
Bioinformatics Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox User’s Guide
© COPYRIGHT 2003 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may
be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and
Documentation by, for, or through the federal government of the United States. By accepting
delivery of the Program or Documentation, the government hereby agrees that this software or
documentation qualifies as commercial computer software or commercial computer software
documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS
252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights
specified in this Agreement, shall pertain to and govern the use, modification, reproduction,
release, performance, display, and disclosure of the Program and Documentation by the federal
government (or other entity acquiring for or through the federal government) and shall supersede
any conflicting contractual terms or conditions. If this License fails to meet the government’s needs
or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered
trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:
September 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2004 Online only Updated for Version 1.1 (Release 14)

Contents

Getting Started

1
What Is the Bioinformatics Toolbox? 1-2

Expected User . 1-3

Installation . 1-5
Required Software . 1-5
Additional Software . 1-5

Features and Functions . 1-7
Data Formats and Databases . 1-7
Sequence Alignments . 1-9
Sequence Utilities and Statistics . 1-9
Microarray Analysis . 1-10
Protein Structure Analysis . 1-10
Phylogenetic Analysis . 1-11
Prototype and Development Environment 1-12
Data Visualization . 1-12
Algorithm Sharing and Application

Deployment . 1-12

Sequence Analysis

2
Example: Sequence Statistics . 2-2

Determining Nucleotide Content . 2-2
Getting Sequence Information into MATLAB 2-4
Determining Nucleotide Composition 2-5
Determining Codon Composition . 2-8
Open Reading Frames . 2-11
Amino Acid Conversion and Composition 2-14

Example: Sequence Alignment . 2-17

i

Finding a Model Organism to Study 2-17
Getting Sequence Information from a Public

Database . 2-19
Searching a Public Database for Related Genes 2-21
Locating Protein Coding Sequences . 2-24
Comparing Amino Acid Sequences . 2-27

Microarray Analysis

3
Example: Visualizing Microarray Data 3-2

Overview of the Mouse Example . 3-2
Exploring the Microarray Data Set . 3-3
Spatial Images of Microarray Data . 3-5
Statistics of the Microarrays . 3-15
Scatter Plots of Microarray Data . 3-16

Example: Analyzing Gene Expression
Profiles . 3-25
Overview of the Yeast Example . 3-25
Exploring the Data Set . 3-25
Filtering Genes . 3-29
Clustering Genes . 3-32
Principal Component Analysis . 3-36

Phylogenetic Analysis

4
Example: Building a Phylogenetic Tree 4-2

Overview for the Primate Example . 4-2
Searching NCBI for Phylogenetic Data 4-4
Creating a Phylogenetic Tree for Five Species 4-6
Creating a Phylogenetic Tree for Twelve Species 4-8
Exploring the Phylogenetic Tree . 4-10

Phylogenetic Tree Tool Reference . 4-14

ii Contents

Opening the Phytreetool GUI . 4-14
File Menu . 4-16
Tools Menu . 4-24
Windows Menu . 4-32
Help Menu . 4-32

Functions – Categorical List

5
Data Formats and Databases . 5-2

Sequence Conversion . 5-4

Sequence Statistics . 5-5

Sequence Utilities . 5-6

Pairwise Sequence Alignment . 5-7

Protein Analysis . 5-8

Trace Tools . 5-9

Profile Hidden Markov Models . 5-10

Microarray File Formats . 5-11

Microarray Visualization . 5-12

Microarray Normalization and Filtering 5-13

Scoring Matrices . 5-14

Phylogenetic Tree Tools . 5-15

iii

Phylogenetic Tree Methods . 5-16

Tutorials, Demos, and Examples . 5-17

Functions — Alphabetical List

6

Examples

A
Sequence Analysis . A-2

Microarray Analysis . A-3

Phylogenetic Analysis . A-4

Index

iv Contents

1

Getting Started

This chapter is an overview of the functions and features in the Bioinformatics
Toolbox. An introduction to these features will help you to develop a
conceptual model for working with the toolbox and your biological data.

“What Is the Bioinformatics
Toolbox?” (p. 1-2)

Description of this toolbox and the
intended user

“Installation” (p. 1-5) Required software and additional software
for developing advanced algorithms

“Features and Functions” (p.
1-7)

Functions grouped into categories that
support bioinformatic tasks

1 Getting Started

What Is the Bioinformatics Toolbox?
The Bioinformatics Toolbox extends MATLAB® to provide an integrated
software environment for genome and proteome analysis. Together,
MATLAB and the Bioinformatics Toolbox give scientists and engineers a
set of computational tools to solve problems and build applications in drug
discovery, genetic engineering, and biological research.

You can use the basic bioinformatic functions provided with this toolbox to
create more complex algorithms and applications. These robust and well
tested functions are the functions that you would otherwise have to create
yourself.

• Connecting to Web accessible databases

• Reading and converting between multiple data formats

• Determining statistical characteristics of data

• Manipulating and aligning sequences

• Modeling patterns in biological sequences using Hidden Markov Model
(HMM) profiles

• Reading, normalizing, and visualizing microarray data

• Creating and manipulating phylogenetic tree data

• Interfacing with other bioinformatic software (BioPearl and BioJava)

The field of bioinformatics is rapidly growing and will become increasingly
important as biology becomes a more analytical science. The Bioinformatics
Toolbox provides an open environment that you can customize for development
and deployment of the analytical tools you and scientists will need.

Prototype and develop algorithms — Prototype new ideas in an open and
extendable environment. Develop algorithms using efficient string processing
and statistical functions, view the source code for existing functions, and use
the code as a template for improving or creating your own functions. See
“Prototype and Development Environment” on page 1-12.

1-2

What Is the Bioinformatics Toolbox?

Visualize data — Visualize sequence alignments, gene expression data,
phylogenetic trees, and protein structure analyses. See “Data Visualization”
on page 1-12.

Share and deploy applications — Use an interactive GUI builder to
develop a custom graphical front end for your data analysis programs. Create
stand-alone applications that run separate from MATLAB. See “Algorithm
Sharing and Application Deployment” on page 1-12.

1-3

1 Getting Started

Expected User
The Bioinformatics Toolbox is for computational biologists and research
scientists who need to develop new or implement published algorithms,
visualize results, and create stand-alone applications.

• Industry/Professional — Increasingly, drug discovery methods are being
supported by engineering practice. This toolbox supports tool builders
who want to create applications for the biotechnology and pharmaceutical
industry.

• Education/Student — This toolbox is well suited for learning and teaching
genome and proteome analysis techniques. Educators and students can
concentrate on bioinformatic algorithms instead of programming basic
functions such as reading and writing to files.

While the toolbox includes many bioinformatics functions, it is not intended
to be a complete set of tools for scientists to analyze their biological data.
However, MATLAB is the ideal environment for you to rapidly design and
prototype the tools you will need.

1-4

Installation

Installation
You don’t need to do anything special when installing the Bioinformatics
Toolbox. Install the toolbox from a CD or Web release using The MathWorks
installer.

• “Required Software” on page 1-5 — List of MathWorks products you need
to purchase with the Bioinformatics Toolbox

• “Additional Software” on page 1-5 — List of toolboxes from The MathWorks
for advanced algorithm development

Required Software
The Bioinformatics Toolbox requires the following products from the
MathWorks to be installed on your computer:

MATLAB Provides a command-line interface and
integrated software environment for the
Bioinformatics Toolbox.Version 1.1.1 of the
Bioinformatics Toolbox requires MATLAB
Version 7.0.1 on the Release 14 CD.

Statistics Toolbox Provides basic statistics and probability
functions that the functions in the
Bioinformatics Toolbox use.Version 1.1.1
of the Bioinformatics Toolbox requires the
Statistics Toolbox Version 5.0.1 on the Release
14 CD or downloaded from the Web.

Additional Software
MATLAB and the Bioinformatics Toolbox provide an open and extensible
software environment. In this environment you can interactively explore
ideas, prototype new algorithms, and develop complete solutions to problems
in bioinformatics. The MATLAB language facilitates the use of computation,
visualization, prototyping, and deployment.

Using the Bioinformatics Toolbox in combination with other MATLAB
toolboxes and products, will allow your to solve multidisciplinary problems.

1-5

1 Getting Started

Signal Processing Toolbox Process signal data from bioanalytical
instrumentation. Examples include
acquisition of fluorescence data for
DNA sequence analyzers, fluorescence
data for microarray scanners, and mass
spectrometric data from protein analyses.

Image Processing Toolbox Create complex and custom image
processing algorithms for data from
microarray scanners.

Optimization Toolbox Use nonlinear optimization for predicting
the secondary structure of proteins
and the structure of other biological
macromolecules.

Neural Network Toolbox Use neural networks to solve problems
where algorithms are not available. For
example, you can train neural networks
for pattern recognition using large sets of
sequence data.

Database Toolbox Create your own in-house databases for
sequence data with custom annotations.

MATLAB Compiler Create stand-alone applications from
MATLAB GUI applications, and create
dynamic link libraries from MATLAB
functions for use with any programming
environment.

MATLAB® Builder for COM Create COM objects to use with any
COM-based programming environment.

MATLAB® Builder for Excel Create Excel add-in functions from
MATLAB functions to use with Excel
spreadsheets.

1-6

Features and Functions

Features and Functions
The Bioinformatics Toolbox includes many functions to help you with genome
and proteome analysis. Most functions are implemented in M-Code (the
MATLAB programming language) with the source available for you to view.
This open environment lets you explore and customize the existing toolbox
algorithms or develop your own.

• “Data Formats and Databases” on page 1-7 — Access online databases,
copy data into the MATLAB workspace, and read and write to files with
standard bioinformatic formats.

• “Sequence Alignments” on page 1-9 — Compare nucleotide or amino acid
sequences using pairwise and multiple sequence alignment functions.

• “Sequence Utilities and Statistics ” on page 1-9 — Manipulate sequences
and determine physical, chemical, and biological characteristics.

• “Microarray Analysis” on page 1-10 — Read, filter, normalize, and visualize
microarray data.

• “Protein Structure Analysis” on page 1-10 — Determine protein
characteristics and simulate enzyme cleavage reactions.

• “Phylogenetic Analysis” on page 1-11 — Explore phylogenetic data with
functions and a GUI to draw phylograms (trees)

• “Prototype and Development Environment” on page 1-12 — Create new
algorithms, try new ideas, and compare alternatives.

• “Data Visualization” on page 1-12 — Visually compare pairwise and
multiply aligned sequences, gene expression data from microarrays, and
plot nucleic acid and protein characteristics.

• “Algorithm Sharing and Application Deployment” on page 1-12 — Create
GUIs and stand-alone applications.

Data Formats and Databases
The Bioinformatics Toolbox supports access to many of the databases on the
Web and other online sources. It also reads many common genome file formats
so that you do not have to write and maintain your own file readers.

1-7

1 Getting Started

Web-based databases — You can directly access public databases on the
Web and copy sequence and gene expression information into MATLAB.

Currently supported sequence databases are GenBank (getgenbank), GenPept
(getgenpept), European Molecular Biology Laboratory EMBL (getembl),
Protein Sequence Database PIR-PSD (getpir), and Protein Data Bank PDB
(getpdb). You can also access data from the NCBI Gene Expression Omnibus
(GEO) web site by using a single function (getgeodata).

Get multiple aligned sequences (gethmmalignment), hidden Markov model
profiles (gethmmprof), and phylogenetic tree data (gethmmtree) from the
PFAM database.

Raw data — Read and visualize data generated from gene sequencing
instruments in MATLAB (scfread, joinseq, traceplot).

Reading data formats — The toolbox provides a number of functions for
reading data from common file formats.

• Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PIR-PSD (pirread), PDB (pdbread), and FASTA (

fastaread

• Multiply aligned sequences: ClustalW and GCG formats (multialignread).

• Gene expression data from microarrays: Gene Expression Omnibus (GEO)
data (geosoftread), GenePix data (galread, gprread), and SPOT data
(sptread), Affymetrix data (affyread)

Note: The function affyread only works on PC supported platforms.

• Hidden Markov Model profiles: PFAM-HMM file (pfamhmmread).

Writing data formats — The functions for getting data from the Web include
the option to save the data to a file. However, there is a function to write data
to a file using the FASTA format (fastawrite).

MATLAB has built-in support for other industry-standard file formats
including Microsoft Excel and comma-separated value (CSV) files. Additional
functions perform ASCII and low-level binary I/O, allowing you to develop
custom functions for working with any data format.

1-8

Features and Functions

Sequence Alignments
You can select from a list of analysis methods to perform pairwise or multiple
sequence alignment.

Pairwise sequence alignment — The toolbox provides efficient MATLAB
implementations of standard algorithms such as the Needleman-Wunsch
(nwalign) and Smith-Waterman (swalign) algorithms for pairwise sequence
alignment. The toolbox also includes standard scoring matrices such as the
PAM and BLOSUM families of matrices (blosum, dayhoff, gonnet, nuc44,
pam).

Sequence profile alignment — The toolbox provides efficient MATLAB
implementations for profile hidden Markov model algorithms (gethmmprof,
gethmmalignment, pfamhmmread, hmmprofalign, hmmprofestimate,
hmmprofgenerate, hmmprofmerge, hmmprofstruct, showhmmprof).

Visualizing sequence alignments — Once you have analyzed your data,
there are several tools for visualizing your sequence alignments (seqdotplot,
showalignment, seqshowwords, seqshoworfs).

Biological codes — Look up the letters or numerical equivalents for
commonly used biological codes (aminolookup, geneticcode, revgeneticcode).

Sequence Utilities and Statistics
You can manipulate and analyze your sequence to gain a deeper understanding
of your data.

Sequence manipulation — The toolbox provides routines for common
operations such as converting DNA or RNA sequences to amino acid sequences
that are basic to working with nucleic acid or protein sequences (aa2int,
aa2nt, dna2rna, rna2dna, int2aa, int2nt, nt2aa, nt2int, seqcomplement,
seqrcomplement, seqreverse).

You can manipulate your sequence by performing an in-silico digestion with
restriction endonucleases (restrict) and proteases (cleave).

Sequence statistics — You can determine various statistics about a
sequences (aacount, basecount, codoncount, dimercount, nmercount,
ntdensity), search for specific patterns within a sequence (seqshowwords,

1-9

1 Getting Started

seqwordcount), or search for open reading frames (seqshoworfs). In addition,
you can create random sequences for test cases (randseq).

Additional functions in MATLAB efficiently handle string operations with
regular expressions (regexp, seq2regexp) to look for specific patterns in a
sequence, and look for possible cleavage sites in a DNA/RNA sequence by
searching for palindromes (palindromes).

Microarray Analysis
MATLAB is widely used for microarray data analysis. However, the standard
normalization and visualization tools that scientists use can be difficult to
implement. The Bioinformatics Toolbox includes these standard functions.

Microarray normalization — The toolbox provides a number of methods
for normalizing microarray data, such as lowess normalization (malowess),
global mean normalization (mameannorm), and median absolute deviation
(MAD) normalization (mamadnorm). You can use filtering functions to
clean raw data before analysis (geneentropyfilter, genelowvalfilter,
generangefilter, genevarfilter), and calculate the range and variance of
values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing
microarray data. These routines include spacial plots of microarray data
(maimage, redgreencmap), box plots (maboxplot), loglog plot (maloglog), and
intensity-ratio plots (mairplot). You can also view clustered expression
profiles (clustergram, redgreencmap)

The toolbox accesses statistical routines to perform cluster analysis and to
visualize the results.

MATLAB visualization tools let you view your data through statistical
visualizations such as dendrograms, classification, and regression trees.

Protein Structure Analysis
You can use a collection of protein analysis methods to extract information
from your data. The toolbox provides functions to calculate various properties
of a protein sequence such as the atomic composition (atomiccomp) and the
molecular weight (molweight). You can cleave a protein with an enzyme

1-10

Features and Functions

(cleave) and create distance and Ramachandran plots for PDB data
(pdbdistplot, ramachandran). The toolbox contains a graphical user interface
for protein analysis (proteinplot). After analyzing the data, you can create
revealing visualizations of your results.

Phylogenetic Analysis
Functions for phylogenetic tree building and analysis.

• phytreeread — Read a Newick formatted tree file into the MATLAB
workspace and return a phytree object with data from the file. Data in the
file uses the Newick (New Hampshire) format for describing trees.

• phytreewrite — Copy the contents of a phytree object from the MATLAB
workspace to a file.

• phytreetool — Interactive GUI that allows you to view, edit, and explore
phylogenetic tree data. This GUI allows branch pruning, reordering,
renaming, and distance exploring. It can also open or save Newick
formatted files.

• seqpdist — Calculate the pairwise distance between biological sequences.

• seqlinkage — Construct a phylogenetic tree from pairwise distances.

MALTLAB object and methods for manipulating phylogenetic tree data.

• phytree — Function to create a phytree object.

• phytree/get — Get property values from a phytree object

• phytree/getbyname — Get node names from a phytree object.

• phytree/pdist — Calculate the patristic distances between pairs of leaf
nodes.

• phytree/plot — Draw a phylogenetic tree object in a MATLAB figure
window as a phylogram, cladogram, or radial tree.

• phytree/prune — Remove nodes from a phylogenetic tree.

• phytree/select — Select branches and leaves from a phylogenetic tree using
a specified criteria.

• phytree/view — Opens a phylogenetic tree in a phytreetool window.

1-11

1 Getting Started

Prototype and Development Environment
MATLAB is a prototyping and development environment where you can
create algorithms and easily compare alternatives.

• Integrated environment — Explore biological data in an environment
that integrates programming and visualization. Create reports and plots
with the built-in functions for math, graphics, and statistics.

• Open environment — Access the source code for the Bioinformatics
Toolbox functions, The toolbox includes many of the basic bioinformatics
functions you will need to use, and it includes prototypes for some of the
more advanced functions. Modify these functions to create your own
custom solutions.

• Interactive programming language — Test your ideas by typing
functions that are interpreted interactively with a language whose basic
data element is an array. The arrays do not require dimensioning and allow
you to solve many technical computing problems,

Using matrixes for sequences or groups of sequences allows you to work
efficiently with sequences and not worry about writing loops or other
programming controls.

• Programming tools — Use a visual debugger for algorithm development
and refinement and an algorithm performance profiler to accelerate
development

Data Visualization
In addition, MATLAB 2D and volume visualization features let you create
custom graphical representations of multidimensional data sets. You can also
create montages and overlays, and export finished graphics to a PostScript
image file or copy directly into Microsoft PowerPoint.

Algorithm Sharing and Application Deployment
The open MATLAB environment lets you share your analysis solutions
with other MATLAB users, and it includes tools to create custom software
applications. With the addition of the MATLAB Compiler, you can create
stand-alone applications independent from MATLAB, and with the addition of
the MATLAB COM Builder, you can create GUIs and stand-alone applications
within other programming environments.

1-12

Features and Functions

• Share algorithms with other MATLAB users — You can share data
analysis algorithms created in the MATLAB language across all MATLAB
supported platforms by giving M-files to other MATLAB users, Also, you
can create GUIs within MATLAB using the Graphical User Interface
Development Environment (GUIDE).

• Deploy MATLAB GUIs — Create a GUI within MATLAB using GUIDE,
and then use the MATLAB Compiler to create a stand-alone GUI
application that runs separate from MATLAB.

• Create dynamic link libraries (DLL) — Use the MATLAB compiler to
create dynamic link libraries (DLLs) for your functions, and then link these
libraries to other programming environments such as C and C++.

• Create COM objects — Use the MATLAB COM Builder to create COM
objects, and then use a COM compatible programming environment (Visual
Basic) to create a stand-alone application.

• Create Excel add-ins — Use the MATLAB Excel Builder to create
Excel add-in functions, and then use the add-in functions with Excel
spreadsheets.

1-13

1 Getting Started

1-14

2

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide
or amino acid sequence using computational methods. Common tasks in
sequence analysis are identifying genes, determining the similarity of two
genes, determining the protein coded by a gene, and determining the function
of a gene by finding a similar gene in another organism with a know function.

“Example: Sequence
Statistics” (p. 2-2)

Starting with a DNA sequence, calculate
statistics for the nucleotide content.

“Example: Sequence
Alignment” (p. 2-17)

Starting with a DNA sequence for a human
gene, locate and verify a corresponding gene
in a model organism.

2 Sequence Analysis

Example: Sequence Statistics
After sequencing a piece of DNA, one of the first tasks is to investigate the
nucleotide content in the sequence. Starting with a DNA sequence, this
example uses sequence statistics functions to determine mono-, di-, and
trinucleotide content, and to locate open reading frames.

• “Determining Nucleotide Content” on page 2-2 — Use the MATLAB Help
browser to search the Web for information.

• “Getting Sequence Information into MATLAB” on page 2-4 — Find a
nucleotide sequence in a public database and read the sequence information
into MATLAB.

• “Determining Nucleotide Composition” on page 2-5 — Determine the
monomers and dimers, and then visualize data in graphs and bar plots.

• “Determining Codon Composition” on page 2-8 — Look at codons for the six
reading frames.

• “Open Reading Frames” on page 2-11 — Locate the open reading frames
using a specific genetic code.

• “Amino Acid Conversion and Composition” on page 2-14 — Extract the
protein-coding sequence from a gene sequence and convert it to the amino
acid sequence for the protein.

Determining Nucleotide Content
In this example you are interested in studying the human mitochondrial
genome. While many genes that code for mitochondrial proteins are found in
the cell nucleus, the mitochondrial has genes that code for proteins used to
produce energy.

First research information about the human mitochondria and find the
nucleotide sequence for the genome. Next, look at the nucleotide content for
the entire sequence. And finally, determine open reading frames and extract
specific gene sequences.

2-2

Example: Sequence Statistics

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command Window, type

web('http://www.ncbi.nlm.nih.gov/')

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human mitochondrion genome, from the Search list, select Genome, and in
the for box, enter mitochondrion homo sapiens.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled NC_001807.

The MATLAB Help browser displays the NCBI page for the human
mitochondrial genome.

2-3

2 Sequence Analysis

Getting Sequence Information into MATLAB
Many public data bases for nucleotide sequences are accessible from the Web.
The MATLAB command window provides an integrated environment for
bringing sequence information into MATLAB.

The consensus sequence for the human mitochondrial genome has the
GenBank accession number NC_001807. Since the whole GenBank entry is
quite large and you might only be interested in the sequence, you can get
just the sequence information.

2-4

Example: Sequence Statistics

1 Get sequence information from a Web database.For example, to get
sequence information for the human mitochondrial genome, in the
MATLAB Command Window, type

mitochondria = getgenbank('NC_001807','SequenceOnly',true);

MATLAB gets the nucleotide sequence from the GenBank database and
creates a character array.

mitochondria =
gatcacaggtctatcaccctattaaccactcacgggagctctccatgcat
ttggtattttcgtctggggggtgtgcacgcgatagcattgcgagacgctg
gagccggagcaccctatgtcgcagtatctgtctttgattcctgcctcatt
ctattatttatcgcacctacgttcaatattacaggcgaacatacctacta
aagt . . .

2 If you don’t have a Web connection, you can load the data from a MAT-file
included with the Bioinformatics Toolbox, using the command

load mitochondria

MATLAB loads the sequence mitochondria into the MATLAB workspace.

3 Get information about the sequence. Type

whos mitochondria

MATLAB displays information about the size of the sequence.

Name Size Bytes Class
mitochondria 1x16571 33142 char array

Grand total is 16571 elements using 33142 bytes

Determining Nucleotide Composition
Sections of a DNA sequence with a high percent of A+T nucleotides usually
indicates intergenic parts of the sequence, while low A+T and higher G+C
nucleotide percentages indicate possible genes. Many times high CG
dinucleotide content is located before a gene.

After you read a sequence into MATLAB, you can use the sequence
statistics functions to determine if your sequence has the characteristics of a

2-5

2 Sequence Analysis

protein-coding region. This procedure uses the human mitochondrial genome
as an example. See “Getting Sequence Information into MATLAB” on page
2-4.

1 Plot monomer densities and combined monomer densities in a graph. In
the MATLAB Command window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

2 Count the nucleotides using the function basecount.basecount(mitochondria)

A list of nucleotide counts is shown for the 5’-3’ strand.ans =
A: 5113
C: 5192
G: 2180
T: 4086

2-6

Example: Sequence Statistics

3 Count the nucleotides in the reverse complement of a sequence using the
function seqrcomplement.

basecount(seqrcomplement(mitochondria))

As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5’-3’ strand.

ans =
A: 4086
C: 2180
G: 5192
T: 5113

4 Use the function basecount with the chart option to visualize the
nucleotide distribution.

basecount(mitochondria,'chart','pie');

MATLAB draws a pie chart in a figure window.

2-7

2 Sequence Analysis

5 Count the dimers in a sequence and display the information in a bar chart.

dimercount(mitochondria,'chart','bar')

MATLAB lists the dimer counts and draws a bar chart.

Determining Codon Composition
Trinucleotides (codon) code for an amino acid, and there are 64 possible codons
in a nucleotide sequence. Knowing the percent of codons in your sequence can
be helpful when you are comparing with tables for expected codon usage.

After you read a sequence into MATLAB, you can analyze the sequence for
codon composition. This procedure uses the human mitochondria genome as
an example. See “Getting Sequence Information into MATLAB” on page 2-4.

1 Count codons in a nucleotide sequence. In the MATLAB Command
Window, type

codoncount(mitochondria)

MATLAB displays the codon counts for the first reading frame.

2-8

Example: Sequence Statistics

AAA-172 AAC-157 AAG-67 AAT-123
ACA-153 ACC-163 ACG-42 ACT-130
AGA-58 AGC-90 AGG-50 AGT-43
ATA-132 ATC-103 ATG-57 ATT-96
CAA-166 CAC-167 CAG-68 CAT-135
CCA-146 CCC-215 CCG-50 CCT-182
CGA-33 CGC-60 CGG-18 CGT-20
CTA-187 CTC-126 CTG-52 CTT-98
GAA-68 GAC-62 GAG-47 GAT-39
GCA-67 GCC-87 GCG-23 GCT-61
GGA-53 GGC-61 GGG-23 GGT-25
GTA-61 GTC-49 GTG-26 GTT-36
TAA-136 TAC-127 TAG-82 TAT-107
TCA-143 TCC-126 TCG-37 TCT-103
TGA-64 TGC-35 TGG-27 TGT-25
TTA-115 TTC-113 TTG-37 TTT-99

2 Count the codons in all six reading frames and plot the results in a heat
map.

for frame = 1:3
figure('color',[1 1 1])
subplot(2,1,1);
codoncount(mitochondria,'frame',frame,'figure',true);
title(sprintf('Codons for frame %d',frame));
subplot(2,1,2);
codoncount(mitochondria,'reverse',true,

'frame',frame,
'figure',true);

title(sprintf('Codons for reverse frame %d',frame));
end

MATLAB draws heat maps to visualize all 64 codons in the six reading
frames.

2-9

2 Sequence Analysis

2-10

Example: Sequence Statistics

Open Reading Frames
Determining the protein-coding sequence for a eukaryotic gene can be a
difficult task because introns (noncoding sections) are mixed with exons.
However, prokaryotic genes generally do not have introns and mRNA
sequences have the introns removed. Identifying the start and stop codons
for translation determines the protein-coding section or open reading frame
(ORF) in a sequence. Once you know the ORF for a gene or mRNA, you can
translate a nucleotide sequence to its corresponding amino acid sequence.

After you read a sequence into MATLAB, you can analyze the sequence for
open reading frames. This procedure uses the human mitochondria genome as
an example. See “Getting Sequence Information into MATLAB” on page 2-4.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the
MATLAB Command window, type

showorfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for
NC_001807, there are fewer genes than expected. This is because vertebrate

2-11

2 Sequence Analysis

mitochondria use a genetic code slightly different from the standard genetic
code. For a table of genetic codes, see Genetic Code on page 6-4.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqshoworfs(mitochondria,
'GeneticCode','Vertebrate Mitochondrial',
'alternativestart',true);

Notice that there are now two large ORFs on the first reading frame. One
starts at position 4471 and the other starts at 5905. These correspond to
the genes ND2 (NADH dehydrogenase subunit 2 [Homo sapiens]) and
COX1 (cytochrome c oxidase subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs
have the same indices as the start positions in the fields Start and Stop.

ND2Start = 4471;
StartIndex = find(orfs(1).Start == ND2Start)
ND2Stop = orfs(1).Stop(StartIndex)

MATLAB displays the stop position.

ND2Stop =
5512

4 Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop);
codoncount (ND2Seq)

The subsequence (protein-coding region) is stored in ND2Seq and displayed
on the screen.

attaatcccctggcccaacccgtcatctactctaccatctttgcaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggcctag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgcatc
cataatccttc . . .

2-12

Example: Sequence Statistics

5 Determine the codon distribution.

codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA-10 AAC-14 AAG-2 AAT-6
ACA-11 ACC-24 ACG-3 ACT-5
AGA-0 AGC-4 AGG-0 AGT-1
ATA-22 ATC-24 ATG-2 ATT-8
CAA-8 CAC-3 CAG-2 CAT-1
CCA-4 CCC-12 CCG-2 CCT-5
CGA-0 CGC-3 CGG-0 CGT-1
CTA-26 CTC-18 CTG-4 CTT-7
GAA-5 GAC-0 GAG-1 GAT-0
GCA-8 GCC-7 GCG-1 GCT-4
GGA-5 GGC-7 GGG-0 GGT-1
GTA-3 GTC-2 GTG-0 GTT-3
TAA-0 TAC-8 TAG-0 TAT-2
TCA-7 TCC-11 TCG-1 TCT-4
TGA-10 TGC-0 TGG-1 TGT-0
TTA-8 TTC-7 TTG-1 TTT-8

6 Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))
aminolookup('code',nt2aa('CTA'))
aminolookup('code',nt2aa('ACC'))
aminolookup('code',nt2aa('ATC'))

MATLAB displays the following

Ile isoleucine
Leu leucine
Thr threonine
Ile isoleucine

2-13

2 Sequence Analysis

Amino Acid Conversion and Composition
Determining the relative amino acid composition of a protein will give you a
characteristic profile for the protein. Often, this profile is enough information
to identify a protein. Using the amino acid composition, atomic composition,
and molecular weight, you can also search public databases for similar
proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to
an amino sequence and determine its amino acid composition. This procedure
uses the human mitochondria genome as an example. See “Open Reading
Frames” on page 2-11.

1 Convert a nucleotide sequence to an amino acid sequence. In this example
only the protein-coding sequence between the start and stop codons is
converted.

ND2AASeq = nt2aa(ND2Seq,'geneticcode','Vertebrate Mitochondrial');

The sequence is converted using the Vertebrate Mitochondrial genetic
code. Because the property AlternativeStartCodons is set to 'true' by
default, the first codon att is converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

2 Compare your conversion with the published conversion in GenPept.

ND2protein = getgenpept('NP_536844','sequenceonly',true)

MATLAB gets the published conversion from the NCBI database and reads
it into the MATLAB workspace.

3 Count the amino acids in the protein sequence.

aacount(ND2AASeq, 'chart','bar')

2-14

Example: Sequence Statistics

MATLAB draws a bar graph. Notice the high content for leucine, threonine
and isoleucine, and also notice the lack of cysteine and aspartic acid.

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)
molweight (ND2AASeq)

MATLAB displays the following.

ans =
C: 1818
H: 3574
N: 420
O: 817
S: 25

ans =
3.8960e+004

2-15

2 Sequence Analysis

If this sequence was unknown, you could use this information to identify
the protein by comparing it with the atomic composition of other proteins
in a database.

2-16

Example: Sequence Alignment

Example: Sequence Alignment
Determining the similarity between two sequences is a common task in
computational biology. Starting with a nucleotide sequence for a human gene,
this example uses alignment algorithms to locate a similar gene in another
organism.

• “Finding a Model Organism to Study” on page 2-17 — Use the MATLAB
Help browser to search the Web for information.

• “Getting Sequence Information from a Public Database” on page 2-19 —
Find the nucleotide sequence for a human gene in a public database and
read the sequence information into MATLAB.

• “Searching a Public Database for Related Genes” on page 2-21‘ — Find the
nucleotide sequence for a mouse gene related to a human gene, and read
the sequence information into MATLAB.

• “Locating Protein Coding Sequences” on page 2-24 — Convert a sequence
from nucleotides to amino acids and identify the open reading frames.

• “Comparing Amino Acid Sequences” on page 2-27 — Use global and local
alignment functions to compare two amino acid sequences.

Finding a Model Organism to Study
In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs
is an autosomal recessive disease caused by the absence of the enzyme
beta-hexosaminidase A (Hex A). This enzyme is responsible for the breakdown
of gangliosides (GM2) in brain and nerve cells.

First, to research information about Tay-Sachs and the enzyme that is
associated with this disease, then find the nucleotide sequence for the human
gene that codes for the enzyme, and finally find a corresponding gene in
another organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command Window, type

web('http://www.ncbi.nlm.nih.gov/')

2-17

2 Sequence Analysis

The MATLAB Help browser opens with the home page for the NCBI web
site.

2 Search the NCBI Web site for information. For example, to search for
Tay-Sachs, from the Search list, select NCBI Web Site, and in the for
box, enter Tay-Sachs.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled Tay-Sachs
Disease

A page in the genes and diseases section of the NCBI Web site opens. This
section provides a comprehensive introduction to medical genetics. In
particular, this page contains an introduction and pictorial representation
of the enzyme Hex A and its role in the metabolism of the lipid GM2
ganglioside.

2-18

Example: Sequence Alignment

4 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme
hexosaminidase A (Hex A), while the gene HEXB codes for the beta subunit
of the enzyme. A third gene, GM2A, codes for the activator protein GM2.
However, it is a mutation in the gene HEXA that causes Tay-Sachs.

Getting Sequence Information from a Public Database
Many public databases for nucleotide sequences (for example, GenBank,
EMBL-EBI) are accessible from the Web. The MATLAB Command Window
with the MATLAB Help browser provide an integrated environment for
searching the Web and bringing sequence information into MATLAB.

After you locate a sequence, you need to move the sequence data into the
MATLAB workspace.

1 Open the MATLAB Help browser to the NCBI web site. In the MATLAB
Command Widow, type

web('http://www.ncbi.nlm.nih.gov/')

2-19

2 Sequence Analysis

The MATLAB Help browser window opens with the NCBI home page.

2 Search for the gene you are interested in studying. For example, from the
Search list, select Nucleotide, and in the for box enter Tay-Sachs.

The search returns entries for the genes that code the alpha and beta
subunits of the enzyme hexosaminidase A (Hex A), and the gene that codes
the activator enzyme. The NCBI reference for the human gene HEXA has
accession number NM_000520.

2-20

Example: Sequence Alignment

3 Get sequence data into MATLAB. For example, to get sequence information
for the human gene HEXA, type

humanHEXA = getgenbank('NM_000520')

Note that blank spaces in GenBank accession numbers use the underline
character. Entering 'NM 00520' returns the wrong entry.

The human gene is loaded into the MATLAB workspace as a structure.

humanHEXA =
LocusName: 'HEXA'

LocusSequenceLength: '2255'
LocusNumberofStrands: ''

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'
LocusModificationDate: '10-MAY-2002'

Definition: [1x63 char]
Accession: 'NM_000520'

Version: ' NM_000520.2'
GI: '13128865'

Keywords: '.'
Segment: []
Source: [1x87 char]

SourceOrganism: [2x65 char]
Reference: {1x7 cell}

Comment: [15x67 char]
Features: [71x79 char]

BaseCount: [1x1 struct]
Sequence: [1x2255 char]

Searching a Public Database for Related Genes
The sequence and function of many genes is conserved during the evolution of
species through homologous genes. Homologous genes are genes that have
a common ancestor and similar sequences. One goal of searching a public
database is to find similar genes. If you are able to locate a sequence in a
database that is similar to your unknown gene or protein, it is likely that the
function and characteristics of the known and unknown genes are the same.

2-21

2 Sequence Analysis

After finding the nucleotide sequence for a human gene, you can do a BLAST
search or search in the genome of another organism for the corresponding
gene. This procedure uses the mouse genome as an example.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB
Command window, type

web('http://www.ncbi.nlm.nih.gov')

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the
for box enter hexosaminidase A.

The search returns entries for the mouse and human genomes. The NCBI
reference for the mouse gene HEXA has accession number AK080777.

3 Get sequence information for the mouse gene into MATLAB. Type

2-22

Example: Sequence Alignment

mouseHEXA = getgenbank('AK08077')

The mouse gene sequence is loaded into the MATLAB workspace as a
structure.

2-23

2 Sequence Analysis

mouseHEXA =
LocusName: 'AK080777'

LocusSequenceLength: '1839'
LocusNumberofStrands: ''

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'HTC'
LocusModificationDate: '05-DEC-2002'

Definition: [1x67 char]
Accession: [1x201 char]

Version: ' AK080777.1'
GI: '26348756'

Keywords: 'HTC; CAP trapper.'
Segment: []
Source: [1x93 char]

SourceOrganism: [2x66 char]
Reference: {1x6 cell}

Comment: [12x66 char]
Features: [31x79 char]

BaseCount: [1x1 struct]
Sequence: [1x1839 char]

Locating Protein Coding Sequences
A nucleotide sequence includes regulatory sequences before and after the
protein coding section. By analyzing this sequence, you can determine the
nucleotides that code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can
determine the protein coding sequences. This procedure uses the human gene
HEXA and mouse gene HEXA as an example.

1 If you did not retrieve gene data from the Web, you can load example data
from a MAT-file included with the Bioinformatics Toolbox. In the MATLAB
Command window, type

load hexosaminidase

MATLAB loads the structures humanHEXA and mouseHEXA into the MATLAB
workspace.

2-24

Example: Sequence Alignment

2 Look for open reading frames in the human gene. For example, for the
human gene HEXA, type

humanORFs=seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure gives
the position of the start and stop codons for all open reading frames (ORFs)
on each reading frame.

humanORFs =

1x3 struct array with fields:
Start
Stop

The Help browser opens with a listing for the three reading frames with
the ORFs colored blue, red, and green. Notice that the longest ORF is
on the third reading frame.

2-25

2 Sequence Analysis

3 Locate open reading frames (ORFs) on the mouse gene. Type

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

seqshoworfs creates the structure mouseORFS.

mouseORFs =

1x3 struct array with fields:
Start
Stop

2-26

Example: Sequence Alignment

The mouse gene shows the longest ORF on the first reading frame.

Comparing Amino Acid Sequences
You could use alignment functions to look for similarities between two
nucleotide sequences, but alignment functions return more biologically
meaningful results when you are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences,
you can convert the protein coding sections of the nucleotide sequences to
their corresponding amino acid sequences, and then you can compare them
for similarities.

2-27

2 Sequence Analysis

1 Using the identified open reading frames, convert the DNA sequence to the
amino acid sequences. Type

mouseProtein = nt2aa(mouseHEXA.Sequence)

Remember that the human HEXA gene was on the third reading frame, so
you need to indicate which frame to use.

humanProtein = nt2aa(humanHEXA.Sequence,'frame',3)

2 Draw a dot plot comparing the human and mouse amino acid sequences.
Type

seqdotplot(mouseProtein,humanProtein,4,3)
ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between
sequences. The diagonal line shown below indicates that there may be a
good alignment between the two sequences.

2-28

Example: Sequence Alignment

3 Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment = nwalign(humanProtein,
mouseProtein)

showalignment(GlobalAlignment)

showalignment displays the global alignment of the two sequences in
the Help browser. Notice that the calculated identity between the two
sequences is 64.5 %.

2-29

2 Sequence Analysis

2-30

Example: Sequence Alignment

The alignment is very good for the first 550 nucleotides, after which the
two sequences appear to be unrelated. Notice that there is a stop (*) in the
sequence at this point. If you shorten the sequence to include only the
amino acids that are in the protein (after the first methionine and before
the first stop) you might get a better alignment.

4 Trim the sequence from the first start amino acid (usually M) to the first
stop (first *) and then try alignment again. Find the indices for the stops
in the sequences.

humanStops = find(humanProtein == '*')

humanStops =
538 550 652 661 669

mouseStops = find(mouseProtein =='*')

mouseStops =

539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at
position 9, while the first M for the mouse protein is at 11.

5 Truncate the sequence to include only amino acids in the protein and the
stop.

humanProteinORF = humanProtein(9:humanStops(1));

humanProteinORF =
MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV
FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY
MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYVVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL
SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

2-31

2 Sequence Analysis

mouseProteinORF = mouseProtein(11:mouseStops(1))

mouseProteinORF =
MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM
LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQPISVGCCEQEFEQT*

6 Globally align the trimmed amino acid sequences. Type

[Score, Alignment] = nwalign(humanProteinORF,
mouseProteinORF);

showalignment(Alignment)

showalignment displays the results for the second global alignment. Notice
that the percent identity for the untrimmed sequences is 54% and with
trimmed sequences 83.3 percent.

2-32

Example: Sequence Alignment

7 Another way to truncate an amino acid sequence to only those amino acids
in the protein is to first truncate the nucleotide sequence with indices from
the function seqshoworfs. Remember that the ORF for the human HEXA
gene was on the third reading frame, and the ORF for the mouse HEXA
was on the first reading frame.

2-33

2 Sequence Analysis

humanORFs = seqshoworfs(humanHEXA.Sequence);
mouseORFs = seqshoworfs(humanHEXA.Sequence);

humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(3).Start(1):
humanORFs(3)Stop(1)))

mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):
mouseORFs(1)Stop(1)))

[Scale, Alignment] = nwalign(humanPORF, mousePORF)

Show the alignment in the Help browser.

showalignment(Alignment)

The result from first truncating a nucleotide sequence before converting
to an amino acid sequence is the same as the result from truncating the
amino acid sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local
alignment function with the nontruncated sequences.

8 Locally align the two amino acid sequences using a Smith-Waterman
algorithm. Type

[LocalScore, LocalAlignment = swalign(humanProtein,
mouseProtein)

LocalScore =
1057

LocalAlignment
RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV . . .
|| | ||:: ||| |||||||:| ||||||||| :|| :||: . . .
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT . . .

swalign displays the local alignment of two sequences in the Help browser.

9 Show the alignment in color.

showalignment(LocalAlignment)

2-34

Example: Sequence Alignment

2-35

2 Sequence Analysis

2-36

3

Microarray Analysis

You can use gene expression profiles from microarray data to research the
function of cells, compare the differences between healthy and diseased tissue,
and observe changes with the application of drugs.

The examples in this chapter will help you to become more familiar with the
functions in the Bioinformatics Toolbox for analyzing and visualizing gene
expression patterns.

“Example: Visualizing Microarray
Data” (p. 3-2)

Create figures to visualize
microarray data and get the
data ready for analysis

“Example: Analyzing Gene
Expression Profiles” (p. 3-25)

Analyze microarray data for patterns
and plot the results

3 Microarray Analysis

Example: Visualizing Microarray Data
This example looks at the various ways to visualize microarray data. The
microarray data for this example is from Brown, V.M., Ossadtchi, A., Khan,
A.H., Yee, S., Lacan, G., Melega, W.P., Cherry, S.R., Leahy, R.M., and Smith,
D.J.; "Multiplex three dimensional brain gene expression mapping in a mouse
model of Parkinson’s disease"; Genome Research 12(6): 868-884 (2002).

• “Exploring the Microarray Data Set” on page 3-3

• “Spatial Images of Microarray Data” on page 3-5

• “Statistics of the Microarrays” on page 3-15

• “Scatter Plots of Microarray Data” on page 3-16

Overview of the Mouse Example
The microarray data used in this example is available in a web supplement to
the paper by Brown et al. from

http://labs.pharmacology.ucla.edu/smithlab/index.html

The microarray data is also available on the Gene Expression Omnibus Web
site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR formatted file mouse_a1pd.gpr contains the data for one of
the microarrays used in the study. This is data from voxel A1 of the brain of
a mouse in which a pharmacological model of Parkinson’s disease (PD) was
induced using methamphetamine. The voxel sample was labeled with Cy3
(green) and the control, RNA from a total (not voxelated) normal mouse brain,
was labeled with Cy5 (red). GPR formatted files provide a large amount of
information about the array, including the mean, median, and standard
deviation of the foreground and background intensities of each spot at the
635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength (the
green, Cy3 channel).

3-2

Example: Visualizing Microarray Data

Exploring the Microarray Data Set
This procedure uses data from a study about gene expression in mouse brains
as an example. See “Overview of the Mouse Example” on page 3-2.

1 Read data from a file into a MATLAB structure. For example, in the
MATLAB Command Window, type

pd = gprread('mouse_a1pd.gpr')

MATLAB displays information about the structure:

pd =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

2 Access the fields of a structure using StructureName.FieldName. For
example, you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =
'X'
'Y'
'Dia.'
'F635 Median'
'F635 Mean'
'F635 SD'
'B635 Median'
'B635 Mean'
'B635 SD'

3-3

3 Microarray Analysis

'% > B635+1SD'
'% > B635+2SD'
'F635 % Sat.'
'F532 Median'
'F532 Mean'
'F532 SD'
'B532 Median'
'B532 Mean'
'B532 SD'
'% > B532+1SD'
'% > B532+2SD'
'F532 % Sat.'
'Ratio of Medians'
'Ratio of Means'
'Median of Ratios'
'Mean of Ratios'
'Ratios SD'
'Rgn Ratio'
'Rgn R†'
'F Pixels'
'B Pixels'
'Sum of Medians'
'Sum of Means'
'Log Ratio'
'F635 Median - B635'
'F532 Median - B532'
'F635 Mean - B635'
'F532 Mean - B532'
'Flags'

3 Access the names of the genes. For example, to list the first 20 gene names,
type

pd.Names(1:20)

A list of the first 20 gene names is displayed:

3-4

Example: Visualizing Microarray Data

ans =
'AA467053'
'AA388323'
'AA387625'
'AA474342'
'Myo1b'
'AA473123'
'AA387579'
'AA387314'
'AA467571'

''
'Spop'
'AA547022'
'AI508784'
'AA413555'
'AA414733'

''
'Snta1'
'AI414419'
'W14393'
'W10596'

Spatial Images of Microarray Data
The function maimage can take a microarray data structure and create a
pseudocolor image of the data arranged in the same order as the spots on the
array. In other words, maimage plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains.
For a list of field names in the MATLAB structure pd, see “Exploring the
Microarray Data Set” on page 3-3.

1 Plot the median values for the red channel. For example, to plot data from
the field F635 Median, type

figure
maimage(pd,'F635 Median')

3-5

3 Microarray Analysis

MATLAB plots an image showing the median pixel values for the
foreground of the red (Cy5) channel.

2 Plot the median values for the green channel. For example, to plot data
from the field F532 Median, type

figure
maimage(pd,'F532 Median')

3-6

Example: Visualizing Microarray Data

MATLAB plots an image showing the median pixel values of the foreground
of the green (Cy3) channel.

3 Plot the median values for the red background. The field B635 Median
shows the median values for the background of the red channel.

figure
maimage(pd,'B635 Median')

3-7

3 Microarray Analysis

MATLAB plots an image for the background of the red channel. Notice the
very high background levels down the right side of the array.

4 Plot the medial values for the green background. The field B532 Median
shows the median values for the background of the green channel.

figure
maimage(pd,'B532 Median')

3-8

Example: Visualizing Microarray Data

MATLAB plots an image for the background of the green channel.

5 The first array was for the Parkinson’s disease model mouse. Now read in
the data for the same brain voxel but for the untreated control mouse. In
this case, the voxel sample was labeled with Cy3 and the control, total
brain (not voxelated), was labeled with Cy5.

wt = gprread('mouse_a1wt.gpr')

MATLAB creates a structure and displays information about the structure.

3-9

3 Microarray Analysis

wt =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

6 Use the function maimage to show pseudocolor images of the foreground
and background. You can use the function subplot to put all the plots
onto one figure.

figure
subplot(2,2,1);
maimage(wt,'F635 Median')
subplot(2,2,2);
maimage(wt,'F532 Median')
subplot(2,2,3);
maimage(wt,'B635 Median')
subplot(2,2,4);
maimage(wt,'B532 Median')

3-10

Example: Visualizing Microarray Data

MATLAB plots the images.

7 If you look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there
appears to be something nonrandom affecting the background of the Cy3
channel of this slide. Changing the colormap can sometimes provide more
insight into what is going on in pseudocolor plots. For more control over the
color, try the colormapeditor function.

colormap hot

3-11

3 Microarray Analysis

MATLAB plots the images.

8 The function maimage is a simple way to quickly create pseudocolor images
of microarray data. However if you want more control over plotting, it is
easy to create your own plots using the function imagesc.

First find the column number for the field of interest.

b532MedCol = find(strcmp(wt.ColumnNames,'B532 Median'))

MATLAB displays

b532MedCol =
16

9 Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);

3-12

Example: Visualizing Microarray Data

10 Use the field Indices to index into the Data.

figure
subplot(1,2,1);
imagesc(b532Data(wt.Indices))
axis image
colorbar
title('B532 Median')

MATLAB plots the image.

3-13

3 Microarray Analysis

11 Bound the intensities of the background plot to give more contrast in the
image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

subplot(1,2,2);
imagesc(maskedData(wt.Indices))
axis image
colorbar
title('Enhanced B532 Median')

MATLAB plots the images.

3-14

Example: Visualizing Microarray Data

Statistics of the Microarrays
You can use the function maboxplot to look at the distribution of data in each
of the blocks.

1 In the MATLAB Command Window, type

figure
subplot(2,1,1)
maboxplot(pd,'F532 Median','title','Parkinson''s Disease Model Mouse')
subplot(2,1,2)
maboxplot(pd,'B532 Median','title','Parkinson''s Disease Model Mouse')
figure
subplot(2,1,1)
maboxplot(wt,'F532 Median','title','Untreated Mouse')
subplot(2,1,2)
maboxplot(wt,'B532 Median','title','Untreated Mouse')

MATLAB plots the images.

3-15

3 Microarray Analysis

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the arrays,
and numbers 2, 4, 6, and 8 are on the right side. The data must be
normalized to remove this spatial bias.

Scatter Plots of Microarray Data
There are two columns in the microarray data structure labeled 'F635 Median
- B635' and 'F532 Median - B532'. These columns are the differences
between the median foreground and the median background for the 635 nm
channel and 532 nm channel respectively. These give a measure of the actual
expression levels, although since the data must first be normalized to remove
spatial bias in the background, you should be careful about using these values
without further normalization. However, in this example no normalization
is performed.

1 Rather than working with data in a larger structure, it is often easier to
extract the column numbers and data into separate variables.

3-16

Example: Visualizing Microarray Data

cy5DataCol = find(strcmp(wt.ColumnNames,'F635 Median - B635'))
cy3DataCol = find(strcmp(wt.ColumnNames,'F532 Median - B532'))
cy5Data = pd.Data(:,cy5DataCol);
cy3Data = pd.Data(:,cy3DataCol);

MATLAB displays

cy5DataCol =
34

cy3DataCol =
35

2 A simple way to compare the two channels is with a loglog plot. The
function maloglog is used to do this. Points that are above the diagonal in
this plot correspond to genes that have higher expression levels in the A1
voxel than in the brain as a whole.

figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB displays the following messages and plots the images.

Warning: Zero values are ignored
(Type "warning off Bioinfo:MaloglogZeroValues" to suppress
this warning.)

Warning: Negative values are ignored.
(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress
this warning.)

3-17

3 Microarray Analysis

Notice that this function gives some warnings about negative and zero
elements. This is because some of the values in the 'F635 Median - B635'
and 'F532 Median - B532' columns are zero or even less than zero. Spots
where this happened might be bad spots or spots that failed to hybridize.
Points with positive, but very small, differences between foreground and
background should also be considered to be bad spots.

3 Disable the display of warnings by using the warning command. Although
warnings can be distracting, it is good practice to investigate why the
warnings occurred rather than simply to ignore them. There might be some
systematic reason why they are bad.

warnState = warning; % First save the current warning
state.

% Now turn off the two warnings.
warning('off','Bioinfo:MaloglogZeroValues');
warning('off','Bioinfo:MaloglogNegativeValues');
figure

3-18

Example: Visualizing Microarray Data

maloglog(cy5Data,cy3Data) % Create the loglog plot
warning(warnState); % Reset the warning state.
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB plots the image.

4 An alternative to simply ignoring or disabling the warnings is to remove
the bad spots from the data set. You can do this by finding points where
either the red or green channel has values less than or equal to a threshold
value. For example, use a threshold value of 10.

threshold = 10;
badPoints = (cy5Data <= threshold) | (cy3Data <= threshold);

3-19

3 Microarray Analysis

MATLAB plots the image.

5 You can then remove these points and redraw the loglog plot.

cy5Data(badPoints) = []; cy3Data(badPoints) = [];
figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-20

Example: Visualizing Microarray Data

MATLAB plots the image.

This plot shows the distribution of points but does not give any indication
about which genes correspond to which points.

6 Add gene labels to the plot. Because some of the data points have
been removed, the corresponding gene IDs must also be removed from
the data set before you can use them. The simplest way to do that is
wt.IDs(~badPoints).

maloglog(cy5Data,cy3Data,'labels',wt.IDs(~badPoints),
'factorlines',2)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-21

3 Microarray Analysis

MATLAB plots the image.

7 Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are
below the y = x line. In fact, most of the points are below this line. Ideally
the points should be evenly distributed on either side of this line.

8 Normalize the points to evenly distribute them on either side of the line.
Use the function mameannorm to perform global mean normalization.

normcy5 = mameannorm(cy5Data);
normcy3 = mameannorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly
distributed about the y = x line.

3-22

Example: Visualizing Microarray Data

figure
maloglog(normcy5,normcy3,'labels',wt.IDs(~badPoints),

'factorlines',2)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

MATLAB plots the image.

9 The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function
maloglog.

figure
mairplot(normcy5,normcy3,'labels',wt.IDs(~badPoints),

'factorlines',2)

3-23

3 Microarray Analysis

MATLAB plots the image.

10 You can click the points in this plot to see the name of the gene associated
with the plot.

3-24

Example: Analyzing Gene Expression Profiles

Example: Analyzing Gene Expression Profiles
This example demonstrates a number of ways to look for patterns in gene
expression profiles.

• “Exploring the Data Set” on page 3-25

• “Filtering Genes” on page 3-29

• “Clustering Genes” on page 3-32

• “Principal Component Analysis” on page 3-36

Overview of the Yeast Example
The microarray data for this example is from DeRisi, JL, Iyer, VR, and Brown,
PO.; "Exploring the metabolic and genetic control of gene expression on a
genomic scale"; Science, 1997, Oct 24;278(5338):680-6, PMID: 9381177.

The authors used DNA microarrays to study temporal gene expression of
almost all genes in Saccharomyces cerevisiae during the metabolic shift from
fermentation to respiration. Expression levels were measured at seven time
points during the diauxic shift. The full data set can be downloaded from the
Gene Expression Omnibus Web site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

Exploring the Data Set

The data for this procedure is available in the MAT-file yeastdata.mat.
This file contains the VALUE data or LOG_RAT2N_MEAN, or log2 of ratio
of CH2DN_MEAN and CH1DN_MEAN from the seven time steps in the
experiment, the names of the genes, and an array of the times at which the
expression levels were measured.

1 Load data into MATLAB.

load yeastdata.mat

2 Get the size of the data by typing

numel(genes)

3-25

3 Microarray Analysis

MATLAB displays the number of genes in the data set. The MATLAB
variable genes is a cell array of the gene names.

ans =
6400

3 Access the entries using MATLAB cell array indexing.

genes{15}

MATLAB displays the 15th row of the variable yeastvalues, which
contains expression levels for the open reading frame (ORF) YAL054C.

ans =
YAL054C

4 Use the function web to access information about this ORF in the
Saccharomyces Genome Database (SGD).

url = sprintf(...
'http://genome-www4.stanford.edu/cgi-bin/SGD/
locus.pl?locus=%s',...

genes{15});
web(url);

5 A simple plot can be used to show the expression profile for this ORF.

plot(times, yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Log2 Relative Expression Level');

3-26

Example: Analyzing Gene Expression Profiles

MATLAB plots the figure. The values are log2 ratios.

6 Plot the actual values.

plot(times, 2.^yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Relative Expression Level');

3-27

3 Microarray Analysis

MATLAB plots the figure. The gene associated with this ORF, ACS1,
appears to be strongly up-regulated during the diauxic shift.

7 Compare other genes by plotting multiple lines on the same figure.

hold on
plot(times, 2.^yeastvalues(16:26,:)')
xlabel('Time (Hours)');
ylabel('Relative Expression Level');
title('Profile Expression Levels');

3-28

Example: Analyzing Gene Expression Profiles

MATLAB plots the image.

Filtering Genes
The data set is quite large and a lot of the information corresponds to genes
that do not show any interesting changes during the experiment. To make
it easier to find the interesting genes, reduce the size of the data set by
removing genes with expression profiles that do not show anything of interest.
There are 6400 expression profiles. You can use a number of techniques to
reduce the number of expression profiles to some subset that contains the
most significant genes.

1 If you look through the gene list you will see several spots marked as
'EMPTY'. These are empty spots on the array, and while they might have
data associated with them, for the purposes of this example, you can
consider these points to be noise. These points can be found using the
strcmp function and removed from the data set with indexing commands..

3-29

3 Microarray Analysis

emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
numel(genes)

MATLAB displays

ans =
6314

In the yeastvalues data you will also see several places where the
expression level is marked as NaN. This indicates that no data was collected
for this spot at the particular time step. One approach to dealing with
these missing values would be to impute them using the mean or median of
data for the particular gene over time. This example uses a less rigorous
approach of simply throwing away the data for any genes where one or
more expression levels were not measured.

2 Use function isnan to identify the genes with missing data and then use
indexing commands to remove the genes.

nanIndices = any(isnan(yeastvalues),2);
yeastvalues(nanIndices,:) = [];
genes(nanIndices) = [];
numel(genes)

MATLAB displays

ans =
6276

If you were to plot the expression profiles of all the remaining profiles, you
would see that most profiles are flat and not significantly different from
the others. This flat data is obviously of use as it indicates that the genes
associated with these profiles are not significantly affected by the diauxic
shift. However, in this example, you are interested in the genes with large
changes in expression accompanying the diauxic shift. You can use filtering
functions in the Bioinformatics Toolbox to remove genes with various types
of profiles that do not provide useful information about genes affected by
the metabolic change.

3-30

Example: Analyzing Gene Expression Profiles

3 Use the function genevarfilter to filter out genes with small variance
over time. The function returns a logical array of the same size as the
variable genes with ones corresponding to rows of yeastvalues with
variance greater than the 10th percentile and zeros corresponding to those
below the threshold.

mask = genevarfilter(yeastvalues);
% Use the mask as an index into the values to remove the
% filtered genes.
yeastvalues = yeastvalues(mask,:);
genes = genes(mask);
numel(genes)

MATLAB displays

ans =
5648

4 The function genelowvalfilter removes genes that have very low
absolute expression values. Note that the gene filter functions can also
automatically calculate the filtered data and names.

[mask, yeastvalues, genes] = genelowvalfilter(yeastvalues,genes,
'absval',log2(4));

numel(genes)

MATLAB displays

ans =
423

5 Use the function geneentropyfilter to remove genes whose profiles have
low entropy:

[mask, yeastvalues, genes] = geneentropyfilter(yeastvalues,genes,...
'prctile',15);

numel(genes)

MATLAB displays

ans = 310

3-31

3 Microarray Analysis

Clustering Genes
Now that you have a manageable list of genes, you can look for relationships
between the profiles using some different clustering techniques from the
Statistics Toolbox.

1 For hierarchical clustering, the function pdist calculates the pairwise
distances between profiles, and the function linkage creates the
hierarchical cluster tree.

corrDist = pdist(yeastvalues, 'corr');
clusterTree = linkage(corrDist, 'average');

2 The function cluster calculates the clusters based on either a cutoff
distance or a maximum number of clusters. In this case, the 'maxclust'
option is used to identify 16 distinct clusters.

clusters = cluster(clusterTree, 'maxclust', 16);

3 The profiles of the genes in these clusters can be plotted together using a
simple loop and the function subplot.

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((clusters == c),:)');
axis tight

end
suptitle('Hierarchical Clustering of Profiles');

MATLAB plots the images.

3-32

Example: Analyzing Gene Expression Profiles

4 The Statistics Toolbox also has a K-means clustering function. Again,
sixteen clusters are found, but because the algorithm is different these are
not necessarily the same clusters as those found by hierarchical clustering.

[cidx, ctrs] = kmeans(yeastvalues, 16,
'dist','corr',
'rep',5,
'disp','final');

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((cidx == c),:)');
axis tight

end
suptitle('K-Means Clustering of Profiles');

3-33

3 Microarray Analysis

MATLAB displays

13 iterations, total sum of distances = 11.4042
14 iterations, total sum of distances = 8.62674
26 iterations, total sum of distances = 8.86066
22 iterations, total sum of distances = 9.77676
26 iterations, total sum of distances = 9.01035

5 Instead of plotting all of the profiles, you can plot just the centroids.

figure
for c = 1:16

subplot(4,4,c);
plot(times,ctrs(c,:)');
axis tight
axis off % turn off the axis

end
suptitle('K-Means Clustering of Profiles');

3-34

Example: Analyzing Gene Expression Profiles

MATLAB plots the figure.

6 You can use the function clustergram to create a heat map and dendrogram
from the output of the hierarchical clustering.

figure
clustergram(yeastvalues(:,2:end),'RowLabels',genes,...

'ColumnLabels',times(2:end))

3-35

3 Microarray Analysis

MATLAB plots the figure.

Principal Component Analysis
Principal-component analysis(PCA) is a useful technique you can use to
reduce the dimensionality of large data sets, such as those from microarray
analysis. PCA can also be used to find signals in noisy data.

1 You can use the The function princomp in the Statistics Toolbox to calculate
the principal components of a data set.

[pc, zscores, pcvars] = princomp(yeastvalues)

MATLAB displays

pc =

Columns 1 through 4

3-36

Example: Analyzing Gene Expression Profiles

-0.0245 -0.3033 -0.1710 -0.2831
0.0186 -0.5309 -0.3843 -0.5419
0.0713 -0.1970 0.2493 0.4042
0.2254 -0.2941 0.1667 0.1705
0.2950 -0.6422 0.1415 0.3358
0.6596 0.1788 0.5155 -0.5032
0.6490 0.2377 -0.6689 0.2601

Columns 5 through 7

-0.1155 0.4034 0.7887
-0.2384 -0.2903 -0.3679
-0.7452 -0.3657 0.2035
-0.2385 0.7520 -0.4283
0.5592 -0.2110 0.1032
-0.0194 -0.0961 0.0667
-0.0673 -0.0039 0.0521

2 You can use the function cumsum to see the cumulative sum of the variances.

cumsum(pcvars./sum(pcvars) * 100)

MATLAB displays

ans =
78.3719
89.2140
93.4357
96.0831
98.3283
99.3203

100.0000

This shows that almost 90% of the variance is accounted for by the first
two principal components.

3 A scatter plot of the scores of the first two principal components shows that
there are two distinct regions. This is not unexpected, because the filtering
process removed many of the genes with low variance or low information.
These genes would have appeared in the middle of the scatter plot.

3-37

3 Microarray Analysis

figure
scatter(zscores(:,1),zscores(:,2));
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot');

MATLAB plots the figure.

4 The function gname from the Statistics Toolbox can be used to identify
genes on a scatter plot. You can select as many points as you like on the
scatter plot.

gname(genes);

When you have finished selecting points, press Enter.

3-38

Example: Analyzing Gene Expression Profiles

5 An alternative way to create a scatter plot is with the function gscatter
from the Statistics Toolbox. gscatter creates a grouped scatter plot where
points from each group have a different color or marker. You can use
clusterdata, or any other clustering function, to group the points.

figure
pcclusters = clusterdata(zscores(:,1:2),6);
gscatter(zscores(:,1),zscores(:,2),pcclusters)
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot with Colored Clusters');
gname(genes) % Press enter when you finish selecting genes.

MATLAB plots the figure.

3-39

3 Microarray Analysis

3-40

4

Phylogenetic Analysis

Phylogenetic analysis is the process you use to determine the evolutionary
relationships between organisms. The results of an analysis can be drawn
in a hierarchical diagram called a cladogram or phylogram (phylogenetic
tree). The branches in a tree are based on the hypothesized evolutionary
relationships (phylogeny) between organisms. Each member in a branch, also
known as a monophyletic group, is assumed to be descended from a common
ancestor. Originally, phylogenetic trees were created using morphology, but
now, determining evolutionary relationships includes matching patterns in
nucleic acid and protein sequences.

“Example: Building a Phylogenetic
Tree” (p. 4-2)

Using data from mitochondrial
D-loop sequences, create a
phylogenetic tree for a family
of primates.

“Phylogenetic Tree Tool Reference”
(p. 4-14)

Description of menu commands and
features for creating publishable
tree figures.

4 Phylogenetic Analysis

Example: Building a Phylogenetic Tree
In this example, a phylogenetic tree is constructed from mitochondrial DNA
(mtDNA) sequences for the family Hominidae. This family includes gorillas,
chimpanzees, orangutans, and humans.

The following procedures demonstrate the phylogenetic analysis features in
the Bioinformatics Toolbox. They are not intended to teach the process of
phylogenetic analysis, but to show you how to use MathWorks products to
create a phylogenetic tree from a set of nonaligned nucleotide sequences.

• “Overview for the Primate Example” on page 4-2 — Describes the biological
background for this example.

• “Creating a Phylogenetic Tree for Five Species” on page 4-6 — Use the
Jukes-Cantor method to calculate distances between sequences, and the
Unweighted Pair Group Method Average (UPGMA) method for linking
the tree nodes.

• “Creating a Phylogenetic Tree for Twelve Species” on page 4-8 — Add
additional organisms to confirm the observed monophyletic groups.

• “Exploring the Phylogenetic Tree” on page 4-10 — Use the MATLAB
command-line interface to programmatically determine characteristics in
a phylogenetic tree.

For information on how to create a phylogenetic tree with multiply aligned
sequences, see the function —phytree.

Overview for the Primate Example
The origin of modern humans is a heavily debated issue that scientists have
recently tackled by using mitochondrial DNA (mtDNA) sequences. One
hypothesis explains the limited genetic variation of human mtDNA in terms
of a recent common genetic ancestry, implying that all modern population
mtDNA originated from a single woman who lived in Africa less than 200,000
years ago.

4-2

Example: Building a Phylogenetic Tree

Why use mitochondrial DNA sequences for phylogenetic
study?
Mitochondrial DNA sequences, like the Y chromosome, do not recombine
and are inherited from the maternal parent. This lack of recombination
allows sequences to be traced through one genetic line and all polymorphisms
assumed to be caused by mutations.

Mitochondrial DNA in mammals has a faster mutation rate than nuclear
DNA sequences. This faster rate of mutation produces more variance between
sequences and is an advantage when studying closely related species. The
mitochondrial control region (Displacement or D-loop) is one of the fastest
mutating sequence regions in animal DNA.

Neanderthal DNA
The ability to isolate mitochondrial DNA (mtDNA) from palaeontological
samples has allowed genetic comparisons between extinct species and closely
related nonextinct species. The reasons for isolating mtDNA instead of
nuclear DNA in fossil samples have to do with the fact that

• mtDNA, because it is circular, is more stable and degrades slower then
nuclear DNA.

• Each cell can contain a thousand copies of mtDNA and only a single copy
of nuclear DNA.

While there is still controversy as to whether Neanderthals are direct
ancestors of humans or evolved independently, the use of ancient genetic
sequences in phylogenetic analysis adds an interesting dimension to the
question of human ancestry.

References
Ovchinnikov, I., et al., 2000. "Molecular analysis of Neanderthal DNA from
the northern Caucasus," Nature 404(6777), pp 490-493.

Sajantila, A., et al., 1995. "Genes and languages in Europe: an analysis of
mitochondrial lineages," Genome Res. 5 (1), pp. 42-52 (1995).

Krings, M., et al., 1997. "Neanderthal DNA sequences and the origin of
modern humans," Cell 90 (1), pp. 19-30.

4-3

4 Phylogenetic Analysis

Jensen-Seaman, M., and K. Kidd, 2001. "Mitochondrial DNA variation and
biogeography of eastern gorillas," Mol. Ecol. 10(9), pp. 2241-2247.

Searching NCBI for Phylogenetic Data
The NCBI taxonomy Web site includes phylogenetic and taxonomic
information from many sources. These sources include the published
literature, Web databases, and taxonomy experts. And while the NCBI
taxonomy database is not a phylogenetic or taxonomic authority, it can be
useful as a gateway to the NCBI biological sequence databases.

This procedure uses the family Hominidae (orangutans, chimpanzees,
gorillas, and humans) as a taxonomy example for searching the NCBI Web
site and locating mitochondrial D-loop sequences.

1 Use the MATLAB Help browser to search for data on the Web. In the
MATLAB Command Window, type

web('http://www.ncbi.nlm.nih.gov')

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human taxonomy, from the Search list, select Taxonomy, and in the for
box, enter hominidae.

The NCBI Web search returns a list of links to relevant pages.

4-4

Example: Building a Phylogenetic Tree

3 Select the taxonomy link for the family Hominidae. A page with the
taxonomy for the family is shown.

4-5

4 Phylogenetic Analysis

Creating a Phylogenetic Tree for Five Species
Drawing a phylogenetic tree using sequence data is helpful when you are
trying to visualize the evolutionary relationships between species. The
sequences can be multiply aligned or a set of nonaligned sequences, you can
select a method for calculating pairwise distances between sequences, and
you can select a method for calculating the hierarchical clustering distances
used to build a tree.

4-6

Example: Building a Phylogenetic Tree

After locating the GenBank accession codes for the sequences you are
interested in studying, you can create a phylogenetic tree with the data. For
information on locating accession codes, see “Searching NCBI for Phylogenetic
Data” on page 4-4.

1 Create a MATLAB structure with information about the sequences. This
step uses the accession codes for the mitochondrial D-loop sequences
isolated from different hominid species.

data = {'German_Neanderthal' 'AF011222';
'Russian_Neanderthal' 'AF254446';
'European_Human' 'X90314' ;
'Mountain_Gorilla_Rwanda' 'AF089820';
'Chimp_Troglodytes' 'AF176766';
};

2 Get sequence data from the GenBank database and copy into MATLAB.

for ind = 1:5
seqs(ind).Header = data{ind,1};
seqs(ind).Sequence = getgenbank(data{ind,2},

'sequenceonly', true);
end

3 Calculate pairwise distances and create a phytree object. For example,
compute the pairwise distances using the Jukes-Cantor distance method
and build a phylogenetic tree using the UPGMA linkage method. Since
the sequences are not prealigned, seqpdist pairwise aligns them before
computing the distances.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alphabet','DNA');
tree = seqlinkage(distances,'UPGMA',seqs)

MATLAB displays information about the phytree object. The function
seqpdist calculates the pairwise distances between pairs of sequences
while the function seqlinkage uses the distances to build a hierarchical
cluster tree. First, the most similar sequences are grouped together, and
then sequences are added to the tree in decending order of similarity.

Phylogenetic tree object with 5 leaves (4 branches)

4-7

4 Phylogenetic Analysis

4 Draw a phylogenetic tree.

h = plot(tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-45)

MATLAB draws a phylogenetic tree in a figure window. In the figure
below, the hypothesized evolutionary relationships between the species. is
shown by the location of species on the branches shows the The horizontal
distances do not have any biological significance.

Creating a Phylogenetic Tree for Twelve Species
Plotting a simple phylogenetic tree for five species seems to indicate a number
of monophyletic groups(see “Creating a Phylogenetic Tree for Five Species” on

4-8

Example: Building a Phylogenetic Tree

page 4-6). After a preliminary analysis with five species, you can add more
species to your phylogenetic tree. Adding more species to the data set will
help you to confirm the groups are valid.

1 Add more sequences to a MATLAB structure. For example, add mtDNA
D-loop sequences for other hominid species.

data2 = {'Puti_Orangutan' 'AF451972';
'Jari_Orangutan' 'AF451964';
'Western_Lowland_Gorilla' 'AY079510';
'Eastern_Lowland_Gorilla' 'AF050738';
'Chimp_Schweinfurthii' 'AF176722';
'Chimp_Vellerosus' 'AF315498';
'Chimp_Verus' 'AF176731';

};

2 Get additional sequence data from the GenBank database, and copy the
data into the next indices of a MATALB structure.

for ind = 1:7
seqs(ind+5).Header = data2{ind,1};
seqs(ind+5).Sequence = getgenbank(data2{ind,2},

'sequenceonly', true);
end

3 Calculate pairwise distances and the hierarchical linkage.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alpha','DNA');
tree = seqlinkage(distances,'UPGMA',seqs);

4 Draw a phylogenetic tree.

h = plot(tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-45)

MATLAB draws a phylogenetic tree in a figure window. You can see four
main clades for humans, gorillas, chimpanzee, and orangutans.

4-9

4 Phylogenetic Analysis

Exploring the Phylogenetic Tree
After you create a phylogenetic tree, you can explore the tree using the
MATLAB command line or the phytreetool GUI. This procedure uses the
tree created in “Creating a Phylogenetic Tree for Twelve Species” on page
4-8 as an example.

1 List the members of a tree.

names = get(tree,'LeafNames')

From the list, you can determine the indices for its members. For example,
the European Human leaf is the third entry.

names =

4-10

Example: Building a Phylogenetic Tree

'German_Neanderthal'
'Russian_Neanderthal'
'European_Human'
'Chimp_Troglodytes'
'Chimp_Schweinfurthii'
'Chimp_Verus'
'Chimp_Vellerosus'
'Puti_Orangutan'
'Jari_Orangutan'
'Mountain_Gorilla_Rwanda'
'Eastern_Lowland_Gorilla'
'Western_Lowland_Gorilla'

2 Find the closest species to a selected specie in a tree. For example, find the
species closest to the European human.

[h_all,h_leaves] = select(tree,'reference',3,
'criteria','distance',
'threshold',0.6);

h_all is a list of indices for the nodes within a patristic distance of 0.6 to
the European human leaf, while h_leaves is a list of indices for only the
leaf nodes within the same patristic distance.

A patristic distance is the path length between species calculated from
the hierarchical clustering distances. The path distance is not necessarily
the biological distance.

3 List the names of the closest species.

subtree_names = names(h_leaves)

MATLAB prints a list of species with a patristic distance to the European
human less than the specified distance. In this case, the patristic distance
threshold is less than 0.6.

subtree_names =

'German_Neanderthal'
'Russian_Neanderthal'
'European_Human'
'Chimp_Schweinfurthii'

4-11

4 Phylogenetic Analysis

'Chimp_Verus'
'Chimp_Troglodytes'

4 Extract a subtree from the whole tree by removing unwanted leaves. For
example, prune the tree to species within 0.6 of the European human specie.

leaves_to_prune = ~h_leaves;
pruned_tree = prune(tree,leaves_to_prune)
h = plot(pruned_tree,'orient','bottom');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',-30)

MATLAB returns information about the new subtree and plots the pruned
phylogenetic tree in a figure window.

Phylogenetic tree object with 6 leaves (5 branches)

5 Explore, edit, and format a phylogenetic tree using an interactive GUI.

phytreetool(pruned_tree)

MATLAB opens the Phylogenetic Tree Tool window and draws the tree.

4-12

Example: Building a Phylogenetic Tree

You can interactively change the appearance of the tree within the tool
window. For information on using this GUI, see “Phylogenetic Tree Tool
Reference” on page 4-14.

4-13

4 Phylogenetic Analysis

Phylogenetic Tree Tool Reference
The Phylogenetic Tree Tool is an interactive graphical user interface (GUI)
that allows you to view, edit, format, and explore phylogenetic tree data. With
this GUI you can prune, reorder, rename branches, and explore distances.
You can also open or save Newick formatted files.

• “Opening the Phytreetool GUI” on page 4-14 — Draw a phylogenetic tree
from data in a phytree object or a previously saved file.

• “File Menu” on page 4-16 — Open tree data from a Newick formatted
file, copy data to a MATLAB figure window, another tool window, or the
MATLAB workspace, and save tree data.

• “Tools Menu” on page 4-24 — Explore branch paths, rename and edit branch
and leaf names, hide selected branches and leaves, and rotate branches.

• “Windows Menu” on page 4-32 — Switch to any open window.

• “Help Menu” on page 4-32 — Select quick links to the Bioinformatics
Toolbox documentation for phylogenetic analysis functions, tutorials, and
the phytreetool reference.

Opening the Phytreetool GUI
The Phylogenetic Tree Tool can read data from Newick and ClustalW tree
formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002.tree
as an example. The data was retrieved from the protein family (PFAM) Web
database and saved to a file using the accession number PF00002 and the
function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree
data in the file pf00002.tree, type

tr= phytreeread('pf00002.tree')

MATLAB creates a phytree object.

Phylogenetic tree object with 37 leaves (36 branches)

2 Open the Phylogenetic Tree Tool and draw a phylogenetic tree.

4-14

Phylogenetic Tree Tool Reference

phytreetool(tr)

The Phylogenetic Tree Tool window opens.

Alternatively, if you do not have to give the phytreetool function and
argument, the Select Phylogenetic Tree dialog opens. Select a Newick
formatted file and then click Open.

3 Select a command from the menu or toolbar.

4-15

4 Phylogenetic Analysis

File Menu
The File menu includes the standard
commands for opening and closing a
file, and it includes commands to use
phytree object data from the MATLAB
workspace.The File menu commands
are shown below.

New Tool Command
Use the New Tool command to open tree data from a file into a second
Phylogenetic Tree Tool window.

1 From the File menu, click New Tool.

The Select Phylogenetic Tree File dialog opens.

2 Select a directory and select a file with the extension .tree, and then
click Open. The Bioinformatics Toolbox uses the file extension .tree for
Newick formatted files, but you can use any Newick formatted file with
any extension.

4-16

Phylogenetic Tree Tool Reference

MATLAB opens a second Phylogenetic Tree Tool window with tree data
from the selected file.

Open Command
Use the Open command to read tree data from a Newick formatted file and
display that data in a Phylogenetic Tree Tool.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick formatted file, and then click Open. The
Bioinformatics Toolbox uses the file extension .tree for Newick formatted
files, but you can use any Newick formatted file with any extension.

MATLAB replaces the current tree data with data from the selected file.

Open from Workspace Command
Use the Open from Workspace command to read tree data from a phytree
object in the MATLAB workspace and display that data in a Phylogenetic
Tree Tool.

1 From the File menu, click Open from Workspace.

The Get Phytree Object dialog box opens.

4-17

4 Phylogenetic Analysis

2 From the list, select a phytree object in the MATLAB workspace.

3 Click the Import button.

MATLAB replaces the current tree data in the Phylogenetic Tree Tool with
data from the selected object.

Save Command
After you create a phytree object or prune a tree from existing data, you can
save the resulting tree in a Newick formatted file. The sequence data used to
create the phytree object is not saved with the tree.

1 From the File menu, click Save.

The Save Phylogenetic tree as dialog box opens.

2 In the Filename box, enter the name of a file. The Bioinformatics Toolbox
uses the file extension .tree for Newick formatted files, but you can use
file extension.

3 Click Save.

phytreetool saves tree data without the deleted branches, and it saves
changes to branch and leaf names. Formatting changes such as branch
rotations, collapsed branches, and zoom settings are not saved in the file.

4-18

Phylogenetic Tree Tool Reference

Publish to Figure Command
After you have explored the relationships between branches and leaves in
your tree, you can copy the tree to a MATLAB figure window. Using a figure
window allows you to use all the MATLAB features for annotating, changing
font characteristics, and getting your figure ready for publication. Also, from
the figure window, you can save an image of the tree as it was displayed in
the Phylogenetic Tree Tool window.

1 From the File menu, point to Publish to Figure, and then click either
With Hidden Nodes or Only Displayed.

The Publish Phylogenetic Tree to Figure dialog box opens.

2 Select one of the Rendering Types, and then select the Display Labels you
want on your figure.

• Dendrogram (square branches)

4-19

4 Phylogenetic Analysis

• Cladogram (angular branches)

• Radial Tree

3 Select the Display Labels you want on your figure. You can select from all
to none of the options.

• Branch Nodes — Display branch node names on the figure.

• Leaf Nodes — Display leaf node names on the figure.

4-20

Phylogenetic Tree Tool Reference

• Terminal Nodes — Display terminal node names on the right border.

4 Click the Publish button.

A new figure window opens with the characteristics you selected.

Export to New Tool Command
Because some of the Phylogenetic Tree Tool commands cannot be undone (for
example, the Prune command), you might want to make a copy of your tree
before trying a command. At other times, you might want to compare two
views of the same tree, and copying a tree to a new tool window allows you to
make changes to both tree views independently .

1 From the File menu, point to the Export to New Tool submenu, and then
click either With Hidden Nodes or Only Displayed.

A new Phylogenetic Tree Tool window opens with a copy of the tree.

2 Use the new figure to continue your analysis.

Export to Workspace Command
The Phylogenetic Tree Tool can open Newick formatted files with tree data.
However, it does not create a phytree object in the MATLAB workspace. If
you want to programmatically explore phylogenetic trees, you need to use
the Export to Workspace command.

1 From the File menu, point to Export to Workspace, and then click either
With Hidden Nodes or Only Displayed.

The Export to Workspace dialog box opens.

2 In the MATLAB variable name box, enter the name for your phylogenetic
tree data.

4-21

4 Phylogenetic Analysis

3 Click OK.

MATLAB creates an object in the MATLAB workspace with type phytree.

Page Setup Command
When you print from the Phylogenetic Tree Tool or a MATLAB figure window
(with a tree published from the tool), you can specify setup options for
printing a tree.

1 From the File menu, click Page Setup.

The Page Setup - Phylogenetic Tree Tool dialog box opens. This is the
same dialog box MATLAB uses to select page formatting options.

2 Select the page formatting options and values you want, and then click OK.

Print Setup Command
Use the Print Setup command with the Page Setup command to print a
MATLAB figure window.

4-22

Phylogenetic Tree Tool Reference

1 From the File menu, click Print Setup.

The Print Setup dialog box opens.

2 Select the printer and options you want, and then click OK.

Print Preview Command
Use the Print Preview command to check the formatting options you
selected with the Page Setup commend.

1 From the File menu, click Print Preview.

A window opens with a picture of your figure with the selected formatting
options.

2 Click Print or Close.

Print
Use the Print command to make a copy of your phylogenetic tree after you
use the Page Setup command to select formatting options.

4-23

4 Phylogenetic Analysis

1 From the File menu, click Print.

The Print dialog box opens.

2 From the Name list, select a printer, and then click OK.

Tools Menu
The Tools menu and toolbar are where
you will find most of the commands
specific to trees and phylogenetic
analysis. Use these commands and modes
to interactively edit and format your tree.
The Tools menu commands are shown
below.

Inspect Mode Command
Use the inspect mode to compare path distances between sequences and to
search for related sequences that might not be physically drawn close together.

1 From the Tools menu, click Inspect, or from the toolbar, click the Inspect

Tool mode icon .

The Phylogenetic Tree Tool is set to inspect mode.

2 Point to a branch or leaf node.

4-24

Phylogenetic Tree Tool Reference

A pop-up window opens with information about the patristic distances to
parent and root nodes.

3 Click a branch or leaf node, and then move your mouse over another leaf
node.

The tool highlights the path between nodes and displays the path length in
the pop-up window . The path length is the patristic distances calculated
by seqlinkage.

Collapse/Expand Branch Mode Command
Some trees can have thousands of leaf and branch nodes. Displaying all the
nodes can create a tree diagram that is unreadable. By collapsing some of the
branches, you can better see the relationships between the remaining nodes.

1 From the Tools menu, click Collapse/Expand, or from the toolbar, click

the Collapse/Expand node icon .

The Phylogenetic Tree Tool is set to collapse/expand mode.

2 Point to a branch.

The selected paths to collapse (remove from view) are highlighted in gray.

4-25

4 Phylogenetic Analysis

3 Click the branch node.

The tool removes the display of branch and leaf nodes below the selected
branch. The data is not removed.

4 To expand a branch, point to a collapsed branch and click.

Rotate Branch Mode Command
A phylogenetic tree is initially created by pairing the two most similar
sequences and then adding the remaining sequences in a decreasing order
of similarity. You might want to rotate branches to emphasize the direction
of evolution.

1 From the Tools menu, click Rotate Branch, or from the toolbar, click

the Rotate Branch mode icon .

The Phylogenetic Tree Tool is set to rotate branch mode.

2 Point to a branch node.

3 Click the branch node.

4-26

Phylogenetic Tree Tool Reference

The branch and leaf nodes are rotated 180 degrees around the selected
branch node.

Rename Leaf/Branch Mode Command
The Phylogenetic Tree Tool takes the node names from the phytree object and
creates numbered branch names starting with Branch 1. You can edit and
change or replace any of the leaf or branch names. Changes to branch and
leaf names are saved when you use the Save command.

1 From the Tools menu, click Rename, or from the toolbar, click the Rename

mode icon .

2 Click a branch or leaf node.

A text box opens with the current name of the node.

3 In the text box, edit or enter an new name.

4 To save your changes, click outside of text box.

4-27

4 Phylogenetic Analysis

Prune (delete) Leaf/Branch Mode Command
Your tree might contain leaves that are far outside the phylogeny, or it might
have duplicate leaves that you want to remove.

1 From the Tools menu, click Prune, or from the toolbar, click the prune

icon .

The Phylogenetic Tree Tool is set to rename mode.

2 Point to a branch or leaf node.

For leaf node, the branch line connected to the leaf is highlighted in gray.
For a branch nodes, the branch lines below the node are highlighted in
light gray.

Note If you delete nodes (branches or leaves), you cannot undo the
changes. The Phylogenetic Tree Tool does not have an Undo command.

3 Click the branch or leaf node.

The branch is removed from the figure and the other nodes are rearranged
to balance the tree structure. The phylogeny is not recalculated.

Zoom In, Zoom Out, and Pan Commands
The Zoom and Pan commands are the standard controls with MATLAB figures
for resizing and moving the screen.

1 From the Tools menu, click Zoom In, or from the toolbar click the zoom

in icon .

4-28

Phylogenetic Tree Tool Reference

The tool activates zoom n mode and changes the cursor to a magnifying
glass.

2 Place the cursor over the section of the tree diagram you want to enlarge
and then click.

The tree diagram is enlarged to twice its size.

3 From the toolbar click the Pan icon .

4 Move the cursor over the tree diagram, left-click, and drag the diagram to
the location you want to view.

Zoom In , Zoom Out , Pan

Threshold Collapse Command
Use the Threshold Collapse command to collapse the display of nodes
using a distance criterion instead of interactively selecting nodes with the
Collapse/Expand command. Branches with distances below the threshold
are collapsed from the display.

1 From the Tools menu, click Threshold Collapse, and select one of the
following:

4-29

4 Phylogenetic Analysis

• Distance to Leaves — Sets the threshold starting from the right of
the tree.

• Distance to Root — Sets the threshold starting from the root node
at the left side of the tree.

The collapse slider bar is displayed at the top of the diagram.

2 Click and drag the slider bar to the left to set the distance threshold.

3 Click the OK button to the right of the slider. The nodes below the distance
threshold are hidden.

4-30

Phylogenetic Tree Tool Reference

Expand All Command
The data for branches and leaves you hide with the Collapse/Expand or
Threshold Collapse commands is not removed from the tree. You can
display the hidden data using these commands or display all hidden data with
the Expand All command.

1 From the Tool menu, click Expand All. The hidden branches and leaves
are displayed.

Find Leaf/Branch Command
Phylogenetic trees can have thousands of leaves and branches, and finding a
specific node can be difficult. Use the Find command to locate a node using
its name or part of its name.

1 From the Tools menu, click Find Leaf/Branch.

The Find Leaf/Branch dialog opens.

2 In the Regular Expression to match box, enter a name or partial name
of a branch or leaf.

3 Click OK.

4-31

4 Phylogenetic Analysis

Fit to Window
After you hide nodes with the Collapse/Expand or Threshold Collapse
commands, or delete nodes with the Prune command, there might be extra
space in the tree diagram. Use the Fit to Window command to redraw the
tree diagram to fill the entire figure window.

1 From the Tools menu, click Fit to Window.

Reset View Command
Use the Reset Window command to remove formatting changes such as
rotations, collapsed branches, and zooms.

1 From the Tools menu, click Reset Window.

Options Submenu
Use the Options command to select the behavior for the zoom and pan modes.

• Unconstrained Zoom — Allow zooming in both horizontal and vertical
directions.

• Horizontal Zoom — Restrict zoom to the horizontal direction.

• Vertical Zoom — Zoom only in the vertical direction (default).

• Unconstrained Pan — Allow panning in both horizontal and vertical
directions.

• Horizontal Pan — Restrict panning to horizontal direction.

• Vertical Pan — Pan only in the vertical direction (default).

Windows Menu
The Windows menu is standard on MATLAB GUI and figure windows. Use
this menu to select any opened window.

Help Menu
Use the Help menu to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the
phytreetool reference.

4-32

5

Functions – Categorical List

This chapter is a reference for the functions in the Bioinformatics Toolbox.
Functions are grouped into the following categories.

“Data Formats and Databases” on page
5-2

“Sequence Conversion” on page 5-4

“Sequence Statistics” on page 5-5

“Sequence Utilities” on page 5-6

“Pairwise Sequence Alignment” on page
5-7

“Profile Hidden Markov Models” on page
5-10

“Scoring Matrices” on page 5-14

“Trace Tools” on page 5-9

“Microarray File Formats” on page 5-11

“Microarray Visualization” on page 5-12

“Microarray Normalization and Filtering”
on page 5-13

“Protein Analysis” on page 5-8

“Phylogenetic Tree Tools” on page 5-15

“Phylogenetic Tree Methods” on page 5-16

“Tutorials, Demos, and Examples” on
page 5-17

5 Functions – Categorical List

Data Formats and Databases
Use these functions to get data from Web data bases into MATLAB, and read
and write to files within MATLAB using specific data formats.

blastread Read an BLAST report from a file

emblread Read data from an EMBL file

fastaread Read data from a FASTA formatted
file

fastawrite Write to a file using a FASTA format

galread Read microarray data from a
GenePix array list file

genbankread Read data from a GenBank file

genpeptread Read data from a GenPept file

geosoftread Read data from a Gene Expression
Omnibus (GEO) SOFT file

getblast Get BLAST report from NCBI web
site

getembl Retrieve sequence information from
the EMBL database

getgenbank Retrieve sequence information from
the GenBank database

getgenpept Retrieve sequence information from
the GenPept database

getgeodata Get Gene Expression Omnibus
(GEO) data

gethmmalignment Retrieve multiple aligned sequences
from the PFAM database

gethmmprof Retrieve profile hidden Markov
models from the PFAM database

gethmmtree Get phylogenetic tree data from
PFAM database

5-2

Data Formats and Databases

getpdb Retrieve protein structure
information from the PDB database

getpir Retrieve sequence data from the
PIR-PSD database

gprread Read microarray data from a
GenePix Results (GPR) file

imageneread Read microarray data from an
ImaGene Results file

multialignread Read a multiple sequence alignment
file

pdbread Read data from a Protein Data Bank
(PDB) file

pfamhmmread Read data from a PFAM-HMM file

phytreeread Read phylogenetic tree files

pirread Read data from a PIR file

scfread Read trace data from a SCF file

sptread Read data from a SPOT file

5-3

5 Functions – Categorical List

Sequence Conversion
Convert nucleotide and amino acid sequences.

aa2int Convert an amino acid sequence from
a letter to an integer representation

aa2nt Convert an amino acid sequence to a
nucleotide sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

baselookup Display nucleotide codes, integers,
names, and abbreviations

dna2rna Convert a DNA sequence to an RNA
sequence

int2aa Convert an amino acid sequence from
an integer to a letter representation

int2nt Convert a nucleotide sequence from
an integer to a letter representation

nt2aa Convert a sequence of nucleotides to
a sequence of amino acids

nt2int Convert a nucleotide sequence from
a letter to an integer representation

rna2dna Convert an RNA sequence of
nucleotides to a DNA sequence

seq2regexp Convert a sequence with ambiguous
characters to a regular expression

seqcomplement Calculate the complementary strand
of a nucleotide sequence

seqrcomplement Calculate the reverse complement of
a nucleotide sequence

seqreverse Reverse the letters or numbers in a
nucleotide sequence

5-4

Sequence Statistics

Sequence Statistics
List of sequence statistics functions

aacount Count the amino acids in a sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

basecount Count the number of nucleotides in
a sequence

baselookup Display nucleotide codes, integers,
names, and abbreviations

codoncount Count the number of codons in a
nucleotide sequence

dimercount Count the number of dimers in a
sequence

nmercount Count the number of n-mers in a
nucleotide or amino acid sequence

ntdensity Plot the density of nucleotides along
a sequence

seqshowwords Graphically display the words in a
sequence

seqwordcount Count the number of occurrences of
a word in a sequence

5-5

5 Functions – Categorical List

Sequence Utilities
List of sequence utilities functions

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

baselookup Display nucleotide codes, integers,
names, and abbreviations

blastncbi Generate a remote BLAST request

geneticcode Return nucleotide codon to amino
acid mapping

joinseq Join two sequences to produce the
shortest supersequence

palindromes Find palindromes in a sequence

randseq Generate a random sequence from
a finite alphabet

restrict Split a sequence at a specified
restriction site

revgeneticcode Get the reverse mapping for a
genetic code

seqdisp Format long sequence output for
easy viewing

seqmatch Find matches for every string in a
library

seqshoworfs Graphically display the open reading
frames in a sequence

5-6

Pairwise Sequence Alignment

Pairwise Sequence Alignment
List of pairwise sequence alignment functions

nwalign Globally align two sequences using
the Needleman-Wunsch algorithm

seqdotplot Create a dot plot of two sequences

showalignment Display a sequence alignment with
color

swalign Locally align two sequences using
the Smith-Waterman algorithm

5-7

5 Functions – Categorical List

Protein Analysis
List of protein analysis functions

aacount Count the amino acids in a sequence

aminolookup Display amino acid codes, integers,
abbreviations, names, and codons

atomiccomp Calculate the atomic composition of
a protein

cleave Cleave a protein with an enzyme

isoelectric Estimate the isoelectric point for an
amino acid sequence

molweight Calculate the molecular weight of an
amino acid sequence

pdbdistplot Visualize the intermolecular
distances in a PDB file

proteinplot Display property values for amino
acid sequences

ramachandran Draw a Ramachandran plot for PDB
data

5-8

Trace Tools

Trace Tools
List of functions for analysis of nucleotide traces

scfread Read trace data from a SCF file

traceplot Draw nucleotide trace plots

5-9

5 Functions – Categorical List

Profile Hidden Markov Models
List of Hidden Markov Model functions

gethmmalignment Retrieve multiple aligned sequences
from the PFAM database

gethmmprof Retrieve profile hidden Markov
models from the PFAM database

hmmprofalign Align a query sequence to a profile
using hidden Markov model based
alignment

hmmprofestimate Estimate profile HMM parameters
using pseudocounts

hmmprofgenerate Generate a random sequence drawn
from the profile HMM

hmmprofmerge Concatenate the prealigned strings
of several sequences to a profile
HMM

hmmprofstruct Create a profile HMM structure

pfamhmmread Read data from a PFAM-HMM file

showhmmprof Plot an HMM profile

5-10

Microarray File Formats

Microarray File Formats
List of microarray file format functions

affyread Read microarray data from an
Affymetrix GeneChip file

galread Read microarray data from a
GenePix array list file

geosoftread Read data from a Gene Expression
Omnibus (GEO) SOFT file

getgeodata Get Gene Expression Omnibus
(GEO) data

gprread Read microarray data from a
GenePix Results (GPR) file

imageneread Read microarray data from an
ImaGene Results file

sptread Read data from a SPOT file

5-11

5 Functions – Categorical List

Microarray Visualization
List of microarray visualization functions

clustergram Create a dendrogram and heat map
on the same figure

maboxplot Display a box plot for microarray
data

maimage Display a spatial image for
microarray data

mairplot Display intensity versus ratio scatter
plot for microarray signals

maloglog Create a loglog plot of microarray
data

mapcaplot Creates a Principal Component plot
of expression profile data

redgreencmap Display a red and green colormap

5-12

Microarray Normalization and Filtering

Microarray Normalization and Filtering
List of microarray normalization and filtering functions

exprprofrange Calculate the range of gene
expression profiles

exprprofvar Calculate the variance of gene
expression profiles

geneentropyfilter Remove genes with low entropy
expression values

genelowvalfilter Remove gene profiles with low
absolute values

generangefilter Remove gene profiles with small
profile ranges

genevarfilter Filter genes with small profile
variance

malowess Smooth microarray data using the
Lowess method

mamadnorm Normalize microarray data by
median absolute deviation (MAD)

mameannorm Normalize microarray data using
the global mean

5-13

5 Functions – Categorical List

Scoring Matrices
List of scoring matrices

blosum Return a BLOSUM scoring matrix

dayhoff Return a Dayhoff scoring matrix

gonnet Return a Gonnet scoring matrix

nuc44 Return a NUC44 scoring matrix for
nucleotide sequences

pam Return a PAM scoring matrix

5-14

Phylogenetic Tree Tools

Phylogenetic Tree Tools
List of functions for phylogenetic tree analysis.

gethmmtree Get phylogenetic tree data from
PFAM database

phytreeread Read phylogenetic tree files

phytreetool View, edit, and explore phylogenetic
tree data

phytreewrite Write a phylogenetic tree object to a
Newick formatted file

seqlinkage Construct a phylogenetic tree from
pairwise distances

seqpdist Calculate the pairwise distance
between biological sequences

5-15

5 Functions – Categorical List

Phylogenetic Tree Methods
List of methods for the phytree object

get (phytree) Get information about a phylogenetic
tree object

getbyname (phytree) Select branches and leaves by name
from a phytree object

pdist (phytree) Calculate the pairwise patristic
distances in a phytree object

phytree Object constructor for a phylogenetic
tree object

plot (phytree) Draw a phylogenetic tree

prune Remove branch nodes from a
phylogenetic tree

select Select tree branches and leaves in a
phytree object

5-16

Tutorials, Demos, and Examples

Tutorials, Demos, and Examples
Sequence analysis

• seqstatsdemo — Sequence statistics tutorial example

• aligndemo — Basic sequence alignment tutorial

• alignsigdemo — How to estimate the significance of sequence alignments

• alignscoringdemo — Tutorial showing the use of scoring matrices

Hidden Markov Model profiles

• hmmprofdemo — HMM profile alignment tutorial example

Microarray analysis

• mousedemo — Microarray normalization and visualization example

• yeastdemo — Microarray data analysis example

• biclusterdemo — Clustergram functionality examples

Phylogenetic Analysis

• primatesdemo — Building a phylogenetic tree for the hominidae species

• hivdemo — Analyzing the origin of the HIV with phylogenetic trees

External software interface

• bioperldemo — Calling Bioperl functions from within MATLAB

• biojavademo — Calling BioJava functions from within MATLAB

External web database interface

• biowebservicedemo — How to use a Simple Object Access Protocol (SOAP)
based web service from within MATLAB

5-17

5 Functions – Categorical List

5-18

6

Functions — Alphabetical
List

aa2int

Purpose Convert an amino acid sequence from a letter to an integer
representation

Syntax SeqInt = aa2int(SeqChar)

Arguments
SeqChar Amino acid sequence represented with letters.

Enter a character string from the table Mapping
Amino Acid Letters to Integers below (unknown
characters are mapped to 0). Integers are
arbitrarily assigned to IUB/IUPAC letters.

SeqInt Amino acid sequence represented with
numbers.

Description SeqInt = aa2int(SeqChar) converts a character string of amino acids
to a 1-by-N array of integers using the table Mapping Amino Acid Letter
to Integers above.

Examples Convert an amino acid sequence of letters to a vector of integers.

SeqInt = aa2int('MATLAB')

SeqInt =
13 1 17 11 1 21

Convert a random amino acid sequence of letters to integers.

SeqChar = randseq(20, 'alphabet', 'amino')

SeqChar =
dwcztecakfuecvifchds

SeqInt = aa2int(SeqChar)

SeqInt =
Columns 1 through 13

6-2

aa2int

4 18 5 22 17 7 5 1 12 14 0 7 5
Columns 14 through 20

20 10 14 5 9 4 16

See Also Bioinformatics Toolbox functions aminolookup, int2aa, int2nt, nt2int

6-3

aa2nt

Purpose Convert an amino acid sequence to a nucleotide sequence

Syntax SeqNT = aa2nt(SeqAA, 'PropertyName', PropertyValue)

aa2nt(..., 'GeneticCode', GeneticCodeValue)
aa2nt(..., 'Alphabet' AlphabetValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string or a vector of integers from the table .
Examples: 'ARN' or [1 2 3]

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code below. If you use a code name, you can
truncate the name to the first two characters
of the name.

AlphabetValue Property to select a nucleotide alphabet. Enter
either 'DNA' or 'RNA'. The default value is
'DNA', which uses the symbols A, C, T, G. The
value 'RNA' uses the symbols A, C, U, G.

Genetic Code

Code
Number

Code Name Code
Number

Code Name

1 Standard 12 Alternative Yeast
Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast Mitochondrial 14 Flatworm
Mitochondrial

6-4

aa2nt

Code
Number

Code Name Code
Number

Code Name

4 Mold, Protozoan,
Coelenterate
Mitochondrial,
and Mycoplasma
/Spiroplasma

15 Blepharisma Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean, and
Hexamita Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid Nuclear 23 Thraustochytrium
Mitochondrial

11 Bacterial and Plant
Plastid

Description SeqNT = aa2nt(SeqAA, 'PropertyName', PropertyValue) converts
an amino acid sequence to a nucleotide sequence using the standard
genetic code. In general, the mapping from an amino acid to a nucleotide
codon is not a one-to-one mapping. For amino acids with more then
one possible nucleotide codon, this function selects randomly a codon
corresponding to that particular amino acid.

For the ambiguous characters B and Z, one of the amino acids
corresponding to the letter is selected randomly, and then a codon
sequence is selected randomly. For the ambiguous character X, a codon
sequence is selected randomly from all possibilities.

6-5

aa2nt

aa2nt(..., 'GeneticCode', GeneticCodeValue) selects a genetic
code to use when converting an amino acid sequence to a nucleotide
sequence.

aa2nt(..., 'Alphabet' AlphabetValue) selects a nucleotide alphabet.

Standard Genetic Code

Amino Acid Amino Acid

Alanine AGCT, GCC,
GCA, GCG

Phenylalanine FTTT, TTC

Arginine RCGT, CGC,
CGA, CGG,
AGA, AGG

Proline PCCT, CCC,
CCA, CCG

Asparagine NATT, AAC Serine STCT, TCC,
TCA,TCG, AGT,
AGC

Aspartic acid
(Aspartate)

DGAT, GAC Threonine TACT, ACC,
ACA, ACG

Cysteine CTGT, TGC Tryptophan WTGG

Glutamine QCAA, CAG Tyrosine YTAT, TAC

Glutamic acid
(Glutamate)

EGAA, GAG Valine VGTT, GTC,
GTA, GTG

Glycine GGGT, GGC,
GGA, GGG

Aspartic acid or
Asparagine

B—random
codon from D
and N

Histidine HCAT, CAC Glutamic acid or
Glutamine

Z—random
codon from E
and Q

Isoleucine IATT, ATC,
ATA

Unknown or any
amino acid

Xrandom codon

6-6

aa2nt

Amino Acid Amino Acid

Leucine LTTA, TTG,
CTT, CTC,
CTA, CTG

Translation stop *TAA, TAG,
TGA

Lysine KAAA, AAG Gap of
indeterminate
length

- to ---

Methionine MATG Any character or
any symbol not in
table

????

Examples Convert a amino acid sequence to a nucleotide sequence using the
standard genetic code.

aa2nt('MATLAB')

Warning: The sequence contains ambiguous characters.
ans =
ATGGCAACCCTGGCGAAT

Use the Vertebrate Mitochondrial genetic code.

aa2nt('MATLAP', 'GeneticCode', 2)

ans =
ATGGCAACTCTAGCGCCT

Use the genetic code for the Echinoderm Mitochondrial RNA alphabet.

aa2nt('MATLAB','GeneticCode','ec','Alphabet','RNA')

Warning: The sequence contains ambiguous characters.
ans =
AUGGCUACAUUGGCUGAU

6-7

aa2nt

Convert a sequence with the ambiguous amino acid characters B.

aa2nt('abcd')

Warning: The sequence contains ambiguous characters.
ans =
GCCACATGCGAC

See Also Bioinformatics Toolbox functions aminolookup, baselookup,
geneticcode, nt2aa , revgeneticcode

6-8

aacount

Purpose Count the amino acids in a sequence

Syntax Amino = aacount(SeqAA, 'PropertyName', PropertyValue)

aacount(...,'Chart', ChartValue)
aacount(...,'Others', OthersValue)

Arguments
SeqAA Amino acid sequence. Enter a character string or

vector of integers from the table . Examples: 'ARN'
or [1 2 3]. You can also enter a structure with the
field Sequence.

ChartValue Property to select a type of plot. Enter either 'pie'
or 'bar'.

OthersValue Property to control the counting of ambiguous
characters individually. Enter either 'full' or
'bundle'. The default value is 'bundle'.

Description Amino = aacount(SeqAA, 'PropertyName', PropertyValue) counts
the type and number of amino acid in an amino acid sequence and
returns the counts in a 1-by-1 structure (Amino) with fields for the
standard 20 amino acids (A C D E F G H K L M N P Q R S T U V W Y).

• If a sequence contains amino acids with ambiguous characters (B, Z,
X), the stop character (*), or gaps indicated with a hyphen (-), the field
Others is added to the structure and a warning message is displayed.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence

• If a sequence contains any characters other than the 20 standard
amino acids, ambiguous characters, stop, and gap characters, the
characters are ignored and a warning message is displayed.

Warning: Sequence contains unknown characters. These will
be ignored.

6-9

aacount

• If the property Others = 'full' , this function lists the ambiguous
characters separately, asterisks are counted in a new field (Stop),
and hyphens are counted in a new field, (Gap).

aacount(...,'Chart', ChartValue) creates a chart showing the
relative proportions of the amino acids.

aacount(...,'Others', OthersValue) when Others = 'full'',
counts the ambiguous amino acid characters individually instead of
adding them together in the field Others.

Examples Count the amino acids in the string 'MATLAB'.

AA = aacount('MATLAB')

Warning: Symbols other than the standard 20 amino acids appear
in the sequence.
AA =

A: 2
R: 0
N: 0
D: 0
C: 0
Q: 0
E: 0
G: 0
H: 0
I: 0
L: 1
K: 0
M: 1
F: 0
P: 0
S: 0
T: 1
W: 0
Y: 0

6-10

aacount

V: 0
Others: 1

AA.A
ans =

2

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount

6-11

affyread

Purpose Read microarray data from an Affymetrix GeneChip file

Syntax AFFYData = affyread(File)
AFFYData = affyread(File, LibraryDir)

Arguments
File Enter a filename, or a path and filename supported

by your computer. Supported file formats are DAT,
EXP, CEL, CHP and, CDF. If the file cannot be located
on the web, it needs to be stored locally.

LibraryDir Enter the path and directory where the library file
(CDF) is stored.

Description AFFYData = affyread(File) reads an Affymetrix data file (File) and
creates a MATLAB structure (AFFYDdata).

AFFYData = affyread(File, LibraryDir) specifies the directory
where the library files (CDF) are stored.

Note: The function affyread only works on PC supported platforms.

GeneChip and Affymetrix are registered trademarks of Affymetrix, Inc.

See Also Bioinformatics Toolbox functions galread, gprread, maimage, sptread

6-12

aminolookup

Purpose Display amino acid codes, integers, abbreviations, names, and codons

Syntax aminolookup
aminolookup(SeqAA)

aminolookup('Code', CodeValue)
aminolookup('Integer', IntegerValue)
aminolookup('Abbreviation', AbbreviationValue)
aminolookup('Name', NameValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string of single-letter codes or three-letter
abbreviations from the Amino Acid Lookup
Table below.

CodeValue Amino acid single-letter code. Enter a single
character from the Amino Acid Lookup Table
below.

AbbreviationValue Amino acid three-letter abbreviation. Enter
a three-letter abbreviation from the Amino
Acid Lookup Table below.

NameValue Amino acid name. Enter an amino acid name
from the Amino Acid Lookup Table below.

Description aminolookup displays a table of amino acid codes, integers,
abbreviations, names, and codons.

aminolookup(SeqAA) converts between amino acid three-letter
abbreviations and one-letter codes. If the input is a character string of
three-letter abbreviations, then the output is a character string with
the corresponding one-letter codes. If the input is a character string of
single-letter codes, then the output is a character string of three-letter
codes.

6-13

aminolookup

If you enter one of the ambiguous characters B, Z, X, this function
displays the abbreviation for the ambiguous amino acid character.

aminolookup('abc')

ans=
AlaAsxCys

aminolookup('Code', CodeValue) displays the corresponding amino
acid three-letter abbreviation and name.

aminolookup('Integer', IntegerValue) displays the corresponding
amino acid single-letter code and name.

aminolookup('Abbreviation', AbbreviationValue) displays the
corresponding amino acid single-letter code and name.

aminolookup('Name', NameValue) displays the corresponding
single-letter amino acid code and three-letter abbreviation.

Examples Display the single-letter code and three-letter abbreviation for proline.

aminolookup('Name','proline')

ans =
P Pro

Convert a single-letter amino acid sequence to a three-letter sequence.

aminolookup('MWKQAEDIRDIYDF')

ans =
MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe

Convert a three-letter amino acid sequence to a single-letter sequence.aminolookup('M

ans =
MWKQAEDIRDIYDF

6-14

aminolookup

Display the single-letter code, three-letter abbreviation, and name for
an integer.

aminolookup('integer', 1)

ans =
A Ala Alanine

See Also Bioinformatics Toolbox functions aa2int, aacount, geneticcode,
int2aa, nt2aa, revgeneticcode

6-15

atomiccomp

Purpose Calculate the atomic composition of a protein

Syntax Atoms = atomiccomp(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or vector

of integers from the table . You can also enter a structure
with the field Sequence.

Description Atoms = atomiccomp(SeqAA) counts the type and number of atoms in
an amino acid sequence and returns the counts in a 1-by-1 structure
with fields C, H, N, O, and S.

Examples Get an amino acid sequence from the Protein Sequence Database
(PIR-PSD) and count the atoms in the sequence.

pirdata = getpir('cchu','SequenceOnly',true);
mwcchu = atomiccomp(pirdata)

mwcchu =
C: 526
H: 845
N: 143
O: 149
S: 6

mwcchu.C

ans=
526

See Also Bioinformatics Toolbox functions aacount, molweight

6-16

basecount

Purpose Count the number of nucleotides in a sequence

Syntax Bases = basecount(SeqNT, 'PropertyName', PropertyValue)

basecount(..., 'Chart', ChartValue)
basecount(..., 'Others', OthersValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string

with the letters A, T, U, C, and G. The count for
U characters is included with the count for T
characters. . You can also enter a structure with
the field Sequence.

ChartValue Property to select a type of plot. Enter either 'pie'
or 'bar'.

OthersValue Property to control counting ambiguous characters
individually. Enter either full' or 'bundle'. The
default value is 'bundle'.

Description Bases = basecount(SeqNT, 'PropertyName', PropertyValue) counts
the number of bases in a nucleotide sequence and returns the base
counts in a 1-by-1 structure with the fields A, C, G, T.

• For sequences with the character U, the number of U characters is
added to the number of T characters.

• If the sequence contains ambiguous nucleotide characters (R, Y, K, M,
S, W, B, D, H, V, N), or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

6-17

basecount

• If the sequence contains undefined nucleotide characters (E F H I J
L O P Q X Z) , this function ignores the characters and displays a
warning message.

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

• If Others = 'full'', ambiguous characters are listed separately
and hyphens are counted in a new field (Gaps).

basecount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the nucleotides.

basecount(..., 'Others', OthersValue) counts all the ambiguous
nucleotide symbols individually instead of bundling them together into
the Others field of the output structure.

Examples Count the number of bases in a DNA sequence.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')

Bases =
A: 4
C: 5
G: 7
T: 4

Bases.A

ans =
4

Count the bases in a DNA sequence with ambiguous characters.

basecount('ABCDGGCCAAGCGAGCTTG','Others','full')

ans =

6-18

basecount

A: 4
C: 5
G: 6
T: 2
R: 0
Y: 0
K: 0
M: 0
S: 0
W: 0
B: 1
D: 1
H: 0
V: 0
N: 0

Gaps: 0

See Also Bioinformatics Toolbox functionsaacount, baselookup, codoncount,
dimercount, nmercount, ntdensity

6-19

baselookup

Purpose Display nucleotide codes, integers, names, and abbreviations

Syntax baselookup
baselookup('Complement', SeqNT)
baselookup('Code', CodeValue)
baselookup('Integer', IntegerValue)
baselookup('Name',)

Arguments
SeqNT Nucleotide sequence. Enter a character string of

single-letter codes from the Nucleotide Lookup
Table below.

In addition to a single nucleotide sequence,
SeqNT can be a cell array of sequences, or a
two-dimensional character array of sequences.
The complement for each sequence is determined
independently

CodeValue Nucleotide letter code. Enter a single character
from the Nucleotide Lookup Table below. Code can
also be a cell array or a two-dimensional character
array.

Nucleotide integer. Enter an integer from the
Nucleotide Lookup Table below. Integers are
arbitrarily assigned to IUB/IUPAC letters.

NameValue Nucleotide name. Enter a nucleotide name from
the Nucleotide Lookup Table below. NameValue
can also be a single name, a cell array, or a
two-dimensional character array.

6-20

baselookup

Nucleotide Lookup Table

Code Integer Base Name Meaning Complement

A 1 Adenine A T

C 2 Cytosine C G

G 3 Guanine G C

T 4 Thymine T A

U 4 Uracil U A

R 5 (PuRine) G|A Y

Y 6 (PYrimidine) T|C R

K 7 (Keto) G|T M

M 8 (AMino) A|C K

S 9 Strong
interaction (3
H bonds)

G|C S

W 10 Weak interaction
(2 H bonds)

A|T W

B 11 Not-A (B follows
A)

G|T|C V

D 12 Not-C (D follows
C)

G|A|T H

H 13 Not-G (H follows
G)

A|T|C D

V 14 Not-T (or U) (V
follows U)

G|A|C B

N,X 15 ANy nucleotide G|A|T|C N

- 16 Gap of
indeterminate
length

Gap -

6-21

baselookup

Description baselookup displays a table of all nucleotide codes, integers, meanings,
and names.

baselookup('Complement', SeqNT) displays the complementary
nucleotide sequence.

baselookup('Code', CodeValue) displays the corresponding letter
code, meaning, and name. For ambiguous nucleotide letters (R Y K M S
W B D H V N X), the name is replace by a descriptive name.

displays the corresponding letter code, meaning, and nucleotide name.

baselookup('Name', NameValue) displays the corresponding letter
code and meaning.

Examples baselookup('COMPLEMENT', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')

baselookup('name','cytosine')

See Also Bioinformatics Toolbox functions aminolookup, basecount, codoncount,
dimercount, geneticcode, nt2aa, nt2int, revgeneticcode

6-22

blastncbi

Purpose Generate a remote BLAST request

Syntax blastncbi(Seq, Program, 'PropertyName', PropertyValue)
RID = blastncbi(Seq, Program)
[RID, RTOE]= blastncbi(Seq, Program)

blastncbi(..., 'Database', DatabaseValue)
blastncbi(..., 'Descriptions', DescriptionsValue)
blastncbi(..., 'Alignments', AlignmentsValue)
blastncbi(..., 'Filter', FilterValue)
blastncbi(..., 'Expect', ExpectValue)
blastncbi(..., 'Word', WordValue)
blastncbi(..., 'Matrix', MatrixValue)
blastncbi(..., 'Gapopen', GapopenValue)
blastncbi(..., 'ExtendGap', ExtendGapValue)
blastncbi(..., 'Inclusion', InclusionValue)
blastncbi(..., 'Pct', PctValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

GenBank or RefSeq accession number, GI,
FASTA file, URL, string, character array, or a
MATLAB structure that contains a sequence.
You can also enter a structure with the field
Sequence.

Program BLAST program. Enter 'blastn',
'blastp', 'pciblast', 'blastx', 'tblastn',
'tblastx', or 'megablast'.

6-23

blastncbi

DatabaseValue Property to select a database. Compatible
databases depend upon the type of sequence
submitted and program selected. The
nonredundant database, 'nr', is the default
value for both nucleotide and amino acid
sequences.

For nucleotide sequences, enter 'nr', 'est',
'est_human', 'est_mouse', 'est_others',
'gss', 'htgs', 'pat', 'pdb', 'month',
'alu_repeats', 'dbsts', 'chromosome', or
'wgs'. The default value is ’nr'.

For amino acid sequences, enter 'nr',
'swissprot', 'pat', 'pdb', or 'month'. The
default value is 'nr'.

DescriptionValue Property to specify the number of short
descriptions. The default value is normally
100, and for Program = pciblast, the default
value is 500.

AlignmentValue Property to specify the number of sequences
to report high-scoring segment pairs (HSP).
The default value is normally 100, and for
Program = pciblast, the default value is
500.

FilterValue Property to select a filter. Enter 'L'
(low-complexity), 'R' (human repeats), 'm'
(mask for lookup table), or 'lcase' (to turn
on the lowercase mask). The default value
is 'L'.

ExpectValue Property to select the statistical significance
threshold. Enter a real number. The default
value is 10.

WordValue Property to select a word length. For amino
acid sequences, Word can be 2 or 3 (3 is the
default value), and for nucleotide sequences,
Word can be 7, 11, or 15 (11 is the default
value). If Program = 'MegaBlast', Word can
be 11, 12, 16, 20, 24, 28, 32, 48, or 64, with
a default value of 28

6-24

blastncbi

MatrixValue Property to select a substitution matrix
for amino acid sequences. Enter 'PAM30’,
'PAM70', 'BLOSUM80', 'BLOSUM62', or
'BLOSUM45’. The default value is 'BLOSUM62'.

InclusionValue Property for PCI-BLAST searches to define
the statistical significance threshold. The
default value is 0.005.

PctValue Property to select the percent identity. Enter
None, 99, 98, 95, 90, 85, 80, 75, or 60. Match
and mismatch scores are automatically
selected. The default value is 99 (99, 1, -3)

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.

blastncbi(Seq, Program) sends a BLAST request against a sequence
(Seq) to NCBI using a specified program (Program).

• With no output arguments, blastncbi returns a command window
link to the actual NCBI report.

• A call with one output argument returns the Report ID (RID)

• A call with two output arguments returns both the RID and the
Request Time Of Execution (RTOE, an estimate of the time until
completion)

blastncbi uses the NCBI default values for the optional arguments:
'nr' for the database, 'L' for the filter, and '10' for the expectation
threshold. The default values for the remaining optional arguments
depend on which program is used. For help in selecting an appropriate
BLAST program, visit

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

Information for all of the optional parameters can be found at

6-25

blastncbi

http://www.ncbi.nlm.nih.gov/blast/html/blastcgihelp.html

blastncbi(..., 'Database', DatabaseValue) selects a database for
the alignment search.

blastncbi(..., 'Descriptions', DescriptionsValue) when the
function is called without output arguments, specifies the numbers of
short descriptions returned to the quantity specified.

blastncbi(..., 'Alignments', AlignmentsValue) when the function
is called without output arguments, specifies the number of sequences
for which high-scoring seqment pairs (HSPs) are reported.

blastncbi(..., 'Filter', FilterValue) selects the filter to applied
to the query sequence.

blastncbi(... , 'Expect', ExpectValue) provides a statistical
significance threshold for matches against database sequences. You can
learn more about the statistics of local sequence comparison at

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2

blastncbi(..., 'Word', WordValue) selects a word size for amino
acid sequences.

blastncbi(..., 'Matrix', MatrixValue) selects the substitution
matrix for amino acid sequences only. This matrix assigns the score for
a possible alignment of two amino acid residues.

blastncbi(..., 'GapOpen', GapOpenValue) selects a gap penalty for
amino acid sequences. Allowable values for a gap penalty vary with
the selected substitution matrix. For information about allowed gap
penalties for matrixes other then the BLOSUM62 matrix, see

http://www.ncbi.nlm.nih.gov/blast/html/blastcgihelp.html

blastncbi(... , 'ExtendGap', ExtendGapValue) defines the
penalty for extending a gap greater than one space.

blastncbi(..., 'Inclusion', InclusionValue) for PSI-BLAST only,
defines the statistical significance threshold for including a sequence in

6-26

blastncbi

the Position Specific Score Matrix (PSSm) created by PSI-BLAST for
the subsequent iteration. The default value is 0.005.

blastncbi(..., 'Pct', PctValue), when Program=Megablast, selects
the percent identity and the corresponding match and mismatch score
for matching existing sequences in a public database.

Examples % Get a sequence from the Protein Data Bank and create
% a MATLAB structure
S = getpdb('1CIV')

% Use the structure as input for a BLAST search with an
% expectation of 1e-10.
blastncbi(S,'blastp','expect',1e-10)

% Click the URL link (Link to NCBI BLAST Request) to go
% directly to the NCBI request.

% You can also try a search directly with an accession
% number and an alternative scoring matrix.
RID = blastncbi('AAA59174','blastp','matrix','PAM70,'...

'expect',1e-10)

% The results based on the RID are at
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi

% or pass the RID to BLASTREAD to parse the report and
% load it into a MATLAB structure.
blastread(RID)

See Also Bioinformatics function blastread,

6-27

blastread

Purpose Read an BLAST report from a file

Syntax Data = blastread(File)

Arguments
File NCBI BLAST formatted report file. Enter a filename,

a path and filename, or a URL pointing to a file. File
can also be a MATLAB character array that contains
the text for a NCBI BLAST report.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
BLAST reports can be lengthy, and parsing the data from the various
formats can be cumbersome.

Data = blastread(File) reads a BLAST report from an NCBI
formatted file (File) and returns a data structure (Data) containing
fields corresponding to the BLAST keywords.

Data contains the following fields

RID
Algorithm
Query
Database
Hit.Name
Hit.Length
Hit.HSP.Score
Hit.HSP.Expect
Hit.HSP.Identities
Hit.HSP.Positives (peptide sequences)
Hit.HSP.Gaps
Hit.HSP.Frame (translated searches)
Hit.HSP.Strand (nucleotide sequences)

6-28

blastread

blastread parses the basic BLAST reports BLASTN, BLASTP, BLASTX,
TBLASTN, and TBLASTX.

For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

Examples % Create a BLAST request with a GenPept accession number.
RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)
%
% Then pass the RID to getblast to download the report and save
% it to a text file.
getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt')

% Using the saved file, read the results into a MATLAB structure.
results = blastread('AAA59174_BLAST.rpt')

See Also Bioinformatics functions blastncbi, getblast

6-29

blosum

Purpose Return a BLOSUM scoring matrix

Syntax Matrix = blosum(Identity,'PropertyName', PropertyValue)
[Matrix, Matrixinfo] = blosum(N)

blosum(..., 'Extended', ExtendedValue)
blosum(..., 'Order', OrderValue)

Arguments
Identity Percent identity level. Enter values from 30 to

90 in increments of 5, enter 62, or enter 100.

ExtendedValue Property to control the listing of extended amino
acid codes. Enter either true or false.

The default value is true.

OrderValue Property to specify the order amino acids are
listed in the matrix. Enter a character string of
legal amino acid characters. The length is 20 or
24 characters.

Description Matrix = blosum(Identity, 'PropertyName', PropertyValue)
returns a BLOSUM (Blocks Substitution Matrix) with a specified
percent identity. The default ordering of the output includes the
extended characters B, Z, X, and *.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

blosum(..., 'Extended', ExtendedValue) if Extended is false, this
function returns the scoring matrix for the standard 20 amino acids.
Ordering of the output when Extended is false is

A R N D C Q E G H I L K M F P S T W Y V

blosum(..., 'Order', OrderValue) returns a BLOSUM matrix
ordered by an amino acid sequence (OrderString).

6-30

blosum

[B, MatrixInfo] = blosum(Identity) returns a structure of
information about a BLOSUM matrix with the fields Name, Scale,
Entropy, ExpectedScore, HighestScore, LowestScore, and Order.

Examples Return a BLOSUM matrix with a value of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions nwalign, dayhoff, pam, gonnet,
swalign

6-31

cleave

Purpose Cleave a protein with an enzyme

Syntax cleave(SeqAA, PeptidePattern, Position,
'PropertyName', PropertyValue)

cleave(... 'PartialDigest', PartialDigestValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string or a vector of integers from the table
.

Examples: 'ARN' or [1 2 3]. You can also
enter a structure with the field Sequence.

PeptidePattern Short amino acid sequence to search in a
larger sequence. Enter a character string,
vector of integers, or a regular expression.

Position Position on the PeptidePattern where
the sequence is cleaved. Enter a position
within the PeptidePattern. Position 0
corresponds to the N terminal end of the
PepetidePattern.

PartialDigestValue Property to set the probability that a
cleavage site will be cleaved. Enter a value
from 0 to 1. The default value is 1.

Description cleave(SeqAA, PeptidePattern, Position) cuts an amino acid
sequence into parts at the specified cleavage site specified by a peptide
pattern and position.

cleave(... 'PartialDigest', PartialDigestValue) simulates a
partial digestion where PartialDigest is the probability of a cleavage
site being cut.

The following table lists some common proteases and their cleavage
sites.

6-32

cleave

Protease Peptide Pattern Position

Trypsin [KR][^P] 1

Chymotrypsin [WYF][^P] 1

Glutamine C [ED][^P] 1

Lysine C [K][^P] 1

Aspartic acid N D 1

Examples S = getgenpept('AAA59174')
% Trypsin cleaves after K or R when the next residue is not P
parts = cleave(S.Sequence,'[KR][^P]',1);

See Also Bioinformatics Toolbox functions restrict, seqshowwords

6-33

clustergram

Purpose Create a dendrogram and heat map on the same figure

Syntax clustergram(Data, 'PropertyName', PropertyValue)

clustergram(..., 'RowLabels', RowLabelsValue)
clustergram(..., 'ColumnLabels', ColumnLabelsValue)
clustergram(..., 'Pdist', PdistValue)
clustergram(..., 'Linkage', LinkageValue)
clustergram(..., 'Dendrogram', DendrogramValue)
clustergram(..., 'ColorMap', ColorMapValue)
clustergram(..., 'SymmetricRange', SymmetricRangeValue)
clustergram(..., 'Dimension', DimensionValue)
clustergram(..., 'Ratio', RatioValue)

Arguments
Data Matrix where each row corresponds to a

gene. The first column is the names of the
genes and each additional column is the
result from an experiment.

RowLabelsValue Property to label the rows in
Data.ColLabels Enter a cell array of
text strings.

ColumnLabelsValue Property to label the columns in Data.
Enter a cell array of text strings.

PdistValue Property to pass arguments to the function
pdist.

LinkageValue Property to pass arguments to the function
linkage.

DendrogramValue Property to pass arguments to the function
dendrogram.

6-34

clustergram

ColorMapValue Property to select a colormap. Enter the
name or function handle of a function that
returns a colormap, or an M-by-3 array
containing RGB values. The default value
is REDGREENCMAP.

SymmetricRangeValue Property to force the color range to be
symmetric around zero. Enter either true
or false. The default value is true.

DimensionValue Property to select either a one-dimensional
or two-dimensional clustergram. Enter
either 1 or 2. The default value is 1.

RatioValue Property to specify the ratio of the space
that the dendrogram(s) uses.

Description clustergram(Data, 'PropertyName', PropertyValue) creates a
dendrogram and heat map from Data using hierarchical clustering with
correlation as the distance metric and using average linkage to generate
the hierarchical tree. The clustering is performed on the rows of Data.
The rows of Data are typically genes and the columns are the results
from different microarrays. To cluster the columns instead of the rows,
transpose the data using the transpose (') operator.

clustergram(...,'RowLabels', RowLabelsValue) uses the contents of
a cell array (RowLabels) as labels for the rows in Data.

clustergram(...,'ColumnLabels', ColumnLabelsValue) uses the
contents of a cell array (ColumnLabels) as labels for the columns in Data.

clustergram(...,'Pdist', PdistValue) sets the distance metric
the function pdist uses to calculate the pairwise distances between
observations. If the distance metric requires extra arguments, then
pass the arguments as a cell array. For example, to use the Minkowski
distance with exponent P you the help for the Statistical Toolbox
function pdist. The default distance metric for a clustergram is
'correlation'.

6-35

clustergram

clustergram(..., 'Linkage', LinkageValue) selects the linkage
method the function linkage uses to create the hierarchical cluster
tree. For more information about the available options, see the help for
the Statistical Toolbox function linkage. The default linkage method
used by clustergram is 'average'.

clustergram(..., 'Dendrogram', DendrogramValue) passes
arguments the function dendrogram uses to create a dendrogram.
Dendrogram should be a cell arrays of parameter/value pairs that can
be passed to dendrogram. For more information about the available
options, see the help for the Statistical Toolbox function dendrogram .

clustergram((..., 'ColorMap', ColorMapValue) specifies the
colormap that is used for the figure containing the clustergram. This
controls the colors used to display the heat map.

clustergram(..., 'SymmetricRange', SymmetricRangeValue), when
SymmetricRange is false, disables the default behavior of forcing the
color scale of the heat map to be symmetric about zero.

clustergram(..., 'Dimension', DimensionValue) specifies whether
to create a one-dimensional or two-dimensional clustergram. The
one-dimensional clustergram clusters the rows of the data. The
two-dimensional clustergram creates the one-dimensional clustergram,
and then clusters the columns of the row-clustered data.

clustergram(..., 'Ratio', RatioValue) specifies the ratio of the
space that the dendrogram(s) uses, relative to the size of the heat map,
in the X and Y directions. If Ratio is a single scalar value, it is used as
the ratio for both directions. If Ratio is a two-element vector, the first
element is used for the X ratio, and the second element is used for the
Y ratio. The Y ratio is ignored for one-dimensional clustergrams. The
default ratio is 1/5.

Hold the mouse button down over the image to see the exact values
at a particular point.

Examples load filteredyeastdata;
clustergram(yeastvalues);

6-36

clustergram

% Add some labels.
clustergram(yeastvalues,'ROWLABELS',genes,'COLUMNLABELS',times);

% Change the clustering parameters.
clustergram(yeastvalues,'PDIST','euclidean','LINKAGE','complete');

% Change the dendrogram color parameter.
clustergram(yeastvalues,'ROWLABELS',genes,'DENDROGRAM',{'color',5});

See Also Statistics Toolbox functions cluster, dendrogram, linkage, pdist

6-37

codoncount

Purpose Count the number of codons in a nucleotide sequence

Syntax Codons = codoncount(SeqNT, 'PropertyName', PropertyValue)
[Codons, CodonArray] = codoncount(SeqNT)

codoncount(..., 'Frame', FrameValue)
codoncount(..., 'Reverse', ReverseValue)
codoncount(..., 'Figure', FigureValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string or

vector of integers. You can also enter a structure
with the field Sequence.

FrameValue Property to select a reading frame. Enter 1, 2,
or 3. Default value is 1.

ReverseValue Property to control returning the complement
sequence. Enter true or false. Default value
is false.

FigureValue Property to control plotting a heat map. Enter
either true or false. Default value is false.

Description Codons = codoncount(SeqNT, 'PropertyName',PropertyValue)
counts the number of codon in a sequence and returns the codon counts
in a structure with the fields AAA, AAC, AAG, ..., TTG, TTT.

• For sequences that have codons with the character U, the U characters
are added to codons with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol' appear
in the sequence.
These will be in Others.

6-38

codoncount

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

Warning: Unknown symbols 'symbol' appear
in the sequence.
These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns a 4x4x4
array with the raw count data for each codon. The three dimensions
correspond to the three positions in the codon. For example, the element
(2,3,4) of the array gives the number of CGT codons where A <=> 1, C
<=> 2, G <=> 3, and T <=> 4.

codoncount(...,'Frame', FrameValue) counts the codons in a specific
reading frame.

codoncount(..., 'Reverse', ReverseValue), when Reverse is true,
counts the codons for the reverse complement of the sequence

codoncount(..., 'Figure', FigureValue), when Figure is
truedisplay a figure showing a heat map of the codon counts .

Examples Count the number of standard codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =
AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0
AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0
AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0
AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0
ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0
ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0
ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0
ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0
AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0
AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0
AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0

6-39

codoncount

AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0
ATA: 0 CGC: 0 GCG: 0 TAT: 0

Count the codons in the second frame for the reverse complement of
a sequence.

r2codons = codoncount('AAACGTTA', 'Frame',2,...
'Reverse',true);

Create a heat map for the codons in a nucleotide sequence.

a = randseq(1000);
codoncount(a,'Figure', true);

6-40

codoncount

See Also Bioinformatics Toolbox functionsaacount, basecount, dimercount,
baselookup, nmercount, nmercount, seqcomplement, seqshoworfs,
seqwordcount

6-41

dayhoff

Purpose Return a Dayhoff scoring matrix

Syntax ScoringMatrix = dayhoff

Description PAM250 type scoring matrix. Order of amino acids in the matrix is A R N
D C Q E G H I L K M F P S T W Y V B Z X *.

See Also Bioinformatics Toolbox functions blosum, gonnet, pam

6-42

dimercount

Purpose Count the number of dimers in a sequence

Syntax Dimers = dimercount(SeqNT, 'PropertyName', PropertyValue)
[Dimers, Percent] = dimercount(SeqNT)

dimercount(..., 'Chart', ChartStyle)

Arguments
SeqNT Nucleotide sequence. Enter a character string or

vector of integers.

Examples: 'ACGT' and [1 2 3 4].You can
also enter a structure with the field
Sequence.

ChartStyleValue Property to select the type of plot. Enter 'pie'
or 'bar'.

Description Dimers = dimercount(SeqNT, 'PropertyName', PropertyValue)
counts the number of nucleotide dimers in a 1-by-1 sequence and
returns the dimer counts in a structure with the fields AA, AC, AG, AT, CA,
CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.

• For sequences that have dimers with the character U, the U characters
are added to dimers with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

6-43

dimercount

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

[Dimers, Percent] = dimercount(SeqNT) returns a 4-by-4 matrix
with the relative proportions of the dimers in SeqNT. The rows
correspond to A, C, G, and T in the first element of the dimer, and the
columns correspond to A, C, G, and T in the second element.

dimercount(..., 'Chart', ChartStyle) creates a chart showing the
relative proportions of the dimers. Valid styles are 'Pie' and 'Bar'.

Examples Count the number of dimers in a nucleotide sequence.

dimercount('TAGCTGGCCAAGCGAGCTTG')

ans =
AA: 1
AC: 0
AG: 3
AT: 0
CA: 1
CC: 1
CG: 1
CT: 2
GA: 1
GC: 4
GG: 1
GT: 0
TA: 1
TC: 0
TG: 2
TT: 1

See Also Bioinformatics Toolbox functions aacount, basecount, baselookup,
codoncount, nmercount

6-44

dna2rna

Purpose Convert a DNA sequence to an RNA sequence

Syntax SeqRNA = dna2rna(SeqDNA)

Arguments
SeqDNA DNA sequence. Enter either a character string with the

characters A, T, G, C, and ambiguous characters R, Y, K,
M, S, W, B, D, H, V, N, or a vector of integers from the table
Mapping Nucleotide Letters to Integers on page 6-143.
You can also enter a structure with the field Sequence.

SeqRNA RNA sequence.

Description SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA
sequence by converting any thymine nucleotides (T) in the DNA
sequence to uracil (U). The RNA sequence is returned in the same
format as the DNA sequence. For example, if SeqDNA is a vector of
integers, then so is SeqRNA.

Examples Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =
ACGAUGAGUCAUGCUU

See Also Bioinformatics Toolbox function rna2dna

MATLAB functions regexp, strrep

6-45

emblread

Purpose Read data from an EMBL file

Syntax EMBLData = emblread('File',
'PropertyName', PropertyValue)

emblread(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
File EMBL formatted file (ASCII text file).

Enter a filename, a path and filename, or
a URL pointing to a file. File can also be
a MATLAB character array that contains
the text for a filename.

SequenceOnlyValue Property to control reading only the
sequence. Enter true.

EMBLData MATLAB structure with fields
corresponding to EMBL data.

EMBLSeq MATLAB character string without
metadata for the sequence.

Description EMBLData = emblread('File', 'PropertyName', PropertyValue)
reads data from an EMBL formatted file (File) and creates a
MATLAB structure (EMBLData) with fields corresponding to the EMBL
two-character line type code. Each line type code is stored as a separate
element in the structure.

EMBLData for the 137.0 version contains the following fields:

Comments
Identification
Accession
SequenceVersion
Datecreated
Dateupdated
Description
Keyword

6-46

emblread

OrganismSpecies
OorganismClassification
Organelle
Reference.Number
Reference.Comment
Reference.Position
Reference{#}.MedLine
Referemce{#}.PubMed
Reference.Authors
Reference.Title
Reference.Location
DatabaseCrossReference
Feature
Basecount
Sequence

Seq = emblread('File', 'SequenceOnly', SequenceOnlyValue),
when SequenceOnly is true, reads only the sequence information .

Examples Get sequence information from the web, save to a file, and then read
back into MATLAB.

getembl('X00558','ToFile','rat_protein.txt');
EMBLData = emblread('rat_protein.txt')

See Also Bioinformatics Toolbox functions getembl, fastaread, genbankread,
genpeptread, pirread, pdbread

6-47

exprprofrange

Purpose Calculate the range of gene expression profiles

Syntax exprprofrange(Data, 'PropertyName', PropertyValue)
[Range, LogRange] = exprprofrange(Data)

exprprofrange(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control the display of a histogram
with range data. Enter true.

Description exprprofrange(Data, 'PropertyName', PropertyValue) calculates
the range of each expression profile in a dataset (Data).

[Range, LogRange] = exprprofrange(Data) returns the log range,
that is, log(max(prof))- log(min(prof)), of each expression profile.
If you do not specify output arguments, exprprofrange displays a
histogram bar plot of the range.

exprprofrange(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data .

Examples Calculate the range of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
range = exprprofrange(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox function generangefilter

6-48

exprprofvar

Purpose Calculate the variance of gene expression profiles

Syntax exprprofvar(Data, 'PropertyName', PropertyValue)

exprprofvar(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control the display of a histogram
with variance data. Enter true.

Description exprprofvar(Data, 'PropertyName', PropertyValue) calculates the
variance of each expression profile in a dataset (Data). If you do not
specify output arguments, this function displays a histogram bar plot
of the range.

exprprofvar(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data .

Examples Calculate the variance of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
datavar = exprprofvar(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox functions exprprofrange, generangefilter,
genevarfilter

6-49

fastaread

Purpose Read data from a FASTA formatted file

Syntax FASTAData = fastaread('File')
[Header, Sequence] = fastaread('File')

Arguments
File FASTA formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text for a filename.

FASTAData MATLAB structure with the fields Header and
Sequence.

Description fastaread reads data from a FASTA formatted file into a MATLAB
structure with the following fields:

Header
Sequence

A file with a FASTA format begins with a right angle bracket (>) and a
single line description. Following this description is the sequence as a
series of lines with fewer than 80 characters. Sequences are expected to
use the standard IUB/IUPAC amino acid and nucleotide letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread('File') reads a file with a FASTA format
and returns the data in a structure. FASTAData.Header is the header
information, while FASTAData.Sequence is the sequence stored as a
string of letters.

[Header, Sequence] = fastaread('File') reads data from a file
into separate variables. If the file contains more than one sequence,
then header and sequence are cell arrays of header and sequence
information.

6-50

fastaread

Examples Get a FASTA formatted sequence from GenBank, save it, and then read
the FASTA file into the MATLAB workspace as a structure.

s= fastaread('p53nt.txt')

s =
Header: [1x94 char]
Sequence: [1x2629 char]

See Also Bioinformatics Toolbox function aminolookup, baselookup, fastawrite

6-51

fastawrite

Purpose Write to a file using a FASTA format

Syntax fastawrite('File', Data)
fastawrite('File', Header, Sequence)

Arguments
File Enter either a filename or a path and filename

supported by your operating system. (ASCII text
file).

Data Enter a character string with a FASTA format, a
sequence object, a structure containing the fields
Sequence and Header, or a GenBank/GenPept
structure.

Header Information about the sequence.

Sequence Nucleotide or amino acid sequence using the
standard IUB/IUPAC codes. For a list of valid
characters, see and Mapping Nucleotide Letters to
Integers on page 6-143.

Description fastawrite('File', Data) writes the contents of Data to a file with a
FASTA format.

fastawrite('File', Header, Sequence) writes header and sequence
information to a file with a FASTA format.

Examples %get the sequence for the human p53 gene from GenBank.
seq = getgenbank('NM_000546')

%find the CDS line in the FEATURES information.
cdsline = strmatch('CDS',seq.Features)

%read the coordinates of the coding region.
[start,stop] = strread(seq.Features(cdsline,:),'%*s%d..%d')

%extract the coding region.

6-52

fastawrite

codingSeq = seq.Sequence(start:stop)

%write just the coding region to a FASTA file.
fastawrite('p53coding.txt','Coding region for p53',codingSeq);

Save multiple sequences.

data(1).Sequence = 'ACACAGGAAA'
data(1).Header = 'First sequence'
data(2).Sequence = 'ACGTCAGGTC'
data(2).Header = 'Second sequence'

fastawrite('my_sequences.txt', data)
type('my_sequences.txt')

>First sequence
ACACAGGAAA

>Second sequence
ACGTCAGGTC

See Also Bioinformatics Toolbox function fastaread

6-53

galread

Purpose Read microarray data from a GenePix array list file

Syntax GALData = galread('File')

Arguments
File GenePix Array List formatted file (GAL). Enter a filename,

or enter a path and filename.

Description galread reads data from a GenePix formatted file into a MATLAB
structure.

GALData = galread('File') reads in a GenePix Array List formatted
file (File) and creates a structure (GALData) containing the following
fields:

Header
BlockData
IDs
Names

The field BlockData is an N-by-3 array. The columns of this array are
the block data, the column data, and the row data respectively. For
more information on the GAL format, see

http://www.axon.com/GN_GenePix_File_Formats.html#gal

For a list of supported file format versions, see

http://www.axon.com/gn_GPR_Format_History.html

GenePix is a registered trademark of Axon Instruments, Inc.

See Also Bioinformatics Toolbox functions gprread, maimage, sptread

6-54

genbankread

Purpose Read data from a GenBank file

Syntax GenBankData = genbankread('File')

Arguments
File GenBank formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to
a file. File can also be a MATLAB character array
that contains the text of a GenBank formatted file.

GenBankData MATLAB structure with fields corresponding to
GenBank data.

Discussion genbankread reads data from a GenBank formatted file into a MATLAB
structure.

GenBankData = genbankread('File') reads in a GenBank formatted
file (File) and creates a structure (Data) containing fields corresponding
to the GenBank keywords. Each separate sequence listed in the
output structure (GenBankData) is stored as a separate element of the
structure.

GenBankData contains the following fields:

LocusName
LocusSequenceLength
LocusMoleculeType
LocusGenBankDivision
LocusModificationDate
Definition
Accession
Version
GI
Keywords
Segment
Source
SourceOrganism
Reference.Number

6-55

genbankread

Reference.Authors
Reference.Title
Reference.Journal
Reference.MedLine
Reference.PubMed
Reference.Remark
Comment
Features
BaseCount
Sequence

Examples Get sequence information for the gene HEXA, store in a file, and then
read back into MATLAB.

getgenbank('nm_000520', 'ToFile', 'TaySachs_Gene.txt')
s = genbankread('TaySachs_Gene.txt')

See Also Bioinformatics Toolbox functions emblread, getgenbank, fastaread,
genpeptread, getgenbank, scfread

6-56

geneentropyfilter

Purpose Remove genes with low entropy expression values

Syntax Mask = geneentropyfilter(Data,'PropertyName', PropertyValue)
[Mask, FData] = geneentropyfilter(Data)
[Mask, FData, FNames] = geneentropyfilter(Data, Names)

geneentropyfilter(..., 'Prctile', PrctileValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column is
the results for all genes from one experiment.

Names Cell array with the same number of rows as Data.
Each row contains the name or ID of the gene in
the data set.

PrctileValue Property to specify a percentile below which gene
data is removed. Enter a value from 0 to 100.

Description Mask = geneentropyfilter(Data, 'PropertyName', PropertyValue)
identifies gene expression profiles in Data with entropy values less than
the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less then
the threshold are 0.

[Maks, FData] = geneentropyfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData,FNames] = geneentropyfilter(Data, Names) returns
a filtered names array (FNames), where Names is a cell array of the
names of the genes corresponding to each row of Data. FNames can also
be created using FNames = Names(I).

6-57

geneentropyfilter

geneentropyfilter(..., 'Prctile', PrctileValue) removes from
Data gene expression profiles with entropy values less than the
percentile Prctile.

Examples load yeastdata
[fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
genelowvalfilter, generangefilter

6-58

genelowvalfilter

Purpose Remove gene profiles with low absolute values

Syntax Mask = genelowvalfilter(Data, 'PropertyName', PropertyValue)
[Mask, FData] = genelowvalfilter(Data)
[Mask, FData, FNames] = genelowvalfilter(Data, Names)

genelowvalfilter(..., 'Prctile', PrctileValue)
genelowvalfilter(..., 'AbsValue', AbsValueValue)
genelowvalfilter(..., 'AnyVal', AnyValValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column is
the results for all genes from one experiment.

Names Cell array with the same number of rows as Data.
Each row contains the name or ID of the gene in
the data set.

PrctileValue Property to specify a percentile below which gene
expression profiles are removed. Enter a value
from 0 to 100.

AbsValueValue Property to specify an absolute value below which
gene expression profiles are removed.

AnyValValue Property to select the minimum or maximum
absolute value for comparison with AbsValue.
If AnyValValue is true, selects the minimum
absolute value. If AnyVal is false, selects the
maximum absolute value. The default value is
false.

Description Gene expression profile experiments have data where the absolute
values are very low. The quality of this type of data is often bad due to
large quantization errors or simply poor spot hybridization.

6-59

genelowvalfilter

Mask = genelowvalfilter(Data, 'PropertyName', PropertyValue)
identifies gene expression profiles in Data with all absolute values less
than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with absolute expression levels
greater than the threshold have a value of 1, and those with absolute
expression levels less then the threshold are 0.

[Mask, FData] = genelowvalfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData,FNames] = genelowvalfilter(Data, Names) returns a
filtered names array (FNames), where Names is a cell array of the names
of the genes corresponding to each row of Data. FNames can also be
created using FNames = Names(I).

genelowvalfilter(..., 'Prctile', PrctileValue) removes from
Data gene expression profiles with all absolute values less than the
percentile Prctile.

genelowvalfilter(..., 'AbsValue', AbsValueValue) calculates the
maximum absolute value for each gene expression profile and removes
the profiles with maximum absolute values less than AbsVal.

genelowvalfilter(..., 'AnyVal', AnyValValue), when AnyVal is
true, calculates the minimum absolute value for each gene expression
profile and removes the profiles with minimum absolute values less
than AnyVal.

Examples [data, labels, I, FI] = genelowvalfilter(data,labels,'AbsValue',5);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
geneentropyfilter, generangefilter

6-60

generangefilter

Purpose Remove gene profiles with small profile ranges

Syntax Mask = generangefilter(Data, 'PropertyName', PropertyValue)
[Mask, FData] generangefilter(Data)
[Mask, FData, FNames] = generangefilter(Data, Names)

generangefilter(..., 'Prctile', PrctileValue)
generangefilter(..., 'AbsValue', AbsValueValue)
generangefilter(..., 'LOGPrctile', LOGPrctileValue)
generangefilter(..., 'LOGValue', LOGValueValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each
column is the results for all genes from one
experiment.

Names Cell array with the same number of rows as
Data. Each row contains the name or ID of the
gene in the data set.

PrctileValue Property to specify a percentile below which
gene expression profiles are removed. Enter
a value from 0 to 100.

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

LOGPrctileValue Property to specify the LOG of a percentile.

LOGValueValue Property to specify the LOG of an absolute
value.

Description Mask = generangefilter(Data, 'PropertyName', PropertyValue)
calculates the range for each gene expression profile in Data, and
then identifies the expression profiles with ranges less than the 10th
percentile.

6-61

generangefilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a range greater then
the threshold have a value of 1, and those with a range less then the
threshold are 0.

[Maks, FData] = generangefilter(Data) returns a filtered
data matrix (FData). FData can alos be created using FData =
Data(find(I),:).

[Maks, FData, FNames] = generangefilter(Data, Names) returns a
filtered names array (FNames), where Names is a cell array of the names
of the genes corresponding to each row of Data. FNames can also be
created using FNames = Names(I).

generangefilter(..., 'Prctile', PrctileValue) removes from
Data gene expression profiles with ranges less than the percentile
Prctile.

generangefilter(..., 'AbsValue', AbsValueValue) removes from
Data gene expression profiles with ranges less than AbsValue.

generangefilter(..., 'LOGPrctile', LOGPrctileValue) filters
genes with profile ranges in the lowest LOGPrctile percent of the log
range.

generangefilter(..., 'LOGValue', LOGValueValue) filters genes
with profile log ranges lower than LOGValue.

Examples load yeastdata
[mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, geneentropyfilter,
genelowvalfilter, genevarfilter

6-62

geneticcode

Purpose Return nucleotide codon to amino acid mapping

Syntax Map = geneticcode(GeneticCode)
geneticcode(GeneticCode)

Arguments
GeneticCode Enter a code number or code name from the table

Genetic Code below. If you use a code name, you
can truncate the name to the first two characters
of the name.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial,
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

6-63

geneticcode

Code Number Code Name

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description Map = geneticcode returns a structure with a mapping of nucleotide
codons to amino acids for the standard genetic code.

geneticcode(GeneticCode)returns a structure of the mapping
for alternate genetic codes, where GeneticCode is either the
transl_table (code) number from the NCBI Genetics web page
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c)
or one of the supported names in the genetic code table above.

Examples List the mapping of nucleotide codons to amino acids for a specific
genetic code.

wormcode = geneticcode('Flatworm Mitochondrial');

See Also Bioinformatics Toolbox functions aa2nt, baselookup, nt2aa,
revgeneticcode, seqshoworfs

6-64

genevarfilter

Purpose Filter genes with small profile variance

Syntax Mask = genevarfilter(Data, 'PropertyName', PropertyValue)
[Mask, FData] = genevarfilter(Data)
[Mask, FData, FNames] = genevarfilter(Data, Names)

genevarfilter(..., 'Prctile', PrctileValue)
genevarfilter(..., 'AbsValue', AbsValueValue)

Arguments
Data Matrix where each row corresponds to a gene.

The first column is the name of the genes, and
each additional column is the results from an
experiment.

Names Cell array with the same number of rows as Data.
Each row contains the name or ID of the gene
in the data set.

PrctileValue Property to specify a percentile below which gene
expression profiles are removed. Enter a value
from 0 to 100

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

Description Gene profiling experiments have genes which exhibit little variation
in the profile and are generally not of interest in the experiment.
Removing (filtering) these genes from the data is a commonly done.

Mask = genevarfilter(Data, 'PropertyName', PropertyValue)
calculates the variance for each gene expression profile in Data and
then identifies the expression profiles with a variance less than the
10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater then
the threshold have a value of 1, and those with a variance less then
the threshold are 0.

6-65

genevarfilter

[Mask, FData] = genevarfilter(Data) returns the filtered
data matrix FData. FData can also be created using FData =
Data(find(I),:).

[Mask, FData, FNames] = genevarfilter(Data, Names) returns a
filtered names array (FNames). Names is a cell array of the names of the
genes corresponding to each row of Data. FNames can also be created
using FNames = Names(I).

genevarfilter(..., 'Prctile', PrctileValue) removes from Data
gene expression profiles with a variance less than the percentile
Prctile.

genevarfilter(..., 'AbsValue', AbsValValue) removes from Data
gene expression profiles with a variance less than AbsValue.

Examples load yeastdata
[fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
generangefilter

6-66

genpeptread

Purpose Read data from a GenPept file

Syntax GenPeptData = genpeptread('File')

Arguments
File GenPept formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text of a GenPept file.

Description genpeptread reads data from a GenPept formatted file into a MATLAB
structure.

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

GenPeptData = genpeptread('File') reads in the GenPept formatted
sequence from File and creates a structure GenPeptData, containing
fields corresponding to the GenPept keywords. Each separate sequence
listed in File is stored as a separate element of the structure.
GenPeptDATA contains these fields:

LocusName
LocusSequenceLength
LocusMoleculeType
LocusGenBankDivision
LocusModificationDate
Definition
Accession
PID
Version
GI

6-67

genpeptread

DBSource
Keywords
Source
SourceDatabase
SourceOrganism
Reference.Number
Reference.Authors
Reference.Title
Reference.Journal
Reference.MedLine
Reference.PubMed
Reference.Remark
Comment
Features
Weight
Length
Sequence

Examples Get sequence information for the protein coded by the gene HEXA, save
to a file, and then read back into MATLAB.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')
genpeptread('TaySachs_Protein.txt')

See Also Bioinformatics Toolbox functions fastaread, genbankread, getgenpept,
pdbread, pirread

6-68

geosoftread

Purpose Read data from a Gene Expression Omnibus (GEO) SOFT file

Syntax GEOSOFTData = geosoftread('File')

Arguments
File Gene Expression Omnibus (GEO) formatted file (ASCII

text file). Enter a filename, a path and filename, or a
URL pointing to a file. File can also be a MATLAB
character array that contains the text of a GEO file.

Description geosoftread reads data from a Gene Expression Omnibus (GEO) SOFT
formatted file (File), and creates a MATLAB structure (GEOSOFTdata)
with the following fields:

Scope
Accession
Header
ColumnDescriptions
ColumnNames
Data

Fields correspond to the GenBank keywords. Each separate entry listed
in File is stored as a separate element of the structure.

Examples Get data from the GEO web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to access a local copy from disk instead of accessing
it from the GEO web site.

geodata = geosoftread('GSM3258.txt')

See Also Bioinformatics Toolbox functions galread, getgeodata, gprread,
sptread

6-69

get (phytree)

Purpose Get information about a phylogenetic tree object

Syntax [Value1,Value2, ...] = GET(Tree,
'Name1', 'Name2', ...)

Arguments
Tree Phytree object created with the function

phytree.

Name Property name for a phytree object.

Description [Value1,Value2, ...] = GET(Tree, 'Name1', 'Name2', ...)
returns the specified properties from a phytree object (Tree).

The valid choices for 'Name' are

'Pointers' Branch to leaf/branch connectivity list

'Distances' Edge length for every leaf/branch

'NumLeaves' Number of leaves

'NumBranches' Number of branches

'NumNodes' Number of nodes (NumLeaves +
Numbranches)

'LeafNames' Names of the leaves

'BranchNames' Names of the branches

'NodeNames' Names of all the nodes

Examples tr = phytreeread('pf00002.tree')
protein_names = get(tr,'LeafNames')

See Also Bioinformatics Toolbox functions phytree, phytreeread, and phytree
object method select

6-70

getblast

Purpose Get BLAST report from NCBI web site

Syntax Data = getblast(RID)

getblast(..., 'Descriptions', DescriptionsValue)
getblast(..., 'Alignments', AlignmentsValue)
getblast(..., 'ToFile', ToFileValue)
getblast(..., 'FileFormat', FileFormatValue)

Arguments
RID BLAST Request ID (RID) from the

function blastncbi.

DescriptionsValue Property to select the number of
descriptions in a report. Enter a number
from 1 to 100. The default value is 100.

AlignmentsValue Property to select the number of
alignments in a report. Enter values from
1 to 100. The default value is 50.

ToFileValue Property to enter a filename for saving
report data.

FileFormatValue Property to select the format of the file
named in ToFileValue. Enter either
'TEXT' or ’HTML’.The default value is
'TEXT'.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
getblast parses NCBI BLAST reports, including BLASTN, BLASTP,
BLASTX, TBLASTN, TBLASTX and psi-BLAST.

6-71

getblast

Data = getblast(RID) reads a BLAST Request ID (RID) and returns
the report data in a structure (Data). The NCBI Request ID (RID) must
be a recently generated report because NCBI purges reports after 24
hours.

getblast(..., 'Descriptions', DescriptionsValue) includes the
specified number of descriptions (DescriptionsValue) in the report.

getblast(..., 'Alignments', AlignmentsValue) includes the
specified number of alignments in the report.

getblast(..., 'ToFile', ToFileValue) saves the data returned from
the NCBI BLAST report to a file (ToFileValue). The default format for
the file is text, but you can specify HTML with the property FileFormat.

getblast(..., 'FileFormat', FileFormatValue) returns the report
in the specified format (FileFormatValue).

For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

Examples Run a BLAST search with an NCBI accession number.
RID = blastncbi('AAA59174','blastp','expect',1e-10)

% Then pass the RID to GETBLAST to parse the report, load it into
% a MATLAB structure, and save a copy as a text file.
report = getblast(RID,'TOFILE','Report.txt')

See Also Bioinformatics Toolbox functions blastncbi, blastread

6-72

getbyname (phytree)

Purpose Select branches and leaves by name from a phytree object

Syntax S = getbyname(Tree, Expression)

Arguments
Tree Phytree object created with the function

phytree.

Expression Regular expression.

Description S = getbyname(Tree, Expression) returns a logical vector (S) of size
NumNodes-by-1 with the node names of a phylogenetic tree (Tree) that
match the regular expression (Expression) regardless of letter case.
When Expression is a cell array of strings, getbyname returns a matrix
where each column corresponds to a query in Expression

For information about the symbols that you can use in a matching
regular expression, see the MATLAB function regexp.

Examples % Load a phylogenetic tree created from a protein family:
tr = phytreeread('pf00002.tree');

% Select all the 'mouse' and 'human' proteins:
sel = getbyname(tr,{'mouse','human'});
view(tr,any(sel,2));

See Also The MATLAB function regexp

6-73

getembl

Purpose Retrieve sequence information from the EMBL database

Syntax Data = getembl('AccessionNumber',
'PropertyName', PropertyValue)

getembl(..., 'ToFile', ToFileValue)
getembl(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter a

unique combination of letters and numbers

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

SequenceOnlyValue Property to control getting a sequence without
the metadata. Enter true or false.

Description getembl retrieves information from the European Molecular Biology
Laboratory (EMBL) database for nucleotide sequences. This database is
maintained by the European Bioinformatics Institute (EBI). For more
details about the EMBL-Bank database, see

http://www.ebi.ac.uk/embl/Documentation/index.html

Data = getembl('AccessionNumber', 'PropertyName',
PropertyValue) searches for the accession number in the EMBL
database (http://www.ebi.ac.uk/embl) and returns a MATLAB
structure containing the following fields:

Comments
Identification
Accession
SequenceVersion
DateCreated
DateUpdated

6-74

getembl

Description
Keyword
OrganismSpecies
OrganismClassification
Organelle
Reference
DatabaseCrossReference
Feature
BaseCount
Sequence

getembl(..., 'ToFile', ToFileValue) returns a structure containing
information about the sequence and saves the information in a file
using an EMBL data format. If you do not give a location or path to the
file, the file is stored in the MATLAB current directory. Read an EMBL
formatted file back into MATLAB using the function emblread.

getembl(..., 'SequenceOnly', SequenceOnlyValue) if SequenceOnly
is true, returns only the sequence information without the metadata.

Examples Retrieve data for the rat liver apolipoprotein A-I.

emblout = getembl('X00558')

Retrieve data for the rat liver apolipoprotein and save in the file
rat_protein. If a filename is given without a path, the file is stored in
the current directory.

Seq = getembl('X00558','ToFile','c:\project\rat_protein.txt')

Retrieve only the sequence for the rat liver apolipoprotein.

Seq = getembl('X00558','SequenceOnly',true)

See Also Bioinformatics Toolbox functions emblread, getgenbank, getgenpept,
getpdb, getpir

6-75

getgenbank

Purpose Retrieve sequence information from the GenBank database

Syntax Data = getgenbank('AccessionNumber',
'PropertyName',PropertyValue)

getgenbank(..., 'ToFile', ToFileValue)
getgenbank(..., 'FileFormat', FileFormatValue)
getgenbank(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record.

Enter a unique combination of letters and
numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

FileFormatValue Property to select the format for the file
specified with the property ToFileValue.
Enter either 'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence only.
Enter either true or false.

Description getgenbank retrieves nucleotide and amino acid sequence information
from the GenBank database. This database is maintained by the
National Center for Biotechnology Information (NCBI). For more details
about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank('AccessionNumber', 'PropertyName',
PropertyValue) searches for the accession number in the GenBank
database and returns a MATLAB structure containing information
for the sequence. If an error occurs while retrieving the GenBank

6-76

getgenbank

formatted information, then an attempt is make to retrieve the FASTA
formatted data.

getgenbank(..., 'ToFile', ToFileValue) saves the data returned
from GenBank in a file. If you do not give a location or path to the file,
the file is stored in the MATLAB current directory. Read a GenBank
formatted file back into MATLAB using the function genbankread.

getgenbank(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format FileFormatValue.

getgenbank(..., 'SequenceOnly', SequenceOnlyValue) when
SequenceOnly is true, returns only the sequence as a character array.
When the properties SequenceOnly and ToFile are used together, the
output file is in the FASTA format.

getgenbank(...) displays the information to the screen without returning
data to a variable. The displayed information includes hyperlinks to the
URLS used to search for and retrieve the data.

Examples Retrieve the sequence from chromosome 19 that codes for the human
insulin receptor and store it in structure S.

S = getgenbank('M10051')

S =

LocusName: 'HUMINSR'
LocusSequenceLength: '4723'
LocusNumberofStrands: ''

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'
LocusModificationDate: '06-JAN-1995'

Definition: 'Human insulin receptor mRNA, complete cds
Accession: 'M10051'

Version: 'M10051.1'
GI: '186439'

Keywords: 'insulin receptor; tyrosine kinase.'

6-77

getgenbank

Segment: []
Source: 'Homo sapiens (human)'

SourceOrganism: [3x65 char]
Reference: {[1x1 struct]}

Comment: [14x67 char]
Features: [51x74 char]

CDS: [139 4287]
Sequence: [1x4723 char]

SearchURL: [1x105 char]
RetrieveURL: [1x95 char]

See Also Bioinformatics Toolbox functions genbankread, getembl, getgenpept,
getpdb, getpir

6-78

getgenpept

Purpose Retrieve sequence information from the GenPept database

Syntax Data = getgenpept('AccessionNumber',
'PropertyName', PropertyValue)

getgenpept(..., 'ToFile', ToFileValue)
getgenpept(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record.

Enter a combination of letters and
numbers.

ToFileValue Property to specify the location and
filename for saving data. Enter either a
filename or a path and filename supported
by your system (ASCII text file).

FileFormatValue Property to select the format for the file
specified with the property ToFileValue.
Enter either 'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence
only. Enter either true or false.

Description getgenpept retrieves a protein (amino acid) sequence and sequence
information from the database GenPept. This database is a translation
of the nucleotide sequences in GenBank and is maintained by the
National Center for Biotechnology Information (NCBI).

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

6-79

getgenpept

For more details about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenpept('AccessionNumber',
'PropertyName',PropertyValue) searches for the
accession number in the GenPept database and returns a MATLAB
structure containing for the sequence. If an error occurs while
retrieving the GenBank formatted information, then an attempt is
make to retrieve the FASTA formatted data.

getgenpept(..., 'ToFile', ToFileValue) saves the information in
a file. If you do not give a location or path to the file, the file is stored
in the MATLAB current directory. Read a GenPept formatted file back
into MATLAB using the function genpeptread

getgenpept(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format FileFormatValue.

getgenpept(..., 'SequenceOnly', SequenceOnlyValue) returns only
the sequence information without the metadata if SequenceOnly is
true. When the properties SequenceOnly and ToFile are used together,
the output file is in the FASTA format.

getgenpept(...) displays the information to the screen without
returning data to a variable. The displayed information includes
hyperlinks to the URLs used to search for and retrieve the data.

Examples Retrieve the sequence for the human insulin receptor and store it in
structure Seq.

Seq = getgenpept('AAA59174')

See Also Bioinformatics Toolbox functions genpeptread, getembl, getgenbank,
getpdb, getpir

6-80

getgeodata

Purpose Get Gene Expression Omnibus (GEO) data

Syntax Data = getgeodata('AccessionNumber'
'PropertyName', PropertyValue)

getgeodata(..., 'ToFile', ToFileValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename, or a
path and filename supported by your system
(ASCII text file).

Description Data = getgeodata('AccessionNumber',
'PropertyName',PropertyValue) searches for the
accession number in the Gene Expression Omnibus database and
returns a MATLAB structure containing the following fields:

Scope
Accession
Header
ColumnDescriptions
ColumnNames
Data

getgeodata(..., 'ToFile', ToFileValue) saves the data returned
from the database to a file. Read a GenPept formatted file back into
MATLAB using the function gensoftread.

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

6-81

getgeodata

Examples geoStruct = getgeodata('GSM1768')

See Also Bioinformatics Toolbox functions geosoftread, getgenbank, getgenpept

6-82

gethmmalignment

Purpose Retrieve multiple aligned sequences from the PFAM database

Syntax ‘
AlignData = gethmmalignment('PFAMKey',

'PropertyName', PropertyValue)

gethmmalignment(..., 'ToFile', ToFileValue)
gethmmalignment(..., 'Type', TypeValue)

Arguments
PFAMKey Unique identifier for a sequence record. Enter a

unique combination of letters and numbers.

ToFileValue Property to specify the location and filename for
saving data. Enter either a filename, or a path and
filename supported by your system (ASCII text file).

TypeValue Property to select the set of alignments returned.
Enter either 'seed' or 'full'.

Description AlignData = gethmmalignment('PFAMKey',
'PropertyName',PropertyValue) retrieves multiple
aligned sequences from a profile hidden Markov model stored in the
PFAM database and returns a MATLAB structure containing the
following fields:

Header
Sequence

gethmmalignment(..., 'ToFile', ToFileValue) saves the data
returned from the PFAM database to a file. Read a FASTA formatted
file with PFAM data back into MATLAB using the function fastaread.

gethmmalignment(..., 'Type', TypeValue) returns only the
alignments used to generate the HMM model if Type='seed', and if

6-83

gethmmalignment

Type='full', returns all alignments that fit the model. Default is
'full'.

Examples Retrieve a multiple alignment of the sequences used to train the HMM
profile model for global alignment to the 7 transmembrane receptor
protein in the secretin family (PFAMKey = PF00002).

pfamalign = gethmmalignment(2,'Type','seed')

or

pfamalign = gethmmalignment('PF00002','Type','seed')

See Also Bioinformatics Toolbox function fastaread, gethmmprof, gethmmtree,
pfamhmmread

6-84

gethmmprof

Purpose Retrieve profile hidden Markov models from the PFAM database

Syntax Model = gethmmprof('AccessionNumber',
'PropertyName', PropertyValue)

gethmmprof(..., 'ToFile', ToFileValue)
gethmmprof(..., 'Mode', ModeValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a unique combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

ModeValue Property to select returning the global or local
alignment mode. Enter either 'ls' for the
global alignment mode or 'fs' for the local
alignment mode. Default value is 'ls'.

Description Model = gethmmprof('AccessionNumber',
'PropertyName',PropertyValue) searches for the PFAM
family accession number in the PFAM database and returns a MATLAB
structure containing the following fields:

Name
PfamAccessionNumber
ModelDescription
ModelLength
Alphabet
MatchEmission
InsertEmission
NullEmission
BeginX
MatchX

6-85

gethmmprof

InsertX
DeleteX
FlankingInsertX

gethmmprof(..., 'ToFile', ToFileValue) saves the data returned
from the PFAM database in a file. Read a hmmprof formatted file back
into MATLAB using the function pfamhmmread.

gethmmprof(..., 'Mode', ModeValue) selects either the global
alignment model or the local alignment model.

Examples Retrieve a HMM profile model for global alignment to the 7
transmembrane receptor protine in the secretin family. (PFAM key
= PF00002)

hmmmodel = gethmmprof(2)

or

hmmmodel = gethmmprof('PF00002')

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
pfamhmmread, showhmmprof

6-86

gethmmtree

Purpose Get phylogenetic tree data from PFAM database

Syntax Tree = gethmmtree(AccessionNumber)

Tree = gethmmtree(...,'ToFile',ToFileValue)
Tree = gethmmtree(...,'Type', TypeValue)

Arguments
AccessionNumber Accession number in the PFAM database

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

TypeValue Property to control which alignments are
included in the tree. Enter either 'seed' or
'full'. The default value is 'full'

Description Tree = gethmmtree(AccessionNumber) searches for the PFAM family
accession number in the PFAM database and returns an object (Tree)
containing a phylogenetic tree representative of the protein family.

Tree = gethmmtree(...,'ToFile', ToFileValue) saves the data
returned from the PFAM database in the file ToFileValue.

Tree = gethmmtree(...,'Type', TypeValue), when Type is 'seed',
returns a tree with only the alignments used to generate the HMM
model. When Type is 'full', returns a tree with all of the alignments
that hit the model. .

Examples Retrieve a phylogenetic tree built from the multiple aligned sequences
used to train the HMM profile model for global alignment. The PFAM
accession number PF00002 is for the 7-transmembrane receptor protein
in the secretin family.

tree = gethmmtree(2, 'type', 'seed')
tree = gethmmtree('PF00002', 'type', 'seed')

6-87

gethmmtree

See Also Bioinformatics Toolbox functions, fastaread, gethmmprof, pfamhmmread

6-88

getpdb

Purpose Retrieve protein structure information from the PDB database

Syntax Data = getpdb('PDBid',
'PropertyName', PropertyValue)

getpdb(..., 'ToFile', ToFileValue)
getpdb(..., 'MirrorSite', MirrorSiteValue)

Arguments
PDBid Unique identifier for a protein structure

record. Each structure in the PDB is
represented by a 4-character alphanumeric
identifier.

For example, 4hhb is the identification code
for hemoglobin.

ToFileValue Property to specify the location and
filename for saving data. Enter either a
filename or a path and filename supported
by your system (ASCII text file).

MirrorSiteValue Property to select Web site. Enter either
http://rutgers.rcsb.org/pdb to use
the Rutgers University Web site, or
enter http://nist.rcsb.org/pdb for
the National Institute of Standards and
Technology site.

Description getpdb retrieves sequence information from the Protein Data Bank.
This database contains 3-D biological macromolecular structure data.

Data = getpdb('PDBid', 'PropertyName',PropertyValue) searches
for the ID in the PDB database and returns a MATLAB structure
containing the following fields:

Header
Title

6-89

getpdb

Compound
Source
Keywords
ExperimentData
Authors
Journal
Remark1
Remark2
Remark3
Sequence
HeterogenName
HeterogenSynonym
Formula
Site
Atom
RevisionDate
Superseded
Remark4
Remark5
Heterogen
Helix
Turn
Cryst1
OriginX
Scale
Terminal
HeterogenAtom
Connectivity

getpdb(..., 'ToFile', ToFileValue) saves the data returned from
the database to a file. Read a PDB formatted file back into MATLAB
using the function pdbread.

getpdb(...,'MirrorSite', MirrorSiteValue) allows you to choose
a mirror site for the PDB database. The default site is the San
Diego Supercomputer Center, http://www.rcsb.org/pdb. See

6-90

getpdb

http://www.rcsb.org/pdb/mirrors.html for a full list of PDB mirror
sites.

Examples Retrieve the structure information for the electron transport (heme
protein) with PDB ID 5CYT.

pdbstruct = getpdb('5CYT')

See Also Bioinformatics Toolbox functions getembl, getgenbank, getgenpept,
getpir, pirread

6-91

getpir

Purpose Retrieve sequence data from the PIR-PSD database

Syntax Data = getpir('AccessionNumber',
'PropertyName', PropertyValue)

getpir(..., 'ToFile', ToFileValue)
getpir(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record.

Enter a unique combination of letters and
numbers.

ToFileValue Property to specify the location and
filename for saving data. Enter either a
filename or a path and filename supported
by your system.

SequenceOnlyValue Property to control getting the sequence
only. Enter either true or false.

Description Data = getpir('AccessionNumber',
'PropertyName',PropertyValue) searches for the
accession number in the PIR-PSD database, and returns a MATLAB
structure containing the following fields:

Entry
EntryType
Title
Organism
Date
Accessions
Reference
Genetics
Classification
Keywords
Feature

6-92

getpir

Summary
Sequence

getpir(..., 'ToFile', ToFileValue) saves the data retrieved from
the PIR-PSD database in a file. Read a PIR-PSD formatted file back
into MATLAB using the function pirread.

getpir(..., 'SequenceOnly', SequenceOnlyValue) returns only the
sequence information for the protein as a string if SequenceOnly is true.

The Protein Sequence Database (PIR-PSD) is maintained by the
Protein Information Resource (PIR) division of the National Biomedical
Research Foundation (NBRF), which is affiliated with Georgetown
University Medical Center.

Examples Return a structure, pirdata, that holds the result of a query into the
PIR-PSD database using 'cchu' as the search string.

pirdata = getpir('cchu')

pirdata =
Entry: 'CCHU'

EntryType: 'complete'
Title: 'cytochrome c [validated] - human'

Organism: [1x1 struct]
Date: [1x1 struct]

Accessions: 'A31764; A05676; I55192; A00001'
Reference: {[1x1 struct] [1x1 struct] [1x1 struct]

[1x1 struct]}
Genetics: {[1x1 struct]}

Classification: [1x1 struct]
Keywords: [1x157 char]
Feature: {1x5 cell}
Summary: [1x1 struct]

Sequence: [1x105 char]

Return a string, pirdata, that holds the sequence information for the
query 'cchu' in the PIR-PSD database.

6-93

getpir

pirseq = getpir('cchu','SequenceOnly',true)

Return a structure, pirdata, that holds the result of a query into the
PIR database using 'cchu' as the search string. It also creates a text
file, cchu.pir, in the current folder that holds the data retrieved from
the PIR database. Note that the entire data retrieved from the database
is stored in ToFileValue even if SequenceOnly is true.

pirdata = getpir('cchu', 'ToFile','cchu.pir')

See Also Bioinformatics Toolbox functions genpeptread, getgenpept, getpdb,
pdbread, pirread

6-94

gonnet

Purpose Return a Gonnet scoring matrix

Syntax gonnet

Description PAM 250 matrix recommended by Gonnet, Cohen & Benner in Science,
June 5, 1992. Values are rounded to the nearest integer for the following
amino acid order:

C S T P A G N D E Q H R K M I L V F Y W X *.

Gaston. H. Gonnet, Mark A. Cohen, and Steven A. Benner; “Exhaustive
matching of the entire protein sequence database” in Science;
256:1443-1445; June 1992.

See Also Bioinformatics Toolbox functions dayhoff, pam

6-95

gprread

Purpose Read microarray data from a GenePix Results (GPR) file

Syntax GPRData = gprread('File',
'PropertyName', PropertyValue)

gprread(..., 'CleanColNames', CleanColNameValue)

Arguments
File GenePix Results formatted file (file

extension GPR). Enter a filename or a path
and filename.

CleanColNamesValue Property to control creating column names
that MATLAB can use as variable names.

Description GPRData = gprread('File', 'PropertyName', PropertyValue) reads
GenePix results data from File and creates a MATLAB structure
GPRData with the following fields:

Header
Data
Blocks
Columns
Rows
Names
IDs
ColumnNames
Indices
Shape

gprread(..., 'CleanColNames', CleanColNamesValue). A GPR file
may contain column names with spaces and some characters that
MATLAB cannot use in MATLAB variable names. If CleanColNames
is true, gprread returns ColumnNames that are valid MATLAB
variable names and names that you can use in functions. By default,
CleanColNames is false and ColumnNames may contain characters that
are invalid for MATLAB variable names.

6-96

gprread

The field Indices of the structure contains MATLAB indices that can be
used for plotting heat maps of the data.

For more details on the GPR format, see

http://www.axon.com/GN_GenePix_File_Formats.html

For a list of supported file format versions, see

http://www.axon.com/gn_GPR_Format_History.html

Sample data can be found at the following Web address. Save this file to
your working directory to run the example below.

http://www.axon.com/genomics/Demo.gpr

GenePix is a registered trademark of Axon Instruments, Inc.

Examples % Read in a sample GPR file and plot the median
% foreground intensity for the 635nm channel.
gprStruct = gprread('mouse_alpd.gpr')
maimage(gprStruct,'F635 Median');

% Alternatively, create a similar plot using
% more basic graphics commands.

f635Col = find(strcmp(gprStruct.ColumnNames,'F635 Median'));
F635Median = gprStruct.Data(:,f635Col);
imagesc(F635Median(gprStruct.Indices));

colormap bone
colorbar

See Also Bioinformatics Toolbox functions galread, maimage, sptread

6-97

hmmprofalign

Purpose Align a query sequence to a profile using hidden Markov model based
alignment

Syntax Alignment = hmmprofalign(Model, Seq,
'PropertyName', PropertyValue)

[Alignment, Score] = hmmprofalign(Model, Seq)

hmmprofalign(..., 'ShowScore', ShowScoreValue)
hmmprofalign(..., 'Flanks', FlanksValue)
hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue)
hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

Seq Amino acid or nucleotide sequence. You
can also enter a structure with the field
Sequence.

ShowScoreValue Property to control displaying the scoring
space and the winning path. Enter either
true or falase. The default value is false.

FlanksValue Property to control include the symbols
generated by the FLANKING INSERT
states in the output sequence. Enter either
true or false. The default value is false.

ScoreFlanksValue Property to control including the transition
probabilities for the flanking states in the
raw score. Enter either true or false.
Default value is false.

ScoreNullTransValue Property to control adjusting the raw
score using the null model for transitions
(Model.NullX). Enter either true or false.
The Default value is false.

6-98

hmmprofalign

Description Alignment = hmmprofalign(Model, Seq, 'PropertyName',
PropertyValue) returns the score for the optimal alignment of the
query amino acid or nucleotide sequence (Seq) to the profile hidden
Markov model (Model). Scores are computed using log-odd ratios for
emission probabilities and log probabilities for state transitions.

[Alignment, Score] = hmmprofalign(Model, Seq) returns a string
showing the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE
states respectively (the combined count is equal to the number of states
in the model). Lowercase letters are emitted by the INSERT states. For
more information about the HMM profile, see hmmprofstruct.

[Score, Alignment, Prointer] = hmmprofalign(Model, Seq)
returns a vector of the same length as the profile model with indices
pointing to the respective symbols of the query sequence. Null pointers
(NaN) mean that such states did not emit a symbol in the aligned
sequence because they represent model jumps from the BEGIN state
of a MATCH state, model jumps from the from a MATCH state to the
END state, or because the alignment passed through DELETE states.

hmmprofalign(..., 'ShowScore', ShowScoreValue)when ShowScore
is true, displays the scoring space and the winning path .

hmmprofalign(..., 'Flanks', FlanksValue) when Flanks is true,
includes the symbols generated by the FLANKING INSERT states in
the output sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue) when
ScoreFlanks is true, includes the transition probabilities for the
flanking states in the raw score.

hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransitionValue) when ScoreNullTransitions is true,
adjusts the raw score using the null model for transitions (Model.NullX).

6-99

hmmprofalign

Note Multiple hit alignment is not unsupported in this
implementation. All the Model.LoopX probabilities are ignored.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
load('hmm_model_examples','sequences') % load a sequence example
SCCR_RABIT=sequences(2).Sequence;
[a,s]=hmmprofalign(model_7tm_2,SCCR_RABIT,'showscore',true)

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofestimate,
hmmprofgenerate, hmmprofmerge, hmmprofstruct, pfamhmmread,
showhmmprof

6-100

hmmprofestimate

Purpose Estimate profile HMM parameters using pseudocounts

Syntax hmmprofestimate(Model, MultipleAlignment,
'PropertyName', PropertyValue)

hmmprofestimate(..., 'A', AValue)
hmmprofestimate(..., 'Ax', AxValue)
hmmprofestimate(..., 'BE', BEValue)
hmmprofestimate(..., 'BDx', BDxValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

MultipleAlignment Array of sequences. Sequences can also
be a structured array with the aligned
sequences in a field Aligned or Sequences,
and the optional names in a field Header
or Name.

AValue Property to set the pseudocount weight A.
Default value is 20.

AxValue Property to set the pseudocount weight Ax.
Default value is 20.

BEValue Property to set the background symbol
emission probabilities. Default values are
taken from Model.NullEmission.

BMxValue Property to set the background transition
probabilities from any MATCH state ([M->M
M->I M->D]). Default values are taken from
hmmprofstruct.

BDxValue Property to set the background transition
probabilities from any DELETE state
([D->M D->D]). Default values are taken
from hmmprofstruct.

6-101

hmmprofestimate

Description hmmprofestimate(Model, MultipleAlignment, 'PropertyName',
PropertyValue) returns a structure with the fields containing the
updated estimated parameters of a profile HMM. Symbol emission and
state transition probabilities are estimated using the real counts and
weighted pseudocounts obtained with the background probabilities.
Default weight is A=20, the default background symbol emission for
match and insert states is taken from Model.NullEmission, and the
default background transition probabilities are the same as default
transition probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain
uppercase letters and dashes indicating the model MATCH and
DELETE states agreeing with Model.ModelLength. If model state
annotation is missing, but MultipleAlignment is space aligned, then a
"maximum entropy" criteria is used to select Model.ModelLength states.

Note: Insert and flank insert transition probabilities are not estimated,
but can be modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A
= Avalue when estimating the symbol emission probabilities. Default
value is 20.

hmmprofestimate(...,'Ax', AxValue) sets the pseudocount weight
Ax = Axvalue when estimating the transition probabilities. Default
value is 20.

hmmprofestimate(...,'BE', BEValue) sets the background
symbol emission probabilities. Default values are taken from
Model.NullEmission.

hmmprofestimate(...,'BMx', BMxValue) sets the background
transition probabilities from any MATCH state ([M->M M->I M->D]).
Default values are taken from hmmprofstruct.

hmmprofestimate(..., 'BDx', BDxValue) sets the background
transition probabilities from any DELETE state ([D->M D->D]). Default
values are taken from hmmprofstruct.

6-102

hmmprofestimate

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

6-103

hmmprofgenerate

Purpose Generate a random sequence drawn from the profile HMM

Syntax Sequence = hmmprofgenerate(Model,
'PropertyName', PropertyValue)

[Sequence, Profptr] = hmmprofgenerage(Model)

hmmprofgenerate(..., 'Align', AlignValue)
hmmprofgenerate(..., 'Flanks', FlanksValue)
hmmprofgenerate(..., 'Signature', SignatureValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

AlignValue Property to control using upper case
letters for matches and lower case letters
for inserted letters. Enter either true or
false. The default value is false.

FlanksValue Property to control including the symbols
generated by the FLANKING INSERT
states in the output sequence. Enter either
true or false. The default values is false.

SignatureValue Property to control returning the most
likely path and symbols. Enter either true
or false. Default value is false.

Description Seq = hmmprofgenerate(Model, 'PropertyName', PropertyValue)
returns a string (Seq) showing a sequence of amino acids or nucleotides
drawn from the profile (Model). The length, alphabet, and probabilities
of the Model are stored in a structure. For move information about
this structure, see hmmprofstruct).

[Sequence, Profptr] = hmmprofgenerage(Model) returns a vector of
the same length as the profile model pointing to the respective states
in the output sequence. Null pointers (0) mean that such states do not
exist in the output sequence, either because they are never touched (i.e.

6-104

hmmprofgenerate

jumps from the BEGIN state to MATCH states or from MATCH states
to the END state), or because DELETE states are not in the output
sequence (not aligned output; see below).

hmmprofgenerate(..., 'Align', AlignValue) if Align is true, the
output sequence is aligned to the model as follows: uppercase letters
and dashes correspond to MATCH and DELETE states respectively
(the combined count is equal to the number of states in the model).
Lowercase letters are emitted by the INSERT or FLANKING INSERT
states. If Align is false, the output is a sequence of uppercase symbols.
The default value is true.

hmmprofgenerate(..., 'Flanks', FlanksValue) if Flanks is true,
the output sequence includes the symbols generated by the FLANKING
INSERT states. The default value is false.

hmmprofgenerate(..., 'Signature', SignatureValue) if Signature
is true, returns the most likely path and symbols. The default value
is false.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
rand_sequence = hmmprofgenerate(model_7tm_2)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

6-105

hmmprofmerge

Purpose Concatenate the prealigned strings of several sequences to a profile
HMM

Syntax A = hmmprofmerge(Sequences)
hmmprofmerge(Sequences, Names)
hmmprofmerge(Sequences, Names, Scores)

Arguments
Sequences Array of sequences. Sequences can also

be a structured array with the aligned
sequences in a field Aligned or Sequences,
and the optional names in a field Header
or Name.

Names

Scores Pairwise alignment scores from the
function hmmprofalign. Enter a vector of
values with the same length as the number
of sequences in Sequences.

Description hmmprofmerge(Sequences) displays a set of prealigned sequences to a
HMM model profile. The output is aligned corresponding to the HMM
states.

• Match states — Uppercase letters

• Insert states — Lowercase letters or asterisks (*)

• Delete states — Dashes

Periods (.) are added at positions corresponding to inserts in other
sequences. The input sequences must have the same number of profile
states, that is, the joint count of capital letters and dashes must be
the same.

hmmprofmerge(Sequences, Names) labels the sequences with Names.

6-106

hmmprofmerge

hmmprofmerge(Sequences, Names, Scores) sorts the displayed
sequences using Scores.

Examples load('hmm_model_examples','model_7tm_2') %load model
load('hmm_model_examples','sequences') %load sequences

for ind =1:length(sequences)
[scores(ind),sequences(ind).Aligned] =...

hmmprofalign(model_7tm_2,sequences(ind).Sequence);
end

hmmprofmerge(sequences, scores)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct

6-107

hmmprofstruct

Purpose Create a profile HMM structure

Syntax Model = hmmprofstruct(Length)
Model = hmmprofstruct(Length, 'Field1', FieldValues1,...)
hmmprofstruct(Model, 'Field1', Field1Values1,...)

Arguments
Length Number of match states in the model.

Model Hidden Markov model created with the
function hmmprofstruc.

Field1 Field name in the structure Model. Enter
a name from the table below.

Description Model = hmmprofstruct(Length) returns a structure with the fields
containing the required parameters of a profile HMM. Length specifies
the number of match states in the model. All other mandatory model
parameters are initialized to the default values.

Model = hmmprofstruct(Length, 'Field1', FieldValues1, ...)
creates a profile HMM using the specified fields and parameters. All
other mandatory model parameters are initialized to default values.

hmmprofstruct(Model, 'Field1', Field1Values1, ...) returns the
updated profile HMM with the specified fields and parameters. All other
mandatory model parameters are taken from the reference MODEL.

HMM Profile Structure Format

Model parameters fields (mandatory). All probability values are in the
[0 1] range.

Field name Description

ModelLength Length of the profile (number of MATCH states)

Alphabet 'AA' or 'NT'. Default is 'AA’.

6-108

hmmprofstruct

MatchEmission Symbol emission probabilities in the MATCH
states

Size is [ModelLength x AlphaLength].

Note:

sum(S.MatchEmission,2) = [1;1;1; ... ;1]
Default is 1/AlphaLength.

InsertEmission Symbol emission probabilities in the INSERT
state.

Size is [ModelLength x AlphaLength].

Note:

sum(S.InsertEmission,2) = [1;1;1; ... ;1]
Default is 1/AlphaLength.

NullEmission Symbol emission probabilities in the MATCH
and INSERT states for the NULL model. The
NULL model is used to compute the log-odds
ratio at every state and avoid overflow when the
probabilities are propagated through the model.

Size is [1 x AlphaLength].

Note:

sum(S.NullEmission) = 1
Default is 1/AlphaLength.

6-109

hmmprofstruct

BeginX BEGIN state transition probabilities

Format is

[B->D1 B->M1 B->M2 B->M3 B->Mend]

Notes:

sum(S.BeginX) = 1

For fragment profiles

sum(S.BeginX(3:end)) = 0

Default is [0.01 0.99 0 0 ... 0].

MatchX MATCH state transition probabilities

Format is

[M1->M2 M2->M3 ... M[end-1]->Mend;
M1->I1 M2->I2 ... M[end-1]->I[end-1];
M1->D2 M2->D3 ... M[end-1]->Dend;
M1->E M2->E ... M[end-1]->E]

Notes:

sum(S.MatchX) = [1 1 ... 1]

For fragment profiles

sum(S.MatchX(4,:)) = 0

Default is repmat([0.998 0.001 0.001
0],profLength-1,1).

6-110

hmmprofstruct

InsertX INSERT state transition probabilities

Format is

[I1->M2 I2->M3 ... I[end-1]->Mend;
[I1->I1 I2->I2 ... I[end-1]->I[end-1]]

Note:

sum(S.InsertX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

DeleteX DELETE state transition probabilities. The
format is

[D1->M2 D2->M3 ... D[end-1]->Mend ;
[D1->D2 D2->D3 ... D[end-1]->Dend]

Note: sum(S.DeleteX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

FlankingInsertX Flanking insert states (N and C) used for LOCAL
profile alignment. The format is

[N->B C->T ;
[N->N C->C]

Note: sum(S.FlankingInsertsX) = [1 1]

To force global alignment use

S.FlankingInsertsX = [1 1; 0 0]

Default is [0.01 0.01; 0.99 0.99].

6-111

hmmprofstruct

LoopX Loop states transition probabilities used for
multiple hits alignment. The format is

[E->C J->B ;
E->J J->J]

Note: sum(S.LoopX) = [1 1]

Default is [0.5 0.01; 0.5 0.99]

NullX Null transition probabilities used to provide
scores with log-odds values also for state
transitions. The format is

[G->F ; G->G]

Note: sum(S.NullX) = 1

Default is [0.01; 0.99]

Annotation fields (optional)

Name Model Name

IDNumber Identification Number

Description Short description of the model

A profile Markov model is a common statistical tool for modeling
structured sequences composed of symbols . These symbols include
randomness in both the output (emission of symbols) and the state
transitions of the process. Markov models are generally represented
by state diagrams.

The figure shown below is a state diagram for a HMM profile of length 4.
Insert, match, and delete states are in the regular part (middle section).

6-112

hmmprofstruct

• Match state means that the target sequence is aligned to the profile
at the specific location,

• Delete state represents a gap or symbol absence in the target
sequence (also know as a silent state because it does not emit any
symbol),

• Insert state represents the excess of one or more symbols in the
target sequence that are not included in the profile.

Flanking states (S, N, B, E, C, T) are used for proper modeling of the
ends of the sequence, either for global, local or fragment alignment of
the profile. S, N, E, and T are silent while N and C are used to insert
symbols at the flanks.

Examples hmmprofstruct(100,'Alphabet','AA')

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, pfamhmmread,
showhmmprof

6-113

imageneread

Purpose Read microarray data from an ImaGene Results file

Syntax GPRData = gprread('File',
'PropertyName', PropertyValue)

gprread(..., 'CleanColNames', CleanColNamesValue)

Arguments
File ImaGene Results formatted file Enter a

filename or a path and filename.

CleanColNameValue Property to control creating column names
that MATLAB can use as variable names.

Description imagedata = imagegeenread(File, 'PropertyName',
PropertyValue) reads ImaGene results data from File and creates a
MATLAB structure imagedata containing the following fields:

HeaderAA
Data
Blocks
Rows
Columns
Fields
IDs
ColumnNames
Indices
Shape

imageneread(..., 'CleanColNames', CleanColNamesValue). An
ImaGene file may contain column names with spaces and some
characters that MATLAB cannot use in MATLAB variable names. If
CleanColNames is true, imagene returns ColumnNames that are valid
MATLAB variable names and names that you can use in functions.
By default, CleanColNames is false and ColumnNames may contain
characters that are not valid for MATLAB variable names.

6-114

imageneread

The field Indices of the structure contains MATLAB indices that you
can use for plotting heat maps of the data with the functions image
or imagesc.

For more details on the ImaGene format and example data, see the
ImaGene User Manual. .

ImaGene is a registered trademark of BioDiscovery, Inc.

Examples % Read in a sample ImaGene file and plot the Signal Mean
cy3Data = imageneread('cy3.txt');
maimage(cy3Data,'Signal Mean');

% Read in the Cy5 channel and create a loglog plot of Signal Median
cy5Data = imageneread('cy5.txt');
sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames));
cy3Median = cy3Data.Data(:,sigMedianCol);
cy5Median = cy5Data.Data(:,sigMedianCol);
maloglog(cy3Median,cy5Median,'title','Signal Median');

See Also The Bioinformatics Toolbox functions gprread, maboxplot, maimage,
sptread

6-115

int2aa

Purpose Convert an amino acid sequence from an integer to a letter
representation

Syntax SeqChar = int2aa(SeqInt, 'PropertyName', PropertyValue)

int2aa(..., 'Case', CaseValue)

Arguments
SeqInt Amino acid sequence represented with integers.

Enter a vector of integers from the table Mapping
Amino Acid Integers to Letters below. The array
does not have to be of type integer, but it does
have to contain only integer numbers. Integers are
arbitrarily assigned to IUB/IUPAC letters.

CaseValue Property to select the case of the returned character
string. Enter either 'upper' or 'lower'. Default
is 'upper'.

Mapping Amino Acid Integers to Letters

Amino Acid Code Amino Acid Code Amino Acid

Alanine A1 Isoleucine I10 Tyrosine Y19

Arginine R2 Leucine L11 Valine V20

Asparagine N3 Lysine K12 Aspartic
acid or
Asparagine

B21

Aspartic acid
(aspartate)

D4 Methionine M13 Glutamic
acid or
Glutamine

Z22

Cystine C5 Phenylalanine F14 Any amino
acid

X23

6-116

int2aa

Amino Acid Code Amino Acid Code Amino Acid

Glutamine Q6 Proline P15 Translation
stop

*24

Glutamic acid
(glutamate)

E7 Serine S16 Gap of
indeterminate
length

- 25

Glycine G8 Threonine T17 Unknown or
any integer
not in table

?0

Histidine H9 Tryptophan W18

Description SeqChar = int2aa(SeqInt, 'PropertyName', PropertyValue)
converts a 1-by-N array of integers to a character string using the table
Mapping Amino Acid Interger sot Letters above.

int2aa(..., 'Case', CaseValue) sets the output case of the
nucleotide string. Default is uppercase.

Examples s = int2aa([13 1 17 11 1 21])

s =
MATLAB

See Also Bioinformatics Toolbox functions aminolookup, aa2int, int2nt, nt2int

6-117

int2nt

Purpose Convert a nucleotide sequence from an integer to a letter representation

Syntax SeqChar = int2nt(SeqInt, 'PropertyName', PropertyValue)

int2nt(..., 'Alphabet', AlphabetValue)
int2nt(..., 'Unknown', UnknownValue)
int2nt(..., 'Case', CaseValue)

Arguments
SeqInt Nucleotide sequence represented by integers.

Enter a vector of integers from the table
Mapping Nucleotide Integers to Letters below.
The array does not have to be of type integer,
but it does have to contain only integer
numbers. Integers are arbitrarily assigned to
IUB/IUPAC letters.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'DNA' or 'RNA'.

UnknownValue Property to select the integer value for the
unknown character. Enter a character to map
integers 16 or greater to an unknown character.
The character must not be one of the nucleotide
characters A, T, C, G or the ambiguous nucleotide
characters N, R, Y, K, M, S, W, B, D, H, or V. The
default character is *.

CaseValue Property to select the letter case for the
nucleotide sequence. Enter either 'upper' or
'lower'. The default value is 'lower'.

6-118

int2nt

Mapping Nucleotide Integers to Letters

Nucleotide
Base

Nucleotide
Base

Nucleotide
Base

Adenosine 1–A R - A, G (purine) 6–R B - T, G, C 12–B

Cystine 2–C Y - T, C
(pyrimidine)

7–Y D - A, T, G 13–D

Guanine 3–G K - G, T (keto) 8–K H - A, T, C 14–H

Thymidine
with Alphabet
= 'DNA'

4–T M - A, C (amino) 9–M V - A, G, C 15–V

U - uridine
with Alphabet
= 'RNA'

4–U S - G, C (strong) 10–S - Gap of
indeterminate
length

16–
-

N - A, T, G, C

(any)

5–N W - A, T (weak) * Unknown
(default)

0–*

Description int2nt(SeqNT, 'PropertyName', PropertyValue) converts a 1-by-N
array of integers to a character string using the table Mapping
Nucleotide Letters to Integers above.

int2nt(..., 'Alphabet', AlphabetValue) defines the nucleotide
alphabet to use. The default value is 'DNA', which uses the symbols A,
T, C, and G. If Alphabet is set to 'RNA', the symbols A, C, U, G are used
instead.

6-119

int2nt

int2nt(..., 'Unknown', UnknownValue) defines the character to
represent an unknown nucleotide base. The default character is '*'.

int2nt(..., 'Case', CaseValue) sets the output case of the
nucleotide string. The default is uppercase.

Examples Enter a sequence of integers as a MATLAB vector (space or
comma-separated list with square brackets).

s = int2nt([1 2 4 3 2 4 1 3 2])

s =
ACTGCTAGC

Define a symbol for unknown numbers 16 and greater.

si = [1 2 4 20 2 4 40 3 2];
s = int2nt(si, 'unknown', '#')

s =
ACT#CT#GC

See Also Bioinformatics Toolbox function aa2int, baselookup, int2aa, nt2int

6-120

isoelectric

Purpose Estimate the isoelectric point for an amino acid sequence

Syntax pI = isoelectric(SeqAA,)
'PropertyName', PropertyValue

[pI Charge] = isoelectric(SeqAA,
'PropertyName', PropertyValue)

isoelectric(..., 'PKVals', PKValsValue)
isoelectric(..., 'Charge', ChargeValue)
isoelectric(..., 'Chart', ChartValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string or a vector of integers from the table .
Examples: 'ARN' or [1 2 3].

PKValsValue Property to provide alternative pK values.

ChargeValue Property to select a specific pH for estimating
charge. Enter a number between 0 and 14. The
default value is 7.2.

ChartValue Property to control plotting a graph of charge
versus pH. Enter true or false.

Description isoelectric estimates the isoelectric point (the pH at which the protein
has a net charge of zero) for an amino acid sequence and it estimates
the charge for a given pH (default is pH 7.2). The estimates skewed by
the underlying assumptions that all amino acids are fully exposed to
the solvent, that neighboring peptides have no influence on the pK of
any given amino acid, and that the constitutive amino acids, as well as
the N- and C-termini, are unmodified. Cysteine residues participating
in disulfide bridges also affect the true pI and are not considered here.

6-121

isoelectric

By default, isoelectric uses the EMBOSS amino acid pK table, or you
can substitute other values using the property PKVals.

• If the sequence contains ambiguous amino acid characters (b z * –),
isoelectric ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o) ,
isoelectric ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will
be ignored.

pI = isoelectric(Seq_AA, 'PropertyName', PropertyValue)
returns the isoelectric constant (pI) for an amino acid sequence.

isoelectric(..., 'PKVals', PKValsValue) uses the alternative pK
table stored in the text file PKValValues. For an example of a pK text
file, see the file Emboss.pK.

N_term 8.6
K 10.8
R 12.5
H 6.5
D 3.9
E 4.1
C 8.5
Y 10.1
C_term 3.6

isoelectric(..., 'Charge', ChargeValue) returns the estimated
charge of a sequence for a given pH (ChargeValue).

isoelectric(..., 'Chart', ChartValue) if Chart is true, returns a
graph plotting the charge of the protein versus the pH of the solvent.

6-122

isoelectric

Example % Get a sequence from PDB and estimate the isoelectric point.
pdbSeq = getpdb('1CIV', 'SequenceOnly', true)
% then estimate its isoelectric point
isoelectric(pdbSeq)

% plot the charge against the pH for a short polypeptide sequence
isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)

% Get the Rh blood group D antigen from NCBI and calculates
% its charge at pH 7.3 (typical blood pH)
gpSeq = getgenpept('AAB39602')
[pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)

See Also Bioinformatics functions aacount, molweight

6-123

joinseq

Purpose Join two sequences to produce the shortest supersequence

Syntax SeqNT3 = joinseq(SeqNT1, SeqNT2)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences.

Description joinseq(SeqNT1, SeqNT2) creates a new sequence that is the shortest
supersequence of Seq1 and Seq2. If there is no overlap between the
sequences, then SeqNT2 is concatenated to the end of SeqNT1. If the
length of the overlap is the same at both ends of the sequence, then
the overlap at the end of SeqNT1 and the start of SeqNT2 is used to join
the sequences.

If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the
shortest supersequence and vice versa.

Examples seq1 = 'ACGTAAA';
seq2 = 'AAATGCA';
joined = joinseq(seq1,seq2)

joined =
ACGTAAATGCA

See Also MATLAB functions cat, paren, strcat, strfind

6-124

maboxplot

Purpose Display a box plot for microarray data

Syntax maboxplot(Data, 'PropertyName', PropertyValue)
maboxplot(Data, ColumnName)
maboxplot(MasStruct, FieldName)

maboxplot(..., 'Title', TitleValue)
maboxplot(..., 'Notch', NotchValue)
maboxplot(..., 'Symbol', SymbolValue)
maboxplot(..., 'Orientation', OrientationValue)
maboxplot(..., 'WhiskerLength', WhiskerLengthValue)

H = maboxplot(...)
[H, HLines] = maboxplot(...)

Description maboxplot(Data, 'PropertyName', PropertyValue) displays a box
plot of the values in the columns of Data. Data can be a numeric array
or a structure containing a field called Data.

maboxplot(Data,ColumnName) labels the box plot column names. For
microarray data structures that are block based, maboxplot creates a
box plot of a given field for each block.

maboxplot(MasStruct, FieldName) displays a box plot of field
FieldName for each block in microarray data structure MasStruct.

maboxplot(..., 'Title', TitleValue) allows you to specify the title
of the plot. The default Title is FieldName.

maboxplot(..., 'Notch', NotchValue) if Notch is true, draws
notched boxes. The default is false to show square boxes.

maboxplot(..., 'Symbol', SymbolValue) allows you to specify the
symbol used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue) allows you to
specify the orientation of the box plot. The choices are 'Vertical’ and
'Horizontal'. The default is 'Vertical'.

6-125

maboxplot

maboxplot(..., 'WhiskerLength', WhiskerLengthValue) allows you
to specify the whisker length for the box plot. WhiskerLength defines
the maximum length of the whiskers as a function of the interquartile
range (IQR) (default = 1.5). The whisker extends to the most extreme
data value within WhiskerLength*IQR of the box. If WhiskerLength =
0, then maboxplot displays all data values outside the box, using the
plotting symbol Symbol.

H = maboxplot(...) returns the handle of the box plot axes.

[H, HLines] = maboxplot(...) returns the handles of the lines used
to separate the different blocks in the image.

Examples load yeastdata
maboxplot(yeastvalues,times);
xlabel('Sample Times');

% Using a structure
geoStruct = getgeodata('GSM1768');
maboxplot(geoStruct);

% For block-based data
madata = gprread('mouse_a1wt.gpr');
maboxplot(madata,'F635 Median');
figure
maboxplot(madata,'F635 Median - B635','TITLE',...

'Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions maboxplot, maimage, mairplot,
maloglog, malowess

Statistics Toolbox function boxplot

6-126

maimage

Purpose Display a spatial image for microarray data

Syntax maimage(X, FieldName, 'PropertyName', PropertyValue)

maimage(..., 'Title', TitleValue)
maimage(..., 'ColorBar', ColorBarValue)
maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
H = maimage(...)
[H, HLines] = maimage(...)

Description maimage(X, FieldName, 'PropertyName', PropertyValue) displays
an image of field FieldName from microarray data structure X.
Microarray data can be GenPix Results (GPR) format.

maimage(..., 'Title', TitleValue) allows you to specify the title of
the plot. The default title is FieldName.

maimage(..., 'ColorBar', ColorBarValue) if ColorBar is true, a
colorbar is shown. If ColorBar is false, no colorbar is shown. The
default is for the colorbar to be shown.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
allows you to pass optional Handle Graphics property name/property
value pairs to the function. For example, a name/value pair for color
could be maimage(..., 'color' 'r').

H = maimage(...) returns the handle of the image.

[H, HLines] = maimage(...) returns the handles of the lines used to
separate the different blocks in the image.

Examples madata = gprread('mouse_a1wt.gpr');
maimage(madata,'F635 Median');

maimage(madata,'F635 Median - B635',...
'Title','Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions mairplot, maloglog

6-127

mairplot

Purpose Display intensity versus ratio scatter plot for microarray signals

Syntax mairplot(X, Y, 'PropertyName', PropertyValue)

mairplot(..., 'FactorLines', FactorLinesValue)
mairplot(..., 'Title', TitleValue)
mairplot(..., 'Labels', LabelsValue)
mairmage(..., 'HandleGraphicsPropertyName' PropertyValue)
[Intensity, Ratio] = mairplot(...)
[Intensity, Ratio, H] = mairplot(...)

Arguments
X, Y

FactorLinesValue Property to specify a factor of change.

TitleValue Property to specify a title for the plot.

LabelsValue Property to specify labels for the plot.

HandleGraphicsValue Property to pass optional property
name/value pairs from Handle Graphics.

Description mairplot(X, Y, 'PropertyName', PropertyValue) creates an
intensity versus ratio scatter plot of X versus Y.

mairplot(..., 'FactorLines', FactorLinesValue) adds lines
showing a factor of N change.

mairplot(..., 'Title', TitleValue) allows you to specify a title
for the plot.

mairplot(..., 'Labels', LabelsValue) allows you to specify a cell
array of labels for the data. If labels are defined, then clicking a point
on the plot shows the label corresponding to that point.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
allows you to pass optional Handle Graphics property name/property
value pairs to the function.

6-128

mairplot

[Intensity, Ratio] = mairplot(...) returns the intensity and ratio
values.

[Intensity, Ratio, H] = mairplot(...) returns the handle of the
plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = maStruct.Data(:,36);
cy5data = maStruct.Data(:,37);
positiveVals = (cy3data>0) & (cy5data>0);
cy3data(~positiveVals) = [];
cy5data(~positiveVals) = [];
mairplot(cy3data,cy5data,'title','R vs G')
figure
names = maStruct.Names(positiveVals);
mairplot(cy3data,cy5data,'FactorLines',2,...

'Labels',maStruct.Names)

See Also Bioinformatics Toolbox functions maboxplot, maloglog, malowess

6-129

maloglog

Purpose Create a loglog plot of microarray data

Syntax maloglog(X, Y, 'PropertyName', PropertyValue)

maloglog(..., 'FactorLines', FactorLinesValue)
maloglog(..., 'Title', TitleValue)
maloglog(..., 'Labels', LablesValues)
maloglog(..., HandleGraphics name/value)
H = maloglog(...)

Description maloglog(X, Y, 'PropertyName', PropertyValue) creates a loglog
scatter plot of X versus Y.

maloglog(..., 'FactorLines', N) adds lines showing a factor of N
change.

maloglog(..., 'Title', TitleValue) allows you to specify a title
for the plot.

maloglog(..., 'Labels', LabelsValues) allows you to specify a cell
array of labels for the data. If Labels is defined, then clicking a point on
the plot shows the label corresponding to that point.

maloglog(..., HandleGraphics name/value) allows you to pass
optional Handle Graphics property name/property value pairs to the
function.

H = maloglog(...) returns the handle to the plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = maStruct.Data(:,4);
Green = maStruct.Data(:,13);
maloglog(Red, Green, 'title', 'Red versus Green')
figure
maloglog(Red, Green, 'FactorLines', 2,...

'Labels', maStruct.Names)

See Also Bioinformatics Toolbox functions maboxplot, mairplot

6-130

malowess

Purpose Smooth microarray data using the Lowess method

Syntax YSmooth = malowess(X, Y, 'PropertyName', PropertyValue)

malowess(..., 'Order', OrderValue)
malowess(..., 'Robust', RobustValue)
malowess(..., 'Span', SpanValue)

Arguments
X, Y Scatter data.

OrderValue Property to select the order of the algorithm.
Enter either 1 (linear fit) or 2 (quadratic fit).
The default order is 1.

RubustValue Property to select a robust fit. Enter either
true or false.

SpanValue Property to specify the window size. The
default value is 0.05 (5% of total points in X)

Description YSmooth = malowess(X, Y, 'PropertyName', PropertyValue)
smooths scatter data (X, Y) using the Lowess smoothing method. The
default window size is 5% of the length of X.

malowess(..., 'Order', OrderValue) chooses the order of the
algorithm. Note that the MATLAB Curve Fitting Toolbox refers to
Lowess smoothing of order 2 as Loess smoothing.

malowess(..., 'Robust', RobustValue) uses a robust fit when
Robust is set to true. This option can take a long time to calculate.

malowess(..., 'Span', SpanValue) modifies the window size for the
smoothing function. If Span is less than 1, the window size is taken to
be a fraction of the number of points in the data. If Span is greater
than 1, the window is of size Span.

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = maStruct.Data(:,4);

6-131

malowess

cy5data = maStruct.Data(:,13);
[x,y] = mairplot(cy3data, cy5data);
drawnow
ysmooth = malowess(x,y);
hold on;
plot(x,ysmooth,'rx');
ynorm = y - ysmooth;

See Also Bioinformatics Toolbox functions mairplot, maloglog, mamadnorm,
mameannorm

6-132

mamadnorm

Purpose Normalize microarray data by median absolute deviation (MAD)

Syntax XNorm = mamadnorm(X, 'PropertyName', PropertyValue)
[XNorm, MAD] = mamadnorm(X)

mamadnorm(..., 'Global', GlobalValue)

Description XNorm = mamadnorm(X, 'PropertyName', PropertyValue) divides the
values in each column of X by the MAD of the column.

[XNorm, MAD] = mamadnorm(X) returns the median absolute deviation.

mamadnorm(..., 'Global', GlobalValue) if Global is true, divides
the values in the data set by the global MAD, as opposed to the MAD of
each column of the data.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = maStruct.Data(:,4);
Green = maStruct.Data(:,13);
maloglog(Red,Green,'factorlines',true)
figure
normRed = mamadnorm(Red);
normGreen = mamadnorm(Green);
maloglog(normRed,normGreen,'title','Normalized',...

'factorlines',true)

See Also Bioinformatics Toolbox functions malowess, mameannorm

6-133

mameannorm

Purpose Normalize microarray data using the global mean

Syntax XNorm = mameannorm(X, 'PropertyName', PropertyValue)
[XNorm, ColMean] = mameannorm(X)

mameannorm(..., 'Prctile', PrctileValue)
mameannorm(..., 'Global', GlobalValue)

Description XNorm = mameannorm(X, 'PropertyName', PropertyValue) divides
the values in each column of X by the mean column intensity.

[XNorm, ColMean] = mameannorm(X) returns the column means used
to scale the data.

mameannorm(..., 'Prctile', PrctileValue) scales the mean of the
percentile Prctile for the data. This is useful to prevent large outliers
from skewing the normalization.

mameannorm(..., 'Global', GlobalValue) if Global is true, divides
the values in the data set by the global mean of the data, as opposed to
the mean of each column of the data.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = maStruct.Data(:,4);
Green = maStruct.Data(:,13);
maloglog(Red,Green,'factorlines',true)
figure
normRed = mameannorm(Red);
normGreen = mameannorm(Green);
maloglog(normRed,normGreen,'title','Normalized',...

'factorlines',true)

See Also Bioinformatics Toolbox functions malowess, mamadnorm

6-134

mapcaplot

Purpose Creates a Principal Component plot of expression profile data

Syntax mapcaplot(Data)
mapcaplot(Data,Label)

Arguments
Data Microarray data

Label Data point labels.

Description mapcaplot(Data) creates 2D scatter plots of principal components of
the array DATA. The principal components used for the x and y data are
selected from popup menus, below each scatter plot.

Once the principal components have been plotted, a region can be
selected in either axes with the mouse. This will highlight the points
in the selected region, and the corresponding points in the other axes.
This will also display a list of the row numbers of the selected points
in the list box. Selecting an entry in the list box will display a label
with the row number in each axes, at the corresponding point. Clicking
on a point in the scatter plot will display a label with its row number
until the mouse is released.

mapcaplot(Data,Label) uses the elements of the cell array of strings
Label, instead of the row numbers, to label the data points.

Examples load filteredyeastdata
mapcaplot(yeastvalues,genes)

See Also Bioinformatics Toolbox function clustergram

Statistical Toolbox function princomp

6-135

molweight

Purpose Calculate the molecular weight of an amino acid sequence

Syntax molweight(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or a

vector of integers from the table . Examples: 'ARN',
[1 2 3]. You can also enter a structure
with the field Sequence.

Description molweight(SeqAA) calculates the molecular weight for the amino acid
sequence SeqAA.

Examples Get the protein sequence for cytochrome c and determine its molecular
weight.

pirdata = getpir('cchu','SequenceOnly',true)
mwcchu = molweight(pirdata)

mwcchu =
1.1749e+004

See Also Bioinformatics Toolbox functions aacount, atomiccomp

6-136

multialignread

Purpose Read a multiple sequence alignment file

Syntax S = multialingread(File)
[Headers, Sequences] = multialignread(File)

Arguments
File Multiple sequence alignment file (ASCII text file).

Enter a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text of a multiple
sequence alignment file.

You can read common multiple alignment file types,
such as ClustalW (.aln) and GCG (.msf)

Description S = multialingread(File) reads a multiple sequence alignment file.
The file contains multiple sequence lines that start with a sequence
header followed by an optional number (not used by multialignread)
and a section of the sequence. The multiple sequences are broken into
blocks with the same number of blocks for every sequence. (for an
example, type open aagag.aln). The output S is a structure array
where S.Header contains the header information and S.Sequence
contains the amino acid or nucleotide sequences.

[Headers, Sequences] = multialignread(File) reads the file into
separate variables Headers and Sequences.

Examples Read a multiple sequence alignment of the gag polyprotein for several
HIV strains.

gagaa = multialignread('aagag.aln')

gagaa =

1x16 struct array with fields:
Header
Sequence

6-137

multialignread

Create a phylogenetic tree with multiply aligned sequences.

Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)
tree = seqlinkage(distances)
phytreetool(tree)

See Also Bioinformatics Toolbox function fastaread, gethmmalignment

6-138

nmercount

Purpose Count the number of n-mers in a nucleotide or amino acid sequence

Syntax nmercount(Seq, Length)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character string or a structure with the field
Sequence.

Length Length of n-mer to count. Enter an integer.

Description nmercount(Seq, Length) counts the number of n-mers or patterns
of a specific length in a sequence.

Examples Count the number of n-mers in an amino acid sequence and display
the first six rows in the cell array.

S = getgenpept('AAA59174','SequenceOnly',true)
nmers = nmercount(S,4);
nmers(1:6,:)

ans =
'apes' [2]
'dfrd' [2]
'eslk' [2]
'frdl' [2]
'gnys' [2]
'lkel' [2]

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount

6-139

nt2aa

Purpose Convert a sequence of nucleotides to a sequence of amino acids

Syntax SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue)

nt2aa(..., 'Frame', FrameValue)
nt2aa(..., 'GeneticCode', GeneticCodeValue)
nt2aa(..., 'AlternativeStartCodons', AlternativeValue)

Arguments
SeqNT DNA nucleotide sequence. Enter a character

string with only the characters A, T, C, and G.
You cannot use the character U, ambiguous
characters, or a hyphen. You can also enter a
structure with the field Sequence.

FrameValue Property to select a frame. Enter 1, 2, 3, or
'ALL'. The default value is 1.

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code on page 6-140. If you use a code name,
you can truncate the name to the first two
characters of the name.

AlternativeValue Property to control the use of alternative
codons. Enter either true or false. The
default value is true.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

6-140

nt2aa

Code Number Code Name

4 Mold, Protozoan, and
Coelenterate Mitochondrial and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita
Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue) converts
a nucleotide sequence to an amino acid sequence using the standard
genetic code.

nt2aa(..., 'Frame', FrameValue) converts a nucleotide sequence
for a specific reading frame to an amino acid sequence. If FrameValue
equals 'ALL', then the three reading frames are converted and the
output is a 3-by-1 cell array.

nt2aa(..., 'GeneticCode', GeneticCodeValue) converts a nucleotide
sequence to an amino acid sequence using a specific genetic code.

6-141

nt2aa

nt2aa(..., 'AlternativeStartCodons', AlternativeValue) controls
the use of alternative start codons. By default, AlternativeStartCodons
is set to true, and if the first codon of a sequence corresponds to a
known alternative start codon, the codon is translated to methionine.

If this option is set to false, then alternative start codons at the start
of a sequence are translated to their corresponding amino acids for the
genetic code that you use, which might not necessarily be methionine.
For example, in the human mitochondrial genetic code, AUA and AUU are
known to be alternative start codons.

For more details of alternative start codons, see

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

Examples Convert the gene ND1 on the human mitochondria genome.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3308;4264)
protein1 = nt2aa(gene,'GeneticCode', 2)
protein2 = getgenpept('NP_536843',SequenceOnly',true)

Convert the gene ND2 on the human mitochondria genome. In this
case, the first codon is att, which is converted to M, while the following
att codons are converted to I. If you set 'AlternativeStartCodons' to
false, then the first codon att is converted to I.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3371:4264)
protein1 = nt2aa(gene,'GeneticCcode',2)
protein2 = getgenpept('NP_536844', 'SequenceOnly',true)

See Also Bioinformatics Toolbox functions aa2nt, baselookup, geneticcode,
revgeneticcode

6-142

nt2int

Purpose Convert a nucleotide sequence from a letter to an integer representation

Syntax SeqInt = nt2int(SeqChar, 'PropertyName', PropertyValue)

nt2int(..., 'Unknown', UnknownValue)
nt2int(..., 'ACGTOnly', ACGTOnlyValue)

Arguments
SeqNT Nucleotide sequence represented with letters.

Enter a character string from the table Mapping
Nucleotide Letters to Integers below. Integers
are arbitrarily assigned to IUB/IUPAC letters. If
the property ACGTOnly is true, you can only enter
the characters A, C, T, G, and U.

UnknownValue Property to select the integer for unknown
characters. Enter an integer. Maximum value is
255. Default value is 0.

ACGTOnlyValue Property to control the use of ambiguous
nucleotides. Enter either true or false. Default
value is false.

Mapping Nucleotide Letters to Integers

Base Code Base Code Base Code

Adenosine A—1 A, G (purine) R—6 T, G, C R—12

Cytidine C—2 T, C
(pyrimidine)

Y—7 A, T, G Y—13

Guanine G—3 G, T (keto) K—8 A, T, C K—14

Thymidine T—4 A, C (amino) M—9 A, G, C V—15

6-143

nt2int

Base Code Base Code Base Code

Uridine U—4 G, C (strong) S—10 Gap of
indeterminate
length

-
—16

A, T, G, C (any) N—5 A, T (weak) W—11 Unknown
(default)

*—0

Description nt2int(SeqNT, 'PropertyName', PropertyValue) converts a
character string of nucleotides to a 1-by-N array of integers using
the table Mapping Nucleotide Letters to Integers above. Unknown
characters (characters not in the table) are mapped to 0. Gaps
represented with hyphens are mapped to 16.

nt2int(SeqNT,'Unknown',UnknownValue) defines the number used to
represent unknown nucleotides. The default value is 0.

nt2int(SeqNT,'ACGTOnly', ACGTONlyValue) if ACGTOnly is true, the
ambiguous nucleotide characters (N, R, Y, K, M, S, W, B, D, H, and V) are
represented by the unknown nucleotide number.

Examples Convert a nucleotide sequence with letters to integers.

s = nt2int('ACTGCTAGC')

s =
1 2 4 3 2 4 1 3 2

See Also Bioinformatics Toolbox function aa2int, baselookup, int2aa, int2nt

6-144

ntdensity

Purpose Plot the density of nucleotides along a sequence

Syntax ntdensity(SeqNT, 'PropertyName', PropertyValue)

ntdenstiy(..., 'Window', WindowValue)
[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue)

Description ntdensity(SeqNT) plots the density of nucleotides A, T, C, G in sequence
SeqNT.

Denstity = ntdensity(SeqNT, 'PropertyName', PropertyValue)
returns a MATLAB structure with the density of nucleotides A, C, G,
and T.

ntdensity(..., 'Window', WindowValue) uses a window of
length Window for the density calculation. The default value is
length(SeqNT)/20.

[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue) returns indices for regions where the CG content of
SeqNT is greater than CGThreshold. The default value for CGThreshold
is 5.

Examples s = randseq(1000, 'alphabet', 'dna');
ndensity(s)

6-145

ntdensity

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount

MATLAB function filter

6-146

nuc44

Purpose Return a NUC44 scoring matrix for nucleotide sequences

Syntax ScoringMatrix = nuc44

Description The nuc44 scoring matrix uses ambiguous nucleotide codes and
probabilities rounded to the nearest integer.

Scale = 0.277316

Expected score = -1.7495024, Entropy = 0.5164710 bits

Lowest score = -4, Highest score = 5

Order: A C G T R Y K M S W B D H V N

[Matrix, MatrixInfo] = nuc44 returns the structure of information
about the matrix with Name and Order.

6-147

nwalign

Purpose Globally align two sequences using the Needleman-Wunsch algorithm

Syntax [Score, Alignment] = nwalign(Seq1, Seq2,
'PropertyName', PropertyValue)

nwalign(...,'ScoringMatrix', ScoringMatrixValue)
nwalign(...,'GapOpen', GapOpenValue)
nwalign(...,'ExtendGap', ExtendGapValue)
nwalign(...,'Alphabet', AlphabetVlaue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequence. Enter a

character string or a structure with the field
Sequence.

ScoringMatrixValue Enter the name of a scoring matrix. Values
are 'PAM40’, 'PAM250', DAYHOFF, GONNET,
'BLOSUM30' increasing by 5 to 'BLOSUM90',
'BLOSUM62', or 'BLOSUM100'.

The default value when AlphabetValue = 'aa'
is 'BLOSUM50', while the default value when
AlphabetValue = 'nt' is nuc44.

GapOpenValue Property to specify the penalty for opening a
gap. The default value is 8.

ExtendGapValue Property to specify the penalty for extending
a gap. If ExtendGap is not specified, then the
default value is equal to GapOpen.

AlphabetValue Property to select the type of sequence. Value is
either'AA' or 'NT'. The default value is 'AA'.

Description [Score, Alignment] = nwalign(Seq1, Seq2, 'PropertyName',
PropertyValue) returns a string showing an optimal global alignment
for the sequences. Amino acids that match are indicated with the
symbol |, while related amino acids (nonmatches with a positive scoring
matrix value) are indicated with the symbol :. Units for Score are bits.

6-148

nwalign

nwalign(..., 'ScoringMatrix', ScoringMatirxValue) specifies the
scoring matrix to use for the alignment.

nwalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment.

nwalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

nwalign(..., 'Alphabet', AlphabetValue) specifies amino acid or
nucleotide sequences.

Examples Globally align two amino acid sequences.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')

Score =
7.3333

Alignment =
VSPAGMASGYD
: | | || ||
I-P-GKAS-YD

Select scoring matrix and gap penalty.

[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...
'scoringmatrix','pam250',...
'gapopen',5)

Score =
2.3333

Alignment =

IGRHRYHIG-G
: || || |

-S--RY-IGRG

6-149

nwalign

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nt2aa,
showalignment, swalign

6-150

palindromes

Purpose Find palindromes in a sequence

Syntax [Position, Length] = palindromes(SeqNT,
'PropertyName',

PropertyValue)
[Postion, Length, Pal] = palindromes(SeqNT)

palindromes(..., 'Length', LengthValue)
palindromes(..., 'Complement', ComplementValue)

Description [Position, Length] = palindromes(SeqNT, 'PropertyName',
PropertyValue) finds all palindromes in sequence SeqNT with a length
greater than or equal to 6, and returns the starting indices, Position,
and the lengths of the palindromes, Length.

[Position, Length, Pal] = palindromes(SeqNT) also returns a cell
array Pal of the palindromes.

palindromes(..., 'Length',LengthValue) finds all palindromes
longer than or equal to Length. The default value is 6.

palindromes(..., 'Complement', ComplementValue) finds
complementary palindromes if Complement is true, that is, where the
elements match their complementary pairs A-T(or U) and C-G instead of
an exact nucleotide match.

Examples [p,l,s] = palindromes('GCTAGTAACGTATATATAAT')

p =
11
12

l =
7
7

s =
'TATATAT'
'ATATATA'

6-151

palindromes

[pc,lc,sc] = palindromes('GCTAGTAACGTATATATAAT',...
'Complement',true);

Find the palindromes in a random nucleotide sequence.

a = randseq(100)

a =
TAGCTTCATCGTTGACTTCTACTAA
AAGCAAGCTCCTGAGTAGCTGGCCA
AGCGAGCTTGCTTGTGCCCGGCTGC
GGCGGTTGTATCCTGAATACGCCAT

[pos,len,pal]=palindromes(a)

pos =
74

len =
6

pal =
'GCGGCG'

See Also Bioinformatics Toolbox functions seqrcomplement, seqshowwords

MATLAB functions regexp, strfind

6-152

pam

Purpose Return a PAM scoring matrix

Syntax ScoringMatrix = pam(N, 'PropertyName', PropertyValue)
[ScoringMatirx, MatrixInfo] = pam(N)

ScoringMatrix = pam(..., 'Extended', ExtendedValue)
ScoringMatrix = pam(..., 'Order', 'OrderString')

Arguments
N Enter values 10:10:500. The default ordering

of the output is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

Entering a larger value for N to allow sequence
alignments with larger evolutionary distances.

ExtendedValue Property to add ambiguous characters to the
scoring matrix. Enter either true or false.
Default is false.

OrderString Property to control the order of amino acids in
the scoring matrix. Enter a string with at least
the 20 standard amino acids.

Description ScoringMatrix = pam(N, 'PropertyName', PropertyValue) returns
a PAM scoring matrix for amino acid sequences.

[ScoringMatrix, MatrixInfo] = pam(N) returns a structure with
information about the PAM matrix. The fields in the structure are Name,
Scale, Entropy, Expected, and Order.

B = pam(..., 'Extended', 'ExtendedValue') if Extended is true,
returns a scoring matrix with the 20 amino acid characters, the
ambiguous characters, and stop character (B, Z, X, *), . If Extended is
false, only the standard 20 amino acids are included in the matrix.

B = pam(..., 'Order', 'OrderString') returns a PAM matrix
ordered by the amino acid sequence in Order. If Order does not contain

6-153

pam

the extended characters B, Z, X, and *, then these characters are not
returned.

PAM50 substitution matrix in 1/2 bit units, Expected score = -3.70,
Entropy = 2.00 bits, Lowest score = -13, Highest score = 13.

PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844,
Entropy = 0.354 bits, Lowest score = -8, Highest score = 17.

Examples Get the PAM matrix with N = 50.

PAM50 = pam(50)

PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nwalign,
swalign

6-154

pdbdistplot

Purpose Visualize the intermolecular distances in a PDB file

Syntax pdbdistplot('PDBid')
pdbdistplot('PDBid', Distance)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

Distance Threshold distance in Angstroms shown on a spy plot.
Default value is 7.

Description pdbdistplot displays the distances between atoms and amino acids
in a PDB structure.

pdbdistplot('PDBid') retrieves the entry PDBid from the Protein
Data Bank (PDB) database and creates a heat map showing interatom
distances and a spy plot showing the residues where the minimum
distances apart are less than 7 Angstroms. PDBid can also be the name
of a variable or a file containing a PDB MATLAB structure.

pdbdistplot('PDBid', Distance) specifies the threshold distance
shown on a spy plot.

Examples Show spy plot at 7 Angstroms of the protein cytochrome C from albacore
tuna.

pdbdistplot('5CYT');

Now take a look at 10 Angstroms.

pdbdistplot('5CYT',10);

See Also Bioinformatics Toolbox functions getpdb, pdbread

6-155

pdbread

Purpose Read data from a Protein Data Bank (PDB) file

Syntax PDBData = pdbread('File')

Arguments
File Protein Data Bank (PDB) formatted file (ASCII text file).

Enter a filename, a path and filename, or a URL pointing
to a file. File can also be a MATLAB character array that
contains the text for a PDB file.

Description The Protein Data Bank (PDB) is an archive of experimentally
determined three-dimensional protein structures. pdbread reads data
from a PDB formatted file into MATLAB.

PDBData = pdbread('File') reads the data in PDB formatted text file
File and stores the data in the MATLAB structure PDBData.

The data stored in each record of the PDB file is converted, where
appropriate, to a MATLAB structure. For example, the ATOM records
in a PDB file are converted to an array of structures with the following
fields: AtomSerNo, AtomName, altLoc, resName, chainID, resSeq, iCode,
X, Y, Z, occupancy, tempFactor, segID, element, and charge.

The sequence information from the PDB file is stored in the Sequence
field of PDBData. The sequence information is itself a structure with the
fields NumOfResidues, ChainID, ResidueNames, and Sequence. The field
ResidueNames contains the three-letter codes for the sequence residues.
The field Sequence contains the single-letter codes for the sequence. If
the sequence has modified residues, then the ResidueNames might not
correspond to the standard three-letter amino acid codes, in which case
the field Sequence will contain a ? in the position corresponding to
the modified residue.

For more information about the PDB format, see

http://www.rcsb.org/pdb/docs/format/pdbguide2.2/
guide2.2_frame.html

6-156

http://www.rcsb.org/pdb/docs/format/pdbguide2.2/%0Dguide2.2_frame.html

pdbread

Examples Get information for the human hemoglobin protein with number 1A00
from the Protein Data Bank, store information in the file collagen.pdb,
and then read the file back into MATLAB.

getpdb('1A00','ToFile', 'collagen.pdb')
pdbdata = pdbread('collagen.pdb')

See Also Bioinformatics Toolbox functions genpeptread, getgenpept, getpdb,
pirread

6-157

pdist (phytree)

Purpose Calculate the pairwise patristic distances in a phytree object

Syntax D = pdist(Tree)
D = pdist(..., 'Nodes', NodeValue)
D = pdist(... ,'Squareform', SquareformValue)
[D,C] = pdist(Tree)

Arguments
Tree Phylogenetic tree object created with the

function phytree.

NodeValue Property to select the nodes. Enter either
'leaves' (default) or ’all’.

SquareformValue Property to control creating a square matrix.

Description D = pdist(Tree) returns a vector (D) containing the patristic distances
between all pairs of leaf nodes in a phygtree object (Tree). The patristic
path distances are computed by following paths through the branches
of the tree and adding the patristic branch distances originally created
with seqlinkage.

The output vector D is arranged in the order ((2,1),(3,1),...,
(M,1),(3,2),...(M,3),.....(M,M-1)) (the lower left triangle of the
full M-by-M distance matrix). To get the distance between the Ith and
Jth nodes (I > J), use the formula D((J-1)*(M-J/2)+I-J). M is the
number of leaves).

D = pdist(..., 'Nodes', NodeValue) indicates the nodes included in
the computation. When Node='leaves', the output is ordered as before,
but M is the total number of nodes in the tree (NumLeaves+NumBranches).

D = pdist(... ,Squareform', SquareformValue), when Squareform
is true, converts the output into a square formatted matrix, so that
D(I,J) denotes the distance between the Ith and the Jth nodes. The
output matrix is symmetric and has a zero diagonal.

[D,C] = pdist(Tree) returns in C the index of the closest common
parent nodes for every possible pair of query nodes.

6-158

pdist (phytree)

Examples % get the tree distances between pairs of leaves
tr = phytreeread('pf00002.tree')
dist = pdist(tr,'nodes','leaves','squareform',true)

See Also Bioinformatics Toolbox function seqpdist, seqlinkage and the phytree
object methods phytree, phytreetool

6-159

pfamhmmread

Purpose Read data from a PFAM-HMM file

Syntax Data = pfamhmmread('File')

Arguments
File PFAM-HMM formatted file. Enter a filename, a path

and filename, or a URL pointing to a file. File can also
be a MATLAB character array that contains the text
of a PFAM-HMM file.

Description pfamhmmread reads data from a PFAM-HHM formatted file (file saved
with the function gethmmprof) and creates a MATLAB structure.

Data = pfamhmmread('File') reads from File a Hidden Markov
Model described by the PFAM format, and converts it to the MATLAB
structure Data, containing fields corresponding to annotations and
parameters of the model. For more information about the model
structure format, see hmmprofstruct. File can also be a URL or a
MATLAB cell array that contains the text of a PFAM formatted file.

pfammread is based on the HMMER 2.0 file formats.

Examples pfamhmmread('pf00002.ls')

site='http://www.sanger.ac.uk/';
pfamhmmread([site 'cgi-bin/Pfam/download_hmm.pl?id=7tm_2'])

See Also Bioinformatics Toolbox functions gethmmalignment, gethmmprof,
hmmprofalign, hmmprofstruct, showhmmprof

6-160

phytree

Purpose Object constructor for a phylogenetic tree object

Syntax Tree = phytree(B)
Tree = phytree(B, D)
Tree = phytree(B, C)
Tree = phytree(BC)
Tree = phytree(..., N)

Arguments
B Numeric array of size [NUMBRANCHES X 2] in which

every row represents a branch of the tree. It contains
two pointers to the branch or leaf nodes.

C Column vector with distances for every branch.

D Column vector with distances from every node to their
parent branch.

BC Combined matrix with pointers to branch or leaves, and
distances of branches.

N Cell array with the names of leafs and branches.

Description Tree = phythree(B) creates an ultrametric phylogenetic tree object.

B is a numeric array of size [NUMBRANCHES X 2] in which every row
represents a branch of the tree and it contains two pointers to the
branch or leave nodes which are its children.

Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are
numbered from NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note that
because only binary trees are allowed, NUMLEAVES = NUMBRANCHES + 1.

Branches are defined in chronological order (for example, B(i,:) >
NUMLEAVES + i). As a consequence, the first row can only have pointers
to leaves, and the last row must represent the root branch. Parent-child
distances are set to 1, unless the child is a leaf and to satisfy the
ultrametric condition of the tree its distance is increased.

Given a tree with 3 leafs and 2 branches as an example.

6-161

phytree

In the MATLAB Command window, type

B = [1 2 ; 3 4]
tree = phytree(B)
view(tree)

Tree = phytree(B, D) creates an additive phylogenetic tree object with
branch distances defined by D. D is a numeric array of size [NUMNODES X
1] with the distances of every child node (leaf or branch) to its parent

6-162

phytree

branch equal to NUMNODES = NUMLEAVES + NUMBRANCHES. The last
distance in D is the distance of the root node and is meaningless.

b = [1 2 ; 3 4]: d = [1 2 1.5 1 0]
view(phytree(b,d)

Tree = phytree(B, C) creates an ultrametric phylogenetic tree object
with branch distances defined by C. C is a numeric array of size
[NUMBRANCHES X 1] with the coordinates of every branch node. In
ultrametric trees all the leaves are at the same location (for example,
same distance to the root).

b = [1 2 ; 3 4]; c = [1 4]'
view(phytree(b,c))

6-163

phytree

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree
object with branch pointers in BC(:,[1 2]) and branch coordinates in
BC(:,3). Same as phytree(B,C).

Tree = phytree(..., N) specifies the names for the leaves and/or the
branches. N is a cell of strings. If NUMEL(N)==NUMLEAVES, then the names
are assigned chronologically to the leaves. If NUMEL(N)==NUMBRANCHES,
the names are assigned to the branch nodes. If NUMEL(N)==NUMLEAVES +
NUMBRANCHES, all the nodes are named. Unassigned names default to
'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

Examples Create phylogenetic tree for a set of multiply aligned sequences.

Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)
tree = seqlinkage(distances)

6-164

phytree

phytreetool(tree)

See Also Bioinformatics Toolbox functions phytreeread, phytreetool,
phytreewrite, seqlinkage, seqpdist, and the phytree object methods
get (phytree), select

6-165

phytreeread

Purpose Read phylogenetic tree files

Syntax Tree = phytreeread(File)

Arguments
File Newick formatted tree files (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text for a file.

Tree phytree object created with the function phytree.

Description Tree = phytreeread(Filename) reads a Newick formatted tree file and
returns a phytree object in the MATLAB workspace with data from
the file.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

Note This implementation only allows binary trees. Non-binary trees
are translated into a binary tree with extra branches of length 0.

Examples tr = phytreeread('pf00002.tree')

See Also Bioinformatics Toolbox functions gethmmtree, phytreetool,
phytreewrite and the phytree object method phytree

6-166

phytreetool

Purpose View, edit, and explore phylogenetic tree data

Syntax phytreetool(Tree)
phytreetool(File)

Arguments
Tree Phytree object created with the function phytree or

phytreeread.

File Newick or ClustalW tree formatted file (ASCII text file)
with phylogenetic tree data. Enter a filename, a path
and filename, or a URL pointing to a file. File can also
be a MATLAB character array that contains the text for
a Newick file.

Description phytreetool is an interactive GUI that allows you to view, edit, and
explore phylogenetic tree data. This GUI allows branch pruning,
reordering, renaming, and distance exploring. It can also open or save
Newick formatted files.

phytreetool(Tree) loads data from a phytree object in the MATLAB
workspace into the GUI.

phytreetool(File) loads data from a Newick formatted file into the
GUI.

Examples tr= phytreeread('pf00002.tree')
phytreetool(tr)

See Also Bioinformatics Toolbox functions phytreeread, phytreewrite and the
phytree object methods phytree, plot (phytree), view (phytree)

6-167

phytreewrite

Purpose Write a phylogenetic tree object to a Newick formatted file

Syntax phytreewrite('File', Tree)
phytreewrite(Tree)

Arguments
File Newick formatted file. Enter either a filename or a path

and filename supported by your operating system (ASCII
text file).

Tree Phylogenetic tree object. Tree must be an object created
with either the function phytree or imported using the
function phytreeread.

Description phytreewrite('File', Tree) copies the contents of a phytree object
from the MATLAB workspace to a file. Data in the file uses the Newick
format for describing trees.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

phytreewrite(Tree) opens the Save Phylogenetic tree as dialog box
for you to enter or select a filename.

Examples Read tree data from a Newick formatted file.

tr = phytreeread('pf00002.tree')

Remove all the ’mouse’ proteins

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Write pruned tree data to a file.

6-168

phytreewrite

phytreewrite('newtree.tree', tr)

See Also Bioinformatics Toolbox functions phytreeread, phytreetool,
seqlinkage, and the phytree object methods phytree,

6-169

pirread

Purpose Read data from a PIR file

Syntax PIRData = pirread('File')
pirread('String')

Arguments
File Protein Information Resource (PIR-PSD) formatted file

(ASCII text file). Enter a filename, a path and filename,
or a URL pointing to a file. File can also be a MATLAB
character array that contains the text for a PIR-PSD file.

String Character string with PIR data.

Description PIRData = pirread('File') reads data from a Protein Information
Resource (PIR-PSD) formatted file File and creates a MATLAB
structure PIRData with the following fields:

Entry
EntryType
Title
Organism
Date
Accessions
Reference
Genetics
Classification
Keywords
Feature
Summary
Sequence: [1x105 char]

pirread('String') attempts to retrieve PIR data from the string
String.

For more information on the PIR-PSD database, see

http://pir.georgetown.edu

6-170

pirread

Examples Get protein information for cytochrome C from the PIR-PSD database,
save the information in the file cchu.txt, and then read the information
back into MATLAB.

getpir('cchu', 'ToFile', 'cchu.txt')
pirdata = pirread('cchu.txt')

See Also Bioinformatics Toolbox functions genpeptread, getpir, pdbread

6-171

plot (phytree)

Purpose Draw a phylogenetic tree

Syntax plot(Tree)
plot(Tree, ActiveBranches)

plot(..., 'Type', TypeValue)
plot(..., 'Orientation', OrientationValue)
plot(..., 'BranchLabels', BranchLabelsValue)
plot(..., 'LeafLabels', LeafLabelsValue)
plot(..., 'TerminalLabels', TerminalLabelsValue)

Arguments
Tree phytree object created with the function

phytree

ActiveBranches Branches veiwable in the figure window.

TypeValue Property to select a method for drawing
a phylogenetic tree. Enter 'phylogram' ,
'cladogram', or 'radial'. The default value
is 'phylogram'.

OrientationValue Property to orient a phylogram or cladogram
tree. Enter 'top', 'bottom', 'left', or
'right'. The default value is 'left'.

BranchLabelsValue Property to control displaying branch labels.
Enter either true or false. The default value
is false.

LeafLabelsValue Property to control displaying leaf labels.
Enter either true or false. The default value
is false.

TerminalLabels Property to control displaying terminal labels.
Enter either true or false. The default value
is false.

6-172

plot (phytree)

Description plot(Tree) draws a phylogenetic tree object into a MATLAB figure as
a phylogram. The significant distances between branches and nodes
are in the horizontal direction. Vertical distances have no significance
and are selected only for display purposes. Handles to graph elements
are stored in the figure field UserData so that you can easily modify
graphic properties.

plot(Tree, ActiveBranches) hides the nonactive branches and
all of their descendants. ActiveBranches is a logical array of size
numBranches x 1 indicating the active branches.

plot(..., 'Type', TypeValue) selects a method for drawing a
phylogenetic tree.

plot(...,'Orientation', OrientationValue) orients a phylogenetic
tree within a figure window. The Orientation property is valid only for
phylogram and cladogram trees.

plot(...,'BranchLabels', BranchLabelsValue) hides or displays
branch labels placed next to the branch node.

plot(...,'LeafLabels', LeafLabelsValue) hides or displays leaf
labels placed next to the leaf nodes.

plot(...,'TerminalLabels', TerminalLabelsValue) hides or
displays terminal labels. Terminal labels are placed over the axis tick
labels and ignored when Type= 'radial'.

H = plot(...) returns a structure with handles to the graph elements.

Examples tr = phytreeread('pf00002.tree')
plot(tr,'Type','radial')

Graph element properties can be modified as follows:

h=get(gcf,'UserData')
set(h.branchNodeLabels,'FontSize',6,'Color',[.5 .5 .5])

See Also Bioinformatics Toolbox functions phytreeread, phytreetool,
seqlinkage

6-173

plot (phytree)

phytree object methods phytree, view (phytree)

6-174

proteinplot

Purpose Display property values for amino acid sequences

Syntax proteinplot(SeqAA)

Arguments
SeqAA Amino acid sequence or a structure with a field Sequence

containing an amino acid sequence.

Description proteinplot is a tool for analyzing a single amino acid sequence.
You can use the results from proteinplot to compare the properties
of several amino acid sequences. It displays smoothed line plots of
various properties such as the hydrophobicity of the amino acids in
the sequence.

Importing sequences into proteinplot

1 In the MATLAB Command Window, type

proteinplot(Seq_AA)

The proteinplot interface opens and the sequence Seq_AA is shown
in the Sequence text box.

2 Alternatively, type or paste an amino acid sequence into the
Sequence text box.

You can or you can import a sequence with the Import dialog box.

1 Click the Import Sequence button. The Import dialog box opens.

2 From the Import From list, select, a variable in the MATLAB
workspace, ASCII text file, FASTA formatted file, GenPept formatted
file, or accession number in the GenPept database.

Information about the properties

You can also access information about the properties from the Help
menu.

6-175

proteinplot

1 From the Help menu, click References. The Help Browser opens
with a list of properties and references.

2 Scroll down to locate the property you are interested in studying.

Working with Properties

When you click on a property a smoothed plot of the property values
along the sequence will be displayed. Multiple properties can be
selected from the list by holding down Shift or Ctrl while selecting
properties. When two properties are selected, the plots are displayed
using a PLOTYY-style layout, with one Y axis on the left and one on
the right. For all other selections, a single Y axis is displayed. When
displaying one or two properties, the Y values displayed are the actual
property values. When three or more properties are displayed, the
values are normalized to the range 0-1.

You can add your own property values by clicking on the Add button
next to the property list. This will open up a dialog that allows you to
specify the values for each of the amino acids. The Display Text box
allows you to specify the text that will be displayed in the selection box
on the main proteinplot window. You can also save the property values
to an m-file for future use by typing a file name into the Filename box.

The Terminal Selection boxes allow you to choose to plot only part of
the sequence. By default all of the sequence is plotted. The default
smoothing method is an unweighted linear moving average with
a window length of five residues. You can change this using the
"Configuration Values" dialog from the Edit menu. The dialog allows
you to select the window length from 5 to 29 residues. You can modify
the shape of the smoothing window by changing the edge weighting
factor. And you can choose the smoothing function to be a linear moving
average, an exponential moving average or a linear Lowess smoothing.

The File menu allows you to Import a sequence, save the plot that you
have created to a FIG file, you can export the data values in the figure
to a workspace variable or to a MAT file, you can export the figure to a
normal figure window for customizing, and you can print the figure.

6-176

proteinplot

The Edit menu allows you to create a new property, to reset the property
values to the default values, and to modify the smoothing parameters
with the Configuration Values menu item.

The View menu allows you to turn the toolbar on and off, and to add
a legend to the plot.

The Tools menu allows you to zoom in and zoom out of the plot, to view
Data Statistics such as mean, minimum and maximum values of the
plot, and to normalize the values of the plot from 0 to 1.

The Help menu allows you to view this document and to see the
references for the sequence properties built into proteinplot

See Also Bioinformatics Toolbox functions aacount, atomiccomp, molweight

MATLAB function plotyy

6-177

prune

Purpose Remove branch nodes from a phylogenetic tree

Syntax T2 = prune(T1, Nodes)
T2 = prune(T1, Nodes, 'exclusive')

Arguments
T1 Phylogenetic tree object. See phytree.

Nodes Nodes to remove from tree.

exclusive Property to control the method of pruning.

Description T2 = prune(T1, Nodes) removes the nodes listed in the vector Nodes
from the tree T1. prune removes any branch or leaf node listed in Nodes
and all their descendants from the tree T1, and returns the modified
tree T2. The parent nodes are connected to the ’brothers’ as required.
Nodes in the tree are labeled as [1:numLeaves] for the leaves and as
[numLeaves+1:numLeaves+numBranches] for the branches. Nodes can
also be a logical array of size [numLeaves+numBranches x 1] indicating
the nodes to be removed.

T2 = prune(T1, Nodes, 'exclusive') removes only the descendants
of the nodes listed in the vector Nodes. Nodes that do not have a
predecessor become leaves in the list Nodes. In this case, pruning is the
process of reducing a tree by turning some branch nodes into leaf nodes,
and removing the leaf nodes under the original branch.

Examples Load a phylogenetic tree created from a protein family

tr = phytreeread('pf00002.tree');
view(tr)

% To :

Remove all the ’mouse’ proteins use

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);

6-178

prune

view(tr)

Remove potential outliers in the tree

[sel,sel_leaves] = select(tr,'criteria','distance',...
'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

tr = prune(tr,~sel_leaves)
view(tr)

See Also Bioinformatics Toolbox function phytree

6-179

ramachandran

Purpose Draw a Ramachandran plot for PDB data

Syntax ramachandran('PDBid')
ramachandran('File')
ramachandran(PDBData)
Angles = ramachandran(...)
[Angles, Handle] = ramachandran(...)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier. For example, 4hhb is the
identification code for hemoglobin.

File Protein Data Bank (PDB) formatted file (ASCII text
file). Enter a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB character
array that contains the text for a PDB file.

PDBData MATLAB structure with PDB formatted data.

Description ramachandran generates a plot of the torsion angle PHI (torsion angle
between the 'C-N-CA-C' atoms) and the torsion angle PSI (torsion angle
between the 'N-CA-C-N' atoms) of the protein sequence.

ramachandran(PDBid) generates the Ramachandran plot for the protein
with PDB code ID.

ramachandran('File') generates the Ramachandran plot for protein
stored in the PDB file File.

ramachandran(PDBData) generates the Ramachandran plot for the
protein stored in the structure PDBData, where PDBData is a MATLAB
structure obtained by using pdbread or getpdb.

Angles = ramachandran(...) returns an array of the torsion angles
PHI, PSI, and OMEGA for the residue sequence.

[Angles, Handle] = ramachandran(...) returns a handle to the plot.

6-180

ramachandran

Examples Generate the Ramachandran plot for the human serum albumin
complexed with octadecanoic acid.

ramachandran('1E7I')

See Also Bioinformatics Toolbox functions getpdb, pdbdistplot, pdbread

Statistics Toolbox function hmmgenerate

6-181

randseq

Purpose Generate a random sequence from a finite alphabet

Syntax Seq = randseq(Length, 'PropertyName', PropertyValue)

randseq(..., 'Alphabet', AlphabetValue)
randseq(..., 'Weights', WeightsValue)
randseq(..., 'FromStructure', FromStructureValue)
randseq(..., 'Case',CaseValue)
randseq(..., 'DataType', DataTypeValue)

Arguments
Length

AlphabetValue Property to select the alphabet for the
sequence. Enter 'dna', 'rna', or 'amino'.
The default value is 'dna'.

WeightsValue Property to specify a weighted random
sequence.

FromStructureValue Property to specify a weighted random
sequence using output structures from
the functions basecount, dimercount,
codoncount, or aacount.

CaseValue Property to select the case of letters in
a sequence when Alphabet is 'char'.
Values are'upper' or 'lower'. The default
value is 'upper'.

DataTypeValue Property to select the data type for a
sequence. Values are 'char' for letter
sequences, and 'uint8' or 'double' for
numeric sequences.

Creates a sequence as an array of
DataType. The default data type is 'char'.

6-182

randseq

Description randseq(...,'Alphabet', AlphabetValue) generates a sequence from
a specific alphabet.

randseq(..., 'Weights', WeightsValue) creates a weighted random
sequence where the ith letter of the sequence alphabet is selected
with weight W(i). The weight vector is usually a probability vector or
a frequency count vector. Note that the ith element of the nucleotide
alphabet is given by int2nt(i), and the ith element of the amino acid
alphabet is given by int2aa(i).

randseq(..., 'FromStructure', FromStructureValue) creates a
weighted random sequence with weights given by the output structure
from basecount, dimercount, codoncount, or aacount.

randseq(..., 'Case', CaseValue) specifies the case for a letter
sequence.

randseq(...,'DataType', DataTypeValue) specifies the data type for
the sequence array.

Examples Generate a random DNA sequence.

randseq(20)

ans =
TAGCTGGCCAAGCGAGCTTG

Generate a random RNA sequence.

randseq(20,'alphabet','rna')

ans =
GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

ans =
DYKMCLYEFGMFGHFTGHKK

6-183

randseq

See Also MATLAB functions rand, randperm, permute, datatypes

6-184

redgreencmap

Purpose Display a red and green colormap

Syntax redgreencmap(Length)

Arguments
Length Length of the colormap. Enter either 256 or 64. The

default value is the length of the colormap of the current
figure.

Description redgreencmap(Length) returns an M-by-3 matrix containing a red and
green colormap. Low values are bright green, values in the center of the
map are black, and high values are red.

redgreencmap, by itself, is the same length as the current colormap.

Examples Reset the color map of the current figure.

pd =gprread('mouse_a1pd.gpr')
maimage(pd,'F635 Median')
colormap(redgreencmap)

See Also Bioinformatics Toolbox function clustergram

MATLAB functions colormap, colormapeditor, jet

6-185

restrict

Purpose Split a sequence at a specified restriction site

Syntax restrict(SeqNT, Enzyme, 'PropertyName', PropertyValue)
restrict(SeqNT, Pattern, Position)
restrict(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters A, T, G,
C, and ambiguous characters R, Y, K, M, S, W, B,
D, H, V, N, or a vector of integers. You can also
enter a structure with the field Sequence.

Enzyme Enter the name of a restriction enzyme from
REBASE.

Pattern Enter a short nucleotide pattern. Pattern
can be a regular expression.

Position Defines the position on Pattern where the
sequence is cut. Position=0 corresponds to
the 5’ end of the Pattern.

PartialDigestValue Property to specify a probability for partial
digestion. Enter a value from 0 to 1.

Description restrict(SeqNT, Enzyme) cuts a sequence at restriction sites defined
by a restriction enzyme in REBASE. The return values are stored in
a cell array of sequences.

6-186

restrict

REBASE, the restriction enzyme database, is a collection of information
about restriction enzymes and related proteins. Search REBASE for the
name of a restriction enzyme at

http://rebase.neb.com/rebase/rebase.html

For more information on REBASE, go to

http://rebase.neb.com/rebase/rebase.html

restrict(SeqNT, Pattern, Position) cuts a sequence at restriction
sites specified by a nucleotide pattern.

restrict(..., 'PartialDigest', PartialDigestValue) simulates
a partial digest where each restriction site in the sequence has a
probability PartilDigest of being cut.

Examples Use the recognition pattern (sequence) GCGC with the point of cleavage
at position 3 to cleave a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';
partsP = restrict(Seq,'GCGC',3);

partsP =
'AGAGGGGTACGCG'
'CTCTGAAAAGCGGGAACCTCGTGGCG'
'CTTTATTAA'

Use the restriction enzyme HspAI (recognition sequence GCGC with the
point of cleavage at position 1) to cleave a nucleotide sequence.

partsE = restrict(Seq,'HspAI')

partsE =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

6-187

restrict

See Also Bioinformatics Toolbox function seqshowwords

MATLAB function regexp

6-188

revgeneticcode

Purpose Get the reverse mapping for a genetic code

Syntax map = revgeneticcode
revgeneticcode(GeneticCode,

'PropertyName', PropertyValue)

revgeneticcode(..., 'Alphabet' AlphabetValue)
revgeneticcode(..., 'ThreeLetterCodes', CodesValue)

Arguments
GeneticCode Enter a code number or code name from the

table Genetic Code on page 6-189. If you use a
code name, you can truncate the name to the
first two characters of the name.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'dna' or 'rna'. The default
value is 'dna'.

CodesValue Property to select one- or three-letter amino
acid codes. Enter true for three-letter code or
false for one-letter code.

Genetic Code

Code Number Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

6-189

revgeneticcode

Code Number Code Name

4 Mold, Protozoan, Coelenterate
Mitochondrial, and
Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita
Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial, and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description revgeneticcode returns a structure containing reverse mappings for
the genetic code.

map = revgeneticcode returns a structure containing the reverse
mapping for the standard genetic code.

revgeneticcode(GeneticCode) returns a structure of the inverse
mapping for alternate genetic codes.

revgeneticcode(..., 'Alphabet' AlphabetValue) defines the
nucleotide alphabet to use in the map.

6-190

revgeneticcode

revgeneticcode(..., 'ThreeLetterCodes', CodesValue) returns the
mapping structure with three-letter amino acid codes as field names
instead of the default single-letter codes if ThreeLetterCodes is true.

Examples moldcode = revgeneticcode(4,'Alphabet','rna');
wormcode = revgeneticcode('Flatworm Mitochondrial',...

'ThreeLetterCode',true);

map = revgeneticcode

map =
Name: 'Standard'

A: {'GCT' 'GCC' 'GCA' 'GCG'}
R: {'CGT' 'CGC' 'CGA' 'CGG' 'AGA' 'AGG'}
N: {'AAT' 'AAC'}
D: {'GAT' 'GAC'}
C: {'TGT' 'TGC'}
Q: {'CAA' 'CAG'}
E: {'GAA' 'GAG'}
G: {'GGT' 'GGC' 'GGA' 'GGG'}
H: {'CAT' 'CAC'}
I: {'ATT' 'ATC' 'ATA'}
L: {'TTA' 'TTG' 'CTT' 'CTC' 'CTA' 'CTG'}
K: {'AAA' 'AAG'}
M: {'ATG'}
F: {'TTT' 'TTC'}
P: {'CCT' 'CCC' 'CCA' 'CCG'}
S: {'TCT' 'TCC' 'TCA' 'TCG' 'AGT' 'AGC'}
T: {'ACT' 'ACC' 'ACA' 'ACG'}
W: {'TGG'}
Y: {'TAT' 'TAC'}
V: {'GTT' 'GTC' 'GTA' 'GTG'}

Starts: {'TAA' 'TAG' 'TGA'}

See Also Bioinformatics Toolbox functions aa2nt, baselookup, geneticcode,
nt2aa

6-191

rna2dna

Purpose Convert an RNA sequence of nucleotides to a DNA sequence

Syntax SeqDNA = rna2dna(SeqRNA)

Arguments
SeqRNA Nucleotide sequence for RNA. Enter a character string

with the characters A, C, U, G, and the ambiguous
nucleotide bases N, R, Y, K, M, S, W, B, D, H, and V.

Description SeqDNA = rna2dna(SeqRNA) converts any uracil nucleotides in an RNA
sequence into thymine (U–>T), and returns in the same format as DNA.
For example, if the RNA sequence is an integer sequence then so is
SeqRNA.

Examples rna2dna('ACGAUGAGUCAUGCUU')

ans =
ACGATGAGTCATGCTT

See Also Bioinformatics Toolbox function dna2rna

MATLAB functions strrep, regexp

6-192

scfread

Purpose Read trace data from a SCF file

Syntax [Sample, Probability, Comments] = scfread('File')
[A,C,T,G, ProbA, ProbC, ProbG, ProbT,
Comments] = scfread ('File')

Arguments
File SCF formatted file. Enter a filename or a path and

filename.

Description scfread reads data from a SCF formatted file into a MATLAB structure.

[Sample, Probability, Comments] = scfread('File') reads an SCF
formatted file and returns the sample data in the structure Sample,
with fields A, C, T, G, probability data in the structure Probability,
and comment information from the file in Comments.

[A,C,T,G, ProbA, ProbC, ProbG, ProbT, Comments] = scfread
('File') reads an SCF formatted file and returns the sample data and
probabilities for nucleotides in separate variables.

SCF files store data from DNA sequencing instruments. Each
file includes sample data, sequence information, and the relative
probabilities of each of the four bases. For more information on SCF
files, see

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

Examples Examples of SCF files can be found at

ftp://ftp.ncbi.nih.gov/pub/TraceDB/example/

Unzip the file bcm-example.tgz with SCF files to your MATLAB
working directory.

[Sample, Probability, Comments] = scfread('HCIUP1D61207.scf')

Sample =

6-193

scfread

A: [10827x1 double]
C: [10827x1 double]
G: [10827x1 double]
T: [10827x1 double]

Probability =
prob_A: [742x1 double]
prob_C: [742x1 double]
prob_G: [742x1 double]
prob_T: [742x1 double]

Comments =

SIGN=A=121,C=103,G=119,T=82
SPAC= 16.25
PRIM=0
MACH=Arkansas_SN312
DYEP=DT3700POP5{BD}v2.mob
NAME=HCIUP1D61207
LANE=6
GELN=
PROC=
RTRK=
CONV=phred version=0.990722.h
COMM=
SRCE=ABI 373A or 377

See Also Bioinformatics Toolbox functions genbankread, traceplot

6-194

select

Purpose Select tree branches and leaves in a phytree object

Syntax S = select(T)
S = select(T, N)
[S, Selleaves, Selbranches] = select(...)

S = select(..., 'Reference', ReferenceValue)
S = select(..., 'Criteria', CriteriaValue)
S = select(..., 'Threshold', ThresholdValue)
S = select(..., 'Exclude', ExcludeValue)
S = select(..., 'Propagate', PropagateValue)

Arguments
Tree Phylogenetic tree created with the function

phytree.

N Number of closest nodes to the root node.

ReferenceValue Property to select a reference point for
measuring distance.

CriteriaValue Property to select a criteria for measuring
distance.

ThresholdValue Property to select a distance value. Nodes with
distances below this value are selected.

ExcludeValue Property to remove (exclude) branch or
leaf nodes from the output. Enter 'none',
'branchs', or 'leaves'. The default value is
'none'.

PropagateValue Property to select propagating nodes toward
the leaves or the root.

Description S = select(Tree, N) returns a logical vector (S) of size [NumNodes
x 1] indicating the N closest nodes to the root node of a phytree
object (Tree) where NumNodes = NumLeaves + NumBranches. The first
criterion select uses is branch levels, then patristic distance (also

6-195

select

known as tree distance). By default, select uses inf as the value of N,
and select(Tree) returns a vector with values of true.

S = select(..., 'Reference', ReferenceValue) changes the
reference point(s) to measure the closeness. Reference can be the
root (default) or leaves. When using leaves, a node can have multiple
distances to its descendant leaves (nonultrametric tree). If this the case,
select considers the minimum distance to any descendant leaf.

S = select(..., 'Criteria', CriteriaValue) changes the criteria
select uses to measure closeness. If C = 'levels' (default), the
first criterion is branch levels and then patristic distance. If C =
'distance', the first criterion is patristic distance and then branch
levels.

S = select(..., 'Threshold', ThresholdValue) selects all the
nodes where closeness is less than or equal to the threshold value V.
Notice that you can also use either of the properties 'criteria' or
'reference', if N is not specified, then N = infF; otherwise you can
limit the number of selected nodes by N.

S = select(..., 'Exclude', ExcludeValue) sets a postfilter that
excludes all the branch nodes from S when E='branches' or all the leaf
nodes when E='leaves'. The default is 'none'.

S = select(..., 'Propagate', PropagateValue) activates a
postfunctionality that propagates the selected nodes to the leaves when
P=='toleaves' or toward the root finding a common ancestor when P
== 'toroot'. The default value is 'none'. P may also be 'both'. The
'Propagate' property acts after the 'Exclude' property.

[S, Selleaves, Selbranches] = select(...) returns two additional
logical vectors, one for the selected leaves and one for the selected
branches.

6-196

select

Examples % Load a phylogenetic tree created from a protein family:
tr = phytreeread('pf00002.tree');

% To find close products for a given protein (e.g. vips_human):
ind = getbyname(tr,'vips_human');
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',0.6,'reference',ind);
view(tr,sel_leaves)

% To find potential outliers in the tree, use
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

view(tr,~sel_leaves)

See Also The Bioinformatics Toolbox functions phytree, phytreetool

phytree object methods pdist, get.

6-197

seq2regexp

Purpose Convert a sequence with ambiguous characters to a regular expression

Syntax seq2regexp(Seq)

Arguments
Seq Nucleotide or amino acid sequence.

Nucleotide Conversions

Nucleotide
Letter Nucleotide

Nucleotide
Letter Nucleotide

A—A Adenosine S—[GC] (Strong)

C—C Cytosine W—[AT] (Weak)

G—G Guanine B—[GTC]

T—T Thymidine D—[GAT]

U—U Uridine H—[ACT]

R—[GA] (Purine) V—[GCA]

Y—[TC] (Pyrimidine) N—[AGCT] Any nucleotide

K—[GT] (Keto) - — - Gap of
indeterminate
length

M—[AC] (Amino) ?—? Unknown

Amino Acid Conversion

Amino Acid Letter Description

B—[DN] Aspartic acid or
asparagine

6-198

seq2regexp

Amino Acid Letter Description

Z—[EQ] Glutamic acid or
glutamine

X—[ARNDCQEGHILKMFPSTWYV] Any amino acid

Description seq2regexp(Seq) converts ambiguous nucleotide or amino acid symbols
in a sequence into a regular expression format using IUB/IUPAC codes.

Examples Convert a nucleotide sequence into a regular expression.

r = seq2regexp('ACWTMAN')

r =
AC[AT]T[AC]A[AGCT]

See Also Bioinformatics Toolbox functions restrict, seqwordcount

MATLAB functions regexp, regexpi

6-199

seqcomplement

Purpose Calculate the complementary strand of a nucleotide sequence

Syntax SeqC = seqcomplement(SeqNT)

Arguments
SeqNT Enter either a character string with the characters A,

T (U), G, C, and ambiguous characters R, Y, K, M, S, W,
B, D, H, V, N, or a vector of integers. You can also enter
a structure with the field Sequence.

Description SeqC = seqcomplement(SeqNT) calculates the complementary strand
(A–>T, C–>G, G–>C, T–>A) of a DNA sequence and returns a sequence in
the same format as SeqNT. For example, if SeqNT is an integer sequence
then so is SeqC.

Examples Return the complement of a DNA nucleotide sequence.

s = 'ATCG';
seqcomplement(s)

ans =
TAGC

See Also Bioinformatics Toolbox functions seqrcomplement, seqreverse

6-200

seqdisp

Purpose Format long sequence output for easy viewing

Syntax seqdisp(Seq)

seqdisp(..., 'Row', RowValue)
seqdisp(..., 'Column', ColumnValue)
seqdisp(..., 'HiddenNumbers', HiddenNumber)

Arguments
Seq Nucleotide or amino acid sequence of

characters. Enter a character array, a FASTA
file name, a MATLAB structure with fields
from GenBank or GenPept. Multiple sequences
are allowed.FASTA files can have the file
extensions fa, fasta, fas, fsa, and fst.

RowValue Property to select the length of each row. Enter
an integer. The default length is 60.

ColumnValue Property to select the column width. Enter an
integer. The default column width is 10.

HiddenNumber Property to control displaying numbers at the
start of each row. Enter true to hide numbers.

Description seqdisp(Seq) prints a sequence (Seq) in rows with a default row length
of 60 and a default column width of 10.

seqdisp(..., 'Row', RowValue) defines the length of each row for the
displayed sequence.

seqdisp(..., ’Column’, ColumnValue) defines the column width of data
for the displayed sequence.

seqdisp(..., ’ShowNumbers’, ShowNumbers), when ShowNumbers is false,
turns the position numbers at the start of each row off. The default is
'true'.

6-201

seqdisp

Examples % Read in sequence information from a GenBank file,
% then display it in rows of 50 with column widths of 10.
M10051 = genbankread('HGENBANKM10051.GBK')
seqdisp(M10051, 'row', 50)

Create and save a FASTA file with two sequences, and then display
it with seqdisp.

hdr = ['Sequnece A'; 'Sequence B'];
seq = ['TAGCTGRCCAAGGCCAAGCGAGCT';'ATCGACYGGTTCCGGTTCGCTCGA']
fastawrite('local.fa', hdr,seq);
seqdisp('local.fa','ShowNumbers', false')

ans =

>Sequnece A
1 TAGCTGRCCA AGGCCAAGCG AGCTTN

>Sequence B
1 ATCGACYGGT TCCGGTTCGC TCGAAN

See Also Bioinformatics Toolbox function getgenbank

6-202

seqdotplot

Purpose Create a dot plot of two sequences

Syntax seqdotplot(Seq1,Seq2)
seqdotplot(Seq1,Seq2, Window, Number)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter two

character strings. Do not enter a vector of integers.
You can also enter a structure with the field
Sequence.

Window Enter an integer for the size of a window.

Number Enter an integer for the number of characters
within the window that match.

Description seqdotplot (Seq1, Seq2) plots a figure that visualizes the match
between two sequences.

seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches
when there are at least Number matches in a window of size Window.

When plotting nucleotide sequences, start with a Window of 11 and
Number of 7.

Matches = seqdotplot(...) returns the number of dots in the dot
plot matrix.

[Matches, Matrix] = seqdotplot(...) = returns the dotplot as a sparse
matrix.

Examples This example shows the similarities between the prion protein (PrP)
nucleotide sequences of two ruminants, the moufflon and the golden
takin.

moufflon = getgenbank('AB060288','Sequence',true);
takin = getgenbank('AB060290','Sequence',true);
seqdotplot(moufflon,takin,11,7)

6-203

seqdotplot

Matches = seqdotplot(moufflon,takin,11,7)
Matches =

5552

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

See Also Bioinformatics Toolbox functions hmmprofalign, nwalign, swalign

6-204

seqlinkage

Purpose Construct a phylogenetic tree from pairwise distances

Syntax Tree = seqlinkage(Dist)
Tree = seqlinkage(Dist, Method)
Tree = seqlinkage(Dist, Method, Names)

Arguments
Dist Pairwise distances generated from the

function seqpdist.

Method Property to select a distance method. Enter
a method from the table below.

Names Property to use alternative labels for leaf
nodes. Enter a vector of structures, with
the fields 'Header' or 'Name', or a cell
array of strings. In both cases the number
of elements you provide must comply with
the number of samples used to generate the
pairwise distances in Dist.

Description Tree = seqlinkage(Dist) returns a phylogenetic tree object from the
pairwise distances (Dist) between the species or products. Dist is a
matrix (or vector) such as is generated by the function seqpdist.

Tree = seqlinkage(Dist, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are

'single' Nearest distance (single linkage method)

'complete' Furthest distance (complete linkage method)

'average' (default) Unweighted Pair Group Method Average
(UPGMA, group average).

'weighted' Weighted Pair Group Method Average
(WPGMA)

6-205

seqlinkage

'centroid' Unweighted Pair Group Method Centroid
(UPGMC)

'median' Weighted Pair Group Method Centroid
(WPGMC)

Tree = seqlinkage(Dist, Method, Names) passes a list of names to
label the leaf nodes (for example, species or products) in a phylogenetic
tree object.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');
% Measure the 'Jukes-Cantor' pairwise distances:
dist = seqpdist(seqs,'method','jukes-cantor',...

'indels','pair');
% Build the phylogenetic tree with the single linkage
% method and pass the names of the sequences:
tree = seqlinkage(dist,'single',seqs)
view(tree)

See Also The Bioinformatics Toolbox functions phytree, phytreewrite, seqpdist

phytree object methods plot and view

6-206

seqmatch

Purpose Find matches for every string in a library

Syntax Index = seqmatch(Strings, Library)

Description Index = seqmatch(Strings, Library) looks through the elements of
Library to find strings that begin with every string in Strings. Index
contains the index to the first occurrence for every string in the query.
Strings and Library must be cell arrays of strings.

Examples lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE
query = {'CALR','VIP'};
h = seqmatch(query,lib);
lib(h)

See Also MATLAB functions strmatch, regexpi

6-207

seqpdist

Purpose Calculate the pairwise distance between biological sequences

Syntax D = seqpdist(Seqs, 'PropertyName', PropertyValue)

seqpdist(..., 'Method', MethodValue)
seqpdist(..., 'Indels', IndelsValue)
seqpdist(..., 'Optargs', OptargsValue)
seqpdist(..., 'PairwiseAlignment',PairwiseAlignmentValue)
seqpdist(..., 'Squareform', SquareformValue)
seqpdist(..., 'Alphabet', AlphabetValue)

seqpdist(..., 'ScoringMatrix', ScoringMatrixValue)
seqpdist(..., 'Scale', ScaleValue
seqpdist(..., 'GapOpen', GapOpenValue)
seqpdist(..., 'ExtendGap', ExtendGapValue)

Arguments
Seqs Cell array with nucleotide or amino acid

sequences.

MethodValue Property to select the method for
calculating pariwise distances.

IndelsValue Property to indicate how to treat gaps.

OptargsValue Property to pass required arguments by
the distance method selected with the
property Method

PairwiseAlignmentValue Property to force pariwise alignment.

SquareFormValue Property to control formatting the output
as a square or triangular matrix.

AlphabetValue Property to select an alphabet. Enter
either 'NT' for nucleotides or 'AA' for
amino acids.

ScoringMatrixValue Property to select a scoring matrix for
pariwise alignment.

6-208

seqpdist

ScaleValue Property to select a scale factor for the
scoring matrix.

GapOpenValue Property to select a gap penalty.

ExtendGapValue Property to select a penalty for extending
a gap.

Description D = seqpdist(Seqs, 'PropertyName', PropertyValue) returns a
vector D containing biological distances between each pair of sequences
stored in the M elements of the cell Seqs.

D is an (M*(M-1)/2)-by-1 vector corresponding to the M*(M-1)/2
pairs of sequences in Seqs. The output D is arranged in the order
((2,1),(3,1),..., (M,1),(3,2),...(M,2),.....(M,M-1)). This is
the lower left triangle of the full M-by-M distance matrix. To get the
distance between the Ith and the Jth sequences for I > J, use the
formula D((J-1)*(M-J/2)+I-J). Seqs can also be a vector of structures
with the field Sequence or a matrix of chars.

seqpdist(..., 'Method', MethodValue) selects the method seqpdist
uses to compute the distances between every pair of sequences.

Distances defined for both nucleotides and amino acids:

'p-distance' Proportion of sites at which the two sequences
are different. p —> 1 for poorly related and
p —> 0 for similar sequences.

'Jukes-Cantor'
(default)

Maximum likelihood estimate of the number
of substitutions between two sequences. For
NT d = -3/4 log(1p * 4/3)

AA d = -19/20 log(1p * 20/19)

'alignment-score' Distance (d) between two sequences (1 and
2) is computed from the pairwise alignment
score (s) as follows:

d(1,2) = (1-s(1,2)/s(1,1))

6-209

seqpdist

* (1-s(1,2)/s(2,2))

This option does not imply that prealigned
input sequences will be realigned, it
only scores them. Use with care; this
distance method does not comply with the
ultrametric condition. In the rare case where
s(x,y)>s(x,x), then d(x,y)=0.

Distances defined only for nucleotides and no scoring of gaps:

'Tajima-Nei' Maximum likelihood estimate considering
the background nucleotide frequencies. It
can be computed from the input sequences
or given by setting 'OPTARGS' to [gA gC gG
gT].

'Kimura' Considers separately the transitional and
transversion nucleotide substitution.

'Tamura' Considers separately the transitional and
transversion nucleotide substitution and the
GC content. GC content can be computed
from the input sequences or given by setting
'OPTARGS'.

6-210

seqpdist

'Hasegawa' Considers separately the transitional and
transversional nucleotide substitution and
the background nucleotide frequencies.
Background frequencies can be computed
from the input sequences or given by setting
'OPTARGS' to [gA gC gG gT].

'Nei-Tamura' Considers separately the transitional
substitution between purines, the
transitional substitution between
pyramidines and the transversional
substitution and the background nucleotide
frequencies. Background frequencies can be
computed from the input sequences or given
by setting 'OPTARGS' to [gA gC gG gT].

Distances defined only for amino acids and no scoring of gaps:

'Poisson' Asumes that the number of amino acid
substitutions at each site has a Poisson
distribution.

'Gamma' Assumes that the number of amino acid
substitutions at each site has a Gamma
distribution with parameter 'a'. 'a' can be
set by 'OPTARGS'. The default value is 2.

A user defined distance function can also be specified using @, for
example, @distfun, the distance function must be of the form:

function D = distfun(S1, S2, OPTARGS)

Taking as arguments two same-length sequences (NT or AA) plus zero
or more additional problem-dependent arguments in OPTARGS, and
returning a scalar that represents the distance between S1 and S2.

seqpdist(..., 'Indels', IndelsValue) indicates how to treat sites
with gaps. Options are

6-211

seqpdist

• 'score' (default) — Scores these sites either as a point mutation or
with the alignment parameters depending on the method selected.

• ’pairwise-del’ — For every pairwise comparison it ignores the sites
with gaps.

• ’complete-del’ — Ignores all the columns in the multiple alignment
that contain a gap, this option is available only if a multiple
alignment was provided at the input Seqs.

seqpdist(..., 'Optargs', OptargsValue) some distance methods
require or accept optional arguments. Use a cell array to pass more
than one input argument (for example, The nucleotide frequencies in
the Tajima-Nei distance function can be specified instead of computing
them from the input sequences).

seqpdist(..., 'PairwiseAlignment', PairwiseAlignmentValue),
when PairwiseAlignment is true, ignores multiple alignment of the
input sequences (if any) and forces a pairwise alignment of input
sequences. If the input sequences are not prealigned, this flag is set
automatically. Pairwise alignment can be slow for a large number of
sequences. The default value is false.

seqpdist(..., 'Squareform', SquareformValue), when SquareForm
is true, converts the output into a square formatted matrix so the
D(I,J) denotes the distance between the Ith and Jth sequences.
The output matrix is symmetric and has a zero diagonal. Setting
the property Squareform to true is the same as using the function
squareform in the Statistical Toolbox.

seqpdist(..., 'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

The remaining input properties are analogous to the function nwalign
and are used when the property PairwiseAlignment = true or the
property Method = 'alignment-score'. For more information about
these properties, see nwalign.

6-212

seqpdist

seqpdist(..., 'ScoringMatrix', ScoringMatrixValue) specifies
the scoring matrix to be used for the alignment. The default value is
BLOSUM50 for AA and NUC44 for NT.

seqpdist(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix info also provides a scale factor, then both are used.

seqpdist(..., GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

seqpdist(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');

% For every possible pair of sequences in the multiple
% alignment removes sites with gaps and scores with the
% substitution matrix PAM250:

dist = seqpdist(seqs,'method','alignment-score',...
'indels','pairwise-delete',...
'scoringmatrix','pam250')

% To force the realignment of every pair of sequences
% ignoring the provided multiple alignment:

dist = seqpdist(seqs,'method','alignment-score',...
'indels','pairwise-delete',...
'scoringmatrix','pam250',...
'pairwisealignment',true)

% To measure the 'Jukes-Cantor' pairwise distances after
% realigning every pair of sequences, counting the gaps as
% point mutations:

6-213

seqpdist

dist = seqpdist(seqs,'method','jukes-cantor',...
'indels','score',...
'scoringmatrix','pam250',...
'pairwisealignment',true)

See Also Bioinformatics Toolbox functions fastaread, seqlinkage

phytree methods phytree, pdist (phytree)

Statistical Toolbox functions pdist, squareform

6-214

seqrcomplement

Purpose Calculate the reverse complement of a nucleotide sequence

Syntax SeqRC = seqrcomplement(SeqNT)

Arguments
SeqNT Nucleotide sequence. Enter either a character string

with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

Description seqrcomplement calculates the reverse complementary strand of a
DNA sequence.

SeqRC = seqrcomplement(SeqNT) calculates the reverse complementary
strand 3' –> 5' (A–>T, C–>G, G–>C, T–>A) for a DNA sequence and
returns a sequence in the same format as SeqNT. For example, if SeqNT
is an integer sequence then so is SeqRC.

Examples Reverse a DNA nucleotide sequence and then return its complement.

s = 'ATCG'
seqrcomplement(s)

ans =
CGAT

See Also Bioinformatics Toolbox functions codoncount, palindromes
seqcomplement, seqreverse

6-215

seqreverse

Purpose Reverse the letters or numbers in a nucleotide sequence

Syntax SeqR = seqreverse(SeqNT)

Arguments
SeqNT Enter a nucleotide sequence. Enter either a character

string with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

SeqR Returns a sequence in the same format as the nucleotide
sequence. For example, if SeqNT is an integer sequence,
then so is SeqR.

Description seqreverse calculates the reverse strand of a DNA or RNA sequence.

SeqR = seqreverse(SeqNT) calculates the reverse strand 3’ –> 5’ of
the nucleotide sequence.

Examples Reverse a nucleotide sequence.

s = 'ATCG'
seqreverse(s)

ans =
GCTA

See Also Bioinformatics Toolbox functions seqcomplement, seqrcomplement

MATLAB function fliplr

6-216

seqshoworfs

Purpose Graphically display the open reading frames in a sequence

Syntax seqshoworfs(SeqNT, 'PropertyName', PropertyValue)

seqshoworfs(..., 'Frames', FramesValue)
seqshoworfs(..., 'GeneticCode', GeneticCodeValue)
seqshoworfs(..., 'MinimumLength', MinimumLengthValue)
seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
seqshoworfs(..., 'Color', ColorValue)
seqshoworfs(..., 'Columns', ColumnsValue)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters A, T
(U), G, C, and ambiguous characters R, Y, K,
M, S, W, B, D, H, V, N, or a vector of integers.
You can also enter a structure with the field
Sequence.

FramesValue Property to select the frame. Enter 1, 2, 3,
-1, -2, -3, enter a vector with integers, or
'all'. The default value is the vector [1 2
3]. Frames -1, -2, and -3 correspond to the
first, second, and third reading frames for the
reverse complement.

GeneticCodeValue Genetic code name. Enter a code number or
a code name from the table geneticcode.

MinimumLengthValue Property to set the minimum number of
codons in an ORF.

StartCodonsValue Property to control using alternative start
codons. Enter either true or false. The
default value is false.

6-217

seqshoworfs

ColorValue Property to select the color for highlighting
the reading frame. Enter either a 1-by-3 RGB
vector specifying the intensity (0 to 255) of
the red, green, and blue components of the
color, or a character from the following list:
'b'—blue, 'g'—green, 'r'—red, 'c'—cyan,
'm'—magenta, or 'y'—yellow.

To specify different colors for the three
reading frames, use a 1-by-3 cell array of
color values. If you are displaying reverse
complement reading frames, then COLOR
should be a 1-by-6 cell array of color values.

ColumnsValue Property to specify the number of columns
in the output.

Description seqshoworfs identifies and highlights all open reading frames using the
standard or an alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading
frames highlighted, and it returns a structure of start and stop positions
for each ORF in each reading frame. The standard genetic code is used
with start codon 'AUG' and stop codons 'UAA', 'UAG', and 'UGA'.

seqshoworfs(..., 'Frames', FramesValue) specifies the reading
frames to display. The default is to display the first, second, and third
reading frames with ORFs highlighted in each frame.

seqshoworfs(..., 'GeneticCode', GeneticCodeValue) specifies the
genetic code to use for finding open reading frames.

seqshoworfs(..., 'MinimumLength', MinimumLengthValue) sets the
minimum number of codons for an ORF to be considered valid. The
default value is 10.

seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
uses alternative start codons if AlternativeStartCodons is set to true.
For example, in the human mitochondrial genetic code, AUA and AUU are

6-218

seqshoworfs

known to be alternative start codons. For more details of alternative
start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintgc.cgi?mode=t#SG1

seqshoworfs(..., 'Color', ColorValue) selects the color used to
highlight the open reading frames in the output display. The default
color scheme is blue for the first reading frame, red for the second, and
green for the third frame.

seqshoworfs(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output. The default value is 64.

Examples Look for the open reading frames in a random nucleotide sequence.

s = randseq(200,'alphabet', 'dna');
seqshoworfs(s);

Identify the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123');
seqshoworfs(HLA_DQB1.Sequence);

See Also Bioinformatics Toolbox functions codoncount, geneticcode,
seqdisp,seqshowwords, seqwordcount

MATLAB function regexp

6-219

seqshowwords

Purpose Graphically display the words in a sequence

Syntax seqshowwords(Seq, Word, 'PropertyName', PropertyValue)

seqshowwords(...,'Color', ColorValue)
seqshowwords(...,'Columns', ColumnsValue)

Arguments
Seq Enter either a nucleotide or amino acid sequence.

You can also enter a structure with the field
Sequence.

Word Enter a short character sequence.

ColorValue Property to select the color for highlighted
characters. Enter a 1-by-3 RGB vector specifying
the intensity (0255) of the red, green, and blue
components, or enter a character from the following
list: 'b'– blue, 'g'– green, 'r'– red, 'c'– cyan,
'm'– magenta, or 'y'– yellow.

The default color is red 'r'.

ColumnsValue Property to specify the number of characters in a
line. Default value is 64.

Description seqshowwords(Seq, Word) displays the sequence with all occurrences
of a word highlighted, and returns a structure with the start and stop
positions for all occurrences of the word in the sequence.

seqshowwords(...,'Color', ColorValue) selects the color used to
highlight the words in the output display.

seqshowwords(...,'Columns', ColumnsValue) specifies how many
columns per line to use in the output.

Examples If word contains nucleotide or amino acid symbols that represent
multiple possible symbols (ambiguous characters), then seqshowwords
shows all matches. For example, the symbol R represents either

6-220

seqshowwords

G or A (purines). For another example, if word equals 'ART', then
seqshowwords counts occurrences of both 'AAT' and 'AGT'. This
example shows two matches, ’TAGT' and 'TAAT', for the word 'BART'.

seqshowwords('GCTAGTAACGTATATATAAT','BART')

ans =
Start: [3 17]
Stop: [6 20]

000001 GCTAGTAACGTATATATAAT

seqshowwords does not highlight overlapping patterns multiple times.
This example highlights two places, the first occurrence of 'TATA’
and the 'TATATATA' immediately after 'CG'. The final 'TA' is not
highlighted because the preceding 'TA' is part of an already matched
pattern.

seqshowwords('GCTATAACGTATATATATA','TATA')

ans =
Start: [3 10 14]
Stop: [6 13 17]

000001 GCTATAACGTATATATATA

To highlight all multiple repeats of TA, use the regular expression
'TA(TA)*TA'.

seqshowwords('GCTATAACGTATATATATA','TA(TA)*TA')

ans =
Start: [3 10]
Stop: [6 19]

000001 GCTATAACGTATATATATA

6-221

seqshowwords

See Also Bioinformatics Toolbox functions palindromes, restrict, seqdisp,
seqshoworfs

MATLAB functions findstr, regexp

6-222

seqwordcount

Purpose Count the number of occurrences of a word in a sequence

Syntax seqwordcount(Seq, Word)

Arguments
Seq Enter a nucleotide or amino acid sequence of characters.

You can also enter a structure with the field Sequence.

Word Enter a short sequence of characters.

Description seqwordcount(Seq, Word) counts the number of times that a word
appears in a sequence, and then returns the number of occurrences of
that word.

If Word contains nucleotide or amino acid symbols that represent
multiple possible symbols (ambiguous characters), then seqwordcount
counts all matches. For example, the symbol R represents either
G or A (purines). For another example, if word equals 'ART', then
seqwordcount counts occurrences of both 'AAT' and 'AGT'.

Examples seqwordcount does not count overlapping patterns multiple times. In
the following example, seqwordcount reports three matches. TATATATA
is counted as two distinct matches, not three overlapping occurrences.

seqwordcount('GCTATAACGTATATATAT','TATA')

ans =
3

The following example reports two matches ('TAGT' and 'TAAT'). B
is the ambiguous code for G, T, or C, while R is an ambiguous code for
G and A.

seqwordcount('GCTAGTAACGTATATATAAT','BART')

ans =
2

6-223

seqwordcount

See Also Bioinformatics Toolbox functions codoncount, seqshoworfs,
seqshowwords

MATLAB functions seq2regexp, strfind

6-224

showalignment

Purpose Display a sequence alignment with color

Syntax showalignment(Alignment, 'PropertyName', PropertyValue)

showalignment(..., 'StartPointers', StartPointersValue)
showalignment(..., 'MatchColor', MatchColorValue)
showalignment(..., 'SimilarColor' SimilarColorValue)
showalignment(..., 'Columns', ColumnsValue)

Arguments
Alignment Enter the output from either the function

swalign or nwalign.

SimilarColorValue Property to specify the starting indices of the
aligned sequences. StartPointers is the two
element vector returned as the third output
of the function swalign.

MatchColorValue Property to select the color to highlight
matching characters. Enter a 1-by-N RGB
vector specifying the intensity (0 to 255) of
the red, green, and blue components, or enter
a character from the following list: 'b'–
blue, 'g'– green, 'r'– red, 'c'– cyan, 'm'–
magenta, or 'y'– yellow.

The default color is red, 'r'.

SimilarColorValue Property to select the color to highlight
similar characters. Enter a 1-by-3 RGB
vector or color character. The default color
is magenta.

ColumnsValue Property to specify the number of characters
in a line. Enter the number of characters to
display in one row. The default value is 64.

6-225

showalignment

Description showalignment(Alignment, 'PropertyName', PropertyValue)
displays an alignment string with matches and similar residues
highlighted with color.

showalignment(..., 'StartPointers', StartPointersValue)
specifies the starting indices in the original sequences of a local
alignment.

showalignment(..., 'MatchColor', MatchColorValue) selects the
color to highlight the matches in the output display. The default color is
red. For example, to use cyan, enter 'c' or [0 255 255].

showalignment(..., 'SimilarColor' SimilarColorValue) selects
the color to highlight similar residues that are not exact matches. The
default color is magenta.

showalignment(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output, and labels the start of each row
with the sequence positions.

Examples Enter two amino acid sequences and show their alignment.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');
showalignment(Alignment);

See Also Bioinformatics Toolbox functions nwalign, swalign

6-226

showhmmprof

Purpose Plot an HMM profile

Syntax showhmmprof(Model, 'PropertyName', PropertyValue)

showhmmprof(..., 'Scale', ScaleValue)

Arguments
Model Hidden Markov model created with the functions

gethmmprof and pfamhmmread functions.

ScaleValue Enter one of the following values:

'logprob' — Log probabilities

'prob' — Probabilities

'logodds' — Log-odd ratios

Description showhmmprof(Model) plots a profile hidden Markov model described by
the structure Model.

showhmmprof(Model, 'Scale', ScaleValue) specifies the scale
to use. If log probabilities (ScaleValue='logprob'), probabilities
(ScaleValue='prob'), or log-odd ratios (ScaleValue='logodds'). To
compute the log-odd ratios, the null model probabilities are used for
symbol emission and equally distributed transitions are used for the
null transition probabilities. The default DomainValue is 'logprob'.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
showhmmprof(model_7tm_2,'Scale','logodds')

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofstruct, pfamhmmread

6-227

sptread

Purpose Read data from a SPOT file

Syntax SPOTData = sptread('File',
'PropertyName', PropertyValue)

sptread(..., 'CleanColNames, 'CleanColNamesValues')

Arguments
File SPOT formatted file (ASCII text file).

Enter a filename, a path and filename, or
URL pointing to a file. File can also be
a MATLAB character array that contains
the text for a SPOT file.

CleanColNamesValue Property to control using valid MATLAB
variable names.

Description SPOTData = sptread('File') reads a SPOT formatted file and creates
a MATLAB structure SPOTData containing the following fields:

Header
Data
Blocks
Columns
Rows
IDs
ColumnNames
Indices
Shape

sptread(..., 'CleanColNames, CleanColNamesValue) The column
names in the SPOT file contain periods and some characters that
cannot be used in MATLAB variable names. If you plan to use the
column names as variable names in a function, use this option with
CleanColNames set to true and the function will return the field
ColumnNames with valid variable names.

6-228

sptread

The Indices field of the structure includes the MATLAB indices that
you can use for plotting heat maps of the data.

Examples % Read in a sample SPOT file and plot the median foreground
% intensity for the 635 nm channel.
spotStruct = sptread('spotdata.txt')
maimage(spotStruct,'Rmedian');

% Alternatively, create a similar plot using
% more basic graphics commands.

rmedCol = find(strcmp(spotStruct.ColumnNames,'Rmedian'));
Rmedian = spotStruct.Data(:,rmedCol);
imagesc(Rmedian(spotStruct.Indices));
colormap bone
colorbar

See Also Bioinformatics Toolbox functions gprread, maimage

6-229

swalign

Purpose Locally align two sequences using the Smith-Waterman algorithm

Syntax [Score, Alignment] = swalign(Seq1, Seq2,
'PropertyName', PropertyValue)

[Score, Alignment, Start] = swalign(Seq1, Seq2)

swalign(..., 'Alphabet', AlphabetValue)
swalign(..., 'ScoringMatrix', ScoringMatrixValue)
swalign(..., 'Scale', ScaleValue)
swalign(..., 'GapOpen', GapOpenValue)
swalign(..., 'ExtendGap', ExtendGapValue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter a

character string or vector of integers. You can
also enter a structure with the field Sequence.

AlphabetValue Property to select an amino acid or nucleotide
sequences. Enter either 'AA' or 'NT'. The
default value is 'AA'.

ScoringMatrixValueEnter the name of a scoring matrix. Values are
'PAM40’, 'PAM250', DAYHOFF, GONNET, 'BLOSUM30'
increasing by 5 to 'BLOSUM90', or 'BLOSUM62',
or 'BLOSUM100'.

The default value when AlphabetValue = 'aa'
is 'BLOSUM50', while the default value when
AlphabeValue = 'nt' is nuc44.

ScaleValue Property to specify the scale factor for a scoring
matrix.

GapOpenValue Enter an integer for the gap penalty. Default
value is 8.

ExtendGapValue Enter an integer for the extended gap penalty.
The default value equals the GapOpen value.

6-230

swalign

Score Returns the alignment score. Units for Score
are bits.

Alignment Returns a 3-by-n character array showing the
two sequences and the alignment between them.

Start Position where the alignment begins in each
sequence.

Description [Score, Alignment] = swalign(Seq1, Seq2) returns a string
showing an optimal local alignment for two amino acid sequences.
Amino acids that match are indicated with the symbol |, while related
amino acids (nonmatches with a positive scoring matrix value) are
indicated with the symbol :.

[Score, Alignment, Start] = swalign(Seq1, Seq2) returns a 2-by-1
vector with the starting point indices where the alignment begins for
each sequence.

swalign(...,'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

swalign(..., 'ScoringMatrix', ScoringMatrixValue) specifies the
scoring matrix to use for the alignment. The default is 'blosum50' for
Alphabet = 'AA' or 'NUC44' for Alphabet = NT.

swalign(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix also provides a scale factor, then both are used.

swalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

swalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

6-231

swalign

Examples Return the score in bits and the local alignment using the default
ScoringMatrix ('BLOSUM50') and default values for the GapOpen and
ExtendGap values.

[Score, Alignment] = swalign('VSPAGMASGYD','IPGKASYD')

Score =
8.6667

Alignment =
PAGMASGYD
| | || ||
P-GKAS-YD

Align two amino sequences using a specified scoring matrix ('pam250')
and a gap open penalty of 5.

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'ScoringMatrix', 'pam250',...
'GapOpen',5)

Score =
8

Alignment =
GAWGHE
:|| ||
PAW-HE

Align two amino sequences and return the Score in nat units (nats).

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'Scale',log(2))

Score =
6.4694

Alignment =
AWGHE
|| ||

6-232

swalign

AW-HE

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nt2aa,
nwalign, showalignment

6-233

traceplot

Purpose Draw nucleotide trace plots

Syntax traceplot(TraceStructure)
traceplot(A, C, G, T)
h = traceplot()

Description traceplot(TraceStructure) creates a trace plot from data in a
structure with fields A, C, G, T.

traceplot(A, C, G, T) creates a trace plot from data in vectors A,
C, G, T.

h = traceplot() returns a structure with the handles of the lines
corresponding to A, C, G, T.

Examples tstruct = scfread('sample.scf');
traceplot(tstruct)

See Also Bioinformatics Toolbox function scfread

6-234

view (phytree)

Purpose View a phylogenetic tree in the phytreetool window.

Syntax view(Tree)
view(Tree, IntNodes)

Arguments
Tree phytree object created with phytree.

IntNodes Nodes form the phytree object to initially
display in the Tree.

Description view(Tree) opens the Phylogenetic Tree Tool window and draws a
tree from data in a phytree object (Tree). The significant distances
between branches and nodes are in the horizontal direction. Vertical
distances have no significance and are selected only for display purposes.
You can access tools to edit and analyze the tree from the Phylogenetic
Tree Tool menu bar or by using the left and right mouse buttons.

view(Tree, IntNodes) opens the Phylogenetic Tree Tool window
with an initial selection of nodes specified by IntNodes. IntNodes can be
a logical array of any of the following sizes: NumLeaves + NumBranches
x 1, NumLeaves x 1, or NumBranches x 1. IntNodes can also be a list of
indices.

Examples tr = phytreeread('pf00002.tree')
view(tree)

See Also Bioinformatics Toolbox functions phytreeread, phytreetool,
seqlinkage

phytree object methods phytree, plot (phytree)

6-235

A

Examples

A Examples

Sequence Analysis
“Example: Sequence Statistics” on page 2-2
“Example: Sequence Alignment” on page 2-17

A-2

Microarray Analysis

Microarray Analysis
“Example: Visualizing Microarray Data” on page 3-2
“Example: Analyzing Gene Expression Profiles” on page 3-25

A-3

A Examples

Phylogenetic Analysis
“Example: Building a Phylogenetic Tree” on page 4-2

A-4

Index

A
amino acids

comparing sequences 2-27
composition 2-14

applications
deploying 1-12
prototyping 1-12

B
Bioinformatics Toolbox

computation with MATLAB 1-2
defined 1-2
expected user 1-4
installation 1-5
required software 1-5
visualizing data 1-2

C
clusters

gene expression data 3-32
codons

nucleotide composition 2-8
composition

amino acid 2-14
nucleotide 2-8

conversions
nucleotide to amino acid 2-14

D
data

filtering microarray data 3-29
getting into MATLAB 2-4
loading into MATLAB 3-25
microarray 3-3

data formats
supporting functions 1-7

databases

getting information from 2-19
related genes 2-21
supporting functions 1-7

E
example

gene expression in mouse brain 3-2
gene expression in yeast metabolism 3-25
sequence alignment 2-17
sequence statistics 2-2

F
features

application deployment 1-12
prototyping 1-12

functions
data formats 1-7
databases 1-7
microarray analysis 1-10
protein structure analysis 1-10
sequence alignment 1-9
sequence utilities 1-9

G
gene expression profile

mouse brain 3-2
yeast metabolism 3-25

genome data
with MATLAB structures 3-25

I
installation

from CD or Web 1-5

M
MATLAB structures

Index-1

Index

with genome data 2-4
microarray

clustering genes 3-32
filtering data 3-29
mouse brain example 3-1
principal component analysis 3-36
scatter plots 3-16
spacial images 3-5
statistics 3-15
visualizing data 3-2
working with data 3-3
yeast example 3-1

microarray analysis
supporting functions 1-10

model organism
finding 2-17

mouse brain
gene expression profile 3-2
microarray tutorial 3-2

N
NCBI

searching Web site 2-17
nucleotides

composition in sequences 2-5
content in sequences 2-2
searching database 2-21

O
open reading frames

searching for 2-11

P
plots

scatter 3-16
principal component analysis

filtering microarray data 3-36
protein sequence

locating 2-24
protein structure

analysis functions 1-10
prototyping

supporting features 1-12

S
sequence

amino acid conversion 2-14
codon composition 2-8
comparing amino acids 2-27
nucleotide content 2-2
protein coding 2-24
searching database 2-21
statistics example 2-2

sequence alignment
example 2-17
supporting functions 1-9

sequence analysis
defined 2-1

sequence utilities
supporting functions 1-9

sequences
nucleotide composition 2-5

share algorithms
supporting features 1-12

software
additional 1-5
required 1-5

spatial images
microarray 3-5

statistics
microarray 3-15

structures
with genome data 3-25

V
visualizing data

Index-2

Index

microarray 3-2

Index-3

	toc
	Getting Started
	What Is the Bioinformatics Toolbox?
	Expected User

	Installation
	Required Software
	Additional Software

	Features and Functions
	Data Formats and Databases
	Sequence Alignments
	Sequence Utilities and Statistics
	Microarray Analysis
	Protein Structure Analysis
	Phylogenetic Analysis
	Prototype and Development Environment
	Data Visualization
	Algorithm Sharing and Application Deployment

	Sequence Analysis
	Example: Sequence Statistics
	Determining Nucleotide Content
	Getting Sequence Information into MATLAB
	Determining Nucleotide Composition
	Determining Codon Composition
	Open Reading Frames
	Amino Acid Conversion and Composition

	Example: Sequence Alignment
	Finding a Model Organism to Study
	Getting Sequence Information from a Public Database
	Searching a Public Database for Related Genes
	Locating Protein Coding Sequences
	Comparing Amino Acid Sequences

	Microarray Analysis
	Example: Visualizing Microarray Data
	Overview of the Mouse Example
	Exploring the Microarray Data Set
	Spatial Images of Microarray Data
	Statistics of the Microarrays
	Scatter Plots of Microarray Data

	Example: Analyzing Gene Expression Profiles
	Overview of the Yeast Example
	Exploring the Data Set
	Filtering Genes
	Clustering Genes
	Principal Component Analysis

	Phylogenetic Analysis
	Example: Building a Phylogenetic Tree
	Overview for the Primate Example
	Why use mitochondrial DNA sequences for phylogenetic study?
	Neanderthal DNA
	References

	Searching NCBI for Phylogenetic Data
	Creating a Phylogenetic Tree for Five Species
	Creating a Phylogenetic Tree for Twelve Species
	Exploring the Phylogenetic Tree

	Phylogenetic Tree Tool Reference
	Opening the Phytreetool GUI
	File Menu
	New Tool Command
	Open Command
	Open from Workspace Command
	Save Command
	Publish to Figure Command
	Export to New Tool Command
	Export to Workspace Command
	Page Setup Command
	Print Setup Command
	Print Preview Command
	Print

	Tools Menu
	Inspect Mode Command
	Collapse/Expand Branch Mode Command
	Rotate Branch Mode Command
	Rename Leaf/Branch Mode Command
	Prune (delete) Leaf/Branch Mode Command
	Zoom In, Zoom Out, and Pan Commands
	Threshold Collapse Command
	Expand All Command
	Find Leaf/Branch Command
	Fit to Window
	Reset View Command
	Options Submenu

	Windows Menu
	Help Menu

	Functions – Categorical List
	Data Formats and Databases
	Sequence Conversion
	Sequence Statistics
	Sequence Utilities
	Pairwise Sequence Alignment
	Protein Analysis
	Trace Tools
	Profile Hidden Markov Models
	Microarray File Formats
	Microarray Visualization
	Microarray Normalization and Filtering
	Scoring Matrices
	Phylogenetic Tree Tools
	Phylogenetic Tree Methods
	Tutorials, Demos, and Examples

	Functions — Alphabetical List
	Examples
	Sequence Analysis
	Microarray Analysis
	Phylogenetic Analysis

	tables
	Genetic Code
	Standard Genetic Code
	Nucleotide Lookup Table
	Genetic Code
	Mapping Amino Acid Integers to Letters
	Mapping Nucleotide Integers to Letters
	Genetic Code
	Mapping Nucleotide Letters to Integers
	Genetic Code
	Nucleotide Conversions
	Amino Acid Conversion

