about specifying fill values, see “Specifying
Fill Values” on page 6-18.

6-17

6 Spatial Transformations

6-18

Specifying Fill Values

When you perform a transformation, there are often pixels in the output
image that are not part of the original input image. These pixels must

be assigned some value, called a fill value. By default, imtransform sets
these pixels to zero and they are displayed as black. Using the FillValues
parameter with the imtransform function, you can specify a different color.

Grayscale Images. If the image being transformed is a grayscale image,
you must specify a scalar value that specifies a shade of gray.

For example, in “Step 5: View the Output Image” on page 6-12, where the
example displays the translated checkerboard image in relation to the original
coordinate space, you can specify a fill value that matches the color of the gray
squares, rather than the default black color.

cb_fill = imtransform(cb, tform_translate,...
'XData', [1 (size(cb,2)+xform(3,1))1,...
'YData', [1 (size(cb,1)+xform(3,2))]
'Fillvalues', .7);

figure, imshow(cb_fill)

youon

Translated Image with Gray Fill Value

RGB Images. If the image being transformed is an RGB image, you can use
either a scalar value or a 1-by-3 vector. If you specify a scalar, imtransform
uses that shade of gray for each plane of the RGB image. If you specify a
1-by-3 vector, imtransform interprets the values as an RGB color value.

For example, this code translates an RGB image, specifying an RGB color
value as the fill value. The example specifies one of the light green values in
the image as the fill value.

Performing General 2-D Spatial Transformations

rgb = imread('onion.png');
xform = [100

010

40 40 1]

tform_translate = maketform('affine',xform);

cb_rgb = imtransform(rgb, tform_translate,...
'XData', [1 (size(rgb,2)+xform(3,1))1,...
'YData', [1 (size(rgb,1)+xform(3,2))],...
'FillValues', [187;192;57]);

figure, imshow(cb_rgb)

Translated RGB Image with Color Fill Value

If you are transforming multiple RGB images, you can specify different fill
values for each RGB image. For example, if you want to transform a series of
10 RGB images, a 4-D array with dimensions 200-by-200-by-3-by-10, you have
several options. You can specify a single scalar value and use a grayscale fill
value for each RGB image. You can also specify a 1-by-3 vector to use a single
color value for all the RGB images in the series. To use a different color fill
value for each RGB image in the series, specify a 3-by-10 array containing
RGB color values.

6-19

6 Spatial Transformations

Performing N-Dimensional Spatial Transformations

6-20

The following functions, when used in combination, provide a vast array
of options for defining and working with 2-D, N-D, and mixed-D spatial
transformations:

®* maketform

e fliptform

e tformfwd

e tforminv

e findbounds

® makeresampler
e tformarray

e imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd
and tforminv functions internally to encapsulate the forward transformations
needed to determine the extent of an output image or array and/or to map the
output pixels/array locations back to input locations. You can use tformfwd
and tforminv to explore the geometric effects of a transformation by applying
them to points and lines and plotting the results. They support a consistent
handling of both image and pointwise data.

The following example, “Performing the Spatial Transformation” on page
6-17, uses the makeresampler function with a standard interpolation method.
You can also use it to obtain special effects or custom processing. For example,
you could specify your own separable filtering/interpolation kernel, build a
custom resampler around the MATLAB interp2 or interp3 functions, or
even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional
array transformations. The arrays do not even need to have the same
dimensions. The output can have either a lower or higher number of
dimensions than the input.

Performing N-Dimensional Spatial Transformations

For example, if you are sampling 3-D data on a 2-D slice or manifold, the
input array might have a lower dimensionality. The output dimensionality
might be higher, for example, if you combine multiple 2-D transformations
into a single 2-D to 3-D operation.

For example, this code uses imtransform to perform a projective
transformation of a checkerboard image.

I = checkerboard(20,1,1);

figure; imshow(I)

T = maketform('projective',[1 1; 41 1; 41 41; 141],...
[5 5; 40 5; 35 30; -10 30]);

R makeresampler('cubic', 'circular');

K imtransform(I T,R,'Size',[100 100], 'XYScale',1);

figure, imshow(K

.

Original Transformed
image image

The imtransform function options let you control many aspects of the
transformation. For example, note how the transformed image appears

to contain multiple copies of the original image. This is accomplished

by using the 'Size' option, to make the output image larger than the
input image, and then specifying a padding method that extends the input
image by repeating the pixels in a circular pattern. The Image Processing
Toolbox Image Transformation demos provide more examples of using the
imtransform function and related functions to perform different types of
spatial transformations.

6-21

6 Spatial Transformations

Example: Performing Image Registration

This example is intended to clarify the spatial relationship between the output
image and the base image in image registration. The example illustrates use
of the optional 'XData' and 'YData' input parameters and the optional xdata
and ydata output values. The example includes the following steps:

® “Step 1: Read in Base and Unregistered Images” on page 6-22

e “Step 2: Display the Unregistered Image” on page 6-22

® “Step 3: Create a TFORM Structure” on page 6-23

e “Step 4: Transform the Unregistered Image” on page 6-23

® “Step 5: Overlay Registered Image Over Base Image” on page 6-24

® “Step 6: Using XData and YData Input Parameters” on page 6-25

e “Step 7: Using XData and YData Output Values” on page 6-26

Step 1: Read in Base and Unregistered Images

Read the base and unregistered images from sample data files that come
with Image Processing Toolbox.

base = imread('westconcordorthophoto.png');
unregistered = imread('westconcordaerial.png');

Step 2: Display the Unregistered Image

Display the unregistered image.

iptsetpref ('ImshowAxesVisible', 'on')

imshow(unregistered)

text(size(unregistered,2),size(unregistered,1)+30,
'Image courtesy of mPower3/Emerge’,
'FontSize',7, 'HorizontalAlignment', 'right');

6-22

Example: Performing Image Registration

a0 100 150 200 250 300 350

Image courtesy of mPower?/Bmenge

Step 3: Create a TFORM Structure

Create a TFORM structure using preselected control points. Start by loading a
MAT-file that contains preselected control points for the base and unregistered
images.

load westconcordpoints
tform = cp2tform(input_points, base_points, 'projective');

Step 4: Transform the Unregistered Image

Use imtransform to perform the transformations necessary to register

the unregistered image with the base image. This code uses the optional
FillValues input parameter to specify a fill value (white). This fill value helps
when the example overlays the transformed image, registered, on the base
image to check the registration in a later step.

registered = imtransform(unregistered, tform,...
'FillValues', 255);

6-23

6 Spatial Transformations

6-24

Step 5: Overlay Registered Image Over Base Image

Overlay a semitransparent version of the registered image over the base
image. Notice how the two images appear misregistered because the example
assumes that the images are in the same spatial coordinate system. The next
steps provide two ways to remedy this display problem.

figure; imshow(registered);
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

&0 100 180 200 250 300 350 400

Registered Image with Base Image Overlay

Example: Performing Image Registration

Step 6: Using XData and YData Input Parameters

One way to ensure that the registered image appears registered with the
base image is to truncate the registered image by discarding any areas that
would extrapolate beyond the extent of the base image. You use the 'XData'
and 'YData' parameters to do this.

registered1 = imtransform(unregistered,tform,...
‘Fillvalues', 255,...
'XData', [1 size(base,2)],...
'YData', [1 size(base,1)]);

Display the registered image, overlaying a semitransparent version of the
base image for comparison. The registration is evident, but part of the
unregistered image has been discarded. The next step provides another
solution in which the entire registered image is visible.

figure; imshow(registeredi)
hold on

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

a0 100 180 200 2580 300 340

Registered Image Truncated with Base Image Overlay

6-25

6 Spatial Transformations

6-26

Step 7: Using XData and YData Output Values

Another approach is to compute the full extent of the registered image and
use the optional imtransform syntax that returns the x- and y-coordinates
that indicate the transformed image’s position relative to the base image’s
pixel coordinates.

[registered2 xdata ydata] = imtransform(unregistered, tform,...
'FillValues', 255);

Display the registered image. Overlay a semi-transparent version of the base
image for comparison. Adjust the axes to include the full base image. In this
case, notice how the registration is evident and the full extent of both images
is visible as well.

figure; imshow(registered2, 'XData', xdata, 'YData', ydata)
hold on

h = imshow(base, gray(256));

set(h, 'AlphaData', 0.6)

ylim = get(gca, 'YLim');

set(gca, 'YLim', [0.5 ylim(2)])

a0 100 150 200 250 300 380 400

Image Registration

This chapter describes the image registration capabilities of Image Processing
Toolbox. Image registration is the process of aligning two or more images of
the same scene. Image registration is often used as a preliminary step in
other image processing applications.

Registering an Image (p. 7-2) Steps you through an example of the
image registration process

Transformation Types (p. 7-12) Describes the types of supported
transformations

Selecting Control Points (p. 7-13) Describes how to use the Control

Point Selection Tool (cpselect)
to select control points in pairs of

images
Using Correlation to Improve Describes how to use the cpcorr
Control Points (p. 7-29) function to fine-tune your control

point selections

7 Image Registration

Registering an Image

Image registration is the process of aligning two or more images of the
same scene. Typically, one image, called the base image or reference image,
is considered the reference to which the other images, called input images,
are compared. The object of image registration is to bring the input image
into alignment with the base image by applying a spatial transformation to
the input image. The differences between the input image and the output
image might have occurred as a result of terrain relief and other changes in
perspective when imaging the same scene from different viewpoints. Lens
and other internal sensor distortions, or differences between sensors and
sensor types, can also cause distortion.

A spatial transformation maps locations in one image to new locations in
another image. (For more details, see Chapter 6, “Spatial Transformations”)
Determining the parameters of the spatial transformation needed to bring the
images into alignment is key to the image registration process.

Image registration is often used as a preliminary step in other image
processing applications. For example, you can use image registration to align
satellite images of the earth’s surface or images created by different medical
diagnostic modalities (MRI and SPECT). After registration, you can compare
features in the images to see how a river has migrated, how an area is flooded,
or to see if a tumor is visible in an MRI or SPECT image.

This section covers the following topics:

¢ “Point Mapping” on page 7-2
e “Using cpselect in a Script” on page 7-4
e “Example: Registering to a Digital Orthophoto” on page 7-5

Point Mapping

Image Processing Toolbox provides tools to support point mapping to
determine the parameters of the transformation required to bring an image
into alignment with another image. In point mapping, you pick points in a
pair of images that identify the same feature or landmark in the images.
Then, a spatial mapping is inferred from the positions of these control points.

Registering an Image

Note You might need to perform several iterations of this process,
experimenting with different types of transformations, before you achieve a
satisfactory result. In some cases, you might perform successive registrations,
removing gross global distortions first, and then removing smaller local
distortions in subsequent passes.

The following figure provides a graphic illustration of this process. This
process is best understood by looking at an example. See “Example:
Registering to a Digital Orthophoto” on page 7-5 for an extended example.

Image to be

Input image Base image

Image you are

registered — -«— comparing it to.

Select control points in
images using cpselect

Fine tune point selection
using cpcorr (optional)

Pass points to cp2tform to
create spatial transformation
structure (TFORM).

Perform the spatial transformation, passing
imtransform the TFORM and the input image.

Aligned
Image

7-3

7 Image Registration

Using cpselect in a Script

If you need to perform the same kind of registration for many images, you
automate the process by putting all the steps in a script. For example, you
could create a script that launches the Control Point Selection Tool with an
input and a base image. The script could then use the control points selected
to create a TFORM structure and pass the TFORM and the input image to
the imtransform function, outputting the registered image.

To do this, specify the 'Wait' option when you call cpselect to launch the
Control Point Selection Tool. With the 'Wait' option, cpselect blocks the
MATLAB command line until control points have been selected and returns
the sets of control points selected in the input image and the base image as a
return values. If you do not use the 'Wait' option, cpselect returns control
immediately and your script will continue without allowing time for control
point selection. In addition, without the 'Wait' option, cpselect does not
return the control points as return values. For an example, see the cpselect
reference page.

Registering an Image

Example: Registering to a Digital Orthophoto

This example illustrates the steps involved in performing image registration
using point mapping. These steps include:

“Step 1: Read the Images into MATLAB” on page 7-6
® “Step 2: Choose Control Points in the Images” on page 7-7

e “Step 3: Save the Control Point Pairs to the MATLAB Workspace” on
page 7-8

o “Step 4: Fine-Tune the Control Point Pair Placement (Optional)” on page
7-9

® “Step 5: Specify the Type of Transformation and Infer Its Parameters”
on page 7-9

e “Step 6: Transform the Unregistered Image” on page 7-10

To illustrate this process, the example registers a digital aerial photograph
to a digital orthophoto. Both images are centered on the business district of
West Concord, Massachusetts.

The aerial image is geometrically uncorrected: it includes camera perspective,
terrain and building relief, internal (lens) distortions, and it does not have
any particular alignment or registration with respect to the earth.

The orthophoto, supplied by the Massachusetts Geographic Information
System (MassGIS), has been orthorectified to remove camera, perspective,
and relief distortions (via a specialized image transformation process). The
orthophoto is also georegistered (and geocoded)—the columns and rows of
the digital orthophoto image are aligned to the axes of the Massachusetts
State Plane coordinate system, each pixel center corresponds to a definite
geographic location, and every pixel is 1 meter square in map units.

7 Image Registration

7-6

Step 1: Read the Images into MATLAB

In this example, the base image is westconcordorthophoto.png, the
MassGIS georegistered orthophoto. It is a panchromatic (grayscale) image.
The image to be registered is westconcordaerial.png, a digital aerial
photograph supplied by mPower3/Emerge, and is a visible-color RGB image.

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)

unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

You do not have to read the images into the MATLAB workspace. The
cpselect function accepts file specifications for grayscale images. However,
if you want to use cross-correlation to tune your control point positioning,
the images must be in the workspace.

Image (aurtesy of mPawerd/Emerge Image (aurtesy of MassGIS

Aerial Photo Image Orthophoto Image

Registering an Image

Step 2: Choose Control Points in the Images

The toolbox provides an interactive tool, called the Control Point Selection
Tool, that you can use to pick pairs of corresponding control points in both
images. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature.

To start this tool, enter cpselect at the MATLAB prompt, specifying as
arguments the input and base images.

cpselect(unregistered, orthophoto)

The Control Point Selection Tool displays two views of both the input image
and the base image in which you can pick control points by pointing and
clicking. For more information, see “Selecting Control Points” on page 7-13.
This figure shows the Control Point Selection Tool with four pairs of control
points selected. The number of control point pairs you pick is at least partially
determined by the type of transformation you want to perform (specified in
Step 5). See “Transformation Types” on page 7-12 for information about the
minimum number of points required by each transformation.

7 Image Registration

7-8

J Control Point Selection Tool 1 101 =l
File Edit Yiew Toaols Window Help a
s % Qo

Input Detail: unregizterad I 100%s LI ||— IP—— I 100%s LI Base Detail: orthophata

Step 3: Save the Control Point Pairs to the MATLAB Workspace
In the Control Point Selection Tool, click the File menu and choose the
Export Points to Workspace option. See “Exporting Control Points to the
Workspace” on page 7-26 for more information.

Registering an Image

For example, the following set of control points in the input image represent
spatial coordinates; the left column lists x-coordinates, the right column lists
y-coordinates.

input_points =

118.0000 96.0000
304.0000 87.0000
358.0000 281.0000
127.0000 292.0000

Step 4: Fine-Tune the Control Point Pair Placement (Optional)
This is an optional step that uses cross-correlation to adjust the position of the
control points you selected with cpselect. To use cross-correlation, features
in the two images must be at the same scale and have the same orientation.
They cannot be rotated relative to each other. Because the Concord image is
rotated in relation to the base image, cpcorr cannot tune the control points.
See “Using Correlation to Improve Control Points” on page 7-29 for more
information.

Step 5: Specify the Type of Transformation and Infer Its
Parameters

In this step, you pass the control points to the cp2tform function that
determines the parameters of the transformation needed to bring the image
into alignment. cp2tform is a data-fitting function that determines the
transformation based on the geometric relationship of the control points.
cp2tform returns the parameters in a geometric transformation structure,
called a TFORM structure.

When you use cp2tform, you must specify the type of transformation you
want to perform. The cp2tform function can infer the parameters for five
types of transformations. You must choose which transformation will correct
the type of distortion present in the input image. See “Transformation Types”
on page 7-12 for more information. Images can contain more than one type
of distortion.

The predominant distortion in the aerial image of West Concord (the input
image) results from the camera perspective. Ignoring terrain relief, which is
minor in this area, image registration can correct for camera perspective

7 Image Registration

distortion by using a projective transformation. The projective transformation
also rotates the image into alignment with the map coordinate system
underlying the base digital orthophoto image. (Given sufficient information
about the terrain and camera, you could correct these other distortions at
the same time by creating a composite transformation with maketform. See
“Performing General 2-D Spatial Transformations” on page 6-8 for more
information.)

mytform = cp2tform(input_points, base_points, 'projective');

Step 6: Transform the Unregistered Image

As the final step in image registration, transform the input image to bring
it into alignment with the base image. You use imtransform to perform the
transformation, passing it the input image and the TFORM structure, which
defines the transformation. imtransform returns the transformed image.
For more information about using imtransform, see Chapter 6, “Spatial
Transformations”

registered = imtransform(unregistered, mytform);

7-10

Registering an Image

The following figure shows the transformed image transparently overlaid on
the base image to show the results of the registration. (To see how this is
done, see “Example: Performing Image Registration” on page 6-22.

7-11

7 Image Registration

Transformation Types

7-12

The cp2tform function can infer the parameters for the following types of
transformations, listed in order of complexity.

e 'linear conformal'

e ‘'affine’

® 'projective’

e 'polynomial' (Order 2, 3, or 4)
® 'piecewise linear'

e 'lwm'

The first four transformations, 'linear conformal', 'affine’,
'projective’', and 'polynomial' are global transformations. In these
transformations, a single mathematical expression applies to an entire
image. The last two transformations, 'piecewise linear' and 'lwm' (local
weighted mean), are local transformations. In these transformations, different
mathematical expressions apply to different regions within an image. When
exploring how different transformations affect the images you are working
with, try the global transformations first. If these transformations are not
satisfactory, try the local transformations: the piecewise linear transformation
first, and then the local weighted mean transformation.

Your choice of transformation type affects the number of control point pairs
you need to select. For example, a linear conformal transformation requires at
least two control point pairs. A polynomial transformation of order 4 requires
15 control point pairs. For more information about these transformation
types, and the special syntaxes they require, see cpselect.

Selecting Control Points

Selecting Control Points

The toolbox includes an interactive tool that enables you to specify control
points in the images you want to register. The tool displays the images side by
side. When you are satisfied with the number and placement of the control
points, you can save the control points. This section covers the following topics:
¢ “Using the Control Point Selection Tool: An Overview” on page 7-13

e “Starting the Control Point Selection Tool” on page 7-15

e “Using Navigation Tools to Explore the Images” on page 7-16

® “Specifying Matching Control Point Pairs” on page 7-20

e “Exporting Control Points to the Workspace” on page 7-26

Using the Control Point Selection Tool: An Overview

To specify control points in a pair of images you want to register, use the
Control Point Selection Tool, cpselect. The tool displays the image you want
to register, called the input image, next to the image you want to compare it
to, called the base image or reference image.

Specifying control points is a four-step process:

1 Start the tool, specifying the input image and the base image.

2 Use navigation aids to explore the image, looking for visual elements that
you can identify in both images. cpselect provides many ways to navigate
around the image, panning and zooming to view areas of the image in
more detail.

3 Specify matching control point pairs in the input image and the base image.

4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first
start it.

7-13

7 Image Registration

7-14

Use point
prediction

= '
?&'ﬁt‘? —WE\% ' of

Detail
windows

Overview
windows —]

Detail —
rectangles

Zoom in and out
on images

) Control Point Selection Tool 1

Fl= Edit ‘iew Tools

Move images in Specify magnification or lock
detail windows relative magnification of images

A\

=0l x|

|

‘Window Help

P R

Input Detail: moon_ingpt

EEa m ,_Dck'raﬁo ' |2|:||:|°;.,‘ v | Base Detai moon_pase

Selecting Control Points

Starting the Control Point Selection Tool

To use the Control Point Selection Tool, enter the cpselect command at the
MATLAB prompt. As arguments, specify the image you want to register (the
input image), and the image you want to compare it to (the base image).

For simplicity, this section uses the same image as the input and the base
image. To walk through an example of an actual registration, see “Registering
an Image” on page 7-2.

moon_base = imread('moon.tif');
moon_input = moon_base;
cpselect(moon_input, moon_base);

The cpselect command has other optional arguments. For example, you can
restart a control point selection session by including a cpstruct structure
as the third argument. For more information about restarting sessions, see
“Exporting Control Points to the Workspace” on page 7-26. For complete
details, see the cpselect reference page.

When the Control Point Selection Tool starts, it contains three primary
components:

* Details windows—The two windows displayed at the top of tool are called
the Detail windows. These windows show a close-up view of a portion of
the images you are working with. The input image is on the left and the
base image is on the right.

* Overview windows—The two windows displayed at the bottom of the tool
are called the Overview windows. These windows show the images in their
entirety, at the largest scale that fits the window. The input image is on
the left and the base image is on the right. You can control whether the
Overview window appears by using the View menu.

¢ Details rectangle—Superimposed on the images displayed in the two
Overview windows is a rectangle, called the Detail rectangle. This
rectangle controls the part of the image that is visible in the Detail window.
By default, at startup, the detail rectangle covers one quarter of the entire
image and is positioned over the center of the image. You can move the
Detail rectangle to change the portion of the image displayed in the Detail
windows.

7-15

7 Image Registration

7-16

Input Deetail: moon_ingput Iggg% LI ||— IP—— Iggg% LI Base Detail: moon_base

Detail
windows
Input ———

The following figure shows these components of the Control Point Selection
Tool.

Base

Overview

windows
Input
Base

Detail

rectangles
Input
Base

Using Navigation Tools to Explore the Images

To find visual elements that are common to both images, you might want to
change the section of the image displayed in the detail view or zoom in on a
part of the image to view it in more detail. The following sections describe the
different ways to change your view of the images:

“Using Scroll Bars to View Other Parts of an Image” on page 7-17
“Using the Detail Rectangle to Change the View” on page 7-17
“Panning the Image Displayed in the Detail Window” on page 7-18

“Zooming In and Out on an Image” on page 7-18

Selecting Control Points

® “Specifying the Magnification of the Images” on page 7-19

® “Locking the Relative Magnification of the Input and Base Images” on
page 7-20

Using Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview
windows, use the scroll bars provided for each window.

As you scroll the image in the Detail window, note how the Detail rectangle
moves over the image in the Overview window. The position of the Detail
rectangle always shows the portion of the image in the Detail window.

Using the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the Detail rectangle in the
Overview window over that section of the image. cpselect displays that
section of the image in the Detail window at a higher magnification than
the Overview window.

To move the detail rectangle,
1 Move the pointer into the Detail rectangle. The cursor changes to the fleur
shape, \=ad]

2 Press and hold the mouse button to drag the detail rectangle anywhere
on the image.

Note As you move the Detail rectangle over the image in the Overview
window, the view of the image displayed in the Detail window changes.

7-17

7 Image Registration

Panning the Image Displayed in the Detail Window

To change the section of the image displayed in the Detail window, use the
pan tool to move the image in the window.

To use the pan tool,

1 Click the Pan button |ﬂ| in the Control Point Selection Tool toolbar or
select Pan from the Tools menu.

2 Move the pointer over the image in the Detail window. The cursor changes

to the hand shape, éfr? .

3 Press and hold the mouse button. The cursor changes to a closed fist shape,

7. Use the mouse to move the image in the Detail window.

Note As you move the image in the Detail window, the Detail rectangle in
the Overview window moves.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole
image in context, you can zoom in or zoom out on the images displayed.
(You can also zoom in or out on an image by changing the magnification.
See “Specifying the Magnification of the Images” on page 7-19 for more
information.)

To zoom in or zoom out on the base or input images,

1 Click the appropriate magnifying glass button on the Control Point
Selection Tool toolbar or select Zoom In or Zoom Out from the Tools menu.

Zoom in Zoom out

s
H R

7-18

Selecting Control Points

2 Move the pointer over the image in the Detail window that you want to
zoom in or out on. The cursor changes to the appropriate magnifying glass

shape, such as @{ Position the cursor over a location in the image and
click the mouse. With each click, cpselect changes the magnification of the
image by a preset amount. (See for a list of some of these magnifications.)
cpselect centers the new view of the image on the spot where you clicked.

Another way to use the Zoom tool to zoom in on an image is to position the
cursor over a location in the image and, while pressing and holding the
mouse button, draw a rectangle defining the area you want to zoom in on.
cpselect magnifies the image so that the chosen section fills the Detail
window. cpselect resizes the detail rectangle in the Overview window
as well.

The size of the Detail rectangle in the Overview window changes as you
zoom in or out on the image in the Detail window.

To keep the relative magnifications of the base and input images
synchronized as you zoom in or out, click the Lock ratio check box. See
“Locking the Relative Magnification of the Input and Base Images” on page
7-20 for more information.

Specifying the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole
image in context, use the magnification edit box. (You can also use the Zoom
buttons to enlarge or shrink an image. See “Zooming In and Out on an Image”
on page 7-18 for more information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to
change. The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter, or click
the menu associated with the edit box and choose from a list of preset
magnifications. cpselect changes the magnification of the image and
displays the new view in the appropriate window. To keep the relative
magnifications of the base and input images synchronized as you change the
magnification, click the Lock ratio check box. See for more information.

7-19

7 Image Registration

Magnification edit box Magnification menu

:

LI [Lock ratio || 109%
Fit: to windiow
33%
S0%
67

Impust Dretail: moon_ingpt LI Baze Detail: moon_baze

Locking the Relative Magnification of the Input and Base
Images

To keep the relative magnification of the input and base images automatically
synchronized in the Detail windows, click the Lock Ratio check box.

When the Lock Ratio check box is selected, cpselect changes the
magnification of both the input and base images when you zoom in or out on
either one of the images or specify a magnification value for either of the
images.

Lock magnification ratio check box

;- | 100% R4

| 100%

Specifying Matching Control Point Pairs

The primary function of the Control Point Selection Tool is to enable you
to pick control points in the image to be registered (the input image) and
the image to which you are comparing it (the base image). When you start
cpselect, point selection is enabled, by default.

You specify control points by pointing and clicking in the input and base
images, in either the Detail or the Overview windows. Each point you specify

7-20

Selecting Control Points

in the input image must have a match in the base image. The following
sections describe the ways you can use the Control Point Selection Tool to
choose control point pairs:

® “Picking Control Point Pairs Manually” on page 7-21
e “Using Control Point Prediction” on page 7-23

e “Moving Control Points” on page 7-25
® “Deleting Control Points” on page 7-26

Picking Control Point Pairs Manually
To specify a pair of control points in your images,

1 Click the Control Point Selection button " in the Control Point
Selection Tool toolbar or select Add Points from the Tools menu. (Control
point selection mode is active by default.) The cursor changes to a

crosshairs shape +

2 Position the cursor over a feature you have visually selected in any of the
images displayed and click the mouse button. cpselect places a control

point symbol, 1, at the position you specified, in both the Detail window
and the corresponding Overview window. cpselect numbers the points as
you select them. The appearance of the control point symbol indicates its
current state. The circle around the point indicates that it is the currently
selected point. The number identifies control point pairs.

Note Depending on where in the image you pick control points, the symbol
for the point might be visible in the Overview window, but not in the Detail
window.

3 You can select another point in the same image or you can move to the
corresponding image and create a match for the point. To create the match
for this control point, position the cursor over the same feature in the
corresponding Detail or Overview window and click the mouse button.
cpselect places a control point symbol at the position you specified, in

7-21

7 Image Registration

both the Detail and Overview windows. You can work in either direction:
picking control points in either of the Detail windows, input or base, or in
either of the Overview windows, input or base.

To match an unmatched control point, select it, and then pick a point in
the corresponding window. You can move or delete control points after you

create them.

The following figure illustrates control points in several states.

Matched pair of points

Selected,
unmatched
point

7-22

Selecting Control Points

Using Control Point Prediction

Instead of picking matching control points yourself, you can let the Control
Point Selection Tool estimate the match for the control points you specify,
automatically. The Control Point Selection Tool determines the position of the
matching control point based on the geometric relationship of the previously
selected control points, not on any feature of the underlying images.

To illustrate point prediction, this figure shows four control points selected
in the input image, where the points form the four corners of a square.
(The control point selections in the figure do not attempt to identify any
landmarks in the image.) The figure shows the picking of a fourth point, in
the left window, and the corresponding predicted point in the right window.
Note how the Control Point Selection Tool places the predicted point at the
same location relative to the other control points, forming the bottom right
corner of the square.

7-23

7 Image Registration

Predicted point

Note By default, the Control Point Selection Tool does not include predicted
points in the set of valid control points returned in input_points or

base points. To include predicted points, you must accept them by selecting
the points and fine-tuning their position with the cursor. When you move

a predicted point, the Control Point Selection Tool changes the symbol to
indicate that it has changed to a standard control point. For more information,
see “Moving Control Points” on page 7-25.

To use control point prediction,

7-24

Selecting Control Points

.¢.':
Click the Control Point Prediction button ’_ﬁ

Note Because the Control Point Selection Tool predicts control point
locations based on the locations of the previous control points, you cannot
use point prediction until you have a minimum of two pairs of matched
points. Until this minimum is met, the Control Point Prediction button
is disabled.

Position the cursor anywhere in any of the images displayed. The cursor

changes to the crosshairs shape, —l_ .

You can pick control points in either of the Detail windows, input or base,
or in either of the Overview windows, input or base. You also can work in
either direction: input-to-base image or base-to-input image.

Click either mouse button. The Control Point Selection Tool places a control
point symbol at the position you specified and places another control point
symbol for a matching point in all the other windows. The symbol for the

P

predicted point contains the letter P, # indicating that it’s a predicted
control point,

To accept a predicted point, select it with the cursor and move it. The
Control Point Selection Tool removes the P from the point.

Moving Control Points

To move a control point,

1 Click the Control Point Selection button

-[il]- .

2 Position the cursor over the control point you want to move. The cursor

changes to the fleur shape, a5

3 Press and hold the mouse button and drag the control point. The state of
the control point changes to selected when you move it.

7-25

7 Image Registration

7-26

If you move a predicted control point, the state of the control point changes to
a regular (nonpredicted) control point.

Deleting Control Points
To delete a control point, and its matching point, if one exists

1 Click the Control Point Selection button ® .

2 Click the control point you want to delete. Its state changes to selected. If
the control point has a match, both points become active.

3 Delete the point (or points) using one of these methods:

® Pressing the Backspace key
® Pressing the Delete key
® Choosing one of the delete options from the Edit menu
Using this menu you can delete individual points or pairs of matched

points, in the input or base images.

Delete Active Pair
Delete Active Input Poink

Delete Active Base Paink

Exporting Control Points to the Workspace

After you specify control point pairs, you must save them in the MATLAB
workspace to make them available for the next step in image registration,
processing by cp2tform.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.

2 Choose the Export Points to Workspace option. The Control Point
Selection Tool displays this dialog box:

Selecting Control Points

<} Export Points to Workspa O] =|

[Imput points of valid pairs 'npuu:ucuints

[Baze poirts of valid pairs 'GaSEJ:-Dints

[T Structure with all points l:ps‘truct

0K I Canu:ell

By default, the Control Point Selection Tool saves the x-coordinates and
y-coordinates that specify the locations of the control points you selected

in two arrays named input_points and base_points, although you can
specify other names. These are n-by-2 arrays, where n is the number of valid
control point pairs you selected. This example shows the input_points array
containing four pairs of control points. The values in the left column represent
the x-coordinates; the values in the right column represent the y-coordinates.

input_points =

215.6667 262.3333
225.7778 311.3333
156.5556 340.1111
270.8889 368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to
save your control points.

Saving Your Control Point Selection Session
To save the current state of the Control Point Selection Tool, choose the
Export Points to Workspace option from the File menu. In the Export

Points to Workspace dialog box, select the Structure with all points
check box.

7-27

7 Image Registration

) Export Points to Workspace O] =|

[Imput points of valid pairs 'npuu:ucuints

[Baze poirts of valid pairs 'GaSEJ:-Dints

[Structure with all points l:ps‘truct

0K I Canu:ell

This option saves the positions of all the control points you specified and their
current states in a cpstruct structure.

cpstruct =

inputPoints: [4x2 double]
basePoints: [4x2 double]
inputBasePairs: [4x2 double]
ids: [4x1 double]
inputIdPairs: [4x2 double]
baselIdPairs: [4x2 double]
isInputPredicted: [4x1 double]
isBasePredicted: [4x1 double]

You can use the cpstruct to restart a control point selection session at the
point where you left off.

This option is useful if you are picking many points over a long time and want
to preserve unmatched and predicted points when you resume work. The
Control Point Selection Tool does not include unmatched and predicted points
in the input_points and base_points arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use
the cpstruct2pairs function.

7-28

Using Correlation to Improve Control Points

Using Correlation to Improve Control Points

You might want to fine-tune the control points you selected using cpselect.
Using cross-correlation, you can sometimes improve the points you selected
by eye using the Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the input and base
images, along with the images themselves, to the cpcorr function.

input_pts_adj= cpcorr(input_points, base_points, input, base);

The cpcorr function defines 11-by-11 regions around each control point in the
input image and around the matching control point in the base image, and
then calculates the correlation between the values at each pixel in the region.
Next, the cpcorr function looks for the position with the highest correlation
value and uses this as the optimal position of the control point. The cpcorr
function only moves control points up to 4 pixels based on the results of the
cross-correlation.

Note Features in the two images must be at the same scale and have the
same orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values
in input_points unmodified.

7-29

7 Image Registration

7-30

Linear Filtering and Filter
Design

Image Processing Toolbox provides a number of functions for designing and
implementing two-dimensional linear filters for image data. This chapter
describes these functions and how to use them effectively.

Linear Filtering (p. 8-2) Provides an explanation of linear
filtering and how it is implemented
in the toolbox. This topic describes
filtering in terms of the spatial
domain, and is accessible to anyone
doing image processing.

Filter Design (p. 8-15) Discusses designing two-dimensional
finite impulse response (FIR) filters.
This section assumes you are
familiar with working in the
frequency domain.

8 Linear Filtering and Filter Design

Linear Filtering

Filtering is a technique for modifying or enhancing an image. For example,
you can filter an image to emphasize certain features or remove other
features. Image processing operations implemented with filtering include
smoothing, sharpening, and edge enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel
in the output image is determined by applying some algorithm to the values
of the pixels in the neighborhood of the corresponding input pixel. A pixel’s
neighborhood is some set of pixels, defined by their locations relative to that
pixel. (See Chapter 15, “Neighborhood and Block Operations” for a general
discussion of neighborhood operations.)

Linear filtering is filtering in which the value of an output pixel is a linear
combination of the values of the pixels in the input pixel’s neighborhood.

This section discusses linear filtering in MATLAB and Image Processing
Toolbox. Topics covered include:

e “Convolution” on page 8-2

e “Correlation” on page 8-4

e “Filtering Using imfilter” on page 8-5

e “Using Predefined Filter Types” on page 8-13

See “Filter Design” on page 8-15 for information about how to design filters.

Convolution

Linear filtering of an image is accomplished through an operation called
convolution. Convolution is a neighborhood operation in which each output
pixel is the weighted sum of neighboring input pixels. The matrix of weights
is called the convolution kernel, also known as the filter. A convolution kernel
is a correlation kernel that has been rotated 180 degrees.

For example, suppose the image is

A= [17 24 1 8 15

Linear Filtering

23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9]

and the convolution kernel is

The following figure shows how to compute the (2,4) output pixel using these
steps:

1 Rotate the convolution kernel 180 degrees about its center element.

2 Slide the center element of the convolution kernel so that it lies on top of
the (2,4) element of A.

3 Multiply each weight in the rotated convolution kernel by the pixel of A
underneath.

4 Sum the individual products from step 3.
Hence the (2,4) output pixel is

1-2+8-9+15-44+7-7T+14-5+16-3+13-8+20.-1+22.-8=575

8 Linear Filtering and Filter Design

Values of rototed comvalution kernel

Imoge pixel values 13 5
. ——— Center of kemel

10 12 19 N i

1 18 15 1 §

Computing the (2,4) Output of Convolution

Correlation

The operation called correlation is closely related to convolution. In
correlation, the value of an output pixel is also computed as a weighted sum of
neighboring pixels. The difference is that the matrix of weights, in this case
called the correlation kernel, is not rotated during the computation. The filter
design functions in Image Processing Toolbox return correlation kernels.

The following figure shows how to compute the (2,4) output pixel of the
correlation of A, assuming h is a correlation kernel instead of a convolution
kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of
the (2,4) element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.

3 Sum the individual products from step 3.
The (2,4) output pixel from the correlation is

1-8+8-1+15-8+7-3+214 - 5+168 - 7+13 - 4+820 . 9+22.2 =585

Linear Filtering

Valves of correlation kernel

L Cenerof kernel

w17 || | d s

imgepichalesl b33 | 5 | 248 8
h Am—]

-4 |6 | ot o’ | o

w | w|al s

molw || o2 |

Computing the (2,4) Output of Correlation

Filtering Using imfilter
Filtering of images, either by correlation or convolution, can be performed
using the toolbox function imfilter. This example filters an image with
a 5-by-5 filter containing equal weights. Such a filter is often called an

averaging filter.

I
h

imread('coins.png');
ones(5,5) / 25;
I2 = imfilter(I,h);

imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

8 Linear Filtering and Filter Design

Original Image Filtered Image

Data Types

The imfilter function handles data types similarly to the way the image
arithmetic functions do, as described in “Image Arithmetic Saturation Rules”
on page 2-25. The output image has the same data type, or numeric class, as
the input image. The imfilter function computes the value of each output
pixel using double-precision, floating-point arithmetic. If the result exceeds
the range of the data type, the imfilter function truncates the result to
that data type’s allowed range. If it is an integer data type, imfilter rounds
fractional values.

Because of the truncation behavior, you might sometimes want to consider
converting your image to a different data type before calling imfilter. In
this example, the output of imfilter has negative values when the input is
of class double.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

Linear Filtering

>0
I
—
'
—_
o
Y
—

imfilter(A,h)

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A is of class uints,
instead of double.

A = uint8(magic(5));
imfilter(A,h)

ans =
24 0 0 14 0
5 0 9 9 0
6 9 14 9 0
12 9 9 0 0
18 14 0 0 0

Since the input to imfilter is of class uint8, the output also is of class
uint8, and so the negative values are truncated to 0. In such cases, it might
be appropriate to convert the image to another type, such as a signed integer
type, single, or double, before calling imfilter.

Correlation and Convolution Options

The imfilter function can perform filtering using either correlation or
convolution. It uses correlation by default, because the filter design functions,
described in “Filter Design” on page 8-15, and the fspecial function,
described in “Using Predefined Filter Types” on page 8-13, produce correlation
kernels.

8-7

8 Linear Filtering and Filter Design

However, if you want to perform filtering using convolution instead, you can
pass the string 'conv' as an optional input argument to imfilter. For

example:
A = magic(5);
h=1[-101]

imfilter(A,h) % filter using correlation

ans =
24 -16 -16 14 -8
5 -16 9 9 -14
6 9 14 9 -20
12 9 9 -16 -21
18 14 -16 -16 -2

\O

imfilter(A,h,'conv') s filter using convolution

ans =
-24 16 16 -14 8
-5 16 -9 -9 14
-6 -9 -14 -9 20
12 -9 -9 16 21
-18 -14 16 16 2

Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of
the convolution or correlation kernel is usually off the edge of the image,
as illustrated in the following figure.

Linear Filtering

What valve should these
auside pixek have?

7| w | ? Ej-ﬂ" 157
| s | o] o] e
s |6 | 1| w|n
w | | on
mlw || o2

(enter of kemel

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by
assuming that they are 0. This is called zero padding and is illustrated in
the following figure.

Dutside pixek are
asumed ta be (.

o* o' o
7w | B PY
N A
3| s | 7t |
1| i | n|w|n
w ol |l
molw | s | 2]y

(enter of kemel

Zero Padding of Outside Pixels

8 Linear Filtering and Filter Design

When you filter an image, zero padding can result in a dark band around the
edge of the image, as shown in this example.

I = imread('eight.tif');

h ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image with Black Border')

Original Image Filtered Image with Black Border

To eliminate the zero-padding artifacts around the edge of the image,
imfilter offers an alternative boundary padding method called border
replication. In border replication, the value of any pixel outside the image
is determined by replicating the value from the nearest border pixel. This
is illustrated in the following figure.

8-10

Linear Filtering

These pive |values are rep licated
fram boundary pingk.

(enter of kemel

L)] 2

1 18 15 1 g

Replicated Boundary Pixels

To filter using border replication, pass the additional optional argument
'replicate’ to imfilter.

I3 = imfilter(I,h, 'replicate');

figure, imshow(I3);
title('Filtered Image with Border Replication')

Filtered Image with Border Replication

8-11

8 Linear Filtering and Filter Design

8-12

The imfilter function supports other boundary padding options, such as
‘circular' and 'symmetric'. See the reference page for imfilter for details.

Multidimensional Filtering

The imfilter function can handle both multidimensional images and
multidimensional filters. A convenient property of filtering is that filtering
a three-dimensional image with a two-dimensional filter is equivalent to
filtering each plane of the three-dimensional image individually with the
same two-dimensional filter. This example shows how easy it is to filter each
color plane of a truecolor image with the same filter:

1 Read in an RGB image and display it.

rgb = imread('peppers.png');
imshow(rgb);

2 Filter the image and display it.

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);
figure, imshow(rgb2)

Linear Filtering

Relationship to Other Filtering Functions

MATLAB has several two-dimensional and multidimensional filtering
functions. The function filter2 performs two-dimensional correlation, conv2
performs two-dimensional convolution, and convn performs multidimensional
convolution. Each of these filtering functions always converts the input to
double, and the output is always double. These other filtering functions
always assume the input is zero padded, and they do not support other
padding options.

In contrast, the imfilter function does not convert input images to double.
The imfilter function also offers a flexible set of boundary padding options,
as described in “Boundary Padding Options” on page 8-8.

Using Predefined Filter Types

The fspecial function produces several kinds of predefined filters, in the form
of correlation kernels. After creating a filter with fspecial, you can apply it
directly to your image data using imfilter. This example illustrates applying
an unsharp masking filter to a grayscale image. The unsharp masking filter
has the effect of making edges and fine detail in the image more crisp.

8-13

8 Linear Filtering and Filter Design

I = imread('moon.tif")
h = fspecial('unsharp'
I2 = imfilter(I,h);
imshow(I), title('Original Image')

figure, imshow(I2), title('Filtered Image')

)

Imoge Courtesy of Michael Myers
Original Image Filtered Image

8-14

Filter Design

Filter Design

This section describes working in the frequency domain to design filters.
Topics discussed include:

¢ “FIR Filters” on page 8-16

¢ “Frequency Transformation Method” on page 8-16

¢ “Frequency Sampling Method” on page 8-18

¢ “Windowing Method” on page 8-19

® “Creating the Desired Frequency Response Matrix” on page 8-21

* “Computing the Frequency Response of a Filter” on page 8-22

This section assumes you are familiar with working in the frequency domain.

This topic is discussed in many signal processing and image processing
textbooks.

Note Most of the design methods described in this section work by creating
a two-dimensional filter from a one-dimensional filter or window created
using functions from Signal Processing Toolbox. Although this toolbox is
not required, you might find it difficult to design filters in Image Processing
Toolbox if you do not have Signal Processing Toolbox as well.

8-15

8 Linear Filtering and Filter Design

8-16

FIR Filters

Image Processing Toolbox supports one class of linear filter, the
two-dimensional finite impulse response (FIR) filter. FIR filters have a finite
extent to a single point, or impulse. All filter design functions in Image
Processing Toolbox return FIR filters.

FIR filters have several characteristics that make them ideal for image
processing in the MATLAB environment:

¢ FIR filters are easy to represent as matrices of coefficients.

¢ Two-dimensional FIR filters are natural extensions of one-dimensional
FIR filters.

® There are several well-known, reliable methods for FIR filter design.
¢ FIR filters are easy to implement.

¢ FIR filters can be designed to have linear phase, which helps prevent
distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as
suitable for image processing applications. It lacks the inherent stability and
ease of design and implementation of the FIR filter. Therefore, this toolbox
does not provide IIR filter support.

Frequency Transformation Method

The frequency transformation method transforms a one-dimensional FIR
filter into a two-dimensional FIR filter. The frequency transformation
method preserves most of the characteristics of the one-dimensional filter,
particularly the transition bandwidth and ripple characteristics. This method
uses a transformation matrix, a set of elements that defines the frequency
transformation.

The toolbox function ftrans2 implements the frequency transformation
method. This function’s default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you
can obtain different symmetries. (See Jae S. Lim, Two-Dimensional Signal
and Image Processing, 1990, for details.)

Filter Design

The frequency transformation method generally produces very good results,
as it is easier to design a one-dimensional filter with particular characteristics
than a corresponding two-dimensional filter. For instance, the next example
designs an optimal equiripple one-dimensional FIR filter and uses it to
create a two-dimensional filter with similar characteristics. The shape of the
one-dimensional frequency response is clearly evident in the two-dimensional
response

b = remez(10,[0 0.4 0.6 1],[1 1 0 0]);
h = ftrans2(b);

[H,w] = freqz(b,1,64, 'whole');
colormap(jet(64))
plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])

1.4

1.2} 1

0.8¢

0.6

0.4¢1

021

O 1 1 1 1
-1 -08 -06 -04 -0.2 0 02 04 06 038 1

One-Dimensional Frequency Response

8-17

8 Linear Filtering and Filter Design

8-18

15

Magnitude

=S

A\ SO us

SRS
S S

Corresponding Two-Dimensional Frequency Response

Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency
response. Given a matrix of points that define the shape of the frequency
response, this method creates a filter whose frequency response passes
through those points. Frequency sampling places no constraints on the
behavior of the frequency response between the given points; usually, the
response ripples in these areas. (Ripples are oscillations around a constant
value. The frequency response of a practical filter often has ripples where the
frequency response of an ideal filter is flat.)

The toolbox function fsamp2 implements frequency sampling design for
two-dimensional FIR filters. fsamp2 returns a filter h with a frequency
response that passes through the points in the input matrix Hd. The example
below creates an 11-by-11 filter using fsamp2 and plots the frequency response
of the resulting filter. (The freqz2 function in this example calculates the
two-dimensional frequency response of a filter. See “Computing the Frequency
Response of a Filter” on page 8-22 for more information.)

Filter Design

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fsamp2(Hd);

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Notice the ripples in the actual frequency response, compared to the desired
frequency response. These ripples are a fundamental problem with the
frequency sampling design method. They occur wherever there are sharp
transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter.
However, a larger filter does not reduce the height of the ripples, and requires
more computation time for filtering. To achieve a smoother approximation to
the desired frequency response, consider using the frequency transformation
method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response
with a window function to generate a corresponding filter, which tapers the
ideal impulse response. Like the frequency sampling method, the windowing
method produces a filter whose frequency response approximates a desired
frequency response. The windowing method, however, tends to produce better
results than the frequency sampling method.

8-19

8 Linear Filtering and Filter Design

8-20

The toolbox provides two functions for window-based filter design, fwind1 and
fwind2. fwind1 designs a two-dimensional filter by using a two-dimensional
window that it creates from one or two one-dimensional windows that

you specify. fwind2 designs a two-dimensional filter by using a specified
two-dimensional window directly.

fwind1 supports two different methods for making the two-dimensional
windows it uses:

® Transforming a single one-dimensional window to create a two-dimensional
window that is nearly circularly symmetric, by using a process similar to
rotation

* Creating a rectangular, separable window from two one-dimensional
windows, by computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired
frequency response Hd. Here, the hamming function from Signal Processing
Toolbox is used to create a one-dimensional window, which fwind1 then
extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11, 'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))
h = fwind1 (Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual
Two-Dimensional Frequency Response (right)

Filter Design

Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind2, and fwind2 all create filters based
on a desired frequency response magnitude matrix. Frequency response is a
mathematical function describing the gain of a filter in response to different
input frequencies.

You can create an appropriate desired frequency response matrix using the
fregspace function. freqspace returns correct, evenly spaced frequency
values for any size response. If you create a desired frequency response
matrix using frequency points other than those returned by freqspace, you
might get unexpected results, such as nonlinear phase.

For example, to create a circular ideal lowpass frequency response with cutoff
at 0.5, use

[f1,f2] = freqspace(25, 'meshgrid');

Hd = zeros(25,25); d = sqrt(f1.72 + f2.72) < 0.5;
Hd(d) = 1;

mesh (f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1,
and fwind2 are real. This result is desirable for most image processing
applications. To achieve this in general, the desired frequency response
should be symmetric about the frequency origin (f1 = 0, f2 = 0).

8-21

8 Linear Filtering and Filter Design

8-22

Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional
filter. With no output arguments, freqz2 creates a mesh plot of the frequency
response. For example, consider this FIR filter,

h =[0.1667 0.6667 0.1667
0.6667 -3.3333 0.6667
0.1667 0.6667 0.1667];

This command computes and displays the 64-by-64 point frequency response
of h.

freqz2(h)

Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1
and f2, use output arguments

[H,f1,f2] = freqz2(h);

Filter Design

freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds
to half the sampling frequency, or © radians.

For a simple m-by-n response, as shown above, freqz2 uses the
two-dimensional fast Fourier transform function fft2. You can also specify
vectors of arbitrary frequency points, but in this case freqz2 uses a slower
algorithm.

See “Fourier Transform” on page 9-3 for more information about the fast
Fourier transform and its application to linear filtering and filter design.

8-23

8 Linear Filtering and Filter Design

8-24

Transforms

The usual mathematical representation of an image is a function of two
spatial variables: fix,¥). The value of the function at a particular location
(2, ¥) represents the intensity of the image at that point. This is called the
spatial domain. The term transform refers to an alternative mathematical
representation of an image. For example, the Fourier transform is a
representation of an image as a sum of complex exponentials of varying
magnitudes, frequencies, and phases. This is called the frequency domain.
Transforms are useful for a wide range of purposes, including convolution,
enhancement, feature detection, and compression.

This chapter defines several important transforms and shows examples of
their application to image processing.

Fourier Transform (p. 9-3) Defines the Fourier transform and
some of its applications in image
processing

Discrete Cosine Transform (p. 9-16) Describes the discrete cosine
transform (DCT) of an image and its
application, particularly in image
compression

Radon Transform (p. 9-20) Describes how the radon function

computes projections of an image
matrix along specified directions

9 Transforms

The Inverse Radon Transformation
(p. 9-29)

Fan-Beam Projection Data (p. 9-36)

Describes how the iradon function
reconstructs images from projection
data

Describes how the fanbeam function
computes projections of an image
matrix along paths that radiate from
a specific source

Fourier Transform

Fourier Transform

The Fourier transform is a representation of an image as a sum of complex
exponentials of varying magnitudes, frequencies, and phases. The Fourier
transform plays a critical role in a broad range of image processing
applications, including enhancement, analysis, restoration, and compression.

This section covers the following topics:

¢ “Definition of Fourier Transform” on page 9-3
¢ “Discrete Fourier Transform” on page 9-8

e “Applications of the Fourier Transform” on page 9-11

Definition of Fourier Transform

If f(m,n) is a function of two discrete spatial variables m and n, then the
two-dimensional Fourier transform of f (m. n) is defined by the relationship

Fi Wy, Wy) = E E fim,n Je—jm,mf—jmﬂn

m=—tc 0= -0

The variables , and o, are frequency variables; their units are radians

per sample. F(wy. Wy is often called the frequency-domain representation
of fim,n). Flwy. wy) is a complex-valued function that is periodic both in
“1and "2, with period 2. Because of the periodicity, usually only the range
—T= Wy. Wy =Tjg displayed. Note that F'(0,0) is the sum of all the values of
fim,n). For this reason, F(0, 0 is often called the constant component or DC
component of the Fourier transform. (DC stands for direct current; it is an
electrical engineering term that refers to a constant-voltage power source, as
opposed to a power source whose voltage varies sinusoidally.)

The inverse of a transform is an operation that when performed on a
transformed image produces the original image. The inverse two-dimensional
Fourier transform is given by

fun . fukn
Jun e.f b

1 T T
fim,n) = P Jm]——T -[m ~ TFEml,mEJe duwy dug
T = -1 g = =T

Q Transforms

Roughly speaking, this equation means that f (. 1) can be represented as a
sum of an infinite number of complex exponentials (sinusoids) with different
frequencies. The magnitude and phase of the contribution at the frequencies
(W, Wo) are given by ¥ (@1 @),

Visualizing the Fourier Transform

To illustrate, consider a function f (7. 1) that equals 1 within a rectangular
region and 0 everywhere else. To simplify the diagram, f (7.) is shown as a
continuous function, even though the variables m and n are discrete.

n

fim,n)

Y

n

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier

transform, |F[w1- “’EJL of the rectangular function shown in the preceding
figure. The mesh plot of the magnitude is a common way to visualize the
Fourier transform.

Fourier Transform

oﬁiﬁ\

‘ﬁ\\‘\\\\\\\\\

1

|

—”'_i‘_‘“‘“\\i‘;-: ‘
=
A

= A

Magnitude Image of a Rectangular Function

The peak at the center of the plot is F{0, 07, which is the sum of all the values
in fim.n) The plot also shows that Fiw;. @) has more energy at high
horizontal frequencies than at high vertical frequencies. This reflects the fact
that horizontal cross sections of /' (7. 1) are narrow pulses, while vertical
cross sections are broad pulses. Narrow pulses have more high-frequency
content than broad pulses.

Another common way to visualize the Fourier transform is to display

log|F' (w3, wg)| a5 an image, as shown.

9-5

Q Transforms

wl

Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in
regions where Fiw;. w5 is very close to 0.

Examples of the Fourier transform for other simple shapes are shown below.

Fourier Transforms of Some Simple Shapes

9-7

9 Transforms

Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form
of the transform known as the discrete Fourier transform (DFT). A discrete
transform is a transform whose input and output values are discrete samples,
making it convenient for computer manipulation. There are two principal
reasons for using this form of the transform:

¢ The input and output of the DFT are both discrete, which makes it
convenient for computer manipulations.

e There is a fast algorithm for computing the DFT known as the fast Fourier
transform (FFT).

The DFT is usually defined for a discrete function f (7.) that is nonzero only
over the finite region 0 =m <M -1 and 0 <n < N-1. The two-dimensional
M-by-N DFT and inverse M-by-N DFT relationships are given by

M-1 N-1
— 2] —j2asN =D,1,...,M—1
Fip.q) = E z fim,n)e JfETfH]pn!f JI2n/Nign r
m=0 n=10 q= D,l,...,N—l
M-1 N-1
2 Mipm 32z Nign m=01,... M-1
(m.n) = Fip.giwe’ €
! ! NZD Eﬂ i n=01..N-1
F: q:

The values F(P- @) are the DFT coefficients of (M. 1) The zero-frequency
coefficient, F(0, DJ, is often called the "DC component." DC is an electrical
engineering term that stands for direct current. (Note that matrix indices in
MATLAB always start at 1 rather than 0; therefore, the matrix elements
f(1,1) and F(1,1) correspond to the mathematical quantities £(0.0) and
Fi0.0) respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier
transform algorithm for computing the one-dimensional DFT, two-dimensional
DFT, and N-dimensional DF'T, respectively. The functions ifft, ifft2, and
ifftn compute the inverse DFT.

Fourier Transform

Relationship to the Fourier Transform
The DFT coefficients (P-4 are samples of the Fourier transform Flwy, wg),

p=01 ... M-1
g=01..N-1

Fip.g) = Flw;. wy)
B-4a 1 e wy = Eaps M

we = 2ag N

Example

1 Construct a matrix f that is similar to the function f(m,n) in the example
in “Definition of Fourier Transform” on page 9-3. Remember that f(m,n)
is equal to 1 within the rectangular region and 0 elsewhere. Use a binary
image to represent f(m,n).

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f, 'notruesize')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5], 'notruesize'); colormap(jet); colorbar

Q Transforms

Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing
the Fourier Transform” on page 9-4. First, the sampling of the Fourier
transform is much coarser. Second, the zero-frequency coefficient is
displayed in the upper left corner instead of the traditional location in
the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f
when computing its DFT. The zero padding and DFT computation can be
performed in a single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

9-10

Fourier Transform

Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper
left corner rather than the center. You can fix this problem by using
the function fftshift, which swaps the quadrants of F so that the
zero-frequency coefficient is in the center.

F = fft2(f,256,256);F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 9-4.

Applications of the Fourier Transform

This section presents a few of the many image processing-related applications
of the Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the
frequency response of the filter. The function freqz2 computes and displays
a filter’s frequency response. The frequency response of the Gaussian
convoluti