
External Interfaces Reference
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB External Interfaces Reference
© COPYRIGHT 1984 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing
May 1997 Online only Revised for 5.1 (Release 9)
January 1998 Online only Revised for 5.2 (Release 10)
January 1999 Online only Revised for 5.3 (Release 11)
September 2000 Online only Revised for 6.0 (Release 12)
June 2001 Online only Revised for 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)

i

Contents

1
Generic DLL Interface Functions

2
C MAT-File Functions

3
C MX-Functions

4
C MEX-Functions

5
C Engine Functions

6
Fortran MAT-File Functions

7
Fortran MX-Functions

ii Contents

8
Fortran MEX-Functions

9
Fortran Engine Functions

10
Java Interface Functions

11
COM Functions

COM Client Functions . 11-2

COM Server Functions . 11-50

12
DDE Functions

13
Web Services Functions

14
Serial Port I/O Functions

1
Generic DLL Interface
Functions
calllib Call function in external library

libfunctions Return information on functions in external library

libfunctionsview Create window displaying information on functions in
external library

libisloaded Determine if external library is loaded

libpointer Create pointer object for use with external libraries

libstruct Construct a structure as defined in an external library

loadlibrary Load an external library into MATLAB®

unloadlibrary Unload an external library from memory

calllib

1-2

1calllibPurpose Call function in external library

Syntax [x1, ..., xN] = calllib('libname', 'funcname', arg1, ..., argN)

Description [x1, ..., xN] = calllib('libname', 'funcname', arg1, ..., argN)
calls the function funcname in library libname, passing input arguments arg1
through argN. calllib returns output values obtained from function funcname
in x1 through XN.

If you used an alias when initially loading the library, then you must use that
alias for the libname argument.

Examples This example calls functions from the libmx library to test the value stored in
y:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

y = rand(4, 7, 2);

calllib('libmx', 'mxGetNumberOfElements', y)
ans =
 56

calllib('libmx', 'mxGetClassID', y)
ans =
 mxDOUBLE_CLASS

unloadlibrary libmx

See Also loadlibrary, libfunctions, libfunctionsview, libpointer, libstruct,
libisloaded, unloadlibrary

libfunctions

1-3

1libfunctionsPurpose Return information on functions in external library

Syntax m = libfunctions('libname')
m = libfunctions('libname', '-full')
libfunctions libname -full

Description m = libfunctions('libname') returns the names of all functions defined in
the external shared library, libname, that has been loaded into MATLAB with
the loadlibrary function. The return value, m, is a cell array of strings.

If you used an alias when initially loading the library, then you must use that
alias for the libname argument.

m = libfunctions('libname', '-full') returns a full description of the
functions in the library, including function signatures. This includes duplicate
function names with different signatures. The return value, m, is a cell array of
strings.

libfunctions libname -full is the command format for this function.

Examples List the functions in the MATLAB libmx library:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

libfunctions libmx

Methods for class lib.libmx:
mxAddField mxGetFieldNumber mxIsLogicalScalarTrue
mxArrayToString mxGetImagData mxIsNaN
mxCalcSingleSubscript mxGetInf mxIsNumeric
mxCalloc mxGetIr mxIsObject
mxClearScalarDoubleFlag mxGetJc mxIsOpaque
mxCreateCellArray mxGetLogicals mxIsScalarDoubleFlagSet
 . . .
 . . .

libfunctions

1-4

To list the functions along with their signatures, use the -full switch with
libfunctions:

libfunctions libmx -full

Methods for class lib.libmx:
[mxClassID, MATLAB array] mxGetClassID(MATLAB array)
[lib.pointer, MATLAB array] mxGetData(MATLAB array)
[MATLAB array, voidPtr] mxSetData(MATLAB array, voidPtr)
[uint8, MATLAB array] mxIsNumeric(MATLAB array)
[uint8, MATLAB array] mxIsCell(MATLAB array)
[lib.pointer, MATLAB array] mxGetPr(MATLAB array)
[MATLAB array, doublePtr] mxSetPr(MATLAB array, doublePtr)
 .
 .

unloadlibrary libmx

See Also loadlibrary, libfunctionsview, libpointer, libstruct, calllib,
libisloaded, unloadlibrary

libfunctionsview

1-5

1libfunctionsviewPurpose Create window displaying information on functions in external library

Syntax libfunctionsview('libname')
libfunctionsview libname

Description libfunctionsview libname displays the names of the functions in the
external shared library, libname, that has been loaded into MATLAB with the
loadlibrary function.

If you used an alias when initially loading the library, then you must use that
alias for the libname argument.

MATLAB creates a new window in response to the libfunctionsview
command. This window displays all of the functions defined in the specified
library. For each of these functions, the following information is supplied:

• Data type returned by the function

• Name of the function

• Arguments passed to the function

An additional column entitled “Inherited From” is displayed at the far right of
the window. The information in this column is not useful for external libraries.

libfunctionsview libname is the command format for this function.

libfunctionsview

1-6

Examples The following command opens the window shown below for the libmx library:

libfunctionsview libmx

See Also loadlibrary, libfunctions, libpointer, libstruct, calllib, libisloaded,
unloadlibrary

libisloaded

1-7

1libisloadedPurpose Determine if external library is loaded

Syntax libisloaded('libname')
libisloaded libname

Description libisloaded('libname') returns logical 1 (true) if the shared library libname
is loaded and logical 0 (false) otherwise.

libisloaded libname is the command format for this function.

If you used an alias when initially loading the library, then you must use that
alias for the libname argument.

Examples Example 1
Load the shrlibsample library and check to see if the load was successful
before calling one of its functions:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample.dll shrlibsample.h

if libisloaded('shrlibsample')
 x = calllib('shrlibsample', 'addDoubleRef', 1.78, 5.42, 13.3)
end

Since the library is successfully loaded, the call to addDoubleRef works as
expected and returns

x =
 20.5000

unloadlibrary shrlibsample

Example 2
Load the same library, this time giving it an alias. If you use libisloaded with
the library name, shrlibsample, it now returns false. Since you loaded the
library using an alias, all further references to the library must also use that
alias:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample.dll shrlibsample.h alias lib

libisloaded

1-8

libisloaded shrlibsample
ans =
 0

libisloaded lib
ans =
 1

unloadlibrary lib

See Also loadlibrary, libfunctions, libfunctionsview, libpointer, libstruct,
calllib, unloadlibrary

libpointer

1-9

1libpointerPurpose Create pointer object for use with external libraries

Syntax p = libpointer
p = libpointer('type')
p = libpointer('type', value)

Description p = libpointer returns an empty (void) pointer.

p = libpointer('type') returns an empty pointer that contains a reference
to the specified data type. This type can be any MATLAB numeric type, or a
structure or enumerated type defined in an external library that has been
loaded into MATLAB with the loadlibrary function. For valid types, see the
table under “Primitive Types” in the MATLAB documentation.

p = libpointer('type', value) returns a pointer to the specified data type
and initialized to the value supplied.

Examples This example passes an int16 pointer to a function that multiplies each value
in a matrix by its index. The function multiplyShort is defined in the
MATLAB sample shared library, shrlibsample.

Here is the C function:

void multiplyShort(short *x, int size)
{
 int i;
 for (i = 0; i < size; i++)
 *x++ *= i;
}

Load the shrlibsample library. Create the matrix, v, and also a pointer to it,
pv:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

v = [4 6 8; 7 5 3];

pv = libpointer('int16Ptr', v);

libpointer

1-10

get(pv, 'Value')
ans =
 4 6 8
 7 5 3

Now call the C function in the library, passing the pointer to v. If you were to
pass a copy of v, the results would be lost once the function terminates. Passing
a pointer to v enables you to get back the results:

calllib('shrlibsample', 'multiplyShort', pv, 6);
get(pv, 'Value')
ans =
 0 12 32
 7 15 15

unloadlibrary shrlibsample

Note In most cases, you can pass by value and MATLAB will automatically
convert the argument to a pointer for you. See “Creating References”, in the
MATLAB documentation for more information.

See Also loadlibrary, libfunctions, libfunctionsview, libstruct, calllib,
libisloaded, unloadlibrary

libstruct

1-11

1libstructPurpose Construct a structure as defined in an external library

Syntax s = libstruct('structtype')
s = libstruct('structtype', mlstruct)

Description s = libstruct('type') returns a libstruct object s that is a MATLAB object
designed to resemble a C structure of type structtype. The structure type,
structtype, is defined in an external library that must be loaded into
MATLAB using the loadlibrary function. All fields of s are set to zero.

s = libstruct('structtype', mlstruct) returns a libstruct object s with its
fields initialized from MATLAB structure, mlstruct.

The libstruct function essentially creates a C-like structure that you can pass
to functions in an external library. You can handle this structure in MATLAB
as you would a true MATLAB structure.

Examples This example performs a simple addition of the fields of a structure. The
function addStructFields is defined in the MATLAB sample shared library,
shrlibsample.

Here is the C function:

double addStructFields(struct c_struct st)
{
 double t = st.p1 + st.p2 + st.p3;
 return t;
}

Start by loading the shrlibsample library and creating MATLAB structure,
sm:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample.dll shrlibsample.h

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

libstruct

1-12

Construct a libstruct object sc that uses the c_struct template:

sc = libstruct('c_struct', sm);

get(sc)
 p1: 476
 p2: -299
 p3: 1000

Now call the function, passing the libstruct object, sc:

calllib('shrlibsample', 'addStructFields', sc)
ans =
 1177

unloadlibrary shrlibsample

Note In most cases, you can pass a MATLAB structure and MATLAB will
automatically convert the argument to a C structure. See “Structures”, in the
MATLAB documentation for more information.

See Also loadlibrary, libfunctions, libfunctionsview, libpointer, calllib,
libisloaded, unloadlibrary

loadlibrary

1-13

1loadlibraryPurpose Load an external library into MATLAB

Syntax loadlibrary('shrlib', 'hfile')
loadlibrary('shrlib', @protofile)
loadlibrary('shrlib', ..., 'options')
loadlibrary shrlib hfile options

Description loadlibrary('shrlib', 'hfile') loads the functions defined in header file
hfile and found in shared library shrlib into MATLAB. On Windows systems,
shrlib refers to the name of a dynamic link library (.dll) file. On UNIX
systems, it refers to the name of a shared object (.so) file.

loadlibrary('shrlib', @protofile) uses the prototype M-file protofile in
place of a header file in loading the library shrlib. The string @protofile
specifies a function handle to the prototype M-file. (See the description of
“Prototype M-Files” below).

If you do not include a file extension with the shrlib argument, loadlibrary
uses .dll or .so, depending on the platform you are using. If you do not include
a file extension with the second argument, and this argument is not a function
handle, loadlibrary uses .h for the extension.

loadlibrary

1-14

loadlibrary('shrlib', ..., 'options') loads the library shrlib with one
or more of the following options.

Only the alias option is available when loading using a prototype M-file.

If you have more than one library file of the same name, load the first using the
library filename, and load the additional libraries using the alias option.

loadlibrary shrlib hfile options is the command format for this function.

Option Description

addheader hfileN Loads the functions defined in the additional header
file, hfileN. Specify the string hfileN as a filename
without a file extension. MATLAB does not verify
the existence of the header files and ignores any that
are not needed.

You can specify as many additional header files as
you need using the syntax

loadlibrary shrlib hfile ...
 addheader hfile1 ...
 addheader hfile2 ... % and so on

alias name Associates the specified alias name with the library.
All subsequent calls to MATLAB functions that
reference this library must use this alias until the
library is unloaded.

includepath path Specifies an additional path in which to look for
included header files.

mfilename mfile Generates a prototype M-file mfile in the current
directory. You can use this file in place of a header
file when loading the library. (See the description of
“Prototype M-Files” below).

loadlibrary

1-15

Remarks Prototype M-Files
When you use the mfilename option with loadlibrary, MATLAB generates an
M-file called a prototype file. This file can then be used on subsequent calls to
loadlibrary in place of a header file.

Like a header file, the prototype file supplies MATLAB with function prototype
information for the library. You can make changes to the prototypes by editing
this file and reloading the library.

Here are some reasons for using a prototype file, along with the changes you
would need to make to the file:

• You want to make temporary changes to signatures of the library functions.

Edit the prototype file, changing the fcns.LHS or fcns.RHS field for that
function. This changes the types of arguments on the left hand side or right
hand side, respectively.

• You want to rename some of the library functions.

Edit the prototype file, defining the fcns.alias field for that function.

• You expect to use only a small percentage of the functions in the library you
are loading.

Edit the prototype file, commenting out the unused functions. This reduces
the amount of memory required for the library.

• You need to specify a number of include files when loading a particular
library.

Specify the full list of include files (plus the mfilename option) in the first call
to loadlibrary. This puts all the information from the include files into the
prototype file. After that, specify just the prototype file.

Examples Example 1
Use loadlibrary to load the MATLAB sample shared library, shrlibsample:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

loadlibrary

1-16

Example 2
Load sample library shrlibsample, giving it an alias name of lib. Once you
have set an alias, you need to use this name in all further interactions with the
library for this session:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h alias lib

libfunctionsview lib

str = 'This was a Mixed Case string';
calllib('lib', 'stringToUpper', str)
ans =
 THIS WAS A MIXED CASE STRING

unloadlibrary lib

Example 3
Load the library, specifying an additional path in which to search for included
header files:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary('shrlibsample','shrlibsample.h','includepath', ...
 fullfile(matlabroot , 'extern', 'include'));

Example 4
Load the libmx library and generate a prototype M-file containing the
prototypes defined in header file matrix.h:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx.dll', hfile, 'mfilename', 'mxproto')

dir mxproto.m
 mxproto.m

Edit the generated file mxproto.m and locate the function
'mxGetNumberOfDimensions'. Give it an alias of 'mxGetDims' by adding this
line to the file:

fcns.alias{40}='mxGetDims';

loadlibrary

1-17

Unload the library and then reload it using the prototype M-file.

unloadlibrary libmx

loadlibrary('libmx.dll', @mxproto)

Now call mxGetNumberOfDimensions using the alias function name:

y = rand(4, 7, 2);

calllib('libmx', 'mxGetDims', y)
ans =
 3

unloadlibrary libmx

See Also libisloaded, unloadlibrary, libfunctions, libfunctionsview, libpointer,
libstruct, calllib

unloadlibrary

1-18

1unloadlibraryPurpose Unload an external library from memory

Syntax unloadlibrary('libname')
unloadlibrary libname

Description unloadlibrary('libname') unloads the functions defined in shared library
shrlib from memory. If you need to use these functions again, you must first
load them back into memory using loadlibrary.

unloadlibrary libname is the command format for this function.

If you used an alias when initially loading the library, then you must use that
alias for the libname argument.

Examples Load the MATLAB sample shared library, shrlibsample. Call one of its
functions, and then unload the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

s.p1 = 476; s.p2 = -299; s.p3 = 1000;
calllib('shrlibsample', 'addStructFields', s)
ans =
 1177

unloadlibrary shrlibsample

See Also loadlibrary, libisloaded, libfunctions, libfunctionsview, libpointer,
libstruct, calllib

2
C MAT-File Functions
matClose Close MAT-file

matDeleteArray (Obsolete) Use matDeleteVariable

matDeleteMatrix (Obsolete) Use matDeleteVariable

matDeleteVariable Delete named mxArray from MAT-file

matGetArray (Obsolete) Use matGetVariable

matGetArrayHeader (Obsolete) Use matGetVariableInfo

matGetDir Get directory of mxArrays in MAT-file

matGetFp Get file pointer to MAT-file

matGetFull (Obsolete) Use matGetVariable followed by the appropriate mxGet
routines

matGetMatrix (Obsolete) Use matGetVariable

matGetNextArray (Obsolete) Use matGetNextVariable

matGetNextArrayHeader (Obsolete) Use matGetNextArrayHeaderFromMATfile

matGetNextMatrix (Obsolete) Use matGetNextVariable

matGetNextVariable Read next mxArray from MAT-file

matGetNextVariableInfo Load array header information only

matGetString (Obsolete) Use matGetVariable and mxGetString

matGetVariable Read mxArray from MAT-file

matGetVariableInfo Load header array information only

matOpen Open MAT-file

matPutArray (Obsolete) Use matPutVariable

matPutArrayAsGlobal (Obsolete) Use matPutVariableAsGlobal

matPutFull (Obsolete) Use mxCreateDoubleMatrix and matPutVariable

matPutMatrix (Obsolete) Use matPutVariable

matPutString (Obsolete) Use mxCreateString and matPutVariable

2-2

matPutVariable Write mxArrays into MAT-files

matPutVariableAsGlobal Put mxArrays into MAT-files

matClose

2-3

2matClosePurpose Closes a MAT-file

C Syntax #include "mat.h"
int matClose(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information.

Description matClose closes the MAT-file associated with mfp. It returns EOF for a write
error, and zero if successful.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matDeleteArray (Obsolete)

2-4

2matDeleteArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matDeleteVariable(mfp, name)

instead of

matDeleteArray(mfp, name)

See Also matDeleteVariable

matDeleteMatrix (Obsolete)

2-5

2matDeleteMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matDeleteVariable(mfp, name)

instead of

matDeleteMatrix(mfp, name)

See Also matDeleteVariable

matDeleteVariable

2-6

2matDeleteVariablePurpose Delete named mxArray from MAT-file

C Syntax #include "mat.h"
int matDeleteVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

Description matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. matDeleteVariable returns 0 if successful, and nonzero otherwise.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetArray (Obsolete)

2-7

2matGetArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetVariable(mfp, name);

instead of

mp = matGetArray(mfp, name);

See Also matGetVariable

matGetArrayHeader (Obsolete)

2-8

2matGetArrayHeader (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetVariableInfo(mfp, name);

instead of

mp = matGetArrayHeader(mfp, name);

See Also matGetVariableInfo

matGetDir

2-9

2matGetDirPurpose Get directory of mxArrays in a MAT-file

C Syntax #include "mat.h"
char **matGetDir(MATFile *mfp, int *num);

Arguments mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

Description This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
NULL-terminated names of the mxArrays in the MAT-file pointed to by mfp. The
length of the internal array (number of mxArrays in the MAT-file) is placed into
num. The internal array is allocated using a single mxCalloc and must be freed
using mxFree when you are finished with it.

matGetDir returns NULL and sets num to a negative number if it fails. If num is
zero, mfp contains no arrays.

MATLAB variable names can be up to length mxMAXNAM, where mxMAXNAM is
defined in the file matrix.h.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFp

2-10

2matGetFpPurpose Get file pointer to a MAT-file

C Syntax #include "mat.h"
FILE *matGetFp(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information.

Description matGetFp returns the C file handle to the MAT-file with handle mfp. This can
be useful for using standard C library routines like ferror() and feof() to
investigate error situations.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFull (Obsolete)

2-11

2matGetFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matGetVariable followed by the appropriate mxGet routines

instead of

matGetFull

For example,

int matGetFull(MATFile *fp, char *name, int *m, int *n,
double **pr, double **pi)

{
 mxArray *parr;
 /* Get the matrix. */
 parr = matGetVariable(fp, name);

 if (parr == NULL)
 return(1);

 if (!mxIsDouble(parr)) {
mxDestroyArray(parr);
return(1);

 }
 /* Set up return args. */

 *m = mxGetM(parr);
 *n = mxGetN(parr);
 *pr = mxGetPr(parr);
 *pi = mxGetPi(parr);
 /* Zero out pr & pi in array struct so the mxArray can be

destroyed. */
 mxSetPr(parr, (void *)0);
 mxSetPi(parr, (void *)0);

 mxDestroyArray(parr);

 return(0);
}

matGetFull (Obsolete)

2-12

See Also matGetVariable

matGetMatrix (Obsolete)

2-13

2matGetMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mp = matGetVariable(mfp, name)

instead of

mp = matGetMatrix(mfp, name);

See Also matGetVariable

matGetNextArray (Obsolete)

2-14

2matGetNextArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mp = matGetNextVariable(mfp, name);

instead of

mp = matGetNextArray(mfp);

See Also matGetNextVariable

matGetNextArrayHeader (Obsolete)

2-15

2matGetNextArrayHeader (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matGetNextVariableInfo

instead of

matGetNextArrayHeader

See Also matGetNextVariableInfo

matGetNextMatrix (Obsolete)

2-16

2matGetNextMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matGetNextVariable

instead of

matGetNextMatrix

See Also matGetNextVariable

matGetNextVariable

2-17

2matGetNextVariablePurpose Read next mxArray from MAT-file

C Syntax #include "mat.h"
mxArray *matGetNextVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns NULL when the end-of-file is reached or if there is
an error condition. Use feof and ferror from the Standard C Library to
determine status.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextVariableInfo

2-18

2matGetNextVariableInfoPurpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetNextVariableInfo(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to
MATLAB or saved to MAT-files.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

See Also matGetNextVariable, matGetVariableInfo

matGetString (Obsolete)

2-19

2matGetString (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

#include "mat.h"
#include "matrix.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);
int mxGetString(const mxArray *array_ptr, char *buf, int buflen)

instead of

matGetString

See Also matGetVariable, mxGetString

matGetVariable

2-20

2matGetVariablePurpose Read mxArrays from MAT-files

C Syntax #include "mat.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

Description This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or NULL if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetVariableInfo

2-21

2matGetVariableInfoPurpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray.

Description matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells and
structures through their leaf elements, but does not include pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonNULL when loaded with matGetVariable, then
matGetVariableInfo sets them to -1 instead. These headers are for
informational use only and should never be passed back to MATLAB or saved
to MAT-files.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matOpen

2-22

2matOpen Purpose Opens a MAT-file

C Syntax #include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

Arguments filename
Name of file to open.

mode
File opening mode. Valid values for mode are:

Description This routine allows you to open MAT-files for reading and writing.

matOpen opens the named file and returns a file handle, or NULL if the open
fails.

See “Writing Character Data” in the External Interfaces documentation for
more information on how MATLAB uses character data encoding.

r Open file for reading only; determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Open file for update, both reading and writing, but does not
create the file if the file does not exist (equivalent to the r+
mode of fopen); determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Open file for writing only; deletes previous contents, if any.

w4 Create a Level 4 MAT-file, compatible with MATLAB Versions
4 and earlier.

wL Open file for writing character data using the default character
set for your system. The resulting MAT-file can be read with
MATLAB version 6 or 6.5.
If you do not use the wL mode switch, MATLAB writes
character data to the MAT-file using Unicode encoding by
default.

wz Open file for writing compressed data.

matOpen

2-23

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutArray (Obsolete)

2-24

2matPutArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matPutVariable(mfp, name, mp);

instead of

mxSetName(mp, name);
matPutArray(mfp, mp);

See Also matPutVariable

matPutArrayAsGlobal (Obsolete)

2-25

2matPutArrayAsGlobal (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matPutVariableAsGlobal

instead of

matPutArrayAsGlobal

See Also matPutVariableAsGlobal

matPutFull (Obsolete)

2-26

2matPutFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mxCreateDoubleMatrix and matPutVariable

instead of

matPutFull

For example,

int matPutFull(MATFile*ph, char *name, int m, int n, double *pr,
double *pi)

{
int retval;
mxArray *parr;

/* Get empty array struct to place inputs into. */
parr = mxCreateDoubleMatrix(0, 0, 0);
if (parr == NULL)

return(1);

/* Place inputs into array struct. */
mxSetM(parr, m);
mxSetN(parr, n);
mxSetPr(parr, pr);
mxSetPi(parr, pi);

/* Use put to place array on file. */
retval = matPutVariable(ph, name, parr);

/* Zero out pr & pi in array struct so the mxArray can be
destroyed. */

mxSetPr(parr, (void *)0);
mxSetPi(parr, (void *)0);

mxDestroyArray(parr);

return(retval);
}

matPutFull (Obsolete)

2-27

See Also mxCreateDoubleMatrix, matPutVariable

matPutMatrix (Obsolete)

2-28

2matPutMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

matPutVariable

instead of

matPutMatrix

See Also matPutVariable

matPutString (Obsolete)

2-29

2matPutString (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

#include "matrix.h"
#include "mat.h"
mp = mxCreateString(str);
matPutVariable(mfp, name, mp);
mxDestroyArray(mp);

instead of

matPutString(mfp, name, str);

See Also matPutVariable

matPutVariable

2-30

2matPutVariablePurpose Write mxArrays into MAT-files

C Syntax #include "mat.h"
int matPutVariable(MATFile *mfp, const char *name, const mxArray

*mp);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray mp to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs. Use
feof and ferror from the Standard C Library along with matGetFp to
determine status.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutVariableAsGlobal

2-31

2matPutVariableAsGlobalPurpose Put mxArrays into MAT-files as originating from the global workspace

C Syntax #include "mat.h"
int matPutVariableAsGlobal(MATFile *mfp, const char *name, const

mxArray *mp);

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray mp to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.
Use feof and ferror from the Standard C Library with matGetFp to determine
status.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutVariableAsGlobal

2-32

3
C MX-Functions
mxAddField Add field to structure array

mxArrayToString Convert arrays to strings

mxAssert Check assertion value

mxAssertS Check assertion value; doesn’t print assertion’s text

mxCalcSingleSubscript Return offset from first element to desired element

mxCalloc Allocate dynamic memory

mxChar String mxArrays data type

mxClassID Integer value that identifies mxArray's class

mxClearLogical (Obsolete) Clear logical flag

mxComplexity Specifies if mxArray has imaginary components

mxCreateCellArray Create unpopulated N-dimensional cell mxArray

mxCreateCellMatrix Create unpopulated two-dimensional cell mxArray

mxCreateCharArray Create unpopulated N-dimensional string mxArray

mxCreateCharMatrixFromStrings Create populated two-dimensional string mxArray

mxCreateDoubleMatrix Create unpopulated two-dimensional, double-precision,
floating-point mxArray

mxCreateDoubleScalar Create scalar, double-precision array initialized to the
specified value

mxCreateLogicalArray Create N-dimensional, logical mxArray initialized to false

mxCreateLogicalMatrix Create two-dimensional, logical mxArray initialized to false

mxCreateLogicalScalar Create scalar, logical mxArray initialized to false

mxCreateFull (Obsolete) Use mxCreateDoubleMatrix

mxCreateNumericArray Create unpopulated N-dimensional numeric mxArray

mxCreateNumericMatrix Create numeric matrix and initialize data elements to 0

mxCreateScalarDouble Create scalar, double-precision array initialized to specified
value

3-2

mxCreateSparse Create two-dimensional unpopulated sparse mxArray

mxCreateSparseLogicalMatrix Create unpopulated, two-dimensional, sparse, logical mxArray

mxCreateString Create 1-by-n string mxArray initialized to specified string

mxCreateStructArray Create unpopulated N-dimensional structure mxArray

mxCreateStructMatrix Create unpopulated two-dimensional structure mxArray

mxDestroyArray Free dynamic memory allocated by an mxCreate routine

mxDuplicateArray Make deep copy of array

mxFree Free dynamic memory allocated by mxCalloc

mxFreeMatrix (Obsolete) Use mxDestroyArray

mxGetCell Get cell’s contents

mxGetChars Get pointer to character array data

mxGetClassID Get mxArray's class

mxGetClassName Get mxArray's class

mxGetData Get pointer to data

mxGetDimensions Get pointer to dimensions array

mxGetElementSize Get number of bytes required to store each data element

mxGetEps Get value of eps

mxGetField Get field value, given field name and index in structure array

mxGetFieldByNumber Get field value, given field number and index in structure
array

mxGetFieldNameByNumber Get field name, given field number in structure array

mxGetFieldNumber Get field number, given field name in structure array

mxGetImagData Get pointer to imaginary data of mxArray

mxGetInf Get value of infinity

mxGetIr Get ir array of sparse matrix

mxGetJc Get jc array of sparse matrix

mxGetLogicals Get pointer to logical array data

3-3

mxGetM Get number of rows

mxGetN Get number of columns or number of elements

mxGetName (Obsolete) Get name of specified mxArray

mxGetNaN Get the value of NaN

mxGetNumberOfDimensions Get number of dimensions

mxGetNumberOfElements Get number of elements in array

mxGetNumberOfFields Get number of fields in structure mxArray

mxGetNzmax Get number of elements in ir, pr, and pi arrays

mxGetPi Get mxArray’s imaginary data elements

mxGetPr Get mxArray’s real data elements

mxGetScalar Get real component of mxArray's first data element

mxGetString Copy string mxArray's data into C-style string

mxIsCell True if cell mxArray

mxIsChar True if string mxArray

mxIsClass True if mxArray is member of specified class

mxIsComplex True if data is complex

mxIsDouble True if mxArray represents its data as double-precision,
floating-point numbers

mxIsEmpty True if mxArray is empty

mxIsFinite True if value is finite

mxIsFromGlobalWS True if mxArray was copied from the MATLAB global
workspace

mxIsFull (Obsolete) Use mxIsSparse

mxIsInf True if value is infinite

mxIsInt8 True if mxArray represents its data as signed 8-bit integers

mxIsInt16 True if mxArray represents its data as signed 16-bit integers

mxIsInt32 True if mxArray represents its data as signed 32-bit integers

3-4

mxIsInt64 True if mxArray represents its data as signed 64-bit integers

mxIsLogical True if mxArray is Boolean

mxIsLogicalScalar True if scalar mxArray of class mxLogical

mxIsLogicalScalarTrue True if scalar mxArray of class mxLogical is true

mxIsNaN True if value is NaN

mxIsNumeric True if mxArray is numeric

mxIsSingle True if mxArray represents its data as single-precision,
floating-point numbers

mxIsSparse True if sparse mxArray

mxIsString (Obsolete) Use mxIsChar

mxIsStruct True if structure mxArray

mxIsUint8 True if mxArray represents its data as unsigned 8-bit integers

mxIsUint16 True if mxArray represents its data as unsigned 16-bit
integers

mxIsUint32 True if mxArray represents its data as unsigned 32-bit
integers

mxIsUint64 True if mxArray represents its data as unsigned 64-bit
integers

mxMalloc Allocate dynamic memory using the MATLAB memory
manager

mxRealloc Reallocate memory

mxRemoveField Remove field from structure array

mxSetAllocFcns Register memory allocation/deallocation functions in
stand-alone engine or MAT application

mxSetCell Set value of one cell

mxSetClassName Convert MATLAB structure array to MATLAB object array

mxSetData Set pointer to data

mxSetDimensions Modify number/size of dimensions

3-5

mxSetField Set field value of structure array, given field name/index

mxSetFieldByNumber Set field value in structure array, given field number/index

mxSetImagData Set imaginary data pointer for mxArray

mxSetIr Set ir array of sparse mxArray

mxSetJc Set jc array of sparse mxArray

mxSetLogical (Obsolete) Set logical flag

mxSetM Set number of rows

mxSetN Set number of columns

mxSetName (Obsolete) Set name of mxArray

mxSetNzmax Set storage space for nonzero elements

mxSetPi Set new imaginary data for mxArray

mxSetPr Set new real data for mxArray

mxAddField

3-6

3mxAddFieldPurpose Add a field to a structure array

C Syntax #include "matrix.h"
extern int mxAddField(mxArray array_ptr, const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

field_name
The name of the field you want to add.

Returns Field number on success or -1 if inputs are invalid or an out of memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the
individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

mxArrayToString

3-7

3mxArrayToStringPurpose Convert arrays to strings

C Syntax #include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

Returns A C-style string. Returns NULL on out of memory.

Description Call mxArrayToString to copy the character data of a string mxArray into a
C-style string. The C-style string is always terminated with a NULL character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array. This function is similar to mxGetString, except that:

• It does not require the length of the string as an input.

• It supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char pointer
points to. Consequently, you should typically free the string (using mxFree)
immediately after you have finished using it.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString,
mxGetString

mxAssert

3-8

3mxAssertPurpose Check assertion value for debugging purposes

C Syntax #include "matrix.h"
void mxAssert(int expr, char *error_message);

Arguments expr
Value of assertion.

error_message
Description of why assertion failed.

Description Similar to the ANSI C assert() macro, mxAssert checks the value of an
assertion, and continues execution only if the assertion holds. If expr evaluates
to logical 1 (true) , mxAssert does nothing. If expr evaluates to logical 0
(false), mxAssert prints an error to the MATLAB command window consisting
of the failed assertion’s expression, the filename and line number where the
failed assertion occurred, and the error_message string. The error_message
string allows you to specify a better description of why the assertion failed. Use
an empty string if you don’t want a description to follow the failed assertion
message.

After a failed assertion, control returns to the MATLAB command line.

Note that the MEX script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use them to
keep yourself from misusing your own code and to prevent logical errors from
propagating before they are caught; do not use assertions to prevent users of
your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can use
these checks during development and then remove them when the code works
properly, letting you use them for troubleshooting during development without
slowing down the final product.

mxAssertS

3-9

3mxAssertSPurpose Check assertion value for debugging purposes; doesn’t print assertion’s text

C Syntax #include "matrix.h"
void mxAssertS(int expr, char *error_message);

Arguments expr
Value of assertion.

error_message
Description of why assertion failed.

Description Similar to mxAssert, except mxAssertS does not print the text of the failed
assertion. mxAssertS checks the value of an assertion, and continues execution
only if the assertion holds. If expr evaluates to logical 1 (true), mxAssertS does
nothing. If expr evaluates to logical 0 (false), mxAssertS prints an error to the
MATLAB command window consisting of the filename and line number where
the assertion failed and the error_message string. The error_message string
allows you to specify a better description of why the assertion failed. Use an
empty string if you don’t want a description to follow the failed assertion
message.

After a failed assertion, control returns to the MATLAB command line.

Note that the mex script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

mxCalcSingleSubscript

3-10

3mxCalcSingleSubscriptPurpose Return the offset (index) from the first element to the desired element

C Syntax #include <matrix.h>
int mxCalcSingleSubscript(const mxArray *array_ptr, int nsubs,
 int *subs);

Arguments array_ptr
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that array_ptr points to.

subs
An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs[0] specifies the row subscript, and the value in
subs[1] specifies the column subscript. Note that mxCalcSingleSubscript
views 0 as the first element of an mxArray, but MATLAB sees 1 as the first
element of an mxArray. For example, in MATLAB, (1,1) denotes the starting
element of a two-dimensional mxArray; however, to express the starting
element of a two-dimensional mxArray in subs, you must set subs[0] to 0 and
subs[1] to 0.

Returns The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then
mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (0,0) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

mxCalcSingleSubscript

3-11

MATLAB uses a column-major numbering scheme to represent data elements
internally. That means that MATLAB internally stores data elements from the
first column first, then data elements from the second column second, and so
on through the last column. For example, suppose you create a 4-by-2 variable.
It is helpful to visualize the data as shown below.

Although in fact, MATLAB internally represents the data as the following:

If an mxArray is N-dimensional, then MATLAB represents the data in N-major
order. For example, consider a three-dimensional array having dimensions
4-by-2-by-3. Although you can visualize the data as

A E

B F

C G

D H

A B C D E F G H

Index
0

Index
1

Index
2

Index
3

Index
4

Index
5

Index
6

Index
7

mxCalcSingleSubscript

3-12

MATLAB internally represents the data for this three-dimensional array in
the order shown below:

Avoid using mxCalcSingleSubscript to traverse the elements of an array. It is
more efficient to do this by finding the array’s starting address and then using
pointer auto-incrementing to access successive elements. For example, to find
the starting address of a numerical array, call mxGetPr or mxGetPi.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Page 1

Page 2

Page 3

mxCalloc

3-13

3mxCallocPurpose Allocate dynamic memory using the MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxCalloc(size_t n, size_t size);

Arguments n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element. (The C sizeof operator calculates the number of
bytes per element.)

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxCalloc rather than calloc to
allocate memory. Note that mxCalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to 0.

• Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxCalloc defaults to calling the ANSI C
calloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with

mxCalloc

3-14

mxSetAllocFcns. Then, whenever mxCalloc is called, mxCalloc calls your
memory allocation routine instead of calloc.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call mexMakeMemoryPersistent after calling mxCalloc.
If you write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree.
mxFree deallocates the memory.

Examples See explore.c in the mex subdirectory of the examples directory, and
phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcalcsinglesubscript.c, mxsetallocfcns.c,
and mxsetdimensions.c in the mx subdirectory of the examples directory.

See Also mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxMalloc, mxSetAllocFcns

mxChar

3-15

3mxCharPurpose Data type that string mxArrays use to store their data elements

C Syntax typedef Uint16 mxChar;

Description All string mxArrays store their data elements as mxChar rather than as char.
The MATLAB API defines an mxChar as a 16-bit unsigned integer.

Examples See mxmalloc.c in the mx subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory and mxcreatecharmatrixfromstr.c in the mx subdirectory
of the examples directory.

See Also mxCreateCharArray

mxClassID

3-16

3mxClassIDPurpose Integer value that identifies an mxArray's class (category)

C Syntax typedef enum {
 mxUNKNOWN_CLASS = 0,
 mxCELL_CLASS,
 mxSTRUCT_CLASS,
 mxLOGICAL_CLASS,
 mxCHAR_CLASS,
 <unused>,
 mxDOUBLE_CLASS,
 mxSINGLE_CLASS,
 mxINT8_CLASS,
 mxUINT8_CLASS,
 mxINT16_CLASS,
 mxUINT16_CLASS,
 mxINT32_CLASS,
 mxUINT32_CLASS,
 mxINT64_CLASS,
 mxUINT64_CLASS,
 mxFUNCTION_CLASS
} mxClassID;

Constants mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores Boolean elements
logical 1 (true) and logical 0 (false) .

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

mxClassID

3-17

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed 64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Description Various mx calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateNumericArray

mxClearLogical (Obsolete)

3-18

3mxClearLogical (Obsolete)Purpose Clear the logical flag

Note As of MATLAB version 6.5, mxClearLogical is obsolete. Support for
mxClearLogical may be removed in a future version.

C Syntax #include "matrix.h"
void mxClearLogical(mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray having a numeric class.

Description Use mxClearLogical to turn off the mxArray’s logical flag. This flag, when
cleared, tells MATLAB to treat the mxArray’s data as numeric data rather than
as Boolean data. If the logical flag is on, then MATLAB treats a 0 value as
meaning false and a nonzero value as meaning true.

Call mxCreateLogicalScalar, mxCreateLogicalMatrix,
mxCreateNumericArray, or mxCreateSparseLogicalMatrix to turn on the
mxArray’s logical flag. For additional information on the use of logical variables
in MATLAB, type help logical at the MATLAB prompt.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxIsLogical

mxComplexity

3-19

3mxComplexity Purpose Flag that specifies whether an mxArray has imaginary components

C Syntax typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

Constants mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Description Various mx calls require an mxComplexity argument. You can set an mxComplex
argument to either mxREAL or mxCOMPLEX.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

mxCreateCellArray

3-20

3mxCreateCellArrayPurpose Create unpopulated N-dimensional cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellArray(int ndim, const int *dims);

Arguments ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims[0] to 5 and
dims[1] to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to NULL. To put data into a cell, call mxSetCell.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

mxCreateCellMatrix

3-21

3mxCreateCellMatrixPurpose Create unpopulated two-dimensional cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellMatrix(int m, int n);

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to NULL. To put data into cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

Examples See mxcreatecellmatrix.c in the mx subdirectory of the examples directory.

See Also mxCreateCellArray

mxCreateCharArray

3-22

3mxCreateCharArrayPurpose Create unpopulated N-dimensional string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharArray(int ndim, const int *dims);

Arguments ndim
The desired number of dimensions in the string mxArray. You must specify a
positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. The dims array must have at least ndim
elements.

Returns A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Description Call mxCreateCharArray to create an unpopulated N-dimensional string
mxArray.

Examples See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

See Also mxCreateCharMatrixFromStrings, mxCreateString

mxCreateCharMatrixFromStrings

3-23

3mxCreateCharMatrixFromStringsPurpose Create populated two-dimensional string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(int m, const char **str);

Arguments m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the number of strings in str.

str
A pointer to a list of strings. The str array must contain at least m strings.

Returns A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates and
control returns to the MATLAB prompt. Insufficient free heap space is the
primary reason for mxCreateCharArray to be unsuccessful. Another possible
reason for failure is that str contains fewer than m strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to a string from str. The created
mxArray has dimensions m-by-max, where max is the length of the longest
string in str.

Note that string mxArrays represent their data elements as mxChar rather than
as char.

Examples See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

See Also mxCreateCharArray, mxCreateString, mxGetString

mxCreateDoubleMatrix

3-24

3mxCreateDoubleMatrixPurpose Create unpopulated two-dimensional, double-precision, floating-point mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleMatrix(int m, int n,

mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateDoubleMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array to 0. If you set
ComplexFlag to mxCOMPLEX, mxCreateDoubleMatrix also initializes each
element in the pi array to 0.

If you set ComplexFlag to mxREAL, mxCreateDoubleMatrix allocates enough
memory to hold m-by-n real elements. If you set ComplexFlag to mxCOMPLEX,
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real elements
and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

Examples See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

See Also mxCreateNumericArray, mxComplexity

mxCreateDoubleScalar

3-25

3mxCreateDoubleScalarPurpose Create scalar, double-precision array initialized to the specified value

Note This function replaces mxCreateScalarDouble in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleScalar(double value);

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateDoubleScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateDoubleScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateDoubleScalar is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleScalar returns NULL.

Description Call mxCreateDoubleScalar to create a scalar double mxArray.
mxCreateDoubleScalar is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateFull (Obsolete)

3-26

3mxCreateFull (Obsolete)

This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxCreateDoubleMatrix

instead of

mxCreateFull

See Also mxCreateDoubleMatrix

mxCreateLogicalArray

3-27

3mxCreateLogicalArrayPurpose Create N-dimensional logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalArray(int ndim, const int *dims);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateLogicalArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. There should be ndim elements in the dims
array.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Call mxCreateLogicalArray to create an N-dimensional mxArray of logical 1
(true) and logical 0 (false) elements. After creating the mxArray,
mxCreateLogicalArray initializes all its elements to logical 0.
mxCreateLogicalArray differs from mxCreateLogicalMatrix in that the latter
can create two-dimensional arrays only.

mxCreateLogicalArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

See Also mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

mxCreateLogicalMatrix

3-28

3mxCreateLogicalMatrixPurpose Create two-dimensional, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalMatrix(int m, int n);

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateLogicalMatrix to create an m-by-n mxArray of logical 1 (true) and
logical 0 (false) elements. mxCreateLogicalMatrix initializes each element in
the array to logical 0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray.

See Also mxCreateLogicalArray, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

mxCreateLogicalScalar

3-29

3mxCreateLogicalScalarPurpose Create scalar, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalScalar(mxLogical value);

Arguments value
The desired logical value, logical 1 (true) or logical 0 (false), to which you want
to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateLogicalScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateLogicalScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateLogicalScalar is unsuccessful in a stand-alone
(nonMEX-file) application, the function returns NULL.

Description Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that can be used in place of
the following code:

pa = mxCreateLogicalMatrix(1, 1);
*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxIsLogicalScalar, mxIsLogicalScalarTrue, mxCreateLogicalMatrix,
mxCreateLogicalArray, mxGetLogicals

mxCreateNumericArray

3-30

3mxCreateNumericArrayPurpose Create unpopulated N-dimensional numeric mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateNumericArray(int ndim, const int *dims,

mxClassID class, mxComplexity ComplexFlag);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

class
The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any class
except for mxNUMERIC_CLASS, mxSTRUCT_CLASS, or mxCELL_CLASS.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data will have some
imaginary components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateNumericArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericArray also initializes all
its imaginary data elements to 0. mxCreateNumericArray differs from
mxCreateDoubleMatrix in two important respects:

mxCreateNumericArray

3-31

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

Examples See phonebook.c and doubleelement.c in the refbook subdirectory of the
examples directory. For an additional example, see mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxClassID, mxCreateDoubleMatrix, mxCreateSparse, mxCreateString,
mxComplexity

mxCreateNumericMatrix

3-32

3mxCreateNumericMatrixPurpose Create numeric matrix and initialize all its data elements to 0

C Syntax #include "matrix.h"
mxArray *mxCreateNumericMatrix(int m, int n, mxClassID class,

mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

class
The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any
numeric class including mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS,
mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS,
mxUINT32_CLASS, mxINT64_CLASS, and mxUINT64_CLASS.

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns NULL.

Description Call mxCreateNumericMatrix to create an 2-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericMatrix initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericMatrix also initializes all
its imaginary data elements to 0. mxCreateNumericMatrix allocates dynamic
memory to store the created mxArray. When you finish using the mxArray, call
mxDestroyArray to destroy it.

mxCreateNumericMatrix

3-33

See Also mxCreateNumericArray

mxCreateScalarDouble

3-34

3mxCreateScalarDoublePurpose Create scalar, double-precision array initialized to the specified value

Note This function is replaced by mxCreateDoubleScalar in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

C Syntax #include "matrix.h"
mxArray *mxCreateScalarDouble(double value);

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns NULL.

Description Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

3-35

3mxCreateSparsePurpose Create two-dimensional unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(int m, int n, int nzmax,
 mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag is mxCOMPLEX, pi arrays. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan to put into
the mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag
Set this value to mxREAL or mxCOMPLEX. If the mxArray you are creating is to
contain imaginary data, then set ComplexFlag to mxCOMPLEX. Otherwise, set
ComplexFlag to mxREAL.

Returns A pointer to the created sparse double mxArray if successful, and NULL
otherwise. The most likely reason for failure is insufficient free heap space. If
that happens, try reducing nzmax, m, or n.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray. The
returned sparse mxArray contains no sparse information and cannot be passed
as an argument to any MATLAB sparse functions. In order to make the
returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it
exists) pi array.

mxCreateSparse allocates space for:

• A pr array of length nzmax.

• A pi array of length nzmax (but only if ComplexFlag is mxCOMPLEX).

• An ir array of length nzmax.

• A jc array of length n+1.

mxCreateSparse

3-36

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetJc,
mxComplexity

mxCreateSparseLogicalMatrix

3-37

3mxCreateSparseLogicalMatrixPurpose Create unpopulated two-dimensional, sparse, logical mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparseLogicalMatrix(int m, int n, int nzmax);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparseLogicalMatrix should allocate
to hold the data. Set the value of nzmax to be greater than or equal to the
number of nonzero elements you plan to put into the mxArray, but make sure
that nzmax is less than or equal to m*n.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateSparseLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateSparseLogicalMatrix is unsuccessful when there
is not enough free heap space to create the mxArray.

Description Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of logical 1
(true) and logical 0 (false) elements. mxCreateSparseLogicalMatrix
initializes each element in the array to logical 0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its elements.

See Also mxCreateLogicalMatrix, mxCreateLogicalArray, mxCreateLogicalScalar,
mxCreateSparse, mxIsLogical

mxCreateString

3-38

3mxCreateStringPurpose Create 1-by-n string mxArray initialized to the specified string

C Syntax #include "matrix.h"
mxArray *mxCreateString(const char *str);

Arguments str
The C string that is to serve as the mxArray's initial data.

Returns A pointer to the created string mxArray if successful, and NULL otherwise. The
most likely cause of failure is insufficient free heap space.

Description Use mxCreateString to create a string mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require string array
inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call mxDestroyArray.

Examples See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c, mxisclass.c, and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

See Also mxCreateCharMatrixFromStrings, mxCreateCharArray

mxCreateStructArray

3-39

3mxCreateStructArrayPurpose Create unpopulated N-dimensional structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructArray(int ndim, const int *dims, int nfields,

const char **field_names);

Arguments ndim
Number of dimensions. If you set ndim to be less than 2,
mxCreateNumericArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

Returns A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in field_names.
A structure mxArray in MATLAB is conceptually identical to an array of
structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to NULL. Call mxSetField or mxSetFieldByNumber to place a non-NULL
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

mxCreateStructArray

3-40

See Also mxDestroyArray, mxSetNzmax

mxCreateStructMatrix

3-41

3mxCreateStructMatrixPurpose Create unpopulated two-dimensional structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructMatrix(int m, int n, int nfields,

const char **field_names);

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

Returns A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetFieldNumber, mxIsStruct

mxDestroyArray

3-42

3mxDestroyArrayPurpose Free dynamic memory allocated by an mxCreate routine

C Syntax #include "matrix.h"
void mxDestroyArray(mxArray *array_ptr);

Arguments array_ptr
Pointer to the mxArray that you want to free.

Description mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray's
characteristics fields (such as m and n), but also deallocates all the mxArray's
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

Examples See sincall.c in the refbook subdirectory of the examples directory.

For additional examples, see mexcallmatlab.c and mexgetarray.c in the mex
subdirectory of the examples directory; see mxisclass.c and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

mxDuplicateArray

3-43

3mxDuplicateArrayPurpose Make a deep copy of an array

C Syntax #include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

Arguments in
Pointer to the mxArray that you want to copy.

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

Examples See mexget.c in the mex subdirectory of the examples directory and
phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

mxFree

3-44

3mxFreePurpose Free dynamic memory allocated by mxCalloc

C Syntax #include "matrix.h"
void mxFree(void *ptr);

Arguments ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

Description To deallocate heap space, MATLAB applications should always call mxFree
rather than the ANSI C free function.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications.

In MEX-files, mxFree automatically

• Calls the ANSI C free function, which deallocates the contiguous heap space
that begins at address ptr.

• Removes this memory parcel from the MATLAB memory management
facility’s list of memory parcels.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

By default, when mxFree appears in stand-alone MATLAB applications,
mxFree simply calls the ANSI C free function. If this default behavior is
unacceptable, you can write your own memory deallocation routine and
register this routine with mxSetAllocFcns. Then, whenever mxFree is called,
mxFree calls your memory allocation routine instead of free.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent. However, if an application calls
mexMakeMemoryPersistent, then the specified memory parcel becomes
persistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.

mxFree

3-45

Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call mexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see phonebook.c in the refbook subdirectory of the
examples directory; see explore.c and mexatexit.c in the mex subdirectory of
the examples directory; see mxcreatecharmatrixfromstr.c, mxisfinite.c,
mxmalloc.c, mxsetallocfcns.c, and mxsetdimensions.c in the mx
subdirectory of the examples directory.

See Also mxCalloc, mxDestroyArray, mxMalloc, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxFreeMatrix (Obsolete)

3-46

3mxFreeMatrix (Obsolete)

This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxDestroyArray

instead of

mxFreeMatrix

See Also mxDestroyArray

mxGetCell

3-47

3mxGetCellPurpose Get a cell’s contents

C Syntax #include "matrix.h"
mxArray *mxGetCell(const mxArray *array_ptr, int index);

Arguments array_ptr
Pointer to a cell mxArray.

index
The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and NULL otherwise. Causes of
failure include:

• The indexed cell array element has not been populated.

• Specifying an array_ptr that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateCellArray, mxIsCell, mxSetCell

mxGetChars

3-48

3mxGetCharsPurpose Get pointer to character array data

C Syntax #include "matrix.h"
mxCHAR *mxGetChars(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first character in the mxArray. Returns NULL if the specified
array is not a character array.

Description Call mxGetChars to determine the address of the first character in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

See Also mxGetString, mxGetPr, mxGetPi, mxGetCell, mxGetField, mxGetLogicals,
mxGetScalar

mxGetClassID

3-49

3mxGetClassIDPurpose Get (as an integer identifier) an mxArray's class

C Syntax #include "matrix.h"
mxClassID mxGetClassID(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The class (category) of the mxArray that array_ptr points to. Classes are:

mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores the logical values 1
and 0, representing the states true and false respectively.

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxGetClassID

3-50

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed 64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Description Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a logical mxArray, then mxGetClassID returns
mxLOGICAL_CLASS.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an integer identifier and the latter returns the class as a string.

Examples See phonebook.c in the refbook subdirectory of the examples directory and
explore.c in the mex subdirectory of the examples directory.

See Also mxGetClassName

mxGetClassName

3-51

3mxGetClassNamePurpose Get (as a string) an mxArray's class

C Syntax #include "matrix.h"
const char *mxGetClassName(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The class (as a string) of array_ptr.

Description Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a logical mxArray, then mxGetClassName returns logical.

mxGetClassID is similar to mxGetClassName, except that the former returns the
class as an integer identifier and the latter returns the class as a string.

Examples See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see mxisclass.c in the mx subdirectory of the examples
directory.

See Also mxGetClassID

mxGetData

3-52

3mxGetDataPurpose Get pointer to data

C Syntax #include "matrix.h"
void *mxGetData(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Description Similar to mxGetPr, except mxGetData returns a void *.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetImagData, mxGetPr

mxGetDimensions

3-53

3mxGetDimensionsPurpose Get a pointer to the dimensions array

C Syntax #include "matrix.h"
const int *mxGetDimensions(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension. The array is not NULL-terminated.

Description Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that array_ptr points to. Call mxGetNumberOfDimensions to get
the number of dimensions in the mxArray.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see findnz.c and phonebook.c in the refbook
subdirectory of the examples directory; see explore.c in the mex subdirectory
of the examples directory; see mxgeteps.c and mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxGetNumberOfDimensions

mxGetElementSize

3-54

3mxGetElementSizePurpose Get the number of bytes required to store each data element

C Syntax #include "matrix.h"
int mxGetElementSize(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that
array_ptr points to an mxArray having an unrecognized class. If array_ptr
points to a cell mxArray or a structure mxArray, then mxGetElementSize
returns the size of a pointer (not the size of all the elements in each cell or
structure field).

Description Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the mxClassID of an mxArray is mxINT16_CLASS,
then the mxArray stores each data element as a 16-bit (2 byte) signed integer.
Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non-MATLAB routine
to manipulate data elements. For example, memcpy requires (for its third
argument) the size of the elements you intend to copy.

Examples See doubleelement.c and phonebook.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN

mxGetEps

3-55

3mxGetEpsPurpose Get value of eps

C Syntax #include "matrix.h"
double mxGetEps(void);

Returns The value of the MATLAB eps variable.

Description Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB PINV and RANK
functions use eps as a default tolerance.

Examples See mxgeteps.c in the mx subdirectory of the examples directory.

See Also mxGetInf, mxGetNaN

mxGetField

3-56

3mxGetFieldPurpose Get a field value, given a field name and an index in a structure array

C Syntax #include "matrix.h"
mxArray *mxGetField(const mxArray *array_ptr, int index,

const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray.

field_name
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified field_name, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. To
determine if array_ptr points to a structure mxArray, call mxIsStruct.

• Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 9.

• Specifying a nonexistent field_name. Call mxGetFieldNameByNumber or
mxGetFieldNumber to get existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the specified
field. In pseudo-C terminology, mxGetField returns the value at

array_ptr[index].field_name

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes field_num as its third argument, and mxGetField
takes field_name as its third argument.

mxGetField

3-57

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

mxGetFieldByNumber

3-58

3mxGetFieldByNumberPurpose Get a field value, given a field number and an index in a structure array

C Syntax #include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *array_ptr, int index,

int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for more details on calculating an index.

field_number
The position of the field whose value you want to extract. The first field within
each element has a field number of 0, the second field has a field number of 1,
and so on. The last field has a field number of N-1, where N is the number of
fields.

Returns A pointer to the mxArray in the specified field for the desired element, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to is a structure mxArray.

• Specifying an index < 0 or >= the number of elements in the array.

• Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified field_number
at the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

3-59

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetFieldNameByNumber

3-60

3mxGetFieldNameByNumberPurpose Get a field name, given a field number in a structure array

C Syntax #include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *array_ptr,

int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

field_number
The position of the desired field. For instance, to get the name of the first field,
set field_number to 0; to get the name of the second field, set field_number to
1; and so on.

Returns A pointer to the nth field name, on success. Returns NULL on failure. Common
causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

• Specifying a value of field_number greater than or equal to the number of
fields in the structure mxArray. (Remember that field_number 0 symbolizes
the first field, so index N-1 symbolizes the last field.)

Description Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop in
order to get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test. A field number other than 0, 1,
or 2 causes mxGetFieldNameByNumber to return NULL.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

mxGetFieldNameByNumber

3-61

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxIsStruct, mxSetField

mxGetFieldNumber

3-62

3mxGetFieldNumberPurpose Get a field number, given a field name in a structure array

C Syntax #include "matrix.h"
int mxGetFieldNumber(const mxArray *array_ptr,

const char *field_name);

Arguments array_ptr
Pointer to a structure mxArray.

field_name
The name of a field in the structure mxArray.

Returns The field number of the specified field_name, on success. The first field has a
field number of 0, the second field has a field number of 1, and so on. Returns
-1 on failure. Common causes of failure include:

• Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

• Specifying the field_name of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name has a field number of 0; the field billing has a field number of
1; and the field test has a field number of 2. If you call mxGetFieldNumber and
specify a field name of anything other than name, billing, or test, then
mxGetFieldNumber returns -1.

mxGetFieldNumber

3-63

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is zero if you have a one-by-one structure.

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetImagData

3-64

3mxGetImagDataPurpose Get pointer to imaginary data of an mxArray

C Syntax #include "matrix.h"
void *mxGetImagData(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Description Similar to mxGetPi, except it returns a void *.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetData, mxGetPi

mxGetInf

3-65

3mxGetInfPurpose Get the value of infinity

C Syntax #include "matrix.h"
double mxGetInf(void);

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

Examples See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetNaN

mxGetIr

3-66

3mxGetIr Purpose Get the ir array of a sparse matrix

C Syntax #include "matrix.h"
int *mxGetIr(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns A pointer to the first element in the ir array, if successful, and NULL otherwise.
Possible causes of failure include:

• Specifying a full (nonsparse) mxArray.

• Specifying a NULL array_ptr. (This usually means that an earlier call to
mxCreateSparse failed.)

Description Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxsetdimensions.c and mxsetnzmax.c in the mx
subdirectory of the examples directory.

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

mxGetJc

3-67

3mxGetJc Purpose Get the jc array of a sparse matrix

C Syntax #include "matrix.h"
int *mxGetJc(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns A pointer to the first element in the jc array, if successful, and NULL otherwise.
The most likely cause of failure is specifying an array_ptr that points to a full
(nonsparse) mxArray.

Description Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetJc.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory.

See Also mxGetIr, mxSetIr, mxSetJc

mxGetLogicals

3-68

3mxGetLogicalsPurpose Get pointer to logical array data

C Syntax #include "matrix.h"
mxLogical *mxGetLogicals(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first logical in the mxArray. Returns NULL if the specified
array is not a logical array.

Description Call mxGetLogicals to determine the address of the first logical element in the
mxArray that array_ptr points to. Once you have the starting address, you can
access any other element in the mxArray.

See Also mxIsLogical, mxIsLogicalScalar, mxIsLogicalScalarTrue,
mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray

mxGetM

3-69

3mxGetMPurpose Get the number of rows

C Syntax #include "matrix.h"
int mxGetM(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns The number of rows in the mxArray to which array_ptr points.

Description mxGetM returns the number of rows in the specified array. The term rows
always means the first dimension of the array no matter how many dimensions
the array has. For example, if array_ptr points to a four-dimensional array
having dimensions 8-by-9-by-5-by-3, then mxGetM returns 8.

Examples See convec.c in the refbook subdirectory of the examples directory.

For additional examples, see fulltosparse.c, revord.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
mxmalloc.c and mxsetdimensions.c in the mx subdirectory of the examples
directory; see mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the
mex subdirectory of the examples directory.

See Also mxGetN, mxSetM, mxSetN

mxGetN

3-70

3mxGetNPurpose Get the total number of columns in a two-dimensional mxArray or the total
number of elements in dimensions 2 through N for an m-by-n array.

C Syntax #include "matrix.h"
int mxGetN(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified mxArray.

If array_ptr is an N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if array_ptr points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, then mxGetN returns the value 120
(5x4x6). If the specified mxArray has more than two dimensions and you need
to know exactly how many elements are in each dimension, then call
mxGetDimensions.

If array_ptr points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

Examples See convec.c in the refbook subdirectory of the examples directory.

For additional examples,

• See fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

• See explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c in
the mex subdirectory of the examples directory.

• See mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c in
the mx subdirectory of the examples directory.

See Also mxGetM, mxGetNumberOfDimensions, mxSetM, mxSetN

mxGetName (Obsolete)

3-71

3mxGetName (Obsolete)V5 Compatible This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

mxGetNaN

3-72

3mxGetNaNPurpose Get the value of NaN (Not-a-Number)

C Syntax #include "matrix.h"
double mxGetNaN(void);

Returns The value of NaN (Not-a-Number) on your system.

Description Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example,

• 0.0/0.0
• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.

Examples See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetInf

mxGetNumberOfDimensions

3-73

3mxGetNumberOfDimensionsPurpose Get the number of dimensions

C Syntax #include "matrix.h"
int mxGetNumberOfDimensions(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

Examples See explore.c in the mex subdirectory of the examples directory.

For additional examples, see findnz.c, fulltosparse.c, and phonebook.c in
the refbook subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the mx
subdirectory of the examples directory.

See Also mxSetM, mxSetN, mxGetDimensions

mxGetNumberOfElements

3-74

3mxGetNumberOfElementsPurpose Get number of elements in an array

C Syntax #include "matrix.h"
int mxGetNumberOfElements(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Number of elements in the specified mxArray.

Description mxGetNumberOfElements tells you how many elements an array has. For
example, if the dimensions of an array are 3-by-5-by-10, then
mxGetNumberOfElements will return the number 150.

Examples See findnz.c and phonebook.c in the refbook subdirectory of the examples
directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the examples
directory.

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

mxGetNumberOfFields

3-75

3mxGetNumberOfFieldsPurpose Get the number of fields in a structure mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfFields(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a structure mxArray.

Returns The number of fields, on success. Returns 0 on failure. The most common cause
of failure is that array_ptr is not a structure mxArray. Call mxIsStruct to
determine if array_ptr is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field in order to set or to get field values.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory; see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxIsStruct, mxSetField

mxGetNzmax

3-76

3mxGetNzmax Purpose Get the number of elements in the ir, pr, and (if it exists) pi arrays

C Syntax #include "matrix.h"
int mxGetNzmax(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a sparse mxArray.

Returns The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that array_ptr points to a full (nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

Examples See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

See Also mxSetNzmax

mxGetPi

3-77

3mxGetPiPurpose Get an mxArray’s imaginary data elements

C Syntax #include "matrix.h"
double *mxGetPi(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The imaginary data elements of the specified mxArray, on success. Returns
NULL if there is no imaginary data or if there is an error.

Description The pi field points to an array containing the imaginary data of the mxArray.
Call mxGetPi to get the contents of the pi field; that is, to get the starting
address of this imaginary data.

The best way to determine if an mxArray is purely real is to call mxIsComplex.

The imaginary parts of all input matrices to a MATLAB function are allocated
if any of the input matrices are complex.

Examples See convec.c, findnz.c, and fulltosparse.c in the refbook subdirectory of
the examples directory.

For additional examples, see explore.c and mexcallmatlab.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgetinf.c, mxisfinite.c, and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxGetPr, mxSetPi, mxSetPr

mxGetPr

3-78

3mxGetPrPurpose Get an mxArray’s real data elements

C Syntax #include "matrix.h"
double *mxGetPr(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns The address of the first element of the real data. Returns NULL if there is no real
data.

Description Call mxGetPr to determine the starting address of the real data in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

Examples See convec.c, doubleelement.c, findnz.c, fulltosparse.c, sincall.c,
timestwo.c, timestwoalt.c, and xtimesy.c in the refbook subdirectory of the
examples directory.

See Also mxGetPi, mxSetPi, mxSetPr

mxGetScalar

3-79

3mxGetScalarPurpose Get the real component of an mxArray's first data element

C Syntax #include "matrix.h"
double mxGetScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray other than a cell mxArray or a structure mxArray.

Returns The value of the first real (nonimaginary) element of the mxArray. Notice that
mxGetScalar returns a double. Therefore, if real elements in the mxArray are
stored as something other than doubles, mxGetScalar automatically converts
the scalar value into a double. To preserve the original data representation of
the scalar, you must cast the return value to the desired data type.

If array_ptr points to a structure mxArray or a cell mxArray, mxGetScalar
returns 0.0.

If array_ptr points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

If array_ptr points to an empty mxArray, mxGetScalar returns an
indeterminate value.

Description Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when array_ptr points to an mxArray
containing only one element (a scalar). However, array_ptr can point to an
mxArray containing many elements. If array_ptr points to an mxArray
containing multiple elements, mxGetScalar returns the value of the first real
element. If array_ptr points to a two-dimensional mxArray, mxGetScalar
returns the value of the (1,1) element; if array_ptr points to a
three-dimensional mxArray, mxGetScalar returns the value of the (1,1,1)
element; and so on.

Examples See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

mxGetScalar

3-80

For additional examples, see mxsetdimensions.c in the mx subdirectory of the
examples directory; see mexget.c, mexlock.c and mexsettrapflag.c in the
mex subdirectory of the examples directory.

See Also mxGetM, mxGetN

mxGetString

3-81

3mxGetStringPurpose Copy a string mxArray's data into a C-style string

C Syntax #include "matrix.h"
int mxGetString(const mxArray *array_ptr, char *buf, int buflen);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

buf
The starting location into which the string should be written. mxGetString
writes the character data into buf and then terminates the string with a NULL
character (in the manner of C strings). buf can either point to dynamic or static
memory.

buflen
Maximum number of characters to read into buf. Typically, you set buflen to
1 plus the number of elements in the string mxArray to which array_ptr points.
See the mxGetM and mxGetN reference pages to find out how to get the number
of elements.

Note Users of multibyte character sets should be aware that MATLAB packs
multibyte characters into an mxChar (16-bit unsigned integer). When
allocating space for the return string, to avoid possible truncation you should
set

 buflen = (mxGetM(prhs[0]) * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

Returns 0 on success, and 1 on failure. Possible reasons for failure include:

• Specifying an mxArray that is not a string mxArray.

• Specifying buflen with less than the number of characters needed to store
the entire mxArray pointed to by array_ptr. If this is the case, 1 is returned
and the string is truncated.

Description Call mxGetString to copy the character data of a string mxArray into a C-style
string. The copied C-style string starts at buf and contains no more than

mxGetString

3-82

buflen-1 characters. The C-style string is always terminated with a NULL
character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array.

Examples See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxmalloc.c and mxsetallocfcns.c in the mx
subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString

mxIsCell

3-83

3mxIsCellPurpose True if a cell mxArray

C Syntax #include "matrix.h"
bool mxIsCell(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns Logical 1 (true) if array_ptr points to an array having the class mxCELL_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsCell to determine if the specified array is a cell array.

Calling mxIsCell is equivalent to calling

mxGetClassID(array_ptr) == mxCELL_CLASS

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

See Also mxIsClass

mxIsChar

3-84

3mxIsCharPurpose True if a string mxArray

C Syntax #include "matrix.h"
bool mxIsChar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to an array having the class mxCHAR_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsChar to determine if array_ptr points to string mxArray.

Calling mxIsChar is equivalent to calling

mxGetClassID(array_ptr) == mxCHAR_CLASS

Examples See phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcreatecharmatrixfromstr.c, mxislogical.c,
and mxmalloc.c in the mx subdirectory of the examples directory.

See Also mxIsClass, mxGetClassID

mxIsClass

3-85

3mxIsClassPurpose True if mxArray is a member of the specified class

C Syntax #include "matrix.h"
bool mxIsClass(const mxArray *array_ptr, const char *name);

Arguments array_ptr
Pointer to an array.

name
The array category that you are testing. Specify name as a string (not as an
integer identifier). You can specify any one of the following predefined
constants:

 Value of Name Corresponding Class

cell mxCELL_CLASS

char mxCHAR_CLASS

double mxDOUBLE_CLASS

function handle mxFUNCTION_CLASS

int8 mxINT8_CLASS

int16 mxINT16_CLASS

int32 mxINT32_CLASS

int64 mxINT64_CLASS

logical mxLOGICAL_CLASS

single mxSINGLE_CLASS

struct mxSTRUCT_CLASS

uint8 mxUINT8_CLASS

uint16 mxUINT16_CLASS

uint32 mxUINT32_CLASS

uint64 mxUINT64_CLASS

mxIsClass

3-86

In the table, <class_name> represents the name of a specific MATLAB custom
object.

Or, you can specify one of your own class names.

For example,

mxIsClass("double");

is equivalent to calling

mxIsDouble(array_ptr);

which is equivalent to calling

strcmp(mxGetClassName(array_ptr), "double");

Note that it is most efficient to use the mxIsDouble form.

Returns Logical 1 (true) if array_ptr points to an array having category name, and
logical 0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

Examples See mxisclass.c in the mx subdirectory of the examples directory.

See Also mxIsEmpty, mxGetClassID, mxClassID

<class_name> <class_id>

unknown mxUNKNOWN_CLASS

 Value of Name Corresponding Class

mxIsComplex

3-87

3mxIsComplexPurpose True if data is complex

C Syntax #include "matrix.h"
bool mxIsComplex(const mxArray *array_ptr);

Returns Logical 1 (true) if array_ptr is a numeric array containing complex data, and
logical 0 (false) otherwise. If array_ptr points to a cell array or a structure
array, then mxIsComplex returns false.

Description Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is NULL if an mxArray is purely real
and does not have any imaginary data. If an mxArray is complex, pi points to
an array of numbers.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see convec.c, phonebook.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgeteps.c, and mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxIsNumeric

mxIsDouble

3-88

3mxIsDoublePurpose True if mxArray represents its data as double-precision, floating-point numbers

C Syntax #include "matrix.h"
bool mxIsDouble(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as double-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB version 5, MATLAB
can store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassID(array_ptr == mxDOUBLE_CLASS)

Examples See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

For additional examples, see mexget.c, mexlock.c, mexsettrapflag.c, and
yprime.c in the mex subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and mxisfinite.c in
the mx subdirectory of the examples directory.

See Also mxIsClass, mxGetClassID

mxIsEmpty

3-89

3mxIsEmptyPurpose True if mxArray is empty

C Syntax #include "matrix.h"
bool mxIsEmpty(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an array.

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsClass

mxIsFinite

3-90

3mxIsFinitePurpose True if value is finite

C Syntax #include "matrix.h"
bool mxIsFinite(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than -Inf and less than Inf.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsInf, mxIsNaN

mxIsFromGlobalWS

3-91

3mxIsFromGlobalWSPurpose True if the mxArray was copied from the MATLAB global workspace

C Syntax #include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array was copied out of the global workspace, and logical
0 (false) otherwise.

Description mxIsFromGlobalWS is useful for stand-alone MAT programs. mexIsGlobal tells
you if the pointer you pass actually points into the global workspace.

Examples See matdgns.c and matcreat.c in the eng_mat subdirectory of the examples
directory.

See Also mexIsGlobal

mxIsFull (Obsolete)

3-92

3mxIsFull (Obsolete)

This API function is obsolete and is not supported in MATLAB 5 or later.

Use

if(!mxIsSparse(prhs[0]))

instead of

if(mxIsFull(prhs[0]))

See Also mxIsSparse

mxIsInf

3-93

3mxIsInfPurpose True if value is infinite

C Syntax #include "matrix.h"
bool mxIsInf(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), then mxIsInf returns false. In other
words, NaN is not equal to infinity.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsFinite, mxIsNaN

mxIsInt8

3-94

3mxIsInt8Purpose True if mxArray represents its data as signed 8-bit integers

C Syntax #include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.

Calling mxIsInt8 is equivalent to calling

mxGetClassID(array_ptr) == mxINT8_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt16

3-95

3mxIsInt16Purpose True if mxArray represents its data as signed 16-bit integers

C Syntax #include "matrix.h"
bool mxIsInt16(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassID(array_ptr) == mxINT16_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt32

3-96

3mxIsInt32Purpose True if mxArray represents its data as signed 32-bit integers

C Syntax #include "matrix.h"
bool mxIsInt32(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.

Calling mxIsInt32 is equivalent to calling

mxGetClassID(array_ptr) == mxINT32_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt64

3-97

3mxIsInt64Purpose True if mxArray represents its data as signed 64-bit integers

C Syntax #include "matrix.h"
bool mxIsInt64(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array represents its
real and imaginary data as 64-bit signed integers.

Calling mxIsInt64 is equivalent to calling

mxGetClassID(array_ptr) == mxINT64_CLASS

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsLogical

3-98

3mxIsLogicalPurpose True if mxArray is of class mxLogical

C Syntax #include "matrix.h"
bool mxIsLogical(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, then MATLAB treats all
zeros as meaning false and all nonzero values as meaning true. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxIsClass, mxSetLogical (Obsolete)

mxIsLogicalScalar

3-99

3mxIsLogicalScalarPurpose True if scalar mxArray of class mxLogical

C Syntax #include "matrix.h"
bool mxIsLogicalScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray is of class mxLogical and has 1-by-1 dimensions,
and logical 0 (false) otherwise.

Description Use mxIsLogicalScalar to determine whether MATLAB treats the scalar data
in the mxArray as logical or numerical. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalar(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1

See Also mxIsLogicalScalarTrue, mxIsLogical, mxGetLogicals, mxGetScalar

mxIsLogicalScalarTrue

3-100

3mxIsLogicalScalarTruePurpose True if scalar mxArray of class mxLogical is true

C Syntax #include "matrix.h"
bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the value of the mxArray's logical, scalar element is true,
and logical 0 (false) otherwise.

Description Use mxIsLogicalScalarTrue to determine whether the value of a scalar
mxArray is true or false. For additional information on the use of logical
variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalarTrue(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1 &&
mxGetLogicals(pa)[0] == true

See Also mxIsLogicalScalar, mxIsLogical, mxGetLogicals, mxGetScalar

mxIsNaN

3-101

3mxIsNaNPurpose True if value is NaN (Not-a-Number)

C Syntax #include "matrix.h"
bool mxIsNaN(double value);

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) use to represent an error condition or
missing data.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the refbook
subdirectory of the examples directory.

See Also mxIsFinite, mxIsInf

mxIsNumeric

3-102

3mxIsNumericPurpose True if mxArray is numeric

C Syntax #include "matrix.h"
bool mxIsNumeric(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array’s storage type is:

• mxDOUBLE_CLASS
• mxSINGLE_CLASS
• mxINT8_CLASS
• mxUINT8_CLASS
• mxINT16_CLASS
• mxUINT16_CLASS
• mxINT32_CLASS
• mxUINT32_CLASS
• mxINT64_CLASS
• mxUINT64_CLASS

Logical 0 (false) if the array’s storage type is:

• mxCELL_CLASS
• mxCHAR_CLASS
• mxFUNCTION_CLASS
• mxLOGICAL_CLASS
• mxSTRUCT_CLASS
• mxUNKNOWN_CLASS

Description Call mxIsNumeric to determine if the specified array contains numeric data. If
the specified array is a cell, string, or a structure, then mxIsNumeric returns
logical 0 (false). Otherwise, mxIsNumeric returns logical 1 (true).

Call mxGetClassID to determine the exact storage type.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxGetClassID

mxIsSingle

3-103

3mxIsSinglePurpose True if mxArray represents its data as single-precision, floating-point numbers

C Syntax #include "matrix.h"
bool mxIsSingle(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as single-precision, floating-point
numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassID(array_ptr) == mxSINGLE_CLASS

See Also mxIsClass, mxGetClassID

mxIsSparse

3-104

3mxIsSparsePurpose True if a sparse mxArray

C Syntax #include "matrix.h"
bool mxIsSparse(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a sparse mxArray, and logical 0 (false)
otherwise. A false return value means that array_ptr points to a full mxArray
or that array_ptr does not point to a legal mxArray.

Description Use mxIsSparse to determine if array_ptr points to a sparse mxArray. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetIr, mxGetJc

mxIsString (Obsolete)

3-105

3mxIsString (Obsolete)

This API function is obsolete and is not supported in MATLAB 5 or later.

Use

mxIsChar

instead of

mxIsString

See Also mxChar, mxIsChar

mxIsStruct

3-106

3mxIsStructPurpose True if a structure mxArray

C Syntax #include "matrix.h"
bool mxIsStruct(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if array_ptr points to a structure array, and logical 0 (false)
otherwise.

Description Use mxIsStruct to determine if array_ptr points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

Examples See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

3-107

3mxIsUint8Purpose True if mxArray represents its data as unsigned 8-bit integers

C Syntax #include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified mxArray represents its
real and imaginary data as 8-bit unsigned integers.

Calling mxIsUint8 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT8_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint16, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint16

3-108

3mxIsUint16Purpose True if mxArray represents its data as unsigned 16-bit integers

C Syntax #include "matrix.h"
bool mxIsUint16(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.

Calling mxIsUint16 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT16_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint32

3-109

3mxIsUint32Purpose True if mxArray represents its data as unsigned 32-bit integers

C Syntax #include "matrix.h"
bool mxIsUint32(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.

Calling mxIsUint32 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT32_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint64

3-110

3mxIsUint64Purpose True if mxArray represents its data as unsigned 64-bit integers

C Syntax #include "matrix.h"
bool mxIsUint64(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray represents
its real and imaginary data as 64-bit unsigned integers.

Calling mxIsUint64 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT64_CLASS

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint32, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxMalloc

3-111

3mxMallocPurpose Allocate dynamic memory using the MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxMalloc(size_t n);

Arguments n
Number of bytes to allocate.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxMalloc rather than malloc to
allocate memory. Note that mxMalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxMalloc automatically

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxMalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxMalloc defaults to calling the ANSI C
malloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with
mxSetAllocFcns. Then, whenever mxMalloc is called, mxMalloc calls your
memory allocation routine instead of malloc.

By default, in a MEX-file, mxMalloc generates nonpersistent mxMalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after

mxMalloc

3-112

the MEX-file completes, call mexMakeMemoryPersistent after calling mxMalloc.
If you write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree.
mxFree deallocates the memory.

Examples See mxmalloc.c in the mx subdirectory of the examples directory. For an
additional example, see mxsetdimensions.c in the mx subdirectory of the
examples directory.

See Also mxCalloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxSetAllocFcns

mxRealloc

3-113

3mxReallocPurpose Reallocate memory

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, size_t size);

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, or by a previous call to
mxRealloc.

size
New size of allocated memory, in bytes.

Returns A pointer to the reallocated block of memory on success, and 0 on failure.

Description mxRealloc reallocates the memory routine for the managed list. If mxRealloc
fails to allocate a block, you must free the block since the ANSI definition of
realloc states that the block remains allocated. mxRealloc returns NULL in
this case, and in subsequent calls to mxRealloc of the form:

x = mxRealloc(x, size);

Note Failure to reallocate memory with mxRealloc can result in memory
leaks.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mxMalloc, mxSetAllocFcns

mxRemoveField

3-114

3mxRemoveFieldPurpose Remove a field from a structure array

C Syntax #include "matrix.h"
extern void mxRemoveField(mxArray array_ptr, int field_number);

Arguments array_ptr
Pointer to a structure mxArray.

field_number
The number of the field you want to remove. For instance, to remove the first
field, set field_number to 0; to remove the second field, set field_number to 1;
and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

mxSetAllocFcns

3-115

3mxSetAllocFcnsPurpose Register your own memory allocation and deallocation functions in a
stand-alone engine or MAT application

C Syntax #include "matrix.h"
#include <stdlib.h>
void mxSetAllocFcns(calloc_proc callocfcn, free_proc freefcn,

realloc_proc reallocfcn, malloc_proc mallocfcn);

Arguments callocfcn
The name of the function that mxCalloc uses to perform memory allocation
operations. The function you specify is ordinarily a wrapper around the ANSI
C calloc function. The callocfcn you write must have the prototype:

The callocfcn you specify must create memory in which all allocated memory
has been initialized to zero.

freefcn
The name of the function that mxFree uses to perform memory deallocation
(freeing) operations. The freefcn you write must have the prototype:

The freefcn you specify must contain code to determine if ptr is NULL. If ptr
is NULL, then your freefcn must not attempt to deallocate it.

reallocfcn
The name of the function that mxRealloc uses to perform memory reallocation
operations. The reallocfcn you write must have the prototype:

void * callocfcn(size_t nmemb, size_t size);

nmemb The number of contiguous elements that you want the matrix
library to allocate on your behalf.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

void freefcn(void *ptr);

ptr Pointer to beginning of the memory parcel to deallocate.

void * reallocfcn(void *ptr, size_t size);

mxSetAllocFcns

3-116

mallocfcn
The name of the function that API functions call in place of malloc to perform
memory reallocation operations. The mallocfcn you write must have the
prototype:

The mallocfcn you specify doesn’t need to initialize the memory it allocates.

Description Call mxSetAllocFcns to establish your own memory allocation and deallocation
routines in a stand-alone (nonMEX) application.

It is illegal to call mxSetAllocFcns from a MEX-file; doing so causes a compiler
error.

In a stand-alone application, if you do not call mxSetAllocFcns, then

• mxCalloc simply calls the ANSI C calloc routine.

• mxFree calls a free function, which calls the ANSI C free routine if a NULL
pointer is not passed.

• mxRealloc simply calls the ANSI C realloc routine.

Writing your own callocfcn, mallocfcn, freefcn, and reallocfcn allows you
to customize memory allocation and deallocation.

Examples See mxsetallocfcns.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mxMalloc, mxRealloc

ptr Pointer to beginning of the memory parcel to reallocate.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

void * mallocfcn(size_t n);

n The number of bytes to allocate.

mxSetCell

3-117

3mxSetCellPurpose Set the value of one cell

C Syntax #include "matrix.h"
void mxSetCell(mxArray *array_ptr, int index, mxArray *value);

Arguments array_ptr
Pointer to a cell mxArray.

index
Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell.

Description Call mxSetCell to put the designated value into a particular cell of a cell
mxArray. You can assign new values to unpopulated cells or overwrite the value
of an existing cell. To do the latter, first use mxDestroyArray to free what is
already there and then mxSetCell to assign the new value.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Examples See phonebook.c in the refbook subdirectory of the examples directory. For an
additional example, see mxcreatecellmatrix.c in the mx subdirectory of the
examples directory.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell

mxSetClassName

3-118

3mxSetClassNamePurpose Convert a MATLAB structure array to a MATLAB object array by specifying a
class name to associate with the object

C Syntax #include "matrix.h"
int mxSetClassName(mxArray *array_ptr, const char *classname);

Arguments array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS.

classname
The object class to which to convert array_ptr.

Returns 0 if successful, and nonzero otherwise.

Description mxSetClassName converts a structure array to an object array, to be saved
subsequently to a MAT-file. The object is not registered or validated by
MATLAB until it is loaded via the LOAD command. If the specified classname is
an undefined class within MATLAB, LOAD converts the object back to a simple
structure array.

See Also mxIsClass, mxGetClassID

mxSetData

3-119

3mxSetDataPurpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *array_ptr, void *data_ptr);

Arguments array_ptr
Pointer to an mxArray.

data_ptr
Pointer to data.

Description mxSetData is similar to mxSetPr, except its data_ptr argument is a void *. Use
this on numeric arrays with contents other than double.

See Also mxSetPr

mxSetDimensions

3-120

3mxSetDimensionsPurpose Modify the number of dimensions and/or the size of each dimension

C Syntax #include "matrix.h"
int mxSetDimensions(mxArray *array_ptr, const int *dims, int ndim);

Arguments array_ptr
Pointer to an mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Description Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
arrays. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
arrays accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory.

See Also mxGetNumberOfDimensions, mxSetM, mxSetN

mxSetField

3-121

3mxSetFieldPurpose Set a field value of a structure array, given a field name and an index

C Syntax #include "matrix.h"
void mxSetField(mxArray *array_ptr, int index,

const char *field_name, mxArray *value);

Arguments array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_name
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine existing field
names.

value
Pointer to the mxArray you are assigning.

Description Use mxSetField to assign a value to the specified element of the specified field.
In pseudo-C terminology, mxSetField performs the assignment

array_ptr[index].field_name = value;

If there is already a value at the given position, the value pointer you specified
overwrites the old value pointer. However, mxSetField does not free the
dynamic memory that the old value pointer pointed to. Consequently, you
should free this old mxArray immediately before or after calling mxSetField.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetField

3-122

Calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber

mxSetFieldByNumber

3-123

3mxSetFieldByNumberPurpose Set a field value in a structure array, given a field number and an index

C Syntax #include "matrix.h"
void mxSetFieldByNumber(mxArray *array_ptr, int index,

int field_number, mxArray *value);

Arguments array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array_ptr
points to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_number
The position of the field whose value you want to extract. The first field within
each element has a field_number of 0, the second field has a field_number of
1, and so on. The last field has a field_number of N-1, where N is the number
of fields.

value
The value you are assigning.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Description Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. mxSetFieldByNumber is almost identical to mxSetField;
however, the former takes a field number as its third argument and the latter
takes a field name as its third argument.

mxSetFieldByNumber

3-124

Calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

Examples See mxcreatestructarray.c in the mx subdirectory of the examples directory.
For an additional example, see phonebook.c in the refbook subdirectory of the
examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField

mxSetImagData

3-125

3mxSetImagDataPurpose Set imaginary data pointer for an mxArray

C Syntax #include "matrix.h"
void mxSetImagData(mxArray *array_ptr, void *pi);

Arguments array_ptr
Pointer to an mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description mxSetImagData is similar to mxSetPi, except its pi argument is a void *. Use
this on numeric arrays with contents other than double.

Examples See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxSetPi

mxSetIr

3-126

3mxSetIr Purpose Set the ir array of a sparse mxArray

C Syntax #include "matrix.h"
void mxSetIr(mxArray *array_ptr, int *ir);

Arguments array_ptr
Pointer to a sparse mxArray.

ir
Pointer to the ir array. The ir array must be sorted in column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

For example, suppose you create a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements by typing

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

The pr array holds the real data for the sparse matrix, which in Sparrow is the
five 1s and the one 2. If there is any nonzero imaginary data, then it is in a pi
array.

mxSetIr

3-127

Notice how each element of the ir array is always 1 less than the row of the
corresponding nonzero element. For instance, the first nonzero element is in
row 2; therefore, the first element in ir is 1 (that is, 2-1). The second nonzero
element is in row 5; therefore, the second element in ir is 4 (5-1).

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory. For an
additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.

(5,1) 4 1 2 Column 1; ir is 4 because row is 5.

(3,2) 2 1 3 Column 2; ir is 2 because row is 3.

(2,3) 1 2 6 Column 3; ir is 1 because row is 2.

(5,3) 4 1 Column 3; ir is 4 because row is 5.

(6,3) 5 1 Column 3; ir is 5 because row is 6.

mxSetJc

3-128

3mxSetJcPurpose Set the jc array of a sparse mxArray

C Syntax #include "matrix.h"
void mxSetJc(mxArray *array_ptr, int *jc);

Arguments array_ptr
Pointer to a sparse mxArray.

jc
Pointer to the jc array.

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array have the meanings:

• jc[j] is the index in ir, pr (and pi if it exists) of the first nonzero entry in
the jth column.

• jc[j+1]-1 is the index of the last nonzero entry in the jth column.

• jc[number of columns + 1] is equal to nnz, which is the number of nonzero
entries in the entire spare mxArray.

The number of nonzero elements in any column (denoted as column C) is

jc[C] - jc[C-1];

For example, consider a 7-by-3 sparse mxArray named Sparrow containing six
nonzero elements, created by typing

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

mxSetJc

3-129

The contents of the ir, jc, and pr arrays are:

As an example of a much sparser mxArray, consider an 8,000 element sparse
mxArray named Spacious containing only three nonzero elements. The ir, pr,
and jc arrays contain:

Subscript ir pr jc Comment

(2,1) 1 1 0 Column 1 contains two entries, at ir[0],ir[1]

(5,1) 4 1 2 Column 2 contains one entry, at ir[2]

(3,2) 2 1 3 Column 3 contains three entries, at ir[3],ir[4],
ir[5]

(2,3) 1 2 6 There are six nonzero elements.

(5,3) 4 1

(6,3) 5 1

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains zero entries

(50,3) 49 1 0 Column 2 contains one entry, at ir[0]

(64,5) 63 1 1 Column 3 contains one entry, at ir[1]

2 Column 4 contains zero entries.

2 Column 5 contains one entry, at ir[3]

3 Column 6 contains zero entries.

3 Column 7 contains zero entries.

3 Column 8 contains zero entries.

3 There are three nonzero elements.

mxSetJc

3-130

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetIr, mxGetJc, mxSetIr

mxSetLogical (Obsolete)

3-131

3mxSetLogical (Obsolete)Purpose Convert an mxArray to logical type

Note As of MATLAB version 6.5, mxSetLogical is obsolete. Support for
mxSetLogical may be removed in a future version.

C Syntax #include "matrix.h"
void mxSetLogical(mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray having a numeric class.

Description Use mxSetLogical to turn on an mxArray's logical flag. This flag tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray,
mxCreateSparseLogicalMatrix

mxSetM

3-132

3mxSetMPurpose Set the number of rows

C Syntax #include "matrix.h"
void mxSetM(mxArray *array_ptr, int m);

Arguments m
The desired number of rows.

array_ptr
Pointer to an mxArray.

Description Call mxSetM to set the number of rows in the specified mxArray. The term “rows”
means the first dimension of an mxArray, regardless of the number of
dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN, mxSetN

mxSetN

3-133

3mxSetN Purpose Set the number of columns

C Syntax #include "matrix.h"
void mxSetN(mxArray *array_ptr, int n);

Arguments array_ptr
Pointer to an mxArray.

n
The desired number of columns.

Description Call mxSetN to set the number of columns in the specified mxArray. The term
“columns” always means the second dimension of a matrix. Calling mxSetN
forces an mxArray to have two dimensions. For example, if array_ptr points to
an mxArray having three dimensions, calling mxSetN reduces the mxArray to
two dimensions.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the
examples directory.

See Also mxGetM, mxGetN, mxSetM

mxSetName (Obsolete)

3-134

3mxSetName (Obsolete)V5 Compatible This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

Replacing mxSetName when used with mexPutArray
To copy an mxArray to a workspace, use

mexPutVariable(workspace, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
mexPutArray(array_ptr, workspace);

Replacing mxSetName when used with matPutArray
To write an mxArray to a MAT-file, use

matPutVariable(mfp, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
matPutArray(mfp, array_ptr);

Replacing mxSetName when used with engPutArray
To copy an mxArray into the workspace of a MATLAB engine, use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutArray(ep, array_ptr);

mxSetNzmax

3-135

3mxSetNzmaxPurpose Set the storage space for nonzero elements

C Syntax #include "matrix.h"
void mxSetNzmax(mxArray *array_ptr, int nzmax);

Arguments array_ptr
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays. To change the size of one of these arrays:

1 Call mxCalloc, setting n to the new value of nzmax.

2 Call the ANSI C routine memcpy to copy the contents of the old array to the
new area allocated in Step 1.

3 Call mxFree to free the memory occupied by the old array.

4 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi) to
establish the new memory area as the current one.

Two ways of determining how big you should make nzmax are

• Set nzmax equal to or slightly greater than the number of nonzero elements
in a sparse mxArray. This approach conserves precious heap space.

• Make nzmax equal to the total number of elements in an mxArray. This
approach eliminates (or, at least reduces) expensive reallocations.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxSetNzmax

3-136

See Also mxGetNzmax

mxSetPi

3-137

3mxSetPiPurpose Set new imaginary data for an mxArray

C Syntax #include "matrix.h"
void mxSetPi(mxArray *array_ptr, double *pi);

Arguments array_ptr
Pointer to a full (nonsparse) mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory leaks and other memory errors may result.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate functions optionally allocate heap space to hold imaginary data.
If you tell an mxCreate function to allocate heap space (for example, by setting
the ComplexFlag to mxComplex or by setting pi to a non-NULL value), then you
do not ordinarily use mxSetPi to initialize the created mxArray's imaginary
elements. Rather, you call mxSetPi to replace the initial imaginary values with
new ones.

Examples See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

See Also mxSetImagData, mxGetPi, mxGetPr, mxSetPr

mxSetPr

3-138

3mxSetPrPurpose Set new real data for an mxArray

C Syntax #include "matrix.h"
void mxSetPr(mxArray *array_ptr, double *pr);

Arguments array_ptr
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pr points to static memory,
then memory leaks and other memory errors may result.

Description Use mxSetPr to set the real data of the specified mxArray.

All mxCreate calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly-created
mxArray. Rather, you call mxSetPr to replace the initial real values with new
ones.

Examples See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetPr, mxGetPi, mxSetPi

4
C MEX-Functions
mexAddFlops (Obsolete) Update the MATLAB internal floating-point operations

counter

mexAtExit Register function to be called when MATLAB is cleared or
terminates

mexCallMATLAB Call MATLAB function or user-defined M-file or MEX-file

mexErrMsgIdAndTxt Issue error message with identifier and return to MATLAB

mexErrMsgTxt Issue error message and return to MATLAB

mexEvalString Execute MATLAB command in caller’s workspace

mexFunction Entry point to C MEX-file

mexFunctionName Name of current MEX-function

mexGet Get value of Handle Graphics® property

mexGetArray (Obsolete) Use mexGetVariable

mexGetArrayPtr (Obsolete) Use mexGetVariablePtr

mexGetEps (Obsolete) Use mxGetEps

mexGetFull (Obsolete) Use mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete) Use mexGetVariablePtr

mexGetInf (Obsolete) Use mxGetInf

mexGetMatrix (Obsolete) Use mexGetVariable

mexGetMatrixPtr (Obsolete) Use mexGetVariablePtr

mexGetNaN (Obsolete) Use mxGetNaN

mexGetVariable Get copy of variable from another workspace

mexGetVariablePtr Get read-only pointer to variable from another workspace

mexIsFinite (Obsolete) Use mxIsFinite

mexIsGlobal True if mxArray has global scope

mexIsInf (Obsolete) Use mxIsInf

mexIsLocked True if MEX-file is locked

4-2

mexIsNaN (Obsolete) Use mxIsNaN

mexLock Lock MEX-file so it cannot be cleared from memory

mexMakeArrayPersistent Make mxArray persist after MEX-file completes

mexMakeMemoryPersistent Make memory allocated by MATLAB memory allocation
routines persist after MEX-file completes

mexPrintf ANSI C printf-style output routine

mexPutArray (Obsolete) Use mexPutVariable

mexPutFull (Obsolete) Use mxCreateDoubleMatrix, mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete) Use mexPutVariable

mexPutVariable Copy mxArray from your MEX-file into another workspace

mexSet Set value of Handle Graphics property

mexSetTrapFlag Control response of mexCallMATLAB to errors

mexUnlock Unlock MEX-file so it can be cleared from memory

mexWarnMsgIdAndTxt Issue warning message with identifier

mexWarnMsgTxt Issue warning message

mexAddFlops (Obsolete)

4-3

4mexAddFlops (Obsolete)Compatibility This API function is obsolete and should not be used in any MATLAB program.
This function will not be available in a future version of MATLAB.

mexAtExit

4-4

4mexAtExitPurpose Register a function to be called when the MEX-function is cleared or when
MATLAB terminates

C Syntax #include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

Arguments ExitFcn
Pointer to function you want to run on exit.

Returns Always returns 0.

Description Use mexAtExit to register a C function to be called just before the
MEX-function is cleared or MATLAB is terminated. mexAtExit gives your
MEX-function a chance to perform tasks such as freeing persistent memory
and closing files. Typically, the named ExitFcn performs tasks like closing
streams or sockets.

Each MEX-function can register only one active exit function at a time. If you
call mexAtExit more than once, MATLAB uses the ExitFcn from the more
recent mexAtExit call as the exit function.

If a MEX-function is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

See Also mexLock, mexUnlock

mexCallMATLAB

4-5

4mexCallMATLABPurpose Call a MATLAB function, or a user-defined M-file or MEX-file

C Syntax #include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

 mxArray *prhs[], const char *command_name);

Arguments nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs
Pointer to an array of mxArrays. The called command puts pointers to the
resultant mxArrays into plhs. Note that the called command allocates dynamic
memory to store the resultant mxArrays. By default, MATLAB automatically
deallocates this dynamic memory when you clear the MEX-file. However, if
heap space is at a premium, you may want to call mxDestroyArray as soon as
you are finished with the mxArrays that plhs points to.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Pointer to an array of input arguments.

command_name
Character string containing the name of the MATLAB built-in, operator,
M-file, or MEX-file that you are calling. If command_name is an operator, just
place the operator inside a pair of single quotes; for example, '+'.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexCallMATLAB to invoke internal MATLAB numeric functions, MATLAB
operators, M-files, or other MEX-files. See mexFunction for a complete
description of the arguments.

By default, if command_name detects an error, MATLAB terminates the
MEX-file and returns control to the MATLAB prompt. If you want a different
error behavior, turn on the trap flag by calling mexSetTrapFlag.

mexCallMATLAB

4-6

Note that it is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two variables
but only assigns one of them a value,

function [a,b]=foo(c)
a=2*c;

you get this warning message in MATLAB:

Warning: One or more output arguments not assigned during call to
'foo'.

MATLAB assigns output b to an empty matrix. If you then call foo using
mexCallMATLAB, the unassigned output variable is given type
mxUNKNOWN_CLASS.

Examples See mexcallmatlab.c in the mex subdirectory of the examples directory.

For additional examples, see sincall.c in the refbook subdirectory of the
examples directory; see mexevalstring.c and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcreatecellmatrix.c and
mxisclass.c in the mx subdirectory of the examples directory.

See Also mexFunction, mexSetTrapFlag

mexErrMsgIdAndTxt

4-7

4mexErrMsgIdAndTxtPurpose Issue error message with identifier and return to the MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgIdAndTxt(const char *identifier,

const char *error_msg, ...);

Arguments identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

error_msg
String containing the error message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

...
Any additional arguments needed to translate formatting conversion
characters used in error_msg. Each conversion character in error_msg is
converted to one of these values.

Description Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgIdAndTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgIdAndTxt, you may have a
memory management compatibility problem. For more information, see
“Memory Management Compatibility Issues” in the External Interfaces
documentation.

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

4-8

4mexErrMsgTxtPurpose Issue error message and return to the MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgTxt(const char *error_msg);

Arguments error_msg
String containing the error message to be displayed.

Description Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke the function registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgTxt, you may have a memory
management compatibility problem. For more information, see Memory
Management Compatibility Issues.

Examples See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory of the
examples directory.

See Also mexErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

mexEvalString

4-9

4mexEvalStringPurpose Execute a MATLAB command in the workspace of the caller

C Syntax #include "mex.h"
int mexEvalString(const char *command);

Arguments command
A string containing the MATLAB command to execute.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace of the
caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command string
must already be current variables of the caller’s workspace.

Examples See mexevalstring.c in the mex subdirectory of the examples directory.

See Also mexCallMATLAB

mexFunction

4-10

4mexFunctionPurpose Entry point to a C MEX-file

C Syntax #include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
 const mxArray *prhs[]);

Arguments nlhs
MATLAB sets nlhs with the number of expected mxArrays.

plhs
MATLAB sets plhs to a pointer to an array of NULL pointers.

nrhs
MATLAB sets nrhs to the number of input mxArrays.

prhs
MATLAB sets prhs to a pointer to an array of input mxArrays. These mxArrays
are declared as constant; they are read only and should not be modified by
your MEX-file. Changing the data in these mxArrays may produce undesired
side effects.

Description mexFunction is not a routine you call. Rather, mexFunction is the generic name
of the function entry point that must exist in every C source MEX-file. When
you invoke a MEX-function, MATLAB finds and loads the corresponding
MEX-file of the same name. MATLAB then searches for a symbol named
mexFunction within the MEX-file. If it finds one, it calls the MEX-function
using the address of the mexFunction symbol. If MATLAB cannot find a routine
named mexFunction inside the MEX-file, it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,...] = fun(d,e,f,...)

where the denotes more items of the same format. The a,b,c... are left-hand
side arguments and the d,e,f... are right-hand side arguments. The
arguments nlhs and nrhs contain the number of left-hand side and right-hand
side arguments, respectively, with which the MEX-function is called. prhs is a
pointer to a length nrhs array of pointers to the right-hand side mxArrays. plhs

mexFunction

4-11

is a pointer to a length nlhs array where your C function must put pointers for
the returned left-hand side mxArrays.

Examples See mexfunction.c in the mex subdirectory of the examples directory.

mexFunctionName

4-12

4mexFunctionNamePurpose Gives the name of the current MEX-function

C Syntax #include "mex.h"
const char *mexFunctionName(void);

Arguments none

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

mexGet

4-13

4mexGetPurpose Get the value of the specified Handle Graphics® property

C Syntax #include "mex.h"
const mxArray *mexGet(double handle, const char *property);

Arguments handle
Handle to a particular graphics object.

property
A Handle Graphics property.

Returns The value of the specified property in the specified graphics object on success.
Returns NULL on failure. The return argument from mexGet is declared as
constant, meaning that it is read only and should not be modified. Changing
the data in these mxArrays may produce undesired side effects.

Description Call mexGet to get the value of the property of a certain graphics object. mexGet
is the API equivalent of the MATLAB get function. To set a graphics property
value, call mexSet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexSet

mexGetArray (Obsolete)

4-14

4mexGetArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariable(workspace, var_name);

instead of

mexGetArray(var_name, workspace);

See Also mexGetVariable

mexGetArrayPtr (Obsolete)

4-15

4mexGetArrayPtr (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariablePtr(workspace, var_name);

instead of

mexGetArrayPtr(var_name, workspace);

See Also mexGetVariable

mexGetEps (Obsolete)

4-16

4mexGetEps (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

eps = mxGetEps();

instead of

eps = mexGetEps();

See Also mxGetEps

mexGetFull (Obsolete)

4-17

4mexGetFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = mexGetVariable("caller", name);
m = mxGetM(array_ptr);
n = mxGetN(array_ptr);
pr = mxGetPr(array_ptr);
pi = mxGetPi(array_ptr);

instead of

mexGetFull(name, m, n, pr, pi);

See Also mexGetVariable, mxGetPr, mxGetPi

mexGetGlobal (Obsolete)

4-18

4mexGetGlobal (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariablePtr("global", name);

instead of

mexGetGlobal(name);

See Also mexGetVariable, mxGetName (Obsolete), mxGetPr, mxGetPi

mexGetInf (Obsolete)

4-19

4mexGetInf (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

inf = mxGetInf();

instead of

inf = mexGetInf();

See Also mxGetInf

mexGetMatrix (Obsolete)

4-20

4mexGetMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariable("caller", name);

instead of

mexGetMatrix(name);

See Also mexGetVariable

mexGetMatrixPtr (Obsolete)

4-21

4mexGetMatrixPtr (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexGetVariablePtr("caller", name);

instead of

mexGetMatrixPtr(name);

See Also mexGetVariablePtr

mexGetNaN (Obsolete)

4-22

4mexGetNaN (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

NaN = mxGetNaN();

instead of

NaN = mexGetNaN();

See Also mxGetNaN

mexGetVariable

4-23

4mexGetVariablePurpose Get a copy of a variable from the specified workspace

C Syntax #include "mex.h"
mxArray *mexGetVariable(const char *workspace, const char

*var_name);

Arguments workspace
Specifies where mexGetVariable should search in order to find array,
var_name. The possible values are

var_name
Name of the variable to copy.

Returns A copy of the variable on success. Returns NULL on failure. A common cause of
failure is specifying a variable that is not currently in the workspace. Perhaps
the variable was in the workspace at one time but has since been cleared.

Description Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace
with mexPutVariable.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariablePtr, mexPutVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexGetVariablePtr

4-24

4mexGetVariablePtrPurpose Get a read-only pointer to a variable from another workspace

C Syntax #include "mex.h"
const mxArray *mexGetVariablePtr(const char *workspace,

const char *var_name);

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

var_name
Name of a variable in another workspace. (Note that this is a variable name,
not an mxArray pointer.)

Returns A read-only pointer to the mxArray on success. Returns NULL on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified variable,
var_name, into your MEX-file’s workspace. This command is useful for
examining an mxArray's data and characteristics. If you need to change data
or characteristics, use mexGetVariable (along with mexPutVariable) instead of
mexGetVariablePtr.

If you simply need to examine data or characteristics, mexGetVariablePtr
offers superior performance as the caller need pass only a pointer to the array.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexIsFinite (Obsolete)

4-25

4mexIsFinite (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsFinite(value);

instead of

answer = mexIsFinite(value);

See Also mxIsFinite

mexIsGlobal

4-26

4mexIsGlobalPurpose True if mxArray has global scope

C Syntax #include "matrix.h"
bool mexIsGlobal(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false) otherwise.

Description Use mexIsGlobal to determine if the specified mxArray has global scope.

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

mexIsInf (Obsolete)

4-27

4mexIsInf (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsInf(value);

instead of

answer = mexIsInf(value);

See Also mxIsInf

mexIsLocked

4-28

4mexIsLockedPurpose Determine if this MEX-file is locked

C Syntax #include "mex.h"
bool mexIsLocked(void);

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file is unlocked.

Description Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent, mexUnlock

mexIsNaN (Obsolete)

4-29

4mexIsNaN (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

answer = mxIsNaN(value);

instead of

answer = mexIsNaN(value);

See Also mxIsInf

mexLock

4-30

4mexLockPurpose Lock a MEX-file so that it cannot be cleared from memory

C Syntax #include "mex.h"
void mexLock(void);

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

mexMakeArrayPersistent

4-31

4mexMakeArrayPersistentPurpose Make an mxArray persist after the MEX-file completes

C Syntax #include "mex.h"
void mexMakeArrayPersistent(mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray created by an mxCreate* routine.

Description By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-function finishes. If you want the mxArray to persist
through multiple invocations of the MEX-function, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit to see how to register a function
that gets called when the MEX-file is cleared. See mexLock to see how to lock
your MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

4-32

4mexMakeMemoryPersistentPurpose Make memory allocated by MATLAB memory allocation routines (mxCalloc,
mxMalloc, mxRealloc) persist after the MEX-function completes

C Syntax #include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

Arguments ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

Description By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing it when
the MEX-function is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit to see how to register a
function that gets called when the MEX-function is cleared. See mexLock to
see how to lock your MEX-function so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

mexPrintf

4-33

4mexPrintfPurpose ANSI C printf-style output routine

C Syntax #include "mex.h"
int mexPrintf(const char *format, ...);

Arguments format, ...
ANSI C printf-style format string and optional arguments.

Returns The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

Description This routine prints a string on the screen and in the diary (if the diary is in
use). It provides a callback to the standard C printf routine already linked
inside MATLAB, and avoids linking the entire stdio library into your
MEX-file.

In a MEX-file, you must call mexPrintf instead of printf.

Examples See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see phonebook.c in the refbook subdirectory of the
examples directory.

See Also mexErrMsgTxt, mexWarnMsgTxt

mexPutArray (Obsolete)

4-34

4mexPutArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexPutVariable(workspace, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
mexPutArray(array_ptr, workspace);

See Also mexPutVariable

mexPutFull (Obsolete)

4-35

4mexPutFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = mxCreateDoubleMatrix(m, n, mxREAL/mxCOMPLEX);
mxSetPr(array_ptr, pr);
mxSetPi(array_ptr, pi);
mexPutVariable("caller", name, array_ptr);

instead of

mexPutFull(name, m, n, pr, pi);

See Also mxSetM, mxSetN, mxSetPr, mxSetPi, mexPutVariable

mexPutMatrix (Obsolete)

4-36

4mexPutMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mexPutVariable("caller", var_name, array_ptr);

instead of

mexPutMatrix(matrix_ptr);

See Also mexPutVariable

mexPutVariable

4-37

4mexPutVariablePurpose Copy an mxArray from your MEX-function into the specified workspace

C Syntax #include "mex.h"
int mexPutVariable(const char *workspace, const char *var_name,

const mxArray *array_ptr);

Arguments workspace
Specifies the scope of the array that you are copying. The possible values are

var_name
Name given to the mxArray in the workspace.

array_ptr
Pointer to the mxArray.

Returns 0 on success; 1 on failure. A possible cause of failure is that array_ptr is NULL.

Description Call mexPutVariable to copy the mxArray, at pointer array_ptr, from your
MEX-function into the specified workspace. MATLAB gives the name,
var_name, to the copied mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-functions.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", array_ptr)

base Copy mxArray to the base workspace

caller Copy mxArray to the caller’s workspace

global Copy mxArray to the list of global variables

mexPutVariable

4-38

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

Examples See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariable

mexSet

4-39

4mexSetPurpose Set the value of the specified Handle Graphics property

C Syntax #include "mex.h"
int mexSet(double handle, const char *property,
 mxArray *value);

Arguments handle
Handle to a particular graphics object.

property
String naming a Handle Graphics property.

value
Pointer to an mxArray holding the new value to assign to the property.

Returns 0 on success; 1 on failure. Possible causes of failure include:

• Specifying a nonexistent property.

• Specifying an illegal value for that property. For example, specifying a string
value for a numerical property.

Description Call mexSet to set the value of the property of a certain graphics object. mexSet
is the API equivalent of the MATLAB set function. To get the value of a
graphics property, call mexGet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexGet

mexSetTrapFlag

4-40

4mexSetTrapFlagPurpose Control response of mexCallMATLAB to errors

C Syntax #include "mex.h"
void mexSetTrapFlag(int trap_flag);

Arguments trap_flag
Control flag. Currently, the only legal values are:

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trap_flag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trap_flag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does not
automatically terminate the MEX-file. Rather, MATLAB returns control to the
line in the MEX-file immediately following the call to mexCallMATLAB. The
MEX-file is then responsible for taking an appropriate response to the error.

Examples See mexsettrapflag.c in the mex subdirectory of the examples directory.

See Also mexAtExit, mexErrMsgTxt

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

mexUnlock

4-41

4mexUnlockPurpose Unlock this MEX-file so that it can be cleared from memory

C Syntax #include "mex.h"
void mexUnlock(void);

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

Examples See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexWarnMsgIdAndTxt

4-42

4mexWarnMsgIdAndTxtPurpose Issue warning message with identifier

C Syntax #include "mex.h"
void mexWarnMsgIdAndTxt(const char *identifier,

const char *warning_msg, ...);

Arguments identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

warning_msg
String containing the warning message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

...
Any additional arguments needed to translate formatting conversion
characters used in warning_msg. Each conversion character in warning_msg is
converted to one of these values.

Description Call mexWarnMsgIdAndTxt to write a warning message and its corresponding
identifier to the MATLAB window.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

See Also mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

mexWarnMsgTxt

4-43

4mexWarnMsgTxtPurpose Issue warning message

C Syntax #include "mex.h"
void mexWarnMsgTxt(const char *warning_msg);

Arguments warning_msg
String containing the warning message to be displayed.

Description mexWarnMsgTxt causes MATLAB to display the contents of warning_msg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

Examples See yprime.c in the mex subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see fulltosparse.c and revord.c in the refbook
subdirectory of the examples directory; see mxisfinite.c and mxsetnzmax.c in
the mx subdirectory of the examples directory.

See Also mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

mexWarnMsgTxt

4-44

5
C Engine Functions
engClose Quit MATLAB engine session

engEvalString Evaluate expression in string

engGetArray (Obsolete) Use engGetVariable

engGetFull (Obsolete) Use engGetVariable followed by appropriate mxGet routines

engGetMatrix (Obsolete) Use engGetVariable

engGetVariable Copy variable from engine workspace

engGetVisible Determine visibility of engine session

engOpen Start MATLAB engine session

engOpenSingleUse Start MATLAB engine session for single, nonshared use

engOutputBuffer Specify buffer for MATLAB output

engPutArray (Obsolete) Use engPutVariable

engPutFull (Obsolete) Use mxCreateDoubleMatrix and engPutVariable

engPutMatrix (Obsolete) Use engPutVariable

engPutVariable Put variables into engine workspace

engSetEvalCallback (Obsolete) Function is obsolete

engSetEvalTimeout (Obsolete) Function is obsolete

engSetVisible Show or hide engine session

engWinInit (Obsolete) Function is obsolete

engClose

5-2

5engClosePurpose Quit a MATLAB engine session

C Syntax #include "engine.h"
int engClose(Engine *ep);

Arguments ep
Engine pointer.

Description This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engEvalString

5-3

5engEvalStringPurpose Evaluate expression in string

C Syntax #include "engine.h"
int engEvalString(Engine *ep, const char *string);

Arguments ep
Engine pointer.

string
String to execute.

Description engEvalString evaluates the expression contained in string for the MATLAB
engine session, ep, previously started by engOpen. It returns a nonzero value if
the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to the MATLAB stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer. To turn off output buffering, use

engOutputBuffer(ep, NULL, 0);

Under Windows on a PC, engEvalString communicates with MATLAB using
a Component Object Model (COM) interface.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engGetArray (Obsolete)

5-4

5engGetArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

array_ptr = engGetVariable(ep, var_name);

instead of

array_ptr = engGetArray(ep, var_name);

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetFull (Obsolete)

5-5

5engGetFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

engGetVariable followed by appropriate mxGet routines (mxGetM, mxGetN,
mxGetPr, mxGetPi)

instead of

engGetFull

For example,

int engGetFull(
Engine *ep, /* engine pointer */
char *name, /* full array name */
int *m, /* returned number of rows */
int *n, /* returned number of columns */
double **pr, /* returned pointer to real part */
double **pi /* returned pointer to imaginary part */
)

{
mxArray *pmat;

pmat = engGetVariable(ep, name);

if (!pmat)
return(1);

if (!mxIsDouble(pmat)) {
mxDestroyArray(pmat);
return(1);

}

*m = mxGetM(pmat);
*n = mxGetN(pmat);
*pr = mxGetPr(pmat);
*pi = mxGetPi(pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);

engGetFull (Obsolete)

5-6

mxSetPi(pmat, NULL);

mxDestroyArray(pmat);

return(0);
}

See Also engGetVariable and examples in the eng_mat subdirectory of the examples
directory

engGetMatrix (Obsolete)

5-7

5engGetMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

array_ptr = engGetVariable(ep, var_name);

instead of

array_ptr = engGetMatrix(ep, var_name);

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetVariable

5-8

5engGetVariablePurpose Copy a variable from a MATLAB engine’s workspace

C Syntax #include "engine.h"
mxArray *engGetVariable(Engine *ep, const char *var_name);

Arguments ep
Engine pointer.

var_name
Name of mxArray to get from MATLAB.

Description engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or NULL if the attempt fails. engGetVariable fails if the named
variable does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

See Also engPutVariable

engGetVisible

5-9

5engGetVisiblePurpose Determine visibility of MATLAB engine session

C Syntax #include "engine.h"
int engGetVisible(Engine *ep, bool *value);

Arguments ep
Engine pointer.

value
Pointer to value returned from engGetVisible.

Description Windows Only
engGetVisible returns the current visibility setting for MATLAB engine
session, ep. A visible engine session runs in a window on the Windows desktop,
thus making the engine available for user interaction. An invisible session is
hidden from the user by removing it from the desktop.

engGetVisible returns 0 on success, and 1 otherwise.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engSetVisible

engOpen

5-10

5engOpenPurpose Start a MATLAB engine session

C Syntax #include "engine.h"
Engine *engOpen(const char *startcmd);

Arguments startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

Returns A pointer to an engine handle.

Description This routine allows you to start a MATLAB process for the purpose of using
MATLAB as a computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
the string startcmd, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails.

On UNIX systems, if startcmd is NULL or the empty string, engOpen starts
MATLAB on the current host using the command matlab. If startcmd is a
hostname, engOpen starts MATLAB on the designated host by embedding the
specified hostname string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or nonalphanumeric
characters), the string is executed literally to start MATLAB.

On UNIX systems, engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
MATLAB (parent) to two file descriptors in the engine program (child).

3 Executes a command to run MATLAB (rsh for remote execution).

Under Windows on a PC, engOpen opens a COM channel to MATLAB. This
starts the MATLAB that was registered during installation. If you did not
register during installation, on the command line you can enter the command:

matlab /regserver

engOpen

5-11

See “Introducing MATLAB COM Integration” for additional details.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engOpenSingleUse

5-12

5engOpenSingleUse Purpose Start a MATLAB engine session for single, nonshared use

C Syntax #include "engine.h"
Engine *engOpenSingleUse(const char *startcmd, void *dcom,

int *retstatus);

Arguments startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

dcom
Reserved for future use; must be NULL.

retstatus
Return status; possible cause of failure.

Description Windows
This routine allows you to start multiple MATLAB processes for the purpose of
using MATLAB as a computational engine. engOpenSingleUse starts a
MATLAB process, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails. engOpenSingleUse starts a new MATLAB
process each time it is called.

engOpenSingleUse opens a COM channel to MATLAB. This starts the
MATLAB that was registered during installation. If you did not register during
installation, on the command line you can enter the command:

matlab /regserver

engOpenSingleUse allows single-use instances of a MATLAB engine server.
engOpenSingleUse differs from engOpen, which allows multiple users to use the
same MATLAB engine server.

See Introducing MATLAB COM Integration for additional details.

UNIX
This routine is not supported and simply returns.

engOutputBuffer

5-13

5engOutputBufferPurpose Specify buffer for MATLAB output

C Syntax #include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

Arguments ep
Engine pointer.

p
Pointer to character buffer of length n.

n
Length of buffer p.

Description engOutputBuffer defines a character buffer for engEvalString to return any
output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p, n) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer pointed to by p.

To turn off output buffering, use engOutputBuffer(ep, NULL, 0);

Note The buffer returned by engEvalString is not guaranteed to be NULL
terminated.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engPutArray (Obsolete)

5-14

5engPutArray (Obsolete)V5 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutArray(ep, array_ptr);

See Also engPutVariable, engGetVariable, and examples in the eng_mat subdirectory
of the examples directory

engPutFull (Obsolete)

5-15

5engPutFull (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

mxCreateDoubleMatrix and engPutVariable

instead of

engPutFull

For example,

int engPutFull(
Engine *ep, /* engine pointer */
char *name, /* full array name */
int m, /* number of rows */
int n, /* number of columns */
double *pr, /* pointer to real part */
double *pi /* pointer to imaginary part */
)

{
mxArray *pmat;
int retval;

pmat = mxCreateDoubleMatrix(0, 0, mxCOMPLEX);

mxSetM(pmat, m);
mxSetN(pmat, n);
mxSetPr(pmat, pr);
mxSetPi(pmat, pi);

retval = engPutVariable(ep, name, pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);
mxSetPi(pmat, NULL);

mxDestroyArray(pmat);

return(retval);
}

engPutFull (Obsolete)

5-16

See Also engGetVariable, mxCreateDoubleMatrix

engPutMatrix (Obsolete)

5-17

5engPutMatrix (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

Use

engPutVariable(ep, var_name, array_ptr);

instead of

mxSetName(array_ptr, var_name);
engPutMatrix(ep, array_ptr);

See Also engPutVariable

engPutVariable

5-18

5engPutVariablePurpose Put variables into a MATLAB engine’s workspace

C Syntax #include "engine.h"
int engPutVariable(Engine *ep, const char *var_name, const mxArray

*array_ptr);

Arguments ep
Engine pointer.

var_name
Name given to the mxArray in the engine’s workspace.

array_ptr
mxArray pointer.

Description engPutVariable writes mxArray array_ptr to the engine ep, giving it the
variable name, var_name. If the mxArray does not exist in the workspace, it is
created. If an mxArray with the same name already exists in the workspace, the
existing mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

Examples UNIX
See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows
See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engSetEvalCallback (Obsolete)

5-19

5engSetEvalCallback (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

engSetEvalTimeout (Obsolete)

5-20

5engSetEvalTimeout (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

engSetVisible

5-21

5engSetVisiblePurpose Show or hide MATLAB engine session

C Syntax #include "engine.h"
int engSetVisible(Engine *ep, bool value);

Arguments ep
Engine pointer.

value
Value to set the Visible property to. Set value to 1 to make the engine window
visible, or to 0 to make it invisible.

Description Windows Only
engSetVisible makes the window for the MATLAB engine session, ep, either
visible or invisible on the Windows desktop. You can use this function to enable
or disable user interaction with the MATLAB engine session.

engSetVisible returns 0 on success, and 1 otherwise.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engGetVisible

engWinInit (Obsolete)

5-22

5engWinInit (Obsolete)

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function is not necessary in MATLAB
5 or later engine programs.

6
Fortran MAT-File
Functions
matClose Close MAT-file

matDeleteArray (Obsolete) Use matDeleteVariable

matDeleteMatrix (Obsolete) Use matDeleteVariable

matDeleteVariable Delete named mxArray from MAT-file

matGetArray (Obsolete) Use matGetVariable

matGetArrayHeader (Obsolete) Use matGetVariableInfo

matGetDir Get directory of mxArrays in MAT-file

matGetFull (Obsolete) Use matGetVariable followed by the appropriate mxGet
routines

matGetMatrix (Obsolete) Use matGetVariable

matGetNextArray (Obsolete) Use matGetNextVariable

matGetNextArrayHeader (Obsolete) Use matGetNextVariableInfo

matGetNextMatrix (Obsolete) Use matGetNextVariable

matGetNextVariable Read next mxArray from MAT-file

matGetNextVariableInfo Load array header information only

matGetString (Obsolete) Use matGetVariable and mxGetString

matGetVariable Read mxArray from MAT-file

matGetVariableInfo Load array header information only

matOpen Open MAT-file

matPutArray (Obsolete) Use matPutVariable

matPutArrayAsGlobal (Obsolete) Use matPutVariableAsGlobal

matPutFull (Obsolete) Use mxCreateDoubleMatrix and matPutVariable

matPutMatrix (Obsolete) Use matPutVariable

matPutString (Obsolete) Use mxCreateString and matPutArray

6-2

matPutVariable Write mxArrays into MAT-files

matPutVariableAsGlobal Put mxArrays into MAT-files

matClose

6-3

6matClosePurpose Closes a MAT-file

Fortran Syntax integer*4 function matClose(mfp)
integer*4 mfp

Arguments mfp
Pointer to MAT-file information.

Description matClose closes the MAT-file associated with mfp. It returns -1 for a write
error, and 0 if successful.

Examples See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use this MAT-file routine
in a Fortran program.

matDeleteArray (Obsolete)

6-4

6matDeleteArray (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

matDeleteMatrix (Obsolete)

6-5

6matDeleteMatrix (Obsolete)Purpose Delete named mxArray from MAT-file

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

matDeleteVariable

6-6

6matDeleteVariablePurpose Delete named mxArray from MAT-file

Fortran Syntax integer*4 function matDeleteVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to delete.

Description matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. The function returns 0 if successful, and nonzero otherwise.

matGetArray (Obsolete)

6-7

6matGetArray (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

matGetArrayHeader (Obsolete)

6-8

6matGetArrayHeader (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariableInfo instead.

matGetDir

6-9

6matGetDirPurpose Get directory of mxArrays in a MAT-file

Fortran Syntax integer*4 function matGetDir(mfp, num)
integer*4 mfp, num

Arguments mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

Description This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
names of the mxArrays in the MAT-file pointed to by mfp. The length of the
internal array (number of mxArrays in the MAT-file) is placed into num. The
internal array is allocated using a single mxCalloc. Use mxFree to free the
array when you are finished with it.

matGetDir returns 0 and sets num to a negative number if it fails. If num is zero,
mfp contains no mxArrays.

MATLAB variable names can be up to length 32.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

matGetFull (Obsolete)

6-10

6matGetFull (Obsolete)Purpose Reads full mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = matGetVariable(mfp, name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)

mxDestroyArray(pm)

instead of

matGetFull(mfp, name, m, n, pr, pi)

See Also matGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

matGetMatrix (Obsolete)

6-11

6matGetMatrix (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

matGetNextArray (Obsolete)

6-12

6matGetNextArray (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

matGetNextArrayHeader (Obsolete)

6-13

6matGetNextArrayHeader (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariableInfo instead.

matGetNextMatrix (Obsolete)

6-14

6matGetNextMatrix (Obsolete)Purpose Get next mxArray from MAT-file

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

matGetNextVariable

6-15

6matGetNextVariablePurpose Read next mxArray from MAT-file

Fortran Syntax integer*4 function matGetNextVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns 0 when the end-of-file is reached or if there is an
error condition.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

matGetNextVariableInfo

6-16

6matGetNextVariableInfoPurpose Load array header information only

Fortran Syntax integer*4 function matGetNextVariableInfo(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

Description matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to
MATLAB or saved to MAT-files.

matGetString (Obsolete)

6-17

6matGetString (Obsolete)Purpose Copy character mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = matGetVariable(mfp, name)
mxGetString(pm, str, strlen)

instead of

matGetString(mfp, name, str, strlen)

matGetVariable

6-18

6matGetVariablePurpose Read mxArrays from MAT-files

Fortran Syntax integer*4 function matGetVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to get from MAT-file.

Description This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or 0 if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

matGetVariableInfo

6-19

6matGetVariableInfoPurpose Load array header information only

Fortran Syntax integer*4 function matGetVariableInfo(mfp, name);
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray.

Description matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells/structures
through their leaf elements, but does not include pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetVariableInfo sets them to -1 instead. These headers
are for informational use only and should never be passed back to MATLAB or
saved to MAT-files.

matOpen

6-20

6matOpenPurpose Opens a MAT-file

Fortran Syntax integer*4 function matOpen(filename, mode)
integer*4 mfp
character*(*) filename, mode

Arguments filename
Name of file to open.

mode
File opening mode. Legal values for mode are:

mfp
Pointer to MAT-file information.

Description This routine allows you to open MAT-files for reading and writing.

Table 1-1:

r Open file for reading only. Determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Open file for update, both reading and writing, but does not
create the file if the file does not exist (equivalent to the r+
mode of fopen). Determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Open file for writing only. Deletes previous contents, if any.

w4 Create a Level 4 MAT-file, compatible with MATLAB Versions
4 and earlier.

wL Open file for writing character data using the default character
set for your system. The resulting MAT-file can be read with
MATLAB version 6 or 6.5.
If you do not use the wL mode switch, MATLAB writes
character data to the MAT-file using Unicode encoding by
default.

wz Open file for writing compressed data.

matOpen

6-21

matOpen opens the named file and returns a file handle, or 0 if the open fails.

Examples See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a Fortran program.

matPutArray (Obsolete)

6-22

6matPutArray (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

matPutVariable(mfp, name, pm)

instead of

mxSetName(pm, name);
matPutArray(pm, mfp);

matPutArrayAsGlobal (Obsolete)

6-23

6matPutArrayAsGlobal (Obsolete)Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariableAsGlobal instead.

matPutFull (Obsolete)

6-24

6matPutFull (Obsolete)Purpose Writes full mxArrays into MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
matPutVariable(mfp, name, pm)

mxDestroyArray(pm)

instead of

matPutFull(mfp, name, m, n, pr, pi)

See Also mxCreateDoubleMatrix, mxSetName (Obsolete), mxSetPr, mxSetPi,
matPutVariable, mxDestroyArray

matPutMatrix (Obsolete)

6-25

6matPutMatrix (Obsolete)Purpose Writes mxArrays into MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariable instead.

matPutString (Obsolete)

6-26

6matPutString (Obsolete)Purpose Write character mxArrays into MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateString(str)
matPutVariable(mfp, name, pm)
mxDestroyArray(pm)

instead of

matPutString(mfp, name, str)

matPutVariable

6-27

6matPutVariablePurpose Write mxArrays into MAT-files

Fortran Syntax integer*4 function matPutVariable(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs.

matPutVariableAsGlobal

6-28

6matPutVariableAsGlobalPurpose Put mxArrays into MAT-files as originating from the global workspace

Fortran Syntax integer*4 function matPutVariableAsGlobal(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

Description This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.

matPutVariableAsGlobal

6-29

matPutVariableAsGlobal

6-30

7
Fortran MX-Functions
mxAddField Add field to structure array

mxCalcSingleSubscript Return offset from first element to desired element

mxCalloc Allocate dynamic memory using the MATLAB memory
manager

mxClassIDFromClassName Get identifier that corresponds to a class

mxClearLogical (Obsolete) Clear logical flag

mxCopyCharacterToPtr Copy character values from Fortran array to pointer array

mxCopyComplex8ToPtr Copy COMPLEX*8 values from Fortran array to pointer array

mxCopyComplex16ToPtr Copy COMPLEX*16 values from Fortran array to pointer array

mxCopyInteger1ToPtr Copy INTEGER*1 values from Fortran array to pointer array

mxCopyInteger2ToPtr Copy INTEGER*2 values from Fortran array to pointer array

mxCopyInteger4ToPtr Copy INTEGER*4 values from Fortran array to pointer array

mxCopyPtrToCharacter Copy character values from pointer array to Fortran array

mxCopyPtrToComplex8 Copy COMPLEX*8 values from pointer array to Fortran array

mxCopyPtrToComplex16 Copy COMPLEX*16 values from pointer array to Fortran array

mxCopyPtrToInteger1 Copy INTEGER*1 values from pointer array to Fortran array

mxCopyPtrToInteger2 Copy INTEGER*2 values from pointer array to Fortran array

mxCopyPtrToInteger4 Copy INTEGER*4 values from pointer array to Fortran array

mxCopyPtrToPtrArray Copy pointer values from pointer array to Fortran array

mxCopyPtrToReal4 Copy REAL*4 values from pointer array to Fortran array

mxCopyPtrToReal8 Copy REAL*8 values from pointer array to Fortran array

mxCopyReal4ToPtr Copy REAL*4 values from Fortran array to pointer array

mxCopyReal8ToPtr Copy REAL*8 values from Fortran array to pointer array

mxCreateCellArray Create unpopulated N-dimensional cell mxArray

mxCreateCellMatrix Create unpopulated two-dimensional cell mxArray

mxCreateCharArray Create unpopulated N-dimensional string mxArray

7-2

mxCreateCharMatrixFromStrings Create populated two-dimensional string mxArray

mxCreateDoubleMatrix Create unpopulated two-dimensional, double-precision,
floating-point mxArray

mxCreateFull (Obsolete) Create unpopulated two-dimensional mxArray

mxCreateNumericArray Create unpopulated N-dimensional numeric mxArray

mxCreateNumericMatrix Create numeric matrix and initialize data elements to 0

mxCreateScalarDouble Create scalar, double-precision array initialized to specified
value

mxCreateSparse Create two-dimensional unpopulated sparse mxArray

mxCreateString Create 1-by-n character array initialized to specified string

mxCreateStructArray Create unpopulated N-dimensional structure mxArray

mxCreateStructMatrix Create unpopulated two-dimensional structure mxArray

mxDestroyArray Free dynamic memory allocated by an mxCreate routine

mxDuplicateArray Make deep copy of array

mxFree Free dynamic memory allocated by mxCalloc

mxFreeMatrix (Obsolete) Free dynamic memory allocated by mxCreateFull and
mxCreateSparse

mxGetCell Get cell's contents

mxGetClassID Get mxArray's class

mxGetClassName Get mxArray's class

mxGetData Get pointer to data

mxGetDimensions Get pointer to dimensions array

mxGetElementSize Get number of bytes required to store each data element

mxGetEps Get value of eps

mxGetField Get field value, given field name and index in structure array

mxGetFieldByNumber Get field value, given field number and index in structure
array

7-3

mxGetFieldNameByNumber Get field name, given field number in structure array

mxGetFieldNumber Get field number, given field name in structure array

mxGetImagData Get pointer to imaginary data of mxArray

mxGetInf Get value of infinity

mxGetIr Get ir array

mxGetJc Get jc array

mxGetM Get number of rows

mxGetN Get total number of columns

mxGetName (Obsolete) Get name of specified mxArray

mxGetNaN Get the value of NaN

mxGetNumberOfDimensions Get number of dimensions

mxGetNumberOfElements Get number of elements in array

mxGetNumberOfFields Get number of fields in structure mxArray

mxGetNzmax Get number of elements in ir, pr, and pi arrays

mxGetPi Get mxArray’s imaginary data elements

mxGetPr Get mxArray’s real data elements

mxGetScalar Get real component of mxArray’s first data element

mxGetString Create character array from mxArray

mxIsCell True if cell mxArray

mxIsChar True if string mxArray

mxIsClass True if mxArray is member of specified class

mxIsComplex Inquire if mxArray is complex

mxIsDouble Inquire if mxArray is of type double

mxIsEmpty True if mxArray is empty

mxIsFinite True if value is finite

mxIsFromGlobalWS True if mxArray was copied from the MATLAB global
workspace

7-4

mxIsFull (Obsolete) Inquire if mxArray is full

mxIsInf True if value is infinite

mxIsInt8 True if mxArray represents its data as signed 8-bit integers

mxIsInt16 True if mxArray represents its data as signed 16-bit integers

mxIsInt32 True if mxArray represents its data as signed 32-bit integers

mxIsLogical True if mxArray is Boolean

mxIsNaN True if value is NaN

mxIsNumeric Inquire if mxArray contains numeric data

mxIsSingle True if mxArray represents its data as single-precision,
floating-point numbers

mxIsSparse Inquire if mxArray is sparse

mxIsString (Obsolete) Inquire if mxArray contains character array

mxIsStruct True if structure mxArray

mxIsUint8 True if mxArray represents its data as unsigned 8-bit integers

mxIsUint16 True if mxArray represents its data as unsigned 16-bit
integers

mxIsUint32 True if mxArray represents its data as unsigned 32-bit
integers

mxMalloc Allocate dynamic memory using the MATLAB memory
manager

mxRealloc Reallocate memory

mxRemoveField Remove field from structure array

mxSetCell Set value of one cell

mxSetData Set pointer to data

mxSetDimensions Modify number/size of dimensions

mxSetField Set field value of structure array, given field name/index

mxSetFieldByNumber Set field value in structure array, given field number/index

7-5

mxSetImagData Set imaginary data pointer for mxArray

mxSetIr Set ir array of sparse mxArray

mxSetJc Set jc array of sparse mxArray

mxSetLogical (Obsolete) Set logical flag

mxSetM Set number of rows

mxSetN Set number of columns

mxSetName (Obsolete) Set name of mxArray

mxSetNzmax Set storage space for nonzero elements

mxSetPi Set new imaginary data for an mxArray

mxSetPr Set new real data for an mxArray

mxAddField

7-6

7mxAddFieldPurpose Add a field to a structure array

Fortran Syntax integer*4 function mxAddField(pm, fieldname)
integer*4 pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of the field you want to add.

Returns Field number on success, or 0 if inputs are invalid or an out-of-memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the
individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

mxCalcSingleSubscript

7-7

7mxCalcSingleSubscriptPurpose Return the offset (index) from the first element to the desired element

Fortran Syntax integer*4 function mxCalcSingleSubscript(pm, nsubs, subs)
integer*4 pm, nsubs, subs

Arguments pm
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that pm points to.

subs
An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs(1) specifies the row subscript, and the value in
subs(2) specifies the column subscript. Use 1-based indexing to specify the
desired array element. For example, to express the starting element of a
two-dimensional mxArray in subs, set subs(1) to 1 and subs(2) to 1.

Returns The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then
mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (1,1) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

Use mxCalcSingleSubscript with functions that interact with
multidimensional cells and structures. mxGetCell and mxSetCell are two such
functions.

See Also mxGetCell, mxSetCell

mxCalloc

7-8

7mxCallocPurpose Allocate dynamic memory using the MATLAB memory manager

Fortran Syntax integer*4 function mxCalloc(n, size)
integer*4 n, size

Arguments n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. When you finish using the memory
allocated by mxCalloc, call mxFree. mxFree deallocates the memory.

mxCalloc works differently in MEX-files than in stand-alone MATLAB
applications. In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to 0.

• Registers the returned heap space with the MATLAB memory management
facility.

In stand-alone MATLAB applications, the MATLAB memory manager is not
used.

See Also mxFree

mxClassIDFromClassName

7-9

7mxClassIDFromClassNamePurpose Get identifier that corresponds to a class

Fortran Syntax integer*4 function mxClassIDFromClassName(classname)
character*(*) classname

Arguments classname
A character array specifying a MATLAB class name. Use one of the strings
from the table below.

Returns A numeric identifier used internally by MATLAB to represent the MATLAB
class, classname. Returns 0 if classname is not a recognized MATLAB class.

Description Use mxClassIDFromClassName to obtain an identifier for any class that is
recognized by MATLAB. This function is most commonly used to provide a
classid argument to mxCreateNumericArray and mxCreateNumericMatrix.

Valid choices for classname are shown below. MATLAB returns 0 if classname
is unrecognized.

See Also mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix

cell char double function_handle

int8 int16 int32 logical

object single struct uint8

uint16 uint32

mxClearLogical (Obsolete)

7-10

7mxClearLogical (Obsolete)Purpose Clear the logical flag

Note As of MATLAB version 6.5, mxClearLogical is obsolete. Support for
mxClearLogical may be removed in a future version.

Fortran Syntax subroutine mxClearLogical(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray having a numeric class.

Description Use mxClearLogical to turn off the mxArray’s logical flag. This flag, when
cleared, tells MATLAB that the mxArray’s data is to be treated as numeric data
rather than as Boolean data. If the logical flag is on, then MATLAB treats a 0
value as meaning false and a nonzero value as meaning true.

Call mxSetLogical to turn on the mxArray’s logical flag. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

See Also mxIsLogical, mxSetLogical (Obsolete), logical

mxCopyCharacterToPtr

7-11

7mxCopyCharacterToPtrPurpose Copy character values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyCharacterToPtr(y, px, n)
character*(*) y
integer*4 px, n

Arguments y
character Fortran array.

px
Pointer to character or name array.

n
Number of elements to copy.

Description mxCopyCharacterToPtr copies n character values from the Fortran character
array y into the MATLAB string array pointed to by px. This subroutine is
essential for copying character data between MATLAB pointer arrays and
ordinary Fortran character arrays.

See Also mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyComplex8ToPtr

7-12

7mxCopyComplex8ToPtrPurpose Copy COMPLEX*8 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyComplex8ToPtr(y, pr, pi, n)
complex*8 y(n)
integer*4 pr, pi, n

Arguments y
COMPLEX*8 Fortran array.

pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran COMPLEX*8
array y into the MATLAB arrays pointed to by pr and pi. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyPtrToComplex8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyComplex16ToPtr

7-13

7mxCopyComplex16ToPtrPurpose Copy COMPLEX*16 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
integer*4 pr, pi, n

Arguments y
COMPLEX*16 Fortran array.

pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex16, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyInteger1ToPtr

7-14

7mxCopyInteger1ToPtrPurpose Copy INTEGER*1 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyInteger1ToPtr(y, px, n)
integer*1 y(n)
integer*4 px, n

Arguments y
INTEGER*1 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger1ToPtr copies n INTEGER*1 values from the Fortran INTEGER*1
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger1, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyInteger2ToPtr

7-15

7mxCopyInteger2ToPtrPurpose Copy INTEGER*2 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyInteger2ToPtr(y, px, n)
integer*2 y(n)
integer*4 px, n

Arguments y
INTEGER*2 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran INTEGER*2
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger2, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyInteger4ToPtr

7-16

7mxCopyInteger4ToPtrPurpose Copy INTEGER*4 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
integer*4 px, n

Arguments y
INTEGER*4 Fortran array.

px
Pointer to ir or jc array.

n
Number of elements to copy.

Description mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran INTEGER*4
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyPtrToInteger4, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToCharacter

7-17

7mxCopyPtrToCharacterPurpose Copy character values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToCharacter(px, y, n)
character*(*) y
integer*4 px, n

Arguments px
Pointer to character or name array.

y
character Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToCharacter copies n character values from the MATLAB array
pointed to by px into the Fortran character array y. This subroutine is
essential for copying character data from MATLAB pointer arrays into
ordinary Fortran character arrays.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyPtrToComplex8

7-18

7mxCopyPtrToComplex8Purpose Copy COMPLEX*8 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToComplex8(pr, pi, y, n)
complex*8 y(n)
integer*4 pr, pi, n

Arguments pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

y
COMPLEX*8 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*8 array y. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyComplex8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToComplex16

7-19

7mxCopyPtrToComplex16Purpose Copy COMPLEX*16 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToComplex16(pr, pi, y, n)
complex*16 y(n)
integer*4 pr, pi, n

Arguments pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

y
COMPLEX*16 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*16 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

See Also mxCopyComplex16ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToInteger1

7-20

7mxCopyPtrToInteger1Purpose Copy INTEGER*1 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger1(px, y, n)
integer*1 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*1 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger1 copies n INTEGER*1 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*1 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger1ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToInteger2

7-21

7mxCopyPtrToInteger2Purpose Copy INTEGER*2 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger2(px, y, n)
integer*2 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*2 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*2 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger2ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToInteger4

7-22

7mxCopyPtrToInteger4Purpose Copy INTEGER*4 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToInteger4(px, y, n)
integer*4 y(n)
integer*4 px, n

Arguments px
Pointer to ir or jc array.

y
INTEGER*4 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*4 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

See Also mxCopyInteger4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrToPtrArray

7-23

7mxCopyPtrToPtrArrayPurpose Copy pointer values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToPtrArray(px, y, n)
integer*4 y(n)
integer*4 px, n

Arguments px
Pointer to pointer array.

y
INTEGER*4 Fortran array.

n
Number of pointers to copy.

Description mxCopyPtrToPtrArray copies n pointers from the MATLAB array pointed to by
px into the Fortran array y. This subroutine is essential for copying the output
of matGetDir into an array of pointers. After calling this function, each element
of y contains a pointer to a string. You can convert these strings to Fortran
character arrays by passing each element of y as the first argument to
mxCopyPtrToCharacter.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also matGetDir, mxCopyPtrToCharacter

mxCopyPtrToReal4

7-24

7mxCopyPtrToReal4Purpose Copy REAL*4 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToReal4(px, y, n)
real*4 y(n)
integer*4 px, n

Arguments px
Pointer to the real or imaginary data of a single-precision MATLAB array.

y
REAL*4 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*4 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

See Also mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrToReal8

7-25

7mxCopyPtrToReal8Purpose Copy REAL*8 values from a pointer array to a Fortran array

Fortran Syntax subroutine mxCopyPtrToReal8(px, y, n)
real*8 y(n)
integer*4 px, n

Arguments px
Pointer to the real or imaginary data of a double-precision MATLAB array.

y
REAL*8 Fortran array.

n
Number of elements to copy.

Description mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*8 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

Example See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyReal4ToPtr

7-26

7mxCopyReal4ToPtrPurpose Copy REAL*4 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyReal4ToPtr(y, px, n)
real*4 y(n)
integer*4 px, n

Arguments y
REAL*4 Fortran array.

px
Pointer to the real or imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyReal4ToPtr(y,px,n) copies n REAL*4 values from the Fortran REAL*4
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyReal8ToPtr

7-27

7mxCopyReal8ToPtrPurpose Copy REAL*8 values from a Fortran array to a pointer array

Fortran Syntax subroutine mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
integer*4 px, n

Arguments y
REAL*8 Fortran array.

px
Pointer to the real or imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

Description mxCopyReal8ToPtr(y,px,n) copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Example See matdemo1.f and fengdemo.f in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCreateCellArray

7-28

7mxCreateCellArrayPurpose Create an unpopulated N-dimensional cell mxArray

Fortran Syntax integer*4 function mxCreateCellArray(ndim, dims)
integer*4 ndim, dims

Arguments ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims(1) to 5 and
dims(2) to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to 0. To put data into a cell, call mxSetCell.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

mxCreateCellMatrix

7-29

7mxCreateCellMatrixPurpose Create an unpopulated two-dimensional cell mxArray

Fortran Syntax integer*4 function mxCreateCellMatrix(m, n)
integer*4 m, n

Arguments m
The desired number of rows.

n
The desired number of columns.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to 0. To put data into the cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

See Also mxCreateCellArray

mxCreateCharArray

7-30

7mxCreateCharArrayPurpose Create an unpopulated N-dimensional character mxArray

Fortran Syntax integer*4 function mxCreateCharArray(ndim, dims)
integer*4 ndim, dims

Arguments ndim
The desired number of dimensions in the character mxArray. You must specify
a positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 character mxArray. The dims array must have at least
ndim elements.

Returns A pointer to the created character mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Description Use mxCreateCharArray to create an mxArray of characters whose size is
defined by ndim and dims. For example, to establish a two-dimensional mxArray
of characters having dimensions 12-by-3, set

ndim = 2;
dims(1) = 12; dims(2) = 3;

The created mxArray is unpopulated; that is, mxCreateCharArray initializes
each character to INTEGER*2 0.

See Also mxCreateString

mxCreateCharMatrixFromStrings

7-31

7mxCreateCharMatrixFromStringsPurpose Create a populated two-dimensional char mxArray

Fortran Syntax integer*4 function mxCreateCharMatrixFromStrings(m, str)
integer*4 m
character*(*) str(m)

Arguments m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the size of the str array.

str
A Fortran character*n array of size m, where each element of the array is n
bytes.

Returns A pointer to the created char mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns 0. If unsuccessful in a MEX-file, the MEX-file terminates, and control
returns to the MATLAB prompt. Insufficient free heap space is the primary
reason for mxCreateCharMatrixFromStrings to be unsuccessful. Another
possible reason for failure is that str contains fewer than m strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to str. The created mxArray has
dimensions m-by-n, where n is the length of the number of characters in str(i).

See Also mxCreateCharArray, mxCreateString

mxCreateDoubleMatrix

7-32

7mxCreateDoubleMatrixPurpose Create an unpopulated two-dimensional, double-precision, floating-point
mxArray

Fortran Syntax integer*4 function mxCreateDoubleMatrix(m, n, ComplexFlag)
integer*4 m, n, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary component,
specify 0. If the data has some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateDoubleMatrix is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.

If you set ComplexFlag to 0, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and initializes each element to 0.0.

If you set ComplexFlag to 1, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and m-by-n imaginary elements. It initializes each
real and imaginary element to 0.0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

See Also mxCreateNumericArray

mxCreateFull (Obsolete)

7-33

7mxCreateFull (Obsolete)Purpose Create an unpopulated two-dimensional mxArray

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxCreateDoubleMatrix instead.

See Also mxCreateSparse

mxCreateNumericArray

7-34

7mxCreateNumericArrayPurpose Create an unpopulated N-dimensional numeric mxArray

Fortran Syntax integer*4 function mxCreateNumericArray(ndim, dims, classid,
ComplexFlag)

integer*4 ndim, dims, classid, ComplexFlag

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

classid
A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericArray accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data will have some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateNumericArray is unsuccessful when there is not enough free
heap space to create the mxArray.

mxCreateNumericArray

7-35

Description Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by classid. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag is set to 1, mxCreateNumericArray also initializes all its
imaginary data elements to 0.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

mxCreateNumericArray differs from mxCreateDoubleMatrix in two important
respects:

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

MATLAB Class Name Fortran Type

int8 INTEGER*1

int16 INTEGER*2

int32 INTEGER*4

single REAL*4

double REAL*8

single, with imaginary components COMPLEX*8

double, with imaginary components COMPLEX*16

mxCreateNumericArray

7-36

Example To create a 4-by-4-by-2 array of REAL*8 elements having no imaginary
components, use

C Create 4x4x2 mxArray of REAL*8
 data dims / 4, 4, 2 /
 mxCreateNumericArray(3, dims,
 + mxClassIDFromClassName('double'), 0)

See Also mxCreateDoubleMatrix, mxCreateNumericMatrix, mxCreateSparse,
mxCreateString

mxCreateNumericMatrix

7-37

7mxCreateNumericMatrixPurpose Create a numeric matrix and initialize all its data elements to 0

Fortran Syntax integer*4 function mxCreateNumericMatrix(m, n, classid,
ComplexFlag)

integer*4 m, n, classid, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

classid
A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericMatrix accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data has some imaginary components, specify 1.

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns 0.

Description Call mxCreateNumericMatrix to create an two-dimensional mxArray in which
all data elements have the numeric data type specified by classid. After
creating the mxArray, mxCreateNumericMatrix initializes all its real data
elements to 0. If ComplexFlag is set to 1, mxCreateNumericMatrix also
initializes all its imaginary data elements to 0. mxCreateNumericMatrix

mxCreateNumericMatrix

7-38

allocates dynamic memory to store the created mxArray. When you finish using
the mxArray, call mxDestroyArray to destroy it.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

Example To create a 4-by-3 matrix of REAL*4 elements having no imaginary components,
use

C Create 4x3 mxArray of REAL*4
 mxCreateNumericMatrix(4, 3,
 + mxClassIDFromClassName('single'), 0)

See Also mxCreateDoubleMatrix, mxCreateNumericArray

MATLAB Class Name Fortran Type

int8 BYTE

int16 INTEGER*2

int32 INTEGER*4

single REAL*4

double REAL*8

single, with imaginary components COMPLEX*8

double, with imaginary components COMPLEX*16

mxCreateScalarDouble

7-39

7mxCreateScalarDoublePurpose Create a scalar, double-precision array initialized to the specified value

Fortran Syntax integer*4 function mxCreateScalarDouble(value)
real*4 value

Arguments value
The desired value to which you want to initialize the array.

Returns A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns 0.

Description Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code.

pm = mxCreateDoubleMatrix(1, 1, 0)
mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

7-40

7mxCreateSparsePurpose Create a two-dimensional unpopulated sparse mxArray

Fortran Syntax integer*4 function mxCreateSparse(m, n, nzmax, ComplexFlag)
integer*4 m, n, nzmax, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag = 1, pi arrays. Set the value of nzmax to be greater than
or equal to the number of nonzero elements you plan to put into the mxArray,
but make sure that nzmax is less than or equal to m*n.

ComplexFlag
Specify REAL = 0 if the data has no imaginary components; specify
COMPLEX = 1 if the data has some imaginary components.

Returns An unpopulated, sparse double mxArray if successful, and 0 otherwise.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray. The
returned sparse mxArray contains no sparse information and cannot be passed
as an argument to any MATLAB sparse functions. In order to make the
returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it
exists) pi array.

mxCreateSparse allocates space for

• A pr array of length nzmax.

• A pi array of length nzmax (but only if ComplexFlag is COMPLEX = 1).

• An ir array of length nzmax.

• A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetIr, mxSetJc

mxCreateString

7-41

7mxCreateStringPurpose Create a 1-by-n character array initialized to the specified string

Fortran Syntax integer*4 function mxCreateString(str)
character*(*) str

Arguments str
The string that is to serve as the mxArray's initial data.

Returns A character array initialized to str if successful, and 0 otherwise.

Description Use mxCreateString to create a character mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require character
mxArray inputs.

Free the character mxArray when you are finished using it. To free a
character mxArray, call mxDestroyArray.

Example See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxCreateStructArray

7-42

7mxCreateStructArrayPurpose Create an unpopulated N-dimensional structure mxArray

Fortran Syntax integer*4 function mxCreateStructArray(ndim, dims, nfields,
fieldnames)

integer*4 ndim, dims, nfields
character*(*) fieldnames(nfields)

Arguments ndim
Number of dimensions. If you set ndim to be less than 2, mxCreateStructArray
creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[1] to 5 and dims[2]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Returns A pointer to the created structure mxArray if successful, and zero otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in fieldnames.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to zero. Call mxSetField or mxSetFieldByNumber to place a non-zero
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

See Also mxDestroyArray, mxCreateStructMatrix, mxIsStruct, mxAddField,
mxSetField, mxGetField, mxRemoveField

mxCreateStructMatrix

7-43

7mxCreateStructMatrixPurpose Create an unpopulated two-dimensional structure mxArray

Fortran Syntax integer*4 function mxCreateStructMatrix(m, n, nfields, fieldnames)
integer*4 m, n, nfields
character*(*) fieldnames(nfields)

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Returns A pointer to the created structure mxArray if successful, and 0 otherwise. The
most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

See Also mxCreateStructArray, mxIsStruct, mxAddField, mxSetField, mxGetField,
mxRemoveField

mxDestroyArray

7-44

7mxDestroyArrayPurpose Free dynamic memory allocated by an mxCreate routine

Fortran Syntax subroutine mxDestroyArray(pm)
integer*4 pm

Arguments pm
Pointer to the mxArray that you want to free.

Description mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray’s
characteristics fields (such as m and n), but also deallocates all the mxArray’s
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

See Also mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

mxDuplicateArray

7-45

7mxDuplicateArrayPurpose Make a deep copy of an array

Fortran Syntax integer*4 function mxDuplicateArray(in)
integer*4 in

Arguments in
Pointer to the mxArray that you want to copy.

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

mxFree

7-46

7mxFreePurpose Free dynamic memory allocated by mxCalloc

Fortran Syntax subroutine mxFree(ptr)
integer*4 ptr

Arguments ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

Description mxFree deallocates heap space. mxFree frees memory using the MATLAB
memory management facility. This ensures correct memory management in
error and abort (Ctrl-C) conditions.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications. With MEX-files, mxFree returns to the heap any memory
allocated using mxCalloc. If you do not free memory with this command,
MATLAB frees it automatically on return from the MEX-file. In stand-alone
MATLAB applications, you have to explicitly free memory, and MATLAB
memory management is not used.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call mexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

See Also mxCalloc, mxDestroyArray

mxFreeMatrix (Obsolete)

7-47

7mxFreeMatrix (Obsolete)Purpose Free dynamic memory allocated by mxCreateFull and mxCreateSparse

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxDestroyArray instead.

See Also mxCalloc, mxFree

mxGetCell

7-48

7mxGetCellPurpose Get a cell’s contents

Fortran Syntax integer*4 function mxGetCell(pm, index)
integer*4 pm, index

Arguments pm
Pointer to a cell mxArray.

index
The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and 0 otherwise. Causes of
failure include:

• The indexed cell array element has not been populated.

• Specifying an array pointer, pm, that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

See Also mxCreateCellArray, mxIsCell, mxSetCell

mxGetClassID

7-49

7mxGetClassIDPurpose Get an mxArray’s class identifier

Fortran Syntax integer*4 function mxGetClassID(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns A numeric identifier that represents the class (category) of the mxArray that pm
points to.

Description Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding.

See Also mxGetClassName

mxGetClassName

7-50

7mxGetClassNamePurpose Get (as a character array) an mxArray’s class

Fortran Syntax character*(*) function mxGetClassName(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The class (as a character array) of mxArray, pm.

Description Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if pm
points to a logical mxArray, then mxGetClassName returns logical.

See Also mxGetClassID

mxGetData

7-51

7mxGetDataPurpose Get pointer to data

Fortran Syntax integer*4 function mxGetData(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the real data, on success. Returns 0 if there
is no real data or if there is an error.

Description Call mxGetData to get a pointer to the real data in the mxArray that pm points
to. To copy values from the pointer to Fortran, use one of the mxCopyPtrTo*
functions in the manner shown here.

C Get the data in mxArray, pm
 mxCopyPtrToReal8(mxGetData(pm), data,
 + mxGetNumberOfElements(pm))

mxGetData is equivalent to using mxGetPr.

See Also mxGetImagData, mxSetData, mxSetImagData, mxCopyPtrToReal4,
mxCopyPtrToReal8, mxGetPr

mxGetDimensions

7-52

7mxGetDimensionsPurpose Get a pointer to the dimensions array

Fortran Syntax integer*4 function mxGetDimensions(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns A pointer to the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension.

Description Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that pm points to. Call mxGetNumberOfDimensions to get the
number of dimensions in the mxArray.

mxGetDimensions returns a pointer to the dimension array. To copy the values
to Fortran, use mxCopyPtrToInteger4 in the manner shown here.

C Get dimensions of mxArray, pm
 mxCopyPtrToInteger4(mxGetDimensions(pm), dims,
 + mxGetNumberOfDimensions(pm))

See Also mxGetNumberOfDimensions

mxGetElementSize

7-53

7mxGetElementSizePurpose Get the number of bytes required to store each data element

Fortran Syntax integer*4 function mxGetElementSize(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that pm points
to an mxArray having an unrecognized class. If pm points to a cell mxArray or a
structure mxArray, then mxGetElementSize returns the size of a pointer (not
the size of all the elements in each cell or structure field).

Description Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the class of an mxArray is int16, then the
mxArray stores each data element as a 16-bit (2 byte) signed integer. Thus,
mxGetElementSize returns 2.

See Also mxGetM, mxGetN

mxGetEps

7-54

7mxGetEpsPurpose Get value of eps

Fortran Syntax real*8 function mxGetEps

Returns The value of the MATLAB eps variable.

Description Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB pinv and rank
functions use eps as a default tolerance.

See Also mxGetInf, mxGetNaN

mxGetField

7-55

7mxGetFieldPurpose Get a field value, given a field name and an index in a structure array

Fortran Syntax integer*4 function mxGetField(pm, index, fieldname)
integer*4 pm, index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified fieldname, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. To determine if pm
points to a structure mxArray, call mxIsStruct.

• Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 10.

• Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber to get
existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the specified
field.

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes fieldnumber as its third argument, and
mxGetField takes fieldname as its third argument.

mxGetField

7-56

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxSetFieldByNumber

mxGetFieldByNumber

7-57

7mxGetFieldByNumberPurpose Get a field value, given a field number and an index in a structure array

Fortran Syntax integer*4 function mxGetFieldByNumber(pm, index, fieldnumber)
integer*4 pm, index, fieldnumber

Arguments pm
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber
The position of the field whose value you want to extract. The first field within
each element has a field number of 1, the second field has a field number of 2,
and so on. The last field has a field number of N, where N is the number of fields.

Returns A pointer to the mxArray in the specified field for the desired element, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to is a structure mxArray.

• Specifying an index < 1 or > the number of elements in the array.

• Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified fieldnumber at
the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

7-58

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

See Also mxGetField, mxGetFieldNameByNumber, mxGetNumberOfFields, mxSetField,
mxSetFieldByNumber

mxGetFieldNameByNumber

7-59

7mxGetFieldNameByNumberPurpose Get a field name, given a field number in a structure array

Fortran Syntax character*(*) function mxGetFieldNameByNumber(pm, fieldnumber)
integer*4 pm, fieldnumber

Arguments pm
Pointer to a structure mxArray.

fieldnumber
The position of the desired field. For instance, to get the name of the first field,
set fieldnumber to 1; to get the name of the second field, set fieldnumber to 2;
and so on.

Returns The nth field name, on success. Returns 0 on failure. Common causes of failure
include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

• Specifying a value of fieldnumber greater than the number of fields in the
structure mxArray. (Remember that fieldnumber 1 represents the first field,
so index N represents the last field.)

Description Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop to
get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 1 represents the field name; field number 2 represents field
billing; field number 3 represents field test. A field number other than 1, 2,
or 3 causes mxGetFieldNameByNumber to return 0.

See Also mxGetField, mxIsStruct, mxSetField

mxGetFieldNumber

7-60

7mxGetFieldNumberPurpose Get a field number, given a field name in a structure array

Fortran Syntax integer*4 function mxGetFieldNumber(pm, fieldname)
integer*4 pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of a field in the structure mxArray.

Returns The field number of the specified fieldname, on success. The first field has a
field number of 1, the second field has a field number of 2, and so on. Returns
0 on failure. Common causes of failure include:

• Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

• Specifying the fieldname of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name has a field number of 1; the field billing has a field number of
2; and the field test has a field number of 3. If you call mxGetFieldNumber and
specify a field name of anything other than 'name', 'billing', or 'test', then
mxGetFieldNumber returns 0.

mxGetFieldNumber

7-61

Calling

mxGetField(pm, index, 'fieldname');

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname');
mxGetFieldByNumber(pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

mxGetImagData

7-62

7mxGetImagDataPurpose Get pointer to imaginary data of an mxArray

Fortran Syntax integer*4 function mxGetImagData(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the imaginary data, on success. Returns 0 if
there is no imaginary data or if there is an error.

Description Call mxGetImagData to determine the starting address of the imaginary data in
the mxArray that pm points to. To copy values from the pointer to Fortran, use
one of the mxCopyPtrToComplex* functions in the manner shown here.

C Get the real and imaginary data in mxArray, pm
 mxCopyPtrToComplex16(mxGetData(pm), mxGetImagData(pm),
 + data, mxGetNumberOfElements(pm))

mxGetImagData is equivalent to using mxGetPi.

See Also mxGetData, mxSetImagData, mxSetData, mxCopyPtrToComplex8,
mxCopyPtrToComplex16, mxGetPi

mxGetInf

7-63

7mxGetInfPurpose Get the value of infinity

Fortran Syntax real*8 function mxGetInf

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system. You cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

See Also mxGetEps, mxGetNaN

mxGetIr

7-64

7mxGetIr Purpose Get the ir array

Fortran Syntax integer*4 function mxGetIr(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns A pointer to the first element in the ir array if successful, and zero otherwise.
Possible causes of failure include:

• Specifying a full (nonsparse) mxArray.

• An earlier call to mxCreateSparse failed.

Description Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

mxGetJc

7-65

7mxGetJc Purpose Get the jc array

Fortran Syntax integer*4 function mxGetJc(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns A pointer to the first element in the jc array if successful, and zero otherwise.
The most likely cause of failure is specifying a pointer that points to a full
(nonsparse) mxArray.

Description Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetJc.

See Also mxGetIr, mxSetIr, mxSetJc

mxGetM

7-66

7mxGetMPurpose Get the number of rows

Fortran Syntax integer*4 function mxGetM(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of rows in the mxArray to which pm points.

Description mxGetM returns the number of rows in the specified array.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxGetN, mxSetM, mxSetN

mxGetN

7-67

7mxGetNPurpose Get the total number of columns

Fortran Syntax integer*4 function mxGetN(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified mxArray.

If pm points to a sparse mxArray, mxGetN still returns the number of columns,
not the number of occupied columns.

Example See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxGetM, mxSetM, mxSetN

mxGetName (Obsolete)

7-68

7mxGetName (Obsolete)Purpose Get the name of the specified mxArray

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

mxGetNaN

7-69

7mxGetNaNPurpose Get the value of NaN (Not-a-Number)

Fortran Syntax real*8 function mxGetNaN

Returns The value of NaN (Not-a-Number) on your system.

Description Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example:

• 0.0/0.0
• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.

See Also mxGetEps, mxGetInf

mxGetNumberOfDimensions

7-70

7mxGetNumberOfDimensionsPurpose Get the number of dimensions

Fortran Syntax integer*4 function mxGetNumberOfDimensions(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

See Also mxSetM, mxSetN, mxGetDimensions

mxGetNumberOfElements

7-71

7mxGetNumberOfElementsPurpose Get number of elements in an array

Fortran Syntax integer*4 function mxGetNumberOfElements(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Number of elements in the specified mxArray.

Description mxGetNumberOfElements tells you how many elements an mxArray has. For
example, if the dimensions of an array are 3-by-5-by-10, then
mxGetNumberOfElements will return the number 150.

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassName

mxGetNumberOfFields

7-72

7mxGetNumberOfFieldsPurpose Get the number of fields in a structure mxArray

Fortran Syntax integer*4 function mxGetNumberOfFields(pm)
integer*4 pm

Arguments pm
Pointer to a structure mxArray.

Returns The number of fields, on success. Returns 0 on failure of if no fields exist. The
most common cause of failure is that pm is not a structure mxArray. Call
mxIsStruct to determine if pm is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field to set or to get field values.

See Also mxGetField, mxIsStruct, mxSetField

mxGetNzmax

7-73

7mxGetNzmax Purpose Get the number of elements in the ir, pr, and (if it exists) pi arrays

Fortran Syntax integer*4 function mxGetNzmax(pm)
integer*4 pm

Arguments pm
Pointer to a sparse mxArray.

Returns The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that pm points to a full (nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

See Also mxSetNzmax

mxGetPi

7-74

7mxGetPiPurpose Get an mxArray’s imaginary data elements

Fortran Syntax integer*4 function mxGetPi(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The imaginary data elements of the specified mxArray, on success. Returns 0 if
there is no imaginary data or if there is an error.

Description Use mxGetPi to determine the starting address of the imaginary data in the
mxArray that pm points to.

See the description for mxGetImagData, which is an equivalent function to
mxGetPi.

See Also mxGetPr, mxSetPi, mxSetPr, mxGetImagData

mxGetPr

7-75

7mxGetPrPurpose Get an mxArray’s real data elements

Fortran Syntax integer*4 function mxGetPr(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element of the real data. Returns 0 if there is no real
data.

Description Use mxGetPr to determine the starting address of the real data in the mxArray
that pm points to.

See the description for mxGetData, which is an equivalent function to mxGetPr.

Example See matdemo1.f and fengdemo.f in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetPi, mxSetPr, mxSetPi, mxGetData

mxGetScalar

7-76

7mxGetScalarPurpose Get the real component of an mxArray’s first data element

Fortran Syntax real*8 function mxGetScalar(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns The value of the first real (nonimaginary) element of the mxArray. If pm points
to a sparse mxArray, mxGetScalar returns the value of the first nonzero real
element in the mxArray.

If pm points to an empty mxArray, mxGetScalar returns an indeterminate value.

Description Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray containing
only one element (a scalar). However, pm can point to an mxArray containing
many elements. If pm points to an mxArray containing multiple elements,
mxGetScalar returns the value of the first real element. If pm points to a
two-dimensional mxArray, mxGetScalar returns the value of the (1,1)
element.

See Also mxGetM, mxGetN

mxGetString

7-77

7mxGetStringPurpose Create a character array from an mxArray

Fortran Syntax integer*4 function mxGetString(pm, str, strlen)
integer*4 pm, strlen
character*(*) str

Arguments pm
Pointer to an mxArray.

str
Fortran character array.

strlen
Number of characters to retrieve from the mxArray.

Returns 0 on success, and 1 otherwise.

Description Call mxGetString to copy a character array from an mxArray. mxGetString
copies and converts the character array from the mxArray pm into the
character array str. Storage space for character array str must be allocated
previously.

Only up to strlen characters are copied, so ordinarily, strlen is set to the
dimension of the character array to prevent writing past the end of the array.
Check the length of the character array in advance using mxGetM and mxGetN.
If the character array contains several rows, they are copied, one column at a
time, into one long character array.

See Also mxCalloc

mxIsCell

7-78

7mxIsCellPurpose True if a cell mxArray

Fortran Syntax integer*4 function mxIsCell(pm)
integer*4 pm

Arguments pm
Pointer to an array.

Returns Logical 1 (true) if pm points to an array of the MATLAB cell class, and logical
0 (false) otherwise.

Description Use mxIsCell to determine if the specified mxArray is a cell array.

Calling mxIsCell is equivalent to calling

mxGetClassName(pm) .eq. 'cell'

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

See Also mxIsClass

mxIsChar

7-79

7mxIsCharPurpose True if a character mxArray

Fortran Syntax integer*4 function mxIsChar(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to an array of the MATLAB char class, and logical
0 (false) otherwise.

Description Use mxIsChar to determine if the specified array is a character mxArray.

Calling mxIsChar is equivalent to calling

mxGetClassName(pm) .eq. 'char'

See Also mxIsClass, mxGetClassID

mxIsClass

7-80

7mxIsClassPurpose True if mxArray is a member of the specified class

Fortran Syntax integer*4 function mxIsClass(pm, classname)
integer*4 pm
character*(*) classname

Arguments pm
Pointer to an array.

classname
A character array specifying the class name you are testing for. You can
specify any one of the following predefined constants.

In the table, <class_name> represents the name of a specific MATLAB custom
object. You can also specify one of your own class names.

Returns Logical 1 (true) if pm points to an array having category classname, and logical
0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

Example mxIsClass(pm, 'double')

is equivalent to calling either one of the following

mxIsDouble(pm)

mxGetClassName(pm) .eq. 'double'

It is more efficient to use the mxIsDouble form.

See Also mxIsEmpty, mxGetClassID

cell char double function_handle

int8 int16 int32 logical

object single struct uint8

uint16 uint32 <class_name> unknown

mxIsComplex

7-81

7mxIsComplexPurpose Inquire if an mxArray is complex

Fortran Syntax integer*4 function mxIsComplex(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if complex, and 0 otherwise.

Description Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is 0 if an mxArray is purely real and
does not have any imaginary data. If an mxArray is complex, pi points to an
array of numbers.

See Also mxIsNumeric

mxIsDouble

7-82

7mxIsDoublePurpose Inquire if an mxArray is of type double

Fortran Syntax integer*4 function mxIsDouble(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if mxArray is of type double; and logical 0 (false) otherwise. If
mxIsDouble returns 0, the array has no Fortran access functions and your
Fortran program cannot use it.

Description Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB 5, MATLAB can
store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassName(pm) .eq. 'double'

mxIsEmpty

7-83

7mxIsEmptyPurpose True if mxArray is empty

Fortran Syntax integer*4 function mxIsEmpty(pm)
integer*4 pm

Arguments pm
Pointer to an array.

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.

See Also mxIsClass

mxIsFinite

7-84

7mxIsFinitePurpose True if value is finite

Fortran Syntax integer*4 function mxIsFinite(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than -Inf and less than Inf.

See Also mxIsInf, mxIsNaN

mxIsFromGlobalWS

7-85

7mxIsFromGlobalWSPurpose True if the mxArray originated from the MATLAB global workspace

Fortran Syntax integer*4 function mxIsFromGlobalWS(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array originated from the global workspace, and logical
0 (false) otherwise.

Description Use mxIsFromGlobalWS with stand-alone MAT programs to determine if an
array was a global variable when it was saved.

See Also mexIsGlobal

mxIsFull (Obsolete)

7-86

7mxIsFull (Obsolete)Purpose Inquire if an mxArray is full

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

if (mxIsSparse(prhs(1)) .eq. 0)

instead of

if (mxIsFull(prhs(1)) .eq. 1)

See Also mxIsSparse

mxIsInf

7-87

7mxIsInfPurpose True if value is infinite

Fortran Syntax integer*4 function mxIsInf(value)
integer*4 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system. You cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns infinity
because the result is too large to be represented on your machine.

See Also mxIsFinite, mxIsNaN

mxIsInt8

7-88

7mxIsInt8Purpose True if mxArray represents its data as signed 8-bit integers

Fortran Syntax integer*4 function mxIsInt8(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.

Calling mxIsInt8 is equivalent to calling

mxGetClassName(pm) .eq. 'int8'

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt16

7-89

7mxIsInt16Purpose True if mxArray represents its data as signed 16-bit integers

Fortran Syntax integer*4 function mxIsInt16(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassName(pm) == 'int16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt32

7-90

7mxIsInt32Purpose True if mxArray represents its data as signed 32-bit integers

Fortran Syntax integer*4 function mxIsInt32(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.

Calling mxIsInt32 is equivalent to calling

mxGetClassName(pm) == 'int32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsInt64

7-91

7mxIsInt64Purpose True if mxArray represents its data as signed 64-bit integers

Fortran Syntax integer*4 function mxIsInt64(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers, and logical
0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array represents its
real and imaginary data as 64-bit signed integers.

Calling mxIsInt64 is equivalent to calling

mxGetClassName(pm) == 'int64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64

mxIsLogical

7-92

7mxIsLogicalPurpose True if mxArray is Boolean

Fortran Syntax integer*4 function mxIsLogical(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, then MATLAB treats all
zeros as meaning false and all nonzero values as meaning true. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

See Also mxIsClass, mxSetLogical (Obsolete), logical

mxIsNaN

7-93

7mxIsNaNPurpose True if value is NaN (Not-a-Number)

Fortran Syntax integer*4 function mxIsNaN(value)
integer*4 value

Arguments value
The double-precision, floating-point number that you are testing.

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as:

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) uses to represent an error condition
or missing data.

See Also mxIsFinite, mxIsInf

mxIsNumeric

7-94

7mxIsNumericPurpose Inquire if an mxArray contains numeric data

Fortran Syntax integer*4 function mxIsNumeric(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray contains numeric data, and 0 otherwise.

Description Call mxIsNumeric to inquire whether or not the mxArray contains numeric data,
such as data of class double or uint16. Note that logical data is not numeric.

Example See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

See Also mxIsString (Obsolete)

mxIsSingle

7-95

7mxIsSinglePurpose True if mxArray represents its data as single-precision, floating-point numbers

Fortran Syntax integer*4 function mxIsSingle(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the array stores its data as single-precision, floating-point
numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassName(pm) .eq. 'single'

See Also mxIsClass, mxGetClassID

mxIsSparse

7-96

7mxIsSparsePurpose Inquire if an mxArray is sparse

Fortran Syntax integer*4 function mxIsSparse(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray is sparse, and 0 otherwise.

Description Use mxIsSparse to determine if an mxArray is stored in sparse form. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

There are no corresponding set routines. Use mxCreateSparse to create sparse
mxArrays.

See Also mxGetIr, mxGetJc, mxCreateSparse

mxIsString (Obsolete)

7-97

7mxIsString (Obsolete)Purpose Inquire if an mxArray contains a character array

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsChar instead.

See Also mxCreateString, mxGetString

mxIsStruct

7-98

7mxIsStructPurpose True if a structure mxArray

Fortran Syntax integer*4 function mxIsStruct(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if pm points to a structure array; and logical 0 (false)
otherwise.

Description Use mxIsStruct to determine if pm points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

7-99

7mxIsUint8Purpose True if mxArray represents its data as unsigned 8-bit integers

Fortran Syntax integer*4 function mxIsInt8(pm)
integer*4 pm

Arguments m
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified mxArray represents its
real and imaginary data as 8-bit unsigned integers.

Calling mxIsUint8 is equivalent to calling

mxGetClassName(pm) == 'uint8'

See Also mxIsClass, mxGetClassID, mxIsUint16, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint16

7-100

7mxIsUint16Purpose True if mxArray represents its data as unsigned 16-bit integers

Fortran Syntax integer*4 function mxIsUint16(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.

Calling mxIsUint16 is equivalent to calling

mxGetClassName(pm) == 'uint16'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint32, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint32

7-101

7mxIsUint32Purpose True if mxArray represents its data as unsigned 32-bit integers

Fortran Syntax integer*4 function mxIsUint32(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.

Calling mxIsUint32 is equivalent to calling

mxGetClassName(pm) == 'uint32'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint64, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxIsUint64

7-102

7mxIsUint64Purpose True if mxArray represents its data as unsigned 64-bit integers

Fortran Syntax integer*4 function mxIsUint64(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit integers, and
logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray represents
its real and imaginary data as 64-bit unsigned integers.

Calling mxIsUint64 is equivalent to calling

mxGetClassName(pm) == 'uint64'

See Also mxIsClass, mxGetClassID, mxIsUint8, mxIsUint16, mxIsUint32, mxIsInt8,
mxIsInt16, mxIsInt32, mxIsInt64

mxMalloc

7-103

7mxMallocPurpose Allocate dynamic memory using the MATLAB memory manager

Fortran Syntax integer*4 function mxMalloc(n)
integer*4 n

Arguments n
Number of bytes to allocate.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description Use mxMalloc to allocate dynamic memory using the MATLAB memory
management facility.

MATLAB maintains a list of all memory allocated by mxMalloc. MATLAB
automatically frees (deallocates) all of a MEX-file’s memory when the MEX-file
completes and control returns to the MATLAB prompt.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxMalloc. If you write a MEX-file with
persistent memory, be sure to register a mexAtExit function to free allocated
memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree. mxFree
deallocates the memory.

Note that mxMalloc works differently in MEX-files than in stand-alone
MATLAB applications.

In MEX-files, mxMalloc automatically:

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory management
facility.

See Also mxCalloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxRealloc

7-104

7mxReallocPurpose Reallocate memory

Fortran Syntax integer*4 function mxRealloc(ptr, size)
integer*4 ptr, size

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, or by a previous call to
mxRealloc.

size
New size of allocated memory, in bytes.

Returns A pointer to the reallocated block of memory on success, and 0 on failure.

Description mxRealloc reallocates the memory routine for the managed list. If mxRealloc
fails to allocate a block, you must free the block since the ANSI definition of
realloc states that the block remains allocated. mxRealloc returns 0 in this
case, and in subsequent calls to mxRealloc of the form

x = mxRealloc(x, size)

Note Failure to reallocate memory with mxRealloc can result in memory
leaks.

See Also mxCalloc, mxFree, mxMalloc

mxRemoveField

7-105

7mxRemoveFieldPurpose Remove a field from a structure array

Fortran Syntax subroutine mxRemoveField(pm, fieldnumber)
integer*4 pm, fieldnumber

Arguments pm
Pointer to a structure mxArray.

fieldnumber
The number of the field you want to remove. For instance, to remove the first
field, set fieldnumber to 1; to remove the second field, set fieldnumber to 2;
and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number 1 represents the field name; field number 2 represents field
billing; field number 3 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

mxSetCell

7-106

7mxSetCellPurpose Set the value of one cell

Fortran Syntax subroutine mxSetCell(pm, index, value)
integer*4 pm, index, value

Arguments pm
Pointer to a cell mxArray.

index
Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate the index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell. Use one of the mxCreate*
functions to create the value mxArray.

Description Call mxSetCell to put the designated value into a particular cell of a cell
mxArray. You can assign new values to unpopulated cells or overwrite the value
of an existing cell. To do the latter, first use mxDestroyArray to free what is
already there and then mxSetCell to assign the new value.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell

mxSetData

7-107

7mxSetDataPurpose Set pointer to data

Fortran Syntax subroutine mxSetData(pm, pr)
integer*4 pm, pr

Arguments pm
Pointer to an mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Description Use mxSetData to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetData to initialize the real elements of a freshly created
mxArray. Rather, you call mxSetData to replace the initial real values with new
ones.

Free the memory used by pr by calling mxDestroyArray to destroy the entire
mxArray.

mxSetData is equivalent to using mxSetPr.

See Also mxSetImagData, mxGetData, mxGetImagData, mxSetPr

mxSetDimensions

7-108

7mxSetDimensionsPurpose Modify the number of dimensions and/or the size of each dimension

Fortran Syntax integer*4 function mxSetDimensions(pm, dims, ndim)
integer*4 pm, dims, ndim

Arguments pm
Pointer to an mxArray.

dims
The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims(1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Description Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
array. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
array accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

See Also mxGetNumberOfDimensions, mxSetM, mxSetN

mxSetField

7-109

7mxSetFieldPurpose Set a field value of a structure array, given a field name and an index

Fortran Syntax subroutine mxSetField(pm, index, fieldname, value)
integer*4 pm, index, value
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber to determine existing field names.

value
Pointer to the mxArray you are assigning. Use one of the mxCreate* functions
to create the value mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Description Use mxSetField to assign a value to the specified element of the specified field.
If there is already a value at the given position, the value pointer you specified
overwrites the old value pointer. However, mxSetField does not free the
dynamic memory that the old value pointer pointed to. Consequently, you are
responsible for destroying this mxArray.

mxSetField is almost identical to mxSetFieldByNumber; however, the former
takes a field name as its third argument, and the latter takes a field number
as its third argument.

mxSetField

7-110

Calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetFieldByNumber

mxSetFieldByNumber

7-111

7mxSetFieldByNumberPurpose Set a field value in a structure array, given a field number and an index

Fortran Syntax subroutine mxSetFieldByNumber(pm, index, fieldnumber, value)
integer*4 pm, index, fieldnumber, value

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber
The position of the field whose value you want to extract. The first field within
each element has a fieldnumber of 1, the second field has a fieldnumber of 2,
and so on. The last field has a fieldnumber of N, where N is the number of fields.

value
The value you are assigning. Use one of the mxCreate* functions to create the
value mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Description Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. If there is already a value at the given position, the value
pointer you specified overwrites the old value pointer. However,
mxSetFieldByNumber does not free the dynamic memory that the old value
pointer pointed to. Consequently, you are responsible for destroying this
mxArray.

mxSetFieldByNumber is almost identical to mxSetField; however, the former
takes a field number as its third argument, and the latter takes a field name
as its third argument.

mxSetFieldByNumber

7-112

Calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField

mxSetImagData

7-113

7mxSetImagDataPurpose Set imaginary data pointer for an mxArray

Fortran Syntax subroutine mxSetImagData(pm, pi)
integer*4 pm, pi

Arguments pm
Pointer to an mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description Use mxSetImagData to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold imaginary
data. If you tell an mxCreate* function to allocate heap space (for example, by
setting the ComplexFlag to COMPLEX = 1 or by setting pi to a nonzero value),
then you do not ordinarily use mxSetImagData to initialize the created
mxArray’s imaginary elements. Rather, you call mxSetImagData to replace the
initial imaginary values with new ones.

Free the memory used by pi by calling mxDestroyArray to destroy the entire
mxArray.

mxSetImagData is equivalent to using mxSetPi.

See Also mxSetData, mxGetImagData, mxGetData, mxSetPi

mxSetIr

7-114

7mxSetIr Purpose Set the ir array of a sparse mxArray

Fortran Syntax subroutine mxSetIr(pm, ir)
integer*4 pm,ir

Arguments pm
Pointer to a sparse mxArray.

ir
Pointer to the ir array. The ir array must be sorted in column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc

mxSetJc

7-115

7mxSetJcPurpose Set the jc array of a sparse mxArray

Fortran Syntax subroutine mxSetJc(pm, jc)
integer*4 pm, jc

Arguments pm
Pointer to a sparse mxArray.

jc
Pointer to the jc array.

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray.

See Also mxGetIr, mxGetJc, mxSetIr

mxSetLogical (Obsolete)

7-116

7mxSetLogical (Obsolete)Purpose Set the logical flag

Note As of MATLAB version 6.5, mxSetLogical is obsolete. Support for
mxSetLogical may be removed in a future version.

Fortran Syntax subroutine mxSetLogical(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray having a numeric class.

Description Use mxSetLogical to turn on an mxArray’s logical flag. This flag, when set, tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

See Also mxClearLogical (Obsolete), mxIsLogical, logical

mxSetM

7-117

7mxSetMPurpose Set the number of rows

Fortran Syntax subroutine mxSetM(pm, m)
integer*4 pm, m

Arguments pm
Pointer to an mxArray.

m
The desired number of rows.

Description Call mxSetM to set the number of rows in the specified mxArray. Call mxSetN to
set the number of columns.

You can use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the array, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently.

See Also mxGetM, mxGetN, mxSetN

mxSetN

7-118

7mxSetN Purpose Set the number of columns

Fortran Syntax subroutine mxSetN(pm, n)
integer*4 pm, n

Arguments pm
Pointer to an mxArray.

n
The desired number of columns.

Description Call mxSetN to set the number of columns in the specified mxArray. Call mxSetM
to set the number of rows in the specified mxArray.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

See Also mxGetM, mxGetN, mxSetM

mxSetName (Obsolete)

7-119

7mxSetName (Obsolete)Purpose Set the name of an mxArray

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable(workspace, name, pm)

instead of

mxSetName(pm, name);
mexPutArray(pm, workspace);

mxSetNzmax

7-120

7mxSetNzmaxPurpose Set the storage space for nonzero elements

Fortran Syntax subroutine mxSetNzmax(pm, nzmax)
integer*4 pm, nzmax

Arguments pm
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays.

How big should nzmax be? One thought is that you set nzmax equal to or slightly
greater than the number of nonzero elements in a sparse mxArray. This
approach conserves precious heap space. Another technique is to make nzmax
equal to the total number of elements in an mxArray. This approach eliminates
(or, at least reduces) expensive reallocations.

See Also mxGetNzmax

mxSetPi

7-121

7mxSetPiPurpose Set new imaginary data for an mxArray

Fortran Syntax subroutine mxSetPi(pm, pi)
integer*4 pm, pi

Arguments pm
Pointer to a full (nonsparse) mxArray.

pi
Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

See the description for mxSetImagData, which is an equivalent function to
mxSetPi.

See Also mxSetPr, mxGetPi, mxGetPr, mxSetImagData

mxSetPr

7-122

7mxSetPrPurpose Set new real data for an mxArray

Fortran Syntax subroutine mxSetPr(pm, pr)
integer*4 pm, pr

Arguments pm
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Description Use mxSetPr to set the real data of the specified mxArray.

See the description for mxSetData, which is an equivalent function to mxSetPr.

See Also mxSetPi, mxGetPr, mxGetPi, mxSetData

8
Fortran MEX-Functions
mexAtExit Register function to be called when MATLAB is cleared or

terminates

mexCallMATLAB Call MATLAB function or user-defined M-file or MEX-file

mexErrMsgIdAndTxt Issue error message with identifier and return to MATLAB

mexErrMsgTxt Issue error message and return to MATLAB

mexEvalString Execute MATLAB command in caller’s workspace

mexFunction Entry point to Fortran MEX-file

mexFunctionName Name of current MEX-function

mexGetArray (Obsolete) Use mexGetVariable

mexGetArrayPtr (Obsolete) Use mexGetVariablePtr

mexGetEps (Obsolete) Use mxGetEps

mexGetFull (Obsolete) Use mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete) Use mexGetVariablePtr

mexGetInf (Obsolete) Use mxGetInf

mexGetMatrix (Obsolete) Use mexGetVariable

mexGetMatrixPtr (Obsolete) Use mexGetVariablePtr

mexGetNaN (Obsolete) Use mxGetNaN

mexGetVariable Get copy of variable from another workspace

mexGetVariablePtr Get read-only pointer to variable from another workspace

mexIsFinite (Obsolete) Use mxIsFinite

mexIsGlobal True if mxArray has global scope

mexIsInf (Obsolete) Use mxIsInf

mexIsLocked True if MEX-file is locked

mexIsNaN (Obsolete) Use mxIsNaN

mexLock Lock MEX-file so it cannot be cleared from memory

mexMakeArrayPersistent Make mxArray persist after MEX-file completes

8-2

mexMakeMemoryPersistent Make memory allocated by MATLAB memory allocation
routines persist after MEX-file completes

mexPrintf ANSI C printf-style output routine

mexPutArray (Obsolete) Use mexPutVariable

mexPutFull (Obsolete) Use mxCreateDoubleMatrix, mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete) Use mexPutVariable

mexPutVariable Copy mxArray from your MEX-file into another workspace

mexSetTrapFlag Control response of mexCallMATLAB to errors

mexUnlock Unlock MEX-file so it can be cleared from memory

mexWarnMsgIdAndTxt Issue warning message with identifier

mexWarnMsgTxt Issue warning message

mexAtExit

8-3

8mexAtExitPurpose Register a subroutine to be called when the MEX-file is cleared or when
MATLAB terminates

Fortran Syntax integer*4 function mexAtExit(ExitFcn)
subroutine ExitFcn()

Arguments ExitFcn
The exit function. This function must be declared as external.

Returns Always returns 0.

Description Use mexAtExit to register a subroutine to be called just before the MEX-file is
cleared or MATLAB is terminated. mexAtExit gives your MEX-file a chance to
perform an orderly shutdown of anything under its control.

Each MEX-file can register only one active exit subroutine at a time. If you call
mexAtExit more than once, MATLAB uses the ExitFcn from the more recent
mexAtExit call as the exit function.

If a MEX-file is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

You must declare the ExitFcn as external in the Fortran routine that calls
mexAtExit if it is not within the scope of the file.

See Also mexSetTrapFlag

mexCallMATLAB

8-4

8mexCallMATLABPurpose Call a MATLAB function or operator, a user-defined M-file, or other MEX-file

Fortran Syntax integer*4 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs, plhs(*), prhs(*)
character*(*) name

Arguments nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs
Array of mxArray pointers that can be used to access the returned data from the
function call. Once the data is accessed, you can then call mxFree to free the
mxArray pointer. By default, MATLAB frees the pointer and any associated
dynamic memory it allocates when you return from the mexFunction call.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Array of pointers to input data.

name
Character array containing the name of the MATLAB function, operator,
M-file, or MEX-file that you are calling. If name is an operator, place the
operator inside a pair of single quotes; for example, '+'.

Returns 0 if successful, and a nonzero value if unsuccessful and mexSetTrapFlag was
previously called.

Description Call mexCallMATLAB to invoke internal MATLAB functions, MATLAB
operators, M-files, or other MEX-files.

By default, if name detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want a different error behavior,
turn on the trap flag by calling mexSetTrapFlag.

See Also mexFunction, mexSetTrapFlag

mexErrMsgIdAndTxt

8-5

8mexErrMsgIdAndTxtPurpose Issue error message with identifier and return to the MATLAB prompt

Fortran Syntax subroutine mexErrMsgIdAndTxt(errorid, errormsg)
character*(*) errorid, errormsg

Arguments errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

errormsg
Character array containing the error message to be displayed.

Description Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke any registered exit routine
to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgIdAndTxt automatically frees any associated
memory allocated by these calls.

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

8-6

8mexErrMsgTxtPurpose Issue error message and return to the MATLAB prompt

Fortran Syntax subroutine mexErrMsgTxt(errormsg)
character*(*) errormsg

Arguments errormsg
Character array containing the error message to be displayed.

Description Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke any registered exit routine to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgTxt automatically frees any associated memory
allocated by these calls.

See Also mexErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

mexEvalString

8-7

8mexEvalStringPurpose Execute a MATLAB command in the workspace of the caller

Fortran Syntax integer*4 function mexEvalString(command)
character*(*) command

Arguments command
A character array containing the MATLAB command to execute.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace of the
caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command array
must already be current variables of the caller’s workspace.

See Also mexCallMATLAB

mexFunction

8-8

8mexFunctionPurpose MATLAB entry point to a Fortran MEX-file

Fortran Syntax subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

Arguments nlhs
The number of expected outputs.

plhs
Array of pointers to expected outputs.

nrhs
The number of inputs.

prhs
Array of pointers to input data. The input data is read only and should not be
altered by your mexFunction.

Description mexFunction is not a routine you call. Rather, mexFunction is the name of a
subroutine you must write in every MEX-file. When you invoke a MEX-file,
MATLAB searches for a subroutine named mexFunction inside the MEX-file.
If it finds one, then the first executable line in mexFunction becomes the
starting point of the MEX-file. If MATLAB cannot find a subroutine named
mexFunction inside the MEX-file, MATLAB issues an error message.

When you invoke a MEX-file, MATLAB automatically loads nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,] = fun(d,e,f,)

where the denotes more items of the same format. The a,b,c are left-hand
side arguments and the d,e,f are right-hand side arguments. The arguments
nlhs and nrhs contain the number of left-hand side and right-hand side
arguments, respectively, with which the MEX-file is called. prhs is an array of
mxArray pointers whose length is nrhs. plhs is a pointer to an array whose
length is nlhs, where your function must set pointers for the returned left-hand
side mxArrays.

mexFunctionName

8-9

8mexFunctionNamePurpose Get the name of the current MEX-function

Fortran Syntax character*(*) function mexFunctionName()

Arguments None

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

mexGetArray (Obsolete)

8-10

8mexGetArray (Obsolete)Purpose Get a copy of a variable from the specified workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariable(workspace, name)

instead of

mexGetArray(name, workspace)

See Also mexGetVariable

mexGetArrayPtr (Obsolete)

8-11

8mexGetArrayPtr (Obsolete)Purpose Get a read-only pointer to a variable from the specified workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr(workspace, varname)

instead of

mexGetArrayPtr(varname, workspace)

See Also mexGetVariable

mexGetEps (Obsolete)

8-12

8mexGetEps (Obsolete)Purpose Get the value of eps

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetEps instead.

mexGetFull (Obsolete)

8-13

8mexGetFull (Obsolete)Purpose Routine to get component parts of a double-precision mxArray into a Fortran
workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mexGetVariable("caller", name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)

instead of

mexGetFull(name, m, n, pr, pi)

See Also mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete)

8-14

8mexGetGlobal (Obsolete)Purpose Get a pointer to an mxArray from the MATLAB global workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr("global", name)

instead of

mexGetGlobal(name)

See Also mexGetVariablePtr, mxGetPr, mxGetPi

mexGetInf (Obsolete)

8-15

8mexGetInf (Obsolete)Purpose Get the value of infinity

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetInf instead.

mexGetMatrix (Obsolete)

8-16

8mexGetMatrix (Obsolete)Purpose Copies an mxArray from the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariable("caller", name)

instead of

mexGetMatrix(name)

See Also mexGetVariable

mexGetMatrixPtr (Obsolete)

8-17

8mexGetMatrixPtr (Obsolete)Purpose Get the pointer to an mxArray in the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexGetVariablePtr("caller", name)

instead of

mexGetMatrixPtr(name)

See Also mexGetVariablePtr

mexGetNaN (Obsolete)

8-18

8mexGetNaN (Obsolete)Purpose Get the value of NaN (Not-a-Number)

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetNaN instead.

mexGetVariable

8-19

8mexGetVariablePurpose Get a copy of a variable from the specified workspace

Fortran Syntax integer*4 function mexGetVariable(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies where mexGetVariable should search in order to find variable
varname. The possible values are:

varname
Name of the variable to copy.

Returns A copy of the variable on success. Returns 0 on failure. A common cause of
failure is specifying a variable that is not currently in the workspace.

Description Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace
with mexPutVariable.

See Also mexGetVariablePtr, mexPutVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexGetVariablePtr

8-20

8mexGetVariablePtrPurpose Get a read-only pointer to a variable from the specified workspace

Fortran Syntax integer*4 function mexGetVariablePtr(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

varname
Name of the variable to copy. (Note that this is a variable name, not an mxArray
pointer.)

Returns A read-only pointer to the mxArray on success. Returns 0 on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified variable
varname from the specified workspace. This command is useful for examining
an mxArray’s data and characteristics. If you need to change data or
characteristics, use mexGetVariable (along with mexPutVariable) instead of
mexGetVariablePtr.

See Also mexGetVariable

base Search for the variable in the base workspace

caller Search for the variable in the caller’s workspace

global Search for the variable in the global workspace

mexIsFinite (Obsolete)

8-21

8mexIsFinite (Obsolete)Purpose Determine whether or not a value is finite

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsFinite instead.

mexIsGlobal

8-22

8mexIsGlobalPurpose True if mxArray has global scope

Fortran Syntax integer*4 function mexIsGlobal(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false) otherwise.

Description Use mexIsGlobal to determine if the specified mxArray has global scope.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

mexIsInf (Obsolete)

8-23

8mexIsInf (Obsolete)Purpose Determine whether or not a value is infinite

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsInf instead.

mexIsLocked

8-24

8mexIsLockedPurpose Determine if this MEX-file is locked

Fortran Syntax integer*4 function mexIsLocked()

Arguments none

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file is unlocked.

Description Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

See Also mexLock, mexUnlock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexIsNaN (Obsolete)

8-25

8mexIsNaN (Obsolete)Purpose Determine whether or not a value is NaN (Not-a-Number)

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsNaN instead.

mexLock

8-26

8mexLockPurpose Lock a MEX-file so that it cannot be cleared from memory

Fortran Syntax subroutine mexLock()

Arguments none

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

mexMakeArrayPersistent

8-27

8mexMakeArrayPersistentPurpose Make an mxArray persist after the MEX-file completes

Fortran Syntax subroutine mexMakeArrayPersistent(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray created by an mxCreate* routine.

Description By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-file finishes. If you want the mxArray to persist
through multiple invocations of the MEX-file, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit on how to register a function that
gets called when the MEX-file is cleared. See mexLock on how to lock your
MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

8-28

8mexMakeMemoryPersistentPurpose Make memory allocated by MATLAB memory allocation routines (mxCalloc,
mxMalloc, mxRealloc) persist after the MEX-file completes

Fortran Syntax subroutine mexMakeMemoryPersistent(ptr)
integer*4 ptr

Arguments ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

Description By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing it when
the MEX-file is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit on how to register a
function that gets called when the MEX-file is cleared. See mexLock on how to
lock your MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

mexPrintf

8-29

8mexPrintfPurpose Print a character array

Fortran Syntax integer*4 function mexPrintf(message)
character*(*) message

Arguments message
Character array containing message to be displayed.

Note Optional arguments to mexPrintf, such as format strings, are not
supported in Fortran.

Note If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do so
causes unpredictable results.

Returns The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

Description mexPrintf prints a character array on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine already
linked inside MATLAB.

See Also mexErrMsgTxt

mexPutArray (Obsolete)

8-30

8mexPutArray (Obsolete)Purpose Copy an mxArray into the specified workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable(workspace, name, pm)

instead of

mxSetName(pm, name);
mexPutArray(pm, workspace);

See Also mexPutVariable

mexPutFull (Obsolete)

8-31

8mexPutFull (Obsolete)Purpose Routine to create an mxArray from its component parts into a Fortran
workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
mexPutVariable("caller", name, pm)

instead of

mexPutFull(name, m, n, pr, pi)

See Also mxCreateDoubleMatrix, mxSetName (Obsolete), mxSetPr, mxSetPi,
mexPutVariable

mexPutMatrix (Obsolete)

8-32

8mexPutMatrix (Obsolete)Purpose Writes an mxArray to the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mexPutVariable("caller", name, pm)

instead of

mexPutMatrix(pm)

mexPutVariable

8-33

8mexPutVariablePurpose Copy an mxArray into the specified workspace

Fortran Syntax integer*4 function mexPutVariable(workspace, varname, pm)
character*(*) workspace, varname
integer*4 pm

Arguments workspace
Specifies the scope of the array that you are copying. The possible values are:

varname
Name given to the mxArray in the workspace.

pm
Pointer to an mxArray.

Returns 0 on success; 1 on failure. A possible cause of failure is that the pm argument is
zero.

Description Call mexPutVariable to copy the mxArray, at pointer pm, from your MEX-file
into the specified workspace. MATLAB gives the name, varname, to the copied
mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-files.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the MATLAB workspace.

mexPutVariable("base", "Peaches", pm)

base Copy the mxArray to the base workspace

caller Copy the mxArray to the caller’s workspace

global Copy the mxArray to the list of global variables

mexPutVariable

8-34

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

See Also mexGetVariable

mexSetTrapFlag

8-35

8mexSetTrapFlagPurpose Control response of mexCallMATLAB to errors

Fortran Syntax subroutine mexSetTrapFlag(trapflag)
integer*4 trapflag

Arguments trapflag
Control flag. Currently, the only legal values are:

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trapflag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trapflag to 1, then whenever MATLAB
detects an error in a call to mexCallMATLAB, MATLAB does not automatically
terminate the MEX-file. Rather, MATLAB returns control to the line in the
MEX-file immediately following the call to mexCallMATLAB. The MEX-file is
then responsible for taking an appropriate response to the error.

See Also mexAtExit, mexErrMsgTxt

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

mexUnlock

8-36

8mexUnlockPurpose Unlock this MEX-file so that it can be cleared from memory

Fortran Syntax subroutine mexUnlock()

Arguments none

Description By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexWarnMsgIdAndTxt

8-37

8mexWarnMsgIdAndTxtPurpose Issue warning message with identifier

Fortran Syntax subroutine mexWarnMsgIdAndTxt(warningid, warningmsg)
character*(*) warningid, warningmsg

Arguments errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

warningmsg
String containing the warning message to be displayed.

Description mexWarnMsgIdAndTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

See Also mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

mexWarnMsgTxt

8-38

8mexWarnMsgTxtPurpose Issue warning message

Fortran Syntax subroutine mexWarnMsgTxt(warningmsg)
character*(*) warningmsg

Arguments warningmsg
String containing the warning message to be displayed.

Description mexWarnMsgTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

See Also mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

9
Fortran Engine Functions
engClose Quit MATLAB engine session

engEvalString Evaluate expression in character array

engGetArray (Obsolete) Use engGetVariable

engGetFull (Obsolete) Use engGetVariable followed by appropriate mxGet routines

engGetMatrix (Obsolete) Use engGetVariable

engGetVariable Copy variable from engine workspace

engOpen Start MATLAB engine session

engOutputBuffer Specify buffer for MATLAB output

engPutArray (Obsolete) Use engPutVariable

engPutFull (Obsolete) Use mxCreateDoubleMatrix and engPutVariable

engPutMatrix (Obsolete) Use engPutVariable

engPutVariable Put variables into engine workspace

engClose

9-2

9engClosePurpose Quit a MATLAB engine session

Fortran Syntax integer*4 function engClose(ep)
integer*4 ep

Arguments ep
Engine pointer.

Description This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

Example See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engEvalString

9-3

9engEvalStringPurpose Evaluate expression in character array

Fortran Syntax integer*4 function engEvalString(ep, command)
integer*4 ep
character*(*) command

Arguments ep
Engine pointer.

command
character array to execute.

Description engEvalString evaluates the expression contained in command for the
MATLAB engine session, ep, previously started by engOpen. It returns a
nonzero value if the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to the MATLAB stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer.

Example See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engGetArray (Obsolete)

9-4

9engGetArray (Obsolete)Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

engGetFull (Obsolete)

9-5

9engGetFull (Obsolete)Purpose Read full mxArrays from an engine

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mp = engGetVariable(ep, name)
m = mxGetM(pm)
n = mxGetN(pm)
pr = mxGetPr(pm)
pi = mxGetPi(pm)
mxDestroyArray(pm)

instead of

engGetFull(ep, name, m, n, pr, pi)

See Also engGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

engGetMatrix (Obsolete)

9-6

9engGetMatrix (Obsolete)Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

engGetVariable

9-7

9engGetVariablePurpose Copy a variable from a MATLAB engine’s workspace

Fortran Syntax integer*4 function engGetVariable(ep, name)
integer*4 ep
character*(*) name

Arguments ep
Engine pointer.

name
Name of mxArray to get from MATLAB.

Description engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or 0 if the attempt fails. engGetVariable fails if the named variable
does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See Also engPutVariable

engOpen

9-8

9engOpenPurpose Start a MATLAB engine session

Fortran Syntax integer*4 function engOpen(startcmd)
integer*4 ep
character*(*) startcmd

Arguments ep
Engine pointer.

startcmd
Character array to start MATLAB process.

Description This routine allows you to start a MATLAB process to use MATLAB as a
computational engine.

engOpen(startcmd) starts a MATLAB process using the command specified in
startcmd, establishes a connection, and returns a unique engine identifier, or
0 if the open fails.

On the UNIX system, if startcmd is empty, engOpen starts MATLAB on the
current host using the command matlab. If startcmd is a hostname, engOpen
starts MATLAB on the designated host by embedding the specified hostname
string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is anything else (has white space in it, or nonalphanumeric
characters), it is executed literally to start MATLAB.

engOpen performs the following steps:

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
the child to two file descriptors in the parent.

3 Executes a command to run MATLAB (rsh for remote execution).

Example See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engOutputBuffer

9-9

9engOutputBufferPurpose Specify buffer for MATLAB output

Fortran Syntax integer*4 function engOutputBuffer(ep, p)
integer*4 ep
character*n p

Arguments ep
Engine pointer.

p
Character buffer of length n, where n is the length of buffer p.

Description engOutputBuffer defines a character buffer for engEvalString to return any
output that would appear on the screen. It returns 1 if you pass it a NULL
engine pointer. Otherwise, it returns 0.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer p.

engPutArray (Obsolete)

9-10

9engPutArray (Obsolete)Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use

engPutVariable(ep, name, pm)

instead of

mxSetName(pm, name);
engPutArray(pm, ep);

engPutFull (Obsolete)

9-11

9engPutFull (Obsolete)Purpose Write full mxArrays into the workspace of an engine

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mp = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
engPutVariable(ep, name, pm)

mxDestroyArray(pm)

instead of

engPutFull(ep, name, m, n, pr, pi)

See Also engPutVariable, mxCreateDoubleMatrix, mxSetPr, mxSetPi, mxDestroyArray

engPutMatrix (Obsolete)

9-12

9engPutMatrix (Obsolete)Purpose Write mxArrays into a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engPutVariable instead.

engPutVariable

9-13

9engPutVariablePurpose Put variables into a MATLAB engine’s workspace

Fortran Syntax integer*4 function engPutVariable(ep, name, pm)
integer*4 ep, pm
character*(*) name

Arguments ep
Engine pointer.

name
Name given to the mxArray in the engine’s workspace.

pm
mxArray pointer.

Description engPutVariable writes mxArray mp to the engine ep. If the mxArray does not
exist in the workspace, it is created. If an mxArray with the same name already
exists in the workspace, the existing mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

See Also engGetVariable

engPutVariable

9-14

10
Java Interface Functions
class Create object or return class of object

fieldnames Return property names of an object

import Add a package or class to the current Java import list

inspect Display graphical interface to list and modify property values

isa Determine if input is object of given class

isjava Test whether an object is a Java object

ismethod Determine if an input is a method of an object

isprop Determine if an input is a property of an object

javaaddpath Add entries to dynamic Java class path

javaArray Construct Java array

javachk Generate an error message based on Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java class path

methods Display information on class methods

methodsview Display information on class methods in separate window

usejava Determine if a Java feature is supported in MATLAB

import

10-2

10importPurpose Add package or class to current Java import list

Syntax import package_name.*
import class_name
import cls_or_pkg_name1 cls_or_pkg_name2...
import
L = import

Description import package_name.* adds all the classes in package_name to the current
import list. Note that package_name must be followed by .*.

import class_name adds a single class to the current import list. Note that
class_name must be fully qualified (that is, it must include the package name).

import cls_or_pkg_name1 cls_or_pkg_name2... adds all named classes and
packages to the current import list. Note that each class name must be fully
qualified, and each package name must be followed by .*.

import with no input arguments displays the current import list, without
adding to it.

L = import with no input arguments returns a cell array of strings containing
the current import list, without adding to it.

The import command operates exclusively on the import list of the function
from which it is invoked. When invoked at the command prompt, import uses
the import list for the MATLAB command environment. If import is used in a
script invoked from a function, it affects the import list of the function. If
import is used in a script that is invoked from the command prompt, it affects
the import list for the command environment.

The import list of a function is persistent across calls to that function and is
only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

This command may only be invoked at the command prompt. Attempting to use
clear import within a function results in an error.

import

10-3

Remarks The only reason for using import is to allow your code to refer to each imported
class with the immediate class name only, rather than with the fully qualified
class name. import is particularly useful in streamlining calls to constructors,
where most references to Java classes occur.

Examples This example shows importing and using the single class, java.lang.String,
and two complete packages, java.util and java.awt.

import java.lang.String
import java.util.* java.awt.*
f = Frame; % Create java.awt.Frame object
s = String('hello'); % Create java.lang.String object
methods Enumeration % List java.util.Enumeration methods

See Also clear

isjava

10-4

10isjavaPurpose Determine if input is Java object

Syntax tf = isjava(A)

Description tf = isjava(A) returns logical 1 (true) if A is a Java object, and logical 0
(false) otherwise.

Examples Create an instance of the Java Frame class and isjava indicates that it is a
Java object.

frame = java.awt.Frame('Frame A');

isjava(frame)

ans =

 1

Note that, isobject, which tests for MATLAB objects, returns logical 0
(false).

isobject(frame)

ans =

 0

See Also isobject, javaArray, javaMethod, javaObject, isa, is*

javaaddpath

10-5

10javaaddpathPurpose Add entries to dynamic Java class path

Syntax javaaddpath('dpath')
javaaddpath('dpath', '-end')

Description javaaddpath('dpath') adds one or more directories or files to the beginning of
the current dynamic Java path. dpath is a string or cell array of strings
containing the directory or file specifications. (See the Remarks section, below,
for a description of static and dynamic Java paths.)

javaaddpath('dpath', '-end') adds one or more directories or files to the
end of the current dynamic Java path.

Remarks The Java path consists of two segments: a static path and a dynamic path.
MATLAB always searches the static path before the dynamic path. Java
classes on the static path should not have dependencies on classes on the
dynamic path.

Path Type Description

Static Loaded at the start of each MATLAB session from the file
classpath.txt. The static Java path offers better Java
class loading performance than the dynamic Java path.
However, to modify the static Java path you need to edit
the file classpath.txt and restart MATLAB.

Dynamic Loaded at any time during a MATLAB session using the
javaclasspath function. You can define the dynamic path
(using javaclasspath), modify the path (using
javaaddpath and javarmpath), and refresh the Java class
definitions for all classes on the dynamic path (using
clear java) without restarting MATLAB.

javaaddpath

10-6

Examples Create a function to set your initial dynamic Java class path:

function setdynpath
javaclasspath({
 'User4:\Work\Java\ClassFiles', ...
 'User4:\Work\JavaTest\curvefit.jar', ...
 'User4:\Work\JavaTest\timer.jar', ...
 'User4:\Work\JavaTest\patch.jar'});
% end of file

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static and
dynamic paths:

setdynpath;

javaclasspath

 STATIC JAVA PATH

 D:\Sys0\Java\util.jar
 D:\Sys0\Java\widgets.jar
 D:\Sys0\Java\beans.jar
 .
 .

 DYNAMIC JAVA PATH

 User4:\Work\Java\ClassFiles
 User4:\Work\JavaTest\curvefit.jar
 User4:\Work\JavaTest\timer.jar
 User4:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path. One
entry specifies a directory and the other a Java Archive (JAR) file. When you
add a directory to the path, MATLAB includes all files in that directory as part
of the path:

javaaddpath({
 'User4:\Work\Java\Curvefit\Test', ...
 'User4:\Work\Java\mywidgets.jar'});

javaaddpath

10-7

Use javaclasspath with just an output argument to return the dynamic path
alone:

p = javaclasspath
p =
 'User4:\Work\Java\ClassFiles'
 'User4:\Work\JavaTest\curvefit.jar'
 'User4:\Work\JavaTest\timer.jar'
 'User4:\Work\JavaTest\patch.jar'
 'User4:\Work\Java\Curvefit\Test'
 'User4:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the dynamic path:

h = mywidgets.calendar;

If, at some time, you modify one or more classes that are defined on the
dynamic path, you will need to clear the former definition for those classes from
MATLAB memory. You can clear all dynamic Java class definitions from
memory using,

clear java

If you then create a new instance of one of these classes, MATLAB uses the
latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic class
path:

javarmpath('User4:\Work\Java\mywidgets.jar');

See Also javaclasspath, javarmpath, clear

javaArray

10-8

10javaArrayPurpose Construct Java array

Syntax javaArray('package_name.class_name',x1,...,xn)

Description javaArray('package_name.class_name',x1,...,xn) constructs an empty
Java array capable of storing objects of Java class, 'class_name'. The
dimensions of the array are x1 by ... by xn. You must include the package
name when specifying the class.

The array that you create with javaArray is equivalent to the array that you
would create with the Java code

A = new class_name[x1]...[xn];

Examples The following example constructs and populates a 4-by-5 array of
java.lang.Double objects.

dblArray = javaArray ('java.lang.Double', 4, 5);

for m = 1:4
 for n = 1:5
 dblArray(m,n) = java.lang.Double((m*10) + n);
 end
end

dblArray

dblArray =
java.lang.Double[][]:
 [11] [12] [13] [14] [15]
 [21] [22] [23] [24] [25]
 [31] [32] [33] [34] [35]
 [41] [42] [43] [44] [45]

See Also javaObject, javaMethod, class, methodsview, isjava

javachk

10-9

10javachkPurpose Generate error message based on Java feature support

Syntax javachk(feature)
javachk(feature, component)

Description javachk(feature) returns a generic error message if the specified Java
feature is not available in the current MATLAB session. If it is available,
javachk returns an empty matrix. Possible feature arguments are shown in
the following table.

1. Java’s GUI components in the Abstract Window Toolkit

2. Java’s lightweight GUI components in the Java Foundation Classes

javachk(feature, component) works the same as the above syntax, except
that the specified component is also named in the error message. (See the
example below.)

Examples The following M-file displays an error with the message "CreateFrame is not
supported on this platform." when run in a MATLAB session in which the
AWT’s GUI components are not available. The second argument to javachk
specifies the name of the M-file, which is then included in the error message
generated by MATLAB.

Feature Description

'awt' Abstract Window Toolkit components1 are available.

'desktop' The MATLAB interactive desktop is running.

'jvm' The Java Virtual Machine is running.

'swing' Swing components2 are available.

javachk

10-10

javamsg = javachk('awt', mfilename);
if isempty(javamsg)
 myFrame = java.awt.Frame;
 myFrame.setVisible(1);
else
 error(javamsg);
end

See Also usejava

javaclasspath

10-11

10javaclasspathPurpose Set and get dynamic Java class path

Syntax javaclasspath
javaclasspath(dpath)
dpath = javaclasspath
spath = javaclasspath('-static')
jpath = javaclasspath('-all')
javaclasspath(statusmsg)

Description javaclasspath displays the static and dynamic segments of the Java path.
(See the Remarks section, below, for a description of static and dynamic Java
paths.)

javaclasspath(dpath) sets the dynamic Java path to one or more directory or
file specifications given in dpath, where dpath can be a string or cell array of
strings.

dpath = javaclasspath returns the dynamic segment of the Java path in cell
array, dpath. If no dynamic paths are defined, javaclasspath returns an
empty cell array.

spath = javaclasspath('-static') returns the static segment of the Java
path in cell array, spath. No path information is displayed unless you specify
an output variable. If no static paths are defined, javaclasspath returns an
empty cell array.

jpath = javaclasspath('-all') returns the entire Java path in cell array,
jpath. The returned cell array contains first the static segment of the path, and
then the dynamic segment. No path information is displayed unless you specify
an output variable. If no dynamic paths are defined, javaclasspath returns an
empty cell array.

javaclasspath

10-12

javaclasspath(statusmsg) enables or disables the display of status messages
from the javaclasspath, javaaddpath, and javarmpath functions. Values for
the statusmsg argument are

Remarks The Java path consists of two segments: a static path and a dynamic path.
MATLAB always searches the static path before the dynamic path. Java
classes on the static path should not have dependencies on classes on the
dynamic path.

statusmsg Description

'-v1' Display status messages while loading the Java path from
the file system

'-v0' Do not display status messages. This is the default.

Path Type Description

Static Loaded at the start of each MATLAB session from the file
classpath.txt. The static Java path offers better Java
class loading performance than the dynamic Java path.
However, to modify the static Java path you need to edit
the file classpath.txt and restart MATLAB.

Dynamic Loaded at any time during a MATLAB session using the
javaclasspath function. You can define the dynamic path
(using javaclasspath), modify the path (using
javaaddpath and javarmpath), and refresh the Java class
definitions for all classes on the dynamic path (using
clear java) without restarting MATLAB.

javaclasspath

10-13

Examples Create a function to set your initial dynamic Java class path:

function setdynpath
javaclasspath({
 'User4:\Work\Java\ClassFiles', ...
 'User4:\Work\JavaTest\curvefit.jar', ...
 'User4:\Work\JavaTest\timer.jar', ...
 'User4:\Work\JavaTest\patch.jar'});
% end of file

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static and
dynamic paths:

setdynpath;

javaclasspath

 STATIC JAVA PATH

 D:\Sys0\Java\util.jar
 D:\Sys0\Java\widgets.jar
 D:\Sys0\Java\beans.jar
 .
 .

 DYNAMIC JAVA PATH

 User4:\Work\Java\ClassFiles
 User4:\Work\JavaTest\curvefit.jar
 User4:\Work\JavaTest\timer.jar
 User4:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path. One
entry specifies a directory and the other a Java Archive (JAR) file. When you
add a directory to the path, MATLAB includes all files in that directory as part
of the path:

javaaddpath({
 'User4:\Work\Java\Curvefit\Test', ...
 'User4:\Work\Java\mywidgets.jar'});

javaclasspath

10-14

Use javaclasspath with just an output argument to return the dynamic path
alone:

p = javaclasspath
p =
 'User4:\Work\Java\ClassFiles'
 'User4:\Work\JavaTest\curvefit.jar'
 'User4:\Work\JavaTest\timer.jar'
 'User4:\Work\JavaTest\patch.jar'
 'User4:\Work\Java\Curvefit\Test'
 'User4:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the dynamic path:

h = mywidgets.calendar;

If, at some time, you modify one or more classes that are defined on the
dynamic path, you will need to clear the former definition for those classes from
MATLAB memory. You can clear all dynamic Java class definitions from
memory using,

clear java

If you then create a new instance of one of these classes, MATLAB uses the
latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic class
path:

javarmpath('User4:\Work\Java\mywidgets.jar');

See Also javaaddpath, javarmpath, clear

javaMethod

10-15

10javaMethodPurpose Invoke Java method

Syntax X = javaMethod('method_name','class_name',x1,...,xn)
X = javaMethod('method_name',J,x1,...,xn)

Description javaMethod('method_name','class_name',x1,...,xn) invokes the static
method method_name in the class class_name, with the argument list that
matches x1,...,xn.

javaMethod('method_name',J,x1,...,xn) invokes the nonstatic method
method_name on the object J, with the argument list that matches x1,...,xn.

Remarks Using the javaMethod function enables you to

• Use methods having names longer than 31 characters

• Specify the method you want to invoke at run-time, for example, as input
from an application user

The javaMethod function enables you to use methods having names longer
than 31 characters. This is the only way you can invoke such a method in
MATLAB. For example:

javaMethod('DataDefinitionAndDataManipulationTransactions', T);

With javaMethod, you can also specify the method to be invoked at run-time.
In this situation, your code calls javaMethod with a string variable in place of
the method name argument. When you use javaMethod to invoke a static
method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

Examples To invoke the static Java method isNaN on class, java.lang.Double, use

javaMethod('isNaN','java.lang.Double',2.2)

javaMethod

10-16

The following example invokes the nonstatic method setTitle, where
frameObj is a java.awt.Frame object.

frameObj = java.awt.Frame;
javaMethod('setTitle', frameObj, 'New Title');

See Also javaArray, javaObject, import, methods, isjava

javaObject

10-17

10javaObjectPurpose Construct Java object

Syntax J = javaObject('class_name',x1,...,xn)

Description javaObject('class_name',x1,...,xn) invokes the Java constructor for class
'class_name' with the argument list that matches x1,...,xn, to return a new
object.

If there is no constructor that matches the class name and argument list passed
to javaObject, an error occurs.

Remarks Using the javaObject function enables you to

• Use classes having names with more than 31 consecutive characters

• Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the input
class name be longer than 31 characters. (A name segment, is any portion of the
class name before, between, or after a period. For example, there are three
segments in class, java.lang.String.) Any class name segment that exceeds
31 characters is truncated by MATLAB. In the rare case where you need to use
a class name of this length, you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the object
being constructed at run-time. In this situation, you call javaObject with a
string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, you would use

strObj = java.lang.String('hello');

Note Typically, you will not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable for

javaObject

10-18

most applications. Use javaObject primarily for the two cases described
above.

Examples The following example constructs and returns a Java object of class
java.lang.String:

strObj = javaObject('java.lang.String','hello')

See Also javaArray, javaMethod, import, methods, fieldnames, isjava

javarmpath

10-19

10javarmpathPurpose Remove entries from dynamic Java class path

Syntax javarmpath('dpath')
javarmpath dpath1 dpath2 ... dpathN
javarmpath(v1, v2, ..., vN)

Description javarmpath('dpath') removes a directory or file from the current dynamic
Java path. dpath is a string containing the directory or file specification. (See
the Remarks section, below, for a description of static and dynamic Java
paths.)

javarmpath dpath1 dpath2 ... dpathN removes those directories and files
specified by dpath1, dpath2, ..., dpathN from the dynamic Java path. Each
input argument is a string containing a directory or file specification.

javarmpath(v1, v2, ..., vN) removes those directories and files specified
by v1, v2, ..., vN from the dynamic Java path. Each input argument is a
variable to which a directory or file specification is assigned.

Remarks The Java path consists of two segments: a static path and a dynamic path.
MATLAB always searches the static path before the dynamic path. Java
classes on the static path should not have dependencies on classes on the
dynamic path.

Path Type Description

Static Loaded at the start of each MATLAB session from the file
classpath.txt. The static Java path offers better Java
class loading performance than the dynamic Java path.
However, to modify the static Java path you need to edit
the file classpath.txt and restart MATLAB.

Dynamic Loaded at any time during a MATLAB session using the
javaclasspath function. You can define the dynamic path
(using javaclasspath), modify the path (using
javaaddpath and javarmpath), and refresh the Java class
definitions for all classes on the dynamic path (using
clear java) without restarting MATLAB.

javarmpath

10-20

Examples Create a function to set your initial dynamic Java class path:

function setdynpath
javaclasspath({
 'User4:\Work\Java\ClassFiles', ...
 'User4:\Work\JavaTest\curvefit.jar', ...
 'User4:\Work\JavaTest\timer.jar', ...
 'User4:\Work\JavaTest\patch.jar'});
% end of file

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static and
dynamic paths:

setdynpath;

javaclasspath

 STATIC JAVA PATH

 D:\Sys0\Java\util.jar
 D:\Sys0\Java\widgets.jar
 D:\Sys0\Java\beans.jar
 .
 .

 DYNAMIC JAVA PATH

 User4:\Work\Java\ClassFiles
 User4:\Work\JavaTest\curvefit.jar
 User4:\Work\JavaTest\timer.jar
 User4:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path. One
entry specifies a directory and the other a Java Archive (JAR) file. When you
add a directory to the path, MATLAB includes all files in that directory as part
of the path:

javaaddpath({
 'User4:\Work\Java\Curvefit\Test', ...
 'User4:\Work\Java\mywidgets.jar'});

javarmpath

10-21

Use javaclasspath with just an output argument to return the dynamic path
alone:

p = javaclasspath
p =
 'User4:\Work\Java\ClassFiles'
 'User4:\Work\JavaTest\curvefit.jar'
 'User4:\Work\JavaTest\timer.jar'
 'User4:\Work\JavaTest\patch.jar'
 'User4:\Work\Java\Curvefit\Test'
 'User4:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the dynamic path:

h = mywidgets.calendar;

If, at some time, you modify one or more classes that are defined on the
dynamic path, you will need to clear the former definition for those classes from
MATLAB memory. You can clear all dynamic Java class definitions from
memory using,

clear java

If you then create a new instance of one of these classes, MATLAB uses the
latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic class
path:

javarmpath('User4:\Work\Java\mywidgets.jar');

See Also javaclasspath, javaaddpath, clear

usejava

10-22

10usejavaPurpose Determine if Java feature is supported in MATLAB

Syntax usejava(feature)

Description usejava(feature) returns 1 if the specified feature is supported and 0
otherwise. Possible feature arguments are shown in the following table.

1. Java’s GUI components in the Abstract Window Toolkit

2. Java’s lightweight GUI components in the Java Foundation Classes

Examples The following conditional code ensures that the AWT’s GUI components are
available before the M-file attempts to display a Java Frame.

if usejava('awt')
 myFrame = java.awt.Frame;
else
 disp('Unable to open a Java Frame');
end

The next example is part of an M-file that includes Java code. It fails gracefully
when run in a MATLAB session that does not have access to a JVM.

if ~usejava('jvm')
 error([mfilename ' requires Java to run.']);
end

See Also javachk

Feature Description

'awt' Abstract Window Toolkit components1 are available

'desktop' The MATLAB interactive desktop is running

'jvm' The Java Virtual Machine is running

'swing' Swing components2 are available

11
COM Functions
This section describes the functions that support the MATLAB interface to Component Object Model
(COM) technology. These fall into the following two categories.

COM Client Functions (p. 11-2) Functions that enable a MATLAB client application to start a
COM server or control, and to interact with its properties,
methods, and events.

COM Server Functions (p. 11-50) Functions called from a client application that execute in the
MATLAB server enabling the client to execute commands and
access data on the server.

COM Client Functions

11-2

COM Client Functions 11

actxcontrol Create ActiveX control in figure window

actxcontrollist List all currently installed ActiveX controls

actxcontrolselect Display graphical interface for creating an ActiveX control

actxserver Create COM Automation server

addproperty Add custom property to an object

class Create object or return class of object

delete (COM) Delete COM control or server

deleteproperty Remove custom property from object

eventlisteners Return list of events attached to listeners

events Return list of events the control can trigger

fieldnames Return property names of an object

get (COM) Get property value from an interface, or display properties

inspect Display graphical interface to list and modify property values

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface, or display methods

isa Detect an object of a given MATLAB class or Java class

iscom Determine if input is a COM object

isevent Determine if input is an event

isinterface Determine if input is a COM interface

ismethod Determine if input is an object method

isprop Determine if input is an object property

load (COM) Initialize control object from a file

methods List all methods for the control or server

methodsview Display graphical interface to list method information

move Move or resize control in parent window

COM Client Functions

11-3

propedit Display built-in property page for control

registerevent Register event handler with control's event

release Release an interface

save (COM) Serialize control object to a file

send Obsolete — duplicate of events

set (COM) Set object or interface property to specified value

unregisterallevents Unregister all events for a control

unregisterevent Unregister event handler with a control's event

actxcontrol

11-4

11actxcontrolPurpose Create ActiveX control in figure window

Syntax h = actxcontrol('progid')
h = actxcontrol('progid', position)
h = actxcontrol('progid', position, fig_handle)
h = actxcontrol('progid', position, fig_handle, event_handler)
h = actxcontrol('progid', position, fig_handle, ...

event_handler, 'filename')

Description h = actxcontrol('progid') creates an ActiveX control in a figure window.
The type of control created is determined by the string progid, the
programmatic identifier (ProgID) for the control. (See the documentation
provided by the control vendor to get this string.) The returned object, h,
represents the default interface for the control.

h = actxcontrol('progid', position) creates an ActiveX control having
the location and size specified in the vector, position. The format of this vector
is

[x y width height]

The first two elements of the vector determine where the control is placed in
the figure window, with x and y being offsets, in pixels, from the bottom left
corner of the figure window to the same corner of the control. The last two
elements, width and height, determine the size of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an ActiveX
control at the specified position in an existing figure window. This window is
identified by the Handle Graphics handle, fig_handle.

The default figure handle is gcf.

Note If the figure window designated by fig_handle is invisible, the control
will be invisible. If you want the control you are creating to be invisible, use
the handle of an invisible figure window.

actxcontrol

11-5

h = actxcontrol('progid', position, fig_handle, event_handler)
creates an ActiveX control that responds to events. Controls respond to events
by invoking an M-file function whenever an event (such as clicking a mouse
button) is fired. The event_handler argument identifies one or more M-file
functions to be used in handling events (see “Specifying Event Handlers”
below).

h = actxcontrol('progid', position, fig_handle, ...
event_handler, 'filename') creates an ActiveX control with the first four
arguments, and sets its initial state to that of a previously saved control.
MATLAB loads the initial state from the file specified in the string filename.

If you don’t want to specify an event_handler, you can use an empty string ('')
as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers
There is more than one valid format for the event_handler argument. Use this
argument to specify one of the following:

• A different event handler routine for each event supported by the control

• One common routine to handle selected events

• One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with each
row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event can be either a string containing the event name or a numeric event
identifier (see Example 2 below), and eventhandler is a string identifying the
M-file function you want the control to use in handling the event. Include only
those events that you want enabled.

In the second case, use the same cell array syntax just described, but specify
the same eventhandler for each event. Again, include only those events that
you want enabled.

actxcontrol

11-6

In the third case, make event_handler a string (instead of a cell array) that
contains the name of the one M-file function that is to handle all events for the
control.

There is no limit to the number of event and handler pairs you can specify in
the event_handler cell array.

Event handler functions should accept a variable number of arguments.

Strings used in the event_handler argument are not case sensitive.

Note Although using a single handler for all events may be easier in some
cases, specifying an individual handler for each event creates more efficient
code that results in better performance.

Remarks If the control implements any custom interfaces, use the interfaces function
to list them, and the invoke function to get a handle to a selected interface.

When you no longer need the control, call release to release the interface and
free memory and other resources used by the interface. Note that releasing the
interface does not delete the control itself. Use the delete function to do this.

For more information on handling control events, see the section, “Writing
Event Handlers” in the External Interfaces documentation.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

Note If you encounter problems creating Microsoft Forms 2.0 controls in
MATLAB or other non-VBA container applications, see “Using Microsoft
Forms 2.0 Controls” in the External Interfaces documentation.

Examples Example 1 — Basic Control Methods
Start by creating a figure window to contain the control. Then create a control
to run a Microsoft Calendar application in the window. Position the control at

actxcontrol

11-7

a [0 0] x-y offset from the bottom left of the figure window, and make it the
same size (600 x 500 pixels) as the figure window.

f = figure('position', [300 300 600 500]);
cal = actxcontrol('mscal.calendar', [0 0 600 500], f)
cal =
 COM.mscal.calendar

Call the get method on cal to list all properties of the calendar:

cal.get
 BackColor: 2.1475e+009
 Day: 23
 DayFont: [1x1 Interface.Standard_OLE_Types.Font]
 Value: '8/20/2001'
 .
 .

Read just one property to record today’s date:

date = cal.Value
date =
 8/23/2001

Set the Day property to a new value:

cal.Day = 5;
date = cal.Value
date =
 8/5/2001

Call invoke with no arguments to list all available methods:

meth = cal.invoke
meth =
 NextDay: 'HRESULT NextDay(handle)'
 NextMonth: 'HRESULT NextMonth(handle)'
 NextWeek: 'HRESULT NextWeek(handle)'
 NextYear: 'HRESULT NextYear(handle)'
 .
 .

Invoke the NextWeek method to advance the current date by one week:

actxcontrol

11-8

cal.NextWeek;
date = cal.Value
date =
 8/12/2001

Call events to list all calendar events that can be triggered:

cal.events
ans =
 Click = void Click()
 DblClick = void DblClick()
 KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
 KeyPress = void KeyPress(int16 KeyAscii)
 KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
 BeforeUpdate = void BeforeUpdate(int16 Cancel)
 AfterUpdate = void AfterUpdate()
 NewMonth = void NewMonth()
 NewYear = void NewYear()

Example 2 — Event Handling
The event_handler argument specifies how you want the control to handle any
events that occur. The control can handle all events with one common handler
function, selected events with a common handler function, or each type of event
can be handled by a separate function.

This command creates an mwsamp control that uses one event handler, sampev,
to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
 gcf, 'sampev')

The next command also uses a common event handler, but will only invoke the
handler when selected events, Click and DblClick are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
 gcf, {'Click' 'sampev'; 'DblClick' 'sampev'})

This command assigns a different handler routine to each event. For example,
Click is an event, and myclick is the routine that executes whenever a Click
event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

actxcontrol

11-9

 gcf, {'Click', 'myclick'; 'DblClick' 'my2click'; ...
 'MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using numeric
event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
 gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

See the section, “Sample Event Handlers” in the External Interfaces
documentation for examples of event handler functions and how to register
them with MATLAB.

See Also actxserver, release, delete, save, load, interfaces

actxcontrollist

11-10

11actxcontrollist Purpose List all currently installed ActiveX controls

Syntax C = actxcontrollist

Description C = actxcontrollist returns a list of each control, including its name,
programmatic identifier (or ProgID), and filename, in output cell array C.

Examples Here is an example of the information that might be returned for several
controls:

list = actxcontrollist;

for k = 1:2
 sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{k,:})
end

ans =
 Name = ActiveXPlugin Object
 ProgID = Microsoft.ActiveXPlugin.1
 File = C:\WINNT\System32\plugin.ocx

ans =
 Name = Adaptec CD Guide
 ProgID = Adaptec.EasyCDGuide
 File = D:\APPLIC~1\Adaptec\Shared\CDGuide\CDGuide.ocx

See Also actxcontrolselect, actxcontrol

actxcontrolselect

11-11

11actxcontrolselect Purpose Display graphical interface for creating an ActiveX control

Syntax h = actxcontrolselect
[h, info] = actxcontrolselect

Description h = actxcontrolselect displays a graphical interface that lists all ActiveX
controls installed on the system and creates the one that you select from the
list. The function returns a handle h for the object. Use the handle to identify
this particular control object when calling other MATLAB COM functions.

[h, info] = actxcontrolselect returns the handle h and also the 1-by-3 cell
array info containing information about the control. The information returned
in the cell array shows the name, programmatic identifier (or ProgID), and
filename for the control.

The actxcontrolselect interface has a selection panel at the left of the
window and a preview panel at the right. Click on one of the control names in
the selection panel to see a preview of the control displayed. (If MATLAB

actxcontrolselect

11-12

cannot create the control, an error message is displayed in the preview panel.)
Select an item from the list and click the Create button at the bottom.

Remarks Click the Properties button on the actxcontrolselect window to enter
nondefault values for properties when creating the control. You can select
which figure window to put the control in (Parent field), where to position it in
the window (X and Y fields), and what size to make the control (Width and
Height).

You can also register any events you want the control to respond to and what
event handling routines to use when any of these events fire. Do this by
entering the name of the appropriate event handling routine to the right of the
event, or clicking the Browse button to search for the event handler file.

Note If you encounter problems creating Microsoft Forms 2.0 controls in
MATLAB or other non-VBA container applications, see “Using Microsoft
Forms 2.0 Controls” in the External Interfaces documentation.

Examples Select Calendar Control 9.0 in the actxcontrolselect window and then
click Properties to open the window shown above. Enter new values for the
size of the control, setting Width to 500 and Height to 350, then click OK. Click
Create in the actxcontrolselect window to create the control.

actxcontrolselect

11-13

The control appears in a MATLAB figure window and the actxcontrolselect
function returns these values:

h =
 COM.mscal.calendar.7
info =
 [1x20 char] 'MSCAL.Calendar.7' [1x41 char]

Expand the info cell array to show the control name, ProgID, and filename:

info{:}
ans =
 Calendar Control 9.0
ans =
 MSCAL.Calendar.7
ans =
 D:\Applications\MSOffice\Office\MSCAL.OCX

See Also actxcontrollist, actxcontrol

actxserver

11-14

11actxserverPurpose Create COM Automation server

Syntax h = actxserver('progid')
h = actxserver('progid', 'systemname')

Description h = actxserver(progid) creates a COM server, and returns COM object, h,
representing the server’s default interface. progid is the programmatic
identifier of the component to instantiate in the server. This string is provided
by the control or server vendor and should be obtained from the vendor’s
documentation. For example, the progid for MATLAB is matlab.application.

h = actxserver(progid, systemname) creates a COM server running on the
remote system named by the systemname argument. This can be an IP address
or a DNS name. Use this syntax only in environments that support Distributed
Component Object Model (DCOM).

Remarks For components implemented in a dynamic link library (DLL), actxserver
creates an in-process server. For components implemented as an executable
(EXE), actxserver creates an out-of-process server. Out-of-process servers can
be created either on the client system or any other system on a network that
supports DCOM.

If the control implements any custom interfaces, use the interfaces function
to list them, and the invoke function to get a handle to a selected interface.

There is currently no support for events generated from automation servers.

Examples Create a COM server running Microsoft Excel and make the main frame
window visible:

e = actxserver ('Excel.Application')
e =
 COM.excel.application
e.Visible = 1;

Call the get method on the excel object to list all properties of the application:

e.get
ans =
 Application: [1x1Interface.Microsoft_Excel_9.0_Object_
Library._Application]

actxserver

11-15

 Creator: 'xlCreatorCode'
 Workbooks: [1x1 Interface.Microsoft_Excel_9.0_Object_
Library.Workbooks]
 Caption: 'Microsoft Excel - Book1'
 CellDragAndDrop: 0
 ClipboardFormats: {3x1 cell}
 Cursor: 'xlNorthwestArrow'
 .
 .

Create an interface:

eWorkbooks = e.Workbooks
eWorkbooks =
 Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

List all methods for that interface by calling invoke with just the handle
argument:

eWorkbooks.invoke
ans =
 Add: 'handle Add(handle, [Optional]Variant)'
 Close: 'void Close(handle)'
 Item: 'handle Item(handle, Variant)'
 Open: 'handle Open(handle, string, [Optional]Variant)'
 OpenText: 'void OpenText(handle, string, [Optional]Variant)'

Invoke the Add method on workbooks to add a new workbook, also creating a
new interface:

w = eWorkbooks.Add
w =
 Interface.Microsoft_Excel_9.0_Object_Library._Workbook

Quit the application and delete the object:

e.Quit;
e.delete;

See Also actxcontrol, release, delete, save, load, interfaces

addproperty

11-16

11addpropertyPurpose Add custom property to an object

Syntax h.addproperty('propertyname')
addproperty(h, 'propertyname')

Description h.addproperty('propertyname') adds the custom property specified in the
string, propertyname, to the object or interface, h. Use set to assign a value to
the property.

addproperty(h, 'propertyname') is an alternate syntax for the same
operation.

Examples Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get
 Label: 'Label'
 Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get
 Label: 'Label'
 Radius: 20
 Position: [200 120]

h.get('Position')
ans =
 200 120

Delete the custom Position property:

h.deleteproperty('Position');
h.get
 Label: 'Label'
 Radius: 20

See Also deleteproperty, get, set, inspect

delete (COM)

11-17

11delete (COM)Purpose Delete COM control or server

Syntax h.delete
delete(h)

Description h.delete releases all interfaces derived from the specified COM server or
control, and then deletes the server or control itself. This is different from
releasing an interface, which releases and invalidates only that interface.

delete(h) is an alternate syntax for the same operation.

Examples Create a Microsoft Calender application. Then create a TitleFont interface
and use it to change the appearance of the font of the calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont
TFont =
 Interface.Standard_OLE_Types.Font

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

TFont.release;

Now create a GridFont interface and use it to modify the size of the calendar’s
date numerals:

GFont = cal.GridFont
GFont =
 Interface.Standard_OLE_Types.Font

GFont.Size = 16;

When you’re done, delete the cal object and the figure window. Deleting the
cal object also releases all interfaces to the object (e.g., GFont):

cal.delete;

delete (COM)

11-18

delete(f);
clear f;

Note that, although the object and interfaces themselves have been destroyed,
the variables assigned to them still reside in the MATLAB workspace until you
remove them with clear:

whos
 Name Size Bytes Class

 GFont 1x1 0 handle
 TFone 1x1 0 handle
 cal 1x1 0 handle

Grand total is 3 elements using 0 bytes

See Also release, save, load, actxcontrol, actxserver

deleteproperty

11-19

11deletepropertyPurpose Remove custom property from object

Syntax h.deleteproperty('propertyname')
deleteproperty(h, 'propertyname')

Description h.deleteproperty('propertyname') deletes the property specified in the
string propertyname from the custom properties belonging to object or
interface, h.

deleteproperty(h, 'propertyname') is an alternate syntax for the same
operation.

Note You can only delete properties that have been created with
addproperty.

Examples Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get
 Label: 'Label'
 Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get
 Label: 'Label'
 Radius: 20
 Position: [200 120]

Delete the custom Position property:

h.deleteproperty('Position');
h.get
 Label: 'Label'
 Radius: 20

deleteproperty

11-20

See Also addproperty, get, set, inspect

eventlisteners

11-21

11eventlistenersPurpose Return list of events attached to listeners

Syntax C = h.eventlisteners
C = eventlisteners(h)

Description C = h.eventlisteners lists any events, along with their event handler
routines, that have been registered with control, h. The function returns cell
array of strings C, with each row containing the name of a registered event and
the handler routine for that event. If the control has no registered events, then
eventlisteners returns an empty cell array.

Events and their event handler routines must be registered in order for the
control to respond to them. You can register events either when you create the
control, using actxcontrol, or at any time afterwards, using registerevent.

C = eventlisteners(h) is an alternate syntax for the same operation.

Examples Create an mwsamp control, registering only the Click event. eventlisteners
returns the name of the event and its event handler routine, myclick:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
 {'Click' 'myclick'});

h.eventlisteners
ans =
 'click' 'myclick'

Register two more events: DblClick and MouseDown. eventlisteners returns
the names of the three registered events along with their respective handler
routines:

h.registerevent({'DblClick', 'my2click'; ...
 'MouseDown' 'mymoused'});

h.eventlisteners
ans =
 'click' 'myclick'
 'dblclick' 'my2click'
 'mousedown' 'mymoused'

eventlisteners

11-22

Now unregister all events for the control. eventlisteners returns an empty
cell array, indicating that no events have been registered for the control:

h.unregisterallevents

h.eventlisteners
ans =
 {}

See Also events, registerevent, unregisterevent, unregisterallevents, isevent

events

11-23

11eventsPurpose Return list of events the control can trigger

Syntax S = h.events
S = events(h)

Description S = h.events returns structure array S containing all events, both registered
and unregistered, known to the control, and the function prototype used when
calling the event handler routine. For each array element, the structure field
is the event name and the contents of that field is the function prototype for
that event’s handler.

S = events(h) is an alternate syntax for the same operation.

Note The send function is identical to events, but support for send will be
removed in a future release of MATLAB.

Examples Create an mwsamp control and list all events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
 Click = void Click()
 DblClick = void DblClick()
 MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)

Assign the output to a variable and get one field of the returned structure:

ev = h.events;

ev.MouseDown
ans =
void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

get (COM)

11-24

11get (COM)Purpose Get property value from an interface, or display properties

Syntax V = h.get
V = h.get('propertyname')
V = get(h, ...)

Description V = h.get returns a list of all properties and their values for the object or
interface, h.

V = h.get('propertyname') returns the value of the property specified in the
string, propertyname.

V = get(h, ...) is an alternate syntax for the same operation.

Remarks The meaning and type of the return value is dependent upon the specific
property being retrieved. The object’s documentation should describe the
specific meaning of the return value. MATLAB may convert the data type of the
return value. See “Converting Data” in the External Interfaces documentation
for a description of how MATLAB converts COM data types.

Examples Create a COM server running Microsoft Excel:

e = actxserver ('Excel.Application');

Retrieve a single property value:

e.Path
ans =
 D:\Applications\MSOffice\Office

Retrieve a list of all properties for the CommandBars interface:

c = e.CommandBars.get
ans =
 Application: [1x1
Interface.excel.application.CommandBars.Application]
 Creator: 1.4808e+009
 ActionControl: []
 ActiveMenuBar: [1x1
Interface.excel.application.CommandBars.ActiveMenuBar]
 Count: 94

get (COM)

11-25

 DisplayTooltips: 1
 DisplayKeysInTooltips: 0
 LargeButtons: 0
 MenuAnimationStyle: 'msoMenuAnimationNone'
 Parent: [1x1
Interface.excel.application.CommandBars.Parent]
 AdaptiveMenus: 0
 DisplayFonts: 1

See Also set, inspect, isprop, addproperty, deleteproperty

interfaces

11-26

11interfacesPurpose List custom interfaces to COM server

Syntax C = h.interfaces
C = interfaces(h)

Description C = h.interfaces returns cell array of strings C listing all custom interfaces
implemented by the component in a specific COM server. The server is
designated by input argument, h, which is the handle returned by the
actxcontrol or actxserver function when creating that server.

C = interfaces(h) is an alternate syntax for the same operation.

Note interfaces only lists the custom interfaces; it does not return any
interfaces. Use the invoke function to return a handle to a specific custom
interface.

Examples Once you have created a COM server, you can query the server component to
see if any custom interfaces are implemented. Use the interfaces function to
return a list of all available custom interfaces:

h = actxserver('mytestenv.calculator')
h =
 COM.mytestenv.calculator

customlist = h.interfaces
customlist =
 ICalc1
 ICalc2
 ICalc3

To get a handle to the custom interface you want, use the invoke function,
specifying the handle returned by actxcontrol or actxserver and also the
name of the custom interface:

c1 = h.invoke('ICalc1')
c1 =
 Interface.Calc_1.0_Type_Library.ICalc_Interface

interfaces

11-27

You can now use this handle with most of the COM client functions to access
the properties and methods of the object through the selected custom interface.
For example, to list the properties available through the ICalc1 interface, use

c1.get
 background: 'Blue'
 height: 10
 width: 0

To list the methods, use

c1.invoke
 Add = double Add(handle, double, double)
 Divide = double Divide(handle, double, double)
 Multiply = double Multiply(handle, double, double)
 Subtract = double Subtract(handle, double, double)

Add and multiply numbers using the Add and Multiply methods of the custom
object c1:

sum = c1.Add(4, 7)
sum =
 11

prod = c1.Multiply(4, 7)
prod =
 28

See Also actxcontrol, actxserver, invoke, get

invoke

11-28

11invokePurpose Invoke method on object or interface, or display methods

Syntax S = h.invoke
S = h.invoke('methodname')
S = h.invoke('methodname', arg1, arg2, ...)
S = h.invoke('custominterfacename')
S = invoke(h, ...)

Description S = h.invoke returns structure array S containing a list of all methods
supported by the object or interface, h, along with the prototypes for these
methods.

S = h.invoke('methodname') invokes the method specified in the string
methodname, and returns an output value, if any, in v. The data type of the
return value is dependent upon the specific method being invoked and is
determined by the specific control or server.

S = h.invoke('methodname', arg1, arg2, ...) invokes the method
specified in the string methodname with input arguments arg1, arg2, etc.

S = h.invoke('custominterfacename') returns an Interface object that
serves as a handle to a custom interface implemented by the COM component.
The h argument is a handle to the COM object. The custominterfacename
argument is a quoted string returned by the interfaces function.

S = invoke(h, ...) is an alternate syntax for the same operation.

Remarks If the method returns a COM interface, then invoke returns a new MATLAB
COM object that represents the interface returned. See “Converting Data” in
the External Interfaces documentation for a description of how MATLAB
converts COM data types.

Examples Example 1 — Invoking a Method
Create an mwsamp control and invoke its Redraw method:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.Radius = 100;

invoke

11-29

h.invoke('Redraw');

Here is a simpler way to use invoke. Just call the method directly, passing the
handle, and any arguments:

h.Redraw;

Call invoke with only the handle argument to display a list of all mwsamp
methods:

h.invoke
ans =
 AboutBox = void AboutBox(handle)
 Beep = void Beep(handle)
 FireClickEvent = void FireClickEvent(handle)
 .
 .
 etc.

Example 2 — Getting a Custom Interface
Once you have created a COM server, you can query the server component to
see if any custom interfaces are implemented. Use the interfaces function to
return a list of all available custom interfaces:

h = actxserver('mytestenv.calculator')
h =
 COM.mytestenv.calculator

customlist = h.interfaces
customlist =
 ICalc1
 ICalc2
 ICalc3

To get a handle to the custom interface you want, use the invoke function,
specifying the handle returned by actxcontrol or actxserver and also the
name of the custom interface:

c1 = h.invoke('ICalc1')
c1 =
 Interface.Calc_1.0_Type_Library.ICalc_Interface

invoke

11-30

You can now use this handle with most of the COM client functions to access
the properties and methods of the object through the selected custom interface.

See Also methods, ismethod, interfaces

iscom

11-31

11iscomPurpose Determine if input is a COM object

Syntax tf = h.iscom
tf = iscom(h)

Description tf = h.iscom returns logical 1 (true) if the input handle, h, is a COM or
ActiveX object. Otherwise, iscom returns logical 0 (false) .

tf = iscom(h) is an alternate syntax for the same operation.

Examples Create a COM server running Microsoft Excel. The actxserver function
returns a handle h to the server object. Testing this handle with iscom returns
true:

h = actxserver('excel.application');

h.iscom
ans =
 1

Create an interface to workbooks, returning handle w. Testing this handle with
iscom returns false:

w = h.get('workbooks');

w.iscom
ans =
 0

See Also isinterface

isevent

11-32

11iseventPurpose Determine if input is an event

Syntax tf = h.isevent('name')
tf = isevent(h, 'name')

Description tf = h.isevent('name') returns logical 1 (true) if the specified name is an
event that can be recognized and responded to by object h. Otherwise, isevent
returns logical 0 (false) .

tf = isevent(h, 'name') is an alternate syntax for the same operation.

Remarks The string specified in the name argument is not case sensitive.

For COM control objects, isevent returns the same value regardless of
whether the specified event is registered with the control or not. In order for
the control to respond to the event, you must first register the event using
either actxcontrol or registerevent.

Examples Create an mwsamp control and test to see if DblClick is an event recognized by
the control. isevent returns true:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.isevent('DblClick')
ans =
 1

Try the same test on Redraw, which is a method, and isevent returns false:

h.isevent('Redraw')
ans =
 0

See Also events, eventlisteners, registerevent, unregisterevent,
unregisterallevents

isinterface

11-33

11isinterfacePurpose Determine if input is a COM interface

Syntax tf = h.isinterface
tf = isinterface(h)

Description tf = h.isinterface returns logical 1 (true) if the input handle, h, is a COM
interface. Otherwise, isinterface returns logical 0 (false) .

tf = isinterface(h) is an alternate syntax for the same operation.

Examples Create a COM server running Microsoft Excel. The actxserver function
returns a handle h to the server object. Testing this handle with isinterface
returns false:

h = actxserver('excel.application');

h.isinterface
ans =
 0

Create an interface to workbooks, returning handle w. Testing this handle with
isinterface returns true:

w = h.get('workbooks');

w.isinterface
ans =
 1

See Also iscom, interfaces, get (COM)

load (COM)

11-34

11load (COM)Purpose Initialize control object from a file

Syntax h.load('filename')
load(h, 'filename')

Description h.load('filename') initializes the COM object associated with the interface
represented by the MATLAB COM object h from file specified in the string
filename. The file must have been created previously by serializing an
instance of the same control.

load(h, 'filename') is an alternate syntax for the same operation.

Note The COM load function is only supported for controls at this time.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get
ans =
 Label: 'Label'
 Radius: 20

See Also save, actxcontrol, actxserver, release, delete

move

11-35

11movePurpose Move or resize control in parent window

Syntax V = h.move(position)
V = move(h, position)

Description V = h.move(position) moves the control to the position specified by the
position argument. When you use move with only the handle argument, h, it
returns a four-element vector indicating the current position of the control.

V = move(h, position) is an alternate syntax for the same operation.

The position argument is a four-element vector specifying the position and size
of the control in the parent figure window. The elements of the vector are

[x, y, width, height]

where x and y are offsets, in pixels, from the bottom left corner of the figure
window to the same corner of the control, and width and height are the size of
the control itself.

Examples This example moves the control:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200], f);
pos = h.move([50 50 200 200])
pos =
 50 50 200 200

The next example resizes the control to always be centered in the figure as you
resize the figure window. Start by creating the script resizectrl.m that
contains

% Get the new position and size of the figure window
 fpos = get(gcbo, 'position');

% Resize the control accordingly
 h.move([0 0 fpos(3) fpos(4)]);

Now execute the following in MATLAB or in an M-file:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);

move

11-36

set(f, 'ResizeFcn', 'resizectrl');

As you resize the figure window, notice that the circle moves so that it is always
positioned in the center of the window.

See Also set, get

propedit

11-37

11propedit Purpose Display built-in property page for control

Syntax h.propedit
propedit(h)

Description h.propedit requests the control to display its built-in property page. Note that
some controls do not have a built-in property page. For those controls, this
command fails.

propedit(h) is an alternate syntax for the same operation.

Examples Create a Microsoft Calendar control and display its property page:

cal = actxcontrol('mscal.calendar', [0 0 500 500]);
cal.propedit

See Also inspect, get

registerevent

11-38

11registereventPurpose Register event handler with control’s event

Syntax h.registerevent(event_handler)
registerevent(h, event_handler)

Description h.registerevent(event_handler) registers certain event handler routines
with their corresponding events. Once an event is registered, the control
responds to the occurrence of that event by invoking its event handler routine.
The event_handler argument can be either a string that specifies the name of
the event handler function, or a function handle that maps to that function.

registerevent(h, event_handler) is an alternate syntax for the same
operation.

You can either register events at the time you create the control (using
actxcontrol), or register them dynamically at any time after the control has
been created (using registerevent). Both events and event handlers are
specified in the event_handler argument (see “Specifying Event Handlers” in
the External Interfaces documentation).

Examples Example 1
Create an mwsamp control and list all events associated with the control:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
ans =
 Click = void Click()
 DblClick = void DblClick()
 MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)

Register all events with the same event handler routine, sampev. Use the
eventlisteners function to see the event handler used by each event:

h.registerevent('sampev');
h.eventlisteners
ans =
 'click' 'sampev'

registerevent

11-39

 'dblclick' 'sampev'
 'mousedown' 'sampev'

h.unregisterallevents;

Register the Click and DblClick events with event handlers myclick and
my2click, respectively:

h.registerevent({'click' 'myclick'; 'dblclick' 'my2click'});
h.eventlisteners
ans =
 'click' 'myclick'
 'dblclick' 'my2click'

Example 2
Register all events with the same event handler routine, sampev, but use a
function handle (@sampev) instead of the function name:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
registerevent(h, @sampev);

See Also events, eventlisteners, unregisterevent, unregisterallevents, isevent

release

11-40

11releasePurpose Release an interface

Syntax h.release
release(h)

Description h.release releases the interface and all resources used by the interface. Each
interface handle must be released when you are finished manipulating its
properties and invoking its methods. Once an interface has been released, it is
no longer valid. Subsequent operations on the MATLAB object that represents
that interface will result in errors.

release(h) is an alternate syntax for the same operation.

Note Releasing the interface does not delete the control itself (see delete),
since other interfaces on that object may still be active. See “Releasing
Interfaces” in the External Interfaces documentation for more information.

Examples Create a Microsoft Calender application. Then create a TitleFont interface
and use it to change the appearance of the font of the calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont
TFont =
 Interface.Standard_OLE_Types.Font

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

TFont.release;

Now create a GridFont interface and use it to modify the size of the calendar’s
date numerals:

GFont = cal.GridFont

release

11-41

GFont =
 Interface.Standard_OLE_Types.Font

GFont.Size = 16;

When you’re done, delete the cal object and the figure window:

cal.delete;
delete(f);
clear f;

See Also delete, save, load, actxcontrol, actxserver

save (COM)

11-42

11save (COM)Purpose Serialize a control object to a file

Syntax h.save('filename')
save(h, 'filename')

Description h.save('filename') saves the COM control object, h, to the file specified in
the string, filename.

save(h, 'filename') is an alternate syntax for the same operation.

Note The COM save function is only supported for controls at this time.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get
ans =
 Label: 'Label'
 Radius: 20

See Also load, actxcontrol, actxserver, release, delete

send

11-43

11sendPurpose Return list of events the control can trigger

Note Support for send will be removed in a future release of MATLAB. Use
the events function instead of send.

set (COM)

11-44

11set (COM)Purpose Set object or interface property to specified value

Syntax h.set('pname', value)
h.set('pname1', value1, 'pname2', value2, ...)
set(h, ...)

Description h.set('pname', value) sets the property specified in the string pname to the
given value.

h.set('pname1', value1, 'pname2', value2, ...) sets each property
specified in the pname strings to the given value.

set(h, ...) is an alternate syntax for the same operation.

See “Converting Data” in the External Interfaces documentation for
information on how MATLAB converts workspace matrices to COM data types.

Examples Create an mwsamp control and use set to change the Label and Radius
properties:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.set('Label', 'Click to fire event', 'Radius', 40);
h.invoke('Redraw');

Here is another way to do the same thing, only without set and invoke:

h.Label = 'Click to fire event';
h.Radius = 40;
h.Redraw;

See Also get, inspect, isprop, addproperty, deleteproperty

unregisterallevents

11-45

11unregisteralleventsPurpose Unregister all events for a control

Syntax h.unregisterallevents
unregisterallevents(h)

Description h.unregisterallevents unregisters all events that have previously been
registered with control, h. After calling unregisterallevents, the control will
no longer respond to any events until you register them again using the
registerevent function.

unregisterallevents(h) is an alternate syntax for the same operation.

Examples Create an mwsamp control, registering three events and their respective handler
routines. Use the eventlisteners function to see the event handler used by
each event:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
 {'Click' 'myclick'; 'DblClick' 'my2click'; ...
 'MouseDown' 'mymoused'});

h.eventlisteners
ans =
 'click' 'myclick'
 'dblclick' 'my2click'
 'mousedown' 'mymoused'

Unregister all of these events at once with unregisterallevents. Now, calling
eventlisteners returns an empty cell array, indicating that there are no
longer any events registered with the control:

h.unregisterallevents;
h.eventlisteners
ans =
 {}

To unregister specific events, use the unregisterevent function. First, create
the control and register three events:

f = figure ('position', [100 200 200 200]);

unregisterallevents

11-46

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
 {'Click' 'myclick'; 'DblClick' 'my2click'; ...
 'MouseDown' 'mymoused'});

Next, unregister two of the three events. The mousedown event remains
registered:

h.unregisterevent({'click' 'myclick'; 'dblclick' 'my2click'});
h.eventlisteners
ans =
 'mousedown' 'mymoused'

See Also events, eventlisteners, registerevent, unregisterevent, isevent

unregisterevent

11-47

11unregistereventPurpose Unregister event handler with a control’s event

Syntax h.unregisterevent(event_handler)
unregisterevent(h, event_handler)

Description h.unregisterevent(event_handler) unregisters certain event handler
routines with their corresponding events. Once you unregister an event, the
control no longer responds to any further occurrences of the event.

unregisterevent(h, event_handler) is an alternate syntax for the same
operation.

You can unregister events at any time after a control has been created. Both
events and event handlers are specified in the event_handler argument (see
“Specifying Event Handlers” in the External Interfaces documentation).

You must specify events in the event_handler argument using the names of
the events. Unlike the actxcontrol and registerevent functions,
unregisterevent does not accept numeric event identifiers.

Examples Create an mwsamp control and register all events with the same handler routine,
sampev. Use the eventlisteners function to see the event handler used by
each event. In this case, each event, when fired, will call sampev.m:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
 'sampev');

h.eventlisteners
ans =
 'click' 'sampev'
 'dblclick' 'sampev'
 'mousedown' 'sampev'

Unregister just the dblclick event. Now, when you list the registered events
using eventlisteners, you see that dblclick is no longer registered. The
control will no longer respond when you double-click the mouse over it:

h.unregisterevent({'dblclick' 'sampev'});
h.eventlisteners
ans =

unregisterevent

11-48

 'click' 'sampev'
 'mousedown' 'sampev'

This time, register the click and dblclick events with a different event
handler for myclick and my2click, respectively:

h.unregisterallevents;
h.registerevent({'click' 'myclick'; 'dblclick' 'my2click'});
h.eventlisteners
ans =

 'click' 'myclick'
 'dblclick' 'my2click'

You can unregister these same events by specifying event names and their
handler routines in a cell array. Note that eventlisteners now returns an
empty cell array, meaning that no events are registered for the mwsamp control:

h.unregisterevent({'click' 'myclick'; 'dblclick' 'my2click'});
h.eventlisteners
ans =
 {}

In this last example, you could have used unregisterallevents instead:

h.unregisterallevents;

See Also events, eventlisteners, registerevent, unregisterallevents, isevent

unregisterevent

11-49

COM Server Functions

11-50

COM Server Functions 11

Execute Execute MATLAB command in server

Feval Evaluate MATLAB function in server

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetWorkspaceData Get data from server workspace

MaximizeCommandWindow Display server window on Windows desktop

MinimizeCommandWindow Minimize size of server window

PutCharArray Store character array in server

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit Terminate MATLAB server

Execute

11-51

11ExecutePurpose Execute MATLAB command in server

Syntax MATLAB Client
result = h.Execute('command')
result = Execute(h, 'command')
result = invoke(h, 'Execute', 'command')

Visual Basic Client
[out] BSTR result = Execute([in] BSTR "command")

Description The Execute function executes the MATLAB statement specified by the string
command in the Automation server attached to handle h.

The server returns output from the command in the string, result. The result
string also contains any warning or error messages that may have been issued
to the server as a result of the command.

Remarks If you want output from Execute to be displayed at the client window, you must
specify an output variable (e.g., result).

Server function names, like Execute, are case sensitive when using the first
syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Execute the MATLAB version function in the server and return the output to
the MATLAB client.

MATLAB Client
h = actxserver('matlab.application');

server_version = h.Execute('version')
server_version =
ans =
 6.5.0.180913a (R13)

Visual Basic Client
Dim Matlab As Object

Execute

11-52

Dim server_version As String

Set Matlab = CreateObject("matlab.application")
server_version = Matlab.Execute("version")

See Also Feval, PutFullMatrix, GetFullMatrix, PutCharArray, GetCharArray

Feval

11-53

11FevalPurpose Evaluate MATLAB function in server

Syntax MATLAB Client
result = h.Feval('functionname', numout, arg1, arg2, ...)
result = Feval(h, 'functionname', numout, arg1, arg2, ...)
result = invoke(h, 'Feval', 'functionname', numout, ...

arg1, arg2, ...)

Visual Basic Client
void Feval([in] BSTR functionname, [in] long numout,

[out] VARIANT* result, [in] VARIANT arg1, arg2, ...)

Description Feval executes the MATLAB function specified by the string functionname in
the Automation server attached to handle h. Indicate the number of outputs to
be returned by the function in a 1-by-1 double array, numout. The server
returns output from the function in the cell array, result.

You can specify as many as 32 input arguments to be passed to the function.
These arguments follow numout in the Feval argument list. There are four
ways to pass an argument to the function being evaluated.

Passing Mechanism Description

Pass the value itself To pass any numeric or string value, specify the value in the Feval
argument list:

a = h.Feval('sin', 1, -pi:0.01:pi);

Pass a client variable To pass an argument that is assigned to a variable in the client,
specify the variable name alone:

x = -pi:0.01:pi;
a = h.Feval('sin', 1, x);

Feval

11-54

Remarks If you want output from Feval to be displayed at the client window, you must
specify an output variable in the command.

Server function names, like Feval, are case sensitive when using the first two
syntaxes shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Passing Arguments — MATLAB Client

1 Concatenate two words in the server by passing the input strings in a call to
strcat through Feval:
a = h.Feval('strcat', 1, 'hello ', 'world')
a =
 'hello world'

2 Perform the same concatenation, passing a string and a local variable
clistr that contains the second string:
clistr = 'world';
a = h.Feval('strcat', 1, 'hello ', clistr)
a =
 'hello world'

Reference a server variable To reference a variable that is defined in the server, specify the
variable name followed by an equals (=) sign:

h.PutWorkspaceData('x', 'base', -pi:0.01:pi);
a = h.Feval('sin', 1, 'x=');

Reference and overwrite a
server variable

To reference a variable defined in the server and overwrite that
variable in the server, specify the variable name, an equals (=)
sign, and the new value to be assigned to the variable:

h.PutWorkspaceData('x', 'base', -pi:0.01:pi);
a = h.Feval('sin', 1, 'x=-5:0.01:5');

Passing Mechanism Description

Feval

11-55

3 This next example is different in that variable srvstr is defined in the
server, not the client. Putting an equals sign after a variable name
(srvstr=) tells MATLAB that this a server variable, and that MATLAB
should not expect the variable to be defined locally:
% Define the variable srvstr on the server.
h.PutCharArray('srvstr', 'base', 'world');

% Pass the name of the server variable using 'name=' syntax.
a = h.Feval('strcat', 1, 'hello ', 'srvstr=')
a =
 'hello world'

4 This last strcat example is similar to the last, except that it assigns a new
value to the server variable and then uses this new value in the
concatenation:

% Define the variable srvstr on the server.
h.PutCharArray('srvstr', 'base', 'world');

% Assign a new string to srvstr and concatenate.
a = h.Feval('strcat', 1, 'hello ', 'srvstr=everyone')
a =
 'hello everyone'

% Verify that srvstr now has the new value.
s = h.GetCharArray('srvstr', 'base')
s =
 'everyone'

Visual Basic Client
Here are the same examples shown above, but written for a Visual Basic client.
These examples return the same strings as shown above.

1 Pass the two strings:
Dim Matlab As Object
Set Matlab = CreateObject("matlab.application")
Call Matlab.Feval("strcat", 1, out, "hello ", "world")

Feval

11-56

2 Define clistr locally and pass this variable:
Dim Matlab As Object
Dim clistr As String
Set Matlab = CreateObject("matlab.application")

clistr = "world"
Call Matlab.Feval("strcat", 1, out, "hello ", "clistr")

3 Pass the name of a variable defined on the server:
Dim Matlab As Object
Set Matlab = CreateObject("matlab.application")
Call Matlab.PutCharArray("srvstr", "base", "world")

Call Matlab.Feval("strcat", 1, out, "hello ", "srvstr=")

4 Pass the name of a variable defined on the server, also supplying a new
value for that variable:

Dim Matlab As Object
Set Matlab = CreateObject("matlab.application")
Call Matlab.PutCharArray("srvstr", "base", "world")

Call Matlab.Feval("strcat", 1, out, "hello ", "srvstr=",
 "everyone")

Call Matlab.GetCharArray("srvstr", "base", s)

Feval Return Values — MATLAB Client

Feval returns data from the evaluated function in a cell array. The cell array
has one row for every return value. You can control how many values are
returned using the second input argument to Feval, as shown in this example.
This number requests that Feval return 3 outputs from fileparts. As is the
case here, you can request fewer than the maximum number of return values
for a function (fileparts can return 4), but not more:

Feval

11-57

a = h.Feval('fileparts', 3, 'd:\work\ConsoleApp.cpp')
a =
 'd:\work'
 'ConsoleApp'
 '.cpp'

Feval Return Values — Visual Basic Client

Here is the same example, but coded in Visual Basic:

Dim Matlab As Object
Set Matlab = CreateObject("matlab.application")
Call Matlab.Feval("fileparts", 4, out, "d:\work\ConsoleApp.cpp")

See Also Execute, PutFullMatrix, GetFullMatrix, PutCharArray, GetCharArray

GetCharArray

11-58

11GetCharArrayPurpose Get character array from server

Syntax MATLAB Client
string = h.GetCharArray('varname', 'workspace')
string = GetCharArray(h, 'varname', 'workspace')
string = invoke(h, 'GetCharArray', 'varname', 'workspace')

Visual Basic Client
void GetCharArray([in] BSTR varname, [in] BSTR workspace,

[out] BSTR string);

Description GetCharArray gets the character array stored in the variable varname from the
specified workspace of the server attached to handle h and returns it in string.
The workspace argument can be either base or global.

Remarks If you want output from GetCharArray to be displayed at the client window,
you must specify an output variable (e.g., string).

Server function names, like GetCharArray, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Assign a string to variable str in the base workspace of the server using
PutCharArray. Read it back in the client with GetCharArray.

MATLAB Client
h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...
 'He jests at scars that never felt a wound.');

S = h.GetCharArray('str', 'base')
S =
 He jests at scars that never felt a wound.

Visual Basic Client
Dim Matlab As Object
Dim S As String

GetCharArray

11-59

Set Matlab = CreateObject("matlab.application")
Call Matlab.PutCharArray("str", "base",
 "He jests at scars that never felt a wound.")

Call Matlab.GetCharArray("str", "base", S)

See Also PutCharArray, GetWorkspaceData, PutWorkspaceData, Execute

GetFullMatrix

11-60

11GetFullMatrixPurpose Get matrix from server

Syntax MATLAB Client
[xreal ximag] = h.GetFullMatrix('varname', 'workspace',

zreal, zimag)
[xreal ximag] = GetFullMatrix(h, 'varname', 'workspace',

zreal, zimag)
[xreal ximag] = invoke(h, 'GetFullMatrix', 'varname', 'workspace',

zreal, zimag)

Visual Basic Client
void GetFullMatrix([in] BSTR varname, [in] BSTR workspace,
 [in, out] SAFEARRAY(double)* xreal,
 [in, out] SAFEARRAY(double)* ximag);

Description GetFullMatrix gets the matrix stored in the variable varname from the
specified workspace of the server attached to handle h and returns the real part
in xreal and the imaginary part in ximag. The workspace argument can be
either base or global.

The zreal and zimag arguments are matrices of the same size as the real and
imaginary matrices (xreal and ximag) being returned from the server. The
zreal and zimag matrices are commonly set to zero (see example below).

Remarks If you want output from GetFullMatrix to be displayed at the client window,
you must specify one or both output variables (e.g., xreal and/or ximag).

Server function names, like GetFullMatrix, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace. These
functions use the variant data type instead of safearray, which is not
supported by VBScript.

Examples Assign a 5-by-5 real matrix to the variable M in the base workspace of the
server, and then read it back with GetFullMatrix.

GetFullMatrix

11-61

MATLAB Client
h = actxserver('matlab.application');
h.PutFullMatrix('M', 'base', rand(5), zeros(5));

MReal = h.GetFullMatrix('M', 'base', zeros(5), zeros(5))
MReal =
 0.9501 0.7621 0.6154 0.4057 0.0579
 0.2311 0.4565 0.7919 0.9355 0.3529
 0.6068 0.0185 0.9218 0.9169 0.8132
 0.4860 0.8214 0.7382 0.4103 0.0099
 0.8913 0.4447 0.1763 0.8936 0.1389

Visual Basic Client
Dim MatLab As Object
Dim Result As String
Dim XReal(1, 3) As Double
Dim XImag(1, 3) As Double
Dim RealValue As Double
Dim i, j As Integer

Set MatLab = CreateObject("matlab.application")
Result = MatLab.Execute("M = rand(5);")
Call MatLab.GetFullMatrix("M", "base", XReal, XImag)

See Also PutFullMatrix, GetWorkspaceData, PutWorkspaceData, Execute

GetWorkspaceData

11-62

11GetWorkspaceDataPurpose Get data from server workspace

Syntax MATLAB Client
D = h.GetWorkspaceData('varname', 'workspace')
D = GetWorkspaceData(h, 'varname', 'workspace')
D = invoke(h, 'GetWorkspaceData', 'varname', 'workspace')

Visual Basic Client
void GetWorkspaceData([in] BSTR varname, [in] BSTR workspace,
 [out] BSTR retdata);

Description GetWorkspaceData gets the data stored in the variable varname from the
specified workspace of the server attached to handle h and returns it in output
argument D. The workspace argument can be either base or global.

Note GetWorkspaceData works on all MATLAB data types except sparse
arrays and function handles. You can use GetWorkspaceData in place of
GetFullMatrix and GetCharArray to get numeric and character array data
respectively.

Remarks If you want output from GetWorkspaceData to be displayed at the client
window, you must specify an output variable.

Server function names, like GetWorkspaceData, are case sensitive when using
the first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

The GetWorkspaceData and PutWorkspaceData functions pass numeric data as
a variant data type. These functions are especially useful for VBScript clients
as VBScript does not support the safearray data type used by GetFullMatrix
and PutFullMatrix.

Examples Assign a cell array to variable C1 in the base workspace of the server, and then
read it back with GetWorkspaceData.

GetWorkspaceData

11-63

MATLAB Client
h = actxserver('matlab.application');
h.PutWorkspaceData('C1', 'base', {25.72, 'hello', rand(4)});

C2 = h.GetWorkspaceData('C1', 'base')
C2 =
 [25.7200] 'hello' [4x4 double]

Visual Basic Client
Dim Matlab As Object

Set Matlab = CreateObject("matlab.application")
Result = MatLab.Execute("C1 = {25.72, 'hello', rand(4)};")

Call Matlab.GetWorkspaceData("C1", "base", C2)

See Also PutWorkspaceData, GetFullMatrix, PutFullMatrix, GetCharArray,
PutCharArray, Execute

MaximizeCommandWindow

11-64

11MaximizeCommandWindowPurpose Display server window on Windows desktop

Syntax MATLAB Client
h.MaximizeCommandWindow
MaximizeCommandWindow(h)
invoke(h, 'MaximizeCommandWindow')

Visual Basic Client
void MaximizeCommandWindow;

Description MaximizeCommandWindow displays the window for the server attached to handle
h, and makes it the currently active window on the desktop. If the server
window was not in a minimized state to begin with, then
MaximizeCommandWindow does nothing.

Note MaximizeCommandWindow does not maximize the server window to its
maximum possible size on the desktop. It restores the window to the size it
had at the time it was minimized.

Remarks Server function names, like MaximizeCommandWindow, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Create a COM server and minimize its window. Then maximize the window
and make it the currently active window.

MATLAB Client
h = actxserver('matlab.application');
h.MinimizeCommandWindow;

% Now return the server window to its former state on
% the desktop and make it the currently active window.
h.MaximizeCommandWindow;

MaximizeCommandWindow

11-65

Visual Basic Client
Dim Matlab As Object

Set Matlab = CreateObject("matlab.application")
Call Matlab.MinimizeCommandWindow

Rem Now return the server window to its former state on
Rem the desktop and make it the currently active window.

Call Matlab.MaximizeCommandWindow

See Also MinimizeCommandWindow

MinimizeCommandWindow

11-66

11MinimizeCommandWindowPurpose Minimize size of server window

Syntax MATLAB Client
h.MinimizeCommandWindow
MinimizeCommandWindow(h)
invoke(h, 'MinimizeCommandWindow')

Visual Basic Client
void MinimizeCommandWindow;

Description MinimizeCommandWindow minimizes the window for the server attached to
handle h, and makes it inactive. If the server window was already in a
minimized state to begin with, then MinimizeCommandWindow does nothing.

Remarks Server function names, like MinimizeCommandWindow, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Create a COM server and minimize its window. Then maximize the window
and make it the currently active window.

MATLAB Client
h = actxserver('matlab.application');
h.MinimizeCommandWindow;

% Now return the server window to its former state on
% the desktop and make it the currently active window.
h.MaximizeCommandWindow;

Visual Basic Client
Create a COM server and minimize its window.

Dim Matlab As Object

Set Matlab = CreateObject("matlab.application")
Call Matlab.MinimizeCommandWindow

MinimizeCommandWindow

11-67

Rem Now return the server window to its former state on
Rem the desktop and make it the currently active window.

Call Matlab.MaximizeCommandWindow

See Also MaximizeCommandWindow

PutCharArray

11-68

11PutCharArrayPurpose Store character array in server

Syntax MATLAB Client
h.PutCharArray('varname', 'workspace', 'string')
PutCharArray(h, 'varname', 'workspace', 'string')
invoke(h, 'PutCharArray', 'varname', 'workspace', 'string')

Visual Basic Client
void PutCharArray([in] BSTR name, [in] BSTR workspace,
 [in] BSTR string);

Description PutCharArray stores the character array in string in the specified workspace
of the server attached to handle h, assigning to it the variable varname. The
workspace argument can be either base or global.

Remarks The character array specified in the string argument can have any
dimensions.

Server function names, like PutCharArray, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Examples Store string str in the base workspace of the server using PutCharArray.
Retrieve the string with GetCharArray.

MATLAB Client
h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...
 'He jests at scars that never felt a wound.')

S = h.GetCharArray('str', 'base')
S =
 He jests at scars that never felt a wound.

Visual Basic Client
Dim Matlab As Object
Dim S As String

PutCharArray

11-69

Set Matlab = CreateObject("matlab.application")
Call Matlab.PutCharArray("str", "base",
 "He jests at scars that never felt a wound.")

Call Matlab.GetCharArray("str", "base", "S")

See Also GetCharArray, PutWorkspaceData, GetWorkspaceData, Execute

PutFullMatrix

11-70

11PutFullMatrixPurpose Store matrix in server

Syntax MATLAB Client
h.PutFullMatrix('varname', 'workspace', xreal, ximag)
PutFullMatrix(h, 'varname', 'workspace', xreal, ximag)
invoke(h, 'PutFullMatrix', 'varname', 'workspace',

xreal, ximag)

Visual Basic Client
void PutFullMatrix([in] BSTR name, [in] BSTR workspace,
 [in] SAFEARRAY(double) xreal, [in] SAFEARRAY(double) ximag);

Description PutFullMatrix stores a matrix in the specified workspace of the server
attached to handle h, assigning to it the variable varname. Enter the real and
imaginary parts of the matrix in the xreal and ximag input arguments. The
workspace argument can be either base or global.

Remarks The matrix specified in the xreal and ximag arguments cannot be scalar, an
empty array, or have more than two dimensions.

Server function names, like PutFullMatrix, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace. These
functions use the variant data type instead of safearray which is not
supported by VBScript.

Examples Example 1 — Writing to the Base Workspace
Assign a 5-by-5 real matrix to the variable M in the base workspace of the
server, and then read it back with GetFullMatrix. The real and (optional)
imaginary parts are passed in through separate arrays of doubles.

MATLAB Client
h = actxserver('matlab.application');
h.PutFullMatrix('M', 'base', rand(5), zeros(5))

PutFullMatrix

11-71

xreal = h.GetFullMatrix('M', 'base', zeros(5), zeros(5))
xreal =
 0.9501 0.7621 0.6154 0.4057 0.0579
 0.2311 0.4565 0.7919 0.9355 0.3529
 0.6068 0.0185 0.9218 0.9169 0.8132
 0.4860 0.8214 0.7382 0.4103 0.0099
 0.8913 0.4447 0.1763 0.8936 0.1389

Visual Basic Client
Dim MatLab As Object
Dim XReal(5, 5) As Double
Dim XImag(5, 5) As Double
Dim ZReal(5, 5) As Double
Dim ZImag(5, 5) As Double
Dim i, j As Integer

For i = 0 To 4
 For j = 0 To 4
 XReal(i, j) = Rnd * 6
 XImag(i, j) = 0
 Next j
Next i

Set Matlab = CreateObject("matlab.application")
Call MatLab.PutFullMatrix("M", "base", XReal, XImag)

Call MatLab.GetFullMatrix("M", "base", ZReal, ZImag)

Example 2 — Writing to the Global Workspace
Write a matrix to the global workspace of the server and then examine the
server’s global workspace from the client.

MATLAB Client
h.PutFullMatrix('X', 'global', [1 3 5; 2 4 6], [0 0 0; 0 0 0])

h.invoke('Execute', 'whos global')
ans =
 Name Size Bytes Class

PutFullMatrix

11-72

 X 2x3 96 double array (global complex)

Grand total is 6 elements using 96 bytes

Visual Basic Client
Dim MatLab As Object
Dim XReal(1, 3) As Double
Dim XImag(1, 3) As Double
Dim gblvar As String
Dim i, j As Integer

XReal(0) = 1
XReal(1) = 3
XReal(2) = 5

Set Matlab = CreateObject("matlab.application")
Call MatLab.PutFullMatrix("M", "global", XReal, XImag)
gblvar = Matlab.Execute("whos global")

See Also GetFullMatrix, PutWorkspaceData, GetWorkspaceData, Execute

PutWorkspaceData

11-73

11PutWorkspaceDataPurpose Store data in server workspace

Syntax MATLAB Client
h.PutWorkspaceData('varname', 'workspace', data)
PutWorkspaceData(h, 'varname', 'workspace', data)
invoke(h, 'PutWorkspaceData', 'varname', 'workspace', data)

Visual Basic Client
void PutWorkspaceData([in] BSTR name, [in] BSTR workspace,
 [in] BSTR data);

Description PutWorkspaceData stores data in the specified workspace of the server
attached to handle h, assigning to it the variable varname. The workspace
argument can be either base or global.

Note PutWorkspaceData works on all MATLAB data types except sparse
arrays and function handles. You can use PutWorkspaceData in place of
PutFullMatrix and PutCharArray to get numeric and character array data
respectively.

Remarks The character array specified in the string argument can have any
dimensions.

Server function names, like PutWorkspaceData, are case sensitive when using
the first syntax shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

The GetWorkspaceData and PutWorkspaceData functions pass numeric data as
a variant data type. These functions are especially useful for VBScript clients
as VBScript does not support the safearray data type used by GetFullMatrix
and PutFullMatrix.

Examples Create an array in the client and assign it to variable A in the base workspace
of the server:

PutWorkspaceData

11-74

MATLAB Client
h = actxserver('matlab.application');

for i = 1:6
 data(i) = i .* 15;
end

h.PutWorkspaceData('A', 'base', data);

Visual Basic Client
Dim Matlab As Object
Dim data(7) As Double

Set Matlab = CreateObject("matlab.application")
For i = 0 To 6
 data(i) = i * 15;
Next i

Call Matlab.PutWorkspaceData("A", "base", data)

See Also GetWorkspaceData, PutFullMatrix, GetFullMatrix, PutCharArray,
GetCharArray, Execute

Quit

11-75

11QuitPurpose Terminate MATLAB server

Syntax MATLAB Client
h.Quit
Quit(h)
invoke(h, 'Quit')

Visual Basic Client
void Quit

Description Quit terminates the MATLAB server session to which handle h is attached.

Remarks Server function names, like Quit, are case sensitive when using the first syntax
shown.

There is no difference in the operation of the three syntaxes shown above for
the MATLAB client.

Quit

11-76

12
DDE Functions
ddeadv Set up advisory link

ddeexec Send string for execution

ddeinit Initiate DDE conversation

ddepoke Send data to application

ddereq Request data from application

ddeterm Terminate DDE conversation

ddeunadv Release advisory link

ddeadv

12-2

12ddeadvPurpose Set up advisory link

Syntax rc = ddeadv(channel,'item','callback')
rc = ddeadv(channel,'item','callback','upmtx')
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)

Description ddeadv sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string specified
by the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

callback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes callback to get passed to the eval function to be
evaluated.

upmtx
(optional)

String specifying the name of a matrix that holds data sent
with an update notification. If upmtx is included, changing
item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.

ddeadv

12-3

Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

format
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.

ddeexec

12-4

12ddeexecPurpose Send string for execution

Syntax rc = ddeexec(channel,'command')
rc = ddeexec(channel,'command','item')
rc = ddeexec(channel,'command','item',timeout)

Description ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item
(optional)

String specifying the DDE item name for execution. This
argument is not used for many applications. If your application
requires this argument, it provides additional information for
command. Consult your server documentation for more
information.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddeinit

12-5

12ddeinitPurpose Initiate DDE conversation

Syntax channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the
conversation. 'topic' is a string specifying the topic for the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

ddepoke

12-6

12ddepokePurpose Send data to application

Syntax rc = ddepoke(channel,'item',data)
rc = ddepoke(channel,'item',data,format)
rc = ddepoke(channel,'item',data,format,timeout)

Description ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

• String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.

data Matrix containing the data to send.

format
(optional)

Scalar specifying the format of the data requested. The value
indicates the Windows clipboard format to use for the data
transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddepoke

12-7

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

ddereq

12-8

12ddereqPurpose Request data from application

Syntax data = ddereq(channel,'item')
data = ddereq(channel,'item',format)
data = ddereq(channel,'item',format,timeout)

Description ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

Arguments

Examples Assume that you have an Excel spreadsheet stocks.xls. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command

channel = ddeinit('excel','stocks.xls')

channel Conversation channel from ddeinit.

item String specifying the server application's DDE item name for
the data requested.

format
(optional)

Two-element array specifying the format of the data requested.
The first element specifies the Windows clipboard format to
use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddereq

12-9

DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3c1:r3c3 and the shares in r6c2:r8c2.

Request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50 15.00 78.88

Next, request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

ddeterm

12-10

12ddetermPurpose Terminate DDE conversation

Syntax rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates
success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

ddeunadv

12-11

12ddeunadvPurpose Release advisory link

Syntax rc = ddeunadv(channel,'item')
rc = ddeunadv(channel,'item',format)
rc = ddeunadv(channel,'item',format,timeout)

Description ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

format
(optional)

Two-element array. This must be the same as the format
argument for the corresponding ddeadv call.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddeunadv

12-12

13
Web Services Functions
callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB classes from Web Services Description Language
(WSDL)

createSoapMessage Create SOAP message, ready to send to server

parseSoapResponse Convert response from SOAP server into MATLAB types

callSoapService

13-14

13callSoapServicePurpose Send SOAP message off to endpoint

Syntax callSoapService(endpoint, soapAction, message)

Description callSoapService(endpoint, soapAction, message) sends the message, a
Java DOM, to the soapAction service at the endpoint.

Example Example using callSoapService.

m = createSoapMessage('urn:xmethodsBabelFish', 'BabelFish', ...
 {'en_it','Matthew thinks you''re nice.'}, ...
 {'translationmode','sourcedata'}, ...
 repmat({'{http://www.w3.org/2001/XMLSchema}string'},1,2));
response = callSoapService(...
 'http://services.xmethods.net:80/perl/soaplite.cgi', ...
 'urn:xmethodsBabelFish#BabelFish', m);
results = parseSoapResponse(response)

See Also createClassFromWsdl, createSoapMessage, parseSoapResponse

createClassFromWsdl

13-15

13createClassFromWsdlPurpose Create MATLAB object based on WSDL file

Syntax createClassFromWsdl('source')

Description createClassFromWsdl('source') creates a MATLAB object based on a Web
Services Description Language (WSDL) application programming interface
(API). The source argument specifies a URL or path to a WSDL API, which
defines Web service methods, arguments, and transactions. It returns the
name of the new class.

Based on the WSDL API, the createClassFromWSDL function creates a new
folder in the current directory. The folder contains an M-file for each Web
service method. In addition, two default M-files are created: the object’s display
method (display.m) and its constructor (servicename.m).

For example, if myWebService offers two methods (method1 and method2), the
createClassFromWSDL function creates:

• @myWebService folder in the current directory

• method1.m — M-file for method1

• method2.m — M-file for method2

• display.m — Default M-file for display method

• myWebService.m — Default M-file for the myWebService MATLAB object

Remarks For more information about WSDL and Web services, see the following
resources:

• World Wide Web Consortium (W3C) WSDL specification

• W3C SOAP specification

• XMethods.net

createClassFromWsdl

13-16

Example The following example calls a Web service that returns the book price for an
International Standard Bibliographic Number (ISBN).

% The createClassFromWSDL function takes the WSDL URL as an
% argument.
createClassFromWsdl(...
 'http://www.xmethods.net/sd/2001/BNQuoteService.wsdl');
bq = BNQuoteService;
% getPrice is the web service method. The first argument,
% bq, is an instance of the BNQuoteService class. The
% second argument, 0735712719, is an ISBN number.
getPrice(bq, '0735712719');

See Also callSoapService, createSoapMessage, parseSoapResponse

createSoapMessage

13-17

13createSoapMessagePurpose Create SOAP message, ready to send to server

Syntax createSoapMessage(namespace, method, values, names, types, 'style')

Description createSoapMessage(namespace, method, values, names, types) creates a
SOAP message. values, names, and types are cell arrays. names defaults to
dummy names and types defaults to unspecified. The optional style argument
specifies 'document' or 'rpc' messages; rpc is the default.

Example Example using createSoapMessage.

m = createSoapMessage('urn:xmethodsBabelFish', 'BabelFish', ...
 {'en_it','Matthew thinks you''re nice.'}, ...
 {'translationmode','sourcedata'}, ...
repmat({'{http://www.w3.org/2001/XMLSchema}string'},1,2));
response = callSoapService(...
 'http://services.xmethods.net:80/perl/soaplite.cgi', ...
 'urn:xmethodsBabelFish#BabelFish', m);
results = parseSoapResponse(response)

 See Also callSoapService, createClassFromWsdl, parseSoapResponse

parseSoapResponse

13-18

13parseSoapResponsePurpose Convert response from SOAP server into MATLAB types

Syntax parseSoapResponse(response)

Description createSoapMessage(response) converts response, a string returned by a
SOAP server, into a cell array of appropriate MATLAB datatypes.

Example Example using parseSoapResponse.

m = createSoapMessage('urn:xmethodsBabelFish', 'BabelFish', ...
 {'en_it','Matthew thinks you''re nice.'}, ...
 {'translationmode','sourcedata'}, ...
 repmat({'{http://www.w3.org/2001/XMLSchema}string'},1,2));
response = callSoapService(...
 'http://services.xmethods.net:80/perl/soaplite.cgi', ...
 'urn:xmethodsBabelFish#BabelFish', m);
results = parseSoapResponse(response)

See Also callSoapService, createClassFromWsdl, createSoapMessage

14
Serial Port I/O Functions
clear (serial) Remove serial port object from MATLAB workspace

delete (serial) Remove serial port object from memory

disp (serial) Display serial port object summary information

fclose (serial) Disconnect serial port object from the device

fgetl (serial) Read from device and discard the terminator

fgets (serial) Read from device and include the terminator

fopen (serial) Connect serial port object to the device

fprintf (serial) Write text to the device

fread (serial) Read binary data from the device

fscanf (serial) Read data from device and format as text

fwrite (serial) Write binary data to the device

get (serial) Return serial port object properties

instrcallback Display event information when an event occurs

instrfind Return serial port objects from memory to the MATLAB workspace

isvalid Determine if serial port objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables into MATLAB workspace

readasync Read data asynchronously from the device

record Record data and event information to a file

save (serial) Save serial port objects and variables to MAT-file

serial Create a serial port object

serialbreak Send break to device connected to the serial port

set (serial) Configure or display serial port object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write operations

clear (serial)

14-2

14clear (serial)Purpose Remove a serial port object from the MATLAB workspace

Syntax clear obj

Arguments

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the device and it is cleared from the workspace, then obj
remains connected to the device. You can restore obj to the workspace with the
instrfind function. A serial port object connected to the device has a Status
property value of open.

To disconnect obj from the device, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid serial port objects
from the workspace with clear.

Example This example creates the serial port object s, copies s to a new variable scopy,
and clears s from the MATLAB workspace. s is then restored to the workspace
with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =
 1

See Also Functions
delete, fclose, instrfind, isvalid

Properties
Status

obj A serial port object or an array of serial port objects.

delete (serial)

14-3

14delete (serial)Purpose Remove a serial port object from memory

Syntax delete(obj)

Arguments

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Because you cannot connect
an invalid serial port object to the device, you should remove it from the
workspace with the clear command. If multiple references to obj exist in the
workspace, then deleting one reference invalidates the remaining references.

If obj is connected to the device, it has a Status property value of open. If you
issue delete while obj is connected, then the connection is automatically
broken. You can also disconnect obj from the device with the fclose function.

If you use the help command to display help for delete, then you need to
supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, disconnects s from the device, removes s from memory
using delete, and then removes s from the workspace using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

See Also Functions
clear, fclose, isvalid

obj A serial port object or an array of serial port objects.

delete (serial)

14-4

Properties
Status

disp (serial)

14-5

14disp (serial)Purpose Display serial port object summary information

Syntax obj
disp(obj)

Arguments

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read and
write operations.

Example The following commands display summary information for the serial port
object s.

s = serial('COM1')
s.BaudRate = 300
s

obj A serial port object or an array of serial port objects.

fclose (serial)

14-6

14fclose (serial)Purpose Disconnect a serial port object from the device

Syntax fclose(obj)

Arguments

Description fclose(obj) disconnects obj from the device.

Remarks If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need to
supply the pathname shown below.

help serial/fclose

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, and then disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port object. If
you no longer need s, you should remove from memory with the delete
function, and remove it from the workspace with the clear command.

See Also Functions
clear, delete, fopen, stopasync

obj A serial port object or an array of serial port objects.

fclose (serial)

14-7

Properties
RecordStatus, Status

fgetl (serial)

14-8

14fgetl (serial)Purpose Read one line of text from the device and discard the terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Arguments

Description tline = fgetl(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to supply
the pathname shown below.

help serial/fgetl

obj A serial port object.

tline Text read from the instrument, excluding the terminator.

count The number of values read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

fgetl (serial)

14-9

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgetl to read the data returned from the previous write operation, and
discard the terminator.

settings = fgetl(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 16

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgets, fopen

fgetl (serial)

14-10

Properties
BytesAvailable, InputBufferSize, ReadAsyncMode, Status, Terminator,
Timeout, ValuesReceived

fgets (serial)

14-11

14fgets (serial)Purpose Read one line of text from the device and include the terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Arguments

Description tline = fgets(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data includes the terminator with
the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgets is issued.

If you use the help command to display help for fgets, then you need to supply
the pathname shown below.

help serial/fgets

obj A serial port object.

tline Text read from the instrument, including the terminator.

count The number of bytes read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

fgets (serial)

14-12

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgets to read the data returned from the previous write operation, and
include the terminator.

settings = fgets(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fopen

fgets (serial)

14-13

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout, ValuesReceived

fopen (serial)

14-14

14fopen (serial)Purpose Connect a serial port object to the device

Syntax fopen(obj)

Arguments

Description fopen(obj) connects obj to the device.

Remarks Before you can perform a read or write operation, obj must be connected to the
device with the fopen function. When obj is connected to the device:

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the device. You can connect only one serial port object
to a given device.

Some properties are read-only while the serial port object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

If you use the help command to display help for fopen, then you need to supply
the pathname shown below.

help serial/fopen

obj A serial port object or an array of serial port objects.

fopen (serial)

14-15

Example This example creates the serial port object s, connects s to the device using
fopen, writes and reads text data, and then disconnects s from the device.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)

See Also Functions
fclose

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

fprintf (serial)

14-16

14fprintf (serial)Purpose Write text to the device

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments

Description fprintf(obj,'cmd') writes the string cmd to the device connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format specified by
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d, i, o, u, x,
X, f, e, E, g, G, c, and s. Refer to the sprintf file I/O format specifications or a
C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the specified
format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

obj A serial port object.

'cmd' The string written to the device.

'format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

fprintf (serial)

14-17

Remarks Before you can write text to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fprintf, then you need to
supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations
By default, text is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Controlling Access to the MATLAB Command Line.

Rules for Completing a Write Operation with fprintf
A synchronous or asynchronous write operation using fprintf completes
when:

• The specified data is written.

• The time specified by the Timeout property passes.

fprintf (serial)

14-18

Additionally, you can stop an asynchronous write operation with the
stopasync function.

Rules for Writing the Terminator
All occurrences of \n in cmd are replaced with the Terminator property value.
Therefore, when using the default format %s\n, all commands written to the
device will end with this property value. The terminator required by your
device will be described in its documentation.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you
might want to suppress writing the terminator. To do so, you must explicitly
specify a format for the data that does not include the terminator, or configure
the terminator to empty.

fprintf(s,'%s','RS232?')

See Also Functions
fopen, fwrite, stopasync

Properties
BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status,
TransferStatus, ValuesSent

fread (serial)

14-19

14fread (serial)Purpose Read binary data from the device

Syntax A = fread(obj,size)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments

Description A = fread(obj,size) reads binary data from the device connected to obj, and
returns the data to A. The maximum number of values to read is specified by
size. Valid options for size are:

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

obj A serial port object.

size The number of values to read.

'precision
'

The number of bits read for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fread (serial)

14-20

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By
default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

If you use the help command to display help for fread, then you need to supply
the pathname shown below.

help serial/fread

Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

• The specified number of values are read.

• The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

fread (serial)

14-21

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

fread (serial)

14-22

See Also Functions
fgetl, fgets, fopen, fscanf

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
ValuesReceived

fscanf (serial)

14-23

14fscanf (serial)Purpose Read data from the device, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Arguments

Description A = fscanf(obj) reads data from the device connected to obj, and returns it
to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to format.
format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, o, u, x, X, f, e, E, g,
G, c, and s. Refer to the sscanf file I/O format specifications or a C manual for
more information.

A = fscanf(obj,'format',size) reads the number of values specified by
size. Valid options for size are:

obj A serial port object.

'format' C language conversion specification.

size The number of values to read.

A Data read from the device and formatted as text.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fscanf (serial)

14-24

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then A is returned as a row vector. You specify
the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fscanf is issued.

If you use the help command to display help for fscanf, then you need to
supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line
until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The number of values specified by size is read.

• The input buffer is filled (unless size is specified)

Example Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial('COM1');
fopen(s)

fscanf (serial)

14-25

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
 21

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.

pk2pk = fscanf(s,'%e',14)
pk2pk =
 2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fgets, fopen, fread, strread

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout

fwrite (serial)

14-26

14fwrite (serial)Purpose Write binary data to the device

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Arguments

Description fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A,'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A,'mode') writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command line access specified by mode.

obj A serial port object.

A The binary data written to the device.

'precision
'

The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'mode' Specifies whether data is written synchronously or
asynchronously.

fwrite (serial)

14-27

Remarks Before you can write data to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fwrite, then you need to
supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations
By default, data is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.

Rules for Completing a Write Operation with fwrite
A binary write operation using fwrite completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

fwrite (serial)

14-28

Note The Terminator property is not used with binary write operations.

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

fwrite (serial)

14-29

See Also Functions
fopen, fprintf

Properties
BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

Data Type Precision Interpretation

get (serial)

14-30

14get (serial)Purpose Return serial port object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments

Description get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of serial port objects, then
out will be a m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

Remarks Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can return with get.

When you specify a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if s is a serial port
object, then these commands are all valid.

out = get(s,'BaudRate');
out = get(s,'baudrate');
out = get(s,'BAUD');

obj A serial port object or an array of serial port objects.

'PropertyName
'

A property name or a cell array of property names.

out A single property value, a structure of property values,
or a cell array of property values.

get (serial)

14-31

If you use the help command to display help for get, then you need to supply
the pathname shown below.

help serial/get

Example This example illustrates some of the ways you can use get to return property
values for the serial port object s.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});
get(s,'Parity')
ans =
none

See Also Functions
set

instrcallback

14-32

14instrcallbackPurpose Display event information when an event occurs

Syntax instrcallback(obj,event)

Arguments

Description instrcallback(obj,event) displays a message that contains the event type,
the time the event occurred, and the name of the serial port object that caused
the event to occur.

For error events, the error message is also displayed. For pin status events, the
pin that changed value and its value are also displayed.

Remarks You should use instrcallback as a template from which you create callback
functions that suit your specific application needs.

Example The following example creates the serial port objects s, and configures s to
execute instrcallback when an output-empty event occurs. The event occurs
after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the serial
port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

obj An serial port object.

event The event that caused the callback to execute.

instrfind

14-33

14instrfindPurpose Return serial port objects from memory to the MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments

Description out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of
serial port objects whose property names and property values match those
specified.

out = instrfind(S) returns an array of serial port objects whose property
names and property values match those defined in the structure S. The field
names of S are the property names, while the field values are the associated
property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts the
search for matching property name/property value pairs to the serial port
objects listed in obj.

Remarks Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can use with instrfind.

'PropertyNam
e'

A property name for obj.

PropertyValu
e

A property value supported by PropertyName.

S A structure of property names and property values.

obj A serial port object, or an array of serial port objects.

out An array of serial port objects.

instrfind

14-34

You must specify property values using the same format as the get function
returns. For example, if get returns the Name property value as MyObject,
instrfind will not find an object with a Name property value of myobject.
However, this is not the case for properties that have a finite set of string
values. For example, instrfind will find an object with a Parity property
value of Even or even.

You can use property name/property value string pairs, structures, and cell
array pairs in the same call to instrfind.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property values.

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial open Serial-COM1
 2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

See Also Functions
clear, get

isvalid

14-35

14isvalidPurpose Determine if serial port objects are valid

Syntax out = isvalid(obj)

Arguments

Description out = isvalid(obj) returns the logical array out, which contains a 0 where
the elements of obj are invalid serial port objects and a 1 where the elements
of obj are valid serial port objects.

Remarks obj becomes invalid after it is removed from memory with the delete function.
Because you cannot connect an invalid serial port object to the device, you
should remove it from the workspace with the clear command.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)
ans =
 1 0

See Also Functions
clear, delete

obj A serial port object or array of serial port objects.

out A logical array.

length (serial)

14-36

14length (serial)Purpose Length of serial port object array

Syntax length(obj)

Arguments

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also Functions
size

obj A serial port object or an array of serial port objects.

load (serial)

14-37

14load (serial)Purpose Load serial port objects and variables into the MATLAB workspace

Syntax load filename
load filename obj1 obj2...
out = load('filename','obj1','obj2',...)

Arguments

Description load filename returns all variables from the MAT-file specified by filename
into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified by obj1
obj2 ... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified serial port
objects from the MAT-file filename as a structure to out instead of directly
loading them into the workspace. The field names in out match the names of
the loaded serial port objects.

Remarks Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To determine
if a property is read-only, examine its reference pages.

Example Suppose you create the serial port objects s1 and s2, configure a few properties
for s1, and connect both objects to their instruments:

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7);
fopen(s1);
fopen(s2);

Save s1 and s2 to the file MyObject.mat, and then load the objects back into the
workspace:

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

out A structure containing the specified serial port objects.

load (serial)

14-38

save MyObject s1 s2;
load MyObject s1;
load MyObject s2;

get(s1, {'Parity', 'DataBits'})
ans =
 'mark' [7]
get(s2, {'Parity', 'DataBits'})
ans =
 'none' [8]

See Also Functions
save

Properties
Status

readasync

14-39

14readasyncPurpose Read data asynchronously from the device

Syntax readasync(obj)
readasync(obj,size)

Arguments

Description readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of bytes
given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property value, an
error is returned.

Remarks Before you can read data, you must connect obj to the device with the fopen
function. A connected serial port object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not
connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode is
continuous.

The TransferStatus property indicates if an asynchronous read or write
operation is in progress. You can write data while an asynchronous read is in
progress because serial ports have separate read and write pins. You can stop
asynchronous read and write operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the
BytesAvailable property. Additionally, you can use the BytesAvailableFcn
property to execute an M-file callback function when the terminator or the
specified amount of data is read.

obj A serial port object.

size The number of bytes to read from the device.

readasync

14-40

Rules for Completing an Asynchronous Read Operation
An asynchronous read operation with readasync completes when one of these
conditions is met:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The specified number of bytes is read.

• The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be slow. To
increase speed, you might want to configure ReadAsyncMode to continuous and
continuously return data to the input buffer as soon as it is available from the
device.

Example This example creates the serial port object s, connects s to a Tektronix TDS 210
oscilloscope, configures s to read data asynchronously only if readasync is
issued, and configures the instrument to return the peak-to-peak value of the
signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using readasync.
When the read operation is complete, return the data to the MATLAB
workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =
 15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

readasync

14-41

See Also Functions
fopen, stopasync

Properties
BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

record

14-42

14recordPurpose Record data and event information to a file

Syntax record(obj)
record(obj,'switch')

Arguments

Description record(obj) toggles the recording state for obj.

record(obj,'switch') initiates or terminates recording for obj. switch can
be on or off. If switch is on, recording is initiated. If switch is off, recording
is terminated.

Remarks Before you can record information to disk, obj must be connected to the device
with the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to record information while
obj is not connected to the device. Each serial port object must record
information to a separate file. Recording is automatically terminated when obj
is disconnected from the device with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
“Debugging: Recording Information to Disk.”

Example This example creates the serial port object s, connects s to the device,
configures s to record information to a file, writes and reads text data, and then
disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';

obj A serial port object.

'switch' Switch recording capabilities on or off.

record

14-43

record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);
record(s,'off')
fclose(s)

See Also Functions
fclose, fopen

Properties
RecordDetail, RecordMode, RecordName, RecordStatus, Status

save (serial)

14-44

14save (serial)Purpose Save serial port objects and variables to a MAT-file

Syntax save filename
save filename obj1 obj2...

Arguments

Description save filename saves all MATLAB variables to the MAT-file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1 obj2 ... to the
MAT-file filename.

Remarks You can use save in the functional form as well as the command form shown
above. When using the functional form, you must specify the filename and
serial port objects as strings. For example. to save the serial port object s to the
file MySerial.mat

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not automatically
stored in the MAT-file. For example, suppose there is data in the input buffer
for obj. To save that data to a MAT-file, you must bring it into the MATLAB
workspace using one of the synchronous read functions, and then save to the
MAT-file using a separate variable name. You can also save data to a text file
with the record function.

You return objects and variables to the MATLAB workspace with the load
command. Values for read-only properties are restored to their default values
upon loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages.

Example This example illustrates how to use the command and functional form of save.

s = serial('COM1');

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

save (serial)

14-45

set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also Functions
load, record

Properties
Status

serial

14-46

14serialPurpose Create a serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Arguments

Description obj = serial('port') creates a serial port object associated with the serial
port specified by port. If port does not exist, or if it is in use, you will not be
able to connect the serial port object to the device.

obj = serial('port','PropertyName',PropertyValue,...) creates a serial
port object with the specified property names and property values. If an invalid
property name or property value is specified, an error is returned and the serial
port object is not created.

Remarks When you create a serial port object, these property values are automatically
configured:

• The Type property is given by serial.

• The Name property is given by concatenating Serial with the port specified
in the serial function.

• The Port property is given by the port specified in the serial function.

You can specify the property names and property values using any format
supported by the set function. For example, you can use property
name/property value cell array pairs. Additionally, you can specify property
names without regard to case, and you can make use of property name
completion. For example, the following commands are all valid.

s = serial('COM1','BaudRate',4800);

'port' The serial port name.

'PropertyName
'

A serial port property name.

PropertyValue A property value supported by PropertyName.

obj The serial port object.

serial

14-47

s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

Refer to “Configuring Property Values” for a list of serial port object properties
that you can use with serial.

Before you can communicate with the device, it must be connected to obj with
the fopen function. A connected serial port object has a Status property value
of open. An error is returned if you attempt a read or write operation while the
object is not connected to the device. You can connect only one serial port object
to a given serial port.

Example This example creates the serial port object s1 associated with the serial port
COM1.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =
 'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also Functions
fclose, fopen

Properties
Name, Port, Status, Type

serialbreak

14-48

14serialbreakPurpose Send a break to the device connected to the serial port

Syntax serialbreak(obj)
serialbreak(obj,time)

Arguments

Description serialbreak(obj) sends a break of 10 milliseconds to the device connected to
obj.

serialbreak(obj,time) sends a break to the device with a duration, in
milliseconds, specified by time. Note that the duration of the break might be
inaccurate under some operating systems.

Remarks For some devices, the break signal provides a way to clear the hardware buffer.

Before you can send a break to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to send a break while obj is not
connected to the device.

serialbreak is a synchronous function, and blocks the command line until
execution is complete.

If you issue serialbreak while data is being asynchronously written, an error
is returned. In this case, you must call the stopasync function or wait for the
write operation to complete.

See Also Functions
fopen, stopasync

Properties
Status

obj A serial port object.

time The duration of the break, in milliseconds.

set (serial)

14-49

14set (serial)Purpose Configure or display serial port object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments

Description set(obj) displays all configurable properties values for obj. If a property has
a finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible
values for obj to props. props is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property values. If
the property does not have a finite set of possible values, then the cell array is
empty.

set(obj,'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

obj A serial port object or an array of serial port objects.

'PropertyName
'

A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

S A structure with property names and property values.

props A structure array whose field names are the property
names for obj, or cell array of possible values.

set (serial)

14-50

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple property
values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n where m is equal to the number of serial port objects in obj and n is
equal to the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are serial port object properties, and whose
field values are the values of the corresponding properties.

Remarks Refer to “Configuring Property Values” for a list of serial port object properties
that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if s is a serial port object, then the following
commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

If you use the help command to display help for set, then you need to supply
the pathname shown below.

help serial/set

Examples This example illustrates some of the ways you can use set to configure or
return property values for the serial port object s.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')

set (serial)

14-51

[{none} | odd | even | mark | space]

See Also Functions
get

size (serial)

14-52

14size (serial)Purpose Size of serial port object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

Arguments

Description d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

See Also Functions
length

obj A serial port object or an array of serial port objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension
specified by dim.

n The number of columns in obj.

m1,m2,...,
mn

The length of the first N dimensions of obj.

stopasync

14-53

14stopasyncPurpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Arguments

Description stopasync(obj) stops any asynchronous read or write operation that is in
progress for obj.

Remarks You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
the ReadAsyncMode property to continuous. In-progress asynchronous
operations are indicated by the TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be stopped,
the remaining objects in the array are stopped and a warning is returned. After
an object stops:

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual.

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If you
execute the readasync function, or configure the ReadAsyncMode property to
continuous, then the new data is appended to the existing data in the input
buffer.

See Also Functions
fprintf, fwrite, readasync

Properties
ReadAsyncMode, TransferStatus

obj A serial port object or an array of serial port objects.

stopasync

14-54

Index-1

Index

Symbols
../ref/logical.html 7-10, 7-92, 7-116

A
actxcontrol 11-4
actxcontrollist 11-10
actxcontrolselect 11-11
actxserver 11-14
addproperty 11-16
allocating matrix 7-33, 7-40
allocating memory 3-10, 7-7, 7-8

B
buffer

defining output 5-13, 9-9

C
calllib 1-2
callSoapService 14
clear

serial port I/O 13-2
COM

object methods
actxcontrol 11-4
actxcontrollist 11-10
actxcontrolselect 11-11
actxserver 11-14
addproperty 11-16
delete 11-17
deleteproperty 11-19
eventlisteners 11-21
events 11-23
get 11-24
invoke 11-28

iscom 11-31
isevent 11-32
isinterface 11-33
load 11-34
move 11-35
propedit 11-37
registerevent 11-38
release 11-40
save 11-42
send 11-43
set 11-44
unregisterallevents 11-45
unregisterevent 11-47

server methods
Execute 11-51
Feval 11-53

createClassFromWsdl 15
createSoapMessage 17

D
ddeadv 12-2
ddeexec 12-4
ddeinit 12-5
ddepoke 12-6
ddereq 12-8
ddeterm 12-10
ddeunadv 12-11
delete 11-17
delete

serial port I/O 13-3
deleteproperty 11-19
deleting named matrix from MAT-file 2-6, 6-5,

6-6
directory 2-9, 6-9

Index

Index-2

disp

serial port I/O 13-5
dll libraries

MATLAB functions
calllib 1-2
libfunctions 1-3
libfunctionsview 1-5
libisloaded 1-7
libpointer 1-9
libstruct 1-11
loadlibrary 1-13
unloadlibrary 1-18

E
engClose 5-2
engEvalString 5-3
engGetVariable 5-8, 9-7
engGetVisible 5-9
engines 5-2, 9-2

getting and putting full matrices into 9-5,
9-11

getting and putting Matrices into 5-8, 5-18,
9-6, 9-7, 9-12, 9-13

engOpen 5-10
engPutMatrix 9-13
engPutVariable 5-18
engSetVisible 5-21
errors

control response to 4-40, 8-35
issuing messages 4-7, 4-8, 8-5, 8-6

eventlisteners 11-21
events 11-23
Execute 11-51

F
fclose

serial port I/O 13-6
Feval 11-53
fgetl

serial port I/O 13-8
fgets

serial port I/O 13-11
fopen

serial port I/O 13-14
fprintf

serial port I/O 13-16
fread

serial port I/O 13-19
fscanf

serial port I/O 13-23
functions

calling at shutdown 4-4
fwrite

serial port I/O 13-26

G
get 11-24
get

serial port I/O 13-30
getting

name of matrix 7-68
getting directory 2-9, 6-9

I
import 10-2
import 10-2
importing

Java class and package names 10-2
instrcallback 13-32

Index

Index-3

instrfind 13-33
interfaces 11-26
invoke 11-28
iscom 11-31
isevent 11-32
isinterface 11-33
isjava 10-4
isvalid 13-35

J
Java

class names 10-2
objects 10-4

Java import list
adding to 10-2

java_method 10-8, 10-15
java_object 10-17
javaaddath 10-5
javachk 10-9
javaclasspath 10-11
javarmpath 10-19

L
length

serial port I/O 13-36
libfunctions 1-3
libfunctionsview 1-5
libisloaded 1-7
libpointer 1-9
libstruct 1-11
load 11-34
load

serial port I/O 13-37
loadlibrary 1-13

M
matClose 2-22, 6-20
matDeleteArray 2-4
matDeleteMatrix 2-6, 6-6
MAT-files

deleting named Matrix from 2-6, 6-5, 6-6
getting and putting full matrices 6-10, 6-24
getting and putting Matrices into 2-20, 2-30,

2-31, 6-4, 6-7, 6-8, 6-11, 6-12, 6-13, 6-18,
6-22, 6-23, 6-25, 6-27, 6-28

getting and putting string Matrices 6-17, 6-26
getting next Matrix from 2-17, 6-14, 6-15
getting pointer to 2-10
opening and closing 2-3, 2-22, 6-3, 6-20

matGetDir 2-9, 6-9
matGetFp 2-10
matGetMatrix 2-7, 2-13, 6-8, 6-11
matGetNextVariable 2-17, 6-15
matGetNextVariableInfo 2-18, 6-16
matGetVariable 2-20, 6-18
matGetVariableInfo 2-21, 6-19
matOpen 2-3, 6-3
matPutMatrix 2-28, 6-25
matPutVariable 2-30, 6-27
matPutVariableAsGlobal 2-31, 6-28
mexAddFlops 4-3
mexAtExit 4-4
mexCallMATLAB 4-5
mexErrMsgIdAndTxt 4-7, 4-42
mexErrMsgTxt 4-8, 4-43, 8-37, 8-38
mexEvalString 4-9
MEX-files

entry point to 4-10, 8-8
mexFunction 4-10
mexGetArray 8-19
mexGetMatrix 4-23
mexPrintf 4-31, 4-32, 4-33, 8-27, 8-28

Index

Index-4

mexSetTrapFlag 4-40
move 11-35

O
objects

Java 10-4
opening MAT-files 2-3, 2-22, 6-3, 6-20

P
parseSoapResponse 18
pointer

to MAT-file 2-10
printing 4-28, 4-30, 4-31, 4-32, 4-41
propedit 11-37
PutFullMatrix 11-70
putting

Matrices into engine's workspace 5-18
Matrices into engine’s workspace 9-13
Matrices into MAT-files 2-31, 6-28

R
readasync 13-39
record 13-42
registerevent 11-38
release 11-40

S
save 11-42
save

serial port I/O 13-44
scalar 7-76
send 11-43
serial 13-46

serialbreak 13-48
set 11-44
set

serial port I/O 13-49
shared libraries

MATLAB functions
calllib 1-2
libfunctions 1-3
libfunctionsview 1-5
libisloaded 1-7
libpointer 1-9
libstruct 1-11
loadlibrary 1-13
unloadlibrary 1-18

size

serial port I/O 13-52
sparse arrays 7-64
starting MATLAB engines 5-2
stopasync 13-53
string

executing statement 5-3, 9-3

U
unloadlibrary 1-18
unregisterallevents 11-45
unregisterevent 11-47
usejava 10-22

	Generic DLL Interface Functions
	calllib
	libfunctions
	libfunctionsview
	libisloaded
	libpointer
	libstruct
	loadlibrary
	unloadlibrary

	C MAT-File Functions
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFp
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	C MX-Functions
	mxAddField
	mxArrayToString
	mxAssert
	mxAssertS
	mxCalcSingleSubscript
	mxCalloc
	mxChar
	mxClassID
	mxClearLogical (Obsolete)
	mxComplexity
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateDoubleScalar
	mxCreateFull (Obsolete)
	mxCreateLogicalArray
	mxCreateLogicalMatrix
	mxCreateLogicalScalar
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateSparseLogicalMatrix
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetChars
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetLogicals
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsInt64
	mxIsLogical
	mxIsLogicalScalar
	mxIsLogicalScalarTrue
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxIsUint64
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetAllocFcns
	mxSetCell
	mxSetClassName
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	C MEX-Functions
	mexAddFlops (Obsolete)
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGet
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSet
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	C Engine Functions
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engGetVisible
	engOpen
	engOpenSingleUse
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable
	engSetEvalCallback (Obsolete)
	engSetEvalTimeout (Obsolete)
	engSetVisible
	engWinInit (Obsolete)

	Fortran MAT-File Functions
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	Fortran MX-Functions
	mxAddField
	mxCalcSingleSubscript
	mxCalloc
	mxClassIDFromClassName
	mxClearLogical (Obsolete)
	mxCopyCharacterToPtr
	mxCopyComplex8ToPtr
	mxCopyComplex16ToPtr
	mxCopyInteger1ToPtr
	mxCopyInteger2ToPtr
	mxCopyInteger4ToPtr
	mxCopyPtrToCharacter
	mxCopyPtrToComplex8
	mxCopyPtrToComplex16
	mxCopyPtrToInteger1
	mxCopyPtrToInteger2
	mxCopyPtrToInteger4
	mxCopyPtrToPtrArray
	mxCopyPtrToReal4
	mxCopyPtrToReal8
	mxCopyReal4ToPtr
	mxCopyReal8ToPtr
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateFull (Obsolete)
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsInt64
	mxIsLogical
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxIsUint64
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetCell
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	Fortran MEX-Functions
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	Fortran Engine Functions
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engOpen
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable

	Java Interface Functions
	import
	isjava
	javaaddpath
	javaArray
	javachk
	javaclasspath
	javaMethod
	javaObject
	javarmpath
	usejava

	COM Functions
	COM Client Functions
	actxcontrol
	actxcontrollist
	actxcontrolselect
	actxserver
	addproperty
	delete (COM)
	deleteproperty
	eventlisteners
	events
	get (COM)
	interfaces
	invoke
	iscom
	isevent
	isinterface
	load (COM)
	move
	propedit
	registerevent
	release
	save (COM)
	send
	set (COM)
	unregisterallevents
	unregisterevent

	COM Server Functions
	Execute
	Feval
	GetCharArray
	GetFullMatrix
	GetWorkspaceData
	MaximizeCommandWindow
	MinimizeCommandWindow
	PutCharArray
	PutFullMatrix
	PutWorkspaceData
	Quit

	DDE Functions
	ddeadv
	ddeexec
	ddeinit
	ddepoke
	ddereq
	ddeterm
	ddeunadv

	Web Services Functions
	callSoapService
	createClassFromWsdl
	createSoapMessage
	parseSoapResponse

	Serial Port I/O Functions
	clear (serial)
	delete (serial)
	disp (serial)
	fclose (serial)
	fgetl (serial)
	fgets (serial)
	fopen (serial)
	fprintf (serial)
	fread (serial)
	fscanf (serial)
	fwrite (serial)
	get (serial)
	instrcallback
	instrfind
	isvalid
	length (serial)
	load (serial)
	readasync
	record
	save (serial)
	serial
	serialbreak
	set (serial)
	size (serial)
	stopasync

	Index

