MATLAB® 7

Programming

MATLAB

‘\The MathWorks

Accelorating the poce of engineering and science



LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Programming
© COPYRIGHT 1984-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.



Revision History

June 2004 First printing
October 2004 Online only
March 2005 Online only
June 2005 Second printing
September 2005 Online only
March 2006 Online only

September 2006 Online only
March 2007 Online only

New for MATLAB 7.0 (Release 14)

Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.0.4 (Release 14SP2)
Minor revision for MATLAB 7.0.4

Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release R2006a)
Revised for MATLAB 7.3 (Release R2006b)
Revised for MATLAB 7.4 (Release R2007a)






Data Structures

Creating and Concatenating Matrices ............... 1-3
Constructing a Simple Matrix ....................... 1-3
Specialized Matrix Functions ........................ 1-5
Concatenating Matrices .............ccuiiiie.... 1-7
Matrix Concatenation Functions ..................... 1-8
Generating a Numeric Sequence ..................... 1-10
Combining Unlike Data Types ...............coco.. .. 1-12

MatrixIndexing .............. ... ... .. .. ... 1-18
Accessing Single Elements .......................... 1-18
LinearIndexing .......... ..o innnnnn. 1-19
Functions That Control Indexing Style ................ 1-19
Accessing Multiple Elements ........................ 1-20
Logical Indexing ......... .00 nnnnnnn. 1-23
Indexing on Assignment ................ ... ... .. ... 1-23

Getting Information About a Matrix ................. 1-24
Dimensions of the Matrix ................... ... ... 1-24
Data Types Used in the Matrix ...................... 1-25
Data Structures Used in the Matrix .................. 1-26

Resizing and Reshaping Matrices ................... 1-27
Expanding the Size of a Matrix ...................... 1-27
Diminishing the Size of a Matrix ..................... 1-31
Reshapinga Matrix ...........0 i, 1-32
Preallocating Memory ...............0iiiiiiiuennnn. 1-34

Shifting and Sorting Matrices ...................... 1-37
Shift and Sort Functions ............. ... .. ... ..... 1-37
Shifting the Location of Matrix Elements .............. 1-37
Sorting the Data in Each Column .................... 1-39
Sorting the Datain EachRow ....................... 1-39

Sorting Row Vectors .............. .. ... 1-40




vi

Contents

Operating on Diagonal Matrices .................... 1-42

2

Constructing a Matrix from a Diagonal Vector .......... 1-42
Returning a Triangular Portion of a Matrix ............ 1-43
Concatenating Matrices Diagonally ................... 1-43
Empty Matrices, Scalars, and Vectors ................ 1-44
The Empty Matrix ..........0iiiiiiiiiinnnnnnn. 1-44
Scalars ... e e 1-47
VeCtors .o v i e 1-48
Full and Sparse Matrices ........................... 1-50
Sparse Matrix Functions ........................... 1-50
Multidimensional Arrays ...............cccviiiina.. 1-52
OVeIVIEW & ittt ettt e e e 1-52
Creating Multidimensional Arrays ................... 1-54
Accessing Multidimensional Array Properties .......... 1-57
Indexing Multidimensional Arrays ................... 1-58
Reshaping Multidimensional Arrays .................. 1-62
Permuting Array Dimensions ........................ 1-64
Computing with Multidimensional Arrays ............. 1-66
Organizing Data in Multidimensional Arrays ........... 1-67
Multidimensional Cell Arrays ............... v 1-69
Multidimensional Structure Arrays ................... 1-70
Summary of Matrix and Array Functions ............ 1-72
Data Types

Overview of MATLAB Data Types ................... 2-3
Data Type Summary ..........c.ouiiiineeennnnnnnns 2-4
Numeric Types ...........c.iiiiiiiiiiiiinnnnnnn, 2-6
Integers ... e e 2-6
Floating-Point Numbers ............... ... .. 2-14
Complex Numbers ........... ..., 2-24
Infinityand NaN ....... ... ... . i, 2-25



Identifying Numeric Types ...........ccoiiiieon.. 2-27

Display Format for Numeric Values ................... 2-27
Function Summary ............ ... 2-29
Logical Types ........... .00ttt 2-33
Creating a Logical Array ............cciiiiiuune... 2-33
How Logical Arrays Are Used ....................... 2-35
Identifying Logical Arrays .............. ... ... 2-37
Charactersand Strings ............................. 2-38
Creating Character Arrays ...........ccciviiiuueee... 2-38
Cell Arrays of Strings ...........ciiiiiiininine... 2-40
Formatting Strings ........... ... .. . . i i i 2-43
String Comparisons . .........ouvuiieerrennneee.. 2-56
Searching and Replacing ........................... 2-59
Converting from Numeric to String ................... 2-60
Converting from String to Numeric ................... 2-62
Function Summary ............ ..o, 2-64
Datesand Times ............... ... . ... iiiin... 2-67
Types of Date Formats ............................. 2-67
Conversions Between Date Formats .................. 2-69
Date String Formats .............. ... ... .. .. ... 2-69
Output Formats ........... ... .. i ... 2-70
Current Dateand Time .............. ... . ... ...... 2-72
Function Summary ............ ..o, 2-72
Structures .......... ... . .. e e 2-75
Building Structure Arrays ............ .. i, 2-76
Accessing Data in Structure Arrays ................... 2-79
Using Dynamic Field Names ........................ 2-81
Finding the Size of Structure Arrays .................. 2-82
Adding Fields to Structures ......................... 2-83
Deleting Fields from Structures ...................... 2-84
Applying Functions and Operators ................... 2-84
Writing Functions to Operate on Structures ............ 2-85
Organizing Data in Structure Arrays ................. 2-86
Nesting Structures .......... ... ... 2-92
Function Summary ............ .00, 2-93
Cell Arrays ..ottt et e e e 2-94
Cell Array Operators . .........cvuuiiiiinnnnnnnnen.. 2-95

vii



viii

Contents

Creatinga Cell Array ...........ciiiiiiiiiiinne... 2-96

Referencing Cellsof a Cell Array ..................... 2-100
Deleting Cells . ... .ot e i 2-107
Reshaping Cell Arrays ...........cc0iiiiiiiiinnnnnn. 2-107
Replacing Lists of Variables with Cell Arrays ........... 2-108
Applying Functions and Operators ................... 2-109
Organizing Data in Cell Arrays ...................... 2-110
Nesting Cell Arrays .. ..ot innniiiiieeeennnnnns 2-111
Converting Between Cell and Numeric Arrays .......... 2-113
Cell Arrays of Structures ............. ... ..., 2-114
Function Summary ............ ..., 2-115
FunctionHandles .............. ... . ... . ... ...... 2-116
Constructing and Invoking a Function Handle .......... 2-116
Calling a Function Using Its Handle .................. 2-116
Simple Function Handle Example .................... 2-117
MATLAB Classes . .......cuiiitenmntenneenneennnnn. 2-118
JavaClasses ........... ... . ... 2-119

3

Variables ............ .. i 3-3
Types of Variables ............ ... .. 3-3
Naming Variables ............ ... 3-7
Guidelines to Using Variables ....................... 3-11
ScopeofaVariable ............ ... . ... 3-11
Lifetime of a Variable ............ ... ... ... ... .... 3-13

Keywords ............ . it 3-14

Special Values ............ .. ... i, 3-15

Operators ..............0iiiiiiiiiii i, 3-17
Arithmetic Operators .............cciiiiiiinene... 3-17
Relational Operators ........... ... i, 3-18



Logical Operators ...........c.iiiiiiiieeninnnnnnnn 3-20

Operator Precedence ............... ..., 3-26
MATLAB EXpressions ..............couuueeeinnnnnnns 3-28
String Evaluation .................. ... ... ..., 3-28
Shell Escape Functions ................. ..., 3-29
Regular Expressions ....................ccc 0., 3-31
MATLAB Regular Expression Functions ............... 3-32
Elements of an Expression .......................... 3-33
Character Classes ...........ciiiiiiniinnnnennnn.. 3-33
Character Representation ........................... 3-36
Grouping Operators . ..........coiuiiiiinnnnnnnnen.. 3-37
Nonmatching Operators ................cciiiinna.. 3-39
Positional Operators ........... ..., 3-40
Lookaround Operators .............ciiiiiiinnnnnnn. 3-41
Quantifiers .............iiiiiii i e 3-45
TORENS .ottt e e 3-48
Named Capture ...........cciiiiiiiiieninnnnnnnn 3-53
Conditional Expressions ..............cciiiien... 3-55
Dynamic Regular Expressions ....................... 3-58
String Replacement ................ ... .. ... 3-67
Handling Multiple Strings ............. ... .. ... 3-69
Operator SUMMAry . ........oiiuiunteeennnnnnenen.s 3-72
Comma-Separated Lists ............................ 3-80
Generating a Comma-Separated List ................. 3-80
Assigning Output from a Comma-Separated List ........ 3-82
Assigning to a Comma-Separated List ................ 3-83
How to Use the Comma-Separated Lists ............... 3-84
Fast Fourier Transform Example ..................... 3-86
Program Control Statements ....................... 3-88
Conditional Control —if, switch ..................... 3-88
Loop Control — for, while, continue, break ............. 3-92
Error Control —try,catch .......................... 3-95
Program Termination —return ...................... 3-96
Symbol Reference ................. ... ... ... ... .. 3-97
Asterisk — * L e 3-98
At — @ e e e 3-98



X

Contents

q |

COMINA — , ottt e 3-100
Curly Braces — {1} ... ...ttt 3-101
Dot — . e e e 3-102
Dot-Dot — .. .. e e 3-102
Dot-Dot-Dot (Ellipsis) — ... oo vviiiii i 3-103
Dot-Parentheses — .() ...t 3-103
Exclamation Point —! ......... ... ... ... .. .. ... 3-104
Parentheses — () ... . ittt i 3-104
Percent — % ... e e 3-105
Percent-Brace — %{ %} ........cco i 3-105
Semicolon — ; ... ... e 3-106
Single Quotes — 7 ... . e e 3-107
Space Character .............cciiiiiiiinnnninnnen.. 3-107
Slash and Backslash —/\ .......................... 3-108
Square Brackets — [] ........ ... i ... 3-108
MATLAB Functions ................00iiiiiinnnnnnn. 3-110
M-File Functions .......... ...ttt eiinnnnnnn. 3-110
Built-In Functions .......... ... ... i, 3-111
Overloaded MATLAB Functions ..................... 3-112
M-File Programming

Program Development ............................. 4-3
Creatinga Program ............. ..., 4-3
Getting the Bugs Out ............. ... ... ..., 4-4
Cleaning Up the Program ........................... 4-5
Improving Performance ............................ 4-6
CheckingItIn ....... ... ... ... ... 4-7
Working with M-Files .............................. 4-8
Typesof M-Files ... .. ittt 4-8
Basic Partsofan M-File ............................ 4-9
Creating a Simple M-File ........................... 4-13
Providing Help for Your Program ..................... 4-16
Creating P-Code Files .......... ... ... . oo, 4-16
M-File Scripts and Functions ....................... 4-18



M-File Scripts . ...iviiiiiii ittt 4-18

M-File Functions ...........c.o.tiiitiiiinnneennn. 4-19
Types of Functions ............. .. ... 4-20
Identifying Dependencies .............. ... 4-21
FunctionHandles .............. ... . ... . ... ...... 4-23
Constructing a Function Handle ..................... 4-23
Calling a Function Using Its Handle .................. 4-24
Functions That Operate on Function Handles .......... 4-26
Comparing Function Handles ....................... 4-26
Additional Information on Function Handles ........... 4-31
Function Arguments ............................... 4-33
Checking the Number of Input Arguments ............. 4-33
Passing Variable Numbers of Arguments .............. 4-35
Parsing Inputs with inputParser ..................... 4-37
Passing Optional Arguments to Nested Functions ....... 4-48
Returning Modified Input Arguments ................. 4-51
Calling Functions .................. ... . i, 4-53
What Happens When You Call a Function ............. 4-53
Determining Which Function Is Called ................ 4-54
MATLAB Calling Syntax .........ccvuiinennennennn.. 4-57
Passing Certain Argument Types .................... 4-61
Passing Arguments in Structures or Cell Arrays ........ 4-63
Assigning Output Arguments ........................ 4-65
Calling External Functions ......................... 4-67
Running External Programs ........................ 4-68

Types of Functions

Overview of MATLAB Function Types ............... 5-2
Anonymous Functions ............................. 5-3
Constructing an Anonymous Function ................ 5-3
Arrays of Anonymous Functions ..................... 5-6
Outputs from Anonymous Functions .................. 5-7

Variables Used in the Expression .................... 5-8



Examples of Anonymous Functions ................... 5-11

Primary M-File Functions .......................... 5-15
Nested Functions ............... ... ... .. 5-16
Writing Nested Functions ........................... 5-16
Calling Nested Functions ................. ... .. 5-17
Variable Scope in Nested Functions ................... 5-19
Using Function Handles with Nested Functions ........ 5-21
Restrictions on Assigning to Variables ................ 5-26
Examples of Nested Functions ....................... 5-27
Subfunctions ............ ... ... . ... e 5-33
Calling Subfunctions ...............cciiiiiiiene... 5-34
Accessing Help for a Subfunction ..................... 5-34
Private Functions ................................. 5-35
Private Directories ............cc0 i, 5-35
Accessing Help for a Private Function ................. 5-36
Overloaded Functions .............................. 5-37
Class Directories . ........c.vuiiiieeeennnnnnnnnen.s 5-37

6

OVerVIEeW . ... e e 6-3
File Types Supported by MATLAB ................... 6-3
Other MATLAB I/O Capabilities ..................... 6-5
Functions Used in File Management .................. 6-7

Using the Import Wizard ........................... 6-9
Starting the Import Wizard ......................... 6-9

Previewing Contents of the File or Clipboard [Text only] .. 6-11
Specifying Delimiters and Header Format [Text only] .... 6-12

Determining Assignment to Variables ................. 6-13
Automated M-Code Generation ...................... 6-16
Writing Data to the Workspace ...................... 6-19

xii Contents



Supported File Formats ............................ 6-21

Saving and Loading MAT-Files ...................... 6-23
Exporting Data to MAT-Files ........................ 6-23
Importing Data from MAT-Files ...................... 6-30

Accessing Files with Memory-Mapping .............. 6-34
Overview of Memory-Mapping in MATLAB ............ 6-34
The memmapfile Class ...........coiiiiiiiinnnnnn. 6-38
Constructing a memmapfile Object ................... 6-40
Readinga Mapped File .............. ..., 6-54
Writingtoa Mapped File ........................... 6-59
Methods of the memmapfile Class .................... 6-67
Deletinga Memory Map ..........coiiiiiiiinnnnnnn. 6-69
Memory-Mapping Demo ............... ... ... .. ... 6-69

Importing Text Data ............................... 6-75
The MATLAB Import Wizard ........................ 6-75
Using Import Functions with Text Data ............... 6-75
Importing Numeric Text Data ....................... 6-78
Importing Delimited ASCII Data Files ................ 6-79
Importing Numeric Data with Text Headers ............ 6-80
Importing Mixed Alphabetic and Numeric Data ......... 6-81
Importing from XML Documents ..................... 6-83

Exporting Text Data ............................... 6-84
Exporting Delimited ASCII Data Files ................ 6-85
Using the diary Function to Export Data .............. 6-87
Exporting to XML Documents ....................... 6-88

Working with GraphicsFiles ........................ 6-89
Getting Information About Graphics Files ............. 6-89
Importing Graphics Data ........................... 6-90
Exporting Graphics Data ........................... 6-90

Working with Audio and VideoData ................. 6-92
Getting Information About Audio/Video Files ........... 6-92
Importing Audio/VideoData ......................... 6-93
Exporting Audio/VideoData ......................... 6-94

Working with Spreadsheets ......................... 6-97

xiii



xiv

Contents

Microsoft Excel Spreadsheets ........................ 6-97

Lotus 123 Spreadsheets ............... ... ... ... 6-100
Using Low-Level File I/O Functions ................. 6-103
Opening Files . ...... ...t 6-104
Reading BinaryData ................. ... .. 6-106
Writing Binary Data .............. ... .. ... ... .... 6-108
Controlling Positionina File ........................ 6-108
Reading Strings Line by Line from Text Files ........... 6-110
Reading Formatted ASCII Data ...................... 6-111
Writing Formatted Text Files ........................ 6-113
ClosingaFile ....... ... i, 6-114
Exchanging Files over the Internet .................. 6-116
Downloading Web Content and Files .................. 6-116
Creating and Decompressing Zip Archives ............. 6-118
Sending E-Mail ........... ... ... .. i i, 6-119
Performing FTP File Operations ..................... 6-121

Working with Scientific Data Formats

7

Common Data Format (CDF) Files ................... 7-2
Getting Information About CDF Files ................. 7-2
Importing Data froma CDF File ..................... 7-3
Exporting DatatoaCDF File ....................... 7-6

Flexible Image Transport System (FITS) Files ........ 7-8
Getting Information About FITS Files ................ 7-8
Importing Data from a FITSFile ..................... 7-9

Hierarchical Data Format (HDF5) Files .............. 7-11
Using the MATLAB High-Level HDF5 Functions ....... 7-11
Using the MATLAB Low-Level HDF5 Functions ........ 7-26

Hierarchical Data Format (HDF4) Files .............. 7-35
Using the HDF Import Tool ......................... 7-35
Using the HDF Import Tool Subsetting Options ......... 7-40



Using the MATLAB HDF4 High-Level Functions ....... 7-52

8|

Using the HDF4 Low-Level Functions ................ 7-55
Error Handling

Checking for Errors with try-catch .................. 8-2
Nested try-catch Blocks ............. ... ... ... .. ... 8-3
Handling and Recovering from an Error ............. 8-4
Reportingan Error ............ ... .. ... .. 8-4
Identifyingthe Cause ............. ... 8-5
Regeneratingan Error ................ ... ... .. ... 8-8
Message Identifiers ..................... ... ... ..... 8-10
Identifier Format ............. ... ... ... . .. 8-10
Using Message Identifiers with lasterror .............. 8-11
Warnings ............0iiiiiiiiiii e i e 8-14
Reportinga Warning ........... ... .00t 8-14
Identifyingthe Cause ............. ..ttt 8-15
Warning Control ............ ... .. ... ... .. .. 8-16
Warning Statements .............. ... ... ... ... ... 8-17
Warning Control Statements ........................ 8-17
Output from Control Statements ..................... 8-19
Saving and Restoring State ......................... 8-22
Backtrace and Verbose Modes ....................... 8-23
Debugging Errors and Warnings .................... 8-26

Classes and Objects

2

Classes and Objects: An Overview ................... 9-2

XV



xvi

Contents

Features of Object-Oriented Programming ............. 9-3

MATLAB Data Class Hierarchy ...................... 9-3
Creating Objects ..........c i, 9-4
Invoking Methods on Objects ........................ 9-4
Private Methods .......... ... i, 9-5
Helper Functions .......... ... .. 9-6
Debugging Class Methods .......................... 9-6
Setting Up Class Directories ........................ 9-6
Data Structure ......... .. . i 9-7
Tips for C++ and Java Programmers .................. 9-8
Designing User Classes in MATLAB ................. 9-9
The MATLAB Canonical Class .............c.ccovuuu.. 9-9
The Class Constructor Method ....................... 9-10
Examples of Constructor Methods .................... 9-12
Identifying Objects Outside the Class Directory ......... 9-12
The display Method ............ ... ... .. 9-13
Accessing Object Data ................ ... i, 9-13
The set and get Methods ............... ... ... ... ... 9-14
Indexed Reference Using subsref and subsasgn ......... 9-15
Handling Subscripted Reference ..................... 9-16
Handling Subscripted Assignment .................... 9-19
Object Indexing Within Methods ..................... 9-20
Defining end Indexing for an Object .................. 9-20
Indexing an Object with Another Object ............... 9-21
Converter Methods ............ ... .. ... ... . ... 9-22
Overloading Operators and Functions ............... 9-23
Overloading Operators .............ccciiiiiinnne... 9-23
Overloading Functions ............... .. i, 9-25
Example — A PolynomialClass ..................... 9-26
Polynom Data Structure ............................ 9-26
Polynom Methods ........... ... .. .. 9-26
The Polynom Constructor Method .................... 9-27
Converter Methods for the Polynom Class ............. 9-28
The Polynom display Method ........................ 9-30
The Polynom subsref Method ........................ 9-31
Overloading Arithmetic Operators for polynom ......... 9-32
Overloading Functions for the Polynom Class .......... 9-34
Listing Class Methods ........... ... ... .. 9-36



Building on OtherClasses .......................... 9-38

Simple Inheritance ................ ... . . ... 9-38
Multiple Inheritance .............. ... . i i, 9-40
Aggregation ............. . e e e 9-40
Example — Assets and Asset Subclasses ............. 9-41
Inheritance Model for the Asset Class ................. 9-42
Asset Class Design ..........cciiiiiiiiiinniinnee... 9-42
Other Asset Methods ............. ... .. i, 9-43
The Asset Constructor Method ....................... 9-43
The Asset get Method ................. ... .. ... ..... 9-44
The Asset set Method ............. ... ... .. ... .. ... 9-45
The Asset subsref Method .......................... 9-46
The Asset subsasgn Method ......................... 9-47
The Asset display Method ........................... 9-48
The Asset fieldcount Method ........................ 9-49
Designing the Stock Class ...............c .. 9-49
The Stock Constructor Method ....................... 9-50
The Stock get Method ............. ... ... ... 9-52
The Stock set Method .............. ... ... it 9-53
The Stock subsref Method .......................... 9-54
The Stock subsasgn Method ......................... 9-55
The Stock display Method ........................... 9-57
Example — The Portfolio Container ................. 9-58
Designing the PortfolioClass ........................ 9-58
The Portfolio Constructor Method .................... 9-59
The Portfolio display Method ........................ 9-60
The Portfolio pie3 Method ........................... 9-61
Creatinga Portfolio ................ ... i, 9-62
Saving and Loading Objects ........................ 9-64
Modifying Objects During Save or Load ............... 9-64

Example — Defining saveobj and loadobj for

Portfolio ......... ... .. .. . i 9-65
Summary of Code Changes .......................... 9-65
The saveobj Method .............. ... ... ... ... 9-66
The loadobj Method ............ ... ... .. .. 9-66
Changing the Portfolio Constructor ................... 9-67
The Portfolio subsref Method ........................ 9-68

xXVvii



xviii

Object Precedence ..................cciiiiinnne... 9-70

Specifying Precedence of User-Defined Classes ......... 9-70
How MATLAB Determines Which Method to Call ..... 9-72
Selectinga Method ............. ... ... o, 9-72
Querying Which Method MATLAB Will Call ........... 9-75

Scheduling Program Execution with Timers

10|

Contents

Using a MATLAB Timer Object ...................... 10-3
Example: Displaying a Message ..................... 10-4
Creating Timer Objects ............................ 10-5
Timer Object Naming ............ ... iiitiin.. 10-6
Working with Timer Object Properties .............. 10-7
Retrieving the Value of Timer Object Properties ........ 10-7
Setting the Value of Timer Object Properties ........... 10-8
Starting and Stopping Timers ...................... 10-10
Startinga Timer ............0iiiiiiiiinnninnnen.. 10-10
Starting a Timer at a Specified Time .................. 10-11
Stopping Timer Objects . ........... ..., 10-11
Blocking the MATLAB Command Line ................ 10-12
Creating and Executing Callback Functions ......... 10-14
Associating Commands with Timer Object Events ....... 10-14
Creating Callback Functions ........................ 10-15
Specifying the Value of Callback Function Properties .... 10-17
Timer Object Execution Modes ...................... 10-19
Executing a Timer Callback Function Once ............ 10-19
Executing a Timer Callback Function Multiple Times .... 10-20
Handling Callback Function Queuing Conflicts ......... 10-21
Deleting Timer Objects from Memory ............... 10-23



Testing the Validity of a Timer Object ................. 10-23

Deleting All Existing Timer Objects .................. 10-23
Finding All Timer Objects in Memory ................ 10-24
Finding Invisible Timer Objects ...................... 10-24

Improving Performance and Memory Usage

Analyzing Your Program’s Performance ............. 11-2
The M-File Profiler Utility ................. ... ... ... 11-2
Stopwatch Timer Functions ......................... 11-2

Techniques for Improving Performance ............. 114
Multithreaded Computation in MATLAB .............. 114
Vectorizing Loops . ...ttt 114
Preallocating Arrays .........c..uuiiiieeeennnnnnnns 11-7
Coding Loopsina MEX-File ......................... 11-9
Assigning to Variables .............. ... .. . 0., 11-9
Operatingon RealData ............................ 11-10
Using Appropriate Logical Operators ................. 11-10
Overloading Built-In Functions ...................... 11-11
Functions Are Generally Faster Than Scripts ........... 11-11
Load and Save Are Faster Than File I/O Functions ...... 11-11
Avoid Large Background Processes ................... 11-11

Using Memory Efficiently .......................... 11-12
Memory Allocation for Arrays ............... ... 11-12
Data Structures and Memory ................ ..., 11-16
Memory Management Functions ..................... 11-17
Strategies for Efficient Use of Memory ................ 11-18

Resolving “Out of Memory” Errors .................. 11-21
General Suggestions for Reclaiming Memory ........... 11-21
Compressing Datain Memory ....................... 11-22
Increasing System Swap Space .............. ... . ..., 11-22
Freeing Up System Resources on Windows Systems ..... 11-23
Reloading Variables on UNIX Systems ................ 11-23

Xix



Programming Tips

12

Command and Function Syntax ..................... 12-3
Syntax Help . ... ..ot i 12-3
Command and Function Syntaxes .................... 12-3
Command Line Continuation ........................ 12-3
Completing Commands Using the TabKey ............. 12-4
Recalling Commands ............cciiuiieiiinnnnnnn. 12-4
Clearing Commands . ..........couiiiiinnnnnnnnen.. 12-5
Suppressing Output to the Screen .................... 12-5

Help ... e e 12-6
Using the Help Browser ............................ 12-6
Help on Functions from the Help Browser ............. 12-7
Help on Functions from the Command Window ......... 12-7
Topical Help . ... i i 12-7
PagedOutput ............ i 12-8
Writing Your Own Help ............ ... ... ... . .... 12-9
Help for Subfunctions and Private Functions ........... 12-9
Help for Methods and Overloaded Functions ........... 12-9

Development Environment ......................... 12-11
Workspace Browser ............. ... i, 12-11
Using the Find and Replace Utility ................... 12-11
Commenting Out a Block of Code .................... 12-12
Creating M-Files from Command History .............. 12-12
Editing M-Filesin EMACS ......... ..., 12-12

M-File Functions .............. ... .. iiiiienin... 12-13
M-File Structure .......... ... i 12-13
Using Lowercase for Function Names ................. 12-13
Getting a Function’s Nameand Path .................. 12-14
What M-Files Does a Function Use? .................. 12-14
Dependent Functions, Built-Ins, Classes ............... 12-15

Function Arguments ............................... 12-16
Getting the Input and Output Arguments ............. 12-16
Variable Numbers of Arguments ..................... 12-16
String or Numeric Arguments ....................... 12-17
Passing Arguments in a Structure .................... 12-17

XX Contents



Passing Argumentsina Cell Array ................... 12-18

Program Development ............................. 12-19
Planning the Program ........... ... ... ... ... ..... 12-19
Using Pseudo-Code ............cciiiiiiiiieennnnn. 12-19
Selecting the Right Data Structures .................. 12-19
General Coding Practices ............... ... oo, .. 12-20
Naming a Function Uniquely ........................ 12-20
The Importance of Comments ....................... 12-20
Coding in Steps ..o vviii ittt e e 12-21
Making Modificationsin Steps .............c. .. 12-21
Functions with One Calling Function ................. 12-21
Testing the Final Program .......................... 12-21

Debugging ............ . . e e 12-22
The MATLAB Debug Functions ...................... 12-22
More Debug Functions ............. ..., 12-22
The MATLAB Graphical Debugger ................... 12-23
A Quick Way to Examine Variables ................... 12-23
Setting Breakpoints from the Command Line .......... 12-24
Finding Line Numbers to Set Breakpoints ............. 12-24
Stopping Execution on an Error or Warning ............ 12-24
Locating an Error from the Error Message ............. 12-24
Using Warnings to Help Debug ................... ... 12-25
Making Code Execution Visible ...................... 12-25
Debugging Scripts ..ottt e e 12-25

Variables ............ . . i e 12-26
Rules for Variable Names ........................... 12-26
Making Sure Variable Names Are Valid ............... 12-26
Don’t Use Function Names for Variables ............... 12-27
Checking for Reserved Keywords ..................... 12-27
Avoid Using i and j for Variables ..................... 12-28
Avoid Overwriting Variables in Scripts ................ 12-28
Persistent Variables ............ .. ... ... . ... 12-28
Protecting Persistent Variables ...................... 12-28
Global Variables ............ ... ... 12-29

Strings ... . e e 12-30
Creating Strings with Concatenation ................. 12-30
Comparing Methods of Concatenation ................. 12-30
Store Arrays of Stringsina Cell Array ................ 12-31

xx1



Converting Between Strings and Cell Arrays ........... 12-31

Search and Replace Using Regular Expressions ......... 12-31
Evaluating Expressions ............................ 12-33
Find Alternatives to Usingeval ...................... 12-33
Assigning to a Series of Variables .................... 12-33
Short-Circuit Logical Operators ...................... 12-33
Changing the Counter Variable within a for Loop ....... 12-34
MATLABPath ........... ... i iiiiiiiiiinnnn.. 12-35
Precedence Rules ........... ... . ... . i, 12-35
File Precedence ...........cciuiiiiiiiiiinnnennnn. 12-36
Adding a Directory to the Search Path ................ 12-36
Handles to Functions NotonthePath ................. 12-36
Making Toolbox File Changes Visible to MATLAB ....... 12-37
Making Nontoolbox File Changes Visible to MATLAB .... 12-38
Change Notification on Windows ..................... 12-38
Program Control .................... ... ... ........ 12-39
Using break, continue, andreturn .................... 12-39
Using switch Versusif ............. ... .. ... ... ..., 12-40
MATLAB case Evaluates Strings ..................... 12-40
Multiple Conditions in a case Statement ............... 12-40
Implicit Break in switch-case ........................ 12-40
Variable Scopeinaswitch .......................... 12-41
Catching Errors with try-catch ...................... 12-41
Nested try-catch Blocks ............. ... .. ... .. ... 12-42
Forcing an Early Return from a Function .............. 12-42
SaveandLoad ............... ... ... .. ... 12-43
Saving Data from the Workspace ..................... 12-43
Loading Data into the Workspace .................... 12-43
Viewing Variables ina MAT-File ..................... 12-44
Appending toa MAT-File ........... ... ... ... ...... 12-44
Save and Load on Startupor Quit .................... 12-45
Savingtoan ASCII File ............. ... .. oo, .. 12-45
Filesand Filenames ................. ... .. ......... 12-46
Naming Mfiles ...ttt 12-46
Naming Other Files .......... ... ... .. 12-46
Passing Filenames as Arguments .................... 12-47
Passing Filenames to ASCIT Files .................... 12-47

xxii Contents



Determining Filenames at Run-Time ................. 12-47

Returning the Sizeofa File ........... ... .. ... ..... 12-47
Input/Output ........ ... .. .. . . 12-49
File I/O Function Overview .............c.cevuueenn.. 12-49
Common I/O Functions ............ ... ... oin... 12-49
Readable File Formats ................ ... ... ..... 12-50
Using the Import Wizard ........................... 12-50
Loading Mixed Format Data ........................ 12-50
Reading Files with Different Formats ................. 12-51
Reading ASCII Dataintoa Cell Array ................. 12-51
Interactive Input into Your Program .................. 12-51
Starting MATLAB ................ i, 12-52
Getting MATLAB to Start Up Faster .................. 12-52
Operating System Compatibility .................... 12-53
Executing O/S Commands from MATLAB ............. 12-53
Searching Text withgrep ........................... 12-53
Constructing Paths and Filenames ................... 12-53
Finding the MATLAB Root Directory ................. 12-54
Temporary Directories and Filenames ................. 12-54
Demos ........ e 12-55
Demos Available with MATLAB ..................... 12-55
For More Information .............................. 12-56
Current CSSM . ... ... . i i e e 12-56
Archived CSSM . ... ittt et e e 12-56
MATLAB Technical Support ................ .. ..., 12-56
Tech Notes . ...ttt e 12-56
MATLAB Central .........couiiuiiiiniininnennn.. 12-56
MATLAB Newsletters (Digest, News & Notes) .......... 12-56
MATLAB Documentation ...............c.ccviueenn.. 12-56
MATLAB Index of Examples ...............cvvvvn... 12-56

xxiii



External Interfaces

Al

Finding the Documentation in Online Help .......... A-1

Index

xxiv Contents



Data Structures

The most basic data structure in MATLAB® is the matrix: a two-dimensional,
rectangularly shaped data structure capable of storing multiple elements of
data in an easily accessible format. These data elements can be numbers,
characters, logical states of true or false, or even other MATLAB structure
types. MATLAB uses these two-dimensional matrices to store single numbers
and linear series of numbers as well. In these cases, the dimensions are 1-by-1
and 1-by-n respectively, where n is the length of the numeric series. MATLAB
also supports data structures that have more than two dimensions. These
data structures are referred to as arrays in the MATLAB documentation.

Creating and Concatenating
Matrices (p. 1-3)

Matrix Indexing (p. 1-18)

Getting Information About a Matrix
(p. 1-24)

Resizing and Reshaping Matrices
(p. 1-27)

Shifting and Sorting Matrices
(p. 1-37)

Operating on Diagonal Matrices
(p. 1-42)

Create a matrix or construct one
from other matrices.

Access or assign to elements of a
matrix using methods of row and
column indexing.

Retrieve information about the
structure or contents of a matrix.

Change the size, shape, or
arrangement of elements in an
existing matrix.

Shift matrix elements along one or
more dimensions, or sort them into
an ascending or descending order.

Construct and manipulate matrices
along a diagonal of the rectangular
shape.



l Data Structures

Empty Matrices, Scalars, and
Vectors (p. 1-44)

Full and Sparse Matrices (p. 1-50)

Multidimensional Arrays (p. 1-52)

Summary of Matrix and Array
Functions (p. 1-72)

Work with matrices that have one
or more dimensions equal to zero or
one.

Conserve memory and get optimal
performance with more efficient
storage of matrices that contain a
large number of zero values.

Create and work with arrays that
have more than two dimensions.

Quick reference to the functions
commonly used in working with
matrices.



Creating and Concatenating Matrices

Creating and Concatenating Matrices

MATLAB is a matrix-based computing environment. All of the data that you
enter into MATLAB is stored in the form of a matrix or a multidimensional
array. Even a single numeric value like 100 is stored as a matrix (in this case,
a matrix having dimensions 1-by-1):

A = 100;
whos A
Name Size Bytes Class
A 1x1 8 double array

Regardless of the data type being used, whether it is numeric, character, or
logical true or false data, MATLAB stores this data in matrix (or array)
form. For example, the string 'Hello World' is a 1-by-11 matrix of individual
character elements in MATLAB. You can also build matrices composed of
more complex data types, such as MATLAB structures and cell arrays.

To create a matrix of basic data elements such as numbers or characters, see

® “Constructing a Simple Matrix” on page 1-3

® “Specialized Matrix Functions” on page 1-5
To build a matrix composed of other matrices, see

® “Concatenating Matrices” on page 1-7

e “Matrix Concatenation Functions” on page 1-8
This section also describes

® “Generating a Numeric Sequence” on page 1-10

¢ “Combining Unlike Data Types” on page 1-12

Constructing a Simple Matrix

The simplest way to create a matrix in MATLAB is to use the matrix
constructor operator, []. Create a row in the matrix by entering elements



l Data Structures

(shown as E below) within the brackets. Separate each element with a comma
or space:

E ] row = [E, E

23 ey m

Enl

row = [E,, E , +o+ E,

1
For example, to create a one row matrix of five elements, type

A = [12 62 93 -8 22];
To start a new row, terminate the current row with a semicolon:
A = [row,; row,; ...; row.]

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers.
Note that all rows must have the same number of elements:

A =[12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]
A =

12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6

The square brackets operator constructs two-dimensional matrices only,
(including 0-by-0, 1-by-1, and 1-by-n matrices). To construct arrays of more
than two dimensions, see “Creating Multidimensional Arrays” on page 1-54.

For instructions on how to read or overwrite any matrix element, see “Matrix
Indexing” on page 1-18.

Entering Signed Numbers

When entering signed numbers into a matrix, make sure that the sign
immediately precedes the numeric value. Note that while the following two
expressions are equivalent,

7 -2 +5 7 -2+5
ans = ans =
10 10

the next two are not:



Creating and Concatenating Matrices

[7 -2 +5] [7 - 2 + 5]
ans = ans =
7 -2 5 10

Specialized Matrix Functions

MATLAB has a number of functions that create different kinds of matrices.
Some create specialized matrices like the Hankel or Vandermonde matrix.
The functions shown in the table below create matrices for more general use.

Function Description

ones Create a matrix or array of all ones.

Zeros Create a matrix or array of all zeros.

eye Create a matrix with ones on the diagonal and zeros
elsewhere.

accumarray Distribute elements of an input matrix to specified
locations in an output matrix, also allowing for
accumulation.

diag Create a diagonal matrix from a vector.

magic Create a square matrix with rows, columns, and diagonals
that add up to the same number.

rand Create a matrix or array of uniformly distributed random
numbers.

randn Create a matrix or array of normally distributed random

numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random
permutation of the specified integers.

Most of these functions return matrices of type double (double-precision
floating point). However, you can easily build basic arrays of any numeric type
using the ones, zeros, and eye functions.

To do this, specify the MATLAB class name as the last argument:

A
A =

zeros(4, 6, 'uint32')



l Data Structures

O O oo
O O oo
o O oo
O O oo
O O oo
o O oo

Examples
Here are some examples of how you can use these functions.

Creating a Magic Square Matrix. A magic square is a matrix in which
the sum of the elements in each column, or each row, or each main diagonal
is the same. To create a 5-by-5 magic square matrix, use the magic function

as shown.

A = magic(5)

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

Note that the elements of each row, each column, and each main diagonal
add up to the same value: 65.

Creating a Random Matrix. The rand function creates a matrix or array
with elements uniformly distributed between zero and one. This example
multiplies each element by 20:

A
A =
19.0026 15.2419 12.3086 8.1141 1.1578
4.6228 9.1294 15.8387 18.7094 7.0574
12.1369 0.3701 18.4363 18.3381 16.2633
9.7196 16.4281 14.7641 8.2054 0.1972
17.8260 8.8941 3.5253 17.8730 2.7778

rand(5) * 20

The sequence of numbers produced by rand is determined by the internal
state of the generator. Setting the generator to the same fixed state enables
you to repeat computations. Examples in this documentation that use the



Creating and Concatenating Matrices

rand function are initialized to a state of 0 to make the output consistent
each time they are run:

rand('state', 0);

Creating a Diagonal Matrix. Use diag to create a diagonal matrix from a
vector. You can place the vector along the main diagonal of the matrix, or on a
diagonal that is above or below the main one, as shown here. The -1 input
places the vector one row below the main diagonal:

A =[12 62 93 -8 22];

B = diag(A, -1)

B =
0 0 0 0 0 0
12 0 0 0 0 0
0 62 0 0 0 0
0 0 93 0 0 0
0 0 0 -8 0 0
0 0 0 0 22 0

Concatenating Matrices

Matrix concatenation is the process of joining one or more matrices to make a
new matrix. The brackets [ ] operator discussed earlier in this section serves
not only as a matrix constructor, but also as the MATLAB concatenation
operator. The expression C = [A B] horizontally concatenates matrices A and
B. The expression C = [A; B] vertically concatenates them.

This example constructs a new matrix C by concatenating matrices A and B
in a vertical direction:

A = ones(2, 5) * 6; % 2-by-5 matrix of 6's

B = rand(3, 5); % 3-by-5 matrix of random values
C = [A; Bl % Vertically concatenate A and B
C:

6.0000 6.0000 6.0000 6.0000 6.0000
6.0000 6.0000 6.0000 6.0000 6.0000
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382



l Data Structures

0.6068 0.7621 0.8214 0.7919 0.1763

Keeping Matrices Rectangular

You can construct matrices, or even multidimensional arrays, using
concatenation as long as the resulting matrix does not have an irregular
shape (as in the second illustration shown below). If you are building a matrix
horizontally, then each component matrix must have the same number of
rows. When building vertically, each component must have the same number
of columns.

This diagram shows two matrices of the same height (i.e., same number of
rows) being combined horizontally to form a new matrix.

7|23 45 [0 13| 4 Tl2a|4s|0 (134
afu| 4 [|«|e2|sijee| — |41|11]|4afez|31|oe
-1 |80 3 (518 (25 L|ed|3 51|90 |25
Shby-2 Shy-4 Sby-6

The next diagram illustrates an attempt to horizontally combine two matrices
of unequal height. MATLAB does not allow this.

= 2|0 132 ’mm;:‘d
41(11 |44 1|98
ajul + M # e
1= -
2 bv-4
Fby-2 -

Matrix Concatenation Functions
The following functions combine existing matrices to form a new matrix.

Function Description

cat Concatenate matrices along the specified dimension
horzcat Horizontally concatenate matrices

vertcat Vertically concatenate matrices




Creating and Concatenating Matrices

Function Description
repmat Create a new matrix by replicating and tiling existing
matrices
blkdiag Create a block diagonal matrix from existing matrices
Examples

Here are some examples of how you can use these functions.

Concatenating Matrices and Arrays. An alternative to using the []
operator for concatenation are the three functions cat, horzcat, and vertcat.
With these functions, you can construct matrices (or multidimensional arrays)
along a specified dimension. Either of the following commands accomplish the
same task as the command C = [A; B] used in the section on “Concatenating
Matrices” on page 1-7:

C = cat(1, A, B); %
C vertcat(A, B); %

oncatenate along the first dimension

C
Concatenate vertically

Replicating a Matrix. Use the repmat function to create a matrix composed
of copies of an existing matrix. When you enter

repmat (M, v, h)

MATLAB replicates input matrix M v times vertically and h times horizontally.
For example, to replicate existing matrix A into a new matrix B, use

A=1[816; 357; 49 2]
A =
8 1 6
3 5 7
4 9 2
B = repmat(A, 2, 4)
B =

o B~ WO
- O 01 =
O NO®
o H» W
- O 01 =
O NO®
o b~ W
- O 01 =
oONNO®
w0 W
- O 01 =
oONNO®



l Data Structures

Creating a Block Diagonal Matrix. The blkdiag function combines
matrices in a diagonal direction, creating what is called a block diagonal
matrix. All other elements of the newly created matrix are set to zero:

A = magic(3);
B=1[-5-6-9; -4 -4 -2];
C = eye(2) * 8;

= blkdiag(A, B, C)

D
D

O OO0 h~MWOO

O O OO0 WU =

OO0 oOoOoOoOMNMNO
'

OO h~O01LOOO
'

OO h~OOOOoO
ll

OO NOOOoOOo

O 0O OO OoOOo

0 O O O0OOoOOoOo

Generating a Numeric Sequence

Because numeric sequences can often be useful in constructing and indexing
into matrices and arrays, MATLAB provides a special operator to assist in
creating them.

This section covers

® “The Colon Operator” on page 1-10
® “Using the Colon Operator with a Step Value” on page 1-11

The Colon Operator

The colon operator (first:last) generates a 1-by-n matrix (or vector) of
sequential numbers from the first value to the last. The default sequence is
made up of incremental values, each 1 greater than the previous one:

A
A =

10:15

10 11 12 13 14 15

1-10



Creating and Concatenating Matrices

The numeric sequence does not have to be made up of positive integers. It can
include negative numbers and fractional numbers as well:

A= -2.5:2.5
A =
-2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

By default, MATLAB always increments by exactly 1 when creating the
sequence, even if the ending value is not an integral distance from the start:

A=1:6.3
A =
1 2 3 4 5 6

Also, the default series generated by the colon operator always increments
rather than decrementing. The operation shown in this example attempts to
increment from 9 to 1 and thus MATLAB returns an empty matrix:

A=9:1
A:
Empty matrix: 1-by-0

The next section explains how to generate a nondefault numeric series.

Using the Colon Operator with a Step Value

To generate a series that does not use the default of incrementing by 1,
specify an additional value with the colon operator (first:step:last). In
between the starting and ending value is a step value that tells MATLAB
how much to increment (or decrement, if step is negative) between each
number it generates.

To generate a series of numbers from 10 to 50, incrementing by 5, use

A
A =

10:5:50
10 15 20 25 30 35 40 45 50

You can increment by noninteger values. This example increments by 0. 2:

1-11



l Data Structures

1-12

A =3:0.2:3.8
A =

3.0000 3.2000 3.4000 3.6000 3.8000
To create a sequence with a decrementing interval, specify a negative step

value:

A
A =

9:-1:1

9 8 7 6 5 4 3 2 1

Combining Unlike Data Types

Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike data types when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of
the same type. (See Chapter 2, “Data Types” for information on any of the
MATLAB data types discussed here.)

Data type conversion is done with respect to a preset precedence of data
types. The following table shows the five data types you can concatenate with
an unlike type without generating an error (that is, with the exception of
character and logical).

TYPE character | integer single double logical
character | character | character | character | character | invalid
integer character | integer integer integer integer
single character | integer single single single

double character | integer single double double
logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a

matrix of type single. MATLAB converts the double element to single to

accomplish this.



Creating and Concatenating Matrices

Combining Unlike Integer Types

If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000) ]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use
warning('on', intcat_msgid);

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes. After disabling the integer
concatenation warnings as shown above, concatenate the following two
numbers once, and then switch their order. The return value depends on the
order in which the integers are concatenated. The left-most type determines
the data type for all elements in the vector:

A
A =

[int16(5000) int8(50)]

1-13



l Data Structures

1-14

5000 50

oo}
I

[int8(50) int16(5000) ]
50 127
The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum

value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =

50

127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned. Now do the same exercise
with signed and unsigned integers. Again, the left-most element determines
the data type for all elements in the resulting matrix:

A
A =
-100 100

[int8(-100) uint8(100)]

B = [uint8(100) int8(-100)]
100 0
The element int8(-100) is set to zero because it is no longer signed.
MATLAB evaluates each element prior to concatenating them into a combined

array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to



Creating and Concatenating Matrices

zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A
A =
50 0

[int8(50), uint8(-50)]

Combining Integer and Noninteger Data

If you combine integers with double, single, or logical data types, all
elements of the resulting matrix are given the data type of the left-most
integer. For example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =

5.3600

7.0100

9.4400

Concatenation Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types. Combining single values with
double values yields a single matrix. Note that 5.73*107300 is too big to
be stored as a single, thus the conversion from double to single sets it
to infinity. (The class function used in this example returns the data type
for the input value):

X = [single(4.5) single(-2.8) pi 5.73*10"300]
X:
4.5000 -2.8000 3.1416 Inf

1-15



l Data Structures

class(x) % Display the data type of x
ans =
single

Combining Integer and Double Types. Combining integer values with
double values yields an integer matrix. Note that the fractional part of pi
is rounded to the nearest integer. (The int8 function used in this example
converts its numeric argument to an 8-bit integer):

X = [int8(21) int8(-22) int8(23) pi 45/6]
X:
21 -22 23 3 7
class(x)
ans =
int8

Combining Character and Double Types. Combining character values
with double values yields a character matrix. MATLAB converts the double
elements in this example to their character equivalents:

x =['A" 'B'" 'C' 68 69 70]
X:
ABCDEF

class(x)
ans =
char

Combining Logical and Double Types. Combining logical values with
double values yields a double matrix. MATLAB converts the logical true
and false elements in this example to double:

x = [true false false pi sqrt(7)]
X:
1.0000 0 0 3.1416 2.6458
class(x)
ans =
double

1-16



l Data Structures

1-17



l Data Structures

Matrix Indexing

This section explains how to use subscripting and indexing to access and
assign values to the elements of a MATLAB matrix. It covers the following:
® “Accessing Single Elements” on page 1-18

¢ “Linear Indexing” on page 1-19

¢ “Functions That Control Indexing Style” on page 1-19

® “Accessing Multiple Elements” on page 1-20

¢ “Logical Indexing” on page 1-23

¢ “Indexing on Assignment” on page 1-23

Accessing Single Elements

To reference a particular element in a matrix, specify its row and column
number using the following syntax, where A is the matrix variable. Always
specify the row first and column second:

A(row, column)

For example, for a 4-by-4 magic square A,

A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

you would access the element at row 4, column 2 with

A(4, 2)
ans =
14

For arrays with more than two dimensions, specify additional indices
following the row and column indices. See the section on “Multidimensional
Arrays” on page 1-52.

1-18



Matrix Indexing

Linear Indexing

With MATLAB, you can refer to the elements of a matrix with a single
subscript, A(k). MATLAB stores matrices and arrays not in the shape that
they appear when displayed in the MATLAB Command Window, but as

a single column of elements. This single column is composed of all of the
columns from the matrix, each appended to the last.

So, matrix A

A=12609; 428; 351]
A =

2 6 9

4 2 8

3 5 1

is actually stored in memory as the sequence
2, 4, 3, 6, 2, 5, 9, 8, 1

The element at row 3, column 2 of matrix A (value = 5) can also be identified
as element 6 in the actual storage sequence. To access this element, you have
a choice of using the standard A(3,2) syntax, or you can use A(6), which is
referred to as linear indexing.

If you supply more subscripts, MATLAB calculates an index into the storage
column based on the dimensions you assigned to the array. For example,
assume a two-dimensional array like A has size [d1 d2], where d1 is the
number of rows in the array and d2 is the number of columns. If you supply
two subscripts (i, j) representing row-column indices, the offset is

(j-1) *d1 + 1

Given the expression A(3,2), MATLAB calculates the offset into A’s storage
column as (2-1) * 3 + 3, or 6. Counting down six elements in the column
accesses the value 5.

Functions That Control Indexing Style

If you have row-column subscripts but want to use linear indexing instead,
you can convert to the latter using the sub2ind function. In the 3-by-3 matrix

1-19



l Data Structures

1-20

A used in the previous section, sub2ind changes a standard row-column index
of (3,2) to a linear index of 6:

A=1[2609; 428; 351];

linearindex = sub2ind(size(A), 3, 2)
linearindex
6

To get the row-column equivalent of a linear index, use the ind2sub function:

[row col] = ind2sub(size(A), 6)
row =

3
col =

2

Accessing Multiple Elements

For the 4-by-4 matrix A shown below, it is possible to compute the sum of the
elements in the fourth column of A by typing

A = magic(4);
A(1,4) + A(2,4) + A(3,4) + A(4,4)

You can reduce the size of this expression using the colon operator. Subscript
expressions involving colons refer to portions of a matrix. The expression

A(1:m, n)

refers to the elements in rows 1 through m of column n of matrix A. Using this
notation, you can compute the sum of the fourth column of A more succinctly:

sum(A(1:4, 4))

Nonconsecutive Elements

To refer to nonconsecutive elements in a matrix, use the colon operator with
a step value. The m:3:n in this expression means to make the assignment
to every third element in the matrix. Note that this example uses linear
indexing:



Matrix Indexing

B(1:3:16) = -10

B =
-10 2 3 -10
5 11 -10 8
9 -10 6 12

10 14 15 -10

The end Keyword

MATLAB provides the keyword end to designate the last element in a
particular dimension of an array. This keyword can be useful in instances
where your program doesn’t know how many rows or columns there are in a
matrix. You can replace the expression in the previous example with

B(1:3:end) = -10

Note The keyword end has several meanings in MATLAB. It can be used as
explained above, or to terminate a conditional block of code such as if and
for blocks, or to terminate a nested function.

Specifying All Elements of a Row or Column

The colon by itself refers to all the elements in a row or column of a matrix.
Using the following syntax, you can compute the sum of all elements in the
second column of a 4-by-4 magic square A:

sum(A(:, 2))
ans =
34

By using the colon with linear indexing, you can refer to all elements in the
entire matrix. This example displays all the elements of matrix A, returning
them in a column-wise order:

1-21



l Data Structures

O OO

12
1

Single-Colon Indexing with Different Array Types. When you index
into a standard MATLAB array using a single colon, MATLAB returns a
column vector (see variable n, below). When you index into a structure or cell
array using a single colon, you get a comma-separated list “Comma-Separated
Lists” on page 3-80 (see variables ¢ and s, below).

Create three types of arrays:

n

[123; 45 6];
{1 2; 3 4};

cell2struct(c, {'a',

'b'},

Use single-colon indexing on each:

c{:}

= ans =
1 1
4 ans =
2 3
5 ans =
3 2
6 ans =

4

Using a Matrix As an Index

You can repeatedly access an array element using the ones function. To create
a new 2-by-6 matrix out of the ninth element of a 4-by-4 magic square A,

B
B

1-22

A(9 * ones(2, 6))

15

s(:,2)=s(:,1);

s(:).a
ans =
1
ans =
2
ans =
1
ans =
2



Matrix Indexing

3 3 3 3
3 3 3 3 3 3

w
w

Logical Indexing

A logical matrix provides a different type of array indexing in MATLAB. While
most indices are numeric, indicating a certain row or column number, logical
indices are positional. That is, it is the position of each 1 in the logical matrix
that determines which array element is being referred to.

See “Using Logicals in Array Indexing” on page 2-35 for more information on
this subject.

Indexing on Assignment

When assigning values from one matrix to another matrix, you can use any of
the styles of indexing covered in this section. Matrix assignment statements
also have the following requirement.

In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, etc. may
be scalar, vector, or array, provided that all of the following are true:

¢ The number of subscripts specified for B, not including trailing subscripts
equal to 1, does not exceed ndims (B).

¢ The number of nonscalar subscripts specified for A equals the number
of nonscalar subscripts specified for B. For example, A(5, 1:4, 1, 2)
= B(5:8) is valid because both sides of the equation use one nonscalar
subscript.

¢ The order and length of all nonscalar subscripts specified for A matches
the order and length of nonscalar subscripts specified for B. For example,
A(1:4, 3, 3:9) = B(5:8, 1:7) is valid because both sides of the
equation (ignoring the one scalar subscript 3) use a 4-element subscript
followed by a 7-element subscript.

1-23



l Data Structures

Getting Information About a Matrix

This section explains how to get the following information about an existing
matrix:

® “Dimensions of the Matrix” on page 1-24

e “Data Types Used in the Matrix” on page 1-25

® “Data Structures Used in the Matrix” on page 1-26

Dimensions of the Matrix
These functions return information about the shape and size of a matrix.

Function Description

length Return the length of the longest dimension. (The length of a
matrix or array with any zero dimension is zero.)

ndims Return the number of dimensions.

numel Return the number of elements.

size Return the length of each dimension.

The following examples show some simple ways to use these functions. Both
use the 3-by-5 matrix A shown here:

rand('state', 0); % Initialize random number generator
A = rand(5) * 10;
A(4:5, 1) =[]
A =
9.5013 7.6210 6.1543 4.0571 0.5789
2.3114 4.5647 7.9194 9.3547 3.5287
6.0684 0.1850 9.2181 9.1690 8.1317

Example Using numel
Using the numel function, find the average of all values in matrix A:

sum(A(:))/numel(A)
ans =

1-24



Getting Information About a Matrix

5.8909

Example Using ndims, numel, and size

Using ndims and size, go through the matrix and find those values that are
between 5 and 7, inclusive:

if ndims(A) ~= 2
return
end

[rows cols] = size(A);
for m = 1:rows
for n = 1:cols
X = A(m, n);
if x >= 5 & x <=7
disp(sprintf('A(%d, %d) = %5.2f', m, n, A(m,n)))
end
end
end

The code returns the following:
A(1, 3) = 6.15
A(3, 1) = 6.07

Data Types Used in the Matrix

These functions test elements of a matrix for a specific data type.

Function Description

isa Detect if input is of a given data type.
iscell Determine if input is a cell array.
iscellstr Determine if input is a cell array of strings.
ischar Determine if input is a character array.
isfloat Determine if input is a floating-point array.
isinteger Determine if input is an integer array.

1-25



l Data Structures

Function Description

islogical Determine if input is a logical array.

isnumeric Determine if input is a numeric array.

isreal Determine if input is an array of real numbers.
isstruct Determine if input is a MATLAB structure array.

Example Using isnumeric and isreal
Pick out the real numeric elements from this vector:

A = [5+7i 8/7 4.23 39j pi 9-2i];

for m = 1:numel(
if isnumeric(
disp(A(m))
end
end

)

A
A(m)) && isreal(A(m))

The values returned are

1.1429
4.2300
3.1416

Data Structures Used in the Matrix
These functions test elements of a matrix for a specific data structure.

Function Description

isempty Determine if input has any dimension with size zero.
isscalar Determine if input is a 1-by-1 matrix.

issparse Determine if input is a sparse matrix.

isvector Determine if input is a 1-by-n or n-by-1 matrix.

1-26



Resizing and Reshaping Matrices

Resizing and Reshaping Matrices

You can easily enlarge or shrink the size of a matrix, modify its shape, or
rotate it about various axes. This section covers

¢ “Expanding the Size of a Matrix” on page 1-27

¢ “Diminishing the Size of a Matrix” on page 1-31

¢ “Reshaping a Matrix” on page 1-32

e “Preallocating Memory” on page 1-34

Expanding the Size of a Matrix

You can expand the size of any existing matrix as long as doing so does

not give the resulting matrix an irregular shape. (See “Keeping Matrices
Rectangular” on page 1-8). For example, you can vertically combine a 4-by-3
matrix and 7-by-3 matrix because all rows of the resulting matrix have the
same number of columns (3).

Two ways of expanding the size of an existing matrix are

® Concatenating new elements onto the matrix

e Storing to a location outside the bounds of the matrix

Note If you intend to expand the size of a matrix repeatedly over time

as it requires more room (usually done in a programming loop), it is
advisable to preallocate space for the matrix when you initially create it. See
“Preallocating Memory” on page 1-34.

Concatenating Onto the Matrix

Concatenation is most useful when you want to expand a matrix by adding
new elements or blocks that are compatible in size with the original matrix.
This means that the size of all matrices being joined along a specific dimension
must be equal along that dimension. See “Concatenating Matrices” on page
1-7.

1-27



l Data Structures

This example runs a user-defined function compareResults on the data in
matrices stats04 and stats03. Each time through the loop, it concatenates
the results of this function onto the end of the data stored in comp04:

col = 10;
comp04 = [];

for k = 1:50
t = compareResults(stats04(k,1:col), stats03(k,1:col));
comp04 = [comp04; t];

end

Concatenating to a Structure or Cell Array. You can add on to arrays of
structures or cells in the same way as you do with ordinary matrices. This
example creates a 3-by-8 matrix of structures S, each having 3 fields: x, y, and
z, and then concatenates a second structure matrix S2 onto the original:

Create a 3-by-8 structure array S:

for k = 1:24
S(k) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);

end

S = reshape(S, 3, 8);

Create a second array that is 3-by-2 and uses the same field names:
for k = 25:30
S2(k-24) = struct('x', 10%k, 'y', 10*k+1, 'z', 10%k+2);

end
S2= reshape(S2, 3, 2);

Concatenate S2 onto S along the horizontal dimension:

S = [S S2]

S =

3x10 struct array with fields:
X
y
z

1-28



Resizing and Reshaping Matrices

Adding Smaller Blocks to a Matrix

To add one or more elements to a matrix where the sizes are not compatible,
you can often just store the new elements outside the boundaries of the
original matrix. MATLAB automatically pads the matrix with zeros to keep it
rectangular.

Construct a 3-by-5 matrix, and attempt to add a new element to it using
concatenation. The operation fails because you are attempting to join a
one-column matrix with one that has five columns:

A=110 20 30 40 50;
60 70 80 90 100;
110 120 130 140 150];

A = [A; 160]

??? Error using ==> vertcat

All rows in the bracketed expression must have the same
number of columns.

Try this again, but this time do it in such a way that enables MATLAB to
make adjustments to the size of the matrix. Store the new element in row 4, a
row that does not yet exist in this matrix. MATLAB expands matrix A by an
entire new row by padding columns 2 through 5 with zeros:

(4,1) = 160
10 20 30 40 50
60 70 80 90 100
110 120 130 140 150
160 0 0 0 0

A
A

Note Attempting to read from nonexistent matrix locations generates an
error. You can only write to these locations.

You can also expand the matrix by adding a matrix instead of just a single
element:

A(4:6,1:3) = magic(3)+100

1-29



l Data Structures

10 20 30 40 50
60 70 80 90 100
110 120 130 140 150

108 101 106 0 0
103 105 107 0 0
104 109 102 0 0

You do not have to add new elements sequentially. Wherever you store
the new elements, MATLAB pads with zeros to make the resulting matrix
rectangular in shape:

A(4,8) = 300
A =
10 20 30 40 50 0 0 0
60 70 80 90 100 0 0 0
110 120 130 140 150 0 0 0
0 0 0 0 0 0 0 300

Expanding a Structure or Cell Array. You can expand a structure or cell
array in the same way that you can a matrix. This example adds an additional
cell to a cell array by storing it beyond the bounds of the original array.
MATLAB pads the data structure with empty cells ([ ]) to keep it rectangular.

The original array is 2-by-3:

C = {'Madison', 'G', [5 28 1967];
46, '325 Maple Dr', 3015.28}

Add a cell to C{3,1} and MATLAB appends an entire row:

C{3, 1} = ...

struct('Fund_A', .45, 'Fund_E', .35, 'Fund_G', 20);

C:
'Madison' 'G' [1x3 double]
[ 46] '325 Maple Dr' [3.0153e+003]
[1x1 struct] [1 [1

1-30



Resizing and Reshaping Matrices

Expanding a Character Array. You can expand character arrays in the
same manner as other MATLAB arrays, but it is generally not recommended.
MATLAB expands any array by padding uninitialized elements with zeros.
Because zero is interpreted by MATLAB and some other programming
languages as a string terminator, you may find that some functions treat the
expanded string as if it were less than its full length.

Expand a 1-by-5 character array to twelve characters. The result appears
at first to be a typical string:

greeting
greeting
Hello World

'Hello'; greeting(1,8:12) = 'World'

Closer inspection however reveals string terminators at the point of expansion:

uint8(greeting)
ans =
72 101 108 108 111 0 0 87 111 114 108 100

This causes some functions, like strcmp, to return what might be considered
an unexpected result:

strcmp(greeting, 'Hello World')
ans =
0

Diminishing the Size of a Matrix

You can delete rows and columns from a matrix by assigning the empty array
[ ] to those rows or columns. Start with

A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Then, delete the second column of A using

1-31



l Data Structures

1-32

This changes matrix A to

A =
16 3 13
5 10 8
9 6 12
4 15 1

If you delete a single element from a matrix, the result isn’t a matrix anymore.
So expressions like

A(1,2) =[]

result in an error. However, you can use linear indexing to delete a single
element, or a sequence of elements. This reshapes the remaining elements
into a row vector:

A(2:2:10) = []
results in

A =
16 9 3 6 13 12 1

Reshaping a Matrix

The following functions change the shape of a matrix.

Function Description

reshape Modify the shape of a matrix.

rot90 Rotate the matrix by 90 degrees.

fliplr Flip the matrix about a vertical axis.
flipud Flip the matrix about a horizontal axis.
flipdim Flip the matrix along the specified direction.




Resizing and Reshaping Matrices

Function Description

transpose Flip a matrix about its main diagonal, turning row
vectors into column vectors and vice versa.

ctranspose Transpose a matrix and replace each element with its
complex conjugate.

Examples
Here are a few examples to illustrate some of the ways you can reshape
matrices.

Reshaping a Matrix. Reshape 3-by-4 matrix A to have dimensions 2-by-6:

A
A =

[14710; 258 11; 36 9 12]
1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A, 2, 6)

1 3 5 7 9 11
2 4 6 8 10 12

Transposing a Matrix. Transpose A so that the row elements become
columns. You can use either the transpose function or the transpose operator
(.") to do this:

B =A.'
B =

o~N B =
- o N
N © o W

There is a separate function called ctransposethat performs a complex
conjugate transpose of a matrix. The equivalent operator for ctranpose on
a matrix Ais A':

1-33



l Data Structures

1-34

A = [1+91 2-81 3+71i; 4-6i 5+5i 6-41i]
A =
1.0000 + 9.00001 2.0000 -8.0000i 3.0000 + 7.0000i1
4.0000 -6.0000i 5.0000 + 5.0000i1 6.0000 -4.0000i
B =A'
B =

1.0000 -9.0000i 4.0000 + 6.0000i
2.0000 + 8.0000i 5.0000 -5.0000i
3.0000 -7.0000i 6.0000 + 4.0000i1

Rotating a Matrix. Rotate the matrix by 90 degrees:

us]
1}

rot90(A)

1 1

- A NO
D oo =
w o O N

Flipping a Matrix. Flip A in a left-to-right direction:

B = fliplr(A)

B =
10 7 4 1
11 8 5 2
12 9 6 3

Preallocating Memory

Repeatedly expanding the size of an array over time, (for example, adding
more elements to it each time through a programming loop), can adversely
affect the performance of your program. This is because

* MATLAB has to spend time allocating more memory each time you increase
the size of the array.

® This newly allocated memory is likely to be noncontiguous, thus slowing
down any operations that MATLAB needs to perform on the array.



Resizing and Reshaping Matrices

The preferred method for sizing an array that is expected to grow over time
is to estimate the maximum possible size for the array, and preallocate this
amount of memory for it at the time the array is created. In this way, your
program performs one memory allocation that reserves one contiguous block.

The following command preallocates enough space for a 25,000 by 10,000
matrix, and initializes each element to zero:

A = zeros (25000, 10000);

Building a Preallocated Array

Once memory has been preallocated for the maximum estimated size of the
array, you can store your data in the array as you need it, each time appending
to the existing data. This example preallocates a large array, and then reads
blocks of data from a file into the array until it gets to the end of the file:

blocksize = 5000;

maxrows = 2500000; cols = 20;

ro = 1; % row pointer

% Preallocate A to its maximum possible size
A = zeros(maxrows, cols);

% Open the data file, saving the file pointer.
fid = fopen('statfile.dat', 'r');

while true
% Read from file into a cell array. Stop at EOF.
block = textscan(fid, 'Ssn', blocksize*cols);
if isempty(block{1}) break, end;

% Convert cell array to matrix, reshape, place into A.
A(rp:rp+blocksize-1, 1:cols) = ...
reshape(cell2mat(block), blocksize, cols);

% Process the data in A.
evaluate_stats(A); % User-defined function

% Update row pointer

1-35



l Data Structures

rp = rp + blocksize;
end

Note If you eventually need more room in a matrix than you had preallocated,
you can preallocate additional storage in the same manner, and concatenate
this additional storage onto the original array.

1-36



Shifting and Sorting Matrices

Shifting and Sorting Matrices

You can sort matrices, multidimensional arrays, and cell arrays of strings
along any dimension and in ascending or descending order of the elements.
The sort functions also return an optional array of indices showing the order
in which elements were rearranged during the sorting operation.

This section covers

e “Shift and Sort Functions” on page 1-37

e “Shifting the Location of Matrix Elements” on page 1-37
® “Sorting the Data in Each Column” on page 1-39

® “Sorting the Data in Each Row” on page 1-39

e “Sorting Row Vectors” on page 1-40

Shift and Sort Functions

Use these functions to shift or sort the elements of a matrix.

Function Description

circshift Circularly shift matrix contents.

sort Sort array elements in ascending or descending order.
sortrows Sort rows in ascending order.

issorted Determine if matrix elements are in sorted order.

Shifting the Location of Matrix Elements

The circshift function shifts the elements of a matrix in a circular manner
along one or more dimensions. Rows or columns that are shifted out of the
matrix circulate back into the opposite end. For example, shifting a 4-by-7
matrix one place to the left moves the elements in columns 2 through 7 to
columns 1 through 6, and moves column 1 to column 7.

Create a 5-by-8 matrix named A and shift it to the right along the second

(horizontal) dimension by three places. (You would use [0, -3] to shift to the
left by three places):

1-37



l Data Structures

A= [1:8; 11:18; 21:28; 31:38; 41:48]

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

B = circshift(A, [0, 3])

6 7 8 1 2 3 4 5
16 17 18 11 12 13 14 15
26 27 28 21 22 23 24 25
36 37 38 31 32 33 34 35
46 47 48 41 42 43 44 45

Now take A and shift it along both dimensions: three columns to the right
and two rows up:

A

[1:8; 11:18; 21:28; 31:38; 41:48];
B = circshift(A, [-2, 3])

26 27 28 21 22 23 24 25
36 37 38 31 32 33 34 35
46 47 48 41 42 43 44 45
6 7 8 1 2 3 4 5
16 17 18 11 12 13 14 15

Since circshift circulates shifted rows and columns around to the other end
of a matrix, shifting by the exact size of A returns all rows and columns to
their original location:

B = circshift (A, size(A));
all(B(:) == A(:)) % Do all elements of B equal A?

ans =
1 % Yes

1-38



Shifting and Sorting Matrices

Sorting the Data in Each Column

The sort function sorts matrix elements along a specified dimension. The
syntax for the function is

sort(matrix, dimension)

To sort the columns of a matrix, specify 1 as the dimension argument. To sort

along rows, specify dimension as 2.

This example first constructs a 6-by-7 random matrix:

rand('state', 0);
A = floor(rand(6,7) * 100);

A =
95
23
60
48
89
76

45

1
82
44
61
79

92
73
17
40
93
91

Sort each column of A in

o
|

23
48
60
76
89
95

= sort(A,

]
44
45
61
79
82

1)

17
40
73
91
92
93

issorted(c(:, 1))

ans =
1

Sorting the Data in Each Row

% Initialize random number generator

41
89
5
35
81
0

ascending order:

35
41
81
89

13
20
19
60
27
19

13
19
19
20
27
60

74
44
93
46
41

41
44
46
74
93

84
52
20
67
83

20
52
67
83
84

Use issorted to sort data in each row. Using the example above, if you sort
each row of A in descending order, issorted tests for an ascending sequence.
You can flip the vector to test for a sorted descending sequence:

1-39



l Data Structures

rand('state', 0); A = floor(rand(6,7) * 100);
r = sort(A, 2, 'descend')

95 92 84 45 41 13
89 74 73 52 23 20
82 60 44 20 19 17
93 67 60 48 44 40 35
93 89 83 81 61 46 27
91 79 76 41 19 1 0

Ol = =

issorted(fliplr(r(1, :)))
ans =
’

When you specify a second output, sort returns the indices of the original
matrix A positioned in the order they appear in the output matrix. In this next
example, the second row of index contains the sequence 4 3 2 5 1, which
means that the sorted elements in output matrix r were taken from A(2,4),
A(2,3),A(2,2),A(2,5), and A(2,1):

[r index] = sort(A, 2, 'descend');

index

index =
1 3 7 2 4 5 6
4 6 3 7 1 5 2
2 1 6 7 5 3 4
6 7 5 1 2 3 4
3 1 7 4 2 6 5
3 2 1 6 5 7 4

Sorting Row Vectors

The sortrows function keeps the elements of each row in its original order,
but sorts the entire row of vectors according to the order of the elements in
the specified column.

The next example creates a random matrix A:

1-40



Shifting and Sorting Matrices

rand('state', 0); % Initialize random number generator
A = floor(rand(6,7) * 100);
A =

95 45 92 41 13 1 84

23 1 73 89 20 74 52

60 82 17 5 19 44 20

48 44 40 35 60 93 67
89 61 93 81 27 46 83
76 79 91 0 19 41 1

To sort in ascending order based on the values in column 1, you can call
sortrows with just the one input argument:

sortrows(A)
r‘:

23 1 73 89 20 74 52
48 44 40 35 60 93 67
60 82 17 5 19 44 20
76 79 91 0 19 41 1
89 61 93 81 27 46 83
95 45 92 41 13 1 84

To base the sort on a column other than the first, call sortrows with a second
input argument that indicates the column number, column 4 in this case:

r = sortrows (A, 4)
r =

76 79 91 0 19 41 1
60 82 17 5 19 44 20
48 44 40 35 60 93 67
95 45 92 41 13 1 84
89 61 93 81 27 46 83
23 1 73 89 20 74 52

1-41



l Data Structures

Operating on Diagonal Matrices

There are several MATLAB functions that work specifically on diagonal

matrices.
Function Description
blkdiag Construct a block diagonal matrix from input arguments.
diag Return a diagonal matrix or the diagonals of a matrix.
trace Compute the sum of the elements on the main diagonal.
tril Return the lower triangular part of a matrix.
triu Return the upper triangular part of a matrix.

This section covers the following topics on diagonal matrices:

¢ “Constructing a Matrix from a Diagonal Vector” on page 1-42
e “Returning a Triangular Portion of a Matrix” on page 1-43

® “Concatenating Matrices Diagonally” on page 1-43

Constructing a Matrix from a Diagonal Vector

The diag function has two operations that it can perform. You can use it to
generate a diagonal matrix:

A
A =
1

diag([12:4:32])

(el el oMol ol b)
O O O0OOoOOoOo
N
O OO OoOOoOo
N
oo h~OOOo
O 0O O oo
N O OOOOo

3

You can also use the diag function to scan an existing matrix and return the
values found along one of the diagonals:

A
A =

magic(5)

1-42



Operating on Diagonal Matrices

17
23

4
10
11

diag(A, 2)
ans =
1
14
22

2

1
1

4

6
2
8

1

7
13
19
25

1

4

20
21

15
16
22
3
9

% Return contents of second diagonal of A

Returning a Triangular Portion of a Matrix

The tril and triu functions return a triangular portion of a matrix, the
former returning the piece from the lower left and the latter from the upper
right. By default, the main diagonal of the matrix divides these two segments.
You can use an alternate diagonal by specifying an offset from the main
diagonal as a second input argument:

A

ve}
I

Concatenating Matrices Diagonally

tril(A

bl

N
O 010 © O O

3

magic(6);

_1)

o O o

33
34
29

1
1

W NOOOoOo

0w O OO oo

1

O O O Oo0OOoOOo

You can diagonally concatenate matrices to form a composite matrix using the
blkdiag function. See “Creating a Block Diagonal Matrix” on page 1-10 for
more information on how this works.

1-43



l Data Structures

Empty Matrices, Scalars, and Vectors

Although matrices are two dimensional, they do not always appear to have a
rectangular shape. A 1-by-8 matrix, for example, has two dimensions yet is
linear. These matrices are described in the following sections:

¢ “The Empty Matrix” on page 1-44

An empty matrix has one of more dimensions that are equal to zero. A
two-dimensional matrix with both dimensions equal to zero appears in
MATLAB as []. The expression A = [] assigns a 0-by-0 empty matrix to A.

e “Scalars” on page 1-47

A scalar is 1-by-1 and appears in MATLAB as a single real or complex
number (e.g., 7, 583.62, -3.51, 5.46097e-14, 83+41).

® “Vectors” on page 1-48

A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or column
of real or complex numbers:

Column Vector Row Vector
53.2 53.2 87.39 4-12i 43.9
87.39
4-121i
43.9

The Empty Matrix

A matrix having at least one dimension equal to zero is called an empty
matrix. The simplest empty matrix is 0-by-0 in size. Examples of more
complex matrices are those of dimension 0-by-5 or 10-by-0.

To create a 0-by-0 matrix, use the square bracket operators with no value
specified:

1-44



Empty Matrices, Scalars, and Vectors

A=11;
whos A
Name Size Bytes Class
A 0x0 0 double array

You can create empty matrices (and arrays) of other sizes using the zeros,
ones, rand, or eye functions. To create a 0-by-5 matrix, for example, use

A = zeros(0,5)

Operating on an Empty Matrix

The basic model for empty matrices is that any operation that is defined for
m-by-n matrices, and that produces a result whose dimension is some function
of m and n, should still be allowed when m or n is zero. The size of the result of
this operation is consistent with the size of the result generated when working
with nonempty values, but instead is evaluated at zero.

For example, horizontal concatenation
C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is
m-by-p, then C is m-by- (n+p). This is still true if m or n or p is zero.

As with all matrices in MATLAB, you must follow the rules concerning
compatible dimensions. In the following example, an attempt to add a 1-by-3
matrix to a 0-by-3 empty matrix results in an error:

[1 2 3] + ones(0,3)
??? Error using ==> +
Matrix dimensions must agree.

Common Operations. The following operations on an empty scalar array
return zero:

A=11;
size(A), length(A), numel(A), any(A), sum(A)

1-45



l Data Structures

These operations on an empty scalar array return a nonzero value:

A=11;
ndims(A), isnumeric(A), isreal(A), isfloat(A), isempty(A), all(A), prod(/

Using Empty Matrices in Relational Operations

You can use empty matrices in relational operations such as “equal to” (==) or
“greater than” (>) as long as both operands have the same dimensions, or the
nonempty operand is scalar. The result of any relational operation involving
an empty matrix is the empty matrix. Even comparing an empty matrix for
equality to itself does not return true, but instead yields an empty matrix:

X = ones(0,3);
y = X5

y == X
ans =
Empty matrix: O0-by-3

Using Empty Matrices in Logical Operations
MATLAB has two distinct types of logical operators:

® Short-circuit (&&, | |) — Used in testing multiple logical conditions (e.g.,
X >= 50 && X < 100) where each condition evaluates to a scalar true
or false.

¢ Element-wise (&, |) — Performs a logical AND, OR, or NOT on each
element of a matrix or array.

Short-circuit Operations. The rule for operands used in short-circuit
operations is that each operand must be convertible to a logical scalar value.
Because of this rule, empty matrices cannot be used in short-circuit logical
operations. Such operations return an error.

The only exception is in the case where MATLAB can determine the result of
a logical statement without having to evaluate the entire expression. This

is true for the following two statements because the result of the entire
statements are known by considering just the first term:

1-46



Empty Matrices, Scalars, and Vectors

true || []
ans =

1
false && []
ans =

0

Elementwise Operations. Unlike the short-circuit operators, all
elementwise operations on empty matrices are considered valid as long as
the dimensions of the operands agree, or the nonempty operand is scalar.
Element-wise operations on empty matrices always return an empty matrix:

true | []
ans =

[

Note This behavior is consistent with the way MATLAB does scalar
expansion with binary operators, wherein the nonscalar operand determines
the size of the result.

Scalars

Any individual real or complex number is represented in MATLAB as a 1-by-1
matrix called a scalar value:

A = 5;
ndims (A) % Check number of dimensions in A
ans =
2
size(A) % Check value of row and column dimensions
ans =
1 1

1-47



l Data Structures

Use the isscalar function to tell if a variable holds a scalar value:

isscalar(A)
ans =
1

Vectors

Matrices with one dimension equal to one and the other greater than one are
called vectors. Here is an example of a numeric vector:

A = [5.73 2-41i 9/7 25e3 .046 sqrt(32) 8j1];

size(A) % Check value of row and column dimensions
ans =
1 7

You can construct a vector out of other vectors, as long as the critical
dimensions agree. All components of a row vector must be scalars or other
row vectors. Similarly, all components of a column vector must be scalars or
other column vectors:

A = [29 43 77 9 21];
B = [0 46 11];

C = [A 5 ones(1,3) B]
C:

29 43 77 9 21 5 1 1 1 0 46 11

Concatenating an empty matrix to a vector has no effect on the resulting
vector. The empty matrix is ignored in this case:

A = [5.36; 7.01; []; 9.44]
A =

5.3600

7.0100

9.4400

Use the isvector function to tell if a variable holds a vector:

isvector(A)

1-48



Empty Matrices, Scalars, and Vectors

ans =

1-49



l Data Structures

Full and Sparse Matrices

1-50

It is not uncommon to have matrices with a large number of zero-valued
elements and, because MATLAB stores zeros in the same way it stores any
other numeric value, these elements can use memory space unnecessarily and
can sometimes require extra computing time.

Sparse matrices provide a way to store data that has a large percentage of
zero elements more efficiently. While full matrices internally store every
element in memory regardless of value, sparse matrices store only the nonzero
elements and their row indices. Using sparse matrices can significantly
reduce the amount of memory required for data storage.

You can create sparse matrices for the double and logical data types. All
MATLAB built-in arithmetic, logical, and indexing operations can be applied
to sparse matrices, or to mixtures of sparse and full matrices. Operations
on sparse matrices return sparse matrices and operations on full matrices
return full matrices.

See the section on Sparse Matrices in the MATLAB Mathematics
documentation for more information on working with sparse matrices.

Sparse Matrix Functions

This table shows some of the functions most commonly used when working
with sparse matrices.

Function Description

full Convert a sparse matrix to a full matrix.

issparse Determine if a matrix is sparse.

nnz Return the number of nonzero matrix elements.

nonzeros Return the nonzero elements of a matrix.

nzmax Return the amount of storage allocated for nonzero
elements.

spalloc Allocate space for a sparse matrix.

sparse Create a sparse matrix or convert full to sparse.




Full and Sparse Matrices

Function Description
speye Create a sparse identity matrix.
sprand Create a sparse uniformly distributed random matrix.

1-51



l Data Structures

Multidimensional Arrays

An array having more than two dimensions is called a multidimensional array
in MATLAB. Most of the operations that you can perform on matrices (i.e.,
two-dimensional arrays) can also be done on multidimensional arrays. This
section shows how to create and manipulate these arrays. It covers

® “Overview” on page 1-52

® “Creating Multidimensional Arrays” on page 1-54

® “Accessing Multidimensional Array Properties” on page 1-57

¢ “Indexing Multidimensional Arrays” on page 1-58

¢ “Reshaping Multidimensional Arrays” on page 1-62

¢ “Permuting Array Dimensions” on page 1-64

¢ “Computing with Multidimensional Arrays” on page 1-66

¢ “Organizing Data in Multidimensional Arrays” on page 1-67

e “Multidimensional Cell Arrays” on page 1-69

¢ “Multidimensional Structure Arrays” on page 1-70

Overview

Multidimensional arrays in MATLAB are an extension of the normal
two-dimensional matrix. Matrices have two dimensions: the row dimension
and the column dimension.

calumn

NGRS
(2, 1)[ (2.2]](2,3)](2,4]

ow

(3,13 (3,2)(3,3)|(3.4)

(4,1)] (4,2])[(4,3]](4,4)

You can access a two-dimensional matrix element with two subscripts: the
first representing the row index, and the second representing the column
index.

1-52



Multidimensional Arrays

Multidimensional arrays use additional subscripts for indexing. A
three-dimensional array, for example, uses three subscripts:

¢ The first references array dimension 1, the row.

® The second references dimension 2, the column.

® The third references dimension 3. This illustration uses the concept of a
page to represent dimensions 3 and higher.

[2?1?3? [2,2,3:' [EFS.FSrdi:z?d?s:l

r3?1?3:l [3?2?'3:" TSP,S,S:l rs?d'?'s:l

£,2,3) (4,3,3) (4,4,3)

row

“whifin

(1.1.2)
[2F1?2:I
r331?2:l

(1.,2,2) 01,3,2) i1,4.87

(2,2,2) [2:3.:2?"[2:4:2:' -
13,2,3-15,3,2) (3,4,2) w7
’

(121,10 (1,2,7) 01,3,7)

r2:|1 ?1:I [2?2?1? r2?3?1:l
r32|1 ?1:I [3?2?1? r3?3?1:l
14,1,1) (4,2,1) 14,3,1)

1,4,1)
(2,4,1)
(3,4,1)
(4,4,1)

::r,:?,z:l [4:3:2:' [4:4:2:' -

To access the element in the second row, third column of page 2, for example,
you use the subscripts (2,3,2).

Afr,=,1)] =
A{2,3,2)
| 1 0 3
. 4 -1 2
.7 |8 B % B 2 1
- -
. 5.8 2
o3 — A(z,2,2) =
4 - 2 .
B 2 1L ] 8 3
‘ 4 3 6
5 ] 2

1-53



l Data Structures

As you add dimensions to an array, you also add subscripts. A four-dimensional
array, for example, has four subscripts. The first two reference a row-column
pair; the second two access the third and fourth dimensions of data.

Note The general multidimensional array functions reside in the datatypes
directory.

Creating Multidimensional Arrays

You can use the same techniques to create multidimensional arrays that you
use for two-dimensional matrices. In addition, MATLAB provides a special
concatenation function that is useful for building multidimensional arrays.

This section discusses

® “Generating Arrays Using Indexing” on page 1-54

¢ “Extending Multidimensional Arrays” on page 1-55

® “Generating Arrays Using MATLAB Functions” on page 1-56

¢ “Building Multidimensional Arrays with the cat Function” on page 1-56

Generating Arrays Using Indexing
One way to create a multidimensional array is to create a two-dimensional
array and extend it. For example, begin with a simple two-dimensional array
A.

A=1[578;0109; 43 86];

Ais a 3-by-3 array, that is, its row dimension is 3 and its column dimension
is 3. To add a third dimension to A,

A(:,:,2) = [104; 356; 98 7]

MATLAB responds with

U1 -
N
(o]

1-54



Multidimensional Arrays

4 3 6
A(:,:,2) =

1 0 4

3 5 6

9 8 7

You can continue to add rows, columns, or pages to the array using similar
assignment statements.

Extending Multidimensional Arrays
To extend A in any dimension:

® Increment or add the appropriate subscript and assign the desired values.

® Assign the same number of elements to corresponding array dimensions.
For numeric arrays, all rows must have the same number of elements, all
pages must have the same number of rows and columns, and so on.

You can take advantage of the MATLAB scalar expansion capabilities,
together with the colon operator, to fill an entire dimension with a single value:

A(:,:,3)

ans =
5 5 5
5 5 5
5 5 5

A(:,:,1,2) = [123; 4586; 78 9];
A(:,:,2,2) =[98 7; 65 4; 32 1];
A(:,:,3,2) = [101; 110; 01 1];

Note that after the first two assignments MATLAB pads A with zeros, as
needed, to maintain the corresponding sizes of dimensions.

1-55



l Data Structures

1-56

Generating Arrays Using MATLAB Functions

You can use MATLAB functions such as randn, ones, and zeros to generate
multidimensional arrays in the same way you use them for two-dimensional
arrays. Each argument you supply represents the size of the corresponding
dimension in the resulting array. For example, to create a 4-by-3-by-2 array of
normally distributed random numbers:

B = randn(4,3,2)

To generate an array filled with a single constant value, use the repmat
function. repmat replicates an array (in this case, a 1-by-1 array) through a
vector of array dimensions.

B = repmat(5, [3 4 2])

B(:,:,1) =
5 5 5 5
5 5 5 5
5 5 5 5
B(:,:,2) =
5 5 5 5
5 5 5 5
5 5 5 5

Note Any dimension of an array can have size zero, making it a form of empty
array. For example, 10-by-0-by-20 is a valid size for a multidimensional array.

Building Multidimensional Arrays with the cat Function

The cat function is a simple way to build multidimensional arrays; it
concatenates a list of arrays along a specified dimension:

B = cat(dim, A1, A2...)

where A1, A2, and so on are the arrays to concatenate, and dim is the
dimension along which to concatenate the arrays.

For example, to create a new array with cat:



Multidimensional Arrays

B = cat(3, [2 8; 0 5], [1 3; 7 9])

2 8
0 5

B(:,:,2) =
1 3
7 9

The cat function accepts any combination of existing and new data. In
addition, you can nest calls to cat. The lines below, for example, create a
four-dimensional array.

A = cat(3, [9 2; 6 5], [7 1; 8 4])
B = cat(3, [35; 0 1], [56; 2 1])
D = cat(4, A, B, cat(3, [1 2; 3 4], [4 3;2 1]))

cat automatically adds subscripts of 1 between dimensions, if necessary. For
example, to create a 2-by-2-by-1-by-2 array, enter

C = cat(4, [1 2; 4 5], [7 8; 3 2])

In the previous case, cat inserts as many singleton dimensions as needed
to create a four-dimensional array whose last dimension is not a singleton
dimension. If the dim argument had been 5, the previous statement
would have produced a 2-by-2-by-1-by-1-by-2 array. This adds additional
1s to indexing expressions for the array. To access the value 8 in the
four-dimensional case, use

Ci1,2,1,2]

Singletan dimensian
inden:

Accessing Multidimensional Array Properties

You can use the following MATLAB functions to get information about
multidimensional arrays you have created.

1-57



l Data Structures

® size — Returns the size of each array dimension.

size(C)
ans =
2 2 1 2
rows columns dim3 dim4

¢ ndims — Returns the number of dimensions in the array.

ndims(C)
ans =
4

¢ whos — Provides information on the format and storage of the array.

whos

Name Size Bytes Class

A 2x2x2 64 double array
B 2x2x2 64 double array
C 4-D 64 double array
D 4-D 192 double array

Grand total is 48 elements using 384 bytes

Indexing Multidimensional Arrays

Many of the concepts that apply to two-dimensional matrices extend to
multidimensional arrays as well.

To access a single element of a multidimensional array, use integer subscripts.
Each subscript indexes a dimension—the first indexes the row dimension,
the second indexes the column dimension, the third indexes the first page
dimension, and so on.
Consider a 10-by-5-by-3 array nddata of random integers:

nddata = fix(8 * randn(10,5,3));

To access element (3,2) on page 2 of nddata, for example, use nddata(3,2,2).

1-58



Multidimensional Arrays

You can use vectors as array subscripts. In this case, each vector element must
be a valid subscript, that is, within the bounds defined by the dimensions of
the array. To access elements (2,1), (2,3), and (2,4) on page 3 of nddata,
use

nddata(2,[1 3 4],3);

The Colon and Multidimensional Array Indexing

The MATLAB colon indexing extends to multidimensional arrays. For
example, to access the entire third column on page 2 of nddata, use
nddata(:,3,2).

The colon operator is also useful for accessing other subsets of data. For
example, nddata(2:3,2:3,1) results in a 2-by-2 array, a subset of the data on
page 1 of nddata. This matrix consists of the data in rows 2 and 3, columns 2
and 3, on the first page of the array.

The colon operator can appear as an array subscript on both sides of an
assignment statement. For example, to create a 4-by-4 array of zeros:

C = zeros(4, 4)

Now assign a 2-by-2 subset of array nddata to the four elements in the center
of C.

C(2:3,2:3) = nddata(2:3,1:2,2)

Linear Indexing with Multidimensional Arrays

MATLAB linear indexing also extends to multidimensional arrays. In this
case, MATLAB operates on a page-by-page basis to create the storage column,
again appending elements columnwise. See “Linear Indexing” on page 1-19
for an introduction to this topic.

1-59



l Data Structures

For example, consider a 5-by-4-by-3-by-2 array C.

MaTLaBdisplays C as MaTLaBstores C as

page{l 1} =

paga{2 1] =

= = R I =
(SO =S R (]

page{d, 1} =

o th B B

page{l 2] =

O b O = f = 00 -~ 3@ h DR D h i th W~ Wk =3 =

O = O o
Mo Lo m
< O (U T o U )
i L L

page(2 2] =

[T=J = R I SU I |
L@ O
— O -
by B O — W

WO O Ch B B3 Ch B Ch D RS

page(d 2] =

[ R
[T
- = @
@ th — L th

1-60



Multidimensional Arrays

Again, a single subscript indexes directly into this column. For example,
C(4) produces the result

ans =
0

If you specify two subscripts (i, j) indicating row-column indices, MATLAB
calculates the offset as described above. Two subscripts always access the
first page of a multidimensional array, provided they are within the range of
the original array dimensions.

If more than one subscript is present, all subscripts must conform to the
original array dimensions. For example, C(6,2) is invalid because all pages of
C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing
scheme accordingly. For example, consider four subscripts (i,j,k,1) into a
four-dimensional array with size [d1 d2 d3 d4]. MATLAB calculates the
offset into the storage column by

(1-1)(d3)(d2) (d1)+(k-1)(d2) (d1)+(j-1)(d1)+1i

For example, if you index the array C using subscripts (3, 4, 2, 1), MATLAB
returns the value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d; d, d; ...
d,] using any subscripts (s; s, S5 ... §.)is

(8,-1)(d, ) (d,p) -« (d)+(S, 1) (A ) .- (d))+...+(s,-1)(d,)+s,
Because of this scheme, you can index an array using any number of

subscripts. You can append any number of 1s to the subscript list because
these terms become zero. For example,

€(3,2,1,1,1,1,1,1)
is equivalent to

C(3,2)

1-61



l Data Structures

1-62

Avoiding Ambiguity in Multidimensional Indexing
Some assignment statements, such as

A(:,:,2) = 1:10

are ambiguous because they do not provide enough information about the
shape of the dimension to receive the data. In the case above, the statement
tries to assign a one-dimensional vector to a two-dimensional destination.
MATLAB produces an error for such cases. To resolve the ambiguity, be sure
you provide enough information about the destination for the assigned data,
and that both data and destination have the same shape. For example:

A(1,:,2) = 1:10;

Reshaping Multidimensional Arrays

Unless you change its shape or size, a MATLAB array retains the dimensions
specified at its creation. You change array size by adding or deleting
elements. You change array shape by respecifying the array’s row, column, or
page dimensions while retaining the same elements. The reshape function
performs the latter operation. For multidimensional arrays, its form is

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped
matrix. Note that a reshaped array must have the same number of elements
as the original array (that is, the product of the dimension sizes is constant).

M reshape(M, [6 5])

.-*7le 7 8 5.-4[|h 3 5 7 5

3 5 8.,.8 1|||8 & 7 5 &

& 9.4 13 3f||lse 5 2 9 =3

ol I

s 0 68 3 7 - 1 0 6 4 3
B 1 5 0 2| .7

The reshape function operates in a columnwise manner. It creates the
reshaped matrix by taking consecutive elements down each column of the
original data construct.



Multidimensional Arrays

C reshape(C, [6 2])
_-' ] ..LU 1 &
. 1112 ] 8
S5 B — 2 9
- |78 4 11
12 — 5 10
3 4 7 12

Here are several new arrays from reshaping nddata:

B = reshape(nddata, [6 25])
C = reshape(nddata, [5 3 10])
D = reshape(nddata, [5 3 2 5])

Removing Singleton Dimensions

MATLAB creates singleton dimensions if you explicitly specify them when
you create or reshape an array, or if you perform a calculation that results in
an array dimension of one:

B = repmat(5, [2 3 1 4]);
size(B)

ans =
2 3 1 4

The squeeze function removes singleton dimensions from an array:
C = squeeze(B);
size(C)
ans =

2 3 4

The squeeze function does not affect two-dimensional arrays; row vectors
remain rows.

1-63



l Data Structures

1-64

Permuting Array Dimensions
The permute function reorders the dimensions of an array:

B = permute(A, dims);

dims is a vector specifying the new order for the dimensions of A, where
1 corresponds to the first dimension (rows), 2 corresponds to the second
dimension (columns), 3 corresponds to pages, and so on.

A B = permute(A, [2 1 3]) C = permute(A, [3 2 1])
Al:,i,1) = Bl:,:,1] = Cle,0,1) =
! 2 3 1 4 7 Rowandcaimn 1 2 3 Fow and page
4 5 B 2 & B subscripts are o = 4 subscripts e
7 B 8 3 B 9 mevered o 2) feversed.
(poge-bypage et E
A(:,:,2) = B(:,:,2) = i
tianspasitian). 4 c 5
0 5 4 0 2 9 2 7 i3
2 7 & 5 7 3
9 3 1 4 E 1 Cf HE 3] -
7 8 9
2] 3 1

For a more detailed look at the permute function, consider a four-dimensional
array A of size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the
column dimension first, followed by the second page dimension, the first page
dimension, then the row dimension. The result is a 4-by-2-by-3-by-5 array.



Multidimensional Arrays

Move dimensian 2 af At
firstsubscrpt posttian of B,
dimensian 4 ta secand sub-
script position, and sa on.

B = permute(A,[2 4 3 1])

Ingut Dimensian ‘1 ‘2 ‘3 ‘4 ‘ The order of dimensians in
army A Sie 5 |4 |3 |2 pe rmute’s aument list deter
‘ ‘ ‘ | | mines the size and shape of the

output array. In this example, the
secand dimensian maves fo the
first pasition. Becouse the second
dimensian of the original array had

Qutput Dimensian ‘ 1 ‘ 2 ‘ size 4, the output army's first

army B Cira ‘4 ‘2 ‘3 ‘5 ‘ dimension aka has size 4.

s

You can think of permute’s operation as an extension of the transpose
function, which switches the row and column dimensions of a matrix. For
permute, the order of the input dimension list determines the reordering

of the subscripts. In the example above, element (4,2,1,2) of A becomes
element (2,2,1,4) of B, element (5,4,3,2) of A becomes element (4,2,3,5)
of B, and so on.

Inverse Permutation
The ipermute function is the inverse of permute. Given an input array
A and a vector of dimensions v, ipermute produces an array B such that
permute(B,v) returns A.

For example, these statements create an array E that is equal to the input
array C:

D
E

ipermute(C, [1 4 2 3]);
permute(D, [1 4 2 3])

You can obtain the original array after permuting it by calling ipermute with
the same vector of dimensions.

1-65



l Data Structures

1-66

Computing with Multidimensional Arrays

Many of the MATLAB computational and mathematical functions accept
multidimensional arrays as arguments. These functions operate on specific
dimensions of multidimensional arrays; that is, they operate on individual
elements, on vectors, or on matrices.

Operating on Vectors

Functions that operate on vectors, like sum, mean, and so on, by default
typically work on the first nonsingleton dimension of a multidimensional
array. Most of these functions optionally let you specify a particular dimension
on which to operate. There are exceptions, however. For example, the cross
function, which finds the cross product of two vectors, works on the first
nonsingleton dimension having length 3.

Note In many cases, these functions have other restrictions on the input
arguments — for example, some functions that accept multiple arrays require
that the arrays be the same size. Refer to the online help for details on
function arguments.

Operating Element-by-Element

MATLAB functions that operate element-by-element on two-dimensional
arrays, like the trigonometric and exponential functions in the elfun
directory, work in exactly the same way for multidimensional cases. For
example, the sin function returns an array the same size as the function’s
input argument. Each element of the output array is the sine of the
corresponding element of the input array.

Similarly, the arithmetic, logical, and relational operators all work with
corresponding elements of multidimensional arrays that are the same size in
every dimension. If one operand is a scalar and one an array, the operator
applies the scalar to each element of the array.

Operating on Planes and Matrices

Functions that operate on planes or matrices, such as the linear algebra and
matrix functions in the matfun directory, do not accept multidimensional



Multidimensional Arrays

arrays as arguments. That is, you cannot use the functions in the matfun
directory, or the array operators *, ~, \, or /, with multidimensional
arguments. Supplying multidimensional arguments or operands in these
cases results in an error.

You can use indexing to apply a matrix function or operator to matrices within
a multidimensional array. For example, create a three-dimensional array A:

12 7; 46 5], [032; 884; 535],
[6 47; 6 85; 31);

Applying the eig function to the entire multidimensional array results in
an error:

eig(A)
??? Error using ==> eig
Input arguments must be 2-D.

You can, however, apply eig to planes within the array. For example, use
colon notation to index just one page (in this case, the second) of the array:

eig(A(:,:,2))
ans =
12.9129
-2.6260
2.7131

Note In the first case, subscripts are not colons; you must use squeeze to
avoid an error. For example, eig(A(2,:,:)) results in an error because
the size of the input is [1 3 3]. The expression eig(squeeze(A(2,:,:))),
however, passes a valid two-dimensional matrix to eig.

Organizing Data in Multidimensional Arrays

You can use multidimensional arrays to represent data in two ways:

® As planes or pages of two-dimensional data. You can then treat these pages
as matrices.

1-67



l Data Structures

® As multivariate or multidimensional data. For example, you might have
a four-dimensional array where each element corresponds to either a
temperature or air pressure measurement taken at one of a set of equally
spaced points in a room.

For example, consider an RGB image. For a single image, a multidimensional
array is probably the easiest way to store and access data.

Armay RGE
.-To.6B9 0.706 0.118 0.884 ...--
Page3—|g.535 0.532 0.653 0.825, -7,
.+ blue 0.314 0.265 0.159 0.187 ...
.-" intensity |0.553 0.633 0.528.07.493 ...
voles | 0.441 0.465 0,512 0.512 ...
L] O 200 0 AN
fage )| 0+ 342 0.647 0.515 0.816 . .~ g:g?; g:??g e
rog 0.111 0.300 0.205 0.526+7.. |3 05 o a0g
-7 Qeen g e23 p.428 0.712 0,899 ... 0. 128 D188 . ..
- intemsity |p.214 0.604 0.918-0.344 ... | :
vobes | 0.100 0.121 0.r3 0.126 ...
0.112 0.986 0.234 0.432 ... [2-204 0.175 ...
Poge1- | o.765 0.128 0.863 0.521 ... [0-760 0.581 ...
red 1.000 0.985 0.761 0.698 ... |0-°o27 0.910 ... -
iMensity | 0.455 0.783 0.224 0.395 ... [0-995 0.726 ...
vobes |0.021 0.500 0.311 0.123 ... e
1.000 1.000 0.867 0.051 ...
1.000 0.945 0.998 0.893 ... -
0.990 0.941 1.000 0.B76 ...
0.902 0.867 0.834 0.798 ... =

To access an entire plane of the image, use
redPlane = RGB(:,:,1);
To access a subimage, use

subimage = RGB(20:40,50:85,:);

1-68



Multidimensional Arrays

The RGB image is a good example of data that needs to be accessed in planes
for operations like display or filtering. In other instances, however, the data
itself might be multidimensional. For example, consider a set of temperature
measurements taken at equally spaced points in a room. Here the location
of each value is an integral part of the data set—the physical placement in
three-space of each element is an aspect of the information. Such data also
lends itself to representation as a multidimensional array.

Array TEMP

U Fl

1 B7.9° 68.0° 67.9%°
67.8° 67.8° B7Lg°
e 167.7% B7.8° B7.7° }-'-::J
'68.0° B8.0° B7.E° .%T.E° CLe
|67.9° 67.8° B7.6° -~
|67.8° 67.6° B7.6° 1

Now to find the average of all the measurements, use

mean (mean(mean (TEMP)));

To obtain a vector of the “middle” values (element (2,2)) in the room on each
page, use

B = TEMP(2,2,:);

Multidimensional Cell Arrays

Like numeric arrays, the framework for multidimensional cell arrays in
MATLAB is an extension of the two-dimensional cell array model. You can
use the cat function to build multidimensional cell arrays, just as you use
it for numeric arrays.

For example, create a simple three-dimensional cell array C:

A{1,1} = [1 2;4 5];
A{1,2} ‘Name';
A{2,1} 2-41;

1-69



l Data Structures

1-70

A{2,2} = 7;
B{1,1} = 'Name2';
B{1,2} = 3;
B{2,1} = 0:1:3;
B{2,2} = [4 5]";
C = cat(3, A, B);

The subscripts for the cells of C look like

cell 1,1,2

' Hame2'

-5

cell 1,2,

cell 2,1,2

1 2
4 5

cell 1,2,

' Hame'

-
T 11 23]

cell 2,2,2

cell 2,1,1

2-4i

T

cell 2,2,

1

Multidimensional Structure Arrays

Multidimensional structure arrays are extensions of rectangular structure

arrays. Like other types of multidimensional arrays, you can build them using

direct assignment or the cat function:

patient
patient
patient
patient
patient
patient
patient
patient
patient
patient

(1
(1
(1
(1
(1,
(1
(1
(1,
(1
(1,

.name =
.billing
.test =
.name =
.billing
.test =
.name =
.billing
.test =
.name =

‘dohn Doe'

= 127.00;
[79 75 73;

"Ann Lane'
= 28.50;

[68 70 68;

‘Al Smith'

= 504.70;
[80 80 80;

b

180 178 177.5; 220 210 205];
118 118 119; 172 170 169];

153 153 154; 181 190 182];

‘Dora Jones';



Multidimensional Arrays

patient(1,2,2).billing = 1173.90;
patient(1,2,2).test = [73 73 75; 103 103 102; 201 198 200];

L patient(1,1 patient(1,2 L
.i'l- .i'l-
. -
-f' -f'
- .
- . name 'al smith' .name 'Dora Jong$g'
- -
a Ehilliﬂg —504.70 E billing — 1473 a4
. -
. -test BO B0 BO -test .73 75 75
- 153 153 154 l“103 103 102
. 1B1 190 182 .| 201 198 200
- -
patienti1,1,1) patienti(i1,2 -
,F
-
.
.
. name 'John Doe' . name "Ann Lang' Ry
Ebi].ling —127.00 Ehilling — 2B.50
.
.test 78 75 73 .test 66 70 GB -
180 178 177.5 118 118 119 ."
220 210 205 172 170 169 e
-~

Applying Functions to Multidimensional Structure Arrays

To apply functions to multidimensional structure arrays, operate on fields and
field elements using indexing. For example, find the sum of the columns of
the test array in patient(1,1,2):

sum( (patient(1,1,2).test));
Similarly, add all the billing fields in the patient array:

total = sum([patient.billing]);

1-71



l Data Structures

Summary of Matrix and Array Functions

1-72

This section summarizes the principal functions used in creating and handling

matrices. Most of these functions work on multidimensional arrays as well.

Functions to Create a Matrix

Function

Description

[a,b] or [a;b]

Create a matrix from specified elements, or concatenate

matrices together.

accumarray Construct a matrix using accumulation.

blkdiag Construct a block diagonal matrix.

cat Concatenate matrices along the specified dimension.

diag Create a diagonal matrix from a vector.

horzcat Concatenate matrices horizontally.

magic Create a square matrix with rows, columns, and
diagonals that add up to the same number.

ones Create a matrix of all ones.

rand Create a matrix of uniformly distributed random
numbers.

repmat Create a new matrix by replicating or tiling another.

vertcat Concatenate two or more matrices vertically.

zeros Create a matrix of all zeros.

Functions to Modify the Shape of a Matrix

Function Description

ctranspose Flip a matrix about the main diagonal and replace each
element with its complex conjugate.

flipdim Flip a matrix along the specified dimension.

fliplr Flip a matrix about a vertical axis.




Summary of Matrix and Array Functions

Functions to Modify the Shape of a Matrix (Continued)

Function Description

flipud Flip a matrix about a horizontal axis.
reshape Change the dimensions of a matrix.
rot90 Rotate a matrix by 90 degrees.
transpose Flip a matrix about the main diagonal.

Functions to Find the Structure or Shape of a Matrix

Function Description

isempty Return true for 0-by-0 or 0-by-n matrices.
isscalar Return true for 1-by-1 matrices.

issparse Return true for sparse matrices.

isvector Return true for 1-by-n matrices.

length Return the length of a vector.

ndims Return the number of dimensions in a matrix.
numel Return the number of elements in a matrix.
size Return the size of each dimension.

Functions to Determine Data Type

Function Description

iscell Return true if the matrix is a cell array.

ischar Return true if matrix elements are characters or
strings.

isfloat Determine if input is a floating point array.

isinteger Determine if input is an integer array.

islogical Return true if matrix elements are logicals.

isnumeric Return true if matrix elements are numeric.

1-73



l Data Structures

Functions to Determine Data Type (Continued)

Function Description

isreal Return true if matrix elements are real numbers.

isstruct Return true if matrix elements are MATLAB
structures.

Functions to Sort and Shift Matrix Elements

Function Description

circshift Circularly shift matrix contents.

issorted Return true if the matrix elements are sorted.
sort Sort elements in ascending or descending order.
sortrows Sort rows in ascending order.

Functions That Work on Diagonals of a Matrix

Function Description

blkdiag Construct a block diagonal matrix.

diag Return the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

1-74



Summary of Matrix and Array Functions

Functions That Work on Diagonals of a Matrix (Continued)

Function Description
tril Return the lower triangular part of a matrix.
triu Return the upper triangular part of a matrix.

Functions to Change the Indexing Style

Function Description
ind2sub Convert a linear index to a row-column index.
sub2ind Convert a row-column index to a linear index.

Functions for Working with Multidimensional Arrays

Function Description

cat Concatenate arrays.

circshift Shift array circularly.

ipermute Inverse permute array dimensions.

ndgrid Generate arrays for n-dimensional functions and
interpolation.

ndims Return the number of array dimensions.

permute Permute array dimensions.

shiftdim Shift array dimensions.

squeeze Remove singleton dimensions.

1-75



l Data Structures

1-76



Data Types

There are many different types of data that you can work with in MATLAB.
You can build matrices and arrays of floating-point and integer data,
characters and strings, logical true and false states, etc. You can also
develop your own data types using MATLAB classes. Two of the MATLAB
data types, structures and cell arrays, provide a way to store dissimilar types
of data in the same array. This chapter describes each of these data types and
how to use them in your MATLAB programming.

Overview of MATLAB Data Types Brief description of all MATLAB
(p. 2-3) data types

Numeric Types (p. 2-6) Integer and floating-point data
types, complex numbers, NaN,
infinity, and numeric display format

Logical Types (p. 2-33) States of true and false, use of
logicals in conditional statements
and logical indexing, logical/numeric
conversion

Characters and Strings (p. 2-38) Characters, strings, cell arrays of
strings, string comparison, search
and replace, character/numeric
conversion

Dates and Times (p. 2-67) Date strings, serial date numbers,
date vectors, date type conversion,
output display format

Structures (p. 2-75) C-like structures with named fields,
dynamic field names, adding and
removing fields



2 Data Types

2-2

Cell Arrays (p. 2-94)

Function Handles (p. 2-116)

MATLAB Classes (p. 2-118)

Java Classes (p. 2-119)

Arrays of cells containing different
data types and shapes, using

cell arrays in argument lists,
numeric/cell conversion

Passing function access data to other
functions, extending function scope,
extending the lifetime of variables

Object-oriented classes and methods
using MATLAB classes, creating
your own MATLAB data types

Working with Java classes within
MATLAB using the MATLAB
interface to the Java programming
language



Overview of MATLAB Data Types

Overview of MATLAB Data Types

There are 15 fundamental data types in MATLAB. Each of these data types is
in the form of a matrix or array. This matrix or array is a minimum of 0-by-0
in size and can grow to an n-dimensional array of any size.

All of the fundamental data types are shown in lowercase, plain nonitalic text
in the diagram below.

ARRAY
[full or sparse]

logical char MUWERIC cell structure function

J handle
user classes Java classes

int8d, uinta,
int16, uintig, single double
int32,u1int32,
int64, uinted

The two data types shown in italic text are user-defined, object-oriented
user classes and Java classes. You can use the latter with the MATLAB
interface to Java (see “Calling Java from MATLAB” in the MATLAB External

Interfaces documentation).

You can create two-dimensional double and logical matrices using one of
two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required
for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These data types require different amounts of storage, the smallest being a
logical value or 8-bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.



2 Data Types

Data Type Summary

The following table describes these data types in more detail.

Data Type

Example

Description

int8, uint8,

int16, uint16,
int32, uint32,
int64, uint64

uint16(65000)

Array of signed (int) and unsigned (uint)
integers. Some integer types require less
storage space than single or double. All
integer types except for int64 and uint64
can be used in mathematical operations.

single single(3 * 10"38) Array of single-precision numbers.
Requires less storage space than double,
but has less precision and a smaller
range.
double 3 * 107300 Array of double-precision numbers. Two-
5 + 6i dimensional arrays can be sparse. The
default numeric type in MATLAB.
logical magic(4) > 10 Array of logical values of 1 or 0 to
represent true and false respectively.
Two-dimensional arrays can be sparse.
char 'Hello' Array of characters. Strings are
represented as vectors of characters. For
arrays containing more than one string,
it is best to use cell arrays.
cell array a{1,1} = 12; a{1,2} | Array of indexed cells, each capable of
= 'Red'; a{1,3} = storing an array of a different dimension
magic(4); and data type.
structure a.day = 12; a.color | Array of C-like structures, each structure

= 'Red'; a.mat =

having named fields capable of storing an

magic(3); array of a different dimension and data
type.
function handle @sin Pointer to a function. You can pass

function handles to other functions.




Overview of MATLAB Data Types

Data Type

Example

Description

user class

polynom([0 -2 -5])

Objects constructed from a user-defined
class. See “MATLAB Classes” on page
2-118

Java class

java.awt.Frame

Objects constructed from a Java class.
See “Java Classes” on page 2-119.




2 Data Types

Numeric Types

Numeric data types in MATLAB include signed and unsigned integers, and
single- and double-precision floating-point numbers. By default, MATLAB
stores all numeric values as double-precision floating point. However,

you can choose to store any number, or array of numbers, as integers

or as single-precision. Integer and single-precision arrays offer more
memory-efficient storage than double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

This section covers the following topics:

* “Integers” on page 2-6

¢ “Floating-Point Numbers” on page 2-14

® “Complex Numbers” on page 2-24

¢ “Infinity and NaN” on page 2-25

¢ “Identifying Numeric Types” on page 2-27

¢ “Display Format for Numeric Values” on page 2-27

¢ “Function Summary” on page 2-29

Integers

MATLAB has four signed and four unsigned integer data types. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
zero or positive.

This section covers:

® “Creating Integer Data” on page 2-7
® “Arithmetic Operations on Integer Data Types” on page 2-9



Numeric Types

¢ “Largest and Smallest Values for Integer Data Types” on page 2-9

® “Warnings for Integer Data Types” on page 2-10

¢ “Integer Functions” on page 2-13

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest

integer type that accommodates your data. For example, you don’t need a
32-bit integer to store the value 100.

Here are the eight integer data types, the range of values you can store with
each type, and the MATLAB conversion function required to create that type:

Data Type Range of Values Conversion Function
Signed 8-bit integer 27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uints

Unsigned 16-bit integer | 0 to 216-1 uint16

Unsigned 32-bit integer | 0 to 232-1 uint32

Unsigned 64-bit integer | 0 to 26%-1 uinté4

Creating Integer Data

MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type
x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from



2 Data Types

the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

X = 325.499; X = x + .001;
int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. In this example, the fix function enables you to override the default
and round fowards zero when the fractional part of a number is .5:

X = 325.5;

int16(fix(x))
ans =
325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,
according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =
1427

The integer conversion functions are also useful when converting other data
types, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =
72 101 108 108 111 32 87 111 114 108 100



Numeric Types

Arithmetic Operations on Integer Data Types
MATLAB can perform integer arithmetic on the following types of data:

¢ Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

X = uint32([132 347 528]) .* uint32(75);

® Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

X = uint32([132 347 528]) .* 75.49;

For all binary operations in which one operand is an array of integer data
type and the other is a scalar double, MATLAB computes the operation using
elementwise double-precision arithmetic, and then converts the result back to
the original integer data type.

For a list of the operations that support integer data types, see Nondouble
Data Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Data Types

For each integer data type, there is a largest and smallest number that you
can represent with that type. The table shown under “Integers” on page 2-6
lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8") intmin('int8")
ans = ans =
127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if
you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) X = int8(-300)



2 Data Types

X = X =
127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

X int8(100) * 3 X
X = X =
127 -128

int8(-100) * 3

You can make MATLAB return a warning when your input is outside the
range an integer data type. This is described in the next section.

Warnings for Integer Data Types

Use the intwarning function to make MATLAB return a warning message
when it converts a number outside the range of an integer data type to that
type, or when the result of an arithmetic operation overflows. There are four
possible warning messages that you can turn on using intwarning:

Message Identifier Reason for Warning

MATLAB:intConvertOverflow | Overflow when attempting to convert from
a numeric class to an integer class

MATLAB:intMathOverflow Overflow when attempting an integer
arithmetic operation

MATLAB:intConvertNonIntVal | Attempt to convert a noninteger value to
an integer

MATLAB:intConvertNaN Attempt to convert NaN (Not a Number)
to an integer

Querying the Present Warning State. Use the following command to
display the state of all integer warnings:

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'off'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.

2-10



Numeric Types

The state of warning 'MATLAB:intMathOverflow'

To display the state of one or more selected warnings, index into the structure

is

‘off!'.

returned by intwarning. This example shows the current state of the

intConvertOverflow warning:

iwState = intwarning('query');

iwState(3)
ans =

identifier:

state: 'off'

"MATLAB:intConvertOverflow'

Turning the Warning On. To enable all four integer warnings, use
intwarning with the string 'on':

intwarning('o

n';

intwarning('query"')

The state
The state
The state
The state

of warning
of warning
of warning
of warning

'MATLAB:
'"MATLAB:
'MATLAB:
'MATLAB:

intConvertNaN' is

intConvertNonIntval'

‘on'.

intConvertOverflow'

intMathOverflow'

is

is 'on'.
is 'on'.
‘on'.

To enable one or more selected integer warnings, first make sure that all

integer warnings are disabled:

intwarning('off');

Note that, in this state, the following conversion to a 16-bit integer overflows,

but does not issue a warning:

X
X =
32767

int16(50000)

Find which of the four warnings covers integer conversion. In this case, it
is the third in the structure array:

iwState = intwarning('query');
iwState(3).identifier

ans =

MATLAB: intConvertOverflow

2-11



2 Data Types

Set the warning state to 'on' in the structure, and then call intwarning
using the structure as input:

iwState(3).state = 'on';
intwarning(iwState);

With the warning enabled, the overflow on conversion does issue the warning
message:

X = int16(50000)
Warning: Out of range value converted to intmin('int16') or
intmax('int16').
X:
32767

You can also use the following for loop to enable integer warnings selectively:

maxintwarn = 4;

for k = 1:maxintwarn
if strcmp(iwState(k).identifier, 'MATLAB:intConvertOverflow')
iwState(k).state = 'on';
intwarning(iwState);
end
end

Turning the Warning Off. To turn all integer warnings off (their default
state when you start MATLAB), enter

intwarning('off"')

To disable selected integer warnings, follow the steps shown for enabling
warnings, but with the state field of the structure set to 'off':

iwState(3).identifier
ans =
MATLAB:intConvertOverflow

iwState(3).state = 'off';
intwarning(iwState);

2-12



Numeric Types

Turning Warnings On or Off Temporarily. When writing M-files that
contain integer data types, it is sometimes convenient to temporarily turn
integer warnings on, and then return the states of the warnings ('on' or

'off') to their previous settings. The following commands illustrate how to
do this:

oldState = intwarning('on');

int8(200);
Warning: Out of range value converted to intmin('int8') or
intmax('int8').

intwarning(oldState)

To temporarily turn the warnings off, change the first line of the preceding
code to

oldState = intwarning('off');

Recommended Usage of Math Overflow Warning. Enabling the
MATLAB:intMathOverflow warning slows down integer arithmetic. It is
recommended that you enable this particular warning only when you need
to diagnose unusual behavior in your code, and disable it during normal
program operation. The other integer warnings listed above do not affect
program performance.

Note that calling intwarning('on') enables all four integer warnings,
including the intMathOverflow warning that can have an effect on integer
arithmetic.

Integer Functions

See Integer Functions on page 2-30 for a list of functions most commonly used
with integers in MATLAB.

2-13



2 Data Types

Floating-Point Numbers

MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

This section covers:

® “Double-Precision Floating Point” on page 2-14

® “Single-Precision Floating Point” on page 2-15

® “Creating Floating-Point Data” on page 2-15

® “Arithmetic Operations on Floating-Point Numbers” on page 2-17

¢ “Largest and Smallest Values for Floating-Point Data Types” on page 2-18
® “Accuracy of Floating-Point Data” on page 2-19

* “Avoiding Common Problems with Floating-Point Arithmetic” on page 2-21
¢ “Floating-Point Functions” on page 2-23

® “References” on page 2-23

Double-Precision Floating Point

MATLAB constructs the double-precision (or double) data type according
to IEEE Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51to0 Fraction f of the number 1.f

2-14



Numeric Types

Single-Precision Floating Point

MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)
30 to 23 Exponent, biased by 127

22to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data

Use double-precision to store values greater than approximately 3.4 x 1038
or less than approximately -3.4 x 10%%. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Double-Precision. Because the default numeric type for MATLAB is double,
you can create a double with a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos (x)
Name Size Bytes Class
X 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical O (false) otherwise:

2-15



2 Data Types

2-16

isfloat(x)
ans =
1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
X = double(y) % Convert to double
X:

-5.8932e+011

Single-Precision. Because MATLAB stores numeric data as a double
by default, you need to use the single conversion function to create a
single-precision number:

X = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x"');
xAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
x = single(y) % Convert to single
X:

-5.8932e+011



Numeric Types

Arithmetic Operations on Floating-Point Numbers

This section describes which data types you can use in arithmetic operations
with floating-point numbers.

Double-Precision. You can perform basic arithmetic operations with double
and any of the following other data types. When one or more operands is an
integer (scalar or array), the double operand must be a scalar. The result is of
type double, except where noted otherwise:

¢ single — The result is of type single

® double

® int* or uint* — The result has the same data type as the integer operand
® char

® logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;

class(c)
ans =
double

char(c)
ans =
UPPERCASE

Single-Precision. You can perform basic arithmetic operations with single
and any of the following other data types. The result is always single:

® single
® double
® char

® Jogical

2-17



2 Data Types

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =
single

Largest and Smallest Values for Floating-Point Data Types

For the double and single data types, there is a largest and smallest number
that you can represent with that type.

Double-Precision. The MATLAB functions realmax and realmin return
the maximum and minimum values that you can represent with the double
data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =

The range for double is:
-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =
Inf

-realmax - .0001e+308
ans =
-Inf

Single-Precision. The MATLAB functions realmax and realmin, when

called with the argument 'single', return the maximum and minimum
values that you can represent with the single data type:

2-18



Numeric Types

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'),
realmin('single'), realmax('single'))

ans =

The range for single is:
-3.40282e+038 to -1.17549e-038 and
1.17549e-038 to 3.40282e+038

Numbers larger than realmax(’single’) or smaller than -realmax (single’) are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =
Inf

-realmax('single') - .0001e+038
ans =
-Inf

Accuracy of Floating-Point Data

If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s
hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

Double-Precision. Because there are only a finite number of double-precision
numbers, you cannot represent all numbers in double-precision storage. On
any computer, there is a small gap between each double-precision number and
the next larger double-precision number. You can determine the size of this
gap, which limits the precision of your results, using the eps function. For
example, to find the distance between 5 and the next larger double-precision
number, enter

format long

eps(5)
ans =

2-19



2 Data Types

2-20

8.881784197001252e-016

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps (x) depends on x. This example shows that, as x gets larger,
so does eps(Xx):

eps(50)
ans =
7.105427357601002e-015

If you enter eps with no input argument, MATLAB returns the value of
eps (1), the distance from 1 to the next larger double-precision number.

Single-Precision. Similarly, there are gaps between any two single-precision
numbers. If x has type single, eps(x) returns the distance between x and
the next larger single-precision number. For example,

X = single(5);
eps(x)

returns

ans =
4.7684e-007

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =



Numeric Types

1.0490e-007

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =
2.3842e-007

Avoiding Common Problems with Floating-Point Arithmetic

Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You Expect.
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e =1 - 3%4/3 - 1)

()]
I

2.2204e-016

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

a 0.0;

for i = 1:10
a=a+0.1;

end

a::

ans =

2-21



2 Data Types

Note that the order of operations can matter in the computation:
b =1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b ==c¢c

ans =
0

There are gaps between floating-point numbers. As the numbers get larger, so
do the gaps, as evidenced by:

(2753 + 1) - 2753

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:
sin(pi)

ans =
1.224646799147353e-016

Example 2 — Catastrophic Cancellation. When subtractions are
performed with nearly equal operands, sometimes cancellation can occur
unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant):

sqrt(le-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

2-22



Numeric Types

Example 3 — Floating-Point Operations and Linear Algebra.
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned,

and therefore the system Ax = b may be sensitive to small perturbations.
Although the computation differs from what you expect in exact arithmetic,
the result is correct.

A = [2 eps -eps; eps 1 1; -eps 1 1];
b =1[2; eps + 2; -eps + 2];
X = A\b
X:
1.0e+015 *

0.000000000000001
2.251799813685249
-2.251799813685247

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB. For more examples

and information, see Technical Note 1108 Common Problems with
Floating-Point Arithmetic.

Floating-Point Functions

See Floating-Point Functions on page 2-30 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References

The following references provide more information about floating-point
arithmetic.

[1] Moler, Cleve, “Floating Points,” MATLAB News
and Notes, Fall, 1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.1.A.M. A PDF version
is available on the MathWorks Web site at http://www.mathworks.com/moler/.

2-23


http://www.mathworks.com/support/tech-notes/1100/1108.html

2 Data Types

2-24

Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary

part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

Creating Complex Numbers

The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

X = 2 + 3ij;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

X = rand(3) * 5;
y = rand(3) * -8;
z = complex(x, V)
Z:

4.7842 -1.09211i 0.8648 -1.59311 1.2616 -2.27531
2.6130 -0.0941i  4.8987 -2.38981  4.3787 -3.75381
4.4007 -7.1512i 1.3572 -5.29151i  3.6865 -0.51821

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr = real(z)

zr =
4.7842 .8648 .2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

o
-

zi = imag(z)

zi =
-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182



Numeric Types

Complex Number Functions

See Complex Number Functions on page 2-31 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

Infinity and NaN

MATLAB uses the special values inf, -inf, and NaN to represent values that
are positive and negative infinity, and not a number respectively.

Infinity

MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x =1/0 x = 1.e1000
X = X =
Inf Inf
X = exp(1000) x = 1log(0)
X = X =

Inf -Inf

Use the isinf function to verify that x is positive or negative infinity:
x = 1og(0);
isinf(x)

ans =
1

2-25



2 Data Types

MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN.

For example, the statement n/0, where n is complex, returns NaN for the real
part of the result:

X = 7i/0
X:
NaN + Infi

Use the isnan function to verify that the real part of x is NaN:

isnan(real(x))
ans =
1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

X = NaN;

whos x
Name Size Bytes Class
X 1x1 8 double

Logical Operations on NaN. Because two NaNs are not equal to each
other, logical operations involving NaN always return false, except for a test
for inequality, (NaN ~= NaN):

NaN > NaN
ans =

0
NaN ~= NaN
ans =

1

2-26



Numeric Types

Infinity and NaN Functions

See Infinity and NaN Functions on page 2-31 for a list of functions most
commonly used with inf and NaN in MATLAB.

Identifying Numeric Types

You can check the data type of a variable x using any of these commands.

Command

Operation

whos x

Display the data type of x.

xType = class(X);

Assign the data type of x to a variable.

isnumeric(x)

Determine if x is a numeric type.

isa(x, 'integer') Determine if x is the specified numeric type.
isa(x, 'uint64') (Examples for any integer, unsigned 64-bit integer,
isa(x, 'float') any floating point, double precision, and single
isa(x, 'double') precision are shown here).

isa(x, 'single')

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf (x) Determine if x is infinite.

isfinite(x)

Determine if x is finite.

Display Format for Numeric Values

By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the

following:

e 5-digit scaled fixed point, floating point, or the best of the two

e 15-digit scaled fixed point, floating point, or the best of the two

Bank notation

A ratio of small integers

Hexadecimal (base 16)

2-27



2 Data Types

2-28

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or

the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples

Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:
get(0, 'format')

ans =
short

Set the value for x and display in 5-digit scaled fixed point:

X
X:

[4/3 1.2345e-6]
1.3333  0.0000

Set the format to 5-digit floating point:

format short e
X
X =
1.3333e+000 1.2345e-006

Set the format to 15-digit scaled fixed point:

format long
X
X:
1.33333333333333  0.00000123450000

Set the format to 'rational' for small integer ratio output:



Numeric Types

format rational
X
X:
4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
X = uint32(876543210)
X:

343efcea

Setting Numeric Format in a Program

To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish
working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set(0, 'format', origFormat);

Function Summary
MATLAB provides these functions for working with numeric data types:

¢ Integer Functions on page 2-30

¢ Floating-Point Functions on page 2-30

¢ Complex Number Functions on page 2-31
¢ Infinity and NaN Functions on page 2-31

® Type Identification Functions on page 2-32
® QOutput Formatting Functions on page 2-32

2-29



2 Data Types

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16, | Convert to unsigned 1-, 2-, 4-, or 8-byte integer.
uint32, uint64

2-30

ceil Round towards plus infinity to nearest integer
class Return the data type of an object.

fix Round towards zero to nearest integer

floor Round towards minus infinity to nearest integer
isa Determine if input value has the specified data type.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.

round Round towards the nearest integer

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.

isfloat Determine if input value is a floating-point array.

isnumeric Determine if input value is a numeric array.

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.




Numeric Types

Floating-Point Functions (Continued)

Function Description

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

ior j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.
isnan Detect NaN elements of an array.
isinf Detect infinite elements of an array.

2-31



2 Data Types

Infinity and NaN Functions (Continued)

Function Description
isfinite Detect finite elements of an array.
nan Return the IEEE value for Not a Number.

Type Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.
isfloat Determine if input value is a floating-point array.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

2-32



Logical Types

Logical Types

The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =
0 0 1 1 1

This section covers the following topics:

e “Creating a Logical Array” on page 2-33
¢ “How Logical Arrays Are Used” on page 2-35
¢ “Identifying Logical Arrays” on page 2-37

Creating a Logical Array

One way of creating an array of logicals is to just enter a true or false value
for each element. The true function returns logical one; the false function
returns logical zero:

X = [true, true, false, true, false];

Logical Operations on an Array
You can also perform some logical operation on an array that yields an array

of logicals:
X = magic(4) >= 9
X =
1 0 0 1
0 1 1 0

2-33



2 Data Types

2-34

1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a=[2.56.7 9.2 inf 4.8];

isfinite(a)
ans =
1 1 1 0

This table shows some of the MATLAB operations that return a logical true

or false.
Function Operation
true, false Setting value to true or false
logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all

Logical operations

88, ||

Short-circuit AND and OR

== (eq), ~= (ne), < (1t), > (gt), <= (1e),
>= (ge)

Relational operations

All is* functions, cellfun

Test operations

strcmp, strncmp, strempi, strncmpi

String comparisons

Sparse Logical Arrays

Logical arrays can also be sparse as long as they have no more than two

dimensions:

X = sparse(magic(20) > 395)
X =
(1,1)
(1,4)
(1,5)
(20,18)
(20,19)

—_ o A



Logical Types

How Logical Arrays Are Used
MATLAB has two primary uses for logical arrays:

e “Using Logicals in Conditional Statements” on page 2-35

e “Using Logicals in Array Indexing” on page 2-35

Most mathematics operations are not supported on logical values.

Using Logicals in Conditional Statements

Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string. The statement

if ~isempty(str) && ischar(str)
checks for this condition and allows the sprintf to execute only if it is true:

str = 'Hello';

if ~isempty(str) && ischar(str)
sprintf('Input string is ''%s''', str)
end

ans =
Input string is 'Hello’

Using Logicals in Array Indexing

MATLAB supports a type of array indexing that uses one array as the index
into another array. For example, array B below indexes into elements 1, 3, 6,
7, and 10 of array A:

A = 5:5:50

A =

5 10 15 20 25 30 35 40 45 50
[1 367 10];

on]
I}

2-35



2 Data Types

2-36

5 15 30 35 50

In this case, the numeric values of array B designate the intended elements
of A.

Another type of array index, a logical index, designates the elements of A
based on their position in the indexing array, B. In this masking type of
operation, every true element in the indexing array is treated as a positional
index into the array being accessed.

Logical Indexing Example 1. This next example creates logical array B
that satisfies the condition A > 0.5, and uses the positions of ones in B to
index into A. This is called logical indexing:

A = rand(5);
B=A>0.5;
A(B) =0
A =
0.2920 0.3567 0.1133 0 0.0595
0 0.4983 0 0.2009 0.0890
0.3358 0.4344 0 0.2731 0.2713
0 0 0 0 0.4091
0.0534 0 0 0 0.4740

A simpler way to express this is
A(A > 0.5) =0

Logical Indexing Example 2. The next example highlights the location
of the prime numbers in a magic square using logical indexing to set the
nonprimes to 0:

A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12



Logical Types

4 14 15

B = isprime(A)

B =
0 1 1
1 1 0
0 1 0
0 0 0

A(~B) = 0;

A

A =
0 2 3
5 11 0
0 0
0 0 0

O oo =

OO oW

% Logical indexing

Identifying Logical Arrays
This table shows the commands you can use to determine whether or not an

array x is logical. The last function listed, cel1fun, operates on cell arrays,
which you can read about in the section “Cell Arrays” on page 2-94.

Command Operation
whos (x) Display value and data type for x.
islogical(x) Return true if array is logical.

isa(x, 'logical')

Return true if array is logical.

class(x)

Return string with data type name.

cellfun('islogical', x)

Check each cell array element for logical.

2-37



2 Data Types

Characters and Strings

2-38

In MATLAB, the term string refers to an array of Unicode characters.
MATLAB represents each character internally as its corresponding numeric
value. Unless you want to access these values, you can simply work with the
characters as they display on screen.

You can use char to hold an m-by-n array of strings as long as each string in
the array has the same length. (This is because MATLAB arrays must be
rectangular.) To hold an array of strings of unequal length, use a cell array.

The string is actually a vector whose components are the numeric codes for
the characters. The actual characters displayed depend on the character

set encoding for a given font.

This section covers

“Creating Character Arrays” on page 2-38

e “Cell Arrays of Strings” on page 2-40

¢ “Formatting Strings” on page 2-43

e “String Comparisons” on page 2-56

e “Searching and Replacing” on page 2-59

¢ “Converting from Numeric to String” on page 2-60
¢ “Converting from String to Numeric” on page 2-62

¢ “Function Summary” on page 2-64

Creating Character Arrays

Specify character data by placing characters inside a pair of single quotes. For
example, this line creates a 1-by-13 character array called name:

name = 'Thomas R. Lee';
In the workspace, the output of whos shows

Name Size Bytes Class



Characters and Strings

name 1x13 26 char
You can see that each character uses 2 bytes of storage internally.

The class and ischar functions show that name is a character array:

class(name)
ans =
char

ischar(name)
ans =
1

You also can join two or more character arrays together to create a new
character array. To do this, use either the string concatenation function,
strcat, or the MATLAB concatenation operator, [ ]. The latter preserves any
trailing spaces found in the input arrays:

name = 'Thomas R. Lee';
title = ' Sr. Developer';
strcat(name, ', "',title)
ans =

Thomas R. Lee, Sr. Developer

To concatenate strings vertically, use strvcat.

Creating Two-Dimensional Character Arrays

When creating a two-dimensional character array, be sure that each row
has the same length. For example, this line is legal because both input rows
have exactly 13 characters:

name = ['Thomas R. Lee' ; 'Sr. Developer']
name
Thomas R. Lee
Sr. Developer

When creating character arrays from strings of different lengths, you can pad
the shorter strings with blanks to force rows of equal length:

2-39



2 Data Types

2-40

name = ['Thomas R. Lee "; 'Senior Developer'];

A simpler way to create string arrays is to use the char function. char
automatically pads all strings to the length of the longest input string. In the
following example, char pads the 13-character input string 'Thomas R. Lee'
with three trailing blanks so that it will be as long as the second string:

name

name
Thomas R. Lee
Senior Developer

char('Thomas R. Lee', 'Senior Developer')

When extracting strings from an array, use the deblank function to remove
any trailing blanks:

trimname = deblank(name(1,:))
trimname =
Thomas R. Lee

size(trimname)
ans =
1 13

Expanding Character Arrays

Expanding the size of an existing character array by assigning additional
characters to indices beyond the bounds of the array such that part of the
array becomes padded with zeros, is generally not recommended. See the
documentation on “Expanding a Character Array” on page 1-31 in the
MATLAB Programming documentation.

Cell Arrays of Strings

Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.



Characters and Strings

For details on cell arrays, see “Cell Arrays” on page 2-94.

Converting to a Cell Array of Strings
The cellstr function converts a character array into a cell array of strings.

Consider the character array

data = ['Allison Jones'; 'Development

Each row of the matrix is padded so that all have equal length (in this case,

13 characters).

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata
celldata

cellstr(data)

'Allison Jones'
'Development’
'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the

input string matrix:

length(celldata{3})

ans =
7

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)

ans =
1

Use char to convert back to a standard padded character array:

strings =
strings

char(celldata)

Allison Jones
Development

"; 'Phoenix

15

2-41



2 Data Types

2-42

Phoenix

length(strings(3,:))

ans =
13

Functions for Cell Arrays of Strings

This table describes the MATLAB functions for working with cell arrays.

Function Description

cellstr Convert a character array to a cell array of strings.
char Convert a cell array of strings to a character array.
deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.
strcat Concatenate strings.

strcmp Compare strings.

strmatch Find possible matches for a string.

You can also use the following set functions with cell arrays of strings.

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.

unique Set the unique elements of a vector.




Characters and Strings

Formatting Strings
The following MATLAB functions offer the capability to compose a string that

includes ordinary text and data formatted to your specification:

® sprintf — Write formatted data to an output string

e fprintf — Write formatted data to an output file or the command window
* warning — Display formatted data in a warning message

® error — Display formatted data in an error message and abort

® assert — Generate an error when a condition is violated

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For

example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

The general formatting syntax for these functions is

functionname(..., format_string, valuel, value2, ..., valueN)

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.'
‘bread', 7, 1, 2006, 2.49)
ans =
The price of bread on 7/1/2006 was $2.49.

The following sections cover

e “The Format String” on page 2-44

® “Input Value Arguments” on page 2-45

® “The Formatting Operator” on page 2-46

® “Constructing the Formatting Operator” on page 2-47

2-43



2 Data Types

2-44

o “Setting Field Width and Precision” on page 2-52

o “Restrictions for Using Identifiers” on page 2-55

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

The Format String

The first input argument in the sprintf statement shown above is the format
string:

'The price of %s on %d/%d/%d was $%.2f.'

The string argument can include ordinary text, formatting operators and, in
some cases, special characters. The formatting operators for this particular
string are: %s, %d, %d, %d, and %.2f.

Following the string argument are five additional input arguments, one for
each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters. Special characters are a part of the text in the string.
But, because they cannot be entered as ordinary text, they require a unique
character sequence to represent them. Use any of the following character
sequences to insert special characters into the output string.

To Insert . . . Use. . .
Backspace \b
Form feed \f
New line \n
Carriage return \r



Characters and Strings

To Insert . . . Use. . .
Horizontal tab \t
Backslash \\

o°
o°

Percent character

Input Value Arguments
In the syntax

functionname(..., format_string, valuei, value2, ..., valueN)

The value arguments must immediately follow string in the argument
list. In most instances, you supply one of these value arguments for each
formatting operator used in string. Scalars, vectors, and numeric and
character arrays are valid value arguments. You cannot use cell arrays or
structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('ss = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans

479
352
651

O W@ > Il
1l

Sequential and Numbered Argument Specification.

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),
or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 2-52.

2-45



2 Data Types

2-46

Ordered Sequentially Ordered By Identifier
sprintf('%s %s %s', ... sprintf('%3%s %2%s %13s',
'1st', '2nd', '3rd') '1st', '2nd', '3rd')
ans = ans =
1st 2nd 3rd 3rd 2nd 1st

Vectorizing. Instead of using individual value arguments, you can use a
vector or matrix as the source of data input values, as shown here:

sprintf('%sd ', magic(4))
ans =
16 59 42 11 7 14 3 10 6 15 13 8 12 1

When using the %s operator, MATLAB interprets integers as characters:

mvec = [77 65 84 76 65 66];

sprintf('%ss ', mvec)
ans =
MATLAB

The Formatting Operator

Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation style
for the inserted data. Conversion characters used in MATLAB are based on
those used by the printf function in the C programming language.

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);



Characters and Strings

sprintf (' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)

314.16 % Display 2 decimal digits (%.2f)

+314.16 % Display + for positive numbers (%+.2f)
314.16 % Set width to 12 characters (%12.2f)

Replace leading spaces with 0 (%012.2f)

o°

000000314.16

Constructing the Formatting Operator

The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

¢ Conversion Character — Specifies the notation of the output.
¢ Subtype — Further specifies any nonstandard types.

¢ Precision — Sets the number of digits to display to the right of the decimal
point.

¢ Field Width — Sets the minimum number of digits to display.

¢ Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

¢ Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order

in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

% 3$0-12.5bu

Identifier J |— Conversion character

Flags Subtype
Field width Precision

2-47



2 Data Types

2-48

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 2-53 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

% 1% *2% *3% e
Value 4 | ‘— Precision

Field width

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the
formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character. The conversion character specifies the notation of
the output. It consists of a single character and appears last in the format
specifier. It is the only required field of the format specifier other than the
leading % character.

Specifier Description

c Single character

d Decimal notation (signed)

e Exponential notation (using a lowercase e as in 3.1415e+00)

E Exponential notation (using an uppercase E as in 3.1415E+00)

f Fixed-point notation

g The more compact of %e or %f. (Insignificant zeros do not
print.)

G Same as %g, but using an uppercase E

o Octal notation (unsigned)

S String of characters

u Decimal notation (unsigned)



Characters and Strings

Specifier Description
X Hexadecimal notation (using lowercase letters a—f)

X Hexadecimal notation (using uppercase letters A—F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

sprintf('%d %T %e %X', A)
ans =
46  46.000000 4.600000e+001 2E

Subtype. The subtype field is a single alphabetic character that immediately
precedes the conversion character. The following nonstandard subtype
specifiers are supported for the conversion characters %0, %u, %x, and %X.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx".

t The underlying C data type is a float rather than an unsigned integer.

Precision. precision in a formatting operator is a nonnegative integer that
tells MATLAB how many digits to the right of the decimal point to use when
formatting the corresponding input value. The precision field consists of a
nonnegative integer that immediately follows a period and extends to the
first alphabetic character after that period. For example, the specifier %7 . 3f,
has a precision of 3.

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))

ans =
157.08 1.6e+002 157.079633 157.08

2-49



2 Data Types

2-50

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the
number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 2-53 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 2-52.

Field Width. Field width in a formatting operator is a nonnegative integer
that tells MATLAB the minimum number of digits or characters to use when
formatting the corresponding input value. For example, the specifier %7.3f,
has a width of 7.

Here are some examples of how the width field affects different types of
notation:

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =
|1.570796e+002| 1.570796e+002|157.079633| 157.079633 |

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =
Pad left with spaces

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 2-53 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 2-52.



Characters and Strings

Flags. You can control the alignment of the output using any of these
optional flags:

Character Description Example

A minus sign (-) Left-justifies the %-5.2d
converted argument
in its field

A plus sign (+) Always prints a sign %+5.2d
character (+ or —)
Zero (0) Pad with zeros rather %05 .2f

than spaces.

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f',
12.3, 12.3)
ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f"',
12.3, 12.3)
ans =
no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f"',
5.2, 5.2)
ans =
space-padded: 5.20
zero-padded: 000000005.20

2-51



2 Data Types

2-52

Note You can specify more than one flag in a formatting operator.

Value Identifiers. By default, MATLAB inserts data values from the
argument list into the string in a sequential order. If you have a need to use
the value arguments in a nonsequential order, you can override the default
by using a numeric identifier in each format specifier. Specify nonsequential
arguments with an integer immediately following the % sign, followed by

a $ sign.

Ordered Sequentially Ordered By Identifier
sprintf('%ss %s %s', ... sprintf('%3%$s %2%s %1$s',
"1st', '2nd', '3rd') "1st', '2nd', '3rd')
ans = ans =
1st 2nd 3rd 3rd 2nd 1st

Setting Field Width and Precision

This section provides further information on the use of the field width and
precision fields of the formatting operator:

e “Effect on the Output String” on page 2-52

* “Specifying Field Width and Precision Outside the format String” on page
2-53

® “Using Identifiers In the Width and Precision Fields” on page 2-54

Effect on the Output String. The figure below illustrates the way in
which the field width and precision settings affect the output of the string
formatting functions. In this figure, the zero following the % sign in the
formatting operator means to add leading zeros to the output string rather
than space characters:



Characters and Strings

Whole part of input Result has w digits,
value has has 3 digits extending to the
left with zeros

Format operator |

123.45678 ——» %09.3f ———» 00123.457

,—' field width: w = 9 |
precision: p=3

Fractional part of input Fractional part of the

value has 5 digits result has p digits
and is rounded

General rules for formatting

¢ If precision is not specified, it defaults to 6.

e If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

e If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

e [f field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

e If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w- (n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

Specifying Field Width and Precision Outside the format String. To
specify field width or precision using values from a sequential argument list,
use an asterisk (*) in place of the field width or precision field of the
formatting operator.

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting

2-53



2 Data Types

operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %. *f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %*.*f, specifies both field width and
precision in the argument list:

sprintf('s*f  %.*f % ',
15, 123.45678, ... %

Width for 123.45678 is 15
3, 16.42837, % Precision for rand*20 is .3
6, 4, pi) % Width & Precision for pi is 6.4

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('%s*.2f', 5, 123.45678)
ans =
123.46

Using Identifiers In the Width and Precision Fields. You can also
derive field width and precision values from a nonsequential (i.e., numbered)
argument list. Inside the formatting operator, specify field width and/or
precision with an asterisk followed by an identifier number, followed by

a $ sign.

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf ('%s*f %.*f S*.*f',
15, 123.45678,
3, 16.42837,
6, 4, pi)

ans =
123.456780 16.428 3.1416

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.

2-54



Characters and Strings

If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

Sprintf('s1$*4$f  %2$.*58F  %3$*6$.*7$F "',
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers

If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax
sprintf('%sd %d %d %d', ... sprintf('Ssd %3%d %d %d',
1, 2, 3, 4) 1, 2, 3, 4)
ans = ans =
1234

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.

You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

Valid Syntax Invalid Syntax
sprintf('sd', 1, 2, 3, 4) sprintf('s1$d', 1, 2, 3, 4)
ans = ans =
1234 1

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

2-55



2 Data Types

Valid Syntax Invalid Syntax
v =[1.4 2.7 3.1]; v =1[1.4 2.7 3.1];
sprintf('%.4f %.4f %.4f', v) sprintf('%3%$.4f %1$.4f %2$.4f', v)
ans = ans =
1.4000 2.7000 3.1000 Empty string: 1-by-0

String Comparisons

There are several ways to compare strings and substrings:

® You can compare two strings, or parts of two strings, for equality.
® You can compare individual characters in two strings for equality.
® You can categorize every element within a string, determining whether

each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality

You can use any of four functions to determine if two input strings are
identical:

® strcmp determines if two strings are identical.

® strncmp determines if the first n characters of two strings are identical.
® strcmpi and strncmpi are the same as strcmp and strncmp, except that

they ignore case.

Consider the two strings

stri ‘hello’;
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(stri,str2)

2-56



Characters and Strings

Note For C programmers, this is an important difference between the
MATLAB strcmp and C strcemp () functions, where the latter returns 0 if
the two strings are the same.

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C
C =
1

strncmp(stri1, str2, 2)

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp (A,B)
ans =

1

0

0
strncmp(A,B,1)
ans

o = = 1

Comparing for Equality Using Operators

You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

2-57



2 Data Types

A = 'fate';
B = 'cake';
A ==B
ans =
0 1 0 1
All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of

corresponding characters.

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

Alphabetic
Alphanumeric
Lowercase or uppercase
Decimal digits
Hexadecimal digits
Control characters
Graphic characters
Punctuation characters

White-space characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

2-58



Characters and Strings

>
|

= isletter(mystring)
i 1 1 1 0 0 0 O

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

Searching and Replacing

MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See “Regular Expressions” on page 3-31.)

Consider a string named label:
label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28' to '10/30":

newlabel = strrep(label, '28', '30')
newlabel
Sample 1, 10/30/95

findstr returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = findstr('amp', label)
position
2

The position within label where the only occurrence of 'amp' begins is the
second character.

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are
the set of white-space characters. You can use the strtok function to parse a
sentence into words. For example,

function allWords = words(inputString)
remainder = inputString;
allWords = '';

2-59



2 Data Types

while (any(remainder))
[chopped,remainder] = strtok(remainder);
allWords = strvcat(allWords, chopped);
end

The strmatch function looks through the rows of a character array or cell
array of strings to find strings that begin with a given series of characters. It
returns the indices of the rows that begin with these characters:

maxstrings = strvcat('max', 'minimax', 'maximum')
maxstrings =

max

minimax

maximum

strmatch('max', maxstrings)
ans =

1

3

Converting from Numeric to String

The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent [72 105] — 'Hi'
character. (Truncates any fractional parts.)

int2str Convert a positive or negative integer to a [72 105] — '72 105"
character type. (Rounds any fractional parts.)

num2str Convert a numeric type to a character type of the [72 105] —
specified precision and format. '72/105/" (format

set to %1d/)

mat2str Convert a numeric type to a character type of the [72 105] — '[72
specified precision, returning a string MATLAB 105]"
can evaluate.

2-60



Characters and Strings

Function Description Example

dec2hex Convert a positive integer to a character type of [72 105] —> '48 69"
hexadecimal base.

dec2bin Convert a positive integer to a character type of [72 105] — '1001000
binary base. 1101001

dec2base Convert a positive integer to a character type of [72 105] —» '110

any base from 2 through 36. 151" (base set to 8)

Converting to a Character Equivalent

The char function converts integers to Unicode character codes and returns a
string composed of the equivalent characters:

X = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers

The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)

plot(x, y)

str1 = num2str(min(x));

str2 = num2str(max(x));

out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix

Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

2-61



2 Data Types

Converting from String to Numeric

The functions listed in this table provide a number of ways to convert
character strings to numeric data.

Function

Description

Example

uintN (e.g., uint8)

Convert a character to an integer code that
represents that character.

'Hi' - 72 105

str2num Convert a character type to a numeric type. '72 105' —» [72 105]
str2double Similar to str2num, but offers better {'72'" '105'} > [72
performance and works with cell arrays of 105]
strings.
hex2num Convert a numeric type to a character type ‘Al >
of specified precision, returning a string that | '-1.4917e-154"
MATLAB can evaluate.
hex2dec Convert a character type of hexadecimal base | 'A' — 10
to a positive integer.
bin2dec Convert a positive integer to a character type | '1010' — 10
of binary base.
base2dec Convert a positive integer to a character type | '12' — 10 (if base ==

of any base from 2 through 36.

8)

2-62

Converting from a Character Equivalent

Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name =

‘Thomas R. Lee';

name = double(name)
name

84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)
name =
Thomas R. Lee



Characters and Strings

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1"';

val = str2num(str)
val =
3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)

d:
3.7294
-58.3750
13.7960
whos
Name Size Bytes Class
c 3x1 224 cell
d 3x1 24 double

Converting from a Specific Radix

To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,

but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

2-63



2 Data Types

2-64

Function Summary
MATLAB provides these functions for working with character arrays:

® Functions to Create Character Arrays on page 2-64

® Functions to Modify Character Arrays on page 2-64

® Functions to Read and Operate on Character Arrays on page 2-65

® Functions to Search or Compare Character Arrays on page 2-65

® Functions to Determine Data Type or Content on page 2-65

® Functions to Convert Between Numeric and String Data Types on page 2-66

® Functions to Work with Cell Arrays of Strings as Sets on page 2-66

Functions to Create Character Arrays

Function Description

'str' Create the string specified between quotes.
blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

strvcat Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.
strjust Justify a string.

strrep Replace one string with another.




Characters and Strings

Functions to Modify Character Arrays (Continued)

Function Description
strtrim Remove leading and trailing white space.
upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

Function Description
eval Execute a string with MATLAB expression.
sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

findstr Find one string within another.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strmatch Find matches for a string.

strncmp Compare the first N characters of strings.
strncmpi Compare the first N characters, ignoring case.
strtok Find a token in a string.

Functions to Determine Data Type or Content

Function Description

iscellstr Return true for a cell array of strings.
ischar Return true for a character array.
isletter Return true for letters of the alphabet.

2-65



2 Data Types

2-66

Functions to Determine Data Type or Content (Continued)

Function Description
isstrprop Determine if a string is of the specified category.
isspace Return true for white-space characters.

Functions to Convert Between Numeric and String Data Types

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.
double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to astring you can run eval on.
num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.

unique Set the unique elements of a vector.




Dates and Times

Dates and Times

MATLAB represents date and time information in either of three formats:
date strings, serial date numbers, or date vectors. You have the choice of using
any of these formats. If you work with more than one date and time format,
MATLAB provides functions to help you easily convert from one format to
another, (e.g., from a string to a serial date number).

When using date strings, you have an additional option of choosing from 19
different string styles to express date and/or time information.

This section covers the following topics:

e “Types of Date Formats” on page 2-67

® “Conversions Between Date Formats” on page 2-69
¢ “Date String Formats” on page 2-69

¢ “Output Formats” on page 2-70

e “Current Date and Time” on page 2-72

¢ “Function Summary” on page 2-72

Types of Date Formats
The three MATLAB date and time formats are

e “Date Strings” on page 2-68
e “Serial Date Numbers” on page 2-68
e “Date Vectors” on page 2-68

This table shows examples of the three formats.

Date Format Example

Date string 02-0ct-1996
Serial date number 729300

Date vector 1996 10 2 0 0 O

2-67



2 Data Types

2-68

Date Strings

There are a number of different styles in which to express date and time
information as a date string. For example, several possibilities for October 31,
2003 at 3:45:17 in the afternoon are

31-0ct-2003 15:45:17
10/31/03

15:45:17

03:45:17 PM

If you are working with a small number of dates at the MATLAB command
line, then date strings are often the most convenient format to use.

Note The MATLAB date function returns the current date as a string.

Serial Date Numbers

A serial date number represents a calendar date as the number of days that
has passed since a fixed base date. In MATLAB, serial date number 1 is
January 1, 0000. MATLAB also uses serial time to represent fractions of days
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So the
string ’31-Oct-2003, 6:00 pm’ in MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using
functions that handle large numbers of dates or doing extensive calculations
with dates, you get better performance if you use date numbers.

Note The MATLAB now function returns the current date and time as a
serial date number.

Date Vectors

Date vectors are an internal format for some MATLAB functions; you do not
typically use them in calculations. A date vector contains the elements [year
month day hour minute second].



Dates and Times

Note The MATLAB clock function returns the current date and time as a

serial vector.

Conversions Between Date Formats
Functions that convert between date formats are shown below.

Function Description

datenum Convert a date string to a serial date number.
datestr Convert a serial date number to a date string.
datevec Split a date number or date string into individual

date elements.

Here are some examples of conversions from one date format to another:

d1 = datenum('02-0ct-1996")

d1

729300

d2
d2 =

12-0ct-1996

dv1
dvl =

1996

dv2
dv2 =

1996

datevec(d1)

datevec(d2)

datestr(d1 + 10)

12 0 0 0

Date String Formats

The datenum function is important for doing date calculations efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy"',
'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. You can
form up to six fields from letters and digits separated by any other characters:

2-69



2 Data Types

® The day field is an integer from 1 to 31.

® The month field is either an integer from 1 to 12 or an alphabetic string
with at least three characters.

® The year field is a nonnegative integer: if only two digits are specified,
then a year 19yy is assumed; if the year is omitted, then the current year
is used as a default.

® The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'AM' or 'PM'.

For example, if the current year is 1996, then these are all equivalent:

'17-May-1996'
'17-May-96'
"17-May'

‘May 17, 1996'
'5/17/96'
'5/17!

and both of these represent the same time:

'17-May-1996, 18:30"
'5/17/96/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

If you create a vector of input date strings, use a column vector and be sure all
strings are the same length. Fill in with spaces or zeros.

Output Formats

The command datestr(D, dateform) converts a serial date D to one of 19
different date string output formats showing date, time, or both. The default
output for dates is a day-month-year string: 01-Mar-1996. You select an
alternative output format by using the optional integer argument dateform.

This table shows the date string formats that correspond to each dateform
value.

2-70



Dates and Times

dateform | Format Description

0 01-Mar-1996 15:45:17 | day-month-year
hour:minute:second

1 01-Mar-1996 day-month-year

2 03/01/96 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 w day of week, single letter

10 1996 year, four digits

11 96 year, two digits

12 Mar96 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 Q1-96 calendar quarter-year

18 Q1 calendar quarter

Converting Output Format with datestr
Here are some examples of converting the date March 1, 1996 to various

forms using the datestr function:

d
d:

'01-Mar-1999'

01-Mar-1999

2-71



2 Data Types

datestr(d)
ans =
01-Mar-1999

datestr(d, 2)
ans =
03/01/99

datestr(d, 17)
ans =
Q1-99

Current Date and Time
The function date returns a string for today’s date:

date
ans =
02-0ct-1996

The function now returns the serial date number for the current date and time:

now

ans =
729300.71

datestr(now)

ans =

02-0ct-1996 16:56:16
datestr(floor(now))

ans =
02-0ct-1996

Function Summary
MATLAB provides the following functions for time and date handling:

® Current Date and Time Functions on page 2-73

® Conversion Functions on page 2-73

2-72



Dates and Times

e Utility Functions on page 2-73

* Timing Measurement Functions on page 2-74

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector.

date Return the current date as date string.

now Return the current date and time as serial date number.

Conversion Functions

Function Description

datenum Convert to a serial date number.

datestr Convert to a string representation of the date.
datevec Convert to a date vector.

Utility Functions

Function Description

addtodate Modify a date number by field.

calendar Return a matrix representing a calendar.
datetick Label axis tick lines with dates.

2-73



2 Data Types

Utility Functions (Continued)

Function Description
eomday Return the last day of a year and month.
weekday Return the current day of the week.

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started.

etime Return the time elapsed between two date vectors.

tic, toc Measure the time elapsed between invoking tic and toc.

2-74



Structures

Structures

Structures are MATLAB arrays with named “data containers” called fields.
The fields of a structure can contain any kind of data. For example, one field
might contain a text string representing a name, another might contain a
scalar representing a billing amount, a third might hold a matrix of medical
test results, and so on.

patient
name 'dohn Doe'
billing —  127.00
test

7a 7S 73
180 178 177.5
220 210 2035

Like standard arrays, structures are inherently array oriented. A single
structure is a 1-by-1 structure array, just as the value 5 is a 1-by-1 numeric
array. You can build structure arrays with any valid size or shape, including
multidimensional structure arrays.

Note The examples in this section focus on two-dimensional structure arrays.
For examples of higher-dimension structure arrays, see “Multidimensional
Arrays” on page 1-52.

The following list summarizes the contents of this section:

e “Building Structure Arrays” on page 2-76

® “Accessing Data in Structure Arrays” on page 2-79
¢ “Using Dynamic Field Names” on page 2-81

¢ “Finding the Size of Structure Arrays” on page 2-82
¢ “Adding Fields to Structures” on page 2-83

e “Deleting Fields from Structures” on page 2-84

2-75



2 Data Types

* “Applying Functions and Operators” on page 2-84

* “Writing Functions to Operate on Structures” on page 2-85
® “Organizing Data in Structure Arrays” on page 2-86

o “Nesting Structures” on page 2-92

¢ “Function Summary” on page 2-93

Building Structure Arrays

You can build structures in two ways:

¢ Using assignment statements

¢ Using the struct function

Building Structure Arrays Using Assignment Statements

You can build a simple 1-by-1 structure array by assigning data to individual
fields. MATLAB automatically builds the structure as you go along. For
example, create the 1-by-1 patient structure array shown at the beginning of
this section:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

Now entering

patient

at the command line results in
name: 'John Doe'

billing: 127
test: [3x3 double]

patient is an array containing a structure with three fields. To expand the
structure array, add subscripts after the structure name:

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;

2-76



Structures

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

The patient structure array now has size [1 2]. Note that once a structure
array contains more than a single element, MATLAB does not display
individual field contents when you type the array name. Instead, it shows a
summary of the kind of information the structure contains:

patient

patient =

1x2 struct array with fields:
name
billing
test

You can also use the fieldnames function to obtain this information.
fieldnames returns a cell array of strings containing field names.

As you expand the structure, MATLAB fills in unspecified fields with empty
matrices so that

e All structures in the array have the same number of fields.

e All fields have the same field names.

For example, entering patient(3).name = 'Alan Johnson' expands

the patient array to size [1 3]. Now both patient(3).billing and
patient(3).test contain empty matrices.

Note Field sizes do not have to conform for every element in an array. In the
patient example, the name fields can have different lengths, the test fields
can be arrays of different sizes, and so on.

Building Structure Arrays Using the struct Function

You can preallocate an array of structures with the struct function. Its basic
form is

strArray = struct('field1',valt,'field2',val2, ...)

2-77



2 Data Types

where the arguments are field names and their corresponding values. A field
value can be a single value, represented by any MATLAB data construct, or
a cell array of values. All field values in the argument list must be of the
same scale (single value or cell array).

You can use different methods for preallocating structure arrays. These
methods differ in the way in which the structure fields are initialized. As an
example, consider the allocation of a 1-by-3 structure array, weather, with the
structure fields temp and rainfall. Three different methods for allocating
such an array are shown in this table.

Method Syntax Initialization
struct weather(3) = struct('temp', 72, ... weather (3) is initialized with
'rainfall', 0.0); the field values shown. The

fields for the other structures
in the array, weather (1) and
weather(2), are initialized to
the empty matrix.

struct with weather = repmat(struct('temp', ... All structures in the weather
repmat 72, 'rainfall', 0.0), 1, 3); array are initialized using one
set of field values.

struct with cell | weather = ... The structures in the weather
array syntax array are initialized with
distinct field values specified
with cell arrays.

struct('temp', {68, 80, 72},
‘rainfall', {0.2, 0.4, 0.0});

Naming conventions for Structure Field Names

MATLAB structure field names are required to follow the same rules as
standard MATLAB variables:

1 Field names must begin with a letter, which may be followed by any
combination of letters, digits, and underscores. The following statements
are all invalid:

w = setfield(w, 'My.Score', 3);
w = setfield(w, '1stScore', 3);
w = setfield(w, '1+1=3', 3);

2-78



Structures

w = setfield(w, '@MyScore', 3);

2 Although field names can be of any length, MATLAB uses only the first
N characters of the field name, (where N is the number returned by the
function namelengthmax), and ignores the rest.

N= namelengthmax
N=
63

3 MATLAB distinguishes between uppercase and lowercase characters. Field
name length is not the same as field name Length.

4 In most cases, you should refrain from using the names of functions and
variables as field names.

See “Adding Fields to Structures” on page 2-83 and “Deleting Fields from
Structures” on page 2-84 for more information on working with field names.

Memory Requirements for Structures

You do not necessarily need a contiguous block of memory to store a structure.
The memory for each field in the structure needs to be contiguous, but not the
entire structure itself.

Accessing Data in Structure Arrays

Using structure array indexing, you can access the value of any field or field
element in a structure array. Likewise, you can assign a value to any field
or field element. You can also access the fields of an array of structures in
the form of a comma-separated list.

For the examples in this section, consider this structure array.

2-79



2 Data Types

patiemt
array
patiemti1) patiemt (2} patienti3)
. name 'dohn Doe' rama —— 'Ann Lane' . name ‘Al smith'
[.hilling _127. 00 l; billing . 28. 50 [ billing —s04.70
.test — 78 K] T. Ltest — &8 7o L] test — g0 80 B0
180 178 177.5 118 118 119 153 153 154
220 210 205 172 170 188 181 190 182

You can access subarrays by appending standard subscripts to a structure
array name. For example, the line below results in a 1-by-2 structure array:

mypatients = patient(1:2)

1x2 struct array with fields:
name
billing
test

The first structure in the mypatients array is the same as the first structure
in the patient array:

mypatients(1)
ans =
name: 'John Doe'
billing: 127
test: [3x3 double]

To access a field of a particular structure, include a period (.) after the
structure name followed by the field name:

str
str

patient(2).name

Ann Lane

2-80



Structures

To access elements within fields, append the appropriate indexing mechanism
to the field name. That is, if the field contains an array, use array subscripting;
if the field contains a cell array, use cell array subscripting, and so on:

test2b = patient(3).test(2,2)
test2b
153

Use the same notations to assign values to structure fields, for example,

patient(3).test(2,2) = 7;

You can extract field values for multiple structures at a time. For example,
the line below creates a 1-by-3 vector containing all of the billing fields:

bills
bills =
127.0000 28.5000 504.7000

[patient.billing]

Similarly, you can create a cell array containing the test data for the first
two structures:

tests = {patient(1:2).test}
tests =
[3x3 double] [3x3 double]

Using Dynamic Field Names

The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the

field as a variable expression that MATLAB evaluates at run-time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName. (expression)

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of
that field at columns 1 through 25 of row 7, use

structName. (expression) (7,1:25)

2-81



2 Data Types

Dynamic Field Names Example

The avgscore function shown below computes an average test score, retrieving
information from the testscores structure using dynamic field names:

function avg = avgscore(student, first, last)
for k = first:last

scores(k) = testscores. (student).week(k);
end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student.
First, initialize the structure that contains scores for a 25 week period:

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores
structure at runtime using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =
85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =
87.7500

Finding the Size of Structure Arrays

Use the size function to obtain the size of a structure array, or of any
structure field. Given a structure array name as an argument, size returns a
vector of array dimensions. Given an argument in the form array(n).field,
the size function returns a vector containing the size of the field contents.

2-82



Structures

For example, for the 1-by-3 structure array patient, size(patient) returns
the vector [1 3]. The statement size(patient(1,2).name) returns the
length of the name string for element (1,2) of patient.

Adding Fields to Structures

You can add a field to every structure in an array by adding the field to a
single structure. For example, to add a social security number field to the
patient array, use an assignment like

patient(2).ssn = '000-00-0000";

Now patient(2).ssn has the assigned value. Every other structure in the
array also has the ssn field, but these fields contain the empty matrix until
you explicitly assign a value to them.

See “Naming conventions for Structure Field Names” on page 2-78 for
guidelines to creating valid field names.

Adding or Modifying Fields With the setfield Function

The setfield function offers another way to add or modify fields of a
structure. Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude’;
mystr(2,1).ID = 1;

You can change the name field of mystr(2,1) using
mystr = setfield(mystr, {2,1}, 'name', 'ted');
mystr(2,1).name

ans =
ted

Adding New Fields Dynamically

To add new fields to a structure, specifying the names for these fields at
run-time, see the section on “Using Dynamic Field Names” on page 2-81.

2-83



2 Data Types

2-84

Deleting Fields from Structures

You can remove a given field from every structure within a structure array
using the rmfield function. Its most basic form is

struc2 = rmfield(array, 'field')

where array is a structure array and 'field' is the name of a field to remove
from it. To remove the name field from the patient array, for example, enter

patient = rmfield(patient, 'name');

Applying Functions and Operators

Operate on fields and field elements the same way you operate on any other
MATLAB array. Use indexing to access the data on which to operate.

For example, this statement finds the mean across the rows of the test
array in patient(2):

mean((patient(2).test)');

There are sometimes multiple ways to apply functions or operators across
fields in a structure array. One way to add all the billing fields in the
patient array is

total = 0;
for k 1:1length(patient)
total = total + patient(k).billing;

end

To simplify operations like this, MATLAB enables you to operate on all
like-named fields in a structure array. Simply enclose the array.field
expression in square brackets within the function call. For example, you can
sum all the billing fields in the patient array using

total = sum ([patient.billing]);
This is equivalent to using the comma-separated list:

total = sum ([patient(1).billing, patient(2).billing, ...]);



Structures

This syntax is most useful in cases where the operand field is a scalar field:

Writing Functions to Operate on Structures

You can write functions that work on structures with specific field
architectures. Such functions can access structure fields and elements for
processing.

Note When writing M-file functions to operate on structures, you must
perform your own error checking. That is, you must ensure that the code
checks for the expected fields.

As an example, consider a collection of data that describes measurements, at
different times, of the levels of various toxins in a water source. The data
consists of fifteen separate observations, where each observation contains
three separate measurements.

You can organize this data into an array of 15 structures, where each structure
has three fields, one for each of the three measurements taken.

The function concen, shown below, operates on an array of structures with
specific characteristics. Its arguments must contain the fields lead, mercury,
and chromium:

function [r1, r2] = concen(toxtest);

% Create two vectors:

r1 contains the ratio of mercury to lead at each observation.
r2 contains the ratio of lead to chromium.

r1 = [toxtest.mercury] ./ [toxtest.lead];

r2 [toxtest.lead] ./ [toxtest.chromium];

o°

o°

% Plot the concentrations of lead, mercury, and chromium
% on the same plot, using different colors for each.
lead = [toxtest.lead];

mercury = [toxtest.mercury];

chromium = [toxtest.chromium];

plot(lead, 'r'); hold on

2-85



2 Data Types

plot(mercury, 'b'")
plot(chromium, 'y'); hold off

Try this function with a sample structure array like test:

test(1).lead = .007;
test(2).lead = .031;
test(3).lead .019;

test(1).mercury = .0021;
test(2).mercury = .0009;

test(3).mercury = .0013;
test(1).chromium = .025;
test(2).chromium = .017;
test(3).chromium = .10;

Organizing Data in Structure Arrays

The key to organizing structure arrays is to decide how you want to access
subsets of the information. This, in turn, determines how you build the array
that holds the structures, and how you break up the structure fields.

For example, consider a 128-by-128 RGB image stored in three separate
arrays; RED, GREEN, and BLUE.

2-86



Structures

Red intensity
vohes

O o o oo oo oo

. BBd
L8285
101

812
.398
.T13
. 328
.133

. |o.sB9 0.708 0. 118
Bleintensty |5 s3s o0 s32 o sss
vakmes 0.314 0.265 0,159
0.553 0.633 0,528
0.441 0.465 0,512
0.398 0.401 0,421
. |o.342 0.547 0.515 0.8186 12
Greenintensty | 5 414 0.300 0.205 0. 528 g1
values D.523 0.428 0.742 0.929 128
0.214 0.604 0.918 0. 344
0.100 0.121 0.113 0.125
0.288 0.187 0.204 0,175
0.112 0.966 0.234 0.432 BD 0531
0.7ES 0.128 0.853 0.521 per o910
1.000 0.9B5 0.761 0.598 PEs 0. 726
0.455 0.783 0.224 0.395
0.021 0.500 0.311 0.123
1.000 1.000 0.B67 0,051
1.000 0.945 0.998 0.893
0.990 0.8441 1.000 0.876
0.902 0.867 0.834 0.798

2-87



2 Data Types
There are at least two ways you can organize such data into a structure array.
Plane organization Hement-by-element organzation
A B
| . 9.0 048 0% 0
: Bi1,1) Bi1,2) B(1,3)
T O ET OSSO = —FTEI 8 —PTirl =
Lz BB ERAEL
B(2,1) B(2,2) B(2,3)

2-88

1-hy-1 stuucture army where each field isa 128-by-128 ammay

128-hy-128 stucture army where each field & a single data element

Plane Organization
In the plane organization, shown to the left in the figure above, each field of
the structure is an entire plane of the image. You can create this structure

using
A.r = RED;
A.g = GREEN;
A.b = BLUE;

This approach allows you to easily extract entire image planes for display,
filtering, or other tasks that work on the entire image at once. To access
the entire red plane, for example, use

redPlane = A.r;



Structures

Plane organization has the additional advantage of being extensible to
multiple images in this case. If you have a number of images, you can store
them as A(2), A(3), and so on, each containing an entire image.

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each field separately:

redSub = A.r(2:12,13:30);
greenSub = A.g(2:12,13:30);
blueSub = A.b(2:12,13:30);

Element-by-Element Organization

The element-by-element organization, shown to the right in the figure above,
has the advantage of allowing easy access to subsets of data. To set up the
data in this organization, use

for m = 1:size(RED,1)
for n = 1:size(RED,2)
B(m,n).r = RED(m,n);
B(m,n).g = GREEN(m,n);
B(m,n).b BLUE(m,n);
end
end

With element-by-element organization, you can access a subset of data with a
single statement:

Bsub = B(1:10,1:10);

To access an entire plane of the image using the element-by-element method,
however, requires a loop:

redPlane = zeros(128, 128);
for k = 1:(128 * 128)

redPlane(k) = B(k).r;
end

2-89



2 Data Types

Element-by-element organization is not the best structure array choice for
most image processing applications; however, it can be the best for other
applications wherein you will routinely need to access corresponding subsets
of structure fields. The example in the following section demonstrates this
type of application.

Example — A Simple Database
Consider organizing a simple database.

A Plane organization B Element-by-¢lement arganizatian
| nome —1 Fin EMI
. B(1) B(2) B(3)
= LT
| oddress | TEERE
- addrss - adds - oddess [E]
omunt =] Lonow e Lot [
-.ﬂmﬂUﬂT—g:g o
Bi1).name = 'Ann Jones';
B(1).address = '80 Park s5t.';
B(1).amount = 12.5;
s - s \ B(2).name = 'Dan Smith';
h.n?r;:n 5:;::?“[ ?nn donest, - Bi2).address = 'S5 Lake Awe.';
A.address = strvcati'B0 Fark s5t.', ... Bi2).amoumt = &1.29;
'S Lake Ave.',...);
A.amoumt = [12.5; B1.28; 30; ...];

2-90

Each of the possible organizations has advantages depending on how you

want to access the data:

¢ Plane organization makes it easier to operate on all field values at once.
For example, to find the average of all the values in the amount field,

= Using plane organization



Structures

avg = mean(A.amount);

= Using element-by-element organization

avg = mean([B.amount]);

Element-by-element organization makes it easier to access all the
information related to a single client. Consider an M-file, client.m, which
displays the name and address of a given client on screen.

Using plane organization, pass individual fields.

function client(name,address)
disp(name)
disp(address)

To call the client function,

client(A.name(2,:),A.address(2,:))

Using element-by-element organization, pass an entire structure.

function client(B)
disp(B)

To call the client function,

client(B(2))

Element-by-element organization makes it easier to expand the string
array fields. If you do not know the maximum string length ahead of time
for plane organization, you may need to frequently recreate the name or
address field to accommodate longer strings.

Typically, your data does not dictate the organization scheme you choose.
Rather, you must consider how you want to access and operate on the data.

2-91



2 Data Types

2-92

Nesting Structures

A structure field can contain another structure, or even an array of structures.
Once you have created a structure, you can use the struct function or direct
assignment statements to nest structures within existing structure fields.

Building Nested Structures with the struct Function

To build nested structures, you can nest calls to the struct function. For
example, create a 1-by-1 structure array:

A = struct('data', [3 4 7; 8 0 1], 'nest',...
struct('testnum', 'Test 1', 'xdata', [4 2 8],...
'ydata', [7 1 6]));

You can build nested structure arrays using direct assignment statements.
These statements add a second element to the array:

A(2).data = [9 3 2; 7 6 5];
A(2).nest.testnum = 'Test 2';
A(2).nest.xdata = [3 4 2];
A(2).nest.ydata = [5 0 9];
A1) AlZ)
347 ‘ 23 2
[:.data—s 01 [.datr—; g5
nest testnum ‘Test 1 Tnest testnum 'Test 2°
. xdata 4 28] —xdata [342]
—ydata [r 18] —.ydata [5089]

Indexing Nested Structures

To index nested structures, append nested field names using dot notation.
The first text string in the indexing expression identifies the structure array,
and subsequent expressions access field names that contain other structures.



Structures

For example, the array A created earlier has three levels of nesting:

® To access the nested structure inside A(1), use A(1) .nest.

® To access the xdata field in the nested structure in A(2), use
A(2).nest.xdata.

® To access element 2 of the ydata field in A(1), use A(1) .nest.ydata(2).

Function Summary
This table describes the MATLAB functions for working with structures.

Function Description

deal Deal inputs to outputs.

fieldnames Get structure field names.

isfield Return true if the field is in a structure array.
isstruct Return true for structures.

rmfield Remove a structure field.

struct Create or convert to a structure array.
struct2cell Convert a structure array into a cell array.

2-93



2 Data Types

2-94

Cell Arrays

A cell array provides a storage mechanism for dissimilar kinds of data. You
can store arrays of different types and/or sizes within the cells of a cell array.
For example, you can store a 1-by-50 char array, a 7-by-13 double array, and a
1-by-1 uint32 in cells of the same cell array.

This illustration shows a cell array A that contains arrays of unsigned integers
in A{1,1}, strings in A{1,2}, complex numbers in A{1,3}, floating-point
numbers in A{2,1}, signed integers in A{2,2}, and another cell array in
A{2,3}.

celll.l cell 1.2 cell 1.3
'Anne smith'
3 4 2 'g/1z/94 ! .25+3L B-161
= 7 & 'Glass IL ' i .
B 5 1 34+51 7+.921
'Obs. 1 '
TObs. 2 !
cell 2,1 cell 2,2 cell 2.3
— 4 2
7T 2 14 B 18
1.43 2.9B 7.B3 5.67 B 8 -45
4 =1 52 16 3
7.3 2.5 . &
140 .02 + Bi

To access data in a cell array, you use the same type of matrix indexing as
with other MATLAB matrices and arrays. However, with cell array indexing,
you use curly braces, {}, instead of square brackets or parentheses around
the array indices. For example, A{2,3} accesses the cell in row 2 and column
3 of cell array A.



Cell Arrays

Note The examples in this section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see “Multidimensional Arrays”
on page 1-52.

This section covers these topics:

e “Cell Array Operators” on page 2-95

o “Creating a Cell Array” on page 2-96

o “Referencing Cells of a Cell Array” on page 2-100

¢ “Deleting Cells” on page 2-107

¢ “Reshaping Cell Arrays” on page 2-107

® “Replacing Lists of Variables with Cell Arrays” on page 2-108
* “Applying Functions and Operators” on page 2-109

® “Organizing Data in Cell Arrays” on page 2-110

o “Nesting Cell Arrays” on page 2-111

® “Converting Between Cell and Numeric Arrays” on page 2-113
o “Cell Arrays of Structures” on page 2-114

¢ “Function Summary” on page 2-115

Cell Array Operators

This table shows the operators used in constructing, concatenating, and
indexing into the cells of a cell array.

Operation Syntax Description

Constructing C = {A B D | Builds a cell array C that can contain data
E} of unlike types in A, B, D, and E

2-95



2 Data Types

2-96

Operation Syntax Description

Concatenating| C3 = {C1 C2} | Concatenates cell arrays C1 and C2 into a
2—element cell array C3 such that C3{1} =
C1 and C3{2} = C2

C3 = [C1 C2] | Concatenates the contents of cell arrays
C1 and C2
Indexing X = C(s) Returns the cells of array C that are

specified by subscripts s

>
1l

C{s} Returns the contents of the cells of ¢ that
are specified by subscripts s

X = C{s}(t) | References one or more elements of an
array that resides within a cell. Subscript
s selects the cell, and subscript t selects
the array element(s).

Creating a Cell Array

Creating cell arrays in MATLAB is similar to creating arrays of other
MATLAB data types like double, character, etc. The main difference is that,
when constructing a cell array, you enclose the array contents or indices with
curly braces { } instead of square brackets [ ]. The curly braces are cell
array constructors, just as square brackets are numeric array constructors.
Use commas or spaces to separate elements and semicolons to terminate
each row.

For example, to create a 2-by-2 cell array A, type
A= {[143; 058; 729], '"Anne Smith'; 3+7i, -pi:pi/4:pi};

This results in the array shown below:



Cell Arrays

celll] cell 1,2
1 4 13
ne&s e ‘Anng Smith'
T

cell21 cell2 2

+7

-

[-2.14...3.14]

Note The notation {} denotes the empty cell array, just as [] denotes the
empty matrix for numeric arrays. You can use the empty cell array in any
cell array assignments.

For more information on cell arrays, refer to these topics:

e “Creating Cell Arrays Using Multiple Assignment Statements” on page 2-97
e “Building Cell Arrays with Concatenation” on page 2-99

e “Preallocating Cell Arrays with the cell Function” on page 2-100

¢ “Memory Requirements for Cell Arrays” on page 2-100

Creating Cell Arrays Using Multiple Assignment Statements

You also can create a cell array one cell at a time. MATLAB expands the size
of the cell array with each assignment statement:

A(1,1) = {[1 4 3; 058; 72 9]};
A(1,2) = {'Anne Smith'};

A(2,1) = {3+7i};

A(2,2) = {-pi:pi/4:pi};

If you assign data to a cell that is outside the dimensions of the current array,
MATLAB automatically expands the array to include the subscripts you
specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array.

A(3,3) = {5};

2-97



2 Data Types

2-98

cell 1,1 cell 1.2 cell 1,3
1 4 3
0o 5 B 'Anne smith' [ 1]
7 2 9
cell 2.1 cell 2,2 cell 2,3
371 [-3.d. .. 3. 10 [1]
celld 1 cell 3.2 cell 3.3
[ 1 [1 5

3-by-3 Cell Array

Note If you already have a numeric array of a given name, don’t try to
create a cell array of the same name by assignment without first clearing
the numeric array. If you do not clear the numeric array, MATLAB assumes
that you are trying to “mix” cell and numeric syntaxes, and generates an
error. Similarly, MATLAB does not clear a cell array when you make a single
assignment to it. If any of the examples in this section give unexpected
results, clear the cell array from the workspace and try again.

Alternative Assignment Syntax. When assigning values to a cell array,
either of the syntaxes shown below is valid. You can use the braces on the
right side of the equation, enclosing the value being assigned as shown here:

A(1,1) = {[1 4 3; 05 8; 7 2 9]};
A(1,2 {'Anne Smith'};

Or use them on the left side, enclosing the array subscripts:

A{1,1} = [1 43; 05 8; 72 9];
A{1,2} ‘Anne Smith';



Cell Arrays

Building Cell Arrays with Concatenation

There are two ways that you can construct a new cell array from existing
cell arrays:

¢ Concatenate entire cell arrays to individual cells of the new array. For
example, join three cell arrays together to build a new cell array having
three elements, each containing a cell array. This method uses the curly
brace { } operator.

¢ Concatenate the contents of the cells into a new array. For example, join
cell arrays of size m-by-n1, m-by-n2, and m-by-n3 together to yield a new
cell array that is m-by- (n1+n2+n3) in size. This method uses the square
bracket [ ] operator.

Here is an example. First, create three 3—row cell arrays of different widths.

C1 = {'dan' 'Feb'; '10' '17'; uint16(2004) uint16(2001)};
c2 = {'Mar' 'Apr' 'May'; '31' '2' '10';

uint16(2006) uint16(2005) uint16(1994)};
C3 = {'dun'; '23'; uint16(2002)};

This creates arrays C1, C2, and C3:

C1 c2 Cc3
‘dan' ‘Feb' "Mar' "Apr' ‘May' ‘dJun'
I1OI I17I I31I I2I I10I I23I
[2004] [2001] [2006] [2005] [1994] [2002]

Use the curly brace operator to concatenate entire cell arrays, thus building
a 1-by-3 cell array from the three initial arrays. Each cell of this new array
holds its own cell array:

C4 = {C1 C2 C3}
ca =
{3x2 cell}  {3x3 cell}  {3x1 cell}

Now use the square bracket operator on the same combination of cell arrays.
This time MATLAB concatenates the contents of the cells together and
produces a 3-by-6 cell array:

C5 = [C1 C2 C3]

2-99



2 Data Types

C5 =
‘dan' 'Feb' ‘Mar' "Apr' "May' ‘Jun'
I10I I17I I31I I2I I10I I23I
[2004] [2001] [2006] [2005] [1994] [2002]

Preallocating Cell Arrays with the cell Function

The cell function enables you to preallocate empty cell arrays of the specified
size. For example, this statement creates an empty 20-by-30 cell array:

B = cell(20, 30);
Use assignment statements to fill the cells of B.

It is more efficient to preallocate a cell array of a required size using the cell
function and then assign data into it, than to grow a cell array as you go along
using individual data assignments. The cell function, therefore, offers the
most memory-efficient way of preallocating a cell array.

Memory Requirements for Cell Arrays

You do not necessarily need a contiguous block of memory to store a cell array.
The memory for each cell needs to be contiguous, but not the entire array
of cells.

Referencing Cells of a Cell Array

Because a cell array can contain different types of data stored in various
array sizes, cell array indexing is a little more complex than indexing into a
numeric or character array.

This section covers the following topics on constructing a cell array:

“Manipulating Cells and the Contents of Cells” on page 2-101
* “Working With Arrays Within Cells” on page 2-104

* “Working With Structures Within Cells” on page 2-104

* “Working With Cell Arrays Within Cells” on page 2-105

* “Plotting the Cell Array” on page 2-106

2-100



Cell Arrays

The examples in this section illustrate how to access the different components
of a cell array. All of the examples use the following six-cell array which
consists of different data types.

First, build the individual components of the example array:

rand('state', 0); numArray = rand(3,5)*20;
chArray = ['Ann Lane'; 'John Doe'; 'Al Smith'];
cellArray = {1 4 39; 058 2; 729 2; 331 4};
logArray = numArray > 10;

stArray(1).name = chArray(1,:);
stArray(2).name = chArray(2,:);
stArray(1).billing = 28.50;
stArray(2).billing = 139.72;
stArray(1).test = numArray(1,:);
stArray(2).test = numArray(2,:);

and then construct the cell array from these components using the { }
operator:

A = {numArray, pi, stArray; chArray, cellArray, logArray};

To see what size and type of array occupies each cell in A, type the variable
name alone:

A

A =
[3x5 double] [ 3.1416] [1x2 struct ]
[3x8 char ] {4x4 cell} [3x5 logical]

Manipulating Cells and the Contents of Cells

When working with cell arrays, you have a choice of selecting entire cells of an
array to work with, or the contents of those cells. The first method is called
cell indexing; the second is content indexing:

¢ (Cell indexing enables you to work with whole cells of an array. You can

access single or multiple cells within the array, but you cannot select
anything less than the complete cell. If you want to manipulate the cells

2-101



2 Data Types

2-102

of an array without regard to the contents of those cells, use cell indexing.
This type of indexing is denoted by the parentheses operator ( ).

Use cell indexing to assign any set of cells to another variable, creating
a new cell array.

cell 1,1 [cell 1.2 [cell 1,3

3 s s cell 1.1 Jcell 1.2
cell 2,1 (cell 2,2 (cell 2.3 ; ’

5 5 0 |E = A(2:3,2:3) > cell[ 31 [ceall 22
cell 3.1 (cell 3.2 |cell 3.3 ’ °

4 7 2

Creating a New Cell Array from an Existing One

* Content indexing gives you access to the contents of a cell. You can work
with individual elements of an array within a cell, but you can only do so
for one cell at a time. This indexing uses the curly brace operator { }.

Displaying Parts of the Cell Array. Using the example cell array A, you
can display information on the first row of cells using cell indexing. (The
MATLAB colon operator functions the same when used with cell arrays as it
does with numeric arrays):

A(1,1)
ans =
[3x5 double] [3.1416] [1x2 struct]

To display the contents of these cells, use content indexing:

A{1,:}
ans =
19.0026 9.7196 9.1294 8.8941 18.4363
4.6228 17.8260 0.3701 12.3086 14.7641
12.1369 15.2419 16.4281 15.8387 3.5253
ans
.1416

I w

ans
1x2 struct array with fields:
name



Cell Arrays

billing
test

In assignments, you can use content indexing to access only a single cell, not a
subset of cells. For example, the statements A{1,:} = valueandB = A{1,:}
are both invalid. However, you can use a subset of cells any place you would
normally use a comma-separated list of variables (for example, as function
inputs or when building an array). See “Replacing Lists of Variables with
Cell Arrays” on page 2-108 for details.

Assigning Cells. For cell indexing, assign the double array cell to X:

X
X =

A(1,1)
[3x5 double]

X is a 1-by-1 cell array:

whos X
Name Size Bytes Class
X 1x1 180 cell

For content indexing, assign the contents of the first cell of row 1 to Y:

Y
Y =
19.0026 9.7196 9.1294 8.8941 18.4363
4.6228 17.8260 0.3701 12.3086 14.7641
12.1369 15.2419 16.4281 15.8387 3.5253

A{1,1}

Y is a 3-by-5 double array

whos Y
Name Size Bytes Class
Y 3x5 120 double

Assigning Multiple Cells. Assigning multiple cells with cell indexing is
similar to assigning a single cell. MATLAB creates a new cell array, each cell
of which contains a cell array.

2-103



2 Data Types

2-104

Create a 1-by-2 array with cells from A(1,2) and A(1,3):

X = A(1,2:3)
X =
[3.1416] [1x2 struct]
whos X
Name Size Bytes Class
X 1x2 808 cell

But assigning the contents of multiple cells returns a comma-separated list.
In this case, you need one output variable on the left side of the assignment
statement for each cell on the right side:

[Y1 Y2] = A{1,2:3}

Y1 =
3.1416
Y2 =
1x2 struct array with fields:
name
billing
test

Working With Arrays Within Cells

Append the parentheses operator to the cell designator A{1,1} to select
specific elements of a cell. This example displays specific row and columns of
the numeric array stored in cell {1,1} of A:

A{1,1}(2,3:end)
ans =
0.3701 12.3086 14.7641

Working With Structures Within Cells

Use a combination of indexing operators to access the components of a
structure array that resides in a cell of a cell array. The syntax for indexing
into field F of a structure array that resides in a cell of array C is

X = C{CellArrayIndex} (StructArrayIndex).F(FieldArrayIndex);



Cell Arrays

For example, row 1, column 3 of cell array A contains a structure array. Use
A{1,3} to select this cell, and .name to display the field name for all elements
of the structure array:

A{1,3}.name
ans =

Ann Lane
ans =

John Doe

To display all fields of a particular element of the structure array, type

A{1,3}(2)
ans =
name: 'John Doe'
billing: 139.7200
test: [4.6228 17.8260 0.3701 12.3086 14.7641]

The test field of this structure array contains a 1-by-5 numeric array. Access
the odd numbered elements of this field in the second element of the structure
array:

A{1,3}(2).test(1:2:end)
ans =
4.6228 0.3701 14.7641

Working With Cell Arrays Within Cells

The syntax for indexing into a cell array that resides in a cell of array C
using content indexing is shown below. To use cell indexing on the inner cell
array, replace the curly brace operator enclosing the InnerCellArrayIndes
with parentheses.

The syntax for content indexing is
X = C{OuterCellArrayIndex}{InnerCellArrayIndex}

In the example cell array created at the start of this section, A{2,2} is a cell
array that resides in a cell of the outer array A. To get the third row of the
inner cell array, type

A{2,2}{3,:}

2-105



2 Data Types

2-106

ans =
7
ans =
2
ans =
9
ans =
2

Note that MATLAB returns a comma-separated list. To have MATLAB return
the list of elements as a vector instead, surround the previous expression
with square brackets:

[A{2,2}{3,:}]
ans =
7 2 9 2

Plotting the Cell Array

For a high-level graphical display of cell architecture, use the cellplot
function. Consider a 2-by-2 cell array containing two text strings, a matrix,
and a vector:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);

c{2,2} = eig(eye(2));

The command cellplot(c) produces this figure:



Cell Arrays

=10l |

File Edit Yiew Insert Tools Deskbop ‘window Help

D& K|ARaMHa (L 0E =50

Deleting Cells

You can delete an entire dimension of cells using a single statement. Like
standard array deletion, use vector subscripting when deleting a row or
column of cells and assign the empty matrix to the dimension:

A(cell_subscripts) = []

When deleting cells, curly braces do not appear in the assignment statement
at all.

Reshaping Cell Arrays

Like other arrays, you can reshape cell arrays using the reshape function.
The number of cells must remain the same after reshaping; you cannot use
reshape to add or remove cells:

A = cell(3, 4);

size(A)
ans =

2-107



2 Data Types

2-108

3 4
B = reshape(A, 6, 2);

size(B)
ans =
6 2

Replacing Lists of Variables with Cell Arrays

Cell arrays can replace comma-separated lists of MATLAB variables in

¢ Function input lists

¢ Function output lists

¢ Display operations

® Array constructions (square brackets and curly braces)

If you use the colon to index multiple cells in conjunction with the curly brace
notation, MATLAB treats the contents of each cell as a separate variable. For
example, assume you have a cell array T where each cell contains a separate

vector. The expression T{1:5} is equivalent to a comma-separated list of
the vectors in the first five cells of T.

Consider the cell array C:

C(1) = {[1 2 3]};
C(2) = {[1 0 1]};
C(3) = {1:10};
C(4) = {[9 8 7]};
C(5) = {3};

To convolve the vectors in C(1) and C(2) using conv,
d = conv(C{1:2})

d:
1 2 4 2 3

Display vectors two, three, and four with



Cell Arrays

C{2:4}
ans =
0o 1
ans =
2 3 4 5 6 7 8 9 10
ans =
9 8 7

Similarly, you can create a new numeric array using the statement

B = [C{1}; C{2}; C{4}]
B =

1 2 3

1 0 1

9 8 7

You can also use content indexing on the left side of an assignment to create a
new cell array where each cell represents a separate output argument:

[D{1:2}] = eig(B)

D:
[3x3 double] [3x3 double]

You can display the actual eigenvectors and eigenvalues using D{1} and D{2}.

Note The varargin and varargout arguments allow you to specify variable
numbers of input and output arguments for MATLAB functions that you
create. Both varargin and varargout are cell arrays, allowing them to hold
various sizes and kinds of MATLAB data. See “Passing Variable Numbers of
Arguments” on page 4-35 in the MATLAB Programming documentation for
details.

Applying Functions and Operators

Use indexing to apply functions and operators to the contents of cells. For
example, use content indexing to call a function with the contents of a single
cell as an argument:

2-109



2 Data Types

A{1,1} = [1 2; 3 4];

A{1,2} = randn(3, 3);
A{1,3} = 1:5;
B = sum(A{1,1})

B =
4 6

To apply a function to several cells of an unnested cell array, use a loop:

for k = 1:1length(A)
M{k} = sum(A{1,k});
end

Organizing Data in Cell Arrays

Cell arrays are useful for organizing data that consists of different sizes or
kinds of data. Cell arrays are better than structures for applications where
® You need to access multiple fields of data with one statement.

* You want to access subsets of the data as comma-separated variable lists.
* You don’t have a fixed set of field names.

® You routinely remove fields from the structure.

As an example of accessing multiple fields with one statement, assume that
your data consists of

® A 3-by-4 array consisting of measurements taken for an experiment.

® A 15-character string containing a technician’s name.

® A 3-by-4-by-5 array containing a record of measurements taken for the

past five experiments.

For many applications, the best data construct for this data is a structure.
However, if you routinely access only the first two fields of information, then a
cell array might be more convenient for indexing purposes.

This example shows how to access the first and second elements of the cell
array TEST:

2-110



Cell Arrays

[newdata,name] = deal(TEST{1:2})

This example shows how to access the first and second elements of the
structure TEST:

newdata = TEST.measure
name = TEST.name

The varargin and varargout arguments are examples of the utility of cell
arrays as substitutes for comma-separated lists. Create a 3-by-3 numeric
array A:

A=1[012;407; 312];

Now apply the normest (2-norm estimate) function to A, and assign the
function output to individual cells of B:

[B{1:2}] = normest(A)
B:
[8.8826] [4]

All of the output values from the function are stored in separate cells of B.
B(1) contains the norm estimate; B(2) contains the iteration count.

Nesting Cell Arrays

A cell can contain another cell array, or even an array of cell arrays. (Cells
that contain noncell data are called leaf cells.) You can use nested curly
braces, the cell function, or direct assignment statements to create nested
cell arrays. You can then access and manipulate individual cells, subarrays of
cells, or cell elements.

Building Nested Arrays with Nested Curly Braces
You can nest pairs of curly braces to create a nested cell array. For example,

clear A
A(1,1) = {magic(5)};

A(1,2) = {{[6528; 730; 67 3] 'Test 1'; [2-41 5+71i] {17 []}}}
A =

2-111



2 Data Types

2-112

[5x5 double] {2x2 cell}

Note that the right side of the assignment is enclosed in two sets of curly
braces. The first set represents cell (1,2) of cell array A. The second
“packages” the 2-by-2 cell array inside the outer cell.

Building Nested Arrays with the cell Function

To nest cell arrays with the cell function, assign the output of cell to an
existing cell:

1 Create an empty 1-by-2 cell array.
A = cell(1,2);

2 Create a 2-by-2 cell array inside A(1,2).
A(1,2) = {cell(2,2)};

3 Fill A, including the nested array, using assignments.
A(1,1) = {magic(5)};
A{1,2}(1,1) = {[5 2 8; 73 0; 6 7 31};
A{1,2}(1,2) {'Test 1'};
A{1,2}(2,1) {[2-41 5+71i]};

A{1,2}(2,2) = {cell(1, 2)}
A{1,2}{2,2} (1) = {17};

Note the use of curly braces until the final level of nested subscripts. This is
required because you need to access cell contents to access cells within cells.

You can also build nested cell arrays with direct assignments using the
statements shown in step 3 above.

Indexing Nested Cell Arrays

To index nested cells, concatenate indexing expressions. The first set of
subscripts accesses the top layer of cells, and subsequent sets of parentheses
access successively deeper layers.



Cell Arrays

For example, array A has three levels of nesting:

cell1,1 cell 1,2

1724 1 B 15
23 5 T 14 18
4 B 13 2o =22
1218 21 3
1118 25 2 8

=1

'Test 1'

=1 L3 by
[=]

m

[2-41 5+?:.]| |E| |

To access the 5-by-5 array in cell (1,1), use A{1,1}.

To access the 3-by-3 array in position (1,1) of cell (1,2), use A{1,2}{1,1}.

To access the 2-by-2 cell array in cell (1,2), use A{1,2}.

e To access the empty cell in position (2,2) of cell (1,2), use
A{1,2}{2,2}{1,2}.

Converting Between Cell and Numeric Arrays

Use for loops to convert between cell and numeric formats. For example,
create a cell array F:

F{1,1} = [1 25 3 4];

F{1,2} = [-1 05 0 1];
F{2,1} = [7 8; 4 1];

F{2,2} = [4i 3+2i; 1-8i 5];

Now use three for loops to copy the contents of F into a numeric array NUM:

for k = 1:4
form = 1:2
for n =1:2
NUM(m,n,k) = F{k}(m,n);
end
end
end

Similarly, you must use for loops to assign each value of a numeric array to
a single cell of a cell array:

2-113



2 Data Types

2-114

G = cell(1,16);

for m =
G{m}
end

1:16
= NUM(m);

Cell Arrays of Structures
Use cell arrays to store groups of structures with different field architectures:

cStr = cell(1,2);

cStr{1}.label = '12/2/94 - 12/5/94"';
cStr{1}.obs = [47 52 55 48; 17 22 35 11];
cStr{2}.xdata = [-0.03 0.41 1.98 2.12 17.11];
cStr{2}.ydata = [-3 5 18 0 9];
cStr{2}.zdata = [0.6 0.8 1 2.2 3.4];
cell 1 cell 2
cStri1) cstriz)
-label 22/ - azfasm xdat — [-0.030.41 1.98 2.12 17.11]
obs 47 52 55 48 ydat — [-35 18 0 9]
1rezasn zdata— [p.50.81 2.2 3.4]

Cell 1 of the

cStr array contains a structure with two fields, one a string and

the other a vector. Cell 2 contains a structure with three vector fields.

When building cell arrays of structures, you must use content indexing.
Similarly, you must use content indexing to obtain the contents of structures

within cells.

The syntax for content indexing is

cellArray{index}.field

For example, to access the label field of the structure in cell 1, use
cStr{i1}.label.



Cell Arrays

Function Summary
This table describes the MATLAB functions for working with cell arrays.

Function Description

cell Create a cell array.

cell2struct Convert a cell array into a structure array.
celldisp Display cell array contents.

cellfun Apply a cell function to a cell array.
cellplot Display a graphical depiction of a cell array.
deal Copy input to separate outputs.

iscell Return true for a cell array.

num2cell Convert a numeric array into a cell array.

2-115



2 Data Types

Function Handles

2-116

A function handle is a MATLAB value and data type that provides a means of
calling a function indirectly. You can pass function handles in calls to other
functions (often called function functions). You can also store function handles
in data structures for later use (for example, as Handle Graphics® callbacks).

Read more about function handles in the section, “Function Handles” on page
4-23.

This section covers the following topics:

® “Constructing and Invoking a Function Handle” on page 2-116
e “Calling a Function Using Its Handle” on page 2-116
¢ “Simple Function Handle Example” on page 2-117

Constructing and Invoking a Function Handle

You construct a handle for a specific function by preceding the function name
with an @ sign. Use only the function name (with no path information) after
the @ sign:

fhandle = @functionname

Handles to Anonymous Functions

Another way to construct a function handle is to create an anonymous
function. For example,

sqr = @(Xx) X."2;

creates an anonymous function that computes the square of its input
argument x. The variable sqr contains a handle to the anonymous function.
See “Anonymous Functions” on page 5-3 for more information.

Calling a Function Using Its Handle

To execute a function associated with a function handle, use the syntax shown
here, treating the function handle fhandle as if it were a function name:



Function Handles

fhandle(arg1l, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the function handle name:

fhandle ()

Simple Function Handle Example

The following example calls a function plotFHandle, passing it a handle
for the MATLAB sin function. plotFHandle then calls the plot function,
passing it some data and the function handle to sin. The plot function calls
the function associated with the handle to compute its y-axis values:

function x = plotFHandle(fhandle, data)
plot(data, fhandle(data))

Call plotFhandle with a handle to the sin function and the value shown
below:

plotFHandle(@sin, -pi:0.01:pi)

2-117



2 Data Types

MATLAB Classes

2-118

All MATLAB data types are implemented as object-oriented classes. You

can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your new
data type, and the M-file functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

® Create methods that override existing MATLAB functionality
¢ Restrict the operations that are allowed on an object of a class

¢ Enforce common behavior among related classes by inheriting from the
same parent class

¢ Significantly increase the reuse of your code

Read more about MATLAB classes in Chapter 9, “Classes and Objects”.



Java Classes

Java Classes

MATLAB provides an interface to the Java programming language that
enables you to create objects from Java classes and call Java methods on
these objects. A Java class is a MATLAB data type. Native and third-party
classes are already available through the MATLAB interface. You can also
create your own Java class definitions and bring them into MATLAB.

The MATLAB Java interface enables you to

o Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking

® Access third-party Java classes

¢ Easily construct Java objects in MATLAB

e (Call Java object methods, using either Java or MATLAB syntax

¢ Pass data between MATLAB variables and Java objects

Read more about Java classes in MATLAB in “Calling Java from MATLAB” in
the MATLAB External Interfaces documentation.

2-119



2 Data Types

2-120



Basic Program Components

This chapter introduces some of the principal building blocks used in writing

MATLAB programs.

Variables (p. 3-3)

Keywords (p. 3-14)

Special Values (p. 3-15)

Operators (p. 3-17)

MATLAB Expressions (p. 3-28)

Regular Expressions (p. 3-31)

Comma-Separated Lists (p. 3-80)

Program Control Statements
(p. 3-88)

Guidelines for creating variables;
global and persistent variables;
variable scope and lifetime

Reserved words that you should
avoid using

Functions that return constant
values, like pi or inf

Arithmetic, relational, and logical
oper