
Neural Network Toolbox

For Use with MATLAB®

Howard Demuth
Mark Beale

User’s Guide
Version 4

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Neural Network Toolbox User’s Guide
© COPYRIGHT 1992 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

History:

June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Release 14
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)

Preface

Neural Networks (p. vi) Defines and introduces Neural Networks

Basic Chapters (p. viii) Identifies the chapters in the book with the basic,
general knowledge needed to use the rest of the book

Mathematical Notation for Equations and
Figures (p. ix)

Defines the mathematical notation used throughout
the book

Mathematics and Code Equivalents (p. xi) Provides simple rules for transforming equations to
code and visa versa

Neural Network Design Book (p. xii) Gives ordering information for a useful supplemental
book

Acknowledgments (p. xiii) Identifies and thanks people who helped make this
book possible

 Preface

vi

Neural Networks
Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous systems. As in nature, the network
function is determined largely by the connections between elements. We can
train a neural network to perform a particular function by adjusting the values
of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown below. There, the
network is adjusted, based on a comparison of the output and the target, until
the network output matches the target. Typically many such input/target pairs
are used, in this supervised learning, to train a network.

Batch training of a network proceeds by making weight and bias changes based
on an entire set (batch) of input vectors. Incremental training changes the
weights and biases of a network as needed after presentation of each individual
input vector. Incremental training is sometimes referred to as “on line” or
“adaptive” training.

Neural networks have been trained to perform complex functions in various
fields of application including pattern recognition, identification, classification,
speech, vision and control systems. A list of applications is given in Chapter 1.

Today neural networks can be trained to solve problems that are difficult for
conventional computers or human beings. Throughout the toolbox emphasis is
placed on neural network paradigms that build up to or are themselves used in
engineering, financial and other practical applications.

Neural Network
including connections
(called weights)
between neurons Input Output

Target

Adjust
weights

Compare

Neural Networks

vii

The supervised training methods are commonly used, but other networks can
be obtained from unsupervised training techniques or from direct design
methods. Unsupervised networks can be used, for instance, to identify groups
of data. Certain kinds of linear networks and Hopfield networks are designed
directly. In summary, there are a variety of kinds of design and learning
techniques that enrich the choices that a user can make.

The field of neural networks has a history of some five decades but has found
solid application only in the past fifteen years, and the field is still developing
rapidly. Thus, it is distinctly different from the fields of control systems or
optimization where the terminology, basic mathematics, and design
procedures have been firmly established and applied for many years. We do not
view the Neural Network Toolbox as simply a summary of established
procedures that are known to work well. Rather, we hope that it will be a useful
tool for industry, education and research, a tool that will help users find what
works and what doesn’t, and a tool that will help develop and extend the field
of neural networks. Because the field and the material are so new, this toolbox
will explain the procedures, tell how to apply them, and illustrate their
successes and failures with examples. We believe that an understanding of the
paradigms and their application is essential to the satisfactory and successful
use of this toolbox, and that without such understanding user complaints and
inquiries would bury us. So please be patient if we include a lot of explanatory
material. We hope that such material will be helpful to you.

 Preface

viii

Basic Chapters
The Neural Network Toolbox is written so that if you read Chapter 2, Chapter
3 and Chapter 4 you can proceed to a later chapter, read it and use its functions
without difficulty. To make this possible, Chapter 2 presents the fundamentals
of the neuron model, the architectures of neural networks. It also will discuss
notation used in the architectures. All of this is basic material. It is to your
advantage to understand this Chapter 2 material thoroughly.

The neuron model and the architecture of a neural network describe how a
network transforms its input into an output. This transformation can be
viewed as a computation. The model and the architecture each place
limitations on what a particular neural network can compute. The way a
network computes its output must be understood before training methods for
the network can be explained.

Mathematical Notation for Equations and Figures

ix

Mathematical Notation for Equations and Figures

Basic Concepts
Scalars-small italic letters.....a,b,c

Vectors - small bold non-italic letters.....a,b,c

Matrices - capital BOLD non-italic letters.....A,B,C

Language
Vector means a column of numbers.

Weight Matrices

Scalar Element
 - row, - column, - time or iteration

Matrix

Column Vector

Row Vector ...vector made of ith row of weight matrix W

Bias Vector

Scalar Element

Vector

Layer Notation
A single superscript is used to identify elements of layer. For instance, the net
input of layer 3 would be shown as n3.

Superscripts are used to identify the source (l) connection and the
destination (k) connection of layer weight matrices ans input weight matrices.
For instance, the layer weight matrix from layer 2 to layer 4 would be shown
as LW4,2.

wi j, t()
i j t

W t()

wj t()

wi t()

bi t()

b t()

k l,

 Preface

x

Input Weight Matrix

Layer Weight Matrix

Figure and Equation Examples
The following figure, taken from Chapter 12 illustrates notation used in such
advanced figures.

IWk l,

LWk l,

p1(k)

a1(k)1

n1(k) 2 x 1

4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs

��
��IW1,1

��
��

b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)

�
�
�

5

3 x (2*2)��
��

IW2,1

3 x (1*5)��
��IW2,2

n2(k)

3 x 1

3�
�
�
�

�
�
TDL

p2(k)

 5 x 1

�
�TDL

1 x 4
��IW3,1

1 x 3��
��

1 x (1*1)��
��

1
1 x 1��
��b3

��
��

TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1)]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+IW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs

Mathematics and Code Equivalents

xi

Mathematics and Code Equivalents
The transition from mathematics to code or vice versa can be made with the aid
of a few rules. They are listed here for future reference.

To change from mathematics notation to MATLAB® notation, the user needs
to:

• Change superscripts to cell array indices.

For example,

• Change subscripts to parentheses indices.

For example, , and

• Change parentheses indices to a second cell array index.

For example,

• Change mathematics operators to MATLAB operators and toolbox functions.

For example,

The following equations illustrate the notation used in figures.

p1 p 1{ }→

p2 p 2()→ p2
1 p 1{ } 2()→

p1 k 1–() p 1 k 1–,{ }→

ab a*b→

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

 Preface

xii

Neural Network Design Book
Professor Martin Hagan of Oklahoma State University, and Neural Network
Toolbox authors Howard Demuth and Mark Beale have written a textbook,
Neural Network Design (ISBN 0-9717321-0-8). The book presents the theory of
neural networks, discusses their design and application, and makes
considerable use of MATLAB and the Neural Network Toolbox. Demonstration
programs from the book are used in various chapters of this Guide. (You can
find all the book demonstration programs in the Neural Network Toolbox by
typing nnd.)

The book has:

• An INSTRUCTOR’S MANUAL for adopters and

• TRANSPARENCY OVERHEADS for class use.

This book can be obtained from the University of Colorado Bookstore at
1-303-492-3648 or at the online purchase web site, cubooks.colorado.edu.

To obtain a copy of the INSTRUCTOR’S MANUAL contact the University of
Colorado Bookstore phone 1-303-492-3648. Ask specifically for an instructor’s
manual if you are instructing a class and want one.

You can go directly to the Neural Network Design page at

http://ee.okstate.edu/mhagan/nnd.html

Once there, you can download the TRANSPARENCY MASTERS with a click
on “Transparency Masters(3.6MB)”.

You can get the Transparency Masters in Powerpoint or PDF format. You can
obtain sample book chapters in PDF format as well.

Acknowledgments

xiii

Acknowledgments
The authors would like to thank:

Martin Hagan of Oklahoma State University for providing the original
Levenberg-Marquardt algorithm in the Neural Network Toolbox version 2.0
and various algorithms found in version 3.0, including the new reduced
memory use version of the Levenberg-Marquardt algorithm, the conjugate
gradient algorithm, RPROP, and generalized regression method. Martin also
wrote Chapter 5 and Chapter 6 of this toolbox. Chapter 5 on Chapter describes
new algorithms, suggests algorithms for pre- and post-processing of data, and
presents a comparison of the efficacy of various algorithms. Chapter 6 on
control system applications describes practical applications including neural
network model predictive control, model reference adaptive control, and a
feedback linearization controller.

Joe Hicklin of The MathWorks for getting Howard into neural network
research years ago at the University of Idaho, for encouraging Howard to write
the toolbox, for providing crucial help in getting the first toolbox version 1.0 out
the door, and for continuing to be a good friend.

Jim Tung of The MathWorks for his long-term support for this project.

Liz Callanan of The MathWorks for getting us off the such a good start with
the Neural Network Toolbox version 1.0.

Roy Lurie of The MathWorks for his vigilant reviews of the developing
material in this version of the toolbox.

Matthew Simoneau of The MathWorks for his help with demos, test suite
routines, for getting user feedback, and for helping with other toolbox matters.

Sean McCarthy for his many questions from users about the toolbox
operation

Jane Carmody of The MathWorks for editing help and for always being at her
phone to help with documentation problems.

Donna Sullivan and Peg Theriault of The MathWorks for their editing and
other help with the Mac document.

Jane Price of The MathWorks for getting constructive user feedback on the
toolbox document and its Graphical User’s Interface.

 Preface

xiv

Orlando De Jesús of Oklahoma State University for his excellent work in
programming the neural network controllers described in Chapter 6.

Bernice Hewitt for her wise New Zealand counsel, encouragement, and tea,
and for the company of her cats Tiny and Mr. Britches.

Joan Pilgram for her business help, general support, and good cheer.

Teri Beale for running the show and having Valerie and Asia Danielle while
Mark worked on this toolbox.

Martin Hagan and Howard Demuth for permission to include various
problems, demonstrations, and other material from Neural Network Design,
Jan. 1996.

xv

Contents

Preface

Neural Networks . vi

Basic Chapters . viii

Mathematical Notation for Equations and Figures ix
Basic Concepts . ix
Language . ix
Weight Matrices . ix
Layer Notation . ix
Figure and Equation Examples . x

Mathematics and Code Equivalents . xi

Neural Network Design Book . xii

Acknowledgments . xiii

1
Introduction

Getting Started . 1-2
Basic Chapters . 1-2
Help and Installation . 1-2

What’s New in Version 4.0 . 1-3
Control System Applications . 1-3
Graphical User Interface . 1-3
New Training Functions . 1-3
Design of General Linear Networks . 1-4
Improved Early Stopping . 1-4

xvi Contents

Generalization and Speed Benchmarks 1-4
Demonstration of a Sample Training Session 1-4

Neural Network Applications . 1-5
Applications in this Toolbox . 1-5
Business Applications . 1-5
Aerospace . 1-5
Automotive . 1-5
Banking . 1-5
Credit Card Activity Checking . 1-5
Defense . 1-6
Electronics . 1-6
Entertainment . 1-6
Financial . 1-6
Industrial . 1-6
Insurance . 1-6
Manufacturing . 1-6
Medical . 1-7
Oil and Gas . 1-7
Robotics . 1-7
Speech . 1-7
Securities . 1-7
Telecommunications . 1-7
Transportation . 1-7
Summary . 1-7

2
Neuron Model and Network Architectures

Neuron Model . 2-2
Simple Neuron . 2-2
Transfer Functions . 2-3
Neuron with Vector Input . 2-5

Network Architectures . 2-8
A Layer of Neurons . 2-8
Multiple Layers of Neurons . 2-11

xvii

Data Structures . 2-13
Simulation With Concurrent Inputs in a Static Network 2-13
Simulation With Sequential Inputs in a Dynamic Network . . 2-14
Simulation With Concurrent Inputs in a Dynamic Network . 2-16

Training Styles . 2-18
Incremental Training (of Adaptive and Other Networks) 2-18
Batch Training . 2-20

Summary . 2-24
Figures and Equations . 2-25

3
Perceptrons

Introduction . 3-2
Important Perceptron Functions . 3-2

Neuron Model . 3-4

Perceptron Architecture . 3-6

Creating a Perceptron (newp) . 3-7
Simulation (sim) . 3-8
Initialization (init) . 3-9

Learning Rules . 3-12

Perceptron Learning Rule (learnp) . 3-13

Training (train) . 3-16

Limitations and Cautions . 3-21
Outliers and the Normalized Perceptron Rule 3-21

Graphical User Interface . 3-23

xviii Contents

Introduction to the GUI . 3-23
Create a Perceptron Network (nntool) 3-23
Train the Perceptron . 3-27
Export Perceptron Results to Workspace 3-29
Clear Network/Data Window . 3-30
Importing from the Command Line . 3-30
Save a Variable to a File and Load It Later 3-31

Summary . 3-33
Figures and Equations . 3-33
New Functions . 3-36

4
Linear Filters

Introduction . 4-2

Neuron Model . 4-3

Network Architecture . 4-4
Creating a Linear Neuron (newlin) . 4-4

Mean Square Error . 4-8

Linear System Design (newlind) . 4-9

Linear Networks with Delays . 4-10
Tapped Delay Line . 4-10
Linear Filter . 4-10

LMS Algorithm (learnwh) . 4-13

Linear Classification (train) . 4-15

Limitations and Cautions . 4-18
Overdetermined Systems . 4-18

xix

Underdetermined Systems . 4-18
Linearly Dependent Vectors . 4-18
Too Large a Learning Rate . 4-19

Summary . 4-20
Figures and Equations . 4-21
New Functions . 4-25

5
Backpropagation

Introduction . 5-2

Fundamentals . 5-4
Architecture . 5-4
Simulation (sim) . 5-8
Training . 5-8

Faster Training . 5-14
Variable Learning Rate (traingda, traingdx) 5-14
Resilient Backpropagation (trainrp) . 5-16
Conjugate Gradient Algorithms . 5-17
Line Search Routines . 5-23
Quasi-Newton Algorithms . 5-26
Levenberg-Marquardt (trainlm) . 5-28
Reduced Memory Levenberg-Marquardt (trainlm) 5-30

Speed and Memory Comparison . 5-32
Summary . 5-49

Improving Generalization . 5-51
Regularization . 5-52
Early Stopping . 5-55
Summary and Discussion . 5-57

Preprocessing and Postprocessing . 5-61
Min and Max (premnmx, postmnmx, tramnmx) 5-61

xx Contents

Mean and Stand. Dev. (prestd, poststd, trastd) 5-62
Principal Component Analysis (prepca, trapca) 5-63
Post-Training Analysis (postreg) . 5-64

Sample Training Session . 5-66

Limitations and Cautions . 5-71

Summary . 5-73

6
Control Systems

Introduction . 6-2

NN Predictive Control . 6-4
System Identification . 6-4
Predictive Control . 6-5
Using the NN Predictive Controller Block 6-6

NARMA-L2 (Feedback Linearization) Control 6-14
Identification of the NARMA-L2 Model 6-14
NARMA-L2 Controller . 6-16
Using the NARMA-L2 Controller Block 6-18

Model Reference Control . 6-23
Using the Model Reference Controller Block 6-25

Importing and Exporting . 6-31
Importing and Exporting Networks . 6-31
Importing and Exporting Training Data 6-35

Summary . 6-38

xxi

7
Radial Basis Networks

Introduction . 7-2
Important Radial Basis Functions . 7-2

Radial Basis Functions . 7-3
Neuron Model . 7-3
Network Architecture . 7-4
Exact Design (newrbe) . 7-5
More Efficient Design (newrb) . 7-7
Demonstrations . 7-8

Generalized Regression Networks . 7-9
Network Architecture . 7-9
Design (newgrnn) . 7-10

Probabilistic Neural Networks . 7-12
Network Architecture . 7-12
Design (newpnn) . 7-13

Summary . 7-15
Figures . 7-16
New Functions . 7-18

8
Self-Organizing and Learn. Vector Quant. Nets

Introduction . 8-2
Important Self-Organizing and LVQ Functions 8-2

Competitive Learning . 8-3
Architecture . 8-3
Creating a Competitive Neural Network (newc) 8-4
Kohonen Learning Rule (learnk) . 8-5
Bias Learning Rule (learncon) . 8-5
Training . 8-6

xxii Contents

Graphical Example . 8-7

Self-Organizing Maps . 8-9
Topologies (gridtop, hextop, randtop) . 8-10
Distance Funct. (dist, linkdist, mandist, boxdist) 8-14
Architecture . 8-17
Creating a Self Organizing MAP Neural Network (newsom) . 8-18
Training (learnsom) . 8-19
Examples . 8-23

Learning Vector Quantization Networks 8-31
Architecture . 8-31
Creating an LVQ Network (newlvq) . 8-32
LVQ1 Learning Rule (learnlv1) . 8-35
Training . 8-36
Supplemental LVQ2.1 Learning Rule (learnlv2) 8-38

Summary . 8-40
Self-Organizing Maps . 8-40
Learning Vector Quantizaton Networks 8-40
Figures . 8-41
New Functions . 8-42

9
Recurrent Networks

Introduction . 9-2
Important Recurrent Network Functions 9-2

Elman Networks . 9-3
Architecture . 9-3
Creating an Elman Network (newelm) . 9-4
Training an Elman Network . 9-5

Hopfield Network . 9-8
Fundamentals . 9-8
Architecture . 9-8

xxiii

Design (newhop) . 9-10

Summary . 9-15
Figures . 9-16
New Functions . 9-17

10
Adaptive Filters and Adaptive Training

Introduction . 10-2
Important Adaptive Functions . 10-2

Linear Neuron Model . 10-3

Adaptive Linear Network Architecture 10-4
Single ADALINE (newlin) . 10-4

Mean Square Error . 10-7

LMS Algorithm (learnwh) . 10-8

Adaptive Filtering (adapt) . 10-9
Tapped Delay Line . 10-9
Adaptive Filter . 10-9
Adaptive Filter Example . 10-10
Prediction Example . 10-13
Noise Cancellation Example . 10-14
Multiple Neuron Adaptive Filters . 10-16

Summary . 10-18
Figures and Equations . 10-18
New Functions . 10-26

xxiv Contents

11
Applications

Introduction . 11-2
Application Scripts . 11-2

Applin1: Linear Design . 11-3
Problem Definition . 11-3
Network Design . 11-4
Network Testing . 11-4
Thoughts and Conclusions . 11-6

Applin2: Adaptive Prediction . 11-7
Problem Definition . 11-7
Network Initialization . 11-8
Network Training . 11-8
Network Testing . 11-8
Thoughts and Conclusions . 11-10

Appelm1: Amplitude Detection . 11-11
Problem Definition . 11-11
Network Initialization . 11-11
Network Training . 11-12
Network Testing . 11-13
Network Generalization . 11-13
Improving Performance . 11-15

Appcr1: Character Recognition . 11-16
Problem Statement . 11-16
Neural Network . 11-17
System Performance . 11-20
Summary . 11-22

12
Advanced Topics

Custom Networks . 12-2

xxv

Custom Network . 12-3
Network Definition . 12-4
Network Behavior . 12-12

Additional Toolbox Functions . 12-16
Initialization Functions . 12-16
Transfer Functions . 12-16
Learning Functions . 12-17

Custom Functions . 12-18
Simulation Functions . 12-18
Initialization Functions . 12-24
Learning Functions . 12-27
Self-Organizing Map Functions . 12-36

13
Network Object Reference

Network Properties . 13-2
Architecture . 13-2
Subobject Structures . 13-6
Functions . 13-9
Parameters . 13-12
Weight and Bias Values . 13-14
Other . 13-16

Subobject Properties . 13-17
Inputs . 13-17
Layers . 13-18
Outputs . 13-25
Targets . 13-25
Biases . 13-26
Input Weights . 13-28
Layer Weights . 13-32

xxvi Contents

14
Reference

Functions — Categorical List . 14-2
Analysis Functions . 14-2
Distance Functions . 14-2
Graphical Interface Function . 14-2
Layer Initialization Functions . 14-2
Learning Functions . 14-3
Line Search Functions . 14-3
Net Input Derivative Functions . 14-3
Net Input Functions . 14-4
Network Functions . 14-4
Network Initialization Function . 14-4
Network Use Functions . 14-4
New Networks Functions . 14-5
Performance Derivative Functions . 14-5
Performance Functions . 14-6
Plotting Functions . 14-6
Pre- and Postprocessing Functions . 14-7
Simulink Support Function . 14-7
Topology Functions . 14-7
Training Functions . 14-8
Transfer Derivative Functions . 14-9
Transfer Functions . 14-10
Utility Functions . 14-11
Vector Functions . 14-12
Weight and Bias Initialization Functions 14-12
Weight Derivative Functions . 14-13
Weight Functions . 14-13

Transfer Function Graphs . 14-14

xxvii

Functions — Alphabetical List . 14-18

A
Glossary

B
Bibliography

C
Demonstrations and Applications

Tables of Demonstrations and Applications C-2
Chapter 2: Neuron Model and Network Architectures C-2
Chapter 3: Perceptrons . C-2
Chapter 4: Linear Filters . C-3
Chapter 5: Backpropagation . C-3
Chapter 7: Radial Basis Networks . C-4
Chapter 8: Self-Organizing and Learn. Vector Quant. Nets . . . C-4
Chapter 9: Recurrent Networks . C-4
Chapter 10: Adaptive Networks . C-5
Chapter 11: Applications . C-5

D
Simulink

Block Set . D-2
Transfer Function Blocks . D-2
Net Input Blocks . D-3
Weight Blocks . D-3

xxviiiContents

Block Generation . D-5
Example . D-5
Exercises . D-7

E
Code Notes

Dimensions . E-2

Variables . E-3
Utility Function Variables . E-4

Functions . E-7

Code Efficiency . E-8

Argument Checking . E-9

1

Introduction

Getting Started (p. 1-2) Identifies the chapters of the book with basic information,
and provides information about installing and getting help

What’s New in Version 4.0 (p. 1-3) Describes the new features in the last major release of the
product

Neural Network Applications (p. 1-5) Lists applications of neural networks

1 Introduction

1-2

Getting Started

Basic Chapters
Chapter 2 contains basic material about network architectures and notation
specific to this toolbox.Chapter 3 includes the first reference to basic functions
such as init and adapt. Chapter 4 describes the use of the functions designd
and train, and discusses delays. Chapter 2, Chapter 3, and Chapter 4 should
be read before going to later chapters

Help and Installation
The Neural Network Toolbox is contained in a directory called nnet. Type help
nnet for a listing of help topics.

A number of demonstrations are included in the toolbox. Each example states
a problem, shows the network used to solve the problem, and presents the final
results. Lists of the neural network demonstration and application scripts that
are discussed in this guide can be found by typing help nndemos

Instructions for installing the Neural Network Toolbox are found in one of two
MATLAB® documents: the Installation Guide for PC or the Installation Guide
for UNIX.

What’s New in Version 4.0

1-3

What’s New in Version 4.0
A few of the new features and improvements introduced with this version of the
Neural Network Toolbox are discussed below.

Control System Applications
A new Chapter 6 presents three practical control systems applications:

• Network model predictive control

• Model reference adaptive control

• Feedback linearization controller

Graphical User Interface
A graphical user interface has been added to the toolbox. This interface allows
you to:

• Create networks

• Enter data into the GUI

• Initialize, train, and simulate networks

• Export the training results from the GUI to the command line workspace

• Import data from the command line workspace to the GUI

To open the Network/Data Manager window type nntool.

New Training Functions
The toolbox now has four training algorithms that apply weight and bias
learning rules. One algorithm applies the learning rules in batch mode. Three
algorithms apply learning rules in three different incremental modes:

• trainb - Batch training function

• trainc - Cyclical order incremental training function

• trainr - Random order incremental training function

• trains - Sequential order incremental training function

All four functions present the whole training set in each epoch (pass through
the entire input set).

1 Introduction

1-4

Note We no longer recommend using trainwb and trainwb1, which have
been replaced by trainb and trainr. The function trainr differs from
trainwb1 in that trainwb1 only presented a single vector each epoch instead
of going through all vectors, as is done by trainr.

These new training functions are relatively fast because they generate M-code.
The functions trainb, trainc, trainr, and trains all generate a temporary
M-file consisting of specialized code for training the current network in
question.

Design of General Linear Networks
The function newlind now allows the design of linear networks with multiple
inputs, outputs, and input delays.

Improved Early Stopping
Early stopping can now be used in combination with Bayesian regularization.
In some cases this can improve the generalization capability of the trained
network.

Generalization and Speed Benchmarks
Generalization benchmarks comparing the performance of Bayesian
regularization and early stopping are provided. We also include speed
benchmarks, which compare the speed of convergence of the various training
algorithms on a variety of problems in pattern recognition and function
approximation. These benchmarks can aid users in selecting the appropriate
algorithm for their problem.

Demonstration of a Sample Training Session
A new demonstration that illustrates a sample training session is included in
Chapter 5. A sample training session script is also provided. Users can modify
this script to fit their problem.

Neural Network Applications

1-5

Neural Network Applications

Applications in this Toolbox
Chapter 6 describes three practical neural network control system
applications, including neural network model predictive control, model
reference adaptive control, and a feedback linearization controller.

Other neural network applications are described in Chapter 11.

Business Applications
The 1988 DARPA Neural Network Study [DARP88] lists various neural
network applications, beginning in about 1984 with the adaptive channel
equalizer. This device, which is an outstanding commercial success, is a single-
neuron network used in long-distance telephone systems to stabilize voice
signals. The DARPA report goes on to list other commercial applications,
including a small word recognizer, a process monitor, a sonar classifier, and a
risk analysis system.

Neural networks have been applied in many other fields since the DARPA
report was written. A list of some applications mentioned in the literature
follows.

Aerospace
• High performance aircraft autopilot, flight path simulation, aircraft control

systems, autopilot enhancements, aircraft component simulation, aircraft
component fault detection

Automotive
• Automobile automatic guidance system, warranty activity analysis

Banking
• Check and other document reading, credit application evaluation

Credit Card Activity Checking
• Neural networks are used to spot unusual credit card activity that might

possibly be associated with loss of a credit card

1 Introduction

1-6

Defense
• Weapon steering, target tracking, object discrimination, facial recognition,

new kinds of sensors, sonar, radar and image signal processing including
data compression, feature extraction and noise suppression, signal/image
identification

Electronics
• Code sequence prediction, integrated circuit chip layout, process control,

chip failure analysis, machine vision, voice synthesis, nonlinear modeling

Entertainment
• Animation, special effects, market forecasting

Financial
• Real estate appraisal, loan advisor, mortgage screening, corporate bond

rating, credit-line use analysis, portfolio trading program, corporate
financial analysis, currency price prediction

Industrial
• Neural networks are being trained to predict the output gasses of furnaces

and other industrial processes. They then replace complex and costly
equipment used for this purpose in the past.

Insurance
• Policy application evaluation, product optimization

Manufacturing
• Manufacturing process control, product design and analysis, process and

machine diagnosis, real-time particle identification, visual quality
inspection systems, beer testing, welding quality analysis, paper quality
prediction, computer-chip quality analysis, analysis of grinding operations,
chemical product design analysis, machine maintenance analysis, project
bidding, planning and management, dynamic modeling of chemical process
system

Neural Network Applications

1-7

Medical
• Breast cancer cell analysis, EEG and ECG analysis, prosthesis design,

optimization of transplant times, hospital expense reduction, hospital
quality improvement, emergency-room test advisement

Oil and Gas
• Exploration

Robotics
• Trajectory control, forklift robot, manipulator controllers, vision systems

Speech
• Speech recognition, speech compression, vowel classification, text-to-speech

synthesis

Securities
• Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications
• Image and data compression, automated information services, real-time

translation of spoken language, customer payment processing systems

Transportation
• Truck brake diagnosis systems, vehicle scheduling, routing systems

Summary
The list of additional neural network applications, the money that has been
invested in neural network software and hardware, and the depth and breadth
of interest in these devices have been growing rapidly. The authors hope that
this toolbox will be useful for neural network educational and design purposes
within a broad field of neural network applications.

1 Introduction

1-8

2
Neuron Model and
Network Architectures

Neuron Model (p. 2-2) Describes the neuron model; including simple neurons, transfer
functions, and vector inputs

Network Architectures (p. 2-8) Discusses single and multiple layers of neurons

Data Structures (p. 2-13) Discusses how the format of input data structures affects the
simulation of both static and dynamic networks

Training Styles (p. 2-18) Describes incremental and batch training

Summary (p. 2-24) Provides a consolidated review of the chapter concepts

2 Neuron Model and Network Architectures

2-2

Neuron Model

Simple Neuron
A neuron with a single scalar input and no bias appears on the left below.

The scalar input p is transmitted through a connection that multiplies its
strength by the scalar weight w, to form the product wp, again a scalar. Here
the weighted input wp is the only argument of the transfer function f, which
produces the scalar output a. The neuron on the right has a scalar bias, b. You
may view the bias as simply being added to the product wp as shown by the
summing junction or as shifting the function f to the left by an amount b. The
bias is much like a weight, except that it has a constant input of 1.

The transfer function net input n, again a scalar, is the sum of the weighted
input wp and the bias b. This sum is the argument of the transfer function f.
(Chapter 7, “Radial Basis Networks” discusses a different way to form the net
input n.) Here f is a transfer function, typically a step function or a sigmoid
function, which takes the argument n and produces the output a. Examples of
various transfer functions are given in the next section. Note that w and b are
both adjustable scalar parameters of the neuron. The central idea of neural
networks is that such parameters can be adjusted so that the network exhibits
some desired or interesting behavior. Thus, we can train the network to do a
particular job by adjusting the weight or bias parameters, or perhaps the
network itself will adjust these parameters to achieve some desired end.

Input - Title -

- Exp -

anp w

�� f

Neuron without bias

a = f (wp)

Input - Title -

- Exp -

anp
�� f

Neuron with bias

a = f (wp + b)

b

1

w
��

Neuron Model

2-3

All of the neurons in this toolbox have provision for a bias, and a bias is used
in many of our examples and will be assumed in most of this toolbox. However,
you may omit a bias in a neuron if you want.

As previously noted, the bias b is an adjustable (scalar) parameter of the
neuron. It is not an input. However, the constant 1 that drives the bias is an
input and must be treated as such when considering the linear dependence of
input vectors in Chapter 4, “Linear Filters.”

Transfer Functions
Many transfer functions are included in this toolbox. A complete list of them
can be found in “Transfer Function Graphs” on page 14-14. Three of the most
commonly used functions are shown below.

The hard-limit transfer function shown above limits the output of the neuron
to either 0, if the net input argument n is less than 0; or 1, if n is greater than
or equal to 0. We will use this function in Chapter 3 “Perceptrons” to create
neurons that make classification decisions.

The toolbox has a function, hardlim, to realize the mathematical hard-limit
transfer function shown above. Try the code shown below.

n = -5:0.1:5;
plot(n,hardlim(n),'c+:');

It produces a plot of the function hardlim over the range -5 to +5.

All of the mathematical transfer functions in the toolbox can be realized with
a function having the same name.

The linear transfer function is shown below.

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

2 Neuron Model and Network Architectures

2-4

Neurons of this type are used as linear approximators in “Linear Filters” on
page 4-1.

The sigmoid transfer function shown below takes the input, which may have
any value between plus and minus infinity, and squashes the output into the
range 0 to 1.

This transfer function is commonly used in backpropagation networks, in part
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown
above represents the associated transfer function. These icons will replace the
general f in the boxes of network diagrams to show the particular transfer
function being used.

For a complete listing of transfer functions and their icons, see the “Transfer
Function Graphs” on page 14-14. You can also specify your own transfer
functions. You are not limited to the transfer functions listed in Chapter 14,
“Reference.”

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

Neuron Model

2-5

You can experiment with a simple neuron and various transfer functions by
running the demonstration program nnd2n1.

Neuron with Vector Input
A neuron with a single R-element input vector is shown below. Here the
individual element inputs

are multiplied by weights

and the weighted values are fed to the summing junction. Their sum is simply
Wp, the dot product of the (single row) matrix W and the vector p.

The neuron has a bias b, which is summed with the weighted inputs to form
the net input n. This sum, n, is the argument of the transfer function f.

This expression can, of course, be written in MATLAB® code as:

n = W*p + b

However, the user will seldom be writing code at this low level, for such code is
already built into functions to define and simulate entire networks.

p1, p2,... pR

w1 1, , w1 2, , ... w1 R,

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Neuron w Vector Input

��
��

a = f(Wp +b)

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

2 Neuron Model and Network Architectures

2-6

The figure of a single neuron shown above contains a lot of detail. When we
consider networks with many neurons and perhaps layers of many neurons,
there is so much detail that the main thoughts tend to be lost. Thus, the
authors have devised an abbreviated notation for an individual neuron. This
notation, which will be used later in circuits of multiple neurons, is illustrated
in the diagram shown below.

Here the input vector p is represented by the solid dark vertical bar at the left.
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note
that we will use a capital letter, such as R in the previous sentence, when
referring to the size of a vector.) Thus, p is a vector of R input elements. These
inputs post multiply the single row, R column matrix W. As before, a constant
1 enters the neuron as an input and is multiplied by a scalar bias b. The net
input to the transfer function f is n, the sum of the bias b and the product Wp.
This sum is passed to the transfer function f to get the neuron’s output a, which
in this case is a scalar. Note that if we had more than one neuron, the network
output would be a vector.

A layer of a network is defined in the figure shown above. A layer includes the
combination of the weights, the multiplication and summing operation (here
realized as a vector product Wp), the bias b, and the transfer function f. The
array of inputs, vector p, is not included in or called a layer.

Each time this abbreviated network notation is used, the size of the matrices
will be shown just below their matrix variable names. We hope that this
notation will allow you to understand the architectures and follow the matrix
mathematics associated with them.

p a

1

n��
��W

��b

R x 1
1 x R

1 x 1

1 x 1

1 x 1

Input

R 1
��
��
��

f

Where...

R = number of
elements in
input vector

Neuron

a = f(Wp +b)

Neuron Model

2-7

As discussed previously, when a specific transfer function is to be used in a
figure, the symbol for that transfer function will replace the f shown above.
Here are some examples.

You can experiment with a two-element neuron by running the demonstration
program nnd2n2.

��
��
��

��
��
��

��
��
��

purelinhardlim logsig

2 Neuron Model and Network Architectures

2-8

Network Architectures
Two or more of the neurons shown earlier can be combined in a layer, and a
particular network could contain one or more such layers. First consider a
single layer of neurons.

A Layer of Neurons
A one-layer network with R input elements and S neurons follows.

In this network, each element of the input vector p is connected to each neuron
input through the weight matrix W. The ith neuron has a summer that gathers
its weighted inputs and bias to form its own scalar output n(i). The various n(i)
taken together form an S-element net input vector n. Finally, the neuron layer
outputs form a column vector a. We show the expression for a at the bottom of
the figure.

Note that it is common for the number of inputs to a layer to be different from
the number of neurons (i.e., R ¦ S). A layer is not constrained to have the
number of its inputs equal to the number of its neurons.

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1
��
��

��
��

��
��

��
��f

��
��f

��
��f

Layer of Neurons

a= f (Wp + b)

R = number of
elements in
input vector

S = number of
neurons in layer

Where...

Network Architectures

2-9

You can create a single (composite) layer of neurons having different transfer
functions simply by putting two of the networks shown earlier in parallel. Both
networks would have the same inputs, and each network would create some of
the outputs.

The input vector elements enter the network through the weight matrix W.

Note that the row indices on the elements of matrix W indicate the destination
neuron of the weight, and the column indices indicate which source is the input
for that weight. Thus, the indices in say that the strength of the signal
from the second input element to the first (and only) neuron is .

The S neuron R input one-layer network also can be drawn in abbreviated
notation.

Here p is an R length input vector, W is an SxR matrix, and a and b are S
length vectors. As defined previously, the neuron layer includes the weight
matrix, the multiplication operations, the bias vector b, the summer, and the
transfer function boxes.

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

w1 2,
w1 2,

a= f (Wp + b)

p a

1

n���W

���
���b

R x 1
S x R

S x 1

S x 1

Input Layer of Neurons

R S��
��
��f

S x 1

R = number of
elements in
input vector

Where...

S = number of
neurons in layer 1

2 Neuron Model and Network Architectures

2-10

Inputs and Layers
We are about to discuss networks having multiple layers so we will need to
extend our notation to talk about such networks. Specifically, we need to make
a distinction between weight matrices that are connected to inputs and weight
matrices that are connected between layers. We also need to identify the source
and destination for the weight matrices.

We will call weight matrices connected to inputs, input weights; and we will call
weight matrices coming from layer outputs, layer weights. Further, we will use
superscripts to identify the source (second index) and the destination (first
index) for the various weights and other elements of the network. To illustrate,
we have taken the one-layer multiple input network shown earlier and
redrawn it in abbreviated form below.

As you can see, we have labeled the weight matrix connected to the input vector
p as an Input Weight matrix (IW1,1) having a source 1 (second index) and a
destination 1 (first index). Also, elements of layer one, such as its bias, net
input, and output have a superscript 1 to say that they are associated with the
first layer.

In the next section, we will use Layer Weight (LW) matrices as well as Input
Weight (IW) matrices.

You might recall from the notation section of the Preface that conversion of the
layer weight matrix from math to code for a particular network called net is:

Thus, we could write the code to obtain the net input to the transfer function as:

p a1

1

n1
S 1 x R

S 1 x 1

S 1 x 1

S 1 x 1

Input

��
��

IW1,1

��b1

Layer 1

S1
��
��
��

f1

R

a1 = f1(IW1,1p +b1)

S 1 x 1

R x 1
R = number of
elements in
input vector

S = number of
neurons in Layer 1

Where...

IW1 1, net.IW 1 1,{ }→

Network Architectures

2-11

n{1} = net.IW{1,1}*p + net.b{1};

Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices,
output vectors, etc., for each of these layers in our figures, we append the
number of the layer as a superscript to the variable of interest. You can see the
use of this layer notation in the three-layer network shown below, and in the
equations at the bottom of the figure.

The network shown above has R1 inputs, S1 neurons in the first layer, S2

neurons in the second layer, etc. It is common for different layers to have
different numbers of neurons. A constant input 1 is fed to the biases for each
neuron.

Note that the outputs of each intermediate layer are the inputs to the following
layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs, S2
neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1a1 +b2) a3 =f3 (LW3,2 a2 + b3)

Layer 1 Layer 2 Layer 3

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3)

Input

a3

2
n3

2

lw3,2

S
3
, S

2

lw3,2

1,1

b3

2

b3

1

b3

S
3

a3

S
3n3

S
3

a3

1
n3

1

1

1

1

1

1 1

1

1

1
a1

2
n1

2

p
1

p
2

p
3

p
R

1

iw1,1

S, R

iw1,1

1,

1

a1

S
1n1

S
 1

a1

1
n1

1

a2

2
n2

2

lw2,1

S
2
, S

1

lw2,1

1,1

b1

2

b1

1

b1

S
1

b2

2

b2

1

b2

S
2

a2

S
2n2

S
2

a2

1
n2

1

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��f1
��
��f1
��
��f1

��
��f2

��
��f2

��
��f2

��
��f3

��
��f3

��
��f3

2 Neuron Model and Network Architectures

2-12

is a2. Now that we have identified all the vectors and matrices of layer 2, we
can treat it as a single-layer network on its own. This approach can be taken
with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces
the network output is called an output layer. All other layers are called hidden
layers. The three-layer network shown earlier has one output layer (layer 3)
and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs
as a fourth layer. We will not use that designation.

The same three-layer network discussed previously also can be drawn using
our abbreviated notation.

Multiple-layer networks are quite powerful. For instance, a network of two
layers, where the first layer is sigmoid and the second layer is linear, can be
trained to approximate any function (with a finite number of discontinuities)
arbitrarily well. This kind of two-layer network is used extensively in Chapter
5, “Backpropagation.”

Here we assume that the output of the third layer, a3, is the network output of
interest, and we have labeled this output as y. We will use this notation to
specify the output of multilayer networks.

p a1 a2

1 1

n1 n2

a3 = y

n3

1

S 2 x S 1

S 2 x 1

S 2 x 1

 S 2 x 1
S 3x S 2

S 3 x 1

S 3 x 1

S 3 x 1 R x 1

S 1 x R

 S 1 x 1

 S 1 x 1

S 1 x 1

Input

��
��

IW1,1

��b1 ��b2 ���b3

��
��

LW2,1

���
���

LW3,2

R S3S1 S2
�
�
�
f2

��
��
��

f3

Layer 1 Layer 2 Layer 3

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1 a1 +b2) a3 =f3 (LW3,2a2 +b3)

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3 = y

��
��
��

f1

Data Structures

2-13

Data Structures
This section discusses how the format of input data structures affects the
simulation of networks. We will begin with static networks, and then move to
dynamic networks.

We are concerned with two basic types of input vectors: those that occur
concurrently (at the same time, or in no particular time sequence), and those
that occur sequentially in time. For concurrent vectors, the order is not
important, and if we had a number of networks running in parallel, we could
present one input vector to each of the networks. For sequential vectors, the
order in which the vectors appear is important.

Simulation With Concurrent Inputs in a Static
Network
The simplest situation for simulating a network occurs when the network to be
simulated is static (has no feedback or delays). In this case, we do not have to
be concerned about whether or not the input vectors occur in a particular time
sequence, so we can treat the inputs as concurrent. In addition, we make the
problem even simpler by assuming that the network has only one input vector.
Use the following network as an example.

To set up this feedforward network, we can use the following command.

net = newlin([1 3;1 3],1);

For simplicity assign the weight matrix and bias to be

p
1 an

Inputs

bp
2 w

1,2

w
1,1

1
a = purelin (Wp + b)

Linear Neuron

��
��

��
��

2 Neuron Model and Network Architectures

2-14

 and .

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent
vectors:

Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

We can now simulate the network:

A = sim(net,P)
A =
 5 4 8 5

A single matrix of concurrent vectors is presented to the network and the
network produces a single matrix of concurrent vectors as output. The result
would be the same if there were four networks operating in parallel and each
network received one of the input vectors and produced one of the outputs. The
ordering of the input vectors is not important as they do not interact with each
other.

Simulation With Sequential Inputs in a Dynamic
Network
When a network contains delays, the input to the network would normally be
a sequence of input vectors that occur in a certain time order. To illustrate this
case, we use a simple network that contains one delay.

W 1 2= b 0=

p1
1
2

= , p2
2
1

= , p3
2
3

= , p4
3
1

= ,

Data Structures

2-15

The following commands create this network:

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;

Assign the weight matrix to be

.

The command is

net.IW{1,1} = [1 2];

Suppose that the input sequence is

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

We can now simulate the network:

A = sim(net,P)
A =
 [1] [4] [7] [10]

We input a cell array containing a sequence of inputs, and the network
produced a cell array containing a sequence of outputs. Note that the order of
the inputs is important when they are presented as a sequence. In this case,

a(t)n(t)

Inputs

w
1,1

�
�D w

1,2

Linear Neuron

��

p(t)

a(t) = w
1,1

p(t) + w
1,2

p(t - 1)

�

W 1 2=

p1 1= , p2 2= , p3 3= , p4 4= ,

2 Neuron Model and Network Architectures

2-16

the current output is obtained by multiplying the current input by 1 and the
preceding input by 2 and summing the result. If we were to change the order of
the inputs, it would change the numbers we would obtain in the output.

Simulation With Concurrent Inputs in a Dynamic
Network
If we were to apply the same inputs from the previous example as a set of
concurrent inputs instead of a sequence of inputs, we would obtain a
completely different response. (Although, it is not clear why we would want to
do this with a dynamic network.) It would be as if each input were applied
concurrently to a separate parallel network. For the previous example, if we
use a concurrent set of inputs we have

which can be created with the following code:

P = [1 2 3 4];

When we simulate with concurrent inputs we obtain

A = sim(net,P)
A =
 1 2 3 4

The result is the same as if we had concurrently applied each one of the inputs
to a separate network and computed one output. Note that since we did not
assign any initial conditions to the network delays, they were assumed to be
zero. For this case the output will simply be 1 times the input, since the weight
that multiplies the current input is 1.

In certain special cases, we might want to simulate the network response to
several different sequences at the same time. In this case, we would want to
present the network with a concurrent set of sequences. For example, let’s say
we wanted to present the following two sequences to the network:

p1 1= , p2 2= , p3 3= , p4 4=

p1 1() 1 ,= p1 2() 2 ,= p1 3() 3 ,= p1 4() 4=

p2 1() 4 ,= p2 2() 3 ,= p2 3() 2 ,= p2 4() 1=

Data Structures

2-17

The input P should be a cell array, where each element of the array contains
the two elements of the two sequences that occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

We can now simulate the network:

A = sim(net,P);

The resulting network output would be

A = {[1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence
produced by the first input sequence, which was the one we used in an earlier
example. The second column of each matrix makes up the output sequence
produced by the second input sequence. There is no interaction between the
two concurrent sequences. It is as if they were each applied to separate
networks running in parallel.

The following diagram shows the general format for the input P to the sim
function when we have Q concurrent sequences of TS time steps. It covers all
cases where there is a single input vector. Each element of the cell array is a
matrix of concurrent vectors that correspond to the same point in time for each
sequence. If there are multiple input vectors, there will be multiple rows of
matrices in the cell array.

In this section, we have applied sequential and concurrent inputs to dynamic
networks. In the previous section, we applied concurrent inputs to static
networks. It is also possible to apply sequential inputs to static networks. It
will not change the simulated response of the network, but it can affect the way
in which the network is trained. This will become clear in the next section.

p1 1() p2 1() … pQ 1(), , ,[] p1 2() p2 2() … pQ 2(), , ,[]· … p1 TS() p2 TS() … pQ TS(), , ,[], , ,{ }

First Sequence

Qth Sequence

2 Neuron Model and Network Architectures

2-18

Training Styles
In this section, we describe two different styles of training. In incremental
training the weights and biases of the network are updated each time an input
is presented to the network. In batch training the weights and biases are only
updated after all of the inputs are presented.

Incremental Training (of Adaptive and Other
Networks)
Incremental training can be applied to both static and dynamic networks,
although it is more commonly used with dynamic networks, such as adaptive
filters. In this section, we demonstrate how incremental training is performed
on both static and dynamic networks.

Incremental Training with Static Networks
Consider again the static network we used for our first example. We want to
train it incrementally, so that the weights and biases will be updated after each
input is presented. In this case we use the function adapt, and we present the
inputs and targets as sequences.

Suppose we want to train the network to create the linear function

.

Then for the previous inputs we used,

the targets would be

We first set up the network with zero initial weights and biases. We also set
the learning rate to zero initially, to show the effect of the incremental training.

net = newlin([-1 1;-1 1],1,0,0);
net.IW{1,1} = [0 0];
net.b{1} = 0;

t 2p1 p2+=

p1
1
2

= , p2
2
1

= , p3
2
3

= , p4
3
1

=

t1 4= , t2 5= , t3 7= , t4 7=

Training Styles

2-19

For incremental training we want to present the inputs and targets as
sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

Recall from the earlier discussion that for a static network the simulation of the
network produces the same outputs whether the inputs are presented as a
matrix of concurrent vectors or as a cell array of sequential vectors. This is not
true when training the network, however. When using the adapt function, if
the inputs are presented as a cell array of sequential vectors, then the weights
are updated as each input is presented (incremental mode). As we see in the
next section, if the inputs are presented as a matrix of concurrent vectors, then
the weights are updated only after all inputs are presented (batch mode).

We are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs will remain zero, since the learning rate is zero, and the
weights are not updated. The errors will be equal to the targets:

a = [0] [0] [0] [0]
e = [4] [5] [7] [7]

If we now set the learning rate to 0.1 we can see how the network is adjusted
as each input is presented:

net.inputWeights{1,1}.learnParam.lr=0.1;
net.biases{1,1}.learnParam.lr=0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0] [2] [6.0] [5.8]
e = [4] [3] [1.0] [1.2]

The first output is the same as it was with zero learning rate, since no update
is made until the first input is presented. The second output is different, since
the weights have been updated. The weights continue to be modified as each
error is computed. If the network is capable and the learning rate is set
correctly, the error will eventually be driven to zero.

Incremental Training with Dynamic Networks
We can also train dynamic networks incrementally. In fact, this would be the
most common situation. Let’s take the linear network with one delay at the

2 Neuron Model and Network Architectures

2-20

input that we used in a previous example. We initialize the weights to zero and
set the learning rate to 0.1.

net = newlin([-1 1],1,[0 1],0.1);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

To train this network incrementally we present the inputs and targets as
elements of cell arrays.

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Here we attempt to train the network to sum the current and previous inputs
to create the current output. This is the same input sequence we used in the
previous example of using sim, except that we assign the first term in the
sequence as the initial condition for the delay. We now can sequentially train
the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [7.98]
e = [3] [2.6] [-0.98]

The first output is zero, since the weights have not yet been updated. The
weights change at each subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all of the
inputs and targets are presented, can be applied to both static and dynamic
networks. We discuss both types of networks in this section.

Batch Training with Static Networks
Batch training can be done using either adapt or train, although train is
generally the best option, since it typically has access to more efficient training
algorithms. Incremental training can only be done with adapt; train can only
perform batch training.

Let’s begin with the static network we used in previous examples. The learning
rate will be set to 0.1.

net = newlin([-1 1;-1 1],1,0,0.1);

Training Styles

2-21

net.IW{1,1} = [0 0];
net.b{1} = 0;

For batch training of a static network with adapt, the input vectors must be
placed in one matrix of concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

When we call adapt, it will invoke trains (which is the default adaptation
function for the linear network) and learnwh (which is the default learning
function for the weights and biases). Therefore, Widrow-Hoff learning is used.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are not
updated until all of the training set has been presented. If we display the
weights we find:

»net.IW{1,1}
ans = 4.9000 4.1000

»net.b{1}
ans =

 2.3000

This is different that the result we had after one pass of adapt with
incremental updating.

Now let’s perform the same batch training using train. Since the Widrow-Hoff
rule can be used in incremental or batch mode, it can be invoked by adapt or
train. There are several algorithms that can only be used in batch mode (e.g.,
Levenberg-Marquardt), and so these algorithms can only be invoked by train.

The network will be set up in the same way.

net = newlin([-1 1;-1 1],1,0,0.1);
net.IW{1,1} = [0 0];
net.b{1} = 0;

For this case, the input vectors can either be placed in a matrix of concurrent
vectors or in a cell array of sequential vectors. Within train any cell array of
sequential vectors is converted to a matrix of concurrent vectors. This is

2 Neuron Model and Network Architectures

2-22

because the network is static, and because train always operates in the batch
mode. Concurrent mode operation is generally used whenever possible,
because it has a more efficient MATLAB implementation.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Now we are ready to train the network. We will train it for only one epoch, since
we used only one pass of adapt. The default training function for the linear
network is trainc, and the default learning function for the weights and biases
is learnwh, so we should get the same results that we obtained using adapt in
the previous example, where the default adaptation function was trains.

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1}.learnParam.lr = 0.1;
net.trainParam.epochs = 1;
net = train(net,P,T);

If we display the weights after one epoch of training we find:

»net.IW{1,1}
ans = 4.9000 4.1000

»net.b{1}
ans =

 2.3000

This is the same result we had with the batch mode training in adapt. With
static networks, the adapt function can implement incremental or batch
training depending on the format of the input data. If the data is presented as
a matrix of concurrent vectors, batch training will occur. If the data is
presented as a sequence, incremental training will occur. This is not true for
train, which always performs batch training, regardless of the format of the
input.

Batch Training With Dynamic Networks
Training static networks is relatively straightforward. If we use train the
network is trained in the batch mode and the inputs is converted to concurrent
vectors (columns of a matrix), even if they are originally passed as a sequence
(elements of a cell array). If we use adapt, the format of the input determines
the method of training. If the inputs are passed as a sequence, then the
network is trained in incremental mode. If the inputs are passed as concurrent
vectors, then batch mode training is used.

Training Styles

2-23

With dynamic networks, batch mode training is typically done with train only,
especially if only one training sequence exists. To illustrate this, let’s consider
again the linear network with a delay. We use a learning rate of 0.02 for the
training. (When using a gradient descent algorithm, we typically use a smaller
learning rate for batch mode training than incremental training, because all of
the individual gradients are summed together before determining the step
change to the weights.)

net = newlin([-1 1],1,[0 1],0.02);
net.IW{1,1}=[0 0];
net.biasConnect=0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

We want to train the network with the same sequence we used for the
incremental training earlier, but this time we want to update the weights only
after all of the inputs are applied (batch mode). The network is simulated in
sequential mode because the input is a sequence, but the weights are updated
in batch mode.

net=train(net,P,T,Pi);

The weights after one epoch of training are

»net.IW{1,1}
ans = 0.9000 0.6200

These are different weights than we would obtain using incremental training,
where the weights would be updated three times during one pass through the
training set. For batch training the weights are only updated once in each
epoch.

2 Neuron Model and Network Architectures

2-24

Summary
The inputs to a neuron include its bias and the sum of its weighted inputs
(using the inner product). The output of a neuron depends on the neuron’s
inputs and on its transfer function. There are many useful transfer functions.

A single neuron cannot do very much. However, several neurons can be
combined into a layer or multiple layers that have great power. Hopefully this
toolbox makes it easy to create and understand such large networks.

The architecture of a network consists of a description of how many layers a
network has, the number of neurons in each layer, each layer’s transfer
function, and how the layers connect to each other. The best architecture to use
depends on the type of problem to be represented by the network.

A network effects a computation by mapping input values to output values. The
particular mapping problem to be performed fixes the number of inputs, as well
as the number of outputs for the network.

Aside from the number of neurons in a network’s output layer, the number of
neurons in each layer is up to the designer. Except for purely linear networks,
the more neurons in a hidden layer, the more powerful the network.

If a linear mapping needs to be represented linear neurons should be used.
However, linear networks cannot perform any nonlinear computation. Use of a
nonlinear transfer function makes a network capable of storing nonlinear
relationships between input and output.

A very simple problem can be represented by a single layer of neurons.
However, single-layer networks cannot solve certain problems. Multiple
feed-forward layers give a network greater freedom. For example, any
reasonable function can be represented with a two-layer network: a sigmoid
layer feeding a linear output layer.

Networks with biases can represent relationships between inputs and outputs
more easily than networks without biases. (For example, a neuron without a
bias will always have a net input to the transfer function of zero when all of its
inputs are zero. However, a neuron with a bias can learn to have any net
transfer function input under the same conditions by learning an appropriate
value for the bias.)

Feed-forward networks cannot perform temporal computation. More complex
networks with internal feedback paths are required for temporal behavior.

Summary

2-25

If several input vectors are to be presented to a network, they may be presented
sequentially or concurrently. Batching of concurrent inputs is computationally
more efficient and may be what is desired in any case. The matrix notation
used in MATLAB makes batching simple.

Figures and Equations

Simple Neuron

Hard Limit Transfer Function

Input - Title -

- Exp -

anp w

�� f

Neuron without bias

a = f (wp)

Input - Title -

- Exp -

anp
�� f

Neuron with bias

a = f (wp + b)

b

1

w
��

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

2 Neuron Model and Network Architectures

2-26

Purelin Transfer Function

Log Sigmoid Transfer Function

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

Summary

2-27

Neuron With Vector Input

Net Input

Single Neuron Using Abbreviated Notation

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Neuron w Vector Input

��
��

a = f(Wp
+b)

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

p a

1

n��
��W

��b

R x 1
1 x R

1 x 1

1 x 1

1 x 1

Input

R 1
��
��
��

f

Where...

R = number of
elements in
input vector

Neuron

a = f(Wp
+b)

2 Neuron Model and Network Architectures

2-28

Icons for Transfer Functions

Layer of Neurons

��
��
��

��
��
��

��
��
��

purelinhardlim logsig

a= f (Wp + b)

p a

1

n���W

���
���b

R x 1
S x R

S x 1

S x 1

Input Layer of Neurons

R S��
��
��f

S x 1

R = number of
elements in
input vector

Where...

S = number of
neurons in layer 1

Summary

2-29

A Layer of Neurons

Weight Matrix

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1
��
��

��
��

��
��
��
��f

��
��f

��
��f

Layer of Neurons

a= f (Wp + b)

R = number of
elements in
input vector

S = number of
neurons in layer

Where...

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

2 Neuron Model and Network Architectures

2-30

Layer of Neurons, Abbreviated Notation

Layer of Neurons Showing Indices

Three Layers of Neurons

a= f (Wp + b)

p a

1

n��W

��
��b

R x 1
S x R

S x 1

S x 1

Input Layer of Neurons

R S��
��
��

f
S x 1

R = number of
elements in
input vector

Where...

S = number of
neurons in layer 1

p a1

1

n1
S 1 x R

S 1 x 1

S 1 x 1

S 1 x 1

Input

���
���

IW1,1

���
���b1

Layer 1

S1

��
��
��
��

f1

R

a1 = f1(IW1,1p +b1)

S 1 x 1

R x 1
R = number of
elements in
input vector

S = number of
neurons in Layer 1

Where...

Summary

2-31

Three Layers, Abbreviated Notation

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1a1 +b2) a3 =f3 (LW3,2 a2 + b3)

Layer 1 Layer 2 Layer 3

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3)

Input

a3

2
n3

2

lw3,2

S
3
, S

2

lw3,2

1,1

b3

2

b3

1

b3

S
3

a3

S
3n3

S
3

a3

1
n3

1

1

1

1

1

1 1

1

1

1
a1

2
n1

2

p
1

p
2

p
3

p
R

1

iw1,1

S, R

iw1,1

1,

1

a1

S
1n1

S
 1

a1

1
n1

1

a2

2
n2

2

lw2,1

S
2
, S

1

lw2,1

1,1

b1

2

b1

1

b1

S
1

b2

2

b2

1

b2

S
2

a2

S
2n2

S
2

a2

1
n2

1

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��

f1

��
��f1
��
��f1

��
��f2

��
��f2

��
��

f2

�
�f3

�
�f3

�
�

f3

p a1 a2

1 1

n1 n2

a3 = y

n3

1

S 2 x S 1

S 2 x 1

S 2 x 1

 S 2 x 1
S 3x S 2

S 3 x 1

S 3 x 1

S 3 x 1 R x 1

S 1 x R

 S 1 x 1

 S 1 x 1

S 1 x 1

Input

���
���IW1,1

���b1 ��b2 ��b3

��
��LW2,1

��
��LW3,2

R S3S1 S2
��
��
��

f2

��
��
��

f3

Layer 1 Layer 2 Layer 3

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1 a1 +b2) a3 =f3 (LW3,2a2 +b3)

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3 = y

��
��
��

f1

2 Neuron Model and Network Architectures

2-32

Linear Neuron With Two-Element Vector Input

Dynamic Network With One Delay

p
1 an

Inputs

bp
2 w

1,2

w
1,1

1
a = purelin (Wp + b)

Linear Neuron

��
��

��
��

a(t)n(t)

Inputs

w
1,1

�
�D w

1,2

Linear Neuron

��

p(t)

a(t) = w
1,1

p(t) + w
1,2

p(t - 1)

�

3

Perceptrons

Introduction (p. 3-2) Introduces the chapter, and provides information on
additional resources

Neuron Model (p. 3-4) Provides a model of a perceptron neuron

Perceptron Architecture (p. 3-6) Graphically displays perceptron architecture

Creating a Perceptron (newp) (p. 3-7) Describes how to create a perceptron in the Neural
Network Toolbox

Learning Rules (p. 3-12) Introduces network learning rules

Perceptron Learning Rule (learnp) (p. 3-13) Discusses the perceptron learning rule learnp

Training (train) (p. 3-16) Discusses the training function train

Limitations and Cautions (p. 3-21) Describes the limitations of perceptron networks

Graphical User Interface (p. 3-23) Discusses the Network/Data Manager GUI

Summary (p. 3-33) Provides a consolidated review of the chapter concepts

3 Perceptrons

3-2

Introduction
This chapter has a number of objectives. First we want to introduce you to
learning rules, methods of deriving the next changes that might be made in a
network, and training, a procedure whereby a network is actually adjusted to
do a particular job. Along the way we discuss a toolbox function to create a
simple perceptron network, and we also cover functions to initialize and
simulate such networks. We use the perceptron as a vehicle for tying these
concepts together.

Rosenblatt [Rose61] created many variations of the perceptron. One of the
simplest was a single-layer network whose weights and biases could be trained
to produce a correct target vector when presented with the corresponding input
vector. The training technique used is called the perceptron learning rule. The
perceptron generated great interest due to its ability to generalize from its
training vectors and learn from initially randomly distributed connections.
Perceptrons are especially suited for simple problems in pattern classification.
They are fast and reliable networks for the problems they can solve. In
addition, an understanding of the operations of the perceptron provides a good
basis for understanding more complex networks.

In this chapter we define what we mean by a learning rule, explain the
perceptron network and its learning rule, and tell you how to initialize and
simulate perceptron networks.

The discussion of perceptron in this chapter is necessarily brief. For a more
thorough discussion, see Chapter 4 “Perceptron Learning Rule” of [HDB1996],
which discusses the use of multiple layers of perceptrons to solve more difficult
problems beyond the capability of one layer.

You also may want to refer to the original book on the perceptron, Rosenblatt,
F., Principles of Neurodynamics, Washington D.C.: Spartan Press, 1961.
[Rose61].

Important Perceptron Functions
Entering help percept at the MATLAB® command line displays all the
functions that are related to perceptrons.

Perceptron networks can be created with the function newp. These networks
can be initialized, simulated and trained with the init, sim and train. The

Introduction

3-3

following material describes how perceptrons work and introduces these
functions.

3 Perceptrons

3-4

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.

The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The
input space of a two-input hard limit neuron with the weights

 and a bias , is shown below.

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where...

R = number of
elements in
input vector

Perceptron Neuron

��
��
�
�

�
�

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

w1 1, 1, w1 2,– 1= = b 1=

Neuron Model

3-5

Two classification regions are formed by the decision boundary line L at
. This line is perpendicular to the weight matrix W and shifted

according to the bias b. Input vectors above and to the left of the line L will
result in a net input greater than 0; and therefore, cause the hard-limit neuron
to output a 1. Input vectors below and to the right of the line L cause the neuron
to output 0. The dividing line can be oriented and moved anywhere to classify
the input space as desired by picking the weight and bias values.

Hard-limit neurons without a bias will always have a classification line going
through the origin. Adding a bias allows the neuron to solve problems where
the two sets of input vectors are not located on different sides of the origin. The
bias allows the decision boundary to be shifted away from the origin as shown
in the plot above.

You may want to run the demonstration program nnd4db. With it you can move
a decision boundary around, pick new inputs to classify, and see how the
repeated application of the learning rule yields a network that does classify the
input vectors properly.

W

Wp+b = 0

Wp+b > 0

Wp+b < 0

p
1

p
2

-b/w
1,1

-b/w
1,2

Where... w
1,1

 = -1 and b = +1

w
1,2

 = +1

+1

-1

-1

+1

L

a = 0

a = 1

a = 0

Wp b+ 0=

3 Perceptrons

3-6

Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights wi,j as shown below in two
forms. As before, the network indices i and j indicate that wi,j is the strength
of the connection from the jth input to the ith neuron.

The perceptron learning rule that we will describe shortly is capable of training
only a single layer. Thus, here we will consider only one-layer networks. This
restriction places limitations on the computation a perceptron can perform.
The types of problems that perceptrons are capable of solving are discussed
later in this chapter in the “Limitations and Cautions” section.

a1 = hardlim (IW1,1p1 + b1)

Perceptron LayerInput 1

1

1

1
a1

2
n1

2

p
1

p
2

p
3

p
R

iw1,1

S
1
,R

iw1,1

1,

1

a1

S
1n1

S
 1

a1

1
n1

1

b1

2

b1

1

b1

S
1

�

�

�
�

��

��

��
��

p a1

1

n1
S 1 x R

S 1 x 1

S 1 x 1

S 1x 1

Input 1

��IW1,1

��
��b1

Layer 1

S1

f1

R

a1 = hardlim(IW1,1p1 +b1)

Where...

 = number of elements in Input

= number of neurons in layer 1 S1

R

S 1 x 1

R x 1

��
��
��

Creating a Perceptron (newp)

3-7

Creating a Perceptron (newp)
A perceptron can be created with the function newp

net = newp(PR, S)

where input arguments:

PR is an R-by-2 matrix of minimum and maximum values for R input
elements.

S is the number of neurons.

Commonly the hardlim function is used in perceptrons, so it is the default.

The code below creates a perceptron network with a single one-element input
vector and one neuron. The range for the single element of the single input
vector is [0 2].

net = newp([0 2],1);

We can see what network has been created by executing the following code

inputweights = net.inputweights{1,1}

which yields:

inputweights =
 delays: 0
 initFcn: 'initzero'
 learn: 1
 learnFcn: 'learnp'
 learnParam: []
 size: [1 1]
 userdata: [1x1 struct]
 weightFcn: 'dotprod'

Note that the default learning function is learnp, which is discussed later in
this chapter. The net input to the hardlim transfer function is dotprod, which
generates the product of the input vector and weight matrix and adds the bias
to compute the net input.

Also note that the default initialization function, initzero, is used to set the
initial values of the weights to zero.

Similarly,

3 Perceptrons

3-8

biases = net.biases{1}

gives

biases =
 initFcn: 'initzero'
 learn: 1
 learnFcn: 'learnp'
 learnParam: []
 size: 1
 userdata: [1x1 struct]

We can see that the default initialization for the bias is also 0.

Simulation (sim)
To show how sim works we examine a simple problem.

Suppose we take a perceptron with a single two-element input vector, like that
discussed in the decision boundary figure. We define the network with

net = newp([-2 2;-2 +2],1);

As noted above, this gives us zero weights and biases, so if we want a particular
set other than zeros, we have to create them. We can set the two weights and
the one bias to -1, 1 and 1 as they were in the decision boundary figure with the
following two lines of code.

net.IW{1,1}= [-1 1];
net.b{1} = [1];

To make sure that these parameters were set correctly, we check them with

net.IW{1,1}
ans =
 -1 1
net.b{1}
ans =

 1

Now let us see if the network responds to two signals, one on each side of the
perceptron boundary.

p1 = [1;1];

Creating a Perceptron (newp)

3-9

a1 = sim(net,p1)
a1 =

 1

and for

p2 = [1;-1]
a2 = sim(net,p2)
a2 =

 0

Sure enough, the perceptron classified the two inputs correctly.

Note that we could present the two inputs in a sequence and get the outputs in
a sequence as well.

p3 = {[1;1] [1;-1]};
a3 = sim(net,p3)
a3 =

 [1] [0]

You may want to read more about sim in “Advanced Topics” in Chapter 12.

Initialization (init)
You can use the function init to reset the network weights and biases to their
original values. Suppose, for instance that you start with the network

net = newp([-2 2;-2 +2],1);

Now check its weights with

wts = net.IW{1,1}

which gives, as expected,

wts =

 0 0

In the same way, you can verify that the bias is 0 with

bias = net.b{1}

3 Perceptrons

3-10

which gives

bias =

 0

Now set the weights to the values 3 and 4 and the bias to the value 5 with

net.IW{1,1} = [3,4];
net.b{1} = 5;

Recheck the weights and bias as shown above to verify that the change has
been made. Sure enough,

wts =
 3 4
bias =

 5

Now use init to reset the weights and bias to their original values.

net = init(net);

We can check as shown above to verify that.

wts =
 0 0
bias =

 0

We can change the way that a perceptron is initialized with init. For instance,
we can redefine the network input weights and bias initFcns as rands, and
then apply init as shown below.

net.inputweights{1,1}.initFcn = 'rands';
net.biases{1}.initFcn = 'rands';
net = init(net);

Now check on the weights and bias.

wts =
 0.2309 0.5839
biases =

Creating a Perceptron (newp)

3-11

 -0.1106

We can see that the weights and bias have been given random numbers.

You may want to read more about init in “Advanced Topics” in Chapter 12.

3 Perceptrons

3-12

Learning Rules
We define a learning rule as a procedure for modifying the weights and biases
of a network. (This procedure may also be referred to as a training algorithm.)
The learning rule is applied to train the network to perform some particular
task. Learning rules in this toolbox fall into two broad categories: supervised
learning, and unsupervised learning.

In supervised learning, the learning rule is provided with a set of examples (the
training set) of proper network behavior

where is an input to the network, and is the corresponding correct
(target) output. As the inputs are applied to the network, the network outputs
are compared to the targets. The learning rule is then used to adjust the
weights and biases of the network in order to move the network outputs closer
to the targets. The perceptron learning rule falls in this supervised learning
category.

In unsupervised learning, the weights and biases are modified in response to
network inputs only. There are no target outputs available. Most of these
algorithms perform clustering operations. They categorize the input patterns
into a finite number of classes. This is especially useful in such applications as
vector quantization.

As noted, the perceptron discussed in this chapter is trained with supervised
learning. Hopefully, a network that produces the right output for a particular
input will be obtained.

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq

Perceptron Learning Rule (learnp)

3-13

Perceptron Learning Rule (learnp)
Perceptrons are trained on examples of desired behavior. The desired behavior
can be summarized by a set of input, output pairs

where p is an input to the network and t is the corresponding correct (target)
output. The objective is to reduce the error e, which is the difference
between the neuron response a, and the target vector t. The perceptron
learning rule learnp calculates desired changes to the perceptron’s weights
and biases given an input vector p, and the associated error e. The target
vector t must contain values of either 0 or 1, as perceptrons (with hardlim
transfer functions) can only output such values.

Each time learnp is executed, the perceptron has a better chance of producing
the correct outputs. The perceptron rule is proven to converge on a solution in
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight
vector w to point toward input vectors to be classified as 1, and away from
vectors to be classified as 0. This results in a decision boundary that is
perpendicular to w, and which properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct
(a = t, and e = t – a = 0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1, and
e = t – a = 1), the input vector p is added to the weight vector w. This makes
the weight vector point closer to the input vector, increasing the chance that
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 1and t = 0, and e
= t – a = –1), the input vector p is subtracted from the weight vector w. This
makes the weight vector point farther away from the input vector, increasing
the chance that the input vector is classified as a 0 in the future.

The perceptron learning rule can be written more succinctly in terms of the
error e = t – a, and the change to be made to the weight vector ∆w:

p1t1,p2t1,..., pQtQ

t a–

3 Perceptrons

3-14

CASE 1. If e = 0, then make a change ∆w equal to 0.

CASE 2. If e = 1, then make a change ∆w equal to pT.

CASE 3. If e = –1, then make a change ∆w equal to –pT.

All three cases can then be written with a single expression:

We can get the expression for changes in a neuron’s bias by noting that the bias
is simply a weight that always has an input of 1:

For the case of a layer of neurons we have:

 and

The Perceptron Learning Rule can be summarized as follows

 and

where .

Now let us try a simple example. We start with a single neuron having a input
vector with just two elements.

net = newp([-2 2;-2 +2],1);

To simplify matters we set the bias equal to 0 and the weights to 1 and -0.8.

net.b{1} = [0];
w = [1 -0.8];
net.IW{1,1} = w;

The input target pair is given by

p = [1; 2];
t = [1];

∆w t a–()pT epT= =

∆b t a–() 1() e= =

∆W t a–() p()T e p()T= =

∆b t a–() E= =

Wnew Wold epT+=

bnew bold e+=

e t a–=

Perceptron Learning Rule (learnp)

3-15

We can compute the output and error with

a = sim(net,p)
a =
 0
e = t-a
e =
 1

and finally use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[])
dw =
 1 2

The new weights, then, are obtained as

w = w + dw
w =
 2.0000 1.2000

The process of finding new weights (and biases) can be repeated until there are
no errors. Note that the perceptron learning rule is guaranteed to converge in
a finite number of steps for all problems that can be solved by a perceptron.
These include all classification problems that are “linearly separable.” The
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and
apply the learning rule to classify them.

3 Perceptrons

3-16

Training (train)
If sim and learnp are used repeatedly to present inputs to a perceptron, and to
change the perceptron weights and biases according to the error, the
perceptron will eventually find weight and bias values that solve the problem,
given that the perceptron can solve it. Each traverse through all of the training
input and target vectors is called a pass.

The function train carries out such a loop of calculation. In each pass the
function train proceeds through the specified sequence of inputs, calculating
the output, error and network adjustment for each input vector in the sequence
as the inputs are presented.

Note that train does not guarantee that the resulting network does its job.
The new values of W and b must be checked by computing the network output
for each input vector to see if all targets are reached. If a network does not
perform successfully it can be trained further by again calling train with the
new weights and biases for more training passes, or the problem can be
analyzed to see if it is a suitable problem for the perceptron. Problems which
are not solvable by the perceptron network are discussed in the “Limitations
and Cautions” section.

To illustrate the training procedure, we will work through a simple problem.
Consider a one neuron perceptron with a single vector input having two
elements.

This network, and the problem we are about to consider are simple enough that
you can follow through what is done with hand calculations if you want. The
problem discussed below follows that found in [HDB1996].

Input

- Exp -

p
1

an

p
2

w
1,

2

w
1,1

�
� f

a = hardlim (Wp + b)

b

1

Perceptron Neuron

��
��
�
�

Training (train)

3-17

Let us suppose we have the following classification problem and would like to
solve it with our single vector input, two-element perceptron network.

Use the initial weights and bias. We denote the variables at each step of this
calculation by using a number in parentheses after the variable. Thus, above,
we have the initial values, W(0) and b(0).

We start by calculating the perceptron’s output a for the first input vector p1,
using the initial weights and bias.

The output a does not equal the target value t1, so we use the perceptron rule
to find the incremental changes to the weights and biases based on the error.

You can calculate the new weights and bias using the Perceptron update rules
shown previously.

Now present the next input vector, p2. The output is calculated below.

p1
2
2

= t1 0=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p2
1
2–

= t2 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p3
2–
2

= t3 0=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p4
1–
1

= t4 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

W 0() 0 0= b 0() 0=

a hardlim W 0()p1 b 0()+()

hardlim 0 0
2
2

0+
⎝ ⎠
⎜ ⎟
⎛ ⎞

hardlim 0() 1

=

= = =

e t1 a– 0 1– 1

∆W

–

ep1
T 1–() 2 2 2– 2–

∆b e 1–() 1–

= = =

= = =

= = =

Wnew Wold epT+ 0 0 2– 2–+ 2– 2– W 1()= = = =

bnew bold e+ 0 1–()+ 1– b 1()= = = =

3 Perceptrons

3-18

On this occasion, the target is 1, so the error is zero. Thus there are no changes
in weights or bias, so and

We can continue in this fashion, presenting p3 next, calculating an output and
the error, and making changes in the weights and bias, etc. After making one
pass through all of the four inputs, you get the values: and

. To determine if we obtained a satisfactory solution, we must make
one pass through all input vectors to see if they all produce the desired target
values. This is not true for the 4th input, but the algorithm does converge on
the 6th presentation of an input. The final values are:

 and

This concludes our hand calculation. Now, how can we do this using the train
function?

The following code defines a perceptron like that shown in the previous figure,
with initial weights and bias values of 0.

net = newp([-2 2;-2 +2],1);

Now consider the application of a single input.

p =[2; 2];

having the target

t =[0];

Now set epochs to 1, so that train will go through the input vectors (only one
here) just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

The new weights and bias are

w =
 -2 -2

a hardlim W 1()p2 b 1()+()

hardlim 2– 2–
2–
2–

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

hardlim 1() 1

=

= = =

W 2() W 1() 2– 2–= = p 2() p 1() 1–= =

W 4() 3– 1–=
b 4() 0=

W 6() 2– 3–= b 6() 1=

Training (train)

3-19

b =
 -1

Thus, the initial weights and bias are 0, and after training on only the first
vector, they have the values [-2 -2] and -1, just as we hand calculated.

We now apply the second input vector . The output is 1, as it will be until the
weights and bias are changed, but now the target is 1, the error will be 0 and
the change will be zero. We could proceed in this way, starting from the
previous result and applying a new input vector time after time. But we can do
this job automatically with train.

Now let’s apply train for one epoch, a single pass through the sequence of all
four input vectors. Start with the network definition.

net = newp([-2 2;-2 +2],1);
net.trainParam.epochs = 1;

The input vectors and targets are

p = [[2;2] [1;-2] [-2;2] [-1;1]]
t =[0 1 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

w =
 -3 -1
b =
 0

Note that this is the same result as we got previously by hand. Finally simulate
the trained network for each of the inputs.

a = sim(net,p)
a =
 [0] [0] [1] [1]

The outputs do not yet equal the targets, so we need to train the network for
more than one pass. We will try four epochs. This run gives the following
results.

p2

3 Perceptrons

3-20

TRAINC, Epoch 0/20
TRAINC, Epoch 3/20
TRAINC, Performance goal met.

Thus, the network was trained by the time the inputs were presented on the
third epoch. (As we know from our hand calculation, the network converges on
the presentation of the sixth input vector. This occurs in the middle of the
second epoch, but it takes the third epoch to detect the network convergence.)
The final weights and bias are

w =
 -2 -3
b =
 1

The simulated output and errors for the various inputs are

a =
 0 1.00 0 1.00
error = [a(1)-t(1) a(2)-t(2) a(3)-t(3) a(4)-t(4)]
error =
 0 0 0 0

Thus, we have checked that the training procedure was successful. The
network converged and produces the correct target outputs for the four input
vectors.

Note that the default training function for networks created with newp is
trains. (You can find this by executing net.trainFcn.) This training function
applies the perceptron learning rule in its pure form, in that individual input
vectors are applied individually in sequence, and corrections to the weights and
bias are made after each presentation of an input vector. Thus, perceptron
training with train will converge in a finite number of steps unless the
problem presented can not be solved with a simple perceptron.

The function train can be used in various ways by other networks as well. Type
help train to read more about this basic function.

You may want to try various demonstration programs. For instance, demop1
illustrates classification and training of a simple perceptron.

Limitations and Cautions

3-21

Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the input
vectors to the network one at a time and makes corrections to the network
based on the results of each presentation. Use of adapt in this way guarantees
that any linearly separable problem is solved in a finite number of training
presentations. Perceptrons can also be trained with the function train, which
is presented in the next chapter. When train is used for perceptrons, it
presents the inputs to the network in batches, and makes corrections to the
network based on the sum of all the individual corrections. Unfortunately,
there is no proof that such a training algorithm converges for perceptrons. On
that account the use of train for perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a
perceptron can take on only one of two values (0 or 1) due to the hard-limit
transfer function. Second, perceptrons can only classify linearly separable sets
of vectors. If a straight line or a plane can be drawn to separate the input
vectors into their correct categories, the input vectors are linearly separable. If
the vectors are not linearly separable, learning will never reach a point where
all vectors are classified properly. Note, however, that it has been proven that
if the vectors are linearly separable, perceptrons trained adaptively will always
find a solution in finite time. You might want to try demop6. It shows the
difficulty of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one
perceptron can be used to solve more difficult problems. For instance, suppose
that you have a set of four vectors that you would like to classify into distinct
groups, and that two lines can be drawn to separate them. A two neuron
network can be found such that its two decision boundaries classify the inputs
into four categories. For additional discussion about perceptrons and to
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule
Long training times can be caused by the presence of an outlier input vector
whose length is much larger or smaller than the other input vectors. Applying
the perceptron learning rule involves adding and subtracting input vectors
from the current weights and biases in response to error. Thus, an input vector
with large elements can lead to changes in the weights and biases that take a
long time for a much smaller input vector to overcome. You might want to try
demop4 to see how an outlier affects the training.

3 Perceptrons

3-22

By changing the perceptron learning rule slightly, training times can be made
insensitive to extremely large or small outlier input vectors.

Here is the original rule for updating weights:

As shown above, the larger an input vector p, the larger its effect on the weight
vector w. Thus, if an input vector is much larger than other input vectors, the
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that effect of each input vector on the
weights is of the same magnitude:

The normalized perceptron rule is implemented with the function learnpn,
which is called exactly like learnpn. The normalized perceptron rule function
learnpn takes slightly more time to execute, but reduces number of epochs
considerably if there are outlier input vectors. You might try demop5 to see how
this normalized training rule works.

∆w t a–()pT epT= =

∆w t a–() pT

p
-------- e pT

p
--------= =

Graphical User Interface

3-23

Graphical User Interface

Introduction to the GUI
The graphical user interface (GUI) is designed to be simple and user friendly,
but we will go through a simple example to get you started.

In what follows you bring up a GUI Network/Data Manager window. This
window has its own work area, separate from the more familiar command line
workspace. Thus, when using the GUI, you might “export” the GUI results to
the (command line) workspace. Similarly you may want to “import” results
from the command line workspace to the GUI.

Once the Network/Data Manager is up and running, you can create a
network, view it, train it, simulate it and export the final results to the
workspace. Similarly, you can import data from the workspace for use in the
GUI.

The following example deals with a perceptron network. We go through all the
steps of creating a network and show you what you might expect to see as you
go along.

Create a Perceptron Network (nntool)
We create a perceptron network to perform the AND function in this example.
It has an input vector p= [0 0 1 1;0 1 0 1] and a target vector t=[0 0 0 1].
We call the network ANDNet. Once created, the network will be trained. We can
then save the network, its output, etc., by “exporting” it to the command line.

Input and target
To start, type nntool. The following window appears.

3 Perceptrons

3-24

Click on Help to get started on a new problem and to see descriptions of the
buttons and lists.

First, we want to define the network input, which we call p, as having the
particular value [0 0 1 1;0 1 0 1]. Thus, the network had a two-element input
and four sets of such two-element vectors are presented to it in training. To
define this data, click on New Data, and a new window, Create New Data
appears. Set the Name to p, the Value to [0 0 1 1;0 1 0 1], and make sure that
Data Type is set to Inputs.The Create New Data window will then look like
this:

Graphical User Interface

3-25

Now click Create to actually create an input file p. The Network/Data
Manager window comes up and p shows as an input.

Next we create a network target. Click on New Data again, and this time enter
the variable name t, specify the value [0 0 0 1], and click on Target under
data type. Again click on Create and you will see in the resulting
Network/Data Manager window that you now have t as a target as well as the
previous p as an input.

Create Network
Now we want to create a new network, which we will call ANDNet.To do this,
click on New Network, and a CreateNew Network window appears. Enter
ANDNet under Network Name. Set the Network Type to Perceptron, for that
is the kind of network we want to create. The input ranges can be set by
entering numbers in that field, but it is easier to get them from the particular
input data that you want to use. To do this, click on the down arrow at the right
side of Input Range. This pull-down menu shows that you can get the input
ranges from the file p if you want. That is what we want to do, so click on p.
This should lead to input ranges [0 1;0 1].We want to use a hardlim transfer
function and a learnp learning function, so set those values using the arrows
for Transfer function and Learning function respectively. By now your
Create New Network window should look like:

3 Perceptrons

3-26

Next you might look at the network by clicking on View. For example:

This picture shows that you are about to create a network with a single input
(composed of two elements), a hardlim transfer function, and a single output.
This is the perceptron network that we wanted.

Now click Create to generate the network. You will get back the
Network/Data Manager window. Note that ANDNet is now listed as a network.

Graphical User Interface

3-27

Train the Perceptron
To train the network, click on ANDNet to highlight it. Then click on Train. This
leads to a new window labeled Network:ANDNet. At this point you can view
the network again by clicking on the top tab Train. You can also check on the
initialization by clicking on the top tab Initialize. Now click on the top tab
Train. Specify the inputs and output by clicking on the left tab Training Info
and selecting p from the pop-down list of inputs and t from the pull-down list
of targets. The Network:ANDNet window should look like:

Note that the Training Result Outputs and Errors have the name ANDNet
appended to them. This makes them easy to identify later when they are
exported to the command line.

While you are here, click on the Training Parameters tab. It shows you
parameters such as the epochs and error goal. You can change these
parameters at this point if you want.

Now click Train Network to train the perceptron network. You will see the
following training results.

3 Perceptrons

3-28

Thus, the network was trained to zero error in four epochs. (Note that other
kinds of networks commonly do not train to zero error and their error
commonly cover a much larger range. On that account, we plot their errors on
a log scale rather than on a linear scale such as that used above for
perceptrons.)

You can check that the trained network does indeed give zero error by using
the input p and simulating the network. To do this, get to the Network/Data
Manager window and click on Network Only: Simulate). This will bring up
the Network:ANDNet window. Click there on Simulate. Now use the Input
pull-down menu to specify p as the input, and label the output as
ANDNet_outputsSim to distinguish it from the training output. Now click
Simulate Network in the lower right corner. Look at the Network/Data
Manager and you will see a new variable in the output: ANDNet_outputsSim.

Graphical User Interface

3-29

Double-click on it and a small window Data:ANDNet_outputsSim appears
with the value

[0 0 0 1]

Thus, the network does perform the AND of the inputs, giving a 1 as an output
only in this last case, when both inputs are 1.

Export Perceptron Results to Workspace
To export the network outputs and errors to the MATLAB command line
workspace, click in the lower left of the Network:ANDNet window to go back
to the Network/Data Manager. Note that the output and error for the ANDNet
are listed in the Outputs and Error lists on the right side. Next click on
Export This will give you an Export or Save from Network/Data Manager
window. Click on ANDNet_outputs and ANDNet_errors to highlight them, and
then click the Export button. These two variables now should be in the
command line workspace. To check this, go to the command line and type who
to see all the defined variables. The result should be

who
Your variables are:
ANDNet_errors ANDNet_outputs

You might type ANDNet_outputs and ANDNet_errors to obtain the following

ANDNet_outputs =
0 0 0 1

and

ANDNet_errors =
0 0 0 0.

You can export p, t, and ANDNet in a similar way. You might do this and check
with who to make sure that they got to the command line.

Now that ANDNet is exported you can view the network description and
examine the network weight matrix. For instance, the command

ANDNet.iw{1,1}

gives

ans =

3 Perceptrons

3-30

2 1

Similarly,

ANDNet.b{1}

yields

ans =
-3.

Clear Network/Data Window
You can clear the Network/Data Manager window by highlighting a variable
such as p and clicking the Delete button until all entries in the list boxes are
gone. By doing this, we start from clean slate.

Alternatively, you can quit MATLAB. A restart with a new MATLAB, followed
by nntool, gives a clean Network/Data Manager window.

Recall however, that we exported p, t, etc., to the command line from the
perceptron example. They are still there for your use even after you clear the
Network/Data Manager.

Importing from the Command Line
To make thing simple, quit MATLAB. Start it again, and type nntool to begin
a new session.

Create a new vector.

r= [0; 1; 2; 3]
r =
 0
 1
 2
 3

Now click on Import, and set the destination Name to R (to distinguish
between the variable named at the command line and the variable in the GUI).
You will have a window that looks like this

Graphical User Interface

3-31

.

Now click Import and verify by looking at the Network/DAta Manager that
the variable R is there as an input.

Save a Variable to a File and Load It Later
Bring up the Network/Data Manager and click on New Network. Set the
name to mynet. Click on Create. The network name mynet should appear in the
Network/Data Manager. In this same manager window click on Export.
Select mynet in the variable list of the Export or Save window and click on
Save. This leads to the Save to a MAT file window. Save to a file mynetfile.

Now lets get rid of mynet in the GUI and retrieve it from the saved file. First go
to the Data/Network Manager, highlight mynet, and click Delete. Next click
on Import. This brings up the Import or Load to Network/Data Manager

3 Perceptrons

3-32

window. Select the Load from Disk button and type mynetfile as the
MAT-file Name. Now click on Browse. This brings up the Select MAT file
window with mynetfile as an option that you can select as a variable to be
imported. Highlight mynetfile, press Open, and you return to the Import or
Load to Network/Data Manager window. On the Import As list, select
Network. Highlight mynet and lick on Load to bring mynet to the GUI. Now
mynet is back in the GUI Network/Data Manager window.

Summary

3-33

Summary
Perceptrons are useful as classifiers. They can classify linearly separable input
vectors very well. Convergence is guaranteed in a finite number of steps
providing the perceptron can solve the problem.

The design of a perceptron network is constrained completely by the problem
to be solved. Perceptrons have a single layer of hard-limit neurons. The number
of network inputs and the number of neurons in the layer are constrained by
the number of inputs and outputs required by the problem.

Training time is sensitive to outliers, but outlier input vectors do not stop the
network from finding a solution.

Single-layer perceptrons can solve problems only when data is linearly
separable. This is seldom the case. One solution to this difficulty is to use a
preprocessing method that results in linearly separable vectors. Or you might
use multiple perceptrons in multiple layers. Alternatively, you can use other
kinds of networks such as linear networks or backpropagation networks, which
can classify nonlinearly separable input vectors.

A graphical user interface can be used to create networks and data, train the
networks, and export the networks and data to the command line workspace.

Figures and Equations

Perceptron Neuron

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where...

R = number of
elements in
input vector

Perceptron Neuron

��
��
�
�

3 Perceptrons

3-34

Perceptron Transfer Function, hardlim

Decision Boundary

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

W

Wp+b = 0

Wp+b > 0

Wp+b < 0

p
1

p
2

-b/w
1,1

-b/w
1,2

Where... w
1,1

 = -1 and b = +1

w
1,2

 = +1

+1

-1

-1

+1

L

a = 0

a = 1

a = 0

Summary

3-35

Perceptron Architecture

The Perceptron Learning Rule

where

a1 = hardlim (IW1,1p1 + b1)

Perceptron LayerInput 1

1

1

1
a1

2
n1

2

p
1

p
2

p
3

p
R

iw1,1

S
1
,R

iw1,1

1,

1

a1

S
1n1

S
 1

a1

1
n1

1

b1

2

b1

1

b1

S
1�

�
�
�
�
�

�
�

�
�

�
� p a1

1

n1
S 1 x R

S 1 x 1

S 1 x 1

S 1x 1

Input 1

��
��IW1,1

��b1

Layer 1

S1

f1

R

a1 = hardlim(IW1,1p1 +b1)

Where...

 = number of elements in Input

= number of neurons in layer 1 S1

R

S 1 x 1

R x 1

��
��
��

Wnew Wold epT+=

bnew bold e+=

e t a–=

3 Perceptrons

3-36

One Perceptron Neuron

New Functions
This chapter introduces the following new functions.

Function Description

hardlim A hard limit transfer function

initzero Zero weight/bias initialization function

dotprod Dot product weight function

newp Creates a new perceptron network.

sim Simulates a neural network.

init Initializes a neural network

learnp Perceptron learning function

learnpn Normalized perceptron learning function

nntool Starts the Graphical User Interface (GUI)

Input

- Exp -

p
1

an

p
2

w
1,

2

w
1,1

�
� f

a = hardlim (Wp + b)

b

1

Perceptron Neuron

��
��
�
�

4

Linear Filters

Introduction (p. 4-2) Introduces the chapter

Neuron Model (p. 4-3) Provides a model of a linear neuron

Network Architecture (p. 4-4) Graphically displays linear network architecture

Mean Square Error (p. 4-8) Discusses Least Mean Square Error supervised training

Linear System Design (newlind)
(p. 4-9)

Discusses the linear system design function newlind

Linear Networks with Delays (p. 4-10) Introduces and graphically depicts tapped delay lines and
linear filters

LMS Algorithm (learnwh) (p. 4-13) Describes the Widrow-Hoff learning algorithm learnwh

Linear Classification (train) (p. 4-15) Discusses the training function train

Limitations and Cautions (p. 4-18) Describes the limitations of linear networks

Summary (p. 4-20) Provides a consolidated review of the chapter concepts

4 Linear Filters

4-2

Introduction
The linear networks discussed in this chapter are similar to the perceptron, but
their transfer function is linear rather than hard-limiting. This allows their
outputs to take on any value, whereas the perceptron output is limited to either
0 or 1. Linear networks, like the perceptron, can only solve linearly separable
problems.

Here we will design a linear network that, when presented with a set of given
input vectors, produces outputs of corresponding target vectors. For each input
vector we can calculate the network’s output vector. The difference between an
output vector and its target vector is the error. We would like to find values for
the network weights and biases such that the sum of the squares of the errors
is minimized or below a specific value. This problem is manageable because
linear systems have a single error minimum. In most cases, we can calculate a
linear network directly, such that its error is a minimum for the given input
vectors and targets vectors. In other cases, numerical problems prohibit direct
calculation. Fortunately, we can always train the network to have a minimum
error by using the Least Mean Squares (Widrow-Hoff) algorithm.

Note that the use of linear filters in adaptive systems is discussed in Chapter
10.

This chapter introduces newlin, a function that creates a linear layer, and
newlind, a function that designs a linear layer for a specific purpose.

You can type help linnet to see a list of linear network functions,
demonstrations, and applications.

Neuron Model

4-3

Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function, which we
will give the name purelin.

The linear transfer function calculates the neuron’s output by simply returning
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a
linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Linear Neuron with
 Vector Input

��
��

��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

a purelin n() purelin Wp b+() Wp b += = =

4 Linear Filters

4-4

Network Architecture
The linear network shown below has one layer of S neurons connected to R
inputs through a matrix of weights W.

Note that the figure on the right defines an S-length output vector a.

We have shown a single-layer linear network. However, this network is just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Creating a Linear Neuron (newlin)
Consider a single linear neuron with two inputs. The diagram for this network
is shown below.

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��

��
��

��
��

Layer of Linear
Neurons

a= purelin (Wp + b)

p a

1

n

��
��W

��
��

b

R x 1
S x R

S x 1

S x 1

Input Layer of Linear Neurons

R S

S x 1

��
��

��
��
��

��
��

��

a= purelin (Wp + b)

a= purelin (Wp + b)

Where...

R = numberof
elements in
 input vector

S = numberof
neurons in layer

Network Architecture

4-5

The weight matrix W in this case has only one row. The network output is:

 or

Like the perceptron, the linear network has a decision boundary that is
determined by the input vectors for which the net input n is zero. For
the equation specifies such a decision boundary as shown below
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area will lead to an output greater than
0. Input vectors in the lower left white area will lead to an output less than 0.
Thus, the linear network can be used to classify objects into two categories.
However, it can classify in this way only if the objects are linearly separable.
Thus, the linear network has the same limitation as the perceptron.

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple Linear Network

a purelin n() purelin Wp b+() Wp b += = =

a w1 1, p1 w1 2, p2 b+ +=

n 0=
Wp b+ 0=

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W

4 Linear Filters

4-6

We can create a network like that shown above with the command

net = newlin([-1 1; -1 1],1);

The first matrix of arguments specify the range of the two scalar inputs. The
last argument, 1, says that the network has a single output.

The network weights and biases are set to zero by default. You can see the
current values with the commands

W = net.IW{1,1}
W =
 0 0

and

b= net.b{1}
b =
 0

However, you can give the weights any value that you want, such as 2 and 3
respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
 2 3

The bias can be set and checked in the same way.

net.b{1} =[-4];
b = net.b{1}
b =
 -4

You can simulate the linear network for a particular input vector. Try

p = [5;6];

Now you can find the network output with the function sim.

a = sim(net,p)
a =
 24

Network Architecture

4-7

To summarize, you can create a linear network with newlin, adjust its
elements as you want, and simulate it with sim. You can find more about
newlin by typing help newlin.

4 Linear Filters

4-8

Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior:

Here is an input to the network, and is the corresponding target output.
As each input is applied to the network, the network output is compared to the
target. The error is calculated as the difference between the target output and
the network output. We want to minimize the average of the sum of these
errors.

The LMS algorithm adjusts the weights and biases of the linear network so as
to minimize this mean square error.

Fortunately, the mean square error performance index for the linear network
is a quadratic function. Thus, the performance index will either have one global
minimum, a weak minimum or no minimum, depending on the characteristics
of the input vectors. Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq

mse 1
Q
---- e k()2

k 1=

Q

∑
1
Q
---- t k() a k()–()2

k 1=

Q

∑= =

Linear System Design (newlind)

4-9

Linear System Design (newlind)
Unlike most other network architectures, linear networks can be designed
directly if input/target vector pairs are known. Specific network values for
weights and biases can be obtained to minimize the mean square error by using
the function newlind.

Suppose that the inputs and targets are

P = [1 2 3];
T= [2.0 4.1 5.9];

Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done
properly.

Y = sim(net,P)
Y =
 2.0500 4.0000 5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolin1. It shows error surfaces for a particular problem,
illustrates the design and plots the designed solution.

The function newlind can also be used to design linear networks having delays
in the input. Such networks are discussed later in this chapter. First, however,
we need to discuss delays.

4 Linear Filters

4-10

Linear Networks with Delays

Tapped Delay Line
We need a new component, the tapped delay line, to make full use of the linear
network. Such a delay line is shown below. There the input signal enters from
the left, and passes through N-1 delays. The output of the tapped delay line
(TDL) is an N-dimensional vector, made up of the input signal at the current
time, the previous input signal, etc.

Linear Filter
We can combine a tapped delay line with an linear network to create the linear
filter shown below.

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

Linear Networks with Delays

4-11

The output of the filter is given by

The network shown above is referred to in the digital signal-processing field as
a finite impulse response (FIR) filter [WiSt85]. Let us take a look at the code
that we use to generate and simulate such a specific network.

Suppose that we want a linear layer that outputs the sequence T given the
sequence P and two initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5 6 4 20 7 8};

You can use newlind to design a network with delays to give the appropriate
outputs for the inputs. The delay initial outputs are supplied as a third
argument as shown below.

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

a k() purelin Wp b+() w1 i, a k i– 1+()

i 1=

R

∑ b+= =

4 Linear Filters

4-12

net = newlind(P,T,Pi);

Now we obtain the output of the designed network with

Y = sim(net,P,Pi)

to give

Y = [2.73] [10.54] [5.01] [14.95] [10.78] [5.98]

As you can see, the network outputs are not exactly equal to the targets, but
they are reasonably close, and in any case, the mean square error is minimized.

LMS Algorithm (learnwh)

4-13

LMS Algorithm (learnwh)
The LMS algorithm or Widrow-Hoff learning algorithm, is based on an
approximate steepest descent procedure. Here again, linear networks are
trained on examples of correct behavior.

Widrow and Hoff had the insight that they could estimate the mean square
error by using the squared error at each iteration. If we take the partial
derivative of the squared error with respect to the weights and biases at the kth
iteration we have

for and

Next look at the partial derivative with respect to the error.

 or

Here pi(k) is the ith element of the input vector at the kth iteration.

Similarly,

This can be simplified to:

 and

e2 k()∂
w1 j,∂

----------------- 2e k() e k()∂
w1 j,∂

--------------=

j 1 2 … R, , ,=

e2 k()∂
b∂

----------------- 2e k() e k()∂
b∂

--------------=

e k()∂
w1 j,∂

-------------- t k() a k()–[]∂
w1 j,∂

w1 j,∂
∂ t k() Wp k() b+()–[]= =

e k()∂
w1 j,∂

w1 j,∂
∂ t k() w1 i, pi k()

i 1=

R

∑ b+
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

e k()∂
w1 j,∂

-------------- pj k()–=

e k()∂
w1 j,∂

-------------- pj k()–=

4 Linear Filters

4-14

Finally, the change to the weight matrix and the bias will be

 and .

These two equations form the basis of the Widrow-Hoff (LMS) learning
algorithm.

These results can be extended to the case of multiple neurons, and written in
matrix form as

Here the error e and the bias b are vectors and is a learning rate. If is
large, learning occurs quickly, but if it is too large it may lead to instability and
errors may even increase. To ensure stable learning, the learning rate must be
less than the reciprocal of the largest eigenvalue of the correlation matrix
of the input vectors.

You might want to read some of Chapter 10 of [HDB96] for more information
about the LMS algorithm and its convergence.

Fortunately we have a toolbox function learnwh that does all of the calculation
for us. It calculates the change in weights as

dw = lr*e*p'

and the bias change as

db = lr*e

The constant 2, shown a few lines above, has been absorbed into the code
learning rate lr. The function maxlinlr calculates this maximum stable
learning rate lr as 0.999 * P'*P.

Type help learnwh and help maxlinlr for more details about these two
functions.

e k()∂
b∂

-------------- 1–=

2αe k()p k() 2αe k()

W k 1+() W k() 2αe k()pT k()+=

b k 1+() b k() 2αe k()+=

α α

pTp

Linear Classification (train)

4-15

Linear Classification (train)
Linear networks can be trained to perform linear classification with the
function train. This function applies each vector of a set of input vectors and
calculates the network weight and bias increments due to each of the inputs
according to learnp. Then the network is adjusted with the sum of all these
corrections. We will call each pass through the input vectors an epoch. This
contrasts with adapt, discussed in “Adaptive Filters and Adaptive Training” in
Chapter 10, which adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs,
compares them to the associated targets, and calculates a mean square error.
If the error goal is met, or if the maximum number of epochs is reached, the
training is stopped and train returns the new network and a training record.
Otherwise train goes through another epoch. Fortunately, the LMS algorithm
converges when this procedure is executed.

To illustrate this procedure, we will work through a simple problem. Consider
the linear network introduced earlier in this chapter.

Next suppose we have the classification problem presented in “Linear Filters”
in Chapter 4.

Here we have four input vectors, and we would like a network that produces
the output corresponding to each input vector when that vector is presented.

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple Linear Network

p1
2
2

= t1 0=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p2
1
2–

= t2 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p3
2–
2

= t3 0=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

 p4
1–
1

= t4 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

4 Linear Filters

4-16

We will use train to get the weights and biases for a network that produces
the correct targets for each input vector. The initial weights and bias for the
new network will be 0 by default. We will set the error goal to 0.1 rather than
accept its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
t = [0 1 0 1];
net = newlin([-2 2; -2 2],1);
net.trainParam.goal= 0.1;
[net, tr] = train(net,P,t);

The problem runs, producing the following training record.

TRAINB, Epoch 0/100, MSE 0.5/0.1.
TRAINB, Epoch 25/100, MSE 0.181122/0.1.
TRAINB, Epoch 50/100, MSE 0.111233/0.1.
TRAINB, Epoch 64/100, MSE 0.0999066/0.1.
TRAINB, Performance goal met.

Thus, the performance goal is met in 64 epochs. The new weights and bias are

weights = net.iw{1,1}
weights =
 -0.0615 -0.2194
bias = net.b(1)
bias =
 [0.5899]

We can simulate the new network as shown below.

A = sim(net, p)
A =
 0.0282 0.9672 0.2741 0.4320,

We also can calculate the error.

err = t - sim(net,P)
err =
 -0.0282 0.0328 -0.2741 0.5680

Note that the targets are not realized exactly. The problem would have run
longer in an attempt to get perfect results had we chosen a smaller error goal,
but in this problem it is not possible to obtain a goal of 0. The network is limited

Linear Classification (train)

4-17

in its capability. See “Limitations and Cautions” at the end of this chapter for
examples of various limitations.

This demonstration program demolin2 shows the training of a linear neuron,
and plots the weight trajectory and error during training

You also might try running the demonstration program nnd10lc. It addresses
a classic and historically interesting problem, shows how a network can be
trained to classify various patterns, and how the trained network responds
when noisy patterns are presented.

4 Linear Filters

4-18

Limitations and Cautions
Linear networks may only learn linear relationships between input and output
vectors. Thus, they cannot find solutions to some problems. However, even if a
perfect solution does not exist, the linear network will minimize the sum of
squared errors if the learning rate lr is sufficiently small. The network will
find as close a solution as is possible given the linear nature of the network’s
architecture. This property holds because the error surface of a linear network
is a multidimensional parabola. Since parabolas have only one minimum, a
gradient descent algorithm (such as the LMS rule) must produce a solution at
that minimum.

Linear networks have other various limitations. Some of them are discussed
below.

Overdetermined Systems
Consider an overdetermined system. Suppose that we have a network to be
trained with four 1-element input vectors and four targets. A perfect solution
to for each of the inputs may not exist, for there are four
constraining equations and only one weight and one bias to adjust. However,
the LMS rule will still minimize the error. You might try demolin4 to see how
this is done.

Underdetermined Systems
Consider a single linear neuron with one input. This time, in demolin5, we will
train it on only one one-element input vector and its one-element target vector:

P = [+1.0];
T = [+0.5];

Note that while there is only one constraint arising from the single input/target
pair, there are two variables, the weight and the bias. Having more variables
than constraints results in an underdetermined problem with an infinite
number of solutions. You can try demoin5 to explore this topic.

Linearly Dependent Vectors
Normally it is a straightforward job to determine whether or not a linear
network can solve a problem. Commonly, if a linear network has at least as
many degrees of freedom (S*R+S = number of weights and biases) as

wp b+ t=

Limitations and Cautions

4-19

constraints (Q = pairs of input/target vectors), then the network can solve the
problem. This is true except when the input vectors are linearly dependent and
they are applied to a network without biases. In this case, as shown with
demonstration script demolin6, the network cannot solve the problem with
zero error. You might want to try demolin6.

Too Large a Learning Rate
A linear network can always be trained with the Widrow-Hoff rule to find the
minimum error solution for its weights and biases, as long as the learning rate
is small enough. Demonstration script demolin7 shows what happens when a
neuron with one input and a bias is trained with a learning rate larger than
that recommended by maxlinlr. The network is trained with two different
learning rates to show the results of using too large a learning rate.

4 Linear Filters

4-20

Summary
Single-layer linear networks can perform linear function approximation or
pattern association.

Single-layer linear networks can be designed directly or trained with the
Widrow-Hoff rule to find a minimum error solution. In addition, linear
networks can be trained adaptively allowing the network to track changes in
its environment.

The design of a single-layer linear network is constrained completely by the
problem to be solved. The number of network inputs and the number of
neurons in the layer are determined by the number of inputs and outputs
required by the problem.

Multiple layers in a linear network do not result in a more powerful network,
so the single layer is not a limitation. However, linear networks can solve only
linear problems.

Nonlinear relationships between inputs and targets cannot be represented
exactly by a linear network. The networks discussed in this chapter make a
linear approximation with the minimum sum-squared error.

If the relationship between inputs and targets is linear or a linear
approximation is desired, then linear networks are made for the job.
Otherwise, backpropagation may be a good alternative.

Summary

4-21

Figures and Equations

Linear Neuron

Purelin Transfer Function

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Linear Neuron with
 Vector Input

��
��

��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

4 Linear Filters

4-22

Linear Network Layer

Simple Linear Network

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��

��
��

��
��

Layer of Linear
Neurons

a= purelin (Wp + b)

p a

1

n

��
��W

��
��

b

R x 1
S x R

S x 1

S x 1

Input Layer of Linear Neurons

R S

S x 1

��
��

��
��
��

��
��

��

a= purelin (Wp + b)

a= purelin (Wp + b)

Where...

R = numberof
elements in
 input vector

S = numberof
neurons in layer

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple Linear Network

Summary

4-23

Decision Boundary

Mean Square Error

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W

mse 1
Q
---- e k()2

k 1=

Q

∑
1
Q
---- t k() a k()–()2

k 1=

Q

∑= =

4 Linear Filters

4-24

Tapped Delay Line

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

Summary

4-25

Linear Filter

LMS (Widrow-Hoff) Algorithm

.

New Functions
This chapter introduces the following new functions.

Function Description

newlin Creates a linear layer.

newlind Design a linear layer.

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

W k 1+() W k() 2αe k()pT k()+=

b k 1+() b k() 2αe k()+=

4 Linear Filters

4-26

learnwh Widrow-Hoff weight/bias learning rule.

purelin A linear transfer function.

Function Description

5

Backpropagation

Introduction (p. 5-2) Introduces the chapter and provides information on additional
resources

Fundamentals (p. 5-4) Discusses the architecture, simulation, and training of
backpropagation networks

Faster Training (p. 5-14) Discusses several high-performance backpropagation training
algorithms

Speed and Memory Comparison
(p. 5-32)

Compares the memory and speed of different backpropagation
training algorithms

Improving Generalization (p. 5-51) Discusses two methods for improving generalization of a
network—regularization and early stopping

Preprocessing and Postprocessing
(p. 5-61)

Discusses preprocessing routines that can be used to make
training more efficient, along with techniques to measure the
performance of a trained network

Sample Training Session (p. 5-66) Provides a tutorial consisting of a sample training session that
demonstrates many of the chapter concepts

Limitations and Cautions (p. 5-71) Discusses limitations and cautions to consider when creating
and training perceptron networks

Summary (p. 5-73) Provides a consolidated review of the chapter concepts

5 Backpropagation

5-2

Introduction
Backpropagation was created by generalizing the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable transfer functions. Input
vectors and the corresponding target vectors are used to train a network until
it can approximate a function, associate input vectors with specific output
vectors, or classify input vectors in an appropriate way as defined by you.
Networks with biases, a sigmoid layer, and a linear output layer are capable of
approximating any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the
Widrow-Hoff learning rule, in which the network weights are moved along the
negative of the gradient of the performance function. The term
backpropagation refers to the manner in which the gradient is computed for
nonlinear multilayer networks. There are a number of variations on the basic
algorithm that are based on other standard optimization techniques, such as
conjugate gradient and Newton methods. The Neural Network Toolbox
implements a number of these variations. This chapter explains how to use
each of these routines and discusses the advantages and disadvantages of each.

Properly trained backpropagation networks tend to give reasonable answers
when presented with inputs that they have never seen. Typically, a new input
leads to an output similar to the correct output for input vectors used in
training that are similar to the new input being presented. This generalization
property makes it possible to train a network on a representative set of
input/target pairs and get good results without training the network on all
possible input/output pairs. There are two features of the Neural Network
Toolbox that are designed to improve network generalization - regularization
and early stopping. These features and their use are discussed later in this
chapter.

This chapter also discusses preprocessing and postprocessing techniques,
which can improve the efficiency of network training.

Before beginning this chapter you may want to read a basic reference on
backpropagation, such as D.E Rumelhart, G.E. Hinton, R.J. Williams,
“Learning internal representations by error propagation,” D. Rumelhart and J.
McClelland, editors. Parallel Data Processing, Vol.1, Chapter 8, the M.I.T.
Press, Cambridge, MA 1986 pp. 318-362. This subject is also covered in detail
in Chapters 11 and 12 of M.T. Hagan, H.B. Demuth, M.H. Beale, Neural
Network Design, PWS Publishing Company, Boston, MA 1996.

Introduction

5-3

The primary objective of this chapter is to explain how to use the
backpropagation training functions in the toolbox to train feedforward neural
networks to solve specific problems. There are generally four steps in the
training process:

1 Assemble the training data

2 Create the network object

3 Train the network

4 Simulate the network response to new inputs

This chapter discusses a number of different training functions, but in using
each function we generally follow these four steps.

The next section, “Fundamentals”, describes the basic feedforward network
structure and demonstrates how to create a feedforward network object. Then
the simulation and training of the network objects are presented.

5 Backpropagation

5-4

Fundamentals

Architecture
This section presents the architecture of the network that is most commonly
used with the backpropagation algorithm - the multilayer feedforward
network. The routines in the Neural Network Toolbox can be used to train
more general networks; some of these will be briefly discussed in later
chapters.

Neuron Model (tansig, logsig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted
with an appropriate w. The sum of the weighted inputs and the bias forms the
input to the transfer function f. Neurons may use any differentiable transfer
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.

Input

- Exp -

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

a = f (Wp + b)

b

1

Where...

R = Number of
elements in
input vector

General Neuron

��
��

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

Fundamentals

5-5

The function logsig generates outputs between 0 and 1 as the neuron’s net
input goes from negative to positive infinity.

Alternatively, multilayer networks may use the tan-sigmoid transfer function
tansig.

Occasionally, the linear transfer function purelin is used in backpropagation
networks.

If the last layer of a multilayer network has sigmoid neurons, then the outputs
of the network are limited to a small range. If linear output neurons are used
the network outputs can take on any value.

In backpropagation it is important to be able to calculate the derivatives of any
transfer functions used. Each of the transfer functions above, tansig, logsig,
and purelin, have a corresponding derivative function: dtansig, dlogsig, and
dpurelin. To get the name of a transfer function’s associated derivative
function, call the transfer function with the string 'deriv'.

tansig('deriv')
ans = dtansig

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

5 Backpropagation

5-6

The three transfer functions described here are the most commonly used
transfer functions for backpropagation, but other differentiable transfer
functions can be created and used with backpropagation if desired. See
Chapter 12, “Advanced Topics.”

Feedforward Network
A single-layer network of S logsig neurons having R inputs is shown below in
full detail on the left and with a layer diagram on the right.

Feedforward networks often have one or more hidden layers of sigmoid
neurons followed by an output layer of linear neurons. Multiple layers of
neurons with nonlinear transfer functions allow the network to learn nonlinear
and linear relationships between input and output vectors. The linear output
layer lets the network produce values outside the range –1 to +1.

On the other hand, if you want to constrain the outputs of a network (such as
between 0 and 1), then the output layer should use a sigmoid transfer function
(such as logsig).

As noted in Chapter 2, “Neuron Model and Network Architectures”, for
multiple-layer networks we use the number of the layers to determine the
superscript on the weight matrices. The appropriate notation is used in the
two-layer tansig/purelin network shown next.

a= f (Wp + b)

p a

1

n��W

��
��b

R x 1
S x R

S x 1

S x 1

Input Layer of Neurons

R S

S x 1

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

�
�

�

�

Layer of Neurons

a= f (Wp + b)

�
�

�

�

�
�
�

Where...

R = numberof
elements in
 input vector

S = numberof
neurons in layer

Fundamentals

5-7

This network can be used as a general function approximator. It can
approximate any function with a finite number of discontinuities, arbitrarily
well, given sufficient neurons in the hidden layer.

Creating a Network (newff). The first step in training a feedforward network is to
create the network object. The function newff creates a feedforward network.
It requires four inputs and returns the network object. The first input is an R
by 2 matrix of minimum and maximum values for each of the R elements of the
input vector. The second input is an array containing the sizes of each layer.
The third input is a cell array containing the names of the transfer functions to
be used in each layer. The final input contains the name of the training
function to be used.

For example, the following command creates a two-layer network. There is one
input vector with two elements. The values for the first element of the input
vector range between -1 and 2, the values of the second element of the input
vector range between 0 and 5. There are three neurons in the first layer and
one neuron in the second (output) layer. The transfer function in the first layer
is tan-sigmoid, and the output layer transfer function is linear. The training
function is traingd (which is described in a later section).

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');

This command creates the network object and also initializes the weights and
biases of the network; therefore the network is ready for training. There are
times when you may want to reinitialize the weights, or to perform a custom
initialization. The next section explains the details of the initialization process.

Initializing Weights (init). Before training a feedforward network, the weights and
biases must be initialized. The newff command will automatically initialize the

p1 a1 a3 = y

1 1

n1 n2
2 x 1

4 x1

4 x 1

3 x 1

3 x 1

3 x 1

Input

3 x 4��
��LW2,1

4 x 1��b1

4 x 2��
��IW1,1

��b2

Hidden Layer Output Layer

2 4 3

a2 =purelin (LW2,1a1 +b2)

f2

a1 = tansig (IW1,1p1 +b1)

��
��
��

��
��
��

5 Backpropagation

5-8

weights, but you may want to reinitialize them. This can be done with the
command init. This function takes a network object as input and returns a
network object with all weights and biases initialized. Here is how a network
is initialized (or reinitialized):

net = init(net);

For specifics on how the weights are initialized, see Chapter 12, “Advanced
Topics.”

Simulation (sim)
The function sim simulates a network. sim takes the network input p, and the
network object net, and returns the network outputs a. Here is how you can use
sim to simulate the network we created above for a single input vector:

p = [1;2];
a = sim(net,p)
a =
 -0.1011

(If you try these commands, your output may be different, depending on the
state of your random number generator when the network was initialized.)
Below, sim is called to calculate the outputs for a concurrent set of three input
vectors. This is the batch mode form of simulation, in which all of the input
vectors are place in one matrix. This is much more efficient than presenting the
vectors one at a time.

p = [1 3 2;2 4 1];
a=sim(net,p)
a =
-0.1011 -0.2308 0.4955

Training
Once the network weights and biases have been initialized, the network is
ready for training. The network can be trained for function approximation
(nonlinear regression), pattern association, or pattern classification. The
training process requires a set of examples of proper network behavior -
network inputs p and target outputs t. During training the weights and biases
of the network are iteratively adjusted to minimize the network performance
function net.performFcn. The default performance function for feedforward

Fundamentals

5-9

networks is mean square error mse - the average squared error between the
network outputs a and the target outputs t.

The remainder of this chapter describes several different training algorithms
for feedforward networks. All of these algorithms use the gradient of the
performance function to determine how to adjust the weights to minimize
performance. The gradient is determined using a technique called
backpropagation, which involves performing computations backwards through
the network. The backpropagation computation is derived using the chain rule
of calculus and is described in Chapter 11 of [HDB96].

The basic backpropagation training algorithm, in which the weights are moved
in the direction of the negative gradient, is described in the next section. Later
sections describe more complex algorithms that increase the speed of
convergence.

Backpropagation Algorithm
There are many variations of the backpropagation algorithm, several of which
we discuss in this chapter. The simplest implementation of backpropagation
learning updates the network weights and biases in the direction in which the
performance function decreases most rapidly - the negative of the gradient.
One iteration of this algorithm can be written

where is a vector of current weights and biases, is the current gradient,
and is the learning rate.

There are two different ways in which this gradient descent algorithm can be
implemented: incremental mode and batch mode. In the incremental mode, the
gradient is computed and the weights are updated after each input is applied
to the network. In the batch mode all of the inputs are applied to the network
before the weights are updated. The next section describes the batch mode of
training; incremental training will be discussed in a later chapter.

Batch Training (train). In batch mode the weights and biases of the network are
updated only after the entire training set has been applied to the network. The
gradients calculated at each training example are added together to determine
the change in the weights and biases. For a discussion of batch training with
the backpropagation algorithm see page 12-7 of [HDB96].

xk 1+ xk αkgk–=

xk gk
αk

5 Backpropagation

5-10

Batch Gradient Descent (traingd). The batch steepest descent training function is
traingd. The weights and biases are updated in the direction of the negative
gradient of the performance function. If you want to train a network using
batch steepest descent, you should set the network trainFcn to traingd, and
then call the function train. There is only one training function associated
with a given network.

There are seven training parameters associated with traingd: epochs, show,
goal, time, min_grad, max_fail, and lr. The learning rate lr is multiplied
times the negative of the gradient to determine the changes to the weights and
biases. The larger the learning rate, the bigger the step. If the learning rate is
made too large, the algorithm becomes unstable. If the learning rate is set too
small, the algorithm takes a long time to converge. See page 12-8 of [HDB96]
for a discussion of the choice of learning rate.

The training status is displayed for every show iteration of the algorithm. (If
show is set to NaN, then the training status never displays.) The other
parameters determine when the training stops. The training stops if the
number of iterations exceeds epochs, if the performance function drops below
goal, if the magnitude of the gradient is less than mingrad, or if the training
time is longer than time seconds. We discuss max_fail, which is associated
with the early stopping technique, in the section on improving generalization.

The following code creates a training set of inputs p and targets t. For batch
training, all of the input vectors are placed in one matrix.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];

Next, we create the feedforward network. Here we use the function minmax to
determine the range of the inputs to be used in creating the network.

net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd');

At this point, we might want to modify some of the default training parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the above commands are
not necessary.

Fundamentals

5-11

Now we are ready to train the network.

[net,tr]=train(net,p,t);
TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, Gradient

2.76799/1e-10
TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, Gradient

0.0495292/1e-10
TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, Gradient

0.0161202/1e-10
TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, Gradient

0.00769588/1e-10
TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, Gradient

0.00325667/1e-10
TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, Gradient

0.00266775/1e-10
TRAINGD, Performance goal met.

The training record tr contains information about the progress of training. An
example of its use is given in the Sample Training Session near the end of this
chapter.

Now the trained network can be simulated to obtain its response to the inputs
in the training set.

a = sim(net,p)
a =
 -1.0010 -0.9989 1.0018 0.9985

Try the Neural Network Design Demonstration nnd12sd1[HDB96] for an
illustration of the performance of the batch gradient descent algorithm.

Batch Gradient Descent with Momentum (traingdm). In addition to traingd, there is
another batch algorithm for feedforward networks that often provides faster
convergence - traingdm, steepest descent with momentum. Momentum allows
a network to respond not only to the local gradient, but also to recent trends in
the error surface. Acting like a low-pass filter, momentum allows the network
to ignore small features in the error surface. Without momentum a network
may get stuck in a shallow local minimum. With momentum a network can
slide through such a minimum. See page 12-9 of [HDB96] for a discussion of
momentum.

5 Backpropagation

5-12

Momentum can be added to backpropagation learning by making weight
changes equal to the sum of a fraction of the last weight change and the new
change suggested by the backpropagation rule. The magnitude of the effect
that the last weight change is allowed to have is mediated by a momentum
constant, mc, which can be any number between 0 and 1. When the momentum
constant is 0, a weight change is based solely on the gradient. When the
momentum constant is 1, the new weight change is set to equal the last weight
change and the gradient is simply ignored. The gradient is computed by
summing the gradients calculated at each training example, and the weights
and biases are only updated after all training examples have been presented.

If the new performance function on a given iteration exceeds the performance
function on a previous iteration by more than a predefined ratio max_perf_inc
(typically 1.04), the new weights and biases are discarded, and the momentum
coefficient mc is set to zero.

The batch form of gradient descent with momentum is invoked using the
training function traingdm. The traingdm function is invoked using the same
steps shown above for the traingd function, except that the mc, lr and
max_perf_inc learning parameters can all be set.

In the following code we recreate our previous network and retrain it using
gradient descent with momentum. The training parameters for traingdm are
the same as those for traingd, with the addition of the momentum factor mc
and the maximum performance increase max_perf_inc. (The training
parameters are reset to the default values whenever net.trainFcn is set to
traingdm.)

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient
4.54729/1e-10

TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient
0.213222/1e-10

Fundamentals

5-13

TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient
0.0409749/1e-10

TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient
0.00908756/1e-10

TRAINGDM, Performance goal met.
a = sim(net,p)
a =

 -1.0026 -1.0044 0.9969 0.9992

Note that since we reinitialized the weights and biases before training (by
calling newff again), we obtain a different mean square error than we did using
traingd. If we were to reinitialize and train again using traingdm, we would
get yet a different mean square error. The random choice of initial weights and
biases will affect the performance of the algorithm. If you want to compare the
performance of different algorithms, you should test each using several
different sets of initial weights and biases. You may want to use
net=init(net) to reinitialize the weights, rather than recreating the entire
network with newff.

Try the Neural Network Design Demonstration nnd12mo [HDB96] for an
illustration of the performance of the batch momentum algorithm.

5 Backpropagation

5-14

Faster Training
The previous section presented two backpropagation training algorithms:
gradient descent, and gradient descent with momentum. These two methods
are often too slow for practical problems. In this section we discuss several high
performance algorithms that can converge from ten to one hundred times
faster than the algorithms discussed previously. All of the algorithms in this
section operate in the batch mode and are invoked using train.

These faster algorithms fall into two main categories. The first category uses
heuristic techniques, which were developed from an analysis of the
performance of the standard steepest descent algorithm. One heuristic
modification is the momentum technique, which was presented in the previous
section. This section discusses two more heuristic techniques: variable learning
rate backpropagation, traingda; and resilient backpropagation trainrp.

The second category of fast algorithms uses standard numerical optimization
techniques. (See Chapter 9 of [HDB96] for a review of basic numerical
optimization.) Later in this section we present three types of numerical
optimization techniques for neural network training: conjugate gradient
(traincgf, traincgp, traincgb, trainscg), quasi-Newton (trainbfg,
trainoss), and Levenberg-Marquardt (trainlm).

Variable Learning Rate (traingda, traingdx)
With standard steepest descent, the learning rate is held constant throughout
training. The performance of the algorithm is very sensitive to the proper
setting of the learning rate. If the learning rate is set too high, the algorithm
may oscillate and become unstable. If the learning rate is too small, the
algorithm will take too long to converge. It is not practical to determine the
optimal setting for the learning rate before training, and, in fact, the optimal
learning rate changes during the training process, as the algorithm moves
across the performance surface.

The performance of the steepest descent algorithm can be improved if we allow
the learning rate to change during the training process. An adaptive learning
rate will attempt to keep the learning step size as large as possible while
keeping learning stable. The learning rate is made responsive to the complexity
of the local error surface.

An adaptive learning rate requires some changes in the training procedure
used by traingd. First, the initial network output and error are calculated. At

Faster Training

5-15

each epoch new weights and biases are calculated using the current learning
rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a
predefined ratio max_perf_inc (typically 1.04), the new weights and biases are
discarded. In addition, the learning rate is decreased (typically by multiplying
by lr_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is
less than the old error, the learning rate is increased (typically by multiplying
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the
network can learn without large error increases. Thus, a near-optimal learning
rate is obtained for the local terrain. When a larger learning rate could result
in stable learning, the learning rate is increased. When the learning rate is too
high to guarantee a decrease in error, it gets decreased until stable learning
resumes.

Try the Neural Network Design Demonstration nnd12vl [HDB96] for an
illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with
the function traingda, which is called just like traingd, except for the
additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is
how it is called to train our previous two-layer network:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingda');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINGDA, Epoch 0/300, MSE 1.71149/1e-05, Gradient
2.6397/1e-06

TRAINGDA, Epoch 44/300, MSE 7.47952e-06/1e-05, Gradient
0.00251265/1e-06

TRAINGDA, Performance goal met.
a = sim(net,p)
a =

-1.0036 -0.9960 1.0008 0.9991

5 Backpropagation

5-16

The function traingdx combines adaptive learning rate with momentum
training. It is invoked in the same way as traingda, except that it has the
momentum coefficient mc as an additional training parameter.

Resilient Backpropagation (trainrp)
Multilayer networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called “squashing” functions, since they
compress an infinite input range into a finite output range. Sigmoid functions
are characterized by the fact that their slope must approach zero as the input
gets large. This causes a problem when using steepest descent to train a
multilayer network with sigmoid functions, since the gradient can have a very
small magnitude; and therefore, cause small changes in the weights and
biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to
eliminate these harmful effects of the magnitudes of the partial derivatives.
Only the sign of the derivative is used to determine the direction of the weight
update; the magnitude of the derivative has no effect on the weight update. The
size of the weight change is determined by a separate update value. The update
value for each weight and bias is increased by a factor delt_inc whenever the
derivative of the performance function with respect to that weight has the
same sign for two successive iterations. The update value is decreased by a
factor delt_dec whenever the derivative with respect that weight changes sign
from the previous iteration. If the derivative is zero, then the update value
remains the same. Whenever the weights are oscillating the weight change will
be reduced. If the weight continues to change in the same direction for several
iterations, then the magnitude of the weight change will be increased. A
complete description of the Rprop algorithm is given in [ReBr93].

In the following code we recreate our previous network and train it using the
Rprop algorithm. The training parameters for trainrp are epochs, show, goal,
time, min_grad, max_fail, delt_inc, delt_dec, delta0, deltamax. We have
previously discussed the first eight parameters. The last two are the initial step
size and the maximum step size, respectively. The performance of Rprop is not
very sensitive to the settings of the training parameters. For the example
below, we leave most of the training parameters at the default values. We do
reduce show below our previous value, because Rprop generally converges
much faster than the previous algorithms.

p = [-1 -1 2 2;0 5 0 5];

Faster Training

5-17

t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainrp');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINRP, Epoch 0/300, MSE 0.469151/1e-05, Gradient
1.4258/1e-06

TRAINRP, Epoch 10/300, MSE 0.000789506/1e-05, Gradient
0.0554529/1e-06

TRAINRP, Epoch 20/300, MSE 7.13065e-06/1e-05, Gradient
0.00346986/1e-06

TRAINRP, Performance goal met.
a = sim(net,p)
a =

-1.0026 -0.9963 0.9978 1.0017

Rprop is generally much faster than the standard steepest descent algorithm.
It also has the nice property that it requires only a modest increase in memory
requirements. We do need to store the update values for each weight and bias,
which is equivalent to storage of the gradient.

Conjugate Gradient Algorithms
The basic backpropagation algorithm adjusts the weights in the steepest
descent direction (negative of the gradient). This is the direction in which the
performance function is decreasing most rapidly. It turns out that, although
the function decreases most rapidly along the negative of the gradient, this
does not necessarily produce the fastest convergence. In the conjugate gradient
algorithms a search is performed along conjugate directions, which produces
generally faster convergence than steepest descent directions. In this section,
we present four different variations of conjugate gradient algorithms.

See page 12-14 of [HDB96] for a discussion of conjugate gradient algorithms
and their application to neural networks.

In most of the training algorithms that we discussed up to this point, a learning
rate is used to determine the length of the weight update (step size). In most of
the conjugate gradient algorithms, the step size is adjusted at each iteration. A
search is made along the conjugate gradient direction to determine the step
size, which minimizes the performance function along that line. There are five

5 Backpropagation

5-18

different search functions included in the toolbox, and these are discussed at
the end of this section. Any of these search functions can be used
interchangeably with a variety of the training functions described in the
remainder of this chapter. Some search functions are best suited to certain
training functions, although the optimum choice can vary according to the
specific application. An appropriate default search function is assigned to each
training function, but this can be modified by the user.

Fletcher-Reeves Update (traincgf)
All of the conjugate gradient algorithms start out by searching in the steepest
descent direction (negative of the gradient) on the first iteration.

A line search is then performed to determine the optimal distance to move
along the current search direction:

Then the next search direction is determined so that it is conjugate to previous
search directions. The general procedure for determining the new search
direction is to combine the new steepest descent direction with the previous
search direction:

The various versions of conjugate gradient are distinguished by the manner in
which the constant is computed. For the Fletcher-Reeves update the
procedure is

This is the ratio of the norm squared of the current gradient to the norm
squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate
gradient algorithm.

In the following code, we reinitialize our previous network and retrain it using
the Fletcher-Reeves version of the conjugate gradient algorithm. The training

p0 g0–=

xk 1+ xk αkpk+=

pk gk– βkpk 1–+=

βk

βk
gk

Tgk

gk 1–
T gk 1–

---------------------------=

Faster Training

5-19

parameters for traincgf are epochs, show, goal, time, min_grad, max_fail,
srchFcn, scal_tol, alpha, beta, delta, gama, low_lim, up_lim, maxstep,
minstep, bmax. We have previously discussed the first six parameters. The
parameter srchFcn is the name of the line search function. It can be any of the
functions described later in this section (or a user-supplied function). The
remaining parameters are associated with specific line search routines and are
described later in this section. The default line search routine srchcha is used
in this example. traincgf generally converges in fewer iterations than
trainrp (although there is more computation required in each iteration).

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgf');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINCGF-srchcha, Epoch 0/300, MSE 2.15911/1e-05, Gradient
3.17681/1e-06

TRAINCGF-srchcha, Epoch 5/300, MSE 0.111081/1e-05, Gradient
0.602109/1e-06

TRAINCGF-srchcha, Epoch 10/300, MSE 0.0095015/1e-05, Gradient
0.197436/1e-06

TRAINCGF-srchcha, Epoch 15/300, MSE 0.000508668/1e-05,
Gradient 0.0439273/1e-06

TRAINCGF-srchcha, Epoch 17/300, MSE 1.33611e-06/1e-05,
Gradient 0.00562836/1e-06

TRAINCGF, Performance goal met.
a = sim(net,p)
a =

-1.0001 -1.0023 0.9999 1.0002

The conjugate gradient algorithms are usually much faster than variable
learning rate backpropagation, and are sometimes faster than trainrp,
although the results will vary from one problem to another. The conjugate
gradient algorithms require only a little more storage than the simpler
algorithms, so they are often a good choice for networks with a large number of
weights.

Try the Neural Network Design Demonstration nnd12cg [HDB96] for an
illustration of the performance of a conjugate gradient algorithm.

5 Backpropagation

5-20

Polak-Ribiére Update (traincgp)
Another version of the conjugate gradient algorithm was proposed by Polak
and Ribiére. As with the Fletcher-Reeves algorithm, the search direction at
each iteration is determined by

For the Polak-Ribiére update, the constant is computed by

This is the inner product of the previous change in the gradient with the
current gradient divided by the norm squared of the previous gradient. See
[FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient
algorithm.

In the following code, we recreate our previous network and train it using the
Polak-Ribiére version of the conjugate gradient algorithm. The training
parameters for traincgp are the same as those for traincgf. The default line
search routine srchcha is used in this example. The parameters show and
epoch are set to the same values as they were for traincgf.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgp');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINCGP-srchcha, Epoch 0/300, MSE 1.21966/1e-05, Gradient
1.77008/1e-06

TRAINCGP-srchcha, Epoch 5/300, MSE 0.227447/1e-05, Gradient
0.86507/1e-06

TRAINCGP-srchcha, Epoch 10/300, MSE 0.000237395/1e-05,
Gradient 0.0174276/1e-06

TRAINCGP-srchcha, Epoch 15/300, MSE 9.28243e-05/1e-05,
Gradient 0.00485746/1e-06

TRAINCGP-srchcha, Epoch 20/300, MSE 1.46146e-05/1e-05,
Gradient 0.000912838/1e-06

pk gk– βkpk 1–+=

βk

βk
gk 1–

T∆ gk

gk 1–
T gk 1–

---------------------------=

Faster Training

5-21

TRAINCGP-srchcha, Epoch 25/300, MSE 1.05893e-05/1e-05,
Gradient 0.00238173/1e-06

TRAINCGP-srchcha, Epoch 26/300, MSE 9.10561e-06/1e-05,
Gradient 0.00197441/1e-06

TRAINCGP, Performance goal met.
a = sim(net,p)
a =

-0.9967 -1.0018 0.9958 1.0022

The traincgp routine has performance similar to traincgf. It is difficult to
predict which algorithm will perform best on a given problem. The storage
requirements for Polak-Ribiére (four vectors) are slightly larger than for
Fletcher-Reeves (three vectors).

Powell-Beale Restarts (traincgb)
For all conjugate gradient algorithms, the search direction will be periodically
reset to the negative of the gradient. The standard reset point occurs when the
number of iterations is equal to the number of network parameters (weights
and biases), but there are other reset methods that can improve the efficiency
of training. One such reset method was proposed by Powell [Powe77], based on
an earlier version proposed by Beale [Beal72]. For this technique we will
restart if there is very little orthogonality left between the current gradient and
the previous gradient. This is tested with the following inequality.

If this condition is satisfied, the search direction is reset to the negative of the
gradient.

In the following code, we recreate our previous network and train it using the
Powell-Beale version of the conjugate gradient algorithm. The training
parameters for traincgb are the same as those for traincgf. The default line
search routine srchcha is used in this example. The parameters show and
epoch are set to the same values as they were for traincgf.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgb');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

gk 1–
T gk 0.2 gk

2≥

5 Backpropagation

5-22

[net,tr]=train(net,p,t);
TRAINCGB-srchcha, Epoch 0/300, MSE 2.5245/1e-05, Gradient

3.66882/1e-06
TRAINCGB-srchcha, Epoch 5/300, MSE 4.86255e-07/1e-05, Gradient

0.00145878/1e-06
TRAINCGB, Performance goal met.

a = sim(net,p)
a =

-0.9997 -0.9998 1.0000 1.0014

The traincgb routine has performance that is somewhat better than traincgp
for some problems, although performance on any given problem is difficult to
predict. The storage requirements for the Powell-Beale algorithm (six vectors)
are slightly larger than for Polak-Ribiére (four vectors).

Scaled Conjugate Gradient (trainscg)
Each of the conjugate gradient algorithms that we have discussed so far
requires a line search at each iteration. This line search is computationally
expensive, since it requires that the network response to all training inputs be
computed several times for each search. The scaled conjugate gradient
algorithm (SCG), developed by Moller [Moll93], was designed to avoid the
time-consuming line search. This algorithm is too complex to explain in a few
lines, but the basic idea is to combine the model-trust region approach (used in
the Levenberg-Marquardt algorithm described later), with the conjugate
gradient approach. See {Moll93] for a detailed explanation of the algorithm.

In the following code, we reinitialize our previous network and retrain it using
the scaled conjugate gradient algorithm. The training parameters for trainscg
are epochs, show, goal, time, min_grad, max_fail, sigma, lambda. We have
previously discussed the first six parameters. The parameter sigma determines
the change in the weight for the second derivative approximation. The
parameter lambda regulates the indefiniteness of the Hessian. The parameters
show and epoch are set to 10 and 300, respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainscg');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

Faster Training

5-23

TRAINSCG, Epoch 0/300, MSE 4.17697/1e-05, Gradient
5.32455/1e-06

TRAINSCG, Epoch 10/300, MSE 2.09505e-05/1e-05, Gradient
0.00673703/1e-06

TRAINSCG, Epoch 11/300, MSE 9.38923e-06/1e-05, Gradient
0.0049926/1e-06

TRAINSCG, Performance goal met.
a = sim(net,p)
a =

-1.0057 -1.0008 1.0019 1.0005

The trainscg routine may require more iterations to converge than the other
conjugate gradient algorithms, but the number of computations in each
iteration is significantly reduced because no line search is performed. The
storage requirements for the scaled conjugate gradient algorithm are about the
same as those of Fletcher-Reeves.

Line Search Routines
Several of the conjugate gradient and quasi-Newton algorithms require that a
line search be performed. In this section, we describe five different line
searches you can use. To use any of these search routines, you simply set the
training parameter srchFcn equal to the name of the desired search function,
as described in previous sections. It is often difficult to predict which of these
routines provide the best results for any given problem, but we set the default
search function to an appropriate initial choice for each training function, so
you never need to modify this parameter.

Golden Section Search (srchgol)
The golden section search srchgol is a linear search that does not require the
calculation of the slope. This routine begins by locating an interval in which the
minimum of the performance occurs. This is accomplished by evaluating the
performance at a sequence of points, starting at a distance of delta and
doubling in distance each step, along the search direction. When the
performance increases between two successive iterations, a minimum has been
bracketed. The next step is to reduce the size of the interval containing the
minimum. Two new points are located within the initial interval. The values of
the performance at these two points determines a section of the interval that
can be discarded, and a new interior point is placed within the new interval.

5 Backpropagation

5-24

This procedure is continued until the interval of uncertainty is reduced to a
width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden
section search. Try the Neural Network Design Demonstration nnd12sd1
[HDB96] for an illustration of the performance of the golden section search in
combination with a conjugate gradient algorithm.

Brent’s Search (srchbre)
Brent’s search is a linear search, which is a hybrid combination of the golden
section search and a quadratic interpolation. Function comparison methods,
like the golden section search, have a first-order rate of convergence, while
polynomial interpolation methods have an asymptotic rate that is faster than
superlinear. On the other hand, the rate of convergence for the golden section
search starts when the algorithm is initialized, whereas the asymptotic
behavior for the polynomial interpolation methods may take many iterations
to become apparent. Brent’s search attempts to combine the best features of
both approaches.

For Brent’s search we begin with the same interval of uncertainty that we used
with the golden section search, but some additional points are computed. A
quadratic function is then fitted to these points and the minimum of the
quadratic function is computed. If this minimum is within the appropriate
interval of uncertainty, it is used in the next stage of the search and a new
quadratic approximation is performed. If the minimum falls outside the known
interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has
the advantage that it does not require computation of the derivative. The
derivative computation requires a backpropagation through the network,
which involves more computation than a forward pass. However, the algorithm
may require more performance evaluations than algorithms that use
derivative information.

Hybrid Bisection-Cubic Search (srchhyb)
Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of
bisection and cubic interpolation. For the bisection algorithm, one point is
located in the interval of uncertainty and the performance and its derivative
are computed. Based on this information, half of the interval of uncertainty is
discarded. In the hybrid algorithm, a cubic interpolation of the function is

Faster Training

5-25

obtained by using the value of the performance and its derivative at the two
end points. If the minimum of the cubic interpolation falls within the known
interval of uncertainty, then it is used to reduce the interval of uncertainty.
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search.
This algorithm does require derivative information, so it performs more
computations at each step of the algorithm than the golden section search or
Brent’s algorithm.

Charalambous’ Search (srchcha)
The method of Charalambous srchcha was designed to be used in combination
with a conjugate gradient algorithm for neural network training. Like the
previous two methods, it is a hybrid search. It uses a cubic interpolation,
together with a type of sectioning.

See [Char92] for a description of Charalambous’ search. We have used this
routine as the default search for most of the conjugate gradient algorithms,
since it appears to produce excellent results for many different problems. It
does require the computation of the derivatives (backpropagation) in addition
to the computation of performance, but it overcomes this limitation by locating
the minimum with fewer steps. This is not true for all problems, and you may
want to experiment with other line searches.

Backtracking (srchbac)
The backtracking search routine srchbac is best suited to use with the
quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and
then backtracks until an acceptable reduction in the performance is obtained.
On the first step it uses the value of performance at the current point and at a
step multiplier of 1. Also it uses the value of the derivative of performance at
the current point, to obtain a quadratic approximation to the performance
function along the search direction. The minimum of the quadratic
approximation becomes a tentative optimum point (under certain conditions)
and the performance at this point is tested. If the performance is not
sufficiently reduced, a cubic interpolation is obtained and the minimum of the
cubic interpolation becomes the new tentative optimum point. This process is
continued until a sufficient reduction in the performance is obtained.

5 Backpropagation

5-26

The backtracking algorithm is described in [DeSc83]. It was used as the default
line search for the quasi-Newton algorithms, although it may not be the best
technique for all problems.

Quasi-Newton Algorithms

BFGS Algorithm (trainbgf)
Newton’s method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton’s method is

where is the Hessian matrix (second derivatives) of the performance index
at the current values of the weights and biases. Newton’s method often
converges faster than conjugate gradient methods. Unfortunately, it is complex
and expensive to compute the Hessian matrix for feedforward neural networks.
There is a class of algorithms that is based on Newton’s method, but which
doesn’t require calculation of second derivatives. These are called
quasi-Newton (or secant) methods. They update an approximate Hessian
matrix at each iteration of the algorithm. The update is computed as a function
of the gradient. The quasi-Newton method that has been most successful in
published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update. This algorithm has been implemented in the trainbfg routine.

In the following code, we reinitialize our previous network and retrain it using
the BFGS quasi-Newton algorithm. The training parameters for trainbfg are
the same as those for traincgf. The default line search routine srchbac is used
in this example. The parameters show and epoch are set to 5 and 300,
respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainbfg');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINBFG-srchbac, Epoch 0/300, MSE 0.492231/1e-05, Gradient
2.16307/1e-06

xk 1+ xk Ak
1– gk–=

Ak

Faster Training

5-27

TRAINBFG-srchbac, Epoch 5/300, MSE 0.000744953/1e-05, Gradient
0.0196826/1e-06

TRAINBFG-srchbac, Epoch 8/300, MSE 7.69867e-06/1e-05, Gradient
0.00497404/1e-06

TRAINBFG, Performance goal met.
a = sim(net,p)
a =

-0.9995 -1.0004 1.0008 0.9945

The BFGS algorithm is described in [DeSc83]. This algorithm requires more
computation in each iteration and more storage than the conjugate gradient
methods, although it generally converges in fewer iterations. The approximate
Hessian must be stored, and its dimension is , where n is equal to the
number of weights and biases in the network. For very large networks it may
be better to use Rprop or one of the conjugate gradient algorithms. For smaller
networks, however, trainbfg can be an efficient training function.

One Step Secant Algorithm (trainoss)
Since the BFGS algorithm requires more storage and computation in each
iteration than the conjugate gradient algorithms, there is need for a secant
approximation with smaller storage and computation requirements. The one
step secant (OSS) method is an attempt to bridge the gap between the
conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This
algorithm does not store the complete Hessian matrix; it assumes that at each
iteration, the previous Hessian was the identity matrix. This has the additional
advantage that the new search direction can be calculated without computing
a matrix inverse.

In the following code, we reinitialize our previous network and retrain it using
the one-step secant algorithm. The training parameters for trainoss are the
same as those for traincgf. The default line search routine srchbac is used in
this example. The parameters show and epoch are set to 5 and 300,
respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainoss');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

n n×

5 Backpropagation

5-28

TRAINOSS-srchbac, Epoch 0/300, MSE 0.665136/1e-05, Gradient
1.61966/1e-06

TRAINOSS-srchbac, Epoch 5/300, MSE 0.000321921/1e-05, Gradient
0.0261425/1e-06

TRAINOSS-srchbac, Epoch 7/300, MSE 7.85697e-06/1e-05, Gradient
0.00527342/1e-06

TRAINOSS, Performance goal met.
a = sim(net,p)
a =

-1.0035 -0.9958 1.0014 0.9997

The one step secant method is described in [Batt92]. This algorithm requires
less storage and computation per epoch than the BFGS algorithm. It requires
slightly more storage and computation per epoch than the conjugate gradient
algorithms. It can be considered a compromise between full quasi-Newton
algorithms and conjugate gradient algorithms.

Levenberg-Marquardt (trainlm)
Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was
designed to approach second-order training speed without having to compute
the Hessian matrix. When the performance function has the form of a sum of
squares (as is typical in training feedforward networks), then the Hessian
matrix can be approximated as

and the gradient can be computed as

where is the Jacobian matrix that contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of network
errors. The Jacobian matrix can be computed through a standard
backpropagation technique (see [HaMe94]) that is much less complex than
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian
matrix in the following Newton-like update:

H JTJ=

g JTe=

J

xk 1+ xk JTJ µI+[]
1–
JTe–=

Faster Training

5-29

When the scalar µ is zero, this is just Newton’s method, using the approximate
Hessian matrix. When µ is large, this becomes gradient descent with a small
step size. Newton’s method is faster and more accurate near an error
minimum, so the aim is to shift towards Newton’s method as quickly as
possible. Thus, µ is decreased after each successful step (reduction in
performance function) and is increased only when a tentative step would
increase the performance function. In this way, the performance function will
always be reduced at each iteration of the algorithm.

In the following code, we reinitialize our previous network and retrain it using
the Levenberg-Marquardt algorithm. The training parameters for trainlm are
epochs, show, goal, time, min_grad, max_fail, mu, mu_dec, mu_inc, mu_max,
mem_reduc. We have discussed the first six parameters earlier. The parameter
mu is the initial value for µ. This value is multiplied by mu_dec whenever the
performance function is reduced by a step. It is multiplied by mu_inc whenever
a step would increase the performance function. If mu becomes larger than
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control
the amount of memory used by the algorithm. It is discussed in the next
section. The parameters show and epoch are set to 5 and 300, respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINLM, Epoch 0/300, MSE 2.7808/1e-05, Gradient 7.77931/1e-10
TRAINLM, Epoch 4/300, MSE 3.67935e-08/1e-05, Gradient

0.000808272/1e-10
TRAINLM, Performance goal met.

a = sim(net,p)
a =

-1.0000 -1.0000 1.0000 0.9996

The original description of the Levenberg-Marquardt algorithm is given in
[Marq63]. The application of Levenberg-Marquardt to neural network training
is described in [HaMe94] and starting on page 12-19 of [HDB96]. This
algorithm appears to be the fastest method for training moderate-sized
feedforward neural networks (up to several hundred weights). It also has a
very efficient MATLAB® implementation, since the solution of the matrix

5 Backpropagation

5-30

equation is a built-in function, so its attributes become even more pronounced
in a MATLAB setting.

Try the Neural Network Design Demonstration nnd12m [HDB96] for an
illustration of the performance of the batch Levenberg-Marquardt algorithm.

Reduced Memory Levenberg-Marquardt (trainlm)
The main drawback of the Levenberg-Marquardt algorithm is that it requires
the storage of some matrices that can be quite large for certain problems. The
size of the Jacobian matrix is , where Q is the number of training sets and
n is the number of weights and biases in the network. It turns out that this
matrix does not have to be computed and stored as a whole. For example, if we
were to divide the Jacobian into two equal submatrices we could compute the
approximate Hessian matrix as follows:

Therefore, the full Jacobian does not have to exist at one time. The
approximate Hessian can be computed by summing a series of subterms. Once
one subterm has been computed, the corresponding submatrix of the Jacobian
can be cleared.

When using the training function trainlm, the parameter mem_reduc is used to
determine how many rows of the Jacobian are to be computed in each
submatrix. If mem_reduc is set to 1, then the full Jacobian is computed, and no
memory reduction is achieved. If mem_reduc is set to 2, then only half of the
Jacobian will be computed at one time. This saves half of the memory used by
the calculation of the full Jacobian.

There is a drawback to using memory reduction. A significant computational
overhead is associated with computing the Jacobian in submatrices. If you
have enough memory available, then it is better to set mem_reduc to 1 and to
compute the full Jacobian. If you have a large training set, and you are running
out of memory, then you should set mem_reduc to 2, and try again. If you still
run out of memory, continue to increase mem_reduc.

Even if you use memory reduction, the Levenberg-Marquardt algorithm will
always compute the approximate Hessian matrix, which has dimensions .
If your network is very large, then you may run out of memory. If this is the

Q n×

H JTJ J1
T J2

T J1

J2

J1
TJ1 J2

TJ2+= = =

n n×

Faster Training

5-31

case, then you will want to try trainscg, trainrp, or one of the conjugate
gradient algorithms.

5 Backpropagation

5-32

Speed and Memory Comparison
It is very difficult to know which training algorithm will be the fastest for a
given problem. It will depend on many factors, including the complexity of the
problem, the number of data points in the training set, the number of weights
and biases in the network, the error goal, and whether the network is being
used for pattern recognition (discriminant analysis) or function approximation
(regression). In this section we perform a number of benchmark comparisons of
the various training algorithms. We train feedforward networks on six
different problems. Three of the problems fall in the pattern recognition
category and the three others fall in the function approximation category. Two
of the problems are simple “toy” problems, while the other four are “real world”
problems. We use networks with a variety of different architectures and
complexities, and we train the networks to a variety of different accuracy
levels.

The following table lists the algorithms that are tested and the acronyms we
use to identify them.

Acronym Algorithm

LM trainlm - Levenberg-Marquardt

BFG trainbfg - BFGS Quasi-Newton

RP trainrp - Resilient Backpropagation

SCG trainscg - Scaled Conjugate Gradient

CGB traincgb - Conjugate Gradient with Powell/Beale
Restarts

CGF traincgf - Fletcher-Powell Conjugate Gradient

CGP traincgp - Polak-Ribiére Conjugate Gradient

OSS trainoss - One-Step Secant

GDX traingdx - Variable Learning Rate Backpropagation

Speed and Memory Comparison

5-33

The following table lists the six benchmark problems and some characteristics
of the networks, training processes, and computers used.

SIN Data Set
The first benchmark data set is a simple function approximation problem. A
1-5-1 network, with tansig transfer functions in the hidden layer and a linear
transfer function in the output layer, is used to approximate a single period of
a sine wave. The following table summarizes the results of training the
network using nine different training algorithms. Each entry in the table
represents 30 different trials, where different random initial weights are used
in each trial. In each case, the network is trained until the squared error is less
than 0.002. The fastest algorithm for this problem is the Levenberg-Marquardt
algorithm. On the average, it is over four times faster than the next fastest
algorithm. This is the type of problem for which the LM algorithm is best suited
— a function approximation problem where the network has less than one
hundred weights and the approximation must be very accurate.

Problem Title Problem
Type

Network
Structure

Error
Goal

Computer

SIN Function
Approx.

1-5-1 0.002 Sun Sparc 2

PARITY Pattern
Recog.

3-10-10-1 0.001 Sun Sparc 2

ENGINE Function
Approx.

2-30-2 0.005 Sun Enterprise
4000

CANCER Pattern
Recog.

9-5-5-2 0.012 Sun Sparc 2

CHOLESTEROL Function
Approx.

21-15-3 0.027 Sun Sparc 20

DIABETES Pattern
Recog.

8-15-15-2 0.05 Sun Sparc 20

5 Backpropagation

5-34

The performance of the various algorithms can be affected by the accuracy
required of the approximation. This is demonstrated in the following figure,
which plots the mean square error versus execution time (averaged over the 30
trials) for several representative algorithms. Here we can see that the error in
the LM algorithm decreases much more rapidly with time than the other
algorithms shown.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 LM 1.14 1.00 0.65 1.83 0.38

 BFG 5.22 4.58 3.17 14.38 2.08

 RP 5.67 4.97 2.66 17.24 3.72

 SCG 6.09 5.34 3.18 23.64 3.81

 CGB 6.61 5.80 2.99 23.65 3.67

 CGF 7.86 6.89 3.57 31.23 4.76

 CGP 8.24 7.23 4.07 32.32 5.03

 OSS 9.64 8.46 3.97 59.63 9.79

 GDX 27.69 24.29 17.21 258.15 43.65

Speed and Memory Comparison

5-35

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Here, we can see that as the error goal is reduced, the
improvement provided by the LM algorithm becomes more pronounced. Some
algorithms perform better as the error goal is reduced (LM and BFG), and
other algorithms degrade as the error goal is reduced (OSS and GDX).

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on SIN

lm
scg
oss
gdx

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on SIN

lm
scg
oss
gdx

5 Backpropagation

5-36

PARITY Data Set
The second benchmark problem is a simple pattern recognition problem —
detect the parity of a 3-bit number. If the number of ones in the input pattern
is odd, then the network should output a one; otherwise, it should output a
minus one. The network used for this problem is a 3-10-10-1 network with
tansig neurons in each layer. The following table summarizes the results of
training this network with the nine different algorithms. Each entry in the
table represents 30 different trials, where different random initial weights are
used in each trial. In each case, the network is trained until the squared error
is less than 0.001. The fastest algorithm for this problem is the resilient
backpropagation algorithm, although the conjugate gradient algorithms (in
particular, the scaled conjugate gradient algorithm) are almost as fast. Notice
that the LM algorithm does not perform well on this problem. In general, the
LM algorithm does not perform as well on pattern recognition problems as it
does on function approximation problems. The LM algorithm is designed for
least squares problems that are approximately linear. Since the output
neurons in pattern recognition problems will generally be saturated, we will
not be operating in the linear region.

10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

mean−square−error

tim
e

(s
)

Speed Comparison on SIN

lm
bfg
scg
gdx
cgb
oss
rp

Speed and Memory Comparison

5-37

As with function approximation problems, the performance of the various
algorithms can be affected by the accuracy required of the network. This is
demonstrated in the following figure, which plots the mean square error versus
execution time for some typical algorithms. The LM algorithm converges
rapidly after some point, but only after the other algorithms have already
converged.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 RP 3.73 1.00 2.35 6.89 1.26

 SCG 4.09 1.10 2.36 7.48 1.56

 CGP 5.13 1.38 3.50 8.73 1.05

 CGB 5.30 1.42 3.91 11.59 1.35

 CGF 6.62 1.77 3.96 28.05 4.32

 OSS 8.00 2.14 5.06 14.41 1.92

 LM 13.07 3.50 6.48 23.78 4.96

 BFG 19.68 5.28 14.19 26.64 2.85

 GDX 27.07 7.26 25.21 28.52 0.86

5 Backpropagation

5-38

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Again we can see that some algorithms degrade as the error
goal is reduced (OSS and BFG).

10
−1

10
0

10
1

10
2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on PARITY

lm
scg
cgb
gdx

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Speed (time) Comparison on PARITY

tim
e

(s
)

mean−square−error

lm
bfg
scg
gdx
cgb
oss
rp

Speed and Memory Comparison

5-39

ENGINE Data Set
The third benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The data is obtained from the operation of an
engine. The inputs to the network are engine speed and fueling levels and the
network outputs are torque and emission levels. The network used for this
problem is a 2-30-2 network with tansig neurons in the hidden layer and linear
neurons in the output layer. The following table summarizes the results of
training this network with the nine different algorithms. Each entry in the
table represents 30 different trials (10 trials for RP and GDX because of time
constraints), where different random initial weights are used in each trial. In
each case, the network is trained until the squared error is less than 0.005. The
fastest algorithm for this problem is the LM algorithm, although the BFGS
quasi-Newton algorithm and the conjugate gradient algorithms (the scaled
conjugate gradient algorithm in particular) are almost as fast. Although this is
a function approximation problem, the LM algorithm is not as clearly superior
as it was on the SIN data set. In this case, the number of weights and biases in
the network is much larger than the one used on the SIN problem (152 versus.
16), and the advantages of the LM algorithm decrease as the number of
network parameters increase.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 LM 18.45 1.00 12.01 30.03 4.27

 BFG 27.12 1.47 16.42 47.36 5.95

 SCG 36.02 1.95 19.39 52.45 7.78

 CGF 37.93 2.06 18.89 50.34 6.12

 CGB 39.93 2.16 23.33 55.42 7.50

 CGP 44.30 2.40 24.99 71.55 9.89

 OSS 48.71 2.64 23.51 80.90 12.33

 RP 65.91 3.57 31.83 134.31 34.24

 GDX 188.50 10.22 81.59 279.90 66.67

5 Backpropagation

5-40

The following figure plots the mean square error versus execution time for
some typical algorithms. The performance of the LM algorithm improves over
time relative to the other algorithms.

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Again we can see that some algorithms degrade as the error
goal is reduced (GDX and RP), while the LM algorithm improves.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on ENGINE

lm
scg
rp
gdx

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on ENGINE

lm
scg
rp
gdx

Speed and Memory Comparison

5-41

CANCER Data Set
The fourth benchmark problem is a realistic pattern recognition (or nonlinear
discriminant analysis) problem. The objective of the network is to classify a
tumor as either benign or malignant based on cell descriptions gathered by
microscopic examination. Input attributes include clump thickness, uniformity
of cell size and cell shape, the amount of marginal adhesion, and the frequency
of bare nuclei. The data was obtained from the University of Wisconsin
Hospitals, Madison, from Dr. William H. Wolberg. The network used for this
problem is a 9-5-5-2 network with tansig neurons in all layers. The following
table summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 30 different trials, where
different random initial weights are used in each trial. In each case, the
network is trained until the squared error is less than 0.012. A few runs failed
to converge for some of the algorithms, so only the top 75% of the runs from
each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence, and the LM algorithm is also reasonably fast. As we
mentioned with the parity data set, the LM algorithm does not perform as well

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

mean−square−error

tim
e

(s
)

Time Comparison on ENGINE

lm
bfg
scg
gdx
cgb
oss
rp

5 Backpropagation

5-42

on pattern recognition problems as it does on function approximation
problems.

The following figure plots the mean square error versus execution time for
some typical algorithms. For this problem we don’t see as much variation in
performance as we have seen in previous problems.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 CGB 80.27 1.00 55.07 102.31 13.17

 RP 83.41 1.04 59.51 109.39 13.44

 SCG 86.58 1.08 41.21 112.19 18.25

 CGP 87.70 1.09 56.35 116.37 18.03

 CGF 110.05 1.37 63.33 171.53 30.13

 LM 110.33 1.37 58.94 201.07 38.20

 BFG 209.60 2.61 118.92 318.18 58.44

 GDX 313.22 3.90 166.48 446.43 75.44

 OSS 463.87 5.78 250.62 599.99 97.35

Speed and Memory Comparison

5-43

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. Again we can see that some algorithms degrade as the error
goal is reduced (OSS and BFG) while the LM algorithm improves. It is typical
of the LM algorithm on any problem that its performance improves relative to
other algorithms as the error goal is reduced.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on CANCER

bfg
oss
cgb
gdx

5 Backpropagation

5-44

CHOLESTEROL Data Set
The fifth benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The objective of the network is to predict
cholesterol levels (ldl, hdl and vldl) based on measurements of 21 spectral
components. The data was obtained from Dr. Neil Purdie, Department of
Chemistry, Oklahoma State University [PuLu92]. The network used for this
problem is a 21-15-3 network with tansig neurons in the hidden layers and
linear neurons in the output layer. The following table summarizes the results
of training this network with the nine different algorithms. Each entry in the
table represents 20 different trials (10 trials for RP and GDX), where different
random initial weights are used in each trial. In each case, the network is
trained until the squared error is less than 0.027.

The scaled conjugate gradient algorithm has the best performance on this
problem, although all of the conjugate gradient algorithms perform well. The
LM algorithm does not perform as well on this function approximation problem
as it did on the other two. That is because the number of weights and biases in
the network has increased again (378 versus 152 versus 16). As the number of
parameters increases, the computation required in the LM algorithm increases
geometrically.

10
−2

10
−1

10
0

10
1

10
2

10
3

mean−square−error

tim
e

(s
)

Time Comparison on CANCER

lm
bfg
scg
gdx
cgb
oss
rp

Speed and Memory Comparison

5-45

The following figure plots the mean square error versus execution time for
some typical algorithms. For this problem, we can see that the LM algorithm
is able to drive the mean square error to a lower level than the other
algorithms. The SCG and RP algorithms provide the fastest initial
convergence.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 SCG 99.73 1.00 83.10 113.40 9.93

 CGP 121.54 1.22 101.76 162.49 16.34

 CGB 124.06 1.24 107.64 146.90 14.62

 CGF 136.04 1.36 106.46 167.28 17.67

 LM 261.50 2.62 103.52 398.45 102.06

 OSS 268.55 2.69 197.84 372.99 56.79

 BFG 550.92 5.52 471.61 676.39 46.59

 RP 1519.00 15.23 581.17 2256.10 557.34

 GDX 3169.50 31.78 2514.90 4168.20 610.52

5 Backpropagation

5-46

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. We can see that the LM and BFG algorithms improve
relative to the other algorithms as the error goal is reduced.

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on CHOLEST

lm
scg
rp
gdx

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

mean−square−error

tim
e

(s
)

Time Comparison on CHOLEST

lm
bfg
scg
gdx
cgb
oss
rp

Speed and Memory Comparison

5-47

DIABETES Data Set
The sixth benchmark problem is a pattern recognition problem. The objective
of the network is to decide if an individual has diabetes, based on personal data
(age, number of times pregnant) and the results of medical examinations (e.g.,
blood pressure, body mass index, result of glucose tolerance test, etc.). The data
was obtained from the University of California, Irvine, machine learning data
base. The network used for this problem is an 8-15-15-2 network with tansig
neurons in all layers. The following table summarizes the results of training
this network with the nine different algorithms. Each entry in the table
represents 10 different trials, where different random initial weights are used
in each trial. In each case, the network is trained until the squared error is less
than 0.05.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence. The results on this problem are consistent with the other
pattern recognition problems we have considered. The RP algorithm works
well on all of the pattern recognition problems. This is reasonable, since that
algorithm was designed to overcome the difficulties caused by training with
sigmoid functions, which have very small slopes when operating far from the
center point. For pattern recognition problems, we use sigmoid transfer
functions in the output layer, and we want the network to operate at the tails
of the sigmoid function.

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

 RP 323.90 1.00 187.43 576.90 111.37

 SCG 390.53 1.21 267.99 487.17 75.07

 CGB 394.67 1.22 312.25 558.21 85.38

 CGP 415.90 1.28 320.62 614.62 94.77

 OSS 784.00 2.42 706.89 936.52 76.37

 CGF 784.50 2.42 629.42 1082.20 144.63

 LM 1028.10 3.17 802.01 1269.50 166.31

5 Backpropagation

5-48

The following figure plots the mean square error versus execution time for
some typical algorithms. As with other problems, we see that the SCG and RP
have fast initial convergence, while the LM algorithm is able to provide smaller
final error.

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square error
convergence goal. In this case, we can see that the BFG algorithm degrades as
the error goal is reduced, while the LM algorithm improves. The RP algorithm
is best, except at the smallest error goal, where SCG is better.

 BFG 1821.00 5.62 1415.80 3254.50 546.36

 GDX 7687.00 23.73 5169.20
10350.00

 2015.00

Algorithm Mean
Time (s)

Ratio Min.
Time (s)

 Max.
Time (s)

Std.
(s)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on DIABETES

lm
scg
rp
bfg

Speed and Memory Comparison

5-49

Summary
There are several algorithm characteristics that we can deduce from the
experiments we have described. In general, on function approximation
problems, for networks that contain up to a few hundred weights, the
Levenberg-Marquardt algorithm will have the fastest convergence. This
advantage is especially noticeable if very accurate training is required. In
many cases, trainlm is able to obtain lower mean square errors than any of the
other algorithms tested. However, as the number of weights in the network
increases, the advantage of the trainlm decreases. In addition, trainlm
performance is relatively poor on pattern recognition problems. The storage
requirements of trainlm are larger than the other algorithms tested. By
adjusting the mem_reduc parameter, discussed earlier, the storage
requirements can be reduced, but at a cost of increased execution time.

The trainrp function is the fastest algorithm on pattern recognition problems.
However, it does not perform well on function approximation problems. Its
performance also degrades as the error goal is reduced. The memory
requirements for this algorithm are relatively small in comparison to the other
algorithms considered.

The conjugate gradient algorithms, in particular trainscg, seem to perform
well over a wide variety of problems, particularly for networks with a large

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

mean−square−error

tim
e

(s
)

Time Comparison on DIABETES

lm
bfg
scg
gdx
cgb
oss
rp

5 Backpropagation

5-50

number of weights. The SCG algorithm is almost as fast as the LM algorithm
on function approximation problems (faster for large networks) and is almost
as fast as trainrp on pattern recognition problems. Its performance does not
degrade as quickly as trainrp performance does when the error is reduced.
The conjugate gradient algorithms have relatively modest memory
requirements.

The trainbfg performance is similar to that of trainlm. It does not require as
much storage as trainlm, but the computation required does increase
geometrically with the size of the network, since the equivalent of a matrix
inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than the
other methods, and has about the same storage requirements as trainrp, but
it can still be useful for some problems. There are certain situations in which
it is better to converge more slowly. For example, when using early stopping (as
described in the next section) you may have inconsistent results if you use an
algorithm that converges too quickly. You may overshoot the point at which the
error on the validation set is minimized.

Improving Generalization

5-51

Improving Generalization
One of the problems that occurs during neural network training is called
overfitting. The error on the training set is driven to a very small value, but
when new data is presented to the network the error is large. The network has
memorized the training examples, but it has not learned to generalize to new
situations.

The following figure shows the response of a 1-20-1 neural network that has
been trained to approximate a noisy sine function. The underlying sine
function is shown by the dotted line, the noisy measurements are given by the
‘+’ symbols, and the neural network response is given by the solid line. Clearly
this network has overfit the data and will not generalize well.

One method for improving network generalization is to use a network that is
just large enough to provide an adequate fit. The larger a network you use, the
more complex the functions the network can create. If we use a small enough
network, it will not have enough power to overfit the data. Run the Neural
Network Design Demonstration nnd11gn [HDB96] to investigate how reducing
the size of a network can prevent overfitting.

Unfortunately, it is difficult to know beforehand how large a network should be
for a specific application. There are two other methods for improving

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Function Approximation

5 Backpropagation

5-52

generalization that are implemented in the Neural Network Toolbox:
regularization and early stopping. The next few subsections describe these two
techniques, and the routines to implement them.

Note that if the number of parameters in the network is much smaller than the
total number of points in the training set, then there is little or no chance of
overfitting. If you can easily collect more data and increase the size of the
training set, then there is no need to worry about the following techniques to
prevent overfitting. The rest of this section only applies to those situations in
which you want to make the most of a limited supply of data.

Regularization
The first method for improving generalization is called regularization. This
involves modifying the performance function, which is normally chosen to be
the sum of squares of the network errors on the training set. The next
subsection explains how the performance function can be modified, and the
following subsection describes a routine that automatically sets the optimal
performance function to achieve the best generalization.

Modified Performance Function
The typical performance function that is used for training feedforward neural
networks is the mean sum of squares of the network errors.

It is possible to improve generalization if we modify the performance function
by adding a term that consists of the mean of the sum of squares of the network
weights and biases

where is the performance ratio, and

F mse 1
N
---- ei()2

i 1=

N

∑
1
N
---- ti ai–()2

i 1=

N

∑= = =

msereg γmse 1 γ–()msw+=

γ

msw 1
n
--- wj

2

j 1=

n

∑=

Improving Generalization

5-53

Using this performance function will cause the network to have smaller
weights and biases, and this will force the network response to be smoother and
less likely to overfit.

In the following code we reinitialize our previous network and retrain it using
the BFGS algorithm with the regularized performance function. Here we set
the performance ratio to 0.5, which gives equal weight to the mean square
errors and the mean square weights.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainbfg');
net.performFcn = 'msereg';
net.performParam.ratio = 0.5;
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

The problem with regularization is that it is difficult to determine the optimum
value for the performance ratio parameter. If we make this parameter too
large, we may get overfitting. If the ratio is too small, the network will not
adequately fit the training data. In the next section we describe a routine that
automatically sets the regularization parameters.

Automated Regularization (trainbr)
It is desirable to determine the optimal regularization parameters in an
automated fashion. One approach to this process is the Bayesian framework of
David MacKay [MacK92]. In this framework, the weights and biases of the
network are assumed to be random variables with specified distributions. The
regularization parameters are related to the unknown variances associated
with these distributions. We can then estimate these parameters using
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this
users guide. A detailed discussion of the use of Bayesian regularization, in
combination with Levenberg-Marquardt training, can be found in [FoHa97].

Bayesian regularization has been implemented in the function trainbr. The
following code shows how we can train a 1-20-1 network using this function to
approximate the noisy sine wave shown earlier in this section.

5 Backpropagation

5-54

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
net=newff(minmax(p),[20,1],{'tansig','purelin'},'trainbr');
net.trainParam.show = 10;
net.trainParam.epochs = 50;
randn('seed',192736547);
net = init(net);
[net,tr]=train(net,p,t);
TRAINBR, Epoch 0/200, SSE 273.764/0, SSW 21460.5, Grad
2.96e+02/1.00e-10, #Par 6.10e+01/61
TRAINBR, Epoch 40/200, SSE 0.255652/0, SSW 1164.32, Grad
1.74e-02/1.00e-10, #Par 2.21e+01/61
TRAINBR, Epoch 80/200, SSE 0.317534/0, SSW 464.566, Grad
5.65e-02/1.00e-10, #Par 1.78e+01/61
TRAINBR, Epoch 120/200, SSE 0.379938/0, SSW 123.028, Grad
3.64e-01/1.00e-10, #Par 1.17e+01/61
TRAINBR, Epoch 160/200, SSE 0.380578/0, SSW 108.294, Grad
6.43e-02/1.00e-10, #Par 1.19e+01/61

One feature of this algorithm is that it provides a measure of how many
network parameters (weights and biases) are being effectively used by the
network. In this case, the final trained network uses approximately 12
parameters (indicated by #Par in the printout) out of the 61 total weights and
biases in the 1-20-1 network. This effective number of parameters should
remain approximately the same, no matter how large the total number of
parameters in the network becomes. (This assumes that the network has been
trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and
targets are scaled so that they fall approximately in the range [-1,1]. That is
the case for the test problem we have used. If your inputs and targets do not
fall in this range, you can use the functions premnmx, or prestd, to perform the
scaling, as described later in this chapter.

The following figure shows the response of the trained network. In contrast to
the previous figure, in which a 1-20-1 network overfit the data, here we see that
the network response is very close to the underlying sine function (dotted line),
and, therefore, the network will generalize well to new inputs. We could have
tried an even larger network, but the network response would never overfit the
data. This eliminates the guesswork required in determining the optimum
network size.

Improving Generalization

5-55

When using trainbr, it is important to let the algorithm run until the effective
number of parameters has converged. The training may stop with the message
“Maximum MU reached.” This is typical, and is a good indication that the
algorithm has truly converged. You can also tell that the algorithm has
converged if the sum squared error (SSE) and sum squared weights (SSW) are
relatively constant over several iterations. When this occurs you may want to
push the “Stop Training” button in the training window.

Early Stopping
Another method for improving generalization is called early stopping. In this
technique the available data is divided into three subsets. The first subset is
the training set, which is used for computing the gradient and updating the
network weights and biases. The second subset is the validation set. The error
on the validation set is monitored during the training process. The validation
error will normally decrease during the initial phase of training, as does the
training set error. However, when the network begins to overfit the data, the
error on the validation set will typically begin to rise. When the validation error
increases for a specified number of iterations, the training is stopped, and the
weights and biases at the minimum of the validation error are returned.

The test set error is not used during the training, but it is used to compare
different models. It is also useful to plot the test set error during the training

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Function Approximation

5 Backpropagation

5-56

process. If the error in the test set reaches a minimum at a significantly
different iteration number than the validation set error, this may indicate a
poor division of the data set.

Early stopping can be used with any of the training functions that were
described earlier in this chapter. You simply need to pass the validation data
to the training function. The following sequence of commands demonstrates
how to use the early stopping function.

First we create a simple test problem. For our training set we generate a noisy
sine wave with input points ranging from -1 to 1 at steps of 0.05.

p = [-1:0.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Next we generate the validation set. The inputs range from -1 to 1, as in the
test set, but we offset them slightly. To make the problem more realistic, we
also add a different noise sequence to the underlying sine wave. Notice that the
validation set is contained in a structure that contains both the inputs and the
targets.

val.P = [-0.975:.05:0.975];
val.T = sin(2*pi*v.P)+0.1*randn(size(v.P));

We now create a 1-20-1 network, as in our previous example with
regularization, and train it. (Notice that the validation structure is passed to
train after the initial input and layer conditions, which are null vectors in this
case since the network contains no delays. Also, in this example we are not
using a test set. The test set structure would be the next argument in the call
to train.) For this example we use the training function traingdx, although
early stopping can be used with any of the other training functions we have
discussed in this chapter.

net=newff([-1 1],[20,1],{'tansig','purelin'},'traingdx');
net.trainParam.show = 25;
net.trainParam.epochs = 300;
net = init(net);
[net,tr]=train(net,p,t,[],[],val);
TRAINGDX, Epoch 0/300, MSE 9.39342/0, Gradient 17.7789/1e-06
TRAINGDX, Epoch 25/300, MSE 0.312465/0, Gradient 0.873551/1e-06
TRAINGDX, Epoch 50/300, MSE 0.102526/0, Gradient 0.206456/1e-06
TRAINGDX, Epoch 75/300, MSE 0.0459503/0, Gradient 0.0954717/1e-06
TRAINGDX, Epoch 100/300, MSE 0.015725/0, Gradient 0.0299898/1e-06

Improving Generalization

5-57

TRAINGDX, Epoch 125/300, MSE 0.00628898/0, Gradient
0.042467/1e-06
TRAINGDX, Epoch 131/300, MSE 0.00650734/0, Gradient
0.133314/1e-06
TRAINGDX, Validation stop.

The following figure shows a graph of the network response. We can see that
the network did not overfit the data, as in the earlier example, although the
response is not extremely smooth, as when using regularization. This is
characteristic of early stopping.

Summary and Discussion
Both regularization and early stopping can ensure network generalization
when properly applied.

When using Bayesian regularization, it is important to train the network until
it reaches convergence. The sum squared error, the sum squared weights, and
the effective number of parameters should reach constant values when the
network has converged.

For early stopping, you must be careful not to use an algorithm that converges
too rapidly. If you are using a fast algorithm (like trainlm), you want to set the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Function Approximation

5 Backpropagation

5-58

training parameters so that the convergence is relatively slow (e.g., set mu to a
relatively large value, such as 1, and set mu_dec and mu_inc to values close to
1, such as 0.8 and 1.5, respectively). The training functions trainscg and
trainrp usually work well with early stopping.

With early stopping, the choice of the validation set is also important. The
validation set should be representative of all points in the training set.

With both regularization and early stopping, it is a good idea to train the
network starting from several different initial conditions. It is possible for
either method to fail in certain circumstances. By testing several different
initial conditions, you can verify robust network performance.

Based on our experience, Bayesian regularization generally provides better
generalization performance than early stopping, when training function
approximation networks. This is because Bayesian regularization does not
require that a validation data set be separated out of the training data set. It
uses all of the data. This advantage is especially noticeable when the size of the
data set is small.

To provide you with some insight into the performance of the algorithms, we
tested both early stopping and Bayesian regularization on several benchmark
data sets, which are listed in the following table.

Data Set Title No.
pts.

Network Description

BALL 67 2-10-1 Dual-sensor calibration for a ball position
measurement.

SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 5%
level.

SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 2%
level.

ENGINE (ALL) 119
9

2-30-2 Engine sensor - full data set.

ENGINE (1/4) 300 2-30-2 Engine sensor - 1/4 of data set.

Improving Generalization

5-59

These data sets are of various sizes, with different numbers of inputs and
targets. With two of the data sets we trained the networks once using all of the
data and then retrained the networks using only a fraction of the data. This
illustrates how the advantage of Bayesian regularization becomes more
noticeable when the data sets are smaller. All of the data sets are obtained from
physical systems, except for the SINE data sets. These two were artificially
created by adding various levels of noise to a single cycle of a sine wave. The
performance of the algorithms on these two data sets illustrates the effect of
noise.

The following table summarizes the performance of Early Stopping (ES) and
Bayesian Regularization (BR) on the seven test sets. (The trainscg algorithm
was used for the early stopping tests. Other algorithms provide similar
performance.)

Mean Squared Test Set Error

We can see that Bayesian regularization performs better than early stopping
in most cases. The performance improvement is most noticeable when the data
set is small, or if there is little noise in the data set. The BALL data set, for
example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often
better than early stopping, this is not always the case. In addition, the form of

CHOLEST
(ALL)

264 5-15-3 Cholesterol measurement - full data set.

CHOLEST (1/2) 132 5-15-3 Cholesterol measurement - 1/2 data set.

Data Set Title No.
pts.

Network Description

Method Ball Engine
(All)

Engine
(1/4)

Choles
(All)

Choles
(1/2)

Sine
(5% N)

Sine (2% N)

ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1

BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3

ES/BR 92 5 4 1 1.5 5.7 21

5 Backpropagation

5-60

Bayesian regularization implemented in the toolbox does not perform as well
on pattern recognition problems as it does on function approximation
problems. This is because the approximation to the Hessian that is used in the
Levenberg-Marquardt algorithm is not as accurate when the network output is
saturated, as would be the case in pattern recognition problems. Another
disadvantage of the Bayesian regularization method is that it generally takes
longer to converge than early stopping.

Preprocessing and Postprocessing

5-61

Preprocessing and Postprocessing
Neural network training can be made more efficient if certain preprocessing
steps are performed on the network inputs and targets. In this section, we
describe several preprocessing routines that you can use.

Min and Max (premnmx, postmnmx, tramnmx)
Before training, it is often useful to scale the inputs and targets so that they
always fall within a specified range. The function premnmx can be used to scale
inputs and targets so that they fall in the range [-1,1]. The following code
illustrates the use of this function.

[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net=train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets, pn and tn, that are returned will all fall in the
interval [-1,1]. The vectors minp and maxp contain the minimum and maximum
values of the original inputs, and the vectors mint and maxt contain the
minimum and maximum values of the original targets. After the network has
been trained, these vectors should be used to transform any future inputs that
are applied to the network. They effectively become a part of the network, just
like the network weights and biases.

If premnmx is used to scale both the inputs and targets, then the output of the
network will be trained to produce outputs in the range [-1,1]. If you want to
convert these outputs back into the same units that were used for the original
targets, then you should use the routine postmnmx. In the following code, we
simulate the network that was trained in the previous code, and then convert
the network output back into the original units.

an = sim(net,pn);
a = postmnmx(an,mint,maxt);

The network output an will correspond to the normalized targets tn. The
un-normalized network output a is in the same units as the original targets t.

If premnmx is used to preprocess the training set data, then whenever the
trained network is used with new inputs they should be preprocessed with the
minimum and maximums that were computed for the training set. This can be

5 Backpropagation

5-62

accomplished with the routine tramnmx. In the following code, we apply a new
set of inputs to the network we have already trained.

pnewn = tramnmx(pnew,minp,maxp);
anewn = sim(net,pnewn);
anew = postmnmx(anewn,mint,maxt);

Mean and Stand. Dev. (prestd, poststd, trastd)
Another approach for scaling network inputs and targets is to normalize the
mean and standard deviation of the training set. This procedure is
implemented in the function prestd. It normalizes the inputs and targets so
that they will have zero mean and unity standard deviation. The following code
illustrates the use of prestd.

[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

The original network inputs and targets are given in the matrices p and t. The
normalized inputs and targets, pn and tn, that are returned will have zero
means and unity standard deviation. The vectors meanp and stdp contain the
mean and standard deviations of the original inputs, and the vectors meant and
stdt contain the means and standard deviations of the original targets. After
the network has been trained, these vectors should be used to transform any
future inputs that are applied to the network. They effectively become a part of
the network, just like the network weights and biases.

If prestd is used to scale both the inputs and targets, then the output of the
network is trained to produce outputs with zero mean and unity standard
deviation. If you want to convert these outputs back into the same units that
were used for the original targets, then you should use the routine poststd. In
the following code we simulate the network that was trained in the previous
code, and then convert the network output back into the original units.

an = sim(net,pn);
a = poststd(an,meant,stdt);

The network output an corresponds to the normalized targets tn. The
un-normalized network output a is in the same units as the original targets t.

If prestd is used to preprocess the training set data, then whenever the trained
network is used with new inputs, they should be preprocessed with the means
and standard deviations that were computed for the training set. This can be

Preprocessing and Postprocessing

5-63

accomplished with the routine trastd. In the following code, we apply a new
set of inputs to the network we have already trained.

pnewn = trastd(pnew,meanp,stdp);
anewn = sim(net,pnewn);
anew = poststd(anewn,meant,stdt);

Principal Component Analysis (prepca, trapca)
In some situations, the dimension of the input vector is large, but the
components of the vectors are highly correlated (redundant). It is useful in this
situation to reduce the dimension of the input vectors. An effective procedure
for performing this operation is principal component analysis. This technique
has three effects: it orthogonalizes the components of the input vectors (so that
they are uncorrelated with each other); it orders the resulting orthogonal
components (principal components) so that those with the largest variation
come first; and it eliminates those components that contribute the least to the
variation in the data set. The following code illustrates the use of prepca, which
performs a principal component analysis.

[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Note that we first normalize the input vectors, using prestd, so that they have
zero mean and unity variance. This is a standard procedure when using
principal components. In this example, the second argument passed to prepca
is 0.02. This means that prepca eliminates those principal components that
contribute less than 2% to the total variation in the data set. The matrix
ptrans contains the transformed input vectors. The matrix transMat contains
the principal component transformation matrix. After the network has been
trained, this matrix should be used to transform any future inputs that are
applied to the network. It effectively becomes a part of the network, just like
the network weights and biases. If you multiply the normalized input vectors
pn by the transformation matrix transMat, you obtain the transformed input
vectors ptrans.

If prepca is used to preprocess the training set data, then whenever the trained
network is used with new inputs they should be preprocessed with the
transformation matrix that was computed for the training set. This can be
accomplished with the routine trapca. In the following code, we apply a new
set of inputs to a network we have already trained.

5 Backpropagation

5-64

pnewn = trastd(pnew,meanp,stdp);
pnewtrans = trapca(pnewn,transMat);
a = sim(net,pnewtrans);

Post-Training Analysis (postreg)
The performance of a trained network can be measured to some extent by the
errors on the training, validation and test sets, but it is often useful to
investigate the network response in more detail. One option is to perform a
regression analysis between the network response and the corresponding
targets. The routine postreg is designed to perform this analysis.

The following commands illustrate how we can perform a regression analysis
on the network that we previously trained in the early stopping section.

a = sim(net,p);
[m,b,r] = postreg(a,t)
m =
 0.9874
b =
 -0.0067
r =
 0.9935

Here we pass the network output and the corresponding targets to postreg. It
returns three parameters. The first two, m and b, correspond to the slope and
the y-intercept of the best linear regression relating targets to network
outputs. If we had a perfect fit (outputs exactly equal to targets), the slope
would be 1, and the y-intercept would be 0. In this example, we can see that the
numbers are very close. The third variable returned by postreg is the
correlation coefficient (R-value) between the outputs and targets. It is a
measure of how well the variation in the output is explained by the targets. If
this number is equal to 1, then there is perfect correlation between targets and
outputs. In our example, the number is very close to 1, which indicates a good
fit.

The following figure illustrates the graphical output provided by postreg. The
network outputs are plotted versus the targets as open circles. The best linear
fit is indicated by a dashed line. The perfect fit (output equal to targets) is
indicated by the solid line. In this example, it is difficult to distinguish the best
linear fit line from the perfect fit line, because the fit is so good.

Preprocessing and Postprocessing

5-65

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

T

A

Best Linear Fit: A = (0.987) T + (-0.00667)

R = 0.994

Data Points
A = T
Best Linear Fit

5 Backpropagation

5-66

Sample Training Session
We have covered a number of different concepts in this chapter. At this point it
might be useful to put some of these ideas together with an example of how a
typical training session might go.

For this example, we are going to use data from a medical application
[PuLu92]. We want to design an instrument that can determine serum
cholesterol levels from measurements of spectral content of a blood sample. We
have a total of 264 patients for which we have measurements of 21 wavelengths
of the spectrum. For the same patients we also have measurements of hdl, ldl,
and vldl cholesterol levels, based on serum separation. The first step is to load
the data into the workspace and perform a principal component analysis.

load choles_all
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.001);

Here we have conservatively retained those principal components which
account for 99.9% of the variation in the data set. Let’s check the size of the
transformed data.

[R,Q] = size(ptrans)
R =
4

Q =
264

There was apparently significant redundancy in the data set, since the
principal component analysis has reduced the size of the input vectors from 21
to 4.

The next step is to divide the data up into training, validation and test subsets.
We will take one fourth of the data for the validation set, one fourth for the test
set and one half for the training set. We pick the sets as equally spaced points
throughout the original data.

iitst = 2:4:Q;
iival = 4:4:Q;
iitr = [1:4:Q 3:4:Q];
val.P = ptrans(:,iival); val.T = tn(:,iival);
test.P = ptrans(:,iitst); test.T = tn(:,iitst);
ptr = ptrans(:,iitr); ttr = tn(:,iitr);

Sample Training Session

5-67

We are now ready to create a network and train it. For this example, we will
try a two-layer network, with tan-sigmoid transfer function in the hidden layer
and a linear transfer function in the output layer. This is a useful structure for
function approximation (or regression) problems. As an initial guess, we use
five neurons in the hidden layer. The network should have three output
neurons since there are three targets. We will use the Levenberg-Marquardt
algorithm for training.

net = newff(minmax(ptr),[5 3],{'tansig' 'purelin'},'trainlm');
[net,tr]=train(net,ptr,ttr,[],[],val,test);
TRAINLM, Epoch 0/100, MSE 3.11023/0, Gradient 804.959/1e-10
TRAINLM, Epoch 15/100, MSE 0.330295/0, Gradient 104.219/1e-10
TRAINLM, Validation stop.

The training stopped after 15 iterations because the validation error increased.
It is a useful diagnostic tool to plot the training, validation and test errors to
check the progress of training. We can do that with the following commands.

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training','Validation','Test',-1);
ylabel('Squared Error'); xlabel('Epoch')

The result is shown in the following figure. The result here is reasonable, since
the test set error and the validation set error have similar characteristics, and
it doesn’t appear that any significant overfitting has occurred.

5 Backpropagation

5-68

The next step is to perform some analysis of the network response. We will put
the entire data set through the network (training, validation and test) and will
perform a linear regression between the network outputs and the
corresponding targets. First we need to unnormalize the network outputs.

an = sim(net,ptrans);
a = poststd(an,meant,stdt);
for i=1:3
 figure(i)
 [m(i),b(i),r(i)] = postreg(a(i,:),t(i,:));
end

In this case, we have three outputs, so we perform three regressions. The
results are shown in the following figures.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

S
qu

ar
ed

 E
rr

or

Epoch

Training
Validation
Test

Sample Training Session

5-69

0 50 100 150 200 250 300 350 400
-50

0

50

100

150

200

250

300

350

400

T

A

Best Linear Fit: A = (0.764) T + (14)

R = 0.886

Data Points
A = T
Best Linear Fit

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

T

A

Best Linear Fit: A = (0.753) T + (31.7)

R = 0.862

Data Points
A = T
Best Linear Fit

5 Backpropagation

5-70

The first two outputs seem to track the targets reasonably well (this is a
difficult problem), and the R-values are almost 0.9. The third output (vldl
levels) is not well modeled. We probably need to work more on that problem.
We might go on to try other network architectures (more hidden layer
neurons), or to try Bayesian regularization instead of early stopping for our
training technique. Of course there is also the possibility that vldl levels cannot
be accurately computed based on the given spectral components.

The function demobp1 contains a Slide show demonstration of the sample
training session. The function nnsample1 contains all of the commands that we
used in this section. You can use it as a template for your own training sessions.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

T

A

Best Linear Fit: A = (0.346) T + (28.3)

R = 0.563

Data Points
A = T
Best Linear Fit

Limitations and Cautions

5-71

Limitations and Cautions
The gradient descent algorithm is generally very slow because it requires small
learning rates for stable learning. The momentum variation is usually faster
than simple gradient descent, since it allows higher learning rates while
maintaining stability, but it is still too slow for many practical applications.
These two methods would normally be used only when incremental training is
desired. You would normally use Levenberg-Marquardt training for small and
medium size networks, if you have enough memory available. If memory is a
problem, then there are a variety of other fast algorithms available. For large
networks you will probably want to use trainscg or trainrp.

Multi-layered networks are capable of performing just about any linear or
nonlinear computation, and can approximate any reasonable function
arbitrarily well. Such networks overcome the problems associated with the
perceptron and linear networks. However, while the network being trained
may be theoretically capable of performing correctly, backpropagation and its
variations may not always find a solution. See page 12-8 of [HDB96] for a
discussion of convergence to local minimum points.

Picking the learning rate for a nonlinear network is a challenge. As with linear
networks, a learning rate that is too large leads to unstable learning.
Conversely, a learning rate that is too small results in incredibly long training
times. Unlike linear networks, there is no easy way of picking a good learning
rate for nonlinear multilayer networks. See page 12-8 of [HDB96] for examples
of choosing the learning rate. With the faster training algorithms, the default
parameter values normally perform adequately.

The error surface of a nonlinear network is more complex than the error
surface of a linear network. To understand this complexity see the figures on
pages 12-5 to 12-7 of [HDB96], which show three different error surfaces for a
multilayer network. The problem is that nonlinear transfer functions in
multilayer networks introduce many local minima in the error surface. As
gradient descent is performed on the error surface it is possible for the network
solution to become trapped in one of these local minima. This may happen
depending on the initial starting conditions. Settling in a local minimum may
be good or bad depending on how close the local minimum is to the global
minimum and how low an error is required. In any case, be cautioned that
although a multilayer backpropagation network with enough neurons can
implement just about any function, backpropagation will not always find the

5 Backpropagation

5-72

correct weights for the optimum solution. You may want to reinitialize the
network and retrain several times to guarantee that you have the best solution.

Networks are also sensitive to the number of neurons in their hidden layers.
Too few neurons can lead to underfitting. Too many neurons can contribute to
overfitting, in which all training points are well fit, but the fitting curve takes
wild oscillations between these points. Ways of dealing with various of these
issues are discussed in the section on improving generalization. This topic is
also discussed starting on page 11-21 of [HDB96].

Summary

5-73

Summary
Backpropagation can train multilayer feed-forward networks with
differentiable transfer functions to perform function approximation, pattern
association, and pattern classification. (Other types of networks can be trained
as well, although the multilayer network is most commonly used.) The term
backpropagation refers to the process by which derivatives of network error,
with respect to network weights and biases, can be computed. This process can
be used with a number of different optimization strategies.

The architecture of a multilayer network is not completely constrained by the
problem to be solved. The number of inputs to the network is constrained by
the problem, and the number of neurons in the output layer is constrained by
the number of outputs required by the problem. However, the number of layers
between network inputs and the output layer and the sizes of the layers are up
to the designer.

The two-layer sigmoid/linear network can represent any functional
relationship between inputs and outputs if the sigmoid layer has enough
neurons.

There are several different backpropagation training algorithms. They have a
variety of different computation and storage requirements, and no one
algorithm is best suited to all locations. The following list summarizes the
training algorithms included in the toolbox.

Function Description

traingd Basic gradient descent. Slow response, can be used in
incremental mode training.

traingdm Gradient descent with momentum. Generally faster than
traingd. Can be used in incremental mode training.

traingdx Adaptive learning rate. Faster training than traingd, but
can only be used in batch mode training.

trainrp Resilient backpropagation. Simple batch mode training
algorithm with fast convergence and minimal storage
requirements.

5 Backpropagation

5-74

One problem that can occur when training neural networks is that the network
can overfit on the training set and not generalize well to new data outside the
training set. This can be prevented by training with trainbr, but it can also be
prevented by using early stopping with any of the other training routines. This
requires that the user pass a validation set to the training algorithm, in
addition to the standard training set.

traincgf Fletcher-Reeves conjugate gradient algorithm. Has
smallest storage requirements of the conjugate gradient
algorithms.

traincgp Polak-Ribiére conjugate gradient algorithm. Slightly larger
storage requirements than traincgf. Faster convergence
on some problems.

traincgb Powell-Beale conjugate gradient algorithm. Slightly larger
storage requirements than traincgp. Generally faster
convergence.

trainscg Scaled conjugate gradient algorithm. The only conjugate
gradient algorithm that requires no line search. A very
good general purpose training algorithm.

trainbfg BFGS quasi-Newton method. Requires storage of
approximate Hessian matrix and has more computation in
each iteration than conjugate gradient algorithms, but
usually converges in fewer iterations.

trainoss One step secant method. Compromise between conjugate
gradient methods and quasi-Newton methods.

trainlm Levenberg-Marquardt algorithm. Fastest training
algorithm for networks of moderate size. Has memory
reduction feature for use when the training set is large.

trainbr Bayesian regularization. Modification of the
Levenberg-Marquardt training algorithm to produce
networks that generalize well. Reduces the difficulty of
determining the optimum network architecture.

Function Description

Summary

5-75

To produce the most efficient training, it is often helpful to preprocess the data
before training. It is also helpful to analyze the network response after training
is complete. The toolbox contains a number of routines for pre- and
post-processing. They are summarized in the following table.

Function Description

premnmx Normalize data to fall in the range [-1,1].

postmnmx Inverse of premnmx. Used to convert data back to standard
units.

tramnmx Normalize data using previously computed minimums and
maximums. Used to preprocess new inputs to networks that
have been trained with data normalized with premnmx.

prestd Normalize data to have zero mean and unity standard
deviation.

poststd Inverse of prestd. Used to convert data back to standard
units.

trastd Normalize data using previously computed means and
standard deviations. Used to preprocess new inputs to
networks that have been trained with data normalized with
prestd.

prepca Principal component analysis. Reduces dimension of input
vector and un-correlates components of input vectors.

trapca Preprocess data using previously computed principal
component transformation matrix. Used to preprocess new
inputs to networks that have been trained with data
transformed with prepca.

postreg Linear regression between network outputs and targets.
Used to determine the adequacy of network fit.

5 Backpropagation

5-76

6

Control Systems

Introduction (p. 6-2) Introduces the chapter, including an overview of key
controller features

NN Predictive Control (p. 6-4) Discusses the concepts of predictive control, and a
description of the use of the NN Predictive Controller block

NARMA-L2 (Feedback Linearization)
Control (p. 6-14)

Discusses the concepts of feedback linearization, and a
description of the use of the NARMA-L2 Controller block

Model Reference Control (p. 6-23) Depicts the neural network plant model and the neural
network controller, along with a demonstration of using the
model reference controller block

Importing and Exporting (p. 6-31) Provides information on importing and exporting networks
and training data

Summary (p. 6-38) Provides a consolidated review of the chapter concepts

6 Control Systems

6-2

Introduction
Neural networks have been applied very successfully in the identification and
control of dynamic systems. The universal approximation capabilities of the
multilayer perceptron make it a popular choice for modeling nonlinear systems
and for implementing general-purpose nonlinear controllers [HaDe99]. This
chapter introduces three popular neural network architectures for prediction
and control that have been implemented in the Neural Network Toolbox:

• Model Predictive Control

• NARMA-L2 (or Feedback Linearization) Control

• Model Reference Control

This chapter presents brief descriptions of each of these architectures and
demonstrates how you can use them.

There are typically two steps involved when using neural networks for control:

1 System Identification

2 Control Design

In the system identification stage, you develop a neural network model of the
plant that you want to control. In the control design stage, you use the neural
network plant model to design (or train) the controller. In each of the three
control architectures described in this chapter, the system identification stage
is identical. The control design stage, however, is different for each
architecture.

• For the model predictive control, the plant model is used to predict future
behavior of the plant, and an optimization algorithm is used to select the
control input that optimizes future performance.

• For the NARMA-L2 control, the controller is simply a rearrangement of the
plant model.

• For the model reference control, the controller is a neural network that is
trained to control a plant so that it follows a reference model. The neural
network plant model is used to assist in the controller training.

The next three sections of this chapter discuss model predictive control,
NARMA-L2 control and model reference control. Each section consists of a brief

Introduction

6-3

description of the control concept, followed by a demonstration of the use of the
appropriate Neural Network Toolbox function. These three controllers are
implemented as Simulink® blocks, which are contained in the Neural Network
Toolbox blockset.

To assist you in determining the best controller for your application, the
following list summarizes the key controller features. Each controller has its
own strengths and weaknesses. No single controller is appropriate for every
application.

• Model Predictive Control. This controller uses a neural network model to
predict future plant responses to potential control signals. An optimization
algorithm then computes the control signals that optimize future plant
performance. The neural network plant model is trained offline, in batch
form, using any of the training algorithms discussed in Chapter 5. (This is
true for all three control architectures.) The controller, however, requires a
significant amount of on-line computation, since an optimization algorithm
is performed at each sample time to compute the optimal control input.

• NARMA-L2 Control. This controller requires the least computation of the
three architectures described in this chapter. The controller is simply a
rearrangement of the neural network plant model, which is trained offline,
in batch form. The only online computation is a forward pass through the
neural network controller. The drawback of this method is that the plant
must either be in companion form, or be capable of approximation by a
companion form model. (The companion form model is described later in this
chapter.)

• Model Reference Control. The online computation of this controller, like
NARMA-L2, is minimal. However, unlike NARMA-L2, the model reference
architecture requires that a separate neural network controller be trained
off-line, in addition to the neural network plant model. The controller
training is computationally expensive, since it requires the use of dynamic
backpropagation [HaJe99]. On the positive side, model reference control
applies to a larger class of plant than does NARMA-L2 control.

6 Control Systems

6-4

NN Predictive Control
The neural network predictive controller that is implemented in the Neural
Network Toolbox uses a neural network model of a nonlinear plant to predict
future plant performance. The controller then calculates the control input that
will optimize plant performance over a specified future time horizon. The first
step in model predictive control is to determine the neural network plant model
(system identification). Next, the plant model is used by the controller to
predict future performance. (See the Model Predictive Control Toolbox
documentation for a complete coverage of the application of various model
predictive control strategies to linear systems.)

The following section describes the system identification process. This is
followed by a description of the optimization process. Finally, it discusses how
to use the model predictive controller block that has been implemented in
Simulink®.

System Identification
The first stage of model predictive control is to train a neural network to
represent the forward dynamics of the plant. The prediction error between the
plant output and the neural network output is used as the neural network
training signal. The process is represented by the following figure.

Plant

Neural Network

Model

Learning
Algorithm

+-

Error

u

ym

yp

NN Predictive Control

6-5

The neural network plant model uses previous inputs and previous plant
outputs to predict future values of the plant output. The structure of the neural
network plant model is given in the following figure.

This network can be trained offline in batch mode, using data collected from
the operation of the plant. Any of the training algorithms discussed in Chapter
5, “Backpropagation”, can be used for network training. This process is
discussed in more detail later in this chapter.

Predictive Control
The model predictive control method is based on the receding horizon
technique [SoHa96]. The neural network model predicts the plant response
over a specified time horizon. The predictions are used by a numerical
optimization program to determine the control signal that minimizes the
following performance criterion over the specified horizon.

where , and define the horizons over which the tracking error and
the control increments are evaluated. The variable is the tentative control
signal, is the desired response and is the network model response. The

 value determines the contribution that the sum of the squares of the control
increments has on the performance index.

The following block diagram illustrates the model predictive control process.
The controller consists of the neural network plant model and the optimization
block. The optimization block determines the values of that minimize , and

IW1,1

IW1,2

b1

LW2,1

b21
1

TDL

TDL

yp t()

u t()

ym t 1+()

Layer 1Inputs Layer 2

S 1 1

J yr t j+() ym t j+()–()2

j N1=

N2

∑ ρ u' t j 1–+() u' t j 2–+()–()2

j 1=

Nu

∑+=

N1 N2 Nu
u'

yr ym
ρ

u' J

6 Control Systems

6-6

then the optimal is input to the plant. The controller block has been
implemented in Simulink, as described in the following section.

Using the NN Predictive Controller Block
This section demonstrates how the NN Predictive Controller block is used.The
first step is to copy the NN Predictive Controller block from the Neural
Network Toolbox blockset to your model window. See your Simulink
documentation if you are not sure how to do this. This step is skipped in the
following demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the
predictive controller. This demo uses a catalytic Continuous Stirred Tank
Reactor (CSTR). A diagram of the process is shown in the following figure.

u

Optimization

Plant

Neural
Network
Model

u yp

ymu'
yr

Controller

NN Predictive Control

6-7

The dynamic model of the system is

where is the liquid level, is the product concentration at the output
of the process, is the flow rate of the concentrated feed , and
is the flow rate of the diluted feed . The input concentrations are set to

 and . The constants associated with the rate of
consumption are and .

The objective of the controller is to maintain the product concentration by
adjusting the flow . To simplify the demonstration, we set .
The level of the tank is not controlled for this experiment.

To run this demo, follow these steps.

1 Start MATLAB®.

2 Run the demo model by typing predcstr in the MATLAB command window.
This command starts Simulink and creates the following model window. The
NN Predictive Controller block has already been placed in the model.

w1 w2

Cb1 Cb2

Cb

w0

h

dh t()
dt

--------------- w1 t() w2 t() 0.2 h t()–+=

dCb t()
dt

------------------ Cb1 Cb t()–()
w1 t()
h t()

-------------- Cb2 Cb t()–()
w2 t()
h t()

k1Cb t()

1 k2Cb t()+()2
--------------------------------------–+=

h t() Cb t()
w1 t() Cb1 w2 t()

Cb2
Cb1 24.9= Cb2 0.1=

k1 1= k2 1=

w2 t() w1 t() 0.1=
h t()

6 Control Systems

6-8

3 Double-click the NN Predictive Controller block. This brings up the
following window for designing the model predictive controller. This window
enables you to change the controller horizons and . (is fixed at 1.)
The weighting parameter , described earlier, is also defined in this
window. The parameter is used to control the optimization. It determines
how much reduction in performance is required for a successful optimization
step. You can select which linear minimization routine is used by the
optimization algorithm, and you can decide how many iterations of the
optimization algorithm are performed at each sample time. The linear
minimization routines are slight modifications of those discussed in Chapter
5, “Backpropagation.”

This block contains the Simulink
CSTR plant model.

This NN Predictive Controller block was copied from the Neural Network Toolbox
blockset to this model window. The Control Signal was connected to the input of
the plant model. The output of the plant model was connected to Plant Output.
The reference signal was connected to Reference.

N2 Nu N1
ρ

α

NN Predictive Control

6-9

4 Select Plant Identification. This opens the following window. The neural
network plant model must be developed before the controller is used. The
plant model predicts future plant outputs. The optimization algorithm uses
these predictions to determine the control inputs that optimize future
performance. The plant model neural network has one hidden layer, as
shown earlier. The size of that layer, the number of delayed inputs and
delayed outputs, and the training function are selected in this window. You
can select any of the training functions described in Chapter 5,
“Backpropagation”, to train the neural network plant model.

The Cost Horizon N2 is the
number of time steps over which
the prediction errors are
minimized.

The File menu has several
items, including ones that
allow you to import and
export controller and plant
networks.

The Control Horizon Nu is
the number of time steps
over which the control
increments are minimized.

The Control Weighting Factor
multiplies the sum of squared
control increments in the
performance function.

You can select from several
line search routines to be
used in the performance
optimization algorithm.

This button opens the Plant
Identification window. The plant
must be identified before the
controller is used.

After the controller parameters
have been set, select OK or Apply
to load the parameters into the
Simulink model.

This selects the number of
iterations of the
optimization algorithm to
be performed at each
sample time.

This parameter
determines when the
line search stops.

6 Control Systems

6-10

.

This button begins the
plant model training.
Generate or import data
before training.

After the plant model has been
trained, select OK or Apply to
load the network into the Simulink
model.

You can use validation
(early stopping) and
testing data during
training.

Number of data points
generated for training,
validation, and test
sets.

Simulink plant model
used to generate
training data (file with
.mdl extension).

The random plant input is
a series of steps of random
height occurring at
random intervals. These
fields set the minimum and
maximum height and
interval.

You can use any
training function to
train the plant model.

You can define the size
of the two tapped
delay lines coming into
the plant model.

The number of neurons in the first
layer of the plant model network.

Interval at which the program collects data
from the Simulink plant model.

The File menu has several items, including ones that
allow you to import and export plant model
networks.

You can normalize the
data using the premnmx
function.

This button starts the
training data generation.

You can use existing data
to train the network. If you
select this, a field will
appear for the filename.

You can select a range
on the output data to
be used in training.

Select this option to continue
training with current weights.
Otherwise, you use randomly
generated weights.

Number of
iterations of plant
training to be
performed.

NN Predictive Control

6-11

5 Select the Generate Training Data button. The program generates
training data by applying a series of random step inputs to the Simulink
plant model. The potential training data is then displayed in a figure similar
to the following.

6 Select Accept Data, and then select Train Network from the Plant
Identification window. Plant model training begins. The training proceeds

Accept the data if it is sufficiently
representative of future plant
activity. Then plant training begins.

If you refuse the training data, you
return to the Plant Identification
window and restart the training.

6 Control Systems

6-12

according to the selected training algorithm (trainlm in this case). This is a
straightforward application of batch training, as described in Chapter 5,
“Backpropagation.” After the training is complete, the response of the
resulting plant model is displayed, as in the following figure. (There are also
separate plots for validation and testing data, if they exist.) You can then
continue training with the same data set by selecting Train Network
again, you can Erase Generated Data and generate a new data set, or you
can accept the current plant model and begin simulating the closed loop
system. For this demonstration, begin the simulation, as shown in the
following steps.

7 Select OK in the Plant Identification window. This loads the trained
neural network plant model into the NN Predictive Controller block.

8 Select OK in the Neural Network Predictive Control window. This loads
the controller parameters into the NN Predictive Controller block.

9 Return to the Simulink model and start the simulation by choosing the
Start command from the Simulation menu. As the simulation runs, the

Random plant input –
steps of random height
and width.

Difference between
plant output and
neural network model
output.

Output of Simulink
plant model.

Neural network plant
model output (one step
ahead prediction).

NN Predictive Control

6-13

plant output and the reference signal are displayed, as in the following
figure.

6 Control Systems

6-14

NARMA-L2 (Feedback Linearization) Control
The neurocontroller described in this section is referred to by two different
names: feedback linearization control and NARMA-L2 control. It is referred to
as feedback linearization when the plant model has a particular form
(companion form). It is referred to as NARMA-L2 control when the plant model
can be approximated by the same form. The central idea of this type of control
is to transform nonlinear system dynamics into linear dynamics by canceling
the nonlinearities. This section begins by presenting the companion form
system model and demonstrating how you can use a neural network to identify
this model. Then it describes how the identified neural network model can be
used to develop a controller. This is followed by a demonstration of how to use
the NARMA-L2 Control block, which is contained in the Neural Network
Toolbox blockset.

Identification of the NARMA-L2 Model
As with the model predictive control, the first step in using feedback
linearization (or NARMA-L2 control) is to identify the system to be controlled.
You train a neural network to represent the forward dynamics of the system.
The first step is to choose a model structure to use. One standard model that
has been used to represent general discrete-time nonlinear systems is the
Nonlinear Autoregressive-Moving Average (NARMA) model:

where is the system input, and is the system output. For the
identification phase, you could train a neural network to approximate the
nonlinear function . This is the identification procedure used for the NN
Predictive Controller.

If you want the system output to follow some reference trajectory,
, the next step is to develop a nonlinear controller of the

form:

The problem with using this controller is that if you want to train a neural
network to create the function that will minimize mean square error, you
need to use dynamic backpropagation ([NaPa91] or [HaJe99]). This can be
quite slow. One solution proposed by Narendra and Mukhopadhyay [NaMu97]

y k d+() N y k() y k 1–() … y k n– 1+() u k() u k 1–() … u k n– 1+(), , , , , , ,[]=

u k() y k()

N

y k d+() yr k d+()=

u k() G y k() y k 1–() … y k n– 1+() yr k d+() u k 1–() … u k m– 1+(), , , , , , ,[]=

G

NARMA-L2 (Feedback Linearization) Control

6-15

is to use approximate models to represent the system. The controller used in
this section is based on the NARMA-L2 approximate model:

This model is in companion form, where the next controller input is not
contained inside the nonlinearity. The advantage of this form is that you can
solve for the control input that causes the system output to follow the reference

. The resulting controller would have the form

Using this equation directly can cause realization problems, because you must
determine the control input based on the output at the same time, .
So, instead, use the model

where . The following figure shows the structure of a neural network
representation.

ŷ k d+() f y k() y k 1–() … y k n– 1+() u k 1–() … u k m– 1+(), , , , , ,[]
g y k() y k 1–() … y k n– 1+() u k 1–() … u k m– 1+(), , , , , ,[] u k()⋅+

=

u k()

y k d+() yr k d+()=

u k()
yr k d+() f y k() y k 1–() … y k n– 1+() u k 1–() … u k n– 1+(), , , , , ,[]–

g y k() y k 1–() … y k n– 1+() u k 1–() … u k n– 1+(), , , , , ,[]
---=

u k() y k()

y k d+() f y k() y k 1–() … y k n– 1+() u k() u k 1–() … u k n– 1+(), , , , , , ,[]
g y k() … y k n– 1+() u k() … u k n– 1+(), , , , ,[] u k 1+()⋅+

=

d 2≥

6 Control Systems

6-16

NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

which is realizable for . The following figure is a block diagram of the
NARMA-L2 controller.

u(t+1)
a1(t)

1

��
��

b1
��
��IW1,1

Neural Network Approximation of g ()

Neural Network Approximation of f ()

a2 (t)

1
��
��LW2,1

��
��

b2

T
D
L
n-1

a3 (t)

1

��
��

IW3,2

��b3

y(t+2)

T
D
L
n-1 ��

��
LW4,3

��b41

a4 (t)y(t+1)

��
��

IW1,2

T
D
L
n-1

��
��

IW3,1

T
D
L
n-1

��
��
��

��
��
��

��
��
��

��
��
��

u k 1+()
yr k d+() f y k() … y k n– 1+() u k() … u k n– 1+(), , , , ,[]–

g y k() … y k n– 1+() u k() … u k n– 1+(), , , , ,[]
--=

d 2≥

NARMA-L2 (Feedback Linearization) Control

6-17

This controller can be implemented with the previously identified NARMA-L2
plant model, as shown in the following figure.

Reference
Model

f g

Plant

T
D
L

T
D
L

+

-

+

-

r yr

yuController

ec

6 Control Systems

6-18

Using the NARMA-L2 Controller Block
This section demonstrates how the NARMA-L2 controller is trained.The first
step is to copy the NARMA-L2 Controller block from the Neural Network
Toolbox blockset to your model window. See your Simulink documentation if
you are not sure how to do this. This step is skipped in the following
demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the
NARMA-L2 controller. In this demo, the objective is to control the position of a
magnet suspended above an electromagnet, where the magnet is constrained
so that it can only move in the vertical direction, as in the following figure.

u(t+1)

a1(t)

1

��
��

b1
��
��IW1,1

Neural Network Approximation of g ()

Neural Network Approximation of f ()

a2 (t)

1
��
��LW2,1

��
��

b2

T
D
L
n-1

a3 (t)

1

��
��

IW3,2

��b3

T
D
L
n-1 ��

��
LW4,3

��b41

a4 (t)y(t+1)

��
��

IW1,2

T
D
L
n-1

��
��

IW3,1

T
D
L
n-1

��
��
��

��
��
��

��
��
��

��
��
��

yr(t+2)

-
+

NARMA-L2 (Feedback Linearization) Control

6-19

The equation of motion for this system is

where is the distance of the magnet above the electromagnet, is the
current flowing in the electromagnet, is the mass of the magnet, and is
the gravitational constant. The parameter is a viscous friction coefficient
that is determined by the material in which the magnet moves, and is a field
strength constant that is determined by the number of turns of wire on the
electromagnet and the strength of the magnet.

To run this demo, follow these steps.

1 Start MATLAB.

2 Run the demo model by typing narmamaglev in the MATLAB command
window. This command starts Simulink and creates the following model
window. The NARMA-L2 Control block has already been placed in the
model.

+

-

N

S

y t()

i t()

d2y t()

dt2
----------------- g– α

M
----- i2 t()

y t()
------------ β

M
-----dy t()

dt
--------------–+=

y t() i t()
M g

β
α

6 Control Systems

6-20

3 Double-click the NARMA-L2 Controller block. This brings up the following
window. Notice that this window enables you to train the NARMA-L2 model.
There is no separate window for the controller, since the controller is
determined directly from the model, unlike the model predictive controller.

NARMA-L2 (Feedback Linearization) Control

6-21

4 Since this window works the same as the other Plant Identification
windows, we won’t go through the training process again now. Instead, let’s
simulate the NARMA-L2 controller.

5 Return to the Simulink model and start the simulation by choosing the
Start command from the Simulation menu. As the simulation runs, the
plant output and the reference signal are displayed, as in the following
figure.

6 Control Systems

6-22

Model Reference Control

6-23

Model Reference Control
The neural model reference control architecture uses two neural networks: a
controller network and a plant model network, as shown in the following
figure. The plant model is identified first, and then the controller is trained so
that the plant output follows the reference model output.

The figure on the following page shows the details of the neural network plant
model and the neural network controller, as they are implemented in the
Neural Network Toolbox. Each network has two layers, and you can select the
number of neurons to use in the hidden layers. There are three sets of
controller inputs:

• Delayed reference inputs

• Delayed controller outputs

• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use.
Typically, the number of delays increases with the order of the plant. There are
two sets of inputs to the neural network plant model:

• Delayed controller outputs

• Delayed plant outputs

As with the controller, you can set the number of delays. The next section
demonstrates how you can set the parameters.

PlantNN
Controller

-

+

+

-

Command
Input

Plant
Output

Model
Error

Control
Input

NN
Plant Model

Reference
Model

Control
Error

6 Control Systems

6-24

r(
t)

a3
 (t

)

1

1

n1
(t

)

n3
(t

)

�
�
�
�

L
W

3,
2

��b
1

�
�
�
� IW

1,
1

�
�
�
�

b3

f2

�
�
�
�
�
�
�
� f1

���� f3

T D L
�
�LW

1,
2

y(
t)

T D L
�
�
�
� LW

1,
4

T D L �
�
�

�
�
�

L
W

3,
4

T D L
�
�

�
�

L
W

4,
3

�
�

�
�

b4

���� f4

1

a4
 (t

)

N
eu

ra
l N

et
w

or
k

P
la

nt
 M

od
el

N
eu

ra
l N

et
w

or
k

C
on

tr
ol

le
r

n4
(t

)

a2
 (t

)

1

�
�
�

�
�
�

L
W

2,
1

�
�
�
�

b2

�
�
�
�
�
�
�
� f2

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

P
la

nt
T D L

e p
(t

)

e c
(t

)

c(
t)

n2
(t

)

Model Reference Control

6-25

Using the Model Reference Controller Block
This section demonstrates how the neural network controller is trained. The
first step is to copy the Model Reference Control block from the Neural Network
Toolbox blockset to your model window. See your Simulink documentation if
you are not sure how to do this. This step is skipped in the following
demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the
model reference controller. In this demo, the objective is to control the
movement of a simple, single-link robot arm, as shown in the following figure.

The equation of motion for the arm is

where is the angle of the arm, and is the torque supplied by the DC motor.

The objective is to train the controller so that the arm tracks the reference
model

where is the output of the reference model, and is the input reference
signal.

φ

d2φ

dt2
---------- 10 φsin– 2dφ

dt
-------– u+=

φ u

d2yr

dt2
------------ 9yr– 6

dyr
dt

---------– 9r+=

yr r

6 Control Systems

6-26

This demo uses a neural network controller with a 5-13-1 architecture. The
inputs to the controller consist of two delayed reference inputs, two delayed
plant outputs, and one delayed controller output. A sampling interval of 0.05
seconds is used.

To run this demo, follow these steps.

1 Start MATLAB.

2 Run the demo model by typing mrefrobotarm in the MATLAB command
window. This command starts Simulink and creates the following model
window. The Model Reference Control block has already been placed in the
model.

3 Double-click the Model Reference Control block. This brings up the following
window for training the model reference controller.

Model Reference Control

6-27

4 The next step would normally be to select Plant Identification, which
opens the Plant Identification window. You would then train the plant
model. Since the Plant Identification window is identical to the one used
with the previous controllers, we won’t go through that process here.

The file menu has several
items, including ones that
allow you to import and
export controller and plant
networks. You must specify a

Simulink reference
model for the plant
to follow.

The parameters in this block
specify the random
reference input for training.
The reference is a series of
random steps at random
intervals.

This button opens the Plant
Identification window. The plant
must be identified before the
controller is trained.

This block specifies
the inputs to the
controller.

The training data is
broken into
segments. Specify
the number of
training epochs for
each segment.

After the controller has been
trained, select OK or Apply to
load the network into the Simulink
model.

Current weights are used
as initial conditions to
continue training.

If selected,
segments of data
are added to the
training set as
training continues.
Otherwise, only one
segment at a time is
used.

You must generate or
import training data
before you can train the
controller.

6 Control Systems

6-28

5 Select Generate Data. The program then starts generating the data for
training the controller. After the data is generated, the following window
appears.

6 Select Accept Data. Return to the Model Reference Control window and
select Train Controller. The program presents one segment of data to the
network and trains the network for a specified number of iterations (five in
this case). This process continues one segment at a time until the entire
training set has been presented to the network. Controller training can be
significantly more time consuming than plant model training. This is

Select this if the training data
shows enough variation to
adequately train the controller.

If the data is not adequate, select
this button and then go back to the
controller window and select
Generate Data again.

Model Reference Control

6-29

because the controller must be trained using dynamic backpropagation (see
[HaJe99]). After the training is complete, the response of the resulting
closed loop system is displayed, as in the following figure.

7 Go back to the Model Reference Control window. If the performance of the
controller is not accurate, then you can select Train Controller again,
which continues the controller training with the same data set. If you would
like to use a new data set to continue training, the select Generate Data or
Import Data before you select Train Controller. (Be sure that Use
Current Weights is selected, if you want to continue training with the
same weights.) It may also be necessary to retrain the plant model. If the
plant model is not accurate, it can affect the controller training. For this
demonstration, the controller should be accurate enough, so select OK. This
loads the controller weights into the Simulink model.

This axis displays the
random reference input
that was used for training.

This axis displays the
response of the reference
model and the response of
the closed loop plant. The
plant response should
follow the reference
model.

6 Control Systems

6-30

8 Return to the Simulink model and start the simulation by selecting the
Start command from the Simulation menu. As the simulation runs, the
plant output and the reference signal are displayed, as in the following
figure.

Importing and Exporting

6-31

Importing and Exporting
You can save networks and training data to the workspace or to a disk file. The
following two sections demonstrate how you can do this.

Importing and Exporting Networks
The controller and plant model networks that you develop are stored within
Simulink controller blocks. At some point you may want to transfer the
networks into other applications, or you may want to transfer a network from
one controller block to another. You can do this by using the Import Network
and Export Network menu options. The following demonstration leads you
through the export and import processes. (We use the NARMA-L2 window for
this demonstration, but the same procedure applies to all of the controllers.)

1 Repeat the first three steps of the NARMA-L2 demonstration. The
NARMA-L2 Plant Identification window should then be open.

2 Select Export from the File menu, as shown below.

This causes the following window to open.

6 Control Systems

6-32

3 Select Export to Disk. The following window opens. Enter the filename
test in the box, and select Save. This saves the controller and plant
networks to disk.

4 Retrieve that data with the Import menu option. Select Import Network
from the File menu, as in the following figure.

Here you can select
which variables or
networks will be
exported.

You can save the
networks as network
objects, or as weights
and biases.

You can send the
networks to disk, or
to the workspace.

Here you can choose
names for the network
objects.

You can also save the
networks as Simulink
models.

The filename goes
here.

Importing and Exporting

6-33

This causes the following window to appear. Follow the steps indicated on
the following page to retrieve the data that you previously exported. Once
the data is retrieved, you can load it into the controller block by selecting OK
or Apply. Notice that the window only has an entry for the plant model,
even though you saved both the plant model and the controller. This is
because the NARMA-L2 controller is derived directly from the plant model,
so you don’t need to import both networks.

6 Control Systems

6-34

Select MAT-file and
select Browse.

Available MAT-files will
appear here. Select the
appropriate file; then select
Open.

The available networks
appear here.

Select the appropriate plant
and/or controller and move
them into the desired
position and select OK.

Importing and Exporting

6-35

Importing and Exporting Training Data
The data that you generate to train networks exists only in the corresponding
plant identification or controller training window. You may wish to save the
training data to the workspace or to a disk file so that you can load it again at
a later time. You may also want to combine data sets manually and then load
them back into the training window. You can do this by using the Import and
Export buttons. The following demonstration leads you through the import and
export processes. (We use the NN Predictive Control window for this
demonstration, but the same procedure applies to all of the controllers.)

1 Repeat the first five steps of the NN Predictive Control demonstration. Then
select Accept Data. The Plant Identification window should then be open,
and the Import and Export buttons should be active.

2 Select the Export button. This causes the following window to open.

3 Select Export to Disk. The following window opens. Enter the filename
testdat in the box, and select Save. This saves the training data structure
to disk.

You can select a name
for the data structure.
The structure contains
at least two fields:
name.U, and name.Y.
These two fields
contain the input and
output arrays.

You can export the
data to the workspace
or to a disk file.

6 Control Systems

6-36

4 Now let’s retrieve the data with the import command. Select the Import
button in the Plant Identification window.This causes the following
window to appear. Follow the steps indicated on the following page to
retrieve the data that you previously exported. Once the data is imported,
you can train the neural network plant model.

The filename goes
here.

Importing and Exporting

6-37

Select MAT-file and
select Browse. Available MAT-files will

appear here. Select the
appropriate file; then select
Open.

The available data appears
here.

Select the appropriate data
structure or array and move
it into the desired position
and select OK.

The data can be imported as two
arrays (input and output), or as a
structure that contains at least two
fields: name.U and name.Y.

6 Control Systems

6-38

Summary
The following table summarizes the controllers discussed in this chapter.

Block Description

NN Predictive Control Uses a neural network plant model to predict
future plant behavior. An optimization
algorithm determines the control input that
optimizes plant performance over a finite time
horizon. The plant training requires only a
batch algorithm for static networks and is
reasonably fast. The controller requires an
online optimization algorithm, which requires
more computation than the other controllers.

NARMA-L2 Control An approximate plant model is in companion
form. The next control input is computed to force
the plant output to follow a reference signal. The
neural network plant model is trained with
static backpropagation and is reasonably fast.
The controller is a rearrangement of the plant
model, and requires minimal online
computation.

Model Reference
Control

A neural network plant model is first developed.
The plant model is then used to train a neural
network controller to force the plant output to
follow the output of a reference model. This
control architecture requires the use of dynamic
backpropagation for training the controller. This
generally takes more time than training static
networks with the standard backpropagation
algorithm. However, this approach applies to a
more general class of plant than does the
NARMA-L2 control architecture. The controller
requires minimal online computation.

7

Radial Basis Networks

Introduction (p. 7-2) Introduces the chapter, including information on
additional resources and important functions

Radial Basis Functions (p. 7-3) Discusses the architecture and design of radial basis
networks, including examples of both exact and more
efficient designs

Generalized Regression Networks
(p. 7-9)

Discusses the network architecture and design of
generalized regression networks

Probabilistic Neural Networks (p. 7-12) Discusses the network architecture and design of
probabilistic neural networks

Summary (p. 7-15) Provides a consolidated review of the chapter concepts

7 Radial Basis Networks

7-2

Introduction
Radial basis networks may require more neurons than standard feed-forward
backpropagation networks, but often they can be designed in a fraction of the
time it takes to train standard feed-forward networks. They work best when
many training vectors are available.

You may want to consult the following paper on this subject:

Chen, S., C.F.N. Cowan, and P. M. Grant, “Orthogonal Least Squares Learning
Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural
Networks, vol. 2, no. 2, March 1991, pp. 302-309.

This chapter discusses two variants of radial basis networks, Generalized
Regression networks (GRNN) and Probabilistic neural networks (PNN). You
may want to read about them in P.D. Wasserman, Advanced Methods in
Neural Computing, New York: Van Nostrand Reinhold, 1993 on pp. 155-61,
and pp. 35-55 respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNN and
PNN can be designed with newgrnn and newpnn, respectively.

Type help radbasis to see a listing of all functions and demonstrations related
to radial basis networks.

Radial Basis Functions

7-3

Radial Basis Functions

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different from
that of neurons in previous chapters. Here the net input to the radbas transfer
function is the vector distance between its weight vector w and the input vector
p, multiplied by the bias b. (The box in this figure accepts the input
vector p and the single row input weight matrix, and produces the dot product
of the two.)

The transfer function for a radial basis neuron is:

Here is a plot of the radbas transfer function.

Input

p
1p
2p
3

p
R

Radial Basis Neuron

an

b

1

a = radbas(|| w-p || b)

��
��

���
���|| dist ||

w
1,

R
w

1,1
...

+

_

 dist

radbas n() e n2–=

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

7 Radial Basis Networks

7-4

The radial basis function has a maximum of 1 when its input is 0. As the
distance between w and p decreases, the output increases. Thus, a radial basis
neuron acts as a detector that produces 1 whenever the input p is identical to
its weight vector p.

The bias b allows the sensitivity of the radbas neuron to be adjusted. For
example, if a neuron had a bias of 0.1 it would output 0.5 for any input vector
p at vector distance of 8.326 (0.8326/b) from its weight vector w.

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1
neurons, and an output linear layer of S2 neurons.

The box in this figure accepts the input vector p and the input weight
matrix IW1,1, and produces a vector having S1 elements. The elements are the
distances between the input vector and vectors iIW1,1 formed from the rows of
the input weight matrix.

The bias vector b1 and the output of are combined with the MATLAB®
operation .* , which does element-by-element multiplication.

The output of the first layer for a feed forward network net can be obtained with
the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

n1 S 2 x 1

 S 1 x 1

 S 1 x 1

S 1 x 1

S 1 x R

��
��IW1,1

��
��b1

a1

1

n2
S 2 x S 1

S 2 x 1

S 2 x 1

��
��b2

��
LW2,1

1

p
 R x 1

R S1 S2

Input Radial Basis Layer Linear Layer

a
i
1 = radbas (||

i
IW1,1 - p || b

i
1) a2 = purelin (LW2,1 a1 +b2)

��
��
��

��
��
��

Where...

R = number of
 elements in
 input vector

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

��|| dist ||
 S 1 x 1

.*

a2 = y

S1 = number of
 neurons in
 layer 1

S2 =number of
 neurons in
 layer 2

 dist

 dist

Radial Basis Functions

7-5

Fortunately, you won’t have to write such lines of code. All of the details of
designing this network are built into design functions newrbe and newrb, and
their outputs can be obtained with sim.

We can understand how this network behaves by following an input vector p
through the network to the output a2. If we present an input vector to such a
network, each neuron in the radial basis layer will output a value according to
how close the input vector is to each neuron’s weight vector.

Thus, radial basis neurons with weight vectors quite different from the input
vector p have outputs near zero. These small outputs have only a negligible
effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector
p produces a value near 1. If a neuron has an output of 1 its output weights in
the second layer pass their values to the linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had
outputs of 0’s (or very close to 0), the output of the linear layer would be the
active neuron’s output weights. This would, however, be an extreme case.
Typically several neurons are always firing, to varying degrees.

Now let us look in detail at how the first layer operates. Each neuron's
weighted input is the distance between the input vector and its weight vector,
calculated with dist. Each neuron's net input is the element-by-element
product of its weighted input with its bias, calculated with netprod. Each
neuron’s output is its net input passed through radbas. If a neuron's weight
vector is equal to the input vector (transposed), its weighted input is 0, its net
input is 0, and its output is 1. If a neuron's weight vector is a distance of spread
from the input vector, its weighted input is spread, its net input is sqrt(-log(.5))
(or 0.8326), therefore its output is 0.5.

Exact Design (newrbe)
Radial basis networks can be designed with the function newrbe. This function
can produce a network with zero error on training vectors. It is called in the
following way.

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and target vectors T, and
a spread constant SPREAD for the radial basis layer, and returns a network with
weights and biases such that the outputs are exactly T when the inputs are P.

7 Radial Basis Networks

7-6

This function newrbe creates as many radbas neurons as there are input
vectors in P, and sets the first-layer weights to P'. Thus, we have a layer of
radbas neurons in which each neuron acts as a detector for a different input
vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis
functions that cross 0.5 at weighted inputs of +/- SPREAD. This determines the
width of an area in the input space to which each neuron responds. If SPREAD
is 4, then each radbas neuron will respond with 0.5 or more to any input vectors
within a vector distance of 4 from their weight vector. As we shall see, SPREAD
should be large enough that neurons respond strongly to overlapping regions
of the input space.

The second-layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code,
b{2}) are found by simulating the first-layer outputs a1 (A{1}), and then solving
the following linear expression.

[W{2,1} b{2}] * [A{1}; ones] = T

We know the inputs to the second layer (A{1}) and the target (T), and the layer
is linear. We can use the following code to calculate the weights and biases of
the second layer to minimize the sum-squared error.

Wb = T/[P; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column.
The sum-squared error will always be 0, as explained below.

We have a problem with C constraints (input/target pairs) and each neuron has
C +1 variables (the C weights from the C radbas neurons, and a bias). A linear
problem with C constraints and more than C variables has an infinite number
of zero error solutions!

Thus, newrbe creates a network with zero error on training vectors. The only
condition we have to meet is to make sure that SPREAD is large enough so that
the active input regions of the radbas neurons overlap enough so that several
radbas neurons always have fairly large outputs at any given moment. This
makes the network function smoother and results in better generalization for
new input vectors occurring between input vectors used in the design.
(However, SPREAD should not be so large that each neuron is effectively
responding in the same, large, area of the input space.)

The drawback to newrbe is that it produces a network with as many hidden
neurons as there are input vectors. For this reason, newrbe does not return an

Radial Basis Functions

7-7

acceptable solution when many input vectors are needed to properly define a
network, as is typically the case.

More Efficient Design (newrb)
The function newrb iteratively creates a radial basis network one neuron at a
time. Neurons are added to the network until the sum-squared error falls
beneath an error goal or a maximum number of neurons has been reached. The
call for this function is:

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors, P and T, and
design parameters GOAL and, SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is that
newrb creates neurons one at a time. At each iteration the input vector that
results in lowering the network error the most, is used to create a radbas
neuron. The error of the new network is checked, and if low enough newrb is
finished. Otherwise the next neuron is added. This procedure is repeated until
the error goal is met, or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough that
the radbas neurons respond to overlapping regions of the input space, but not
so large that all the neurons respond in essentially the same manner.

Why not always use a radial basis network instead of a standard feed-forward
network? Radial basis networks, even when designed efficiently with newrbe,
tend to have many times more neurons than a comparable feed-forward
network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the
input space, while radbas neurons only respond to relatively small regions of
the input space. The result is that the larger the input space (in terms of
number of inputs, and the ranges those inputs vary over) the more radbas
neurons required.

On the other hand, designing a radial basis network often takes much less time
than training a sigmoid/linear network, and can sometimes result in fewer
neurons being used, as can be seen in the next demonstration.

7 Radial Basis Networks

7-8

Demonstrations
The demonstration script demorb1 shows how a radial basis network is used to
fit a function. Here the problem is solved with only five neurons.

Demonstration scripts demorb3 and demorb4 examine how the spread constant
affects the design process for radial basis networks.

In demorb3, a radial basis network is designed to solve the same problem as in
demorb1. However, this time the spread constant used is 0.01. Thus, each
radial basis neuron returns 0.5 or lower, for any input vectors with a distance
of 0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis
neurons have a strong output for any given input.

In demorb3, it was demonstrated that having too small a spread constant can
result in a solution that does not generalize from the input/target vectors used
in the design. This demonstration, demorb4, shows the opposite problem. If the
spread constant is large enough, the radial basis neurons will output large
values (near 1.0) for all the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to
the network becomes lost. No matter what the input, the second layer outputs
1’s. The function newrb will attempt to find a network, but will not be able to
do so because to numerical problems that arise in this situation.

The moral of the story is, choose a spread constant larger than the distance
between adjacent input vectors, so as to get good generalization, but smaller
than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than 0.1,
the interval between inputs, and less than 2, the distance between the
left-most and right-most inputs.

Generalized Regression Networks

7-9

Generalized Regression Networks
A generalized regression neural network (GRNN) is often used for function
approximation. As discussed below, it has a radial basis layer and a special
linear layer.

Network Architecture
The architecture for the GRNN is shown below. It is similar to the radial basis
network, but has a slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2
elements in vector n2. Each element is the dot product of a row of LW2,1 and
the input vector a1, all normalized by the sum of the elements of a1. For
instance, suppose that:

LW{1,2}= [1 -2;3 4;5 6];
a{1} = [7; -8;

Then

aout = normprod(LW{1,2},a{1})
aout =
 -23
 11
 13

n1

 Q x 1

 Q x 1

Q x R

��
��

IW1,1

��
��b11

p
 R x 1

R Q

Input Radial Basis Layer Special Linear Layer

a2 = purelin (n2)

��
��
�� n2

Q x 1

 Q x 1

Q��
��
��

Where...

= no. of elements
 in input vector

= no. of neurons
 in layer 1

Q

R

 = no. of neurons
 in layer 2

Q
��|| dist ||

 Q x 1

a1

Q x 1

Q x Q

��
��LW2,1

��
��nprod.*

Q = no. of input/
 target pairs

a
i
1 = radbas (||

i
IW1,1 - p || b

i
1)

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

a2 = y

7 Radial Basis Networks

7-10

The first layer is just like that for newrbe networks. It has as many neurons as
there are input/ target vectors in P. Specifically, the first layer weights are set
to P'. The bias b1 is set to a column vector of 0.8326/SPREAD. The user chooses
SPREAD, the distance an input vector must be from a neuron’s weight vector to
be 0.5.

Again, the first layer operates just like the newbe radial basis layer described
previously. Each neuron's weighted input is the distance between the input
vector and its weight vector, calculated with dist. Each neuron's net input is
the product of its weighted input with its bias, calculated with netprod. Each
neurons' output is its net input passed through radbas. If a neuron's weight
vector is equal to the input vector (transposed), its weighted input will be 0, its
net input will be 0, and its output will be 1. If a neuron's weight vector is a
distance of spread from the input vector, its weighted input will be spread, and
its net input will be sqrt(-log(.5)) (or 0.8326). Therefore its output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here
LW{2,1} is set to T.

Suppose we have an input vector p close to pi, one of the input vectors among
the input vector/target pairs used in designing layer one weights. This input p
produces a layer 1 ai output close to 1. This leads to a layer 2 output close to ti,
one of the targets used forming layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1
neurons will respond with significant outputs.Therefore if spread is small the
radial basis function is very steep so that the neuron with the weight vector
closest to the input will have a much larger output than other neurons. The
network will tend to respond with the target vector associated with the nearest
design input vector.

As spread gets larger the radial basis function's slope gets smoother and
several neuron's may respond to an input vector. The network then acts like it
is taking a weighted average between target vectors whose design input vectors
are closest to the new input vector. As spread gets larger more and more
neurons contribute to the average with the result that the network function
becomes smoother.

Design (newgrnn)
You can use the function newgrnn to create a GRNN. For instance, suppose that
three input and three target vectors are defined as

Generalized Regression Networks

7-11

P = [4 5 6];
T = [1.5 3.6 6.7];

We can now obtain a GRNN with

net = newgrnn(P,T);

and simulate it with

P = 4.5;
v = sim(net,P)

You might want to try demogrn1. It shows how to approximate a function with
a GRNN.

7 Radial Basis Networks

7-12

Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. When an
input is presented, the first layer computes distances from the input vector to
the training input vectors, and produces a vector whose elements indicate how
close the input is to a training input. The second layer sums these contributions
for each class of inputs to produce as its net output a vector of probabilities.
Finally, a compete transfer function on the output of the second layer picks the
maximum of these probabilities, and produces a 1 for that class and a 0 for the
other classes. The architecture for this system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target
vector has K elements. One of these element is 1 and the rest is 0. Thus, each
input vector is associated with one of K classes.

The first-layer input weights, IW1,1 (net.IW{1,1}) are set to the transpose of
the matrix formed from the Q training pairs, P'. When an input is presented
the ||dist|| box produces a vector whose elements indicate how close the
input is to the vectors of the training set. These elements are multiplied,
element by element, by the bias and sent the radbas transfer function. An
input vector close to a training vector is represented by a number close to 1 in
the output vector a1. If an input is close to several training vectors of a single
class, it is represented by several elements of a1 that are close to 1.

Q x R

��
��IW1,1

p
 R x 1

R Q

Input Radial Basis Layer Competitive Layer

��
��
��
�� Where...

 R = number of
elements in
input vector

n1

 Q x 1

 Q x 1

��
��b11

��|| dist ||
 Q x 1

.*

a2 = compet (LW2,1 a1)a
i
1 = radbas (||

i
IW1,1 - p || bi1)

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

a1

Q x 1

K x Q

 K x 1

Q

n2

 K x 1

��
��LW2,1

��
��
��
��

C

Q = number of input/target pairs = number of neurons in layer 1
K = number of classes of input data = number of neurons in layer 2

a2 = y

Probabilistic Neural Networks

7-13

The second-layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of
target vectors. Each vector has a 1 only in the row associated with that
particular class of input, and 0’s elsewhere. (A function ind2vec is used to
create the proper vectors.) The multiplication Ta1 sums the elements of a1 due
to each of the K input classes. Finally, the second-layer transfer function,
compete, produces a 1 corresponding to the largest element of n2, and 0’s
elsewhere. Thus, the network has classified the input vector into a specific one
of K classes because that class had the maximum probability of being correct.

Design (newpnn)
You can use the function newpnn to create a PNN. For instance, suppose that
seven input vectors and their corresponding targets are

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
 0 1 0 1 3 4 4
 0 1 3 4 1 1 3
Tc = [1 1 2 2 3 3 3];

which yields

Tc =
 1 1 2 2 3 3 3

We need a target matrix with 1’s in the right place. We can get it with the
function ind2vec. It gives a matrix with 0’s except at the correct spots. So
execute

T = ind2vec(Tc)

which gives

T =
 (1,1) 1
 (1,2) 1
 (2,3) 1
 (2,4) 1
 (3,5) 1
 (3,6) 1
 (3,7) 1

7 Radial Basis Networks

7-14

Now we can create a network and simulate it, using the input P to make sure
that it does produce the correct classifications. We use the function vec2ind to
convert the output Y into a row Yc to make the classifications clear.

net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Finally we get

Yc =
 1 1 2 2 3 3 3

We might try classifying vectors other than those that were used to design the
network. We will try to classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'

P2 =
 1 0 5
 4 1 2

Can you guess how these vectors will be classified? If we run the simulation
and plot the vectors as we did before, we get

Yc =
 2 1 3

These results look good, for these test vectors were quite close to members of
classes 2, 1 and 3 respectively. The network has managed to generalize its
operation to properly classify vectors other than those used to design the
network.

You might want to try demopnn1. It shows how to design a PNN, and how the
network can successfully classify a vector not used in the design.

Summary

7-15

Summary
Radial basis networks can be designed very quickly in two different ways.

The first design method, newrbe, finds an exact solution. The function newrbe
creates radial basis networks with as many radial basis neurons as there are
input vectors in the training data.

The second method, newrb, finds the smallest network that can solve the
problem within a given error goal. Typically, far fewer neurons are required by
newrb than are returned newrbe. However, because the number of radial basis
neurons is proportional to the size of the input space, and the complexity of the
problem, radial basis networks can still be larger than backpropagation
networks.

A generalized regression neural network (GRNN) is often used for function
approximation. It has been shown that, given a sufficient number of hidden
neurons, GRNNs can approximate a continuous function to an arbitrary
accuracy.

Probabilistic neural networks (PNN) can be used for classification problems.
Their design is straightforward and does not depend on training. A PNN is
guaranteed to converge to a Bayesian classifier providing it is given enough
training data. These networks generalize well.

The GRNN and PNN have many advantages, but they both suffer from one
major disadvantage. They are slower to operate because they use more
computation than other kinds of networks to do their function approximation
or classification.

7 Radial Basis Networks

7-16

Figures

Radial Basis Neuron

Radbas Transfer Function

Input

p
1p
2p
3

p
R

Radial Basis Neuron

an

b

1

a = radbas(|| w-p || b)

��
��

���
���|| dist ||

w
1,

R
w

1,1
...

+

_

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

Summary

7-17

Radial Basis Network Architecture

Generalized Regression Neural Network Architecture

n1 S 2 x 1

 S 1 x 1

 S 1 x 1

S 1 x 1

S 1 x R

��
��

IW1,1

��
��b1

a1

1

n2
S 2 x S 1

S 2 x 1

S 2 x 1

��
��b2

��LW2,1

1

p
 R x 1

R S1 S2

Input Radial Basis Layer Linear Layer

a
i
1 = radbas (||

i
IW1,1 - p || b

i
1) a2 = purelin (LW2,1 a1 +b2)

��
��
��

��
��
��

Where...

R = number of
 elements in
 input vector

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

��|| dist ||
 S 1 x 1

.*

a2 = y

S1 = number of
 neurons in
 layer 1

S2 =number of
 neurons in
 layer 2

n1

 Q x 1

 Q x 1

Q x R

��
��

IW1,1

��
��b11

p
 R x 1

R Q

Input Radial Basis Layer Special Linear Layer

a2 = purelin (n2)

��
��
�� n2

Q x 1

 Q x 1

Q��
��
��

Where...

= no. of elements
 in input vector

= no. of neurons
 in layer 1

Q

R

 = no. of neurons
 in layer 2

Q
��|| dist ||

 Q x 1

a1

Q x 1

Q x Q

��
��LW2,1

��
��nprod.*

Q = no. of input/
 target pairs

a
i
1 = radbas (||

i
IW1,1 - p || b

i
1)

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

a2 = y

7 Radial Basis Networks

7-18

Probabilistic Neural Network Architecture

New Functions
This chapter introduced the following functions.

Q x R

��
��

IW1,1

p
 R x 1

R Q

Input Radial Basis Layer Competitive Layer

��
��
��

Where...

 R = number of
elements in
input vector

n1

 Q x 1

 Q x 1

��
��b11

��|| dist ||
 Q x 1

.*

a2 = compet (LW2,1 a1)a
i
1 = radbas (||

i
IW1,1 - p || bi1)

a
i
1 is i th element of a1 where

i
IW1,1 is a vector made of the i th row of IW1,1

a1

Q x 1

K x Q

 K x 1

Q

n2

 K x 1

��
��

LW2,1

��
��
��
C

Q = number of input/target pairs = number of neurons in layer 1
K = number of classes of input data = number of neurons in layer 2

a2 = y

Function Description

compet Competitive transfer function.

dist Euclidean distance weight function

dotprod Dot product weight function.

ind2vec Convert indices to vectors.

negdist Negative euclidean distance weight function

netprod Product net input function.

newgrnn Design a generalized regression neural network.

Summary

7-19

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

normprod Normalized dot product weight function.

radbas Radial basis transfer function.

vec2ind Convert vectors to indices.

Function Description

7 Radial Basis Networks

7-20

8
Self-Organizing and
Learn. Vector Quant. Nets

Introduction (p. 8-2) Introduces the chapter, including information on additional
resources

Competitive Learning (p. 8-3) Discusses the architecture, creation, learning rules, and
training of competitive networks

Self-Organizing Maps (p. 8-9) Discusses the topologies, distance functions, architecture,
creation, and training of self-organizing feature maps

Learning Vector Quantization
Networks (p. 8-31)

Discusses the architecture, creation, learning rules, and
training of learning vector quantization networks

Summary (p. 8-40) Provides a consolidated review of the chapter concepts

8 Self-Organizing and Learn. Vector Quant. Nets

8-2

Introduction
Self-organizing in networks is one of the most fascinating topics in the neural
network field. Such networks can learn to detect regularities and correlations
in their input and adapt their future responses to that input accordingly. The
neurons of competitive networks learn to recognize groups of similar input
vectors. Self-organizing maps learn to recognize groups of similar input vectors
in such a way that neurons physically near each other in the neuron layer
respond to similar input vectors. A basic reference is

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin:
Springer-Verlag, 1987.

Learning vector quantization (LVQ) is a method for training competitive layers
in a supervised manner. A competitive layer automatically learns to classify
input vectors. However, the classes that the competitive layer finds are
dependent only on the distance between input vectors. If two input vectors are
very similar, the competitive layer probably will put them in the same class.
There is no mechanism in a strictly competitive layer design to say whether or
not any two input vectors are in the same class or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target
classes chosen by the user.

You might consult the following reference:

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin:
Springer-Verlag, 1987.

Important Self-Organizing and LVQ Functions
Competitive layers and self organizing maps can be created with newc and
newsom, respectively. A listing of all self-organizing functions and
demonstrations can be found by typing help selforg.

An LVQ network can be created with the function newlvq. For a list of all LVQ
functions and demonstrations type help lvq.

Competitive Learning

8-3

Competitive Learning
The neurons in a competitive layer distribute themselves to recognize
frequently presented input vectors.

Architecture
The architecture for a competitive network is shown below.

The box in this figure accepts the input vector p and the input weight
matrix IW1,1, and produces a vector having S1 elements. The elements are the
negative of the distances between the input vector and vectors iIW1,1 formed
from the rows of the input weight matrix.

The net input n1 of a competitive layer is computed by finding the negative
distance between input vector p and the weight vectors and adding the biases
b. If all biases are zero, the maximum net input a neuron can have is 0. This
occurs when the input vector p equals that neuron’s weight vector.

The competitive transfer function accepts a net input vector for a layer and
returns neuron outputs of 0 for all neurons except for the winner, the neuron
associated with the most positive element of net input n1. The winner’s output
is 1. If all biases are 0, then the neuron whose weight vector is closest to the
input vector has the least negative net input and, therefore, wins the
competition to output a 1.

Reasons for using biases with competitive layers are introduced in a later
section on training.

p
 R x 1

R

Input

S 1 x R

n1

 S 1 x 1

 S 1 x 1

S 1 x 1

��
��

IW1,1

��
��b1

a1

1

S1

Competitive Layer

��
�� S 1 x 1

|| ndist ||

��
��
��

C

 dist

8 Self-Organizing and Learn. Vector Quant. Nets

8-4

Creating a Competitive Neural Network (newc)
A competitive neural network can be created with the function newc. We show
how this works with a simple example.

Suppose we want to divide the following four two-element vectors into two
classes.

p = [.1 .8 .1 .9; .2 .9 .1 .8]
p =
 0.1000 0.8000 0.1000 0.9000
 0.2000 0.9000 0.1000 0.8000

Thus, we have two vectors near the origin and two vectors near (1,1).

First, create a two-neuron layer with two input elements ranging from 0 to 1.
The first argument gives the range of the two input vectors and the second
argument says that there are to be two neurons.

net = newc([0 1; 0 1],2);

The weights are initialized to the center of the input ranges with the function
midpoint. We can check to see these initial values as follows:

wts = net.IW{1,1}
wts =
 0.5000 0.5000
 0.5000 0.5000

These weights are indeed the values at the midpoint of the range (0 to 1) of the
inputs, as we would expect when using midpoint for initialization.

The biases are computed by initcon, which gives

biases =
 5.4366
 5.4366

Now we have a network, but we need to train it to do the classification job.

Recall that each neuron competes to respond to an input vector p. If the biases
are all 0, the neuron whose weight vector is closest to p gets the highest net
input and, therefore, wins the competition and outputs 1. All other neurons
output 0. We would like to adjust the winning neuron so as to move it closer to
the input. A learning rule to do this is discussed in the next section.

Competitive Learning

8-5

Kohonen Learning Rule (learnk)
The weights of the winning neuron (a row of the input weight matrix) are
adjusted with the Kohonen learning rule. Supposing that the ith neuron wins,
the elements of the ith row of the input weight matrix are adjusted as shown
below.

The Kohonen rule allows the weights of a neuron to learn an input vector, and
because of this it is useful in recognition applications.

Thus, the neuron whose weight vector was closest to the input vector is
updated to be even closer. The result is that the winning neuron is more likely
to win the competition the next time a similar vector is presented, and less
likely to win when a very different input vector is presented. As more and more
inputs are presented, each neuron in the layer closest to a group of input
vectors soon adjusts its weight vector toward those input vectors. Eventually,
if there are enough neurons, every cluster of similar input vectors will have a
neuron that outputs 1 when a vector in the cluster is presented, while
outputting a 0 at all other times. Thus, the competitive network learns to
categorize the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this
toolbox.

Bias Learning Rule (learncon)
One of the limitations of competitive networks is that some neurons may not
always get allocated. In other words, some neuron weight vectors may start out
far from any input vectors and never win the competition, no matter how long
the training is continued. The result is that their weights do not get to learn
and they never win. These unfortunate neurons, referred to as dead neurons,
never perform a useful function.

To stop this from happening, biases are used to give neurons that only win the
competition rarely (if ever) an advantage over neurons that win often. A
positive bias, added to the negative distance, makes a distant neuron more
likely to win.

To do this job a running average of neuron outputs is kept. It is equivalent to
the percentages of times each output is 1. This average is used to update the
biases with the learning function learncon so that the biases of frequently

IW1 1, q()i IW1 1, q 1–()i α p q() IW1 1, q 1–()i–()+=

8 Self-Organizing and Learn. Vector Quant. Nets

8-6

active neurons will get smaller, and biases of infrequently active neurons will
get larger.

The learning rates for learncon are typically set an order of magnitude or more
smaller than for learnk. Doing this helps make sure that the running average
is accurate.

The result is that biases of neurons that haven’t responded very frequently will
increase versus biases of neurons that have responded frequently. As the
biases of infrequently active neurons increase, the input space to which that
neuron responds increases. As that input space increases, the infrequently
active neuron responds and moves toward more input vectors. Eventually the
neuron will respond to an equal number of vectors as other neurons.

This has two good effects. First, if a neuron never wins a competition because
its weights are far from any of the input vectors, its bias will eventually get
large enough so that it will be able to win. When this happens, it will move
toward some group of input vectors. Once the neuron’s weights have moved
into a group of input vectors and the neuron is winning consistently, its bias
will decrease to 0. Thus, the problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify
roughly the same percentage of input vectors. Thus, if a region of the input
space is associated with a larger number of input vectors than another region,
the more densely filled region will attract more neurons and be classified into
smaller subsections.

Training
Now train the network for 500 epochs. Either train or adapt can be used.

net.trainParam.epochs = 500
net = train(net,p);

Note that train for competitive networks uses the training function trainr.
You can verify this by executing the following code after creating the network.

net.trainFcn

This code produces

ans =
trainr

Competitive Learning

8-7

Thus, during each epoch, a single vector is chosen randomly and presented to
the network and weight and bias values are updated accordingly.

Next, supply the original vectors as input to the network, simulate the
network, and finally convert its output vectors to class indices.

a = sim(net,p)
ac = vec2ind(a)

This yields

ac =
 1 2 1 2

We see that the network is trained to classify the input vectors into two groups,
those near the origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases. They are

wts =
 0.8208 0.8263
 0.1348 0.1787
biases =
 5.3699
 5.5049

(You may get different answers if you run this problem, as a random seed is
used to pick the order of the vectors presented to the network for training.)
Note that the first vector (formed from the first row of the weight matrix) is
near the input vectors close to (1,1), while the vector formed from the second
row of the weight matrix is close to the input vectors near the origin. Thus, the
network has been trained, just by exposing it to the inputs, to classify them.

During training each neuron in the layer closest to a group of input vectors
adjusts its weight vector toward those input vectors. Eventually, if there are
enough neurons, every cluster of similar input vectors has a neuron that
outputs 1 when a vector in the cluster is presented, while outputting a 0 at all
other times. Thus, the competitive network learns to categorize the input.

Graphical Example
Competitive layers can be understood better when their weight vectors and
input vectors are shown graphically. The diagram below shows 48 two-element
input vectors represented as with ‘+’ markers.

8 Self-Organizing and Learn. Vector Quant. Nets

8-8

The input vectors above appear to fall into clusters. You can use a competitive
network of eight neurons to classify the vectors into such clusters.

Try democ1 to see a dynamic example of competitive learning.

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Input Vectors

Self-Organizing Maps

8-9

Self-Organizing Maps
Self-organizing feature maps (SOFM) learn to classify input vectors according
to how they are grouped in the input space. They differ from competitive layers
in that neighboring neurons in the self-organizing map learn to recognize
neighboring sections of the input space. Thus, self-organizing maps learn both
the distribution (as do competitive layers) and topology of the input vectors
they are trained on.

The neurons in the layer of an SOFM are arranged originally in physical
positions according to a topology function. The functions gridtop, hextop or
randtop can arrange the neurons in a grid, hexagonal, or random topology.
Distances between neurons are calculated from their positions with a distance
function. There are four distance functions, dist, boxdist, linkdist and
mandist. Link distance is the most common. These topology and distance
functions are described in detail later in this section.

Here a self-organizing feature map network identifies a winning neuron
using the same procedure as employed by a competitive layer. However,
instead of updating only the winning neuron, all neurons within a certain
neighborhood of the winning neuron are updated using the Kohonen
rule. Specifically, we adjust all such neurons as follows.

 or

Here the neighborhood contains the indices for all of the neurons that
lie within a radius of the winning neuron .

Thus, when a vector is presented, the weights of the winning neuron and its
close neighbors move toward . Consequently, after many presentations,
neighboring neurons will have learned vectors similar to each other.

To illustrate the concept of neighborhoods, consider the figure given below. The
left diagram shows a two-dimensional neighborhood of radius around
neuron . The right diagram shows a neighborhood of radius .

i∗

Ni∗ d()
i Ni∗ d()∈

wi q() wi q 1–() α p q() wi q 1–()–()+=

wi q() 1 α–() wi q 1–() αp q()+=

Ni∗ d()
d i∗

Ni d() j dij d≤,{ }=

p
p

d 1=
13 d 2=

8 Self-Organizing and Learn. Vector Quant. Nets

8-10

These neighborhoods could be written as

 and

Note that the neurons in an SOFM do not have to be arranged in a
two-dimensional pattern. You can use a one-dimensional arrangement, or even
three or more dimensions. For a one-dimensional SOFM, a neuron has only two
neighbors within a radius of 1 (or a single neighbor if the neuron is at the end
of the line).You can also define distance in different ways, for instance, by using
rectangular and hexagonal arrangements of neurons and neighborhoods. The
performance of the network is not sensitive to the exact shape of the
neighborhoods.

Topologies (gridtop, hextop, randtop)
You can specify different topologies for the original neuron locations with the
functions gridtop, hextop or randtop.

The gridtop topology starts with neurons in a rectangular grid similar to that
shown in the previous figure. For example, suppose that you want a 2-by-3
array of six neurons You can get this with:

pos = gridtop(2,3)
pos =
 0 1 0 1 0 1
 0 0 1 1 2 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

N
13

(1) N
13

(2)

N13 1() 8 12 13 14 18, , , ,{ }=

N13 2() 3 7 8 9 11 12 13 14 15 17 18 19 23, , , , , , , , , , , ,{ }=

Self-Organizing Maps

8-11

Here neuron 1 has the position (0,0); neuron 2 has the position (1,0); neuron 3
had the position (0,1); etc.

Note that had we asked for a gridtop with the arguments reversed we would
have gotten a slightly different arrangement.

pos = gridtop(3,2)
pos =
 0 1 2 0 1 2
 0 0 0 1 1 1

An 8-by-10 set of neurons in a gridtop topology can be created and plotted with
the code shown below

pos = gridtop(8,10);
plotsom(pos)

to give the following graph.

1 2

3 4

5 6

0 1

0

2

1

gridtop(2,3)

8 Self-Organizing and Learn. Vector Quant. Nets

8-12

As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons, but they are in a
hexagonal pattern. A 2-by-3 pattern of hextop neurons is generated as follows:

pos = hextop(2,3)
pos =
 0 1.0000 0.5000 1.5000 0 1.0000
 0 0 0.8660 0.8660 1.7321 1.7321

Note that hextop is the default pattern for SOFM networks generated with
newsom.

An 8-by-10 set of neurons in a hextop topology can be created and plotted with
the code shown below.

pos = hextop(8,10);

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

Self-Organizing Maps

8-13

plotsom(pos)

to give the following graph.

Note the positions of the neurons in a hexagonal arrangement.

Finally, the randtop function creates neurons in an N dimensional random
pattern. The following code generates a random pattern of neurons.

pos = randtop(2,3)
pos =
 0 0.7787 0.4390 1.0657 0.1470 0.9070
 0 0.1925 0.6476 0.9106 1.6490 1.4027

An 8-by-10 set of neurons in a randtop topology can be created and plotted with
the code shown below

pos = randtop(8,10);

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

8 Self-Organizing and Learn. Vector Quant. Nets

8-14

plotsom(pos)

to give the following graph.

For examples, see the help for these topology functions.

Distance Funct. (dist, linkdist, mandist, boxdist)
In this toolbox, there are four distinct ways to calculate distances from a
particular neuron to its neighbors. Each calculation method is implemented
with a special function.

The dist function has been discussed before. It calculates the Euclidean
distance from a home neuron to any other neuron. Suppose we have three
neurons:

pos2 = [0 1 2; 0 1 2]
pos2 =

0 1 2 3 4 5 6
0

1

2

3

4

5

6

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

Self-Organizing Maps

8-15

 0 1 2
 0 1 2

We find the distance from each neuron to the other with

D2 = dist(pos2)
D2 =
 0 1.4142 2.8284
 1.4142 0 1.4142
 2.8284 1.4142 0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1 to
neuron 2 is 1.414, etc. These are indeed the Euclidean distances as we know
them.

The graph below shows a home neuron in a two-dimensional (gridtop) layer of
neurons. The home neuron has neighborhoods of increasing diameter
surrounding it. A neighborhood of diameter 1 includes the home neuron and its
immediate neighbors. The neighborhood of diameter 2 includes the diameter 1
neurons and their immediate neighbors.

As for the dist function, all the neighborhoods for an S neuron layer map are
represented by an S-by-S matrix of distances. The particular distances shown
above (1 in the immediate neighborhood, 2 in neighborhood 2, etc.), are
generated by the function boxdist. Suppose that we have six neurons in a
gridtop configuration.

2-Dimensional
Layer of Neurons

Home Neuron

Neighborhood 1

Neighborhood 2

Neighborhood 3

Columns

8 Self-Organizing and Learn. Vector Quant. Nets

8-16

pos = gridtop(2,3)
pos =
 0 1 0 1 0 1
 0 0 1 1 2 2

Then the box distances are

d = boxdist(pos)
d =
 0 1 1 1 2 2
 1 0 1 1 2 2
 1 1 0 1 1 1
 1 1 1 0 1 1
 2 2 1 1 0 1
 2 2 1 1 1 0

The distance from neuron 1 to 2, 3, and 4 is just 1, for they are in the immediate
neighborhood. The distance from neuron 1 to both 5 and 6 is 2. The distance
from both 3 and 4 to all other neurons is just 1.

The link distance from one neuron is just the number of links, or steps, that
must be taken to get to the neuron under consideration. Thus, if we calculate
the distances from the same set of neurons with linkdist we get

dlink =
 0 1 1 2 2 3
 1 0 2 1 3 2
 1 2 0 1 1 2
 2 1 1 0 2 1
 2 3 1 2 0 1
 3 2 2 1 1 0

The Manhattan distance between two vectors x and y is calculated as

D = sum(abs(x-y))

Thus if we have

W1 = [1 2; 3 4; 5 6]
W1 =
 1 2
 3 4
 5 6

Self-Organizing Maps

8-17

and

P1= [1;1]
P1 =
 1
 1

then we get for the distances

Z1 = mandist(W1,P1)
Z1 =
 1
 5
 9

The distances calculated with mandist do indeed follow the mathematical
expression given above.

Architecture
The architecture for this SOFM is shown below.

This architecture is like that of a competitive network, except no bias is used
here. The competitive transfer function produces a 1 for output element a1

i
corresponding to ,the winning neuron. All other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron are
updated along with the winning neuron. As described previously, one can chose

n1

 S 1 x 1

Input

S 1 x R
��IW1,1

R

Self Organizing Map Layer

a1 = compet (n1)

p
 R x 1

a1

S 1 x 1

S1���
���|| ndist ||

��
��
��

C

n
i
1 = - ||

i
IW1,1 - p ||

i∗

8 Self-Organizing and Learn. Vector Quant. Nets

8-18

from various topologies of neurons. Similarly, one can choose from various
distance expressions to calculate neurons that are close to the winning neuron.

Creating a Self Organizing MAP Neural Network
(newsom)
You can create a new SOFM network with the function newsom. This function
defines variables used in two phases of learning:

• Ordering-phase learning rate

• Ordering-phase steps

• Tuning-phase learning rate

• Tuning-phase neighborhood distance

These values are used for training and adapting.

Consider the following example.

Suppose that we want to create a network having input vectors with two
elements that fall in the range 0 to 2 and 0 to 1 respectively. Further suppose
that we want to have six neurons in a hexagonal 2-by-3 network. The code to
obtain this network is

net = newsom([0 2; 0 1] , [2 3]);

Suppose also that the vectors to train on are

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8]

We can plot all of this with

plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

to give

Self-Organizing Maps

8-19

The various training vectors are seen as fuzzy gray spots around the perimeter
of this figure. The initialization for newsom is midpoint. Thus, the initial
network neurons are all concentrated at the black spot at (1, 0.5).

When simulating a network, the negative distances between each neuron's
weight vector and the input vector are calculated (negdist) to get the weighted
inputs. The weighted inputs are also the net inputs (netsum). The net inputs
compete (compete) so that only the neuron with the most positive net input will
output a 1.

Training (learnsom)
Learning in a self-organizing feature map occurs for one vector at a time,
independent of whether the network is trained directly (trainr) or whether it

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W(i,1)

W
(i,

2)

Weight Vectors

8 Self-Organizing and Learn. Vector Quant. Nets

8-20

is trained adaptively (trains). In either case, learnsom is the self-organizing
map weight learning function.

First the network identifies the winning neuron. Then the weights of the
winning neuron, and the other neurons in its neighborhood, are moved closer
to the input vector at each learning step using the self-organizing map learning
function learnsom. The winning neuron's weights are altered proportional to
the learning rate. The weights of neurons in its neighborhood are altered
proportional to half the learning rate. The learning rate and the neighborhood
distance used to determine which neurons are in the winning neuron's
neighborhood are altered during training through two phases.

Phase 1: Ordering Phase
This phase lasts for the given number of steps. The neighborhood distance
starts as the maximum distance between two neurons, and decreases to the
tuning neighborhood distance. The learning rate starts at the ordering-phase
learning rate and decreases until it reaches the tuning-phase learning rate. As
the neighborhood distance and learning rate decrease over this phase, the
neurons of the network typically order themselves in the input space with the
same topology in which they are ordered physically.

Phase 2: Tuning Phase
This phase lasts for the rest of training or adaption. The neighborhood distance
stays at the tuning neighborhood distance, (which should include only close
neighbors (i.e., typically 1.0). The learning rate continues to decrease from the
tuning phase learning rate, but very slowly. The small neighborhood and
slowly decreasing learning rate fine tune the network, while keeping the
ordering learned in the previous phase stable. The number of epochs for the
tuning part of training (or time steps for adaption) should be much larger than
the number of steps in the ordering phase, because the tuning phase usually
takes much longer.

Now let us take a look at some of the specific values commonly used in these
networks.

Self-Organizing Maps

8-21

Learning occurs according to the learnsom learning parameter, shown here
with its default value.

learnsom calculates the weight change dW for a given neuron from the neuron's
input P, activation A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances
D and the current neighborhood size ND:

a2(i,q) = 1, if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases:
an ordering phase, and a tuning phase.

The ordering phase lasts as many steps as LP.order_steps. During this phase,
LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted from
the maximum neuron distance down to 1. It is during this phase that neuron
weights are expected to order themselves in the input space consistent with the
associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always
set to LP.tune_nd. During this phase, the weights are expected to spread out
relatively evenly over the input space while retaining their topological order
found during the ordering phase.

Thus, the neuron’s weight vectors initially take large steps all together toward
the area of input space where input vectors are occurring. Then as the
neighborhood size decreases to 1, the map tends to order itself topologically
over the presented input vectors. Once the neighborhood size is 1, the network
should be fairly well ordered and the learning rate is slowly decreased over a

LP.order_lr 0.9 Ordering-phase learning rate.

LP.order_steps 1000 Ordering-phase steps.

LP.tune_lr 0.02 Tuning-phase learning rate.

LP.tune_nd 1 Tuning-phase neighborhood distance.

8 Self-Organizing and Learn. Vector Quant. Nets

8-22

longer period to give the neurons time to spread out evenly across the input
vectors.

As with competitive layers, the neurons of a self-organizing map will order
themselves with approximately equal distances between them if input vectors
appear with even probability throughout a section of the input space. Also, if
input vectors occur with varying frequency throughout the input space, the
feature map layer tends to allocate neurons to an area in proportion to the
frequency of input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both
the topology and distribution of their input.

We can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);

This training produces the following plot.

Self-Organizing Maps

8-23

We can see that the neurons have started to move toward the various training
groups. Additional training is required to get the neurons closer to the various
groups.

As noted previously, self-organizing maps differ from conventional competitive
learning in terms of which neurons get their weights updated. Instead of
updating only the winner, feature maps update the weights of the winner and
its neighbors. The result is that neighboring neurons tend to have similar
weight vectors and to be responsive to similar input vectors.

Examples
Two examples are described briefly below. You might try the demonstration
scripts demosm1 and demosm2 to see similar examples.

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W(i,1)

W
(i,

2)

Weight Vectors

8 Self-Organizing and Learn. Vector Quant. Nets

8-24

One-Dimensional Self-Organizing Map
Consider 100 two-element unit input vectors spread evenly between 0° and 90°.

angles = 0:0.5∗pi/99:0.5∗pi;

Here is a plot of the data.

P = [sin(angles); cos(angles)];

We define a a self-organizing map as a one-dimensional layer of 10 neurons.
This map is to be trained on these input vectors shown above. Originally these
neurons will be at the center of the figure.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Self-Organizing Maps

8-25

Of course, since all the weight vectors start in the middle of the input vector
space, all you see now is a single circle.

As training starts the weight vectors move together toward the input vectors.
They also become ordered as the neighborhood size decreases. Finally the layer
adjusts its weights so that each neuron responds strongly to a region of the
input space occupied by input vectors. The placement of neighboring neuron
weight vectors also reflects the topology of the input vectors.

-1 0 1 2
-0.5

0

0.5

1

1.5

W(i,1)

W
(i,

2)

8 Self-Organizing and Learn. Vector Quant. Nets

8-26

Note that self-organizing maps are trained with input vectors in a random
order, so starting with the same initial vectors does not guarantee identical
training results.

Two-Dimensional Self-Organizing Map
This example shows how a two-dimensional self-organizing map can be
trained.

First some random input data is created with the following code.

P = rands(2,1000);

Here is a plot of these 1000 input vectors.

W
(i,

2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

W(i,1)

Self-Organizing Maps

8-27

A two-dimensional map of 30 neurons is used to classify these input vectors.
The two-dimensional map is five neurons by six neurons, with distances
calculated according to the Manhattan distance neighborhood function
mandist.

The map is then trained for 5000 presentation cycles, with displays every 20
cycles.

Here is what the self-organizing map looks like after 40 cycles.

-1 0 1
-1

-0.5

0

0.5

1

8 Self-Organizing and Learn. Vector Quant. Nets

8-28

The weight vectors, shown with circles, are almost randomly placed. However,
even after only 40 presentation cycles, neighboring neurons, connected by
lines, have weight vectors close together.

Here is the map after 120 cycles.

W
(i,

2)

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

W(i,1)

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)

Self-Organizing Maps

8-29

After 120 cycles, the map has begun to organize itself according to the topology
of the input space which constrains input vectors.

The following plot, after 500 cycles, shows the map is more evenly distributed
across the input space.

Finally, after 5000 cycles, the map is rather evenly spread across the input
space. In addition, the neurons are very evenly spaced reflecting the even
distribution of input vectors in this problem.

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)

8 Self-Organizing and Learn. Vector Quant. Nets

8-30

Thus a two-dimensional self-organizing map has learned the topology of its
inputs’ space.

It is important to note that while a self-organizing map does not take long to
organize itself so that neighboring neurons recognize similar inputs, it can take
a long time for the map to finally arrange itself according to the distribution of
input vectors.

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)

Learning Vector Quantization Networks

8-31

Learning Vector Quantization Networks

Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The
competitive layer learns to classify input vectors in much the same way as the
competitive layers of “Self-Organizing and Learn. Vector Quant. Nets”
described in this chapter. The linear layer transforms the competitive layer’s
classes into target classifications defined by the user. We refer to the classes
learned by the competitive layer as subclasses and the classes of the linear
layer as target classes.

Both the competitive and linear layers have one neuron per (sub or target)
class. Thus, the competitive layer can learn up to S1 subclasses. These, in turn,
are combined by the linear layer to form S2 target classes. (S1 is always larger
than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn
subclasses of the input space that belongs to the linear layer target class No. 2.
Then competitive neurons 1, 2, and 3, will have LW2,1 weights of 1.0 to neuron
n2 in the linear layer, and weights of 0 to all other linear neurons. Thus, the
linear neuron produces a 1 if any of the three competitive neurons (1,2, and 3)
win the competition and output a 1. This is how the subclasses of the
competitive layer are combined into target classes in the linear layer.

1

n2

S 2 x 1

 S 2 x 1n1

 S 1 x 1

Input

S 1 x R ��
��IW1,1

S 2 x S 1��
��

LW2,1

R S2

Competitive Layer Linear Layer

a1 = compet (n1)

a2 = purelin(LW2,1 a1)

p
 R x 1

a1

S 1 x 1

S1

��
��

|| ndist ||

��
��
��
C

��
��
��

Where...

R = number of
elements in
input vector

S1= number of
competitive
neurons

S2= number of
linear neuronsn

i
1 = - ||

i
IW1,1 - p ||

a2 = y

8 Self-Organizing and Learn. Vector Quant. Nets

8-32

In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero)
effectively picks the ith column of LW2,1 as the network output. Each such
column contains a single 1, corresponding to a specific class. Thus, subclass 1s
from layer 1 get put into various classes, by the LW2,1a1 multiplication in layer
2.

We know ahead of time what fraction of the layer 1 neurons should be classified
into the various class outputs of layer 2, so we can specify the elements of
LW2,1 at the start. However, we have to go through a training procedure to get
the first layer to produce the correct subclass output for each vector of the
training set. We discuss this training shortly. First consider how to create the
original network.

Creating an LVQ Network (newlvq)
An LVQ network can be created with the function newlvq

net = newlvq(PR,S1,PC,LR,LF)

where:

• PR is an R-by-2 matrix of minimum and maximum values for R input
elements.

• S1 is the number of first layer hidden neurons.

• PC is an S2 element vector of typical class percentages.

• LR is the learning rate (default 0.01).

• LF is the learning function (default is learnlv1).

Suppose we have 10 input vectors. We create a network that assigns each of
these input vectors to one of four subclasses. Thus, we have four neurons in the
first competitive layer. These subclasses are then assigned to one of two output
classes by the two neurons in layer 2. The input vectors and targets are
specified by

P = [-3 -2 -2 0 0 0 0 +2 + 2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1 0]

and

Tc = [1 1 1 2 2 2 2 1 1 1];

It may help to show the details of what we get from these two lines of code.

Learning Vector Quantization Networks

8-33

P =
 -3 -2 -2 0 0 0 0 2 2 3
 0 1 -1 2 1 -1 -2 1 -1 0
Tc =
 1 1 1 2 2 2 2 1 1 1

A plot of the input vectors follows.

As you can see, there are four subclasses of input vectors. We want a network
that classifies p1, p2, p3, p8, p9, and p10 to produce an output of 1, and that
classifies vectors p4, p5, p6 and p7 to produce an output of 2. Note that this
problem is nonlinearly separable, and so cannot be solved by a perceptron, but
an LVQ network has no difficulty.

Next we convert the Tc matrix to target vectors.

T = ind2vec(Tc)

This gives a sparse matrix T that can be displayed in full with

targets = full(T)

which gives

targets =

-5 0 5
-3

-2

-1

0

1

2

3

Input Vectors

p
4

p
5

p
6

p
7

p
1

p
2

p
3

p
9

p
10

p
8

8 Self-Organizing and Learn. Vector Quant. Nets

8-34

 1 1 1 0 0 0 0 1 1 1
 0 0 0 1 1 1 1 0 0 0

This looks right. It says, for instance, that if we have the first column of P as
input, we should get the first column of targets as an output; and that output
says the input falls in class 1, which is correct. Now we are ready to call newlvq.

We call newlvq with the proper arguments so that it creates a network with
four neurons in the first layer and two neurons in the second layer. The
first-layer weights are initialized to the center of the input ranges with the
function midpoint. The second-layer weights have 60% (6 of the 10 in Tc above)
of its columns with a 1 in the first row, (corresponding to class 1), and 40% of
its columns will have a 1 in the second row (corresponding to class 2).

net = newlvq(minmax(P),4,[.6 .4], 0,1);

We can check to see the initial values of the first-layer weight matrix.

net.IW{1,1}
ans =
 0 0
 0 0
 0 0
 0 0

These zero weights are indeed the values at the midpoint of the range (-3 to +3)
of the inputs, as we would expect when using midpoint for initialization.

We can look at the second-layer weights with

net.LW{2,1}
ans =
 1 1 0 0
 0 0 1 1

This makes sense too. It says that if the competitive layer produces a 1 as the
first or second element. The input vector is classified as class 1; otherwise it is
a class 2.

You may notice that the first two competitive neurons are connected to the first
linear neuron (with weights of 1), while the second two competitive neurons are
connected to the second linear neuron. All other weights between the
competitive neurons and linear neurons have values of 0. Thus, each of the two

Learning Vector Quantization Networks

8-35

target classes (the linear neurons) is, in fact, the union of two subclasses (the
competitive neurons).

We can simulate the network with sim. We use the original P matrix as input
just to see what we get.

Y = sim(net,P);
Y = vec2ind(Yb4t)
Y =
 1 1 1 1 1 1 1 1 1 1

The network classifies all inputs into class 1. Since tis not what we want, we
have to train the network (adjusting the weights of layer 1 only), before we can
expect a good result. First we discuss two LVQ learning rules, and then we look
at the training process.

LVQ1 Learning Rule (learnlv1)
LVQ learning in the competitive layer is based on a set of input/target pairs.

Each target vector has a single 1. The rest of its elements are 0. The 1 tells the
proper classification of the associated input. For instance, consider the
following training pair.

Here we have input vectors of three elements, and each input vector is to be
assigned to one of four classes. The network is to be trained so that it classifies
the input vector shown above into the third of four classes.

To train the network, an input vector p is presented, and the distance from p
to each row of the input weight matrix IW1,1 is computed with the function
ndist. The hidden neurons of layer 1 compete. Suppose that the ith element of
n1 is most positive, and neuron i* wins the competition. Then the competitive
transfer function produces a 1 as the i*th element of a1. All other elements of
a1 are 0.

p1 t1,{ } p2 t2,{ } … pQ tQ,{ }, , ,

p1

2
1–
0

= t1

0
0
1
0

=,

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

8 Self-Organizing and Learn. Vector Quant. Nets

8-36

When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects
the class, k* associated with the input. Thus, the network has assigned the
input vector p to class k* and will be 1. Of course, this assignment may be
a good one or a bad one, for may be 1 or 0, depending on whether the input
belonged to class k* or not.

We adjust the i*th row of IW1,1 in such a way as to move this row closer to the
input vector p if the assignment is correct, and to move the row away from p if
the assignment is incorrect. So if p is classified correctly,

we compute the new value of the i*th row of IW1,1 as:

.

On the other hand, if p is classified incorrectly,

,

we compute the new value of the i*th row of IW1,1 as:

These corrections to the i*th row of IW1,1 can be made automatically without
affecting other rows of IW1,1 by backpropagating the output errors back to layer
1.

Such corrections move the hidden neuron towards vectors that fall into the
class for which it forms a subclass, and away from vectors that fall into other
classes.

The learning function that implements these changes in the layer 1 weights in
LVQ networks is learnlv1. It can be applied during training.

Training
Next we need to train the network to obtain first-layer weights that lead to the
correct classification of input vectors. We do this with train as shown below.
First set the training epochs to 150. Then, use train.

net.trainParam.epochs = 150;

ak∗
2

tk∗

ak∗
2 tk∗ 1= =()

IW1 1,
i∗ q() IW1 1,

i∗ q 1–() α p q() IW1 1,
i∗ q 1–()–()+=

ak∗
2 1 tk∗≠ 0= =()

IW1 1,
i∗ q() IW1 1,

i∗ q 1–() α p q() IW1 1,
i∗ q 1–()–()– =

Learning Vector Quantization Networks

8-37

net = train(net,P,T);

Now check on the first-layer weights.

net.IW{1,1}
ans =
 1.0927 0.0051
 -1.1028 -0.1288
 0 -0.5168
 0 0.3710

The following plot shows that these weights have moved toward their
respective classification groups.

To check to see that these weights do indeed lead to the correct classification,
take the matrix P as input and simulate the network. Then see what
classifications are produced by the network.

Y = sim(net,P)
Yc = vec2ind(Y)

This gives

Yc =

-5 0 5
-3

-2

-1

0

1

2

3

Weights (circles) after training

8 Self-Organizing and Learn. Vector Quant. Nets

8-38

 1 1 1 2 2 2 2 1 1 1

which is what we expected. As a last check, try an input close to a vector that
was used in training.

pchk1 = [0; 0.5];
Y = sim(net,pchk1);
Yc1 = vec2ind(Y)

This gives

Yc1 =
 2

This looks right, for pchk1 is close to other vectors classified as 2. Similarly,

pchk2 = [1; 0];
Y = sim(net,pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
 1

This looks right too, for pchk2 is close to other vectors classified as 1.

You might want to try the demonstration program demolvq1. It follows the
discussion of training given above.

Supplemental LVQ2.1 Learning Rule (learnlv2)
The following learning rule is one that might be applied after first applying
LVQ1. It may improve the result of the first learning. This particular version
of LVQ2 (referred to as LVQ2.1 in the literature [Koho97]) is embodied in the
function learnlv2. Note again that LVQ2.1 is to be used only after LVQ1 has
been applied

Learning here is similar to that in learnlv1 except now two vectors of layer 1
that are closest to the input vector may be updated providing that one belongs
to the correct class and one belongs to a wrong class and further providing that
the input falls into a “window” near the midplane of the two vectors.

The window is defined by

Learning Vector Quantization Networks

8-39

,

(where and are the Euclidean distances of p from and
respectively). We take a value for in the range 0.2 to 0.3. If we pick, for
instance, 0.25, then . This means that if the minimum of the two
distance ratios is greater than 0.6, we adjust the two vectors. i.e., if the input
is “near” the midplane, adjust the two vectors providing also that the input
vector p and belong to the same class, and p and do not belong
in the same class.

The adjustments made are

.

Thus, given two vector closest to the input, as long as one belongs to the wrong
class and the other to the correct class, and as long as the input falls in a
midplane window, the two vectors will be adjusted. Such a procedure allows a
vector that is just barely classified correctly with LVQ1 to be moved even closer
to the input, so the results are more robust.

min
di
dj
-----,

dj
di
-----⎝ ⎠

⎛ ⎞ s where s 1 w–
1 w+
--------------≡>

di dj IW1 1,
i∗ IW1 1,

j∗
w

s 0.6=

IW1 1,
j∗ IW1 1,

i∗

IW1 1,
i∗ q() IW1 1,

i∗ q 1–() α p q() IW1 1,
i∗ q 1–()–()– and =

IW1 1,
j∗ q() IW1 1,

j∗ q 1–() α p q() IW1 1,
j∗ q 1–()–()+=

8 Self-Organizing and Learn. Vector Quant. Nets

8-40

Summary

Self-Organizing Maps
A competitive network learns to categorize the input vectors presented to it. If
a neural network only needs to learn to categorize its input vectors, then a
competitive network will do. Competitive networks also learn the distribution
of inputs by dedicating more neurons to classifying parts of the input space
with higher densities of input.

A self-organizing map learns to categorize input vectors. It also learns the
distribution of input vectors. Feature maps allocate more neurons to recognize
parts of the input space where many input vectors occur and allocate fewer
neurons to parts of the input space where few input vectors occur.

Self-organizing maps also learn the topology of their input vectors. Neurons
next to each other in the network learn to respond to similar vectors. The layer
of neurons can be imagined to be a rubber net that is stretched over the regions
in the input space where input vectors occur.

Self-organizing maps allow neurons that are neighbors to the winning neuron
to output values. Thus the transition of output vectors is much smoother than
that obtained with competitive layers, where only one neuron has an output at
a time.

Learning Vector Quantizaton Networks
LVQ networks classify input vectors into target classes by using a competitive
layer to find subclasses of input vectors, and then combining them into the
target classes.

Unlike perceptrons, LVQ networks can classify any set of input vectors, not
just linearly separable sets of input vectors. The only requirement is that the
competitive layer must have enough neurons, and each class must be assigned
enough competitive neurons.

To ensure that each class is assigned an appropriate amount of competitive
neurons, it is important that the target vectors used to initialize the LVQ
network have the same distributions of targets as the training data the
network is trained on. If this is done, target classes with more vectors will be
the union of more subclasses.

Summary

8-41

Figures

Competitive Network Architecture

Self Organizing Feature Map Architecture

p
 R x 1

R

Input

S 1 x R

n1

 S 1 x 1

 S 1 x 1

S 1 x 1

��
��

IW1,1

��
��b1

a1

1

S1

Competitive Layer

��
�� S 1 x 1

|| ndist ||

��
��
��

C

n1

 S 1 x 1

Input

S 1 x R
��IW1,1

R

Self Organizing Map Layer

a1 = compet (n1)

p
 R x 1

a1

S 1 x 1

S1���
���|| ndist ||

��
��
��

C

n
i
1 = - ||

i
IW1,1 - p ||

8 Self-Organizing and Learn. Vector Quant. Nets

8-42

LVQ Architecture

New Functions
This chapter introduced the following functions.

1

n2

S 2 x 1

 S 2 x 1n1

 S 1 x 1

Input

S 1 x R ��
��IW1,1

S 2 x S 1��
��

LW2,1

R S2

Competitive Layer Linear Layer

a1 = compet (n1)

a2 = purelin(LW2,1 a1)

p
 R x 1

a1

S 1 x 1

S1

��
��

|| ndist ||

��
��
��
C

��
��
��

Where...

R = number of
elements in
input vector

S1= number of
competitive
neurons

S2= number of
linear neuronsn

i
1 = - ||

i
IW1,1 - p ||

a2 = y

Function Description

newc Create a competitive layer.

learnk Kohonen learning rule.

newsom Create a self-organizing map.

learncon Conscience bias learning function.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.

Summary

8-43

newlvq Create a learning vector quantization network.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

Function Description

8 Self-Organizing and Learn. Vector Quant. Nets

8-44

9

Recurrent Networks

Introduction (p. 9-2) Introduces the chapter, and provides information on additional resources

Elman Networks (p. 9-3) Discusses Elman network architecture, and how to create and train
Elman networks in the Neural Networks Toolbox

Hopfield Network (p. 9-8) Discusses Hopfield network architecture, and how to create and train
Hopfield networks in the Neural Networks Toolbox

Summary (p. 9-15) Provides a consolidated review of the chapter concepts

9 Recurrent Networks

9-2

Introduction
Recurrent networks is a topic of considerable interest. This chapter covers two
recurrent networks: Elman, and Hopfield networks.

Elman networks are two-layer backpropagation networks, with the addition of
a feedback connection from the output of the hidden layer to its input. This
feedback path allows Elman networks to learn to recognize and generate
temporal patterns, as well as spatial patterns. The best paper on the Elman
network is:

Elman, J. L., “Finding structure in time,” Cognitive Science, vol. 14, 1990, pp.
179-211.

The Hopfield network is used to store one or more stable target vectors. These
stable vectors can be viewed as memories that the network recalls when
provided with similar vectors that act as a cue to the network memory. You
may want to pursue a basic paper in this field:

Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube,” IEEE Transactions
on Circuits and Systems, vol. 36, no. 11, November 1989, pp. 1405-1422.

Important Recurrent Network Functions
Elman networks can be created with the function newelm.

Hopfield networks can be created with the function newhop.

Type help elman or help hopfield to see a list of functions and
demonstrations related to either of these networks.

Elman Networks

9-3

Elman Networks

Architecture
The Elman network commonly is a two-layer network with feedback from the
first-layer output to the first layer input. This recurrent connection allows the
Elman network to both detect and generate time-varying patterns. A two-layer
Elman network is shown below.

The Elman network has tansig neurons in its hidden (recurrent) layer, and
purelin neurons in its output layer. This combination is special in that
two-layer networks with these transfer functions can approximate any
function (with a finite number of discontinuities) with arbitrary accuracy. The
only requirement is that the hidden layer must have enough neurons. More
hidden neurons are needed as the function being fit increases in complexity.

Note that the Elman network differs from conventional two-layer networks in
that the first layer has a recurrent connection. The delay in this connection
stores values from the previous time step, which can be used in the current
time step.

Thus, even if two Elman networks, with the same weights and biases, are given
identical inputs at a given time step, their outputs can be different due to
different feedback states.

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1

��
��IW1,1

1
 S 1 x 1��
��

b1

p
 R1 x 1

R1 S1�
�
�

a1(k) = tansig (IW1,1p +LW1,1a1(k-1) + b1) a2(k) = purelin (LW2,1a1(k) + b2)

n2
S 2 x S 1

S 2 x 1��
��LW2,1

S2

 S 2 x 1

a2(k) = y

1
 S 1 x 1��
��

b2

��
��
��

Input Recurrent tansig layer Output purelin layer

��
��

a1(k-1)

LW1,1

9 Recurrent Networks

9-4

Because the network can store information for future reference, it is able to
learn temporal patterns as well as spatial patterns. The Elman network can be
trained to respond to, and to generate, both kinds of patterns.

Creating an Elman Network (newelm)
An Elman network with two or more layers can be created with the function
newelm. The hidden layers commonly have tansig transfer functions, so that is
the default for newelm. As shown in the architecture diagram, purelin is
commonly the output-layer transfer function.

The default backpropagation training function is trainbfg. One might use
trainlm, but it tends to proceed so rapidly that it does not necessarily do well
in the Elman network. The backprop weight/bias learning function default is
learngdm, and the default performance function is mse.

When the network is created, each layer’s weights and biases are initialized
with the Nguyen-Widrow layer initialization method implemented in the
function initnw.

Now consider an example. Suppose that we have a sequence of single-element
input vectors in the range from 0 to 1. Suppose further that we want to have
five hidden-layer tansig neurons and a single logsig output layer. The following
code creates the desired network.

net = newelm([0 1],[5 1],{'tansig','logsig'});

Simulation
Suppose that we want to find the response of this network to an input sequence
of eight digits that are either 0 or 1.

P = round(rand(1,8))
P =
 0 1 0 1 1 0 0 0

Recall that a sequence to be presented to a network is to be in cell array form.
We can convert P to this form with

Pseq = con2seq(P)
Pseq =
 [0] [1] [0] [1] [1] [0] [0] [0]

Now we can find the output of the network with the function sim.

Elman Networks

9-5

Y = sim(net,Pseq)
Y =
Columns 1 through 5
 [1.9875e-04] [0.1146] [5.0677e-05] [0.0017] [0.9544]
Columns 6 through 8
 [0.0014] [5.7241e-05] [3.6413e-05]

We convert this back to concurrent form with

z = seq2con(Y);

and can finally display the output in concurrent form with

z{1,1}
ans =
 Columns 1 through 7
 0.0002 0.1146 0.0001 0.0017 0.9544 0.0014 0.0001
Column 8
 0.0000

Thus, once the network is created and the input specified, one need only call
sim.

Training an Elman Network
Elman networks can be trained with either of two functions, train or adapt.

When using the function train to train an Elman network the following occurs.

At each epoch:

1 The entire input sequence is presented to the network, and its outputs are
calculated and compared with the target sequence to generate an error
sequence.

2 For each time step, the error is backpropagated to find gradients of errors
for each weight and bias. This gradient is actually an approximation since
the contributions of weights and biases to errors via the delayed recurrent
connection are ignored.

3 This gradient is then used to update the weights with the backprop training
function chosen by the user. The function traingdx is recommended.

9 Recurrent Networks

9-6

When using the function adapt to train an Elman network, the following
occurs.

At each time step:

1 Input vectors are presented to the network, and it generates an error.

2 The error is backpropagated to find gradients of errors for each weight and
bias. This gradient is actually an approximation since the contributions of
weights and biases to the error, via the delayed recurrent connection, are
ignored.

3 This approximate gradient is then used to update the weights with the
learning function chosen by the user. The function learngdm is
recommended.

Elman networks are not as reliable as some other kinds of networks because
both training and adaption happen using an approximation of the error
gradient.

For an Elman to have the best chance at learning a problem it needs more
hidden neurons in its hidden layer than are actually required for a solution by
another method. While a solution may be available with fewer neurons, the
Elman network is less able to find the most appropriate weights for hidden
neurons since the error gradient is approximated. Therefore, having a fair
number of neurons to begin with makes it more likely that the hidden neurons
will start out dividing up the input space in useful ways.

The function train trains an Elman network to generate a sequence of target
vectors when it is presented with a given sequence of input vectors. The input
vectors and target vectors are passed to train as matrices P and T. Train takes
these vectors and the initial weights and biases of the network, trains the
network using backpropagation with momentum and an adaptive learning
rate, and returns new weights and biases.

Let us continue with the example of the previous section, and suppose that we
want to train a network with an input P and targets T as defined below

P = round(rand(1,8))
P =
 1 0 1 1 1 0 1 1

and

Elman Networks

9-7

T = [0 (P(1:end-1)+P(2:end) == 2)]
T =
 0 0 0 1 1 0 0 1

Here T is defined to be 0, except when two 1’s occur in P, in which case T is 1.

As noted previously, our network has five hidden neurons in the first layer.

net = newelm([0 1],[5 1],{'tansig','logsig'});

We use trainbfg as the training function and train for 100 epochs. After
training we simulate the network with the input P and calculate the difference
between the target output and the simulated network output.

net = train(net,Pseq,Tseq);
Y = sim(net,Pseq);
z = seq2con(Y);
z{1,1};
diff1 = T - z{1,1}

Note that the difference between the target and the simulated output of the
trained network is very small. Thus, the network is trained to produce the
desired output sequence on presentation of the input vector P.

See Chapter 11 for an application of the Elman network to the detection of
wave amplitudes.

9 Recurrent Networks

9-8

Hopfield Network

Fundamentals
The goal here is to design a network that stores a specific set of equilibrium
points such that, when an initial condition is provided, the network eventually
comes to rest at such a design point. The network is recursive in that the output
is fed back as the input, once the network is in operation. Hopefully, the
network output will settle on one of the original design points

The design method that we present is not perfect in that the designed network
may have undesired spurious equilibrium points in addition to the desired
ones. However, the number of these undesired points is made as small as
possible by the design method. Further, the domain of attraction of the
designed equilibrium points is as large as possible.

The design method is based on a system of first-order linear ordinary
differential equations that are defined on a closed hypercube of the state space.
The solutions exist on the boundary of the hypercube. These systems have the
basic structure of the Hopfield model, but are easier to understand and design
than the Hopfield model.

The material in this section is based on the following paper: Jian-Hua Li,
Anthony N. Michel and Wolfgang Porod, “Analysis and synthesis of a class of
neural networks: linear systems operating on a closed hypercube,” IEEE
Trans. on Circuits and Systems vol 36, no. 11, pp. 1405-22, November 1989.

For further information on Hopfield networks, read Chapter 18 of the Hopfield
Network [HDB96].

Architecture
The architecture of the network that we are using follows.

Hopfield Network

9-9

As noted, the input p to this network merely supplies the initial conditions.

The Hopfield network uses the saturated linear transfer function satlins.

For inputs less than -1 satlins produces -1. For inputs in the range -1 to +1 it
simply returns the input value. For inputs greater than +1 it produces +1.

This network can be tested with one or more input vectors which are presented
as initial conditions to the network. After the initial conditions are given, the
network produces an output which is then fed back to become the input. This
process is repeated over and over until the output stabilizes. Hopefully, each

Initial
conditions

p

 R1 x 1

R1

a1(k-1)

1

 S 1 x 1
��b1

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1��
��LW1,1

S1

Symmetric saturated linear layer

��
��
��

a1(k) = satlins (LW1,1a1(k-1)) + b1)

a1(0) = p and then for k = 1, 2, ...

a1(0)

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a

9 Recurrent Networks

9-10

output vector eventually converges to one of the design equilibrium point
vectors that is closest to the input that provoked it.

Design (newhop)
Li et. al. [LiMi89] have studied a system that has the basic structure of the
Hopfield network but is, in Li’s own words, “easier to analyze, synthesize, and
implement than the Hopfield model.” The authors are enthusiastic about the
reference article, as it has many excellent points and is one of the most
readable in the field. However, the design is mathematically complex, and even
a short justification of it would burden this guide. Thus, we present the Li
design method, with thanks to Li et al., as a recipe that is found in the function
newhop.

Given a set of target equilibrium points represented as a matrix T of vectors,
newhop returns weights and biases for a recursive network. The network is
guaranteed to have stable equilibrium points at the target vectors, but it could
contain other spurious equilibrium points as well. The number of these
undesired points is made as small as possible by the design method.

Once the network has been designed, it can be tested with one or more input
vectors. Hopefully those input vectors close to target equilibrium points will
find their targets. As suggested by the network figure, an array of input vectors
may be presented at one time or in a batch. The network proceeds to give
output vectors that are fed back as inputs. These output vectors can be can be
compared to the target vectors to see how the solution is proceeding.

The ability to run batches of trial input vectors quickly allows you to check the
design in a relatively short time. First you might check to see that the target
equilibrium point vectors are indeed contained in the network. Then you could
try other input vectors to determine the domains of attraction of the target
equilibrium points and the locations of spurious equilibrium points if they are
present.

Consider the following design example. Suppose that we want to design a
network with two stable points in a three-dimensional space.

T = [-1 -1 1; 1 -1 1]'
T =
 -1 1
 -1 -1
 1 1

Hopfield Network

9-11

We can execute the design with

net = newhop(T);

Next we can check to make sure that the designed network is at these two
points. We can do this as follows. (Since Hopfield networks have no inputs, the
second argument to sim below is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

This gives us

Y =
 -1 1
 -1 -1
 1 1

Thus, the network has indeed been designed to be stable at its design points.
Next we can try another input condition that is not a design point, such as:

Ai = {[-0.9; -0.8; 0.7]}

This point is reasonably close to the first design point, so one might anticipate
that the network would converge to that first point. To see if this happens, we
run the following code. Note, incidentally, that we specified the original point
in cell array form. This allows us to run the network for more than one step.

[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

We get

Y =
 -1
 -1
 1

Thus, an original condition close to a design point did converge to that point.

This is, of course, our hope for all such inputs. Unfortunately, even the best
known Hopfield designs occasionally include undesired spurious stable points
that attract the solution.

9 Recurrent Networks

9-12

Example
Consider a Hopfield network with just two neurons. Each neuron has a bias
and weights to accommodate two-element input vectors weighted. We define
the target equilibrium points to be stored in the network as the two columns of
the matrix T.

T = [1 -1; -1 1]'
T =
 1 -1
 -1 1

Here is a plot of the Hopfield state space with the two stable points labeled with
‘*’ markers.

These target stable points are given to newhop to obtain weights and biases of
a Hopfield network.

net = newhop(T);

The design returns a set of weights and a bias for each neuron. The results are
obtained from

W= net.LW{1,1}

-1 0 1

-1

-0.5

0

0.5

1

a(1)

Hopfield Network State Space

a(
2)

Hopfield Network

9-13

which gives

W =
 0.6925 -0.4694
 -0.4694 0.6925

and from

b = net.b{1,1}

which gives

b =
 1.0e-16 *
 0.6900
 0.6900

Next the design is tested with the target vectors T to see if they are stored in
the network. The targets are used as inputs for the simulation function sim.

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y =
 1 -1
 -1 1

As hoped, the new network outputs are the target vectors. The solution stays
at its initial conditions after a single update and, therefore, will stay there for
any number of updates.

9 Recurrent Networks

9-14

Now you might wonder how the network performs with various random input
vectors. Here is a plot showing the paths that the network took through its
state space, to arrive at a target point.

This plot show the trajectories of the solution for various starting points. You
can try the demonstration demohop1 to see more of this kind of network
behavior.

Hopfield networks can be designed for an arbitrary number of dimensions. You
can try demohop3 to see a three-dimensional design.

Unfortunately, Hopfield networks could have both unstable equilibrium points
and spurious stable points. You can try demonstration programs demohop2 and
demohop4 to investigate these issues.

a(
2)

-1 0 1

-1

-0.5

0

0.5

1

a(1)

Hopfield Network State Space

Summary

9-15

Summary
Elman networks, by having an internal feedback loop, are capable of learning
to detect and generate temporal patterns. This makes Elman networks useful
in such areas as signal processing and prediction where time plays a dominant
role.

Because Elman networks are an extension of the two-layer sigmoid/linear
architecture, they inherit the ability to fit any input/output function with a
finite number of discontinuities. They are also able to fit temporal patterns, but
may need many neurons in the recurrent layer to fit a complex function.

Hopfield networks can act as error correction or vector categorization
networks. Input vectors are used as the initial conditions to the network, which
recurrently updates until it reaches a stable output vector.

Hopfield networks are interesting from a theoretical standpoint, but are
seldom used in practice. Even the best Hopfield designs may have spurious
stable points that lead to incorrect answers. More efficient and reliable error
correction techniques, such as backpropagation, are available.

9 Recurrent Networks

9-16

Figures

Elman Network

Hopfield Network

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1

��
��IW1,1

1
 S 1 x 1��
��

b1

p
 R1 x 1

R1 S1�
�
�

a1(k) = tansig (IW1,1p +LW1,1a1(k-1) + b1) a2(k) = purelin (LW2,1a1(k) + b2)

n2
S 2 x S 1

S 2 x 1��
��LW2,1

S2

 S 2 x 1

a2(k) = y

1
 S 1 x 1��
��

b2

��
��
��

Input Recurrent tansig layer Output purelin layer

��
��

a1(k-1)

LW1,1

Initial
conditions

p

 R1 x 1

R1

a1(k-1)

1

 S 1 x 1
��b1

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1��
��LW1,1

S1

Symmetric saturated linear layer

��
��
��

a1(k) = satlins (LW1,1a1(k-1)) + b1)

a1(0) = p and then for k = 1, 2, ...

a1(0)

Summary

9-17

New Functions
This chapter introduces the following new functions.

Function Description

newelm Create an Elman backpropagation network.

newhop Create a Hopfield recurrent network.

satlins Symmetric saturating linear transfer function.

9 Recurrent Networks

9-18

10
Adaptive Filters and
Adaptive Training

Introduction (p. 10-2) Introduces the chapter, and provides information on
additional resources

Linear Neuron Model (p. 10-3) Introduces the linear neuron model

Adaptive Linear Network Architecture
(p. 10-4)

Introduces adaptive linear (ADALINE) networks, including
a description of a single ADALINE

Mean Square Error (p. 10-7) Discusses the mean square error learning rule used by
adaptive networks

LMS Algorithm (learnwh) (p. 10-8) Discusses the LMS algorithm learning rule used by
adaptive networks

Adaptive Filtering (adapt) (p. 10-9) Provides examples of building and using adaptive filters
with the Neural Network Toolbox

Summary (p. 10-18) Provides a consolidated review of the chapter concepts

10 Adaptive Filters and Adaptive Training

10-2

Introduction
The ADALINE (Adaptive Linear Neuron networks) networks discussed in this
chapter are similar to the perceptron, but their transfer function is linear
rather than hard-limiting. This allows their outputs to take on any value,
whereas the perceptron output is limited to either 0 or 1. Both the ADALINE
and the perceptron can only solve linearly separable problems. However, here
we will make use of the LMS (Least Mean Squares) learning rule, which is
much more powerful than the perceptron learning rule. The LMS or
Widrow-Hoff learning rule minimizes the mean square error and, thus, moves
the decision boundaries as far as it can from the training patterns.

In this chapter, we design an adaptive linear system that responds to changes
in its environment as it is operating. Linear networks that are adjusted at each
time step based on new input and target vectors can find weights and biases
that minimize the network’s sum-squared error for recent input and target
vectors. Networks of this sort are often used in error cancellation, signal
processing, and control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the
name ADALINE to adaptive linear elements. The basic reference on this
subject is: Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York:
Prentice-Hall 1985.

We also consider the adaptive training of self organizing and competitive
networks in this chapter.

Important Adaptive Functions
This chapter introduces the function adapt, which changes the weights and
biases of a network incrementally during training.

You can type help linnet to see a list of linear and adaptive network
functions, demonstrations, and applications.

Linear Neuron Model

10-3

Linear Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function, which we
name purelin.

The linear transfer function calculates the neuron’s output by simply returning
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a
linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Linear Neuron with
 Vector Input

��
��
��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

a purelin n() purelin Wp b+() Wp b += = =

10 Adaptive Filters and Adaptive Training

10-4

Adaptive Linear Network Architecture
The ADALINE network shown below has one layer of S neurons connected to
R inputs through a matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINES. Note
that the figure on the right defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not
much of a disadvantage, however, as single-layer linear networks are just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Single ADALINE (newlin)
Consider a single ADALINE with two inputs. The diagram for this network is
shown below.

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��

��
��

��
��

Layer of Linear
Neurons

a= purelin (Wp + b)

p a

1

n

��
��W

��
��

b

R x 1
S x R

S x 1

S x 1

Input Layer of Linear Neurons

R S

S x 1

��
��

��
��
��

��
��

��

a= purelin (Wp + b)

a= purelin (Wp + b)

Where...

R = numberof
elements in
 input vector

S = numberof
neurons in layer

Adaptive Linear Network Architecture

10-5

The weight matrix W in this case has only one row. The network output is:

 or

Like the perceptron, the ADALINE has a decision boundary that is determined
by the input vectors for which the net input n is zero. For the equation

 specifies such a decision boundary as shown below (adapted with
thanks from [HDB96])
.

Input vectors in the upper right gray area lead to an output greater than 0.
Input vectors in the lower left white area lead to an output less than 0. Thus,
the ADALINE can be used to classify objects into two categories. Now you can
find the network output with the function sim.

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple ADALINE

a purelin n() purelin Wp b+() Wp b += = =

a w1 1, p1 w1 2, p2 b+ +=

n 0=
Wp b+ 0=

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W

10 Adaptive Filters and Adaptive Training

10-6

a = sim(net,p)
a =
 24

To summarize, you can create an ADALINE network with newlin, adjust its
elements as you want and simulate it with sim. You can find more about newlin
by typing help newlin.

Mean Square Error

10-7

Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior.

Here is an input to the network, and is the corresponding target output.
As each input is applied to the network, the network output is compared to the
target. The error is calculated as the difference between the target output and
the network output. We want to minimize the average of the sum of these
errors.

The LMS algorithm adjusts the weights and biases of the ADALINE so as to
minimize this mean square error.

Fortunately, the mean square error performance index for the ADALINE
network is a quadratic function. Thus, the performance index will either have
one global minimum, a weak minimum, or no minimum, depending on the
characteristics of the input vectors. Specifically, the characteristics of the input
vectors determine whether or not a unique solution exists.

You can learn more about this topic in Chapter 10 of [HDB96].

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq

mse 1
Q
---- e k()2

k 1=

Q

∑
1
Q
---- t k() a k()–()2

k 1=

Q

∑= =

10 Adaptive Filters and Adaptive Training

10-8

LMS Algorithm (learnwh)
Adaptive networks will use the The LMS algorithm or Widrow-Hoff learning
algorithm based on an approximate steepest descent procedure. Here again,
adaptive linear networks are trained on examples of correct behavior.

The LMS algorithm, shown below, is discussed in detail in Chapter 4, “Linear
Filters.”

.

W k 1+() W k() 2αe k()pT k()+=

b k 1+() b k() 2αe k()+=

Adaptive Filtering (adapt)

10-9

Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly
separable problems. Nevertheless, the ADALINE has been and is today one of
the most widely used neural networks found in practical applications. Adaptive
filtering is one of its major application areas.

Tapped Delay Line
We need a new component, the tapped delay line, to make full use of the
ADALINE network. Such a delay line is shown below. There the input signal
enters from the left, and passes through N-1 delays. The output of the tapped
delay line (TDL) is an N-dimensional vector, made up of the input signal at the
current time, the previous input signal, etc.

Adaptive Filter
We can combine a tapped delay line with an ADALINE network to create the
adaptive filter shown below.

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

10 Adaptive Filters and Adaptive Training

10-10

The output of the filter is given by

The network shown above is referred to in the digital signal processing field as
a finite impulse response (FIR) filter [WiSt85]. Let us take a look at the code
that we use to generate and simulate such an adaptive network.

Adaptive Filter Example
First we will define a new linear network using newlin.

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

a k() purelin Wp b+() w1 i, a k i– 1+()

i 1=

R

∑ b+= =

Adaptive Filtering (adapt)

10-11

Assume that the input values have a range from 0 to 10. We can now define our
single output network.

net = newlin([0,10],1);

We can specify the delays in the tapped delay line with

net.inputWeights{1,1}.delays = [0 1 2];

This says that the delay line is connected to the network weight matrix through
delays of 0, 1, and 2 time units. (You can specify as many delays as you want,
and can omit some values if you like. They must be in ascending order.)

We can give the various weights and the bias values with

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally we will define the initial values of the outputs of the delays as

pi ={1 2}

Note that these are ordered from left to right to correspond to the delays taken
from top to bottom in the figure. This concludes the setup of the network. Now
how about the input?

Input

w
1,1

p
1
(t) = p(t)

��
��D

��D
p

2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

- Exp -a = purelin (Wp + b)

Linear Digital Filter

a(t)n(t)

b ��
1

��

10 Adaptive Filters and Adaptive Training

10-12

We assume that the input scalars arrive in a sequence, first the value 3, then
the value 4, next the value 5, and finally the value 6. We can indicate this
sequence by defining the values as elements of a cell array. (Note the curly
brackets.)

p = {3 4 5 6}

Now we have a network and a sequence of inputs. We can simulate the network
to see what its output is as a function of time.

[a,pf] = sim(net,p,pi);

This yields an output sequence

a =
 [46] [70] [94] [118]

and final values for the delay outputs of

pf =
 [5] [6].

The example is sufficiently simple that you can check it by hand to make sure
that you understand the inputs, initial values of the delays, etc.

The network that we have defined can be trained with the function adapt to
produce a particular output sequence. Suppose, for instance, we would like the
network to produce the sequence of values 10, 20, 30, and 40.

T = {10 20 30 40}

We can train our defined network to do this, starting from the initial delay
conditions that we used above. We specify 10 passes through the input
sequence with

net.adaptParam.passes = 10;

Then we can do the training with

[net,y,E pf,af] = adapt(net,p,T,pi);

This code returns the final weights, bias, and output sequence shown below.

wts = net.IW{1,1}
wts =
 0.5059 3.1053 5.7046

Adaptive Filtering (adapt)

10-13

bias = net.b{1}
bias =
 -1.5993
y =
 [11.8558] [20.7735] [29.6679] [39.0036]

Presumably, if we ran for additional passes the output sequence would have
been even closer to the desired values of 10, 20, 30, and 40.

Thus, adaptive networks can be specified, simulated, and finally trained with
adapt. However, the outstanding value of adaptive networks lies in their use
to perform a particular function, such as or prediction or noise cancellation.

Prediction Example
Suppose that we want to use an adaptive filter to predict the next value of a
stationary random process, p(t). We use the network shown below to do this.

The signal to be predicted, p(t), enters from the left into a tapped delay line.
The previous two values of p(t) are available as outputs from the tapped delay
line. The network uses adapt to change the weights on each time step so as to
minimize the error e(t) on the far right. If this error is zero, then the network
output a(t) is exactly equal to p(t), and the network has done its prediction
properly.

Input

p
1
(t) = p(t)

��
��D

��D

p
2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

a = purelin (Wp + b)

Linear Digital Filter

a(t)n(t)

b ��
1

��
Adjust weights

 e(t)

Predictive Filter: a(t) is approximation to p(t)

+

-

Target = p(t)

10 Adaptive Filters and Adaptive Training

10-14

A detailed analysis of this network is not appropriate here, but we can state the
main points. Given the autocorrelation function of the stationary random
process p(t), the error surface, the maximum learning rate, and the optimum
values of the weights can be calculated. Commonly, of course, one does not have
detailed information about the random process, so these calculations cannot be
performed. But this lack does not matter to the network. The network, once
initialized and operating, adapts at each time step to minimize the error and
in a relatively short time is able to predict the input p(t).

Chapter 10 of [HDB96] presents this problem, goes through the analysis, and
shows the weight trajectory during training. The network finds the optimum
weights on its own without any difficulty whatsoever.

You also can try demonstration program nnd10nc to see an adaptive noise
cancellation program example in action. This demonstration allows you to pick
a learning rate and momentum (see Chapter 5, “Backpropagation”), and shows
the learning trajectory, and the original and cancellation signals verses time.

Noise Cancellation Example
Consider a pilot in an airplane. When the pilot speaks into a microphone, the
engine noise in the cockpit is added to the voice signal, and the resultant signal
heard by passengers would be of low quality. We would like to obtain a signal
that contains the pilot’s voice, but not the engine noise. We can do this with an
adaptive filter if we obtain a sample of the engine noise and apply it as the
input to the adaptive filter.

Adaptive Filtering (adapt)

10-15

Here we adaptively train the neural linear network to predict the combined
pilot/engine signal m from an engine signal n. Notice that the engine signal n
does not tell the adaptive network anything about the pilot’s voice signal
contained in m. However, the engine signal n. does give the network
information it can use to predict the engine’s contribution to the pilot/engine
signal m.

The network will do its best to adaptively output m. In this case, the network
can only predict the engine interference noise in the pilot/engine signal m. The
network error e is equal to m, the pilot/engine signal, minus the predicted
contaminating engine noise signal. Thus, e contains only the pilot’s voice! Our
linear adaptive network adaptively learns to cancel the engine noise.

Note, in closing, that such adaptive noise canceling generally does a better job
than a classical filter because the noise here is subtracted from rather than
filtered out of the signal m.

Adaptive
 Filter Engine Noise

Noise Path
 Filter

Pilot’s
Voice

Contaminating
Noise

Pilot’s Voice
Contaminated with
Engine Noise

"Error"

Restored Signal

+
-

Adaptive Filter Adjusts to Minimize Error.
This removes the engine noise from contaminated
signal, leaving the pilot’s voice as the “error.”

Filtered Noise to Cancel
Contamination

n

c

v

a

e

m

10 Adaptive Filters and Adaptive Training

10-16

Try demolin8 for an example of adaptive noise cancellation.

Multiple Neuron Adaptive Filters
We may want to use more than one neuron in an adaptive system, so we need
some additional notation. A tapped delay line can be used with S linear
neurons as shown below.

Alternatively, we can show this same network in abbreviated form.

a2(k)n2(k)

wS, N

w1,1

b2

b1

bS

a1(k)n1(k)

1

1

1
��
��

��
��

��
��

��
��p(k)

��
��D

��D

p(k - 1)

N

TDL

��
��

��
��

Linear Layer

pd1(k)

pdN (k)

pd2(k)

nS (k) aS (k)

Adaptive Filtering (adapt)

10-17

If we want to show more of the detail of the tapped delay line and there are not
too many delays, we can use the following notation.

Here we have a tapped delay line that sends the current signal, the previous
signal, and the signal delayed before that to the weight matrix. We could have
a longer list, and some delay values could be omitted if desired. The only
requirement is that the delays are shown in increasing order as they go from
top to bottom.

pd(k) a(k)

1

p(k)

n(k)Q

x

1 (Q*N)

x

1

S x

(Q*N)

S

x

1

S

x

1

S

x

1

N

Linear Layer of S Neurons

��
��

W

��
��b

��
��

TDL

S��
��
��
��

pd(k) a(k)

��W

��
��b1

p(k)

n(k)1

x

1 3

x

1

3

x

2

3

x

1

3

x

1

3

x

1

�
�
�

Abreviated Notation

Linear layer2

��
��
��
��TDL

0

1

2

10 Adaptive Filters and Adaptive Training

10-18

Summary
The ADALINE (Adaptive Linear Neuron networks) networks discussed in this
chapter are similar to the perceptron, but their transfer function is linear
rather than hard-limiting. They make use of the LMS (Least Mean Squares)
learning rule, which is much more powerful that the perceptron learning rule.
The LMS or Widrow-Hoff learning rule minimizes the mean square error and,
thus, moves the decision boundaries as far as it can from the training patterns.

In this chapter, we design an adaptive linear system that responds to changes
in its environment as it is operating. Linear networks that are adjusted at each
time step based on new input and target vectors can find weights and biases
that minimize the network’s sum-squared error for recent input and target
vectors.

Adaptive linear filters have many practical applications such as noise
cancellation, signal processing, and prediction in control and communication
systems.

This chapter introduces the function adapt, which changes the weights and
biases of a network incrementally during training.

Figures and Equations

Linear Neuron

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Linear Neuron with
 Vector Input

��
��
��
��

a = purelin (Wp + b)

Summary

10-19

Purelin Transfer Function

MADALINE

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S,

R

w
1,

1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��

��
��

��
��

Layer of Linear
Neurons

a= purelin (Wp + b)

p a

1

n

��
��W

��
��

b

R x 1
S x R

S x 1

S x 1

Input Layer of Linear Neurons

R S

S x 1

��
��

��
��
��

��
��

��

a= purelin (Wp + b)

a= purelin (Wp + b)

Where...

R = numberof
elements in
 input vector

S = numberof
neurons in layer

10 Adaptive Filters and Adaptive Training

10-20

ADALINE

Decision Boundary

Mean Square Error

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple ADALINE

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W

mse 1
Q
---- e k()2

k 1=

Q

∑
1
Q
---- t k() a k()–()2

k 1=

Q

∑= =

Summary

10-21

LMS (Widrow-Hoff) Algorithm

Tapped Delay Line

W k 1+() W k() 2αe k()pT k()+=

b k 1+() b k() 2αe k()+=

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

10 Adaptive Filters and Adaptive Training

10-22

Adaptive Filter

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N

(k)

N

TDL

Summary

10-23

Adaptive Filter Example

Prediction Example

Input

w
1,1

p
1
(t) = p(t)

��
��D

��D
p

2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

- Exp -a = purelin (Wp + b)

Linear Digital Filter

a(t)n(t)

b ��
1

��

Input

p
1
(t) = p(t)

��
��D

��D

p
2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

a = purelin (Wp + b)

Linear Digital Filter

a(t)n(t)

b ��
1

��
Adjust weights

 e(t)

Predictive Filter: a(t) is approximation to p(t)

+

-

Target = p(t)

10 Adaptive Filters and Adaptive Training

10-24

Noise Cancellation Example

Adaptive
 Filter Engine Noise

Noise Path
 Filter

Pilot’s
Voice

Contaminating
Noise

Pilot’s Voice
Contaminated with
Engine Noise

"Error"

Restored Signal

+
-

Adaptive Filter Adjusts to Minimize Error.
This removes the engine noise from contaminated
signal, leaving the pilot’s voice as the “error.”

Filtered Noise to Cancel
Contamination

n

c

v

a

e

m

Summary

10-25

Multiple Neuron Adaptive Filter

Abbreviated Form of Adaptive Filter

a2(k)n2(k)

wS, N

w1,1

b2

b1

bS

a1(k)n1(k)

1

1

1
��
��

��
��

��
��

��
��p(k)

��
��D

��D

p(k - 1)

N

TDL

��
��

��
��

Linear Layer

pd1(k)

pdN (k)

pd2(k)

nS (k) aS (k)

pd(k) a(k)

1

p(k)

n(k)Q

x

1 (Q*N)

x

1

S x

(Q*N)

S

x

1

S

x

1

S

x

1

N

Linear Layer of S Neurons

��
��

W

��
��b

��
��

TDL

S��
��
��
��

10 Adaptive Filters and Adaptive Training

10-26

Small Specific Adaptive Filter

New Functions
This chapter introduced the following function.

Function Description

adapt Trains a network using a sequence of inputs

pd(k) a(k)

��W

��
��b1

p(k)

n(k)1

x

1 3

x

1

3

x

2

3

x

1

3

x

1

3

x

1

�
�
�

Abreviated Notation

Linear layer2

��
��
��
��TDL

0

1

2

11

Applications

Introduction (p. 11-2) Introduces the chapter and provides a list of the
application scripts

Applin1: Linear Design (p. 11-3) Discusses a script which demonstrates linear design
using the Neural Network Toolbox

Applin2: Adaptive Prediction (p. 11-7) Discusses a script which demonstrates adaptive
prediction using the Neural Network Toolbox

Appelm1: Amplitude Detection (p. 11-11) Discusses a script which demonstrates amplitude
detection using the Neural Network Toolbox

Appcr1: Character Recognition (p. 11-16) Discusses a script which demonstrates character
recognition using the Neural Network Toolbox

11 Applications

11-2

Introduction
Today, neural networks can solve problems of economic importance that could
not be approached previously in any practical way. Some of the recent neural
network applications are discussed in this chapter. See Chapter 1,
“Introduction” for a list of many areas where neural networks already have
been applied.

Note The rest of this chapter describes applications that are practical and
make extensive use of the neural network functions described throughout this
documentation.

Application Scripts
The linear network applications are contained in scripts applin1 and applin2.

The Elman network amplitude detection application is contained in the script
appelm1.

The character recognition application is in appcr1.

Type help nndemos to see a listing of all neural network demonstrations or
applications.

Applin1: Linear Design

11-3

Applin1: Linear Design

Problem Definition
Here is the definition of a signal T, which lasts 5 seconds, and is defined at a
sampling rate of 40 samples per second.

time = 0:0.025:5;
T = sin(time*4*pi);
Q = length(T);

At any given time step, the network is given the last five values of the signal t,
and expected to give the next value. The inputs P are found by delaying the
signal T from one to five time steps.

P = zeros(5,Q);
P(1,2:Q) = T(1,1:(Q-1));
P(2,3:Q) = T(1,1:(Q-2));
P(3,4:Q) = T(1,1:(Q-3));
P(4,5:Q) = T(1,1:(Q-4));
P(5,6:Q) = T(1,1:(Q-5));

Here is a plot of the signal T.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

T
ar

ge
t S

ig
na

l

Signal to be Predicted

11 Applications

11-4

Network Design
Because the relationship between past and future values of the signal is not
changing, the network can be designed directly from examples using newlind.

The problem as defined above has five inputs (the five delayed signal values),
and one output (the next signal value). Thus, the network solution must consist
of a single neuron with five inputs.

Here newlind finds the weights and biases, for the neuron above, that
minimize the sum-squared error for this problem.

net = newlind(P,T);

The resulting network can now be tested.

Network Testing
To test the network, its output a is computed for the five delayed signals P and
compared with the actual signal T.

a = sim(net,P);

Here is a plot of a compared to T.

Input

p
1

an
p

2p
3

p
5

w
1,

5

w
1,1

b

1

Linear Neuron

��
��

a = purelin (Wp +b)

��
��

p
4

Applin1: Linear Design

11-5

The network’s output a and the actual signal t appear to match up perfectly.
Just to be sure, let us plot the error e = T – a.

The network did have some error for the first few time steps. This occurred
because the network did not actually have five delayed signal values available
until the fifth time step. However, after the fifth time step error was negligible.
The linear network did a good job. Run the script applin1 to see these plots.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

O
ut

pu
t -

 T
ar

ge
t +

Output and Target Signals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

E
rr

or

Error Signal

11 Applications

11-6

Thoughts and Conclusions
While newlind is not able to return a zero error solution for nonlinear
problems, it does minimize the sum-squared error. In many cases, the solution,
while not perfect, may model a nonlinear relationship well enough to meet the
application specifications. Giving the linear network many delayed signal
values gives it more information with which to find the lowest error linear fit
for a nonlinear problem.

Of course, if the problem is very nonlinear and/or the desired error is very low,
backpropagation or radial basis networks would be more appropriate.

Applin2: Adaptive Prediction

11-7

Applin2: Adaptive Prediction
In application script applin2, a linear network is trained incrementally with
adapt to predict a time series. Because the linear network is trained
incrementally, it can respond to changes in the relationship between past and
future values of the signal.

Problem Definition
The signal T to be predicted lasts 6 seconds with a sampling rate of 20 samples
per second. However, after 4 seconds the signal’s frequency suddenly doubles.

time1 = 0:0.05:4;
time2 = 4.05:0.024:6;
time = [time1 time2];
T = [sin(time1*4*pi) sin(time2*8*pi)];

Since we are training the network incrementally, we change t to a sequence.

T = con2seq(T);

Here is a plot of this signal.

The input to the network is the same signal that makes up the target.

P = T;

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

T
ar

ge
t S

ig
na

l

Signal to be Predicted

11 Applications

11-8

Network Initialization
The network has only one neuron, as only one output value of the signal T is
being generated at each time step. This neuron has five inputs, the five delayed
values of the signal T.

The function newlin creates the network shown above. We use a learning rate
of 0.1 for incremental training.

lr = 0.1;
delays = [1 2 3 4 5];
net = newlin(minmax(cat(2,P{:})),1,delays,lr);
[w,b] = initlin(P,t)

Network Training
The above neuron is trained incrementally with adapt. Here is the code to train
the network on input/target signals P and T.

[net,a,e]=adapt(net,P,T);

Network Testing
Once the network is adapted, we can plot its output signal and compare it to
the target signal.

pd(k) a(k)

��W

��
��b1

p(k)

n(k)1

x

1 5

x

1

1

x

3

1

x

1

1

x

1

1

x

1

�
�
�

Linear Layer

��
��
��
��TDL

1

2

3

4

5

Applin2: Adaptive Prediction

11-9

Initially, it takes the network 1.5 seconds (30 samples) to track the target
signal. Then, the predictions are accurate until the fourth second when the
target signal suddenly changes frequency. However, the adaptive network
learns to track the new signal in an even shorter interval as it has already
learned a behavior (a sine wave) similar to the new signal.

A plot of the error signal makes these effects easier to see.

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

Time

O
ut

pu
t -

--
 T

ar
ge

t -
 -

Output and Target Signals

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

E
rr

or

Error Signal

11 Applications

11-10

Thoughts and Conclusions
The linear network was able to adapt very quickly to the change in the target
signal. The 30 samples required to learn the wave form are very impressive
when one considers that in a typical signal processing application, a signal may
be sampled at 20 kHz. At such a sampling frequency, 30 samples go by in 1.5
milliseconds.

For example, the adaptive network can be monitored so as to give a warning
that its constants were nearing values that would result in instability.

Another use for an adaptive linear model is suggested by its ability to find a
minimum sum-squared error linear estimate of a nonlinear system’s behavior.
An adaptive linear model is highly accurate as long as the nonlinear system
stays near a given operating point. If the nonlinear system moves to a different
operating point, the adaptive linear network changes to model it at the new
point.

The sampling rate should be high to obtain the linear model of the nonlinear
system at its current operating point in the shortest amount of time. However,
there is a minimum amount of time that must occur for the network to see
enough of the system’s behavior to properly model it. To minimize this time, a
small amount of noise can be added to the input signals of the nonlinear
system. This allows the network to adapt faster as more of the operating points
dynamics are expressed in a shorter amount of time. Of course, this noise
should be small enough so it does not affect the system’s usefulness.

Appelm1: Amplitude Detection

11-11

Appelm1: Amplitude Detection
Elman networks can be trained to recognize and produce both spatial and
temporal patterns. An example of a problem where temporal patterns are
recognized and classified with a spatial pattern is amplitude detection.

Amplitude detection requires that a wave form be presented to a network
through time, and that the network output the amplitude of the wave form.
This is not a difficult problem, but it demonstrates the Elman network design
process.

The following material describes code that is contained in the demonstration
script appelm1.

Problem Definition
The following code defines two sine wave forms, one with an amplitude of 1.0,
the other with an amplitude of 2.0.

p1 = sin(1:20);
p2 = sin(1:20)*2;

The target outputs for these wave forms is their amplitudes.

t1 = ones(1,20);
t2 = ones(1,20)*2;

These wave forms can be combined into a sequence where each wave form
occurs twice. These longer wave forms are used to train the Elman network.

p = [p1 p2 p1 p2];
t = [t1 t2 t1 t2];

We want the inputs and targets to be considered a sequence, so we need to
make the conversion from the matrix format.

Pseq = con2seq(p);
Tseq = con2seq(t);

Network Initialization
This problem requires that the Elman network detect a single value (the
signal), and output a single value (the amplitude), at each time step. Therefore
the network must have one input element, and one output neuron.

11 Applications

11-12

R = 1;% 1 input element
S2 = 1;% 1 layer 2 output neuron

The recurrent layer can have any number of neurons. However, as the
complexity of the problem grows, more neurons are needed in the recurrent
layer for the network to do a good job.

This problem is fairly simple, so only 10 recurrent neurons are used in the first
layer.

S1 = 10;% 10 recurrent neurons in the first layer

Now the function newelm can be used to create initial weight matrices and bias
vectors for a network with one input that can vary between –2 and +2. We use
variable learning rate (traingdx) for this example.

net = newelm([-2 2],[S1 S2],{'tansig','purelin'},'traingdx');

Network Training
Now call train.

[net,tr] = train(net,Pseq,Tseq);

As this function finishes training at 500 epochs, it displays the following plot
of errors.

0 50 100 150 200 250 300
10

-2

10
-1

10
0

10
1

Mean Squared Error of Elman Network

Epoch

M
ea

n
S

qu
ar

ed
 E

rr
or

Appelm1: Amplitude Detection

11-13

The final mean-squared error was about 1.8e-2. We can test the network to see
what this means.

Network Testing
To test the network, the original inputs are presented, and its outputs are
calculated with simuelm.

a = sim(net,Pseq);

Here is the plot.

The network does a good job. New wave amplitudes are detected with a few
samples. More neurons in the recurrent layer and longer training times would
result in even better performance.

The network has successfully learned to detect the amplitudes of incoming sine
waves.

Network Generalization
Of course, even if the network detects the amplitudes of the training wave
forms, it may not detect the amplitude of a sine wave with an amplitude it has
not seen before.

0 10 20 30 40 50 60 70 80
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Testing Amplitute Detection

Time Step

T
ar

ge
t -

 -
 O

ut
pu

t -
--

11 Applications

11-14

The following code defines a new wave form made up of two repetitions of a sine
wave with amplitude 1.6 and another with amplitude 1.2.

p3 = sin(1:20)*1.6;
t3 = ones(1,20)*1.6;
p4 = sin(1:20)*1.2;
t4 = ones(1,20)*1.2;
pg = [p3 p4 p3 p4];
tg = [t3 t4 t3 t4];
pgseq = con2seq(pg);

The input sequence pg and target sequence tg are used to test the ability of our
network to generalize to new amplitudes.

Once again the function sim is used to simulate the Elman network and the
results are plotted.

a = sim(net,pgseq);

This time the network did not do as well. It seems to have a vague idea as to
what it should do, but is not very accurate!

Improved generalization could be obtained by training the network on more
amplitudes than just 1.0 and 2.0. The use of three or four different wave forms
with different amplitudes can result in a much better amplitude detector.

0 10 20 30 40 50 60 70 80
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Testing Generalization

Time Step

T
ar

ge
t -

 -
 O

ut
pu

t -
--

Appelm1: Amplitude Detection

11-15

Improving Performance
Run appelm1 to see plots similar to those above. Then make a copy of this file
and try improving the network by adding more neurons to the recurrent layer,
using longer training times, and giving the network more examples in its
training data.

11 Applications

11-16

Appcr1: Character Recognition
It is often useful to have a machine perform pattern recognition. In particular,
machines that can read symbols are very cost effective. A machine that reads
banking checks can process many more checks than a human being in the same
time. This kind of application saves time and money, and eliminates the
requirement that a human perform such a repetitive task. The script appcr1
demonstrates how character recognition can be done with a backpropagation
network.

Problem Statement
A network is to be designed and trained to recognize the 26 letters of the
alphabet. An imaging system that digitizes each letter centered in the system’s
field of vision is available. The result is that each letter is represented as a 5 by
7 grid of boolean values.

For example, here is the letter A.

However, the imaging system is not perfect and the letters may suffer from
noise.

Appcr1: Character Recognition

11-17

Perfect classification of ideal input vectors is required, and reasonably accurate
classification of noisy vectors.

The twenty-six 35-element input vectors are defined in the function prprob as
a matrix of input vectors called alphabet. The target vectors are also defined
in this file with a variable called targets. Each target vector is a 26-element
vector with a 1 in the position of the letter it represents, and 0’s everywhere
else. For example, the letter A is to be represented by a 1 in the first element
(as A is the first letter of the alphabet), and 0’s in elements two through
twenty-six.

Neural Network
The network receives the 35 Boolean values as a 35-element input vector. It is
then required to identify the letter by responding with a 26-element output
vector. The 26 elements of the output vector each represent a letter. To operate
correctly, the network should respond with a 1 in the position of the letter being
presented to the network. All other values in the output vector should be 0.

In addition, the network should be able to handle noise. In practice, the
network does not receive a perfect Boolean vector as input. Specifically, the
network should make as few mistakes as possible when classifying vectors with
noise of mean 0 and standard deviation of 0.2 or less.

Architecture
The neural network needs 35 inputs and 26 neurons in its output layer to
identify the letters. The network is a two-layer log-sigmoid/log-sigmoid

11 Applications

11-18

network. The log-sigmoid transfer function was picked because its output
range (0 to 1) is perfect for learning to output boolean values.

The hidden (first) layer has 10 neurons. This number was picked by guesswork
and experience. If the network has trouble learning, then neurons can be added
to this layer.

The network is trained to output a 1 in the correct position of the output vector
and to fill the rest of the output vector with 0’s. However, noisy input vectors
may result in the network not creating perfect 1’s and 0’s. After the network is
trained the output is passed through the competitive transfer function compet.
This makes sure that the output corresponding to the letter most like the noisy
input vector takes on a value of 1, and all others have a value of 0. The result
of this post-processing is the output that is actually used.

Initialization
The two-layer network is created with newff.

S1 = 10;
[R,Q] = size(alphabet);
[S2,Q] = size(targets);
P = alphabet;
net = newff(minmax(P),[S1 S2],{'logsig' 'logsig'},'traingdx');

Training
To create a network that can handle noisy input vectors it is best to train the
network on both ideal and noisy vectors. To do this, the network is first trained
on ideal vectors until it has a low sum-squared error.

p1 a1

1 1

n1 n2
35 x 1

10

x1

10 x 1

26 x 1

26 x 1

26 x 1

Input

26 x 10��
��LW2,1

10 x 1��
b1

10 x 35��
��IW1,1

��b2

Hidden Layer Output Layer

35 10 26

a2 = logsig(LW2,1a1 +b2)a1 = logsig (IW1,1p1 +b1)

��
��
��

�
�
� a2 = y

Appcr1: Character Recognition

11-19

Then, the network is trained on 10 sets of ideal and noisy vectors. The network
is trained on two copies of the noise-free alphabet at the same time as it is
trained on noisy vectors. The two copies of the noise-free alphabet are used to
maintain the network’s ability to classify ideal input vectors.

Unfortunately, after the training described above the network may have
learned to classify some difficult noisy vectors at the expense of properly
classifying a noise-free vector. Therefore, the network is again trained on just
ideal vectors. This ensures that the network responds perfectly when
presented with an ideal letter.

All training is done using backpropagation with both adaptive learning rate
and momentum with the function trainbpx.

Training Without Noise
The network is initially trained without noise for a maximum of 5000 epochs
or until the network sum-squared error falls beneath 0.1.

P = alphabet;
T = targets;
net.performFcn = 'sse';
net.trainParam.goal = 0.1;
net.trainParam.show = 20;
net.trainParam.epochs = 5000;
net.trainParam.mc = 0.95;
[net,tr] = train(net,P,T);

Training with Noise
To obtain a network not sensitive to noise, we trained with two ideal copies and
two noisy copies of the vectors in alphabet. The target vectors consist of four
copies of the vectors in target. The noisy vectors have noise of mean 0.1 and
0.2 added to them. This forces the neuron to learn how to properly identify
noisy letters, while requiring that it can still respond well to ideal vectors.

To train with noise, the maximum number of epochs is reduced to 300 and the
error goal is increased to 0.6, reflecting that higher error is expected because
more vectors (including some with noise), are being presented.

netn = net;
netn.trainParam.goal = 0.6;
netn.trainParam.epochs = 300;

11 Applications

11-20

T = [targets targets targets targets];
for pass = 1:10
P = [alphabet, alphabet, ...
 (alphabet + randn(R,Q)*0.1), ...
 (alphabet + randn(R,Q)*0.2)];
[netn,tr] = train(netn,P,T);
end

Training Without Noise Again
Once the network is trained with noise, it makes sense to train it without noise
once more to ensure that ideal input vectors are always classified correctly.
Therefore, the network is again trained with code identical to the “Training
Without Noise” on page 11-19.

System Performance
The reliability of the neural network pattern recognition system is measured
by testing the network with hundreds of input vectors with varying quantities
of noise. The script file appcr1 tests the network at various noise levels, and
then graphs the percentage of network errors versus noise. Noise with a mean
of 0 and a standard deviation from 0 to 0.5 is added to input vectors. At each
noise level, 100 presentations of different noisy versions of each letter are made
and the network’s output is calculated. The output is then passed through the
competitive transfer function so that only one of the 26 outputs (representing
the letters of the alphabet), has a value of 1.

The number of erroneous classifications is then added and percentages are
obtained.

Appcr1: Character Recognition

11-21

The solid line on the graph shows the reliability for the network trained with
and without noise. The reliability of the same network when it had only been
trained without noise is shown with a dashed line. Thus, training the network
on noisy input vectors greatly reduces its errors when it has to classify noisy
vectors.

The network did not make any errors for vectors with noise of mean 0.00 or
0.05. When noise of mean 0.2 was added to the vectors both networks began
making errors.

If a higher accuracy is needed, the network can be trained for a longer time or
retrained with more neurons in its hidden layer. Also, the resolution of the
input vectors can be increased to a 10-by-14 grid. Finally, the network could be
trained on input vectors with greater amounts of noise if greater reliability
were needed for higher levels of noise.

To test the system, a letter with noise can be created and presented to the
network.

noisyJ = alphabet(:,10)+randn(35,1) ∗ 0.2;
plotchar(noisyJ);
A2 = sim(net,noisyJ);
A2 = compet(A2);
answer = find(compet(A2) == 1);
plotchar(alphabet(:,answer));

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50
Percentage of Recognition Errors

Noise Level

N
et

w
or

k
1

-
-

 N
et

w
or

k
2

--
-

11 Applications

11-22

Here is the noisy letter and the letter the network picked (correctly).

Summary
This problem demonstrates how a simple pattern recognition system can be
designed. Note that the training process did not consist of a single call to a
training function. Instead, the network was trained several times on various
input vectors.

In this case, training a network on different sets of noisy vectors forced the
network to learn how to deal with noise, a common problem in the real world.

12

Advanced Topics

Custom Networks (p. 12-2) Describes how to create custom networks with Neural
Network Toolbox functions

Additional Toolbox Functions (p. 12-16) Provides notes on additional advanced functions

Custom Functions (p. 12-18) Discusses creating custom functions with the Neural
Network Toolbox

12 Advanced Topics

12-2

Custom Networks
The Neural Network Toolbox is designed to allow for many kinds of networks.
This makes it possible for many functions to use the same network object data
type.

Here are all the standard network creation functions in the toolbox.

This flexibility is possible because we have an object-oriented representation
for networks. The representation allows various architectures to be defined
and allows various algorithms to be assigned to those architectures.

New Networks

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.

Custom Networks

12-3

To create custom networks, start with an empty network (obtained with the
network function) and set its properties as desired.

network - Create a custom neural network.

The network object consists of many properties that you can set to specify the
structure and behavior of your network. See Chapter 13, “Network Object
Reference” for descriptions of all network properties.

The following sections demonstrate how to create a custom network by using
these properties.

Custom Network
Before you can build a network you need to know what it looks like. For
dramatic purposes (and to give the toolbox a workout) this section leads you
through the creation of the wild and complicated network shown below.

Each of the two elements of the first network input is to accept values ranging
between 0 and 10. Each of the five elements of the second network input ranges
from -2 to 2.

p1(k)

a1(k)1

n1(k) 2 x 1

4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs

��IW1,1

��
��b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)
��
��
��

5

3 x (2*2)��
��IW2,1

3 x (1*5)��
��

IW2,2

n2(k)

3 x 1

3��
��
��

��
��TDL

p2(k)

 5 x 1��
��

TDL

1 x 4���
���IW3,1

1 x 3

���
���

1 x (1*1)���
���

1
1 x 1���

���
b3

��
��TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1
��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1)]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+IW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs

12 Advanced Topics

12-4

Before you can complete your design of this network, the algorithms it employs
for initialization and training must be specified.

We agree here that each layer’s weights and biases are initialized with the
Nguyen-Widrow layer initialization method (initnw). Also, the network is
trained with the Levenberg-Marquardt backpropagation (trainlm), so that,
given example input vectors, the outputs of the third layer learn to match the
associated target vectors with minimal mean squared error (mse).

Network Definition
The first step is to create a new network. Type in the following code to create a
network and view its many properties.

net = network

Architecture Properties
The first group of properties displayed are labeled architecture properties.
These properties allow you to select of the number of inputs and layers, and
their connections.

Number of Inputs and Layers. The first two properties displayed are numInputs
and numLayers. These properties allow us to select how many inputs and layers
we want our network to have.

net =

Neural Network object:

 architecture:

 numInputs: 0
 numLayers: 0

Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number of
layers in our custom network diagram.

net.numInputs = 2;
net.numLayers = 3;

…

Custom Networks

12-5

Note that net.numInputs is the number of input sources, not the number of
elements in an input vector (net.inputs{i}.size).

Bias Connections. Type net and press Return to view its properties again. The
network now has two inputs and three layers.

net =

Neural Network object:

 architecture:

 numInputs: 2
 numLayers: 3

Now look at the next five properties.

biasConnect: [0; 0; 0]
 inputConnect: [0 0; 0 0; 0 0]
 layerConnect: [0 0 0; 0 0 0; 0 0 0]
 outputConnect: [0 0 0]
 targetConnect: [0 0 0]

These matrices of 1’s and 0’s represent the presence or absence of bias, input
weight, layer weight, output, and target connections. They are currently all
zeros, indicating that the network does not have any such connections.

Note that the bias connection matrix is a 3-by-1 vector. To create a bias
connection to the ith layer you can set net.biasConnect(i) to 1. Specify that
the first and third layer’s are to have bias connections, as our diagram
indicates, by typing in the following code.

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

Note that you could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections. The input connection matrix is 3-by-2,
representing the presence of connections from two sources (the two inputs) to
three destinations (the three layers). Thus, net.inputConnect(i,j)
represents the presence of an input weight connection going to the ith layer
from the jth input.

12 Advanced Topics

12-6

To connect the first input to the first and second layers, and the second input
to the second layer (as is indicated by the custom network diagram), type

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer-weight
connection going to the ith layer from the jth layer. Connect layers 1, 2, and 3
to layer 3 as follows.

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];

Output and Target Connections. Both the output and target connection matrices
are 1-by-3 matrices, indicating that they connect to one destination (the
external world) from three sources (the three layers).

To connect layers 2 and 3 to network outputs, type

net.outputConnect = [0 1 1];

To give layer 3 a target connection, type

net.targetConnect = [0 0 1];

The layer 3 target is compared to the output of layer 3 to generate an error for
use when measuring the performance of the network, or when updating the
network during training or adaption.

Number of Outputs and Targets
Type net and press Enter to view the updated properties. The final four
architecture properties are read-only values, which means their values are
determined by the choices we make for other properties. The first two read-only
properties have the following values.

numOutputs: 2 (read-only)
numTargets: 1 (read-only)

By defining output connections from layers 2 and 3, and a target connection
from layer 3, you specify that the network has two outputs and one target.

Custom Networks

12-7

Subobject Properties
The next group of properties is

subobject structures:

inputs: {2x1 cell} of inputs
layers: {3x1 cell} of layers
outputs: {1x3 cell} containing 2 outputs
targets: {1x3 cell} containing 1 target
biases: {3x1 cell} containing 2 biases

inputWeights: {3x2 cell} containing 3 input weights
layerWeights: {3x3 cell} containing 3 layer weights

Inputs
When you set the number of inputs (net.numInputs) to 2, the inputs property
becomes a cell array of two input structures. Each ith input structure
(net.inputs{i}) contains addition properties associated with the ith input.

To see how the input structures are arranged, type

net.inputs
ans =

 [1x1 struct]
 [1x1 struct]

To see the properties associated with the first input, type

net.inputs{1}

The properties appear as follows.

ans =

range: [0 1]
 size: 1
 userdata: [1x1 struct]

Note that the range property only has one row. This indicates that the input
has only one element, which varies from 0 to 1. The size property also
indicates that this input has just one element.

12 Advanced Topics

12-8

The first input vector of the custom network is to have two elements ranging
from 0 to 10. Specify this by altering the range property of the first input as
follows.

net.inputs{1}.range = [0 10; 0 10];

If we examine the first input’s structure again, we see that it now has the
correct size, which was inferred from the new range values.

ans =

 range: [2x2 double]
 size: 2
 userdata: [1x1 struct]

Set the second input vector ranges to be from -2 to 2 for five elements as follows.

net.inputs{2}.range = [-2 2; -2 2; -2 2; -2 2; -2 2];

Layers. When we set the number of layers (net.numLayers) to 3, the layers
property becomes a cell array of three-layer structures. Type the following line
of code to see the properties associated with the first layer.

net.layers{1}

ans =

 dimensions: 1
 distanceFcn: 'dist'
 distances: 0
 initFcn: 'initwb'
 netInputFcn: 'netsum'
 positions: 0
 size: 1
 topologyFcn: 'hextop'
 transferFcn: 'purelin'
 userdata: [1x1 struct]

Type the following three lines of code to change the first layer’s size to 4
neurons, its transfer function to tansig, and its initialization function to the
Nguyen-Widrow function as required for the custom network diagram.

net.layers{1}.size = 4;
net.layers{1}.transferFcn = 'tansig';

Custom Networks

12-9

net.layers{1}.initFcn = 'initnw';

The second layer is to have three neurons, the logsig transfer function, and be
initialized with initnw. Thus, set the second layer’s properties to the desired
values as follows.

net.layers{2}.size = 3;
net.layers{2}.transferFcn = 'logsig';
net.layers{2}.initFcn = 'initnw';

The third layer’s size and transfer function properties don’t need to be changed
since the defaults match those shown in the network diagram. You only need
to set its initialization function as follows.

net.layers{3}.initFcn = 'initnw';

Output and Targets. Take a look at how the outputs property is arranged with
this line of code.

net.outputs
ans =

 [] [1x1 struct] [1x1 struct]

Note that outputs contains two output structures, one for layer 2 and one for
layer 3. This arrangement occurs automatically when net.outputConnect was
set to [0 1 1].

View the second layer’s output structure with the following expression.

net.outputs{2}
ans =

 size: 3
 userdata: [1x1 struct]

The size is automatically set to 3 when the second layer’s size
(net.layers{2}.size) is set to that value. Take a look at the third layer’s
output structure if you want to verify that it also has the correct size.

Similarly, targets contains one structure representing the third layer’s target.
Type these two lines of code to see how targets is arranged and to view the
third layer’s target properties.

net.targets

12 Advanced Topics

12-10

ans =
 [] [] [1x1 struct]

net.targets{3}
ans =
 size: 1
 userdata: [1x1 struct]

Biases, Input Weights, and Layer Weights. Enter the following lines of code to see
how bias and weight structures are arranged.

net.biases
net.inputWeights
net.layerWeights

Here are the results for typing net.biases.

ans =
 [1x1 struct]
 []
 [1x1 struct]

If you examine the results you will note that each contains a structure where
the corresponding connections (net.biasConnect, net.inputConnect, and
net.layerConnect) contain a 1.

Take a look at their structures with these lines of code.

net.biases{1}
net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}

For example, typing net.biases{1} results in the following output.

ans =
 initFcn: ''
 learn: 1
 learnFcn: ''
 learnParam: ''

Custom Networks

12-11

 size: 4
 userdata: [1x1 struct]

Specify the weights tap delay lines in accordance with the network diagram, by
setting each weights delays property.

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions
Type net and press return again to see the next set of properties.

functions:

adaptFcn: (none)
 initFcn: (none)
 performFcn: (none)
 trainFcn: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network initializes itself
according to the layer initialization functions that we have already set to
initnw the Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of our network.

Set the performance function to mse (mean squared error) and the training
function to trainlm (Levenberg-Marquardt backpropagation) to meet the final
requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';

Weight and Bias Values
Before initializing and training the network, take a look at the final group of
network properties (aside from the userdata property).

weight and bias values:

 IW: {3x2 cell} containing 3 input weight matrices

12 Advanced Topics

12-12

 LW: {3x3 cell} containing 3 layer weight matrices
 b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the same
positions that the connection properties (net.inputConnect,
net.layerConnect, net.biasConnect) contain 1’s and the subobject properties
(net.inputWeights, net.layerWeights, net.biases) contain structures.

Evaluating each of the following lines of code reveals that all the bias vectors
and weight matrices are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector
net.b{i} has as many rows as the size of the ith layer (net.layers{i}.size).

Each input weight net.IW{i,j} has as many columns as the size of the jth
input (net.inputs{j}.size) multiplied by the number of its delay values
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth layer
(net.layers{j}.size) multiplied by the number of its delay values
(length(net.layerWeights{i,j}.delays)).

Network Behavior

Initialization
Initialize your network with the following line of code.

net = init(net)

Reference the network’s biases and weights again to see how they have
changed.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example,

net.IW{1,1}

Custom Networks

12-13

ans =
 -0.3040 0.4703
 -0.5423 -0.1395
 0.5567 0.0604
 0.2667 0.4924

Training
Define the following cell array of two input vectors (one with two elements, one
with five) for two time steps (i.e., two columns).

P = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]}

We want the network to respond with the following target sequence.

T = {1 -1}

Before training, we can simulate the network to see whether the initial
network’s response Y is close to the target T.

Y = sim(net,P)

Y =

 [3x1 double] [3x1 double]
 [0.0456] [0.2119]

The second row of the cell array Y is the output sequence of the second network
output, which is also the output sequence of the third layer. The values you got
for the second row may differ from those shown due to different initial weights
and biases. However, they will almost certainly not be equal to our targets T,
which is also true of the values shown.

The next task is to prepare the training parameters. The following line of code
displays the default Levenberg-Marquardt training parameters (which were
defined when we set net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans =

 epochs: 100
 goal: 0
 max_fail: 5

12 Advanced Topics

12-14

 mem_reduc: 1
 min_grad: 1.0000e-10
 mu: 1.0000e-03
 mu_dec: 0.1000
 mu_inc: 10
 mu_max: 1.0000e+10
 show: 25
 time:

Change the performance goal to 1e-10.

net.trainParam.goal = 1e-10;

Next, train the network with the following call.

net = train(net,P,T);

Below is a typical training plot.

After training you can simulate the network to see if it has learned to respond
correctly.

Y = sim(net,P)

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Performance is 3.91852e-16, Goal is 1e-10

4 Epochs

T
ra

in
in

g-
B

lu
e

 G
oa

l-B
la

ck

Custom Networks

12-15

Y =

 [3x1 double] [3x1 double]
 [1.0000] [-1.0000]

Note that the second network output (i.e., the second row of the cell array Y),
which is also the third layer’s output, does match the target sequence T.

12 Advanced Topics

12-16

Additional Toolbox Functions
Most toolbox functions are explained in chapters dealing with networks that
use them. However, some functions are not used by toolbox networks, but are
included as they may be useful to you in creating custom networks.

Each of these is documented in Chapter 14, “Reference.” However, the notes
given below may also prove to be helpful.

Initialization Functions

randnc
This weight initialization function generates random weight matrices whose
columns are normalized to a length of 1.

randnr
This weight initialization function generates random weight matrices whose
rows are normalized to a length of 1.

Transfer Functions

satlin
This transfer function is similar to satlins, but has a linear region going from
0 to 1 (instead of -1 to 1), and minimum and maximum values of 0 and 1
(instead of -1 and 1).

softmax
This transfer function is a softer version of the hard competitive transfer
function compet. The neuron with the largest net input gets an output closest
to one, while other neurons have outputs close to zero.

tribas
The triangular-basis transfer function is similar to the radial-basis transfer
function radbas, but has a simpler shape.

Additional Toolbox Functions

12-17

Learning Functions

learnh
The Hebb weight learning function increases weights in proportion to the
product, the weights input, and the neuron’s output. This allows neurons to
learn associations between their inputs and outputs.

learnhd
The Hebb-with-decay learning function is similar to the Hebb function, but
adds a term that decreases weights each time step exponentially. This weight
decay allows neurons to forget associations that are not reinforced regularly,
and solves the problem that the Hebb function has with weights growing
without bounds.

learnis
The instar weight learning function moves a neuron’s weight vector towards
the neuron’s input vector with steps proportional to the neuron’s output. This
function allows neurons to learn association between input vectors and their
outputs.

learnos
The outstar weight learning function acts in the opposite way as the instar
learning rule. The outstar rule moves the weight vector coming from an input
toward the output vector of a layer of neurons with step sizes proportional to
the input value. This allows inputs to learn to recall vectors when stimulated.

12 Advanced Topics

12-18

Custom Functions
The toolbox allows you to create and use many kinds of functions. This gives
you a great deal of control over the algorithms used to initialize, simulate, and
train; and allow adaption for your networks.

The following sections describe how to create your own versions of these kinds
of functions:

• Simulation functions

- transfer functions

- net input functions

- weight functions

• Initialization functions

- network initialization functions

- layer initialization functions

- weight and bias initialization functions

• Learning functions

- network training functions

- network adapt functions

- network performance functions

- weight and bias learning functions

• Self-organizing map functions

- topology functions

- distance functions

Simulation Functions
You can create three kinds of simulation functions: transfer, net input, and
weight functions. You can also provide associated derivative functions to
enable backpropagation learning with your functions.

Transfer Functions
Transfer functions calculate a layer’s output vector (or matrix) A, given its net
input vector (or matrix) N. The only constraint on the relationship between the

Custom Functions

12-19

output and net input is that the output must have the same dimensions as the
input.

Once defined, you can assign your transfer function to any layer of a network.
For example, the following line of code assigns the transfer function yourtf to
the second layer of a network.

net.layers{2}.transferFcn = 'yourtf';

Your transfer function then is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid transfer function, your function must calculate outputs A from net
inputs N as follows,

A = yourtf(N)

where:

• N is an S x Q matrix of Q net input (column) vectors.

• A is an S x Q matrix of Q output (column) vectors.

Your transfer function must also provide information about itself, using this
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'output' - Returns the output range.

• 'active' - Returns the active input range.

The toolbox contains an example custom transfer function called mytf. Enter
the following lines of code to see how it is used.

help mytf
n = -5:.1:5;
a = mytf(n);
plot(n,a)
mytf('deriv')

12 Advanced Topics

12-20

Enter the following command to see how mytf is implemented.

type mytf

You can use mytf as a template to create your own transfer function.

Transfer Derivative Functions. If you want to use backpropagation with your custom
transfer function, you need to create a custom derivative function for it. The
function needs to calculate the derivative of the layer’s output with respect to
its net input,

dA_dN = yourdtf(N,A)

where:

• N is an matrix of Q net input (column) vectors.

• A is an matrix of Q output (column) vectors.

• dA_dN is the derivative dA/dN.

This only works for transfer functions whose output elements are independent.
In other words, where each A(i) is only a function of N(i). Otherwise, a
three-dimensional array is required to store the derivatives in the case of
multiple vectors (instead of a matrix as defined above). Such 3-D derivatives
are not supported at this time.

To see how the example custom transfer derivative function mydtf works, type

help mydtf
da_dn = mydtf(n,a)
subplot(2,1,1), plot(n,a)
subplot(2,1,2), plot(n,dn_da)

Use this command to see how mydtf was implemented.

type mydtf

You can use mydtf as a template to create your own transfer derivative
functions.

Net Input Functions
Net input functions calculate a layer’s net input vector (or matrix) N, given its
weighted input vectors (or matrices) Zi. The only constraints on the
relationship between the net input and the weighted inputs are that the net

S Q×

S Q×

S Q×

Custom Functions

12-21

input must have the same dimensions as the weighted inputs, and that the
function cannot be sensitive to the order of the weight inputs.

Once defined, you can assign your net input function to any layer of a network.
For example, the following line of code assigns the transfer function yournif to
the second layer of a network.

net.layers{2}.netInputFcn = 'yournif';

Your net input function then is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid net input function your function must calculate outputs A from
net inputs N as follows,

N = yournif(Z1,Z2,...)

where

• Zi is the ith matrix of Q weighted input (column) vectors.

• N is an matrix of Q net input (column) vectors.

Your net input function must also provide information about itself using this
calling format,

info = yournif(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

The toolbox contains an example custom net input function called mynif. Enter
the following lines of code to see how it is used.

help mynif
z1 = rand(4,5);
z2 = rand(4,5);
z3 = rand(4,5);
n = mynif(z1,z2,z3)
mynif('deriv')

Enter the following command to see how mynif is implemented.

type mynif

S Q×

S Q×

12 Advanced Topics

12-22

You can use mynif as a template to create your own net input function.

Net Input Derivative Functions. If you want to use backpropagation with your
custom net input function, you need to create a custom derivative function for
it. It needs to calculate the derivative of the layer’s net input with respect to
any of its weighted inputs,

dN_dZ = dtansig(Z,N)

where:

• Z is one of the matrices of Q weighted input (column) vectors.

• N is an matrix of Q net input (column) vectors.

• dN_dZ is the derivative dN/dZ.

To see how the example custom net input derivative function mydtf works, type

help mydnif
dn_dz1 = mydnif(z1,n)
dn_dz2 = mydnif(z1,n)
dn_dz3 = mydnif(z1,n)

Use this command to see how mydtf was implemented.

type mydnif

You can use mydnif as a template to create your own net input derivative
functions.

Weight Functions
Weight functions calculate a weighted input vector (or matrix) Z, given an
input vector (or matrices) P and a weight matrix W.

Once defined, you can assign your weight function to any input weight or layer
weight of a network. For example, the following line of code assigns the weight
function yourwf to the weight going to the second layer from the first input of
a network.

net.inputWeights{2,1}.weightFcn = 'yourwf';

Your weight function is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

S Q×

S Q×

S Q×

Custom Functions

12-23

To be a valid weight function your function must calculate weight inputs Z from
inputs P and a weight matrix W as follows,

Z = yourwf(W,P)

where:

• W is an weight matrix.

• P is an matrix of Q input (column) vectors.

• Z is an matrix of Q weighted input (column) vectors.

Your net input function must also provide information about itself using this
calling format,

info = yourwf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

The toolbox contains an example custom weight called mywf. Enter the
following lines of code to see how it is used.

help mywf
w = rand(1,5);
p = rand(5,1);
z = mywf(w,p);
mywf('deriv')

Enter the following command to see how mywf is implemented.

type mywf

You can use mywf as a template to create your own weight functions.

Weight Derivative Functions. If you want to use backpropagation with your custom
weight function, you need to create a custom derivative function for it. It needs
to calculate the derivative of the weight inputs with respect to both the input
and weight,

dZ_dP = mydwf('p',W,P,Z)
dZ_dW = mydwf('w',W,P,Z)

S R×

R Q×

S Q×

12 Advanced Topics

12-24

where:

• W is an weight matrix.

• P is an matrix of Q input (column) vectors.

• Z is an matrix of Q weighted input (column) vectors.

• dZ_dP is the derivative dZ/dP.

• dZ_dW is the derivative dZ/dW.

This only works for weight functions whose output consists of a sum of i term,
where each ith term is a function of only W(i) and P(i). Otherwise a
three-dimensional array is required to store the derivatives in the case of
multiple vectors (instead of a matrix as defined above). Such 3-D derivatives
are not supported at this time.

To see how the example custom net input derivative function mydwf works, type

help mydwf
dz_dp = mydwf('p',w,p,z)
dz_dw = mydwf('w',w,p,z)

Use this command to see how mydwf is implemented.

type mydwf

You can use mydwf as a template to create your own net input derivative
function.

Initialization Functions
You can create three kinds of initialization functions: network, layer, and
weight/bias initialization.

Network Initialization Functions
The most general kind of initialization function is the network initialization
function which sets all the weights and biases of a network to values suitable
as a starting point for training or adaption.

Once defined, you can assign your network initialization function to a network.

net.initFcn = 'yournif';

S R×

R Q×

S Q×

S R×

R Q×

Custom Functions

12-25

Your network initialization function is used whenever you initialize your
network.

net = init(net)

To be a valid network initialization function, it must take and return a
network.

net = yournif(net)

Your function can set the network’s weight and bias values in any way you
want. However, you should be careful not to alter any other properties, or to set
the weight matrices and bias vectors of the wrong size. For performance
reasons, init turns off the normal type checking for network properties before
calling your initialization function. So if you set a weight matrix to the wrong
size, it won’t immediately generate an error, but could cause problems later
when you try to simulate or train the network.

You can examine the implementation of the toolbox function initlay if you are
interested in creating your own network initialization function.

Layer Initialization Functions
The layer initialization function sets all the weights and biases of a layer to
values suitable as a starting point for training or adaption.

Once defined, you can assign your layer initialization function to a layer of a
network. For example, the following line of code assigns the layer initialization
function yourlif to the second layer of a network.

net.layers{2}.initFcn = 'yourlif';

Layer initialization functions are only called to initialize a layer if the network
initialization function (net.initFcn) is set to the toolbox function initlay. If
this is the case, then your function is used to initialize the layer whenever you
initialize your network with init.

net = init(net)

To be a valid layer initialization function, it must take a network and a layer
index i, and return the network after initializing the ith layer.

net = yournif(net,i)

12 Advanced Topics

12-26

Your function can then set the ith layer’s weight and bias values in any way
you see fit. However, you should be careful not to alter any other properties, or
to set the weight matrices and bias vectors to the wrong size.

If you are interested in creating your own layer initialization function, you can
examine the implementations of the toolbox functions initwb and initnw.

Weight and Bias Initialization Functions
The weight and bias initialization function sets all the weights and biases of a
weight or bias to values suitable as a starting point for training or adaption.

Once defined, you can assign your initialization function to any weight and bias
in a network. For example, the following lines of code assign the weight and
bias initialization function yourwbif to the second layer’s bias, and the weight
coming from the first input to the second layer.

net.biases{2}.initFcn = 'yourwbif';
net.inputWeights{2,1}.initFcn = 'yourwbif';

Weight and bias initialization functions are only called to initialize a layer if
the network initialization function (net.initFcn) is set to the toolbox function
initlay, and the layer’s initialization function (net.layers{i}.initFcn) is set
to the toolbox function initwb. If this is the case, then your function is used to
initialize the weight and biases it is assigned to whenever you initialize your
network with init.

net = init(net)

To be a valid weight and bias initialization function, it must take a the number
of neurons in a layer S, and a two-column matrix PR of R rows defining the
minimum and maximum values of R inputs and return a new weight matrix W,

W = rands(S,PR)

where:

• S is the number of neurons in the layer.

• PR is an matrix defining the minimum and maximum values of R
inputs.

• W is a new weight matrix.

Your function also needs to generate a new bias vector as follows,

R 2×

S R×

Custom Functions

12-27

b = rands(S)

where:

• S is the number of neurons in the layer.

• b is a new bias vector.

To see how an example custom weight and bias initialization function works,
type

help mywbif
W = mywbif(4,[0 1; -2 2])
b = mywbif(4,[1 1])

Use this command to see how mywbif was implemented.

type mywbif

You can use mywbif as a template to create your own weight and bias
initialization function.

Learning Functions
You can create four kinds of initialization functions: training, adaption,
performance, and weight/bias learning.

Training Functions
One kind of general learning function is a network training function. Training
functions repeatedly apply a set of input vectors to a network, updating the
network each time, until some stopping criteria is met. Stopping criteria can
consists of a maximum number of epochs, a minimum error gradient, an error
goal, etc.

Once defined, you can assign your training function to a network.

net.trainFcn = 'yourtf';

Your network initialization function is used whenever you train your network.

[net,tr] = train(NET,P,T,Pi,Ai)

To be a valid training function your function must take and return a network,

[net,tr] = yourtf(net,Pd,Tl,Ai,Q,TS,VV,TV)

S 1×

12 Advanced Topics

12-28

where:

• Pd is an cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the delayed input matrix to the weight
going to the ith layer from the jth input at time step ts. (Pd{i,j,ts} is an
empty matrix [] if the ith layer doesn’t have a weight from the jth input.)

• Tl is an cell array of layer targets.

- Each Tl{i,ts} is the target matrix for the ith layer. (Tl{i,ts} is
an empty matrix if the ith layer doesn’t have a target.)

• Ai is an cell array of initial layer delay states.

- Each Ai{l,k} is the delayed ith layer output for time step ts =
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.

• TS is the number of time steps.

• VV and TV are optional structures defining validation and test vectors in the
same form as the training vectors defined above: Pd, Tl, Ai, Q, and TS. Note
that the validation and testing Q and TS values can be different from each
other and from those used by the training vectors.

The dimensions above have the following definitions:

• is the number of network layers (net.numLayers).

• is the number of network inputs (net.numInputs).

• is the size of the jth input (net.inputs{j}.size).

• is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

• is the number of delay lines associated with the weight going to the ith
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your training function must also provide information about itself using this
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default training parameters.

Nl Ni TS××

Rj Di
ijQ()×

Nl TS×

Si Q×

Nl LD×

Si Q×

Nl

Ni

Rj

Si

Di
ij

Custom Functions

12-29

When you set the network training function (net.trainFcn) to be your
function, the network’s training parameters (net.trainParam) automatically
is set to your default structure. Those values can be altered (or not) before
training.

Your function can update the network’s weight and bias values in any way you
see fit. However, you should be careful not to alter any other properties, or to
set the weight matrices and bias vectors to the wrong size. For performance
reasons, train turns off the normal type checking for network properties before
calling your training function. So if you set a weight matrix to the wrong size,
it won’t immediately generate an error, but will cause problems later when you
try to simulate or adapt the network.

If you are interested in creating your own training function, you can examine
the implementations of toolbox functions such as trainc and trainr. The help
for each of these utility functions lists the input and output arguments they
take.

Utility Functions. If you examine training functions such as trainc, traingd, and
trainlm, note that they use a set of utility functions found in the nnet/nnutils
directory.

These functions are not listed in Chapter 14, “Reference” because they may be
altered in the future. However, you can use these functions if you are willing to
take the risk that you might have to update your functions for future versions
of the toolbox. Use help on each function to view the function’s input and
output arguments.

These two functions are useful for creating a new training record and
truncating it once the final number of epochs is known:

• newtr - New training record with any number of optional fields.

• cliptr - Clip training record to the final number of epochs.

These three functions calculate network signals going forward, errors, and
derivatives of performance coming back:

• calca - Calculate network outputs and other signals.

• calcerr - Calculate matrix or cell array errors.

• calcgrad - Calculate bias and weight performance gradients.

12 Advanced Topics

12-30

These two functions get and set a network’s weight and bias values with single
vectors. Being able to treat all these adjustable parameters as a single vector
is often useful for implementing optimization algorithms:

• getx - Get all network weight and bias values as a single vector.

• setx - Set all network weight and bias values with a single vector.

These next three functions are also useful for implementing optimization
functions. One calculates all network signals going forward, including errors
and performance. One backpropagates to find the derivatives of performance
as a single vector. The third function backpropagates to find the Jacobian of
performance. This latter function is used by advanced optimization techniques
like Levenberg-Marquardt:

• calcperf - Calculate network outputs, signals, and performance.

• calcgx - Calculate weight and bias performance gradient as a single vector.

• calcjx - Calculate weight and bias performance Jacobian as a single matrix.

Adapt Functions
The other kind of the general learning function is a network adapt function.
Adapt functions simulate a network, while updating the network for each time
step of the input before continuing the simulation to the next input.

Once defined, you can assign your adapt function to a network.

net.adaptFcn = 'youraf';

Your network initialization function is used whenever you adapt your network.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid adapt function, it must take and return a network,

[net,Ac,El] = youraf(net,Pd,Tl,Ai,Q,TS)

where:

• Pd is an cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the delayed input matrix to the weight
going to the ith layer from the jth input at time step ts. Note that
(Pd{i,j,ts} is an empty matrix [] if the ith layer doesn’t have a weight
from the jth input.)

Nl Ni TS××

Rj Di
ijQ()×

Custom Functions

12-31

• Tl is an cell array of layer targets.

- Each Tl{i,ts} is the target matrix for the ith layer. Note that
(Tl{i,ts} is an empty matrix if the ith layer doesn’t have a target.)

• Ai is an cell array of initial layer delay states.

- Each Ai{l,k} is the delayed ith layer output for time step ts =
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.

• TS is the number of time steps.

The dimensions above have the following definitions:

• is the number of network layers (net.numLayers).

• is the number of network inputs (net.numInputs).

• is the size of the jth input (net.inputs{j}.size).

• is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

• is the number of delay lines associated with the weight going to the ith
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your adapt function must also provide information about itself using this
calling format,

info = youraf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default adapt parameters.

When you set the network adapt function (net.adaptFcn) to be your function,
the network’s adapt parameters (net.adaptParam) automatically is set to your
default structure. Those values can then be altered (or not) before adapting.

Your function can update the network’s weight and bias values in any way you
see fit. However, you should be careful not to alter any other properties, or to
set the weight matrices and bias vectors of the wrong size. For performance
reasons, adapt turns off the normal type checking for network properties before
calling your adapt function. So if you set a weight matrix to the wrong size, it
won’t immediately generate an error, but will cause problems later when you
try to simulate or train the network.

Nl TS×

Si Q×

Nl LD×

Si Q×

Nl

Ni

Rj

Si

Di
ij

12 Advanced Topics

12-32

If you are interested in creating your own training function, you can examine
the implementation of a toolbox function such as trains.

Utility Functions. If you examine the toolbox’s only adapt function trains, note
that it uses a set of utility functions found in the nnet/nnutils directory. The
help for each of these utility functions lists the input and output arguments
they take.

These functions are not listed in Chapter 14, “Reference” because they may be
altered in the future. However, you can use these functions if you are willing to
take the risk that you will have to update your functions for future versions of
the toolbox.

These two functions are useful for simulating a network, and calculating its
derivatives of performance:

• calca1 - New training record with any number of optional fields.

• calce1 - Clip training record to the final number of epochs.

• calcgrad - Calculate bias and weight performance gradients.

Performance Functions
Performance functions allow a network’s behavior to be graded. This is useful
for many algorithms, such as backpropagation, which operate by adjusting
network weights and biases to improve performance.

Once defined you can assign your training function to a network.

net.performFcn = 'yourpf';

Your network initialization function will then be used whenever you train your
adapt your network.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid performance function your function must be called as follows,

perf = yourpf(E,X,PP)

where:

• E is either an S x Q matrix or an cell array of layer errors.Nl TS×

Custom Functions

12-33

- Each E{i,ts} is the target matrix for the ith layer. (Tl(i,ts) is an
empty matrix if the ith layer doesn’t have a target.)

• X is an M x 1 vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

If E is a cell array you can convert it to a matrix as follows.

E = cell2mat(E);

Alternatively, your function must also be able to be called as follows,

perf = yourpf(E,net)

where you can get X and PP (if needed) as follows.

X = getx(net);
PP = net.performParam;

Your performance function must also provide information about itself using
this calling format,

info = yourpf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

When you set the network performance function (net.performFcn) to be your
function, the network’s adapt parameters (net.performParam) will
automatically get set to your default structure. Those values can then be
altered or not before training or adaption.

To see how an example custom performance function works type in these lines
of code.

help mypf
e = rand(4,5);
x = rand(12,1);
pp = mypf('pdefaults')
perf = mypf(e,x,pp)

Si Q×

12 Advanced Topics

12-34

Use this command to see how mypf was implemented.

type mypf

You can use mypf as a template to create your own weight and bias
initialization function.

Performance Derivative Functions. If you want to use backpropagation with your
performance function, you need to create a custom derivative function for it. It
needs to calculate the derivative of the network’s errors and combined weight
and bias vector, with respect to performance,

dPerf_dE = dmsereg('e',E,X,perf,PP)
dPerf_dX = dmsereg('x',E,X,perf,PP)

where:

• E is an cell array of layer errors.

- Each E{i,ts} is the target matrix for the ith layer. Note that
(Tl(i,ts) is an empty matrix if the ith layer doesn’t have a target.)

• X is an vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

• dPerf_dE is the cell array of derivatives dPerf/dE.

- Each E{i,ts} is the derivative matrix for the ith layer. Note that
(Tl(i,ts) is an empty matrix if the ith layer doesn’t have a target.)

• dPerf_dX is the derivative dPerf/dX.

To see how the example custom performance derivative function mydpf works,
type

help mydpf
e = {e};
dperf_de = mydpf('e',e,x,perf,pp)
dperf_dx = mydpf('x',e,x,perf,pp)

Use this command to see how mydpf was implemented.

type mydpf

You can use mydpf as a template to create your own performance derivative
functions.

Nl TS×

Si Q×

M 1×

Nl TS×

Si Q×

M 1×

Custom Functions

12-35

Weight and Bias Learning Functions
The most specific kind of learning function is a weight and bias learning
function. These functions are used to update individual weights and biases
during learning. with some training and adapt functions.

Once defined. you can assign your learning function to any weight and bias in
a network. For example, the following lines of code assign the weight and bias
learning function yourwblf to the second layer’s bias, and the weight coming
from the first input to the second layer.

net.biases{2}.learnFcn = 'yourwblf';
net.inputWeights{2,1}.learnFcn = 'yourwblf';

Weight and bias learning functions are only called to update weights and
biases if the network training function (net.trainFcn) is set to trainb, trainc,
or trainr, or if the network adapt function (net.adaptFcn) is set to trains. If
this is the case, then your function is used to update the weight and biases it is
assigned to whenever you train or adapt your network with train or adapt.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid weight and bias learning function, it must be callable as follows,

[dW,LS] = yourwblf(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• W is an weight matrix.

• P is an matrix of Q input (column) vectors.

• Z is an matrix of Q weighted input (column) vectors.

• N is an matrix of Q net input (column) vectors.

• A is an matrix of Q layer output (column) vectors.

• T is an matrix of Q target (column) vectors.

• E is an matrix of Q error (column) vectors.

• gW is an gradient of W with respect to performance.

• gA is an gradient of A with respect to performance.

• D is an matrix of neuron distances.

• LP is a a structure of learning parameters.

S R×

R Q×

S Q×

S Q×

S Q×

S Q×

S Q×

S R×

S Q×

S S×

12 Advanced Topics

12-36

• LS is a structure of the learning state that is updated for each call. (Use a null
matrix [] the first time.)

• dW is the resulting weight change matrix.

Your function is called as follows to update bias vector

[db,LS] = yourwblf(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• S is the number of neurons in the layer.

• b is a new bias vector.

Your learning function must also provide information about itself using this
calling format,

info = yourwblf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

To see how an example custom weight and bias initialization function works,
type

help mywblf

Use this command to see how mywbif was implemented.

type mywblf

You can use mywblf as a template to create your own weight and bias learning
function.

Self-Organizing Map Functions
There are two kinds of functions that control how neurons in self-organizing
maps respond. They are topology and distance functions.

Topology Functions
Topology functions calculate the positions of a layer’s neurons given its
dimensions.

S R×

S 1×

Custom Functions

12-37

Once defined, you can assign your topology function to any layer of a network.
For example, the following line of code assigns the topology function yourtopf
to the second layer of a network.

net.layers{2}.topologyFcn = 'yourtopf';

Your topology function is used whenever your network is trained or adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid topology function your function must calculate positions pos from
dimensions dim as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• dimi is the number of neurons along the ith dimension of the layer.

• pos is an matrix of S position vectors, where S is the total number of
neurons that is defined by the product dim1*dim1*...*dimN.

The toolbox contains an example custom topology function called mytopf. Enter
the following lines of code to see how it is used.

help mytopf
pos = mytopf(20,20);
plotsom(pos)

If you type that code, you get the following plot.

N S×

12 Advanced Topics

12-38

Enter the following command to see how mytf is implemented.

type mytopf

You can use mytopf as a template to create your own topology function.

Distance Functions
Distance functions calculate the distances of a layer’s neurons given their
position.

Once defined, you can assign your distance function to any layer of a network.
For example, the following line of code assigns the topology function yourdistf
to the second layer of a network.

net.layers{2}.distanceFcn = 'yourdistf';

Your distance function is used whenever your network is trained or adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

0 5 10 15
0

2

4

6

8

10

12

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

Custom Functions

12-39

To be a valid distance function, it must calculate distances d from position pos
as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• pos is an matrix of S neuron position vectors.

• d is an matrix of neuron distances.

The toolbox contains an example custom distance function called mydistf.
Enter the following lines of code to see how it is used.

help mydistf
pos = gridtop(4,5);
d = mydistf(pos)

Enter the following command to see how mytf is implemented.

type mydistf

You can use mydistf as a template to create your own distance function.

N S×

S S×

12 Advanced Topics

12-40

13

Network Object Reference

Network Properties (p. 13-2) Defines the properties that define the basic features of a network

Subobject Properties (p. 13-17) Defines the properties that define network details

13 Network Object Reference

13-2

Network Properties
The properties define the basic features of a network. “Subobject Properties” on
page 13-17 describes properties that define network details.

Architecture
These properties determine the number of network subobjects (which include
inputs, layers, outputs, targets, biases, and weights), and how they are
connected.

numInputs
This property defines the number of inputs a network receives.

net.numInputs

It can be set to 0 or a positive integer.

Clarification. The number of network inputs and the size of a network input are
not the same thing. The number of inputs defines how many sets of vectors the
network receives as input. The size of each input (i.e. the number of elements
in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects. Any change to this property results in a change in the size of the
matrix defining connections to layers from inputs, (net.inputConnect) and the
size of the cell array of input subobjects (net.inputs).

numLayers
This property defines the number of layers a network has.

net.numLayers

It can be set to 0 or a positive integer.

Side Effects. Any change to this property changes the size of each of these
Boolean matrices that define connections to and from layers,

net.biasConnect
net.inputConnect
net.layerConnect

Network Properties

13-3

net.outputConnect
net.targetConnect

and changes the size each cell array of subobject structures whose size depends
on the number of layers,

net.biases
net.inputWeights
net.layerWeights
net.outputs
net.targets

and also changes the size of each of the network’s adjustable parameters
properties.

net.IW
net.LW
net.b

biasConnect
This property defines which layers have biases.

net.biasConnect

It can be set to any N-by-1 matrix of Boolean values, where is the number
of network layers (net.numLayers). The presence (or absence) of a bias to the
ith layer is indicated by a 1 (or 0) at:

net.biasConnect(i)

Side Effects. Any change to this property alters the presence or absence of
structures in the cell array of biases (net.biases) and, in the presence or
absence of vectors in the cell array, of bias vectors (net.b).

inputConnect
This property defines which layers have weights coming from inputs.

net.inputConnect

It can be set to any matrix of Boolean values, where is the number
of network layers (net.numLayers), and is the number of network inputs
(net.numInputs). The presence (or absence) of a weight going to the ith layer
from the jth input is indicated by a 1 (or 0) at

Nl

Nl Ni× Nl
Ni

13 Network Object Reference

13-4

net.inputConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of
structures in the cell array of input weight subobjects (net.inputWeights) and
in the presence or absence of matrices in the cell array of input weight matrices
(net.IW).

layerConnect
This property defines which layers have weights coming from other layers.

net.layerConnect

It can be set to any matrix of Boolean values, where is the number
of network layers (net.numLayers). The presence (or absence) of a weight going
to the ith layer from the jth layer is indicated by a 1 (or 0) at

net.layerConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of
structures in the cell array of layer weight subobjects (net.layerWeights) and
in the presence or absence of matrices in the cell array of layer weight matrices
(net.LW).

outputConnect
This property defines which layers generate network outputs.

net.outputConnect

It can be set to any matrix of Boolean values, where is the number
of network layers (net.numLayers). The presence (or absence) of a network
output from the ith layer is indicated by a 1 (or 0) at

net.outputConnect(i)

Side Effects. Any change to this property will alter the number of network
outputs (net.numOutputs) and the presence or absence of structures in the cell
array of output subobjects (net.outputs).

targetConnect
This property defines which layers have associated targets.

net.targetConnect

Nl Nl× Nl

1 Nl× Nl

Network Properties

13-5

It can be set to any matrix of Boolean values, where is the number
of network layers (net.numLayers). The presence (or absence) of a target
associated with the ith layer is indicated by a 1 (or 0) at

net.targetConnect(i)

Side Effects. Any change to this property alters the number of network targets
(net.numTargets) and the presence or absence of structures in the cell array of
target subobjects (net.targets).

numOutputs (read-only)
This property indicates how many outputs the network has.

net.numOutputs

It is always set to the number of 1’s in the matrix of output connections.

numOutputs = sum(net.outputConnect)

numTargets (read-only)
This property indicates how many targets the network has.

net.numTargets

It is always set to the number of 1’s in the matrix of target connections.

numTargets = sum(net.targetConnect)

numInputDelays (read-only)
This property indicates the number of time steps of past inputs that must be
supplied to simulate the network.

net.numInputDelays

It is always set to the maximum delay value associated any of the network’s
input weights.

numInputDelays = 0;
for i=1:net.numLayers
for j=1:net.numInputs

if net.inputConnect(i,j)
numInputDelays = max(...
[numInputDelays net.inputWeights{i,j}.delays]);

1 Nl× Nl

13 Network Object Reference

13-6

end
end

end

numLayerDelays (read-only)
This property indicates the number of time steps of past layer outputs that
must be supplied to simulate the network.

net.numLayerDelays

It is always set to the maximum delay value associated any of the network’s
layer weights.

numLayerDelays = 0;
for i=1:net.numLayers
for j=1:net.numLayers

if net.layerConnect(i,j)
numLayerDelays = max(...
[numLayerDelays net.layerWeights{i,j}.delays]);

end
end

end

Subobject Structures
These properties consist of cell arrays of structures that define each of the
network’s inputs, layers, outputs, targets, biases, and weights.

The properties for each kind of subobject are described in “Subobject
Properties” on page 13-17.

inputs
This property holds structures of properties for each of the network’s inputs.

net.inputs

It is always an cell array of input structures, where is the number
of network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at

net.inputs{i}

Ni 1× Ni

Network Properties

13-7

Input Properties. See “Inputs” on page 13-17 for descriptions of input properties.

layers
This property holds structures of properties for each of the network’s layers.

net.layers

It is always an cell array of layer structures, where is the number of
network layers (net.numLayers).

The structure defining the properties of the ith layer is located at

net.layers{i}

Layer Properties. See “Layers” on page 13-18 for descriptions of layer properties.

outputs
This property holds structures of properties for each of the network’s outputs.

net.outputs

It is always an cell array, where is the number of network layers
(net.numLayers).

The structure defining the properties of the output from the ith layer (or a null
matrix []) is located at

net.outputs{i}

if the corresponding output connection is 1 (or 0).

net.outputConnect(i)

Output Properties. See “Outputs” on page 13-25 for descriptions of output
properties.

targets
This property holds structures of properties for each of the network’s targets.

net.targets

It is always an cell array, where is the number of network layers
(net.numLayers).

Nl 1× Nl

1 N× l Nl

1 N× l Nl

13 Network Object Reference

13-8

The structure defining the properties of the target associated with the ith layer
(or a null matrix []) is located at

net.targets{i}

if the corresponding target connection is 1 (or 0).

net.targetConnect(i)

Target Properties. See “Targets” on page 13-25 for descriptions of target
properties.

biases
This property holds structures of properties for each of the network’s biases.

net.biases

It is always an cell array, where is the number of network layers
(net.numLayers).

The structure defining the properties of the bias associated with the ith layer
(or a null matrix []) is located at

net.biases{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

Bias Properties. See “Biases” on page 13-26 for descriptions of bias properties.

inputWeights
This property holds structures of properties for each of the network’s input
weights.

net.inputWeights

It is always an cell array, where is the number of network layers
(net.numLayers), and is the number of network inputs (net.numInputs).

The structure defining the properties of the weight going to the ith layer from
the jth input (or a null matrix []) is located at

net.inputWeights{i,j}

Nl 1× Nl

Nl Ni× Nl
Ni

Network Properties

13-9

if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

Input Weight Properties. See “Input Weights” on page 13-28 for descriptions of
input weight properties.

layerWeights
This property holds structures of properties for each of the network’s layer
weights.

net.layerWeights

It is always an cell array, where is the number of network layers
(net.numLayers).

The structure defining the properties of the weight going to the ith layer from
the jth layer (or a null matrix []) is located at

net.layerWeights{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

Layer Weight Properties. See “Layer Weights” on page 13-32 for descriptions of
layer weight properties.

Functions
These properties define the algorithms to use when a network is to adapt, is to
be initialized, is to have its performance measured, or is to be trained.

adaptFcn
This property defines the function to be used when the network adapts.

net.adaptFcn

It can be set to the name of any network adapt function, including this toolbox
function:

trains - By-weight-and-bias network adaption function.

Nl Nl× Nl

13 Network Object Reference

13-10

The network adapt function is used to perform adaption whenever adapt is
called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom adapt functions.

Side Effects. Whenever this property is altered, the network’s adaption
parameters (net.adaptParam) are set to contain the parameters and default
values of the new function.

initFcn
This property defines the function used to initialize the network’s weight
matrices and bias vectors.

net.initFcn

It can be set to the name of any network initialization function, including this
toolbox function.

initlay - Layer-by-layer network initialization function.

The initialization function is used to initialize the network whenever init is
called.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom initialization functions.

Side Effects. Whenever this property is altered, the network’s initialization
parameters (net.initParam) are set to contain the parameters and default
values of the new function.

performFcn
This property defines the function used to measure the network’s performance.

net.performFcn

Network Properties

13-11

It can be set to the name of any performance function, including these toolbox
functions.

The performance function is used to calculate network performance during
training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom performance functions.

Side Effects. Whenever this property is altered, the network’s performance
parameters (net.performParam) are set to contain the parameters and default
values of the new function.

trainFcn
This property defines the function used to train the network.

net.trainFcn

It can be set to the name of any training function, including these toolbox
functions.

Performance Functions

mae Mean absolute error-performance function.

mse Mean squared error-performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error-performance function.

Training Functions

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.

13 Network Object Reference

13-12

The training function is used to train the network whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom training functions.

Side Effects. Whenever this property is altered, the network’s training
parameters (net.trainParam) are set to contain the parameters and default
values of the new function.

Parameters

adaptParam
This property defines the parameters and values of the current adapt function.

net.adaptParam

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent with adaptive lr backpropagation.

traingdm Gradient descent with momentum backpropagation.

traingdx Gradient descent with momentum and adaptive lr backpropagation

trainlm Levenberg-Marquardt backpropagation.

trainoss One-step secant backpropagation.

trainrp Resilient backpropagation (Rprop).

trainscg Scaled conjugate gradient backpropagation.

trainb Batch training with weight and bias learning rules.

trainc Cyclical order incremental training with learning functions.

trainr Random order incremental training with learning functions.

Training Functions

Network Properties

13-13

The fields of this property depend on the current adapt function
(net.adaptFcn). Evaluate the above reference to see the fields of the current
adapt function.

Call help on the current adapt function to get a description of what each field
means.

help(net.adaptFcn)

initParam
This property defines the parameters and values of the current initialization
function.

net.initParam

The fields of this property depend on the current initialization function
(net.initFcn). Evaluate the above reference to see the fields of the current
initialization function.

Call help on the current initialization function to get a description of what each
field means.

help(net.initFcn)

performParam
This property defines the parameters and values of the current performance
function.

net.performParam

The fields of this property depend on the current performance function
(net.performFcn). Evaluate the above reference to see the fields of the current
performance function.

Call help on the current performance function to get a description of what each
field means.

help(net.performFcn)

trainParam
This property defines the parameters and values of the current training
function.

net.trainParam

13 Network Object Reference

13-14

The fields of this property depend on the current training function
(net.trainFcn). Evaluate the above reference to see the fields of the current
training function.

Call help on the current training function to get a description of what each field
means.

help(net.trainFcn)

Weight and Bias Values
These properties define the network’s adjustable parameters: its weight
matrices and bias vectors.

IW
This property defines the weight matrices of weights going to layers from
network inputs.

net.IW

It is always an cell array, where is the number of network layers
(net.numLayers), and is the number of network inputs (net.numInputs).

The weight matrix for the weight going to the ith layer from the jth input (or a
null matrix []) is located at

net.IW{i,j}

if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

The weight matrix has as many rows as the size of the layer it goes to
(net.layers{i}.size). It has as many columns as the product of the input size
with the number of delays associated with the weight.

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

These dimensions can also be obtained from the input weight properties.

net.inputWeights{i,j}.size

Nl Ni× Nl
Ni

Network Properties

13-15

LW
This property defines the weight matrices of weights going to layers from other
layers.

net.LW

It is always an cell array, where is the number of network layers
(net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or a
null matrix []) is located at

net.LW{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

The weight matrix has as many rows as the size of the layer it goes to
(net.layers{i}.size). It has as many columns as the product of the size of the
layer it comes from with the number of delays associated with the weight.

net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties.

net.layerWeights{i,j}.size

b
This property defines the bias vectors for each layer with a bias.

net.b

It is always an cell array, where is the number of network layers
(net.numLayers).

The bias vector for the ith layer (or a null matrix []) is located at

net.b{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

The number of elements in the bias vector is always equal to the size of the
layer it is associated with (net.layers{i}.size).

Nl Nl× Nl

Nl 1× Nl

13 Network Object Reference

13-16

This dimension can also be obtained from the bias properties.

net.biases{i}.size

Other
The only other property is a user data property.

userdata
This property provides a place for users to add custom information to a network
object.

net.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.userdata.note

Subobject Properties

13-17

Subobject Properties
These properties define the details of a network’s inputs, layers, outputs,
targets, biases, and weights.

Inputs
These properties define the details of each ith network input.

net.inputs{i}

range
This property defines the ranges of each element of the ith network input.

net.inputs{i}.range

It can be set to any matrix, where is the number of elements in the
input (net.inputs{i}.size), and each element in column 1 is less than the
element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input
element, in that order

net.inputs{i}(j,:)

Uses. Some initialization functions use input ranges to find appropriate initial
values for input weight matrices.

Side Effects. Whenever the number of rows in this property is altered, the
layers’s size (net.inputs{i}.size) changes to remain consistent. The size of
any weights coming from this input (net.inputWeights{:,i}.size) and the
dimensions of their weight matrices (net.IW{:,i}) also changes size.

size
This property defines the number of elements in the ith network input.

net.inputs{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the input’s ranges
(net.inputs{i}.ranges), any input weights (net.inputWeights{:,i}.size)
and their weight matrices (net.IW{:,i}) change size to remain consistent.

Ri 2× Ri

13 Network Object Reference

13-18

userdata
This property provides a place for users to add custom information to the ith
network input.

net.inputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.inputs{i}.userdata.note

Layers
These properties define the details of each ith network layer.

net.layers{i}

dimensions
This property defines the physical dimensions of the ith layer’s neurons. Being
able to arrange a layer’s neurons in a multidimensional manner is important
for self-organizing maps.

net.layers{i}.dimensions

It can be set to any row vector of 0 or positive integer elements, where the
product of all the elements will becomes the number of neurons in the layer
(net.layers{i}.size).

Uses. Layer dimensions are used to calculate the neuron positions within the
layer (net.layers{i}.positions) using the layer’s topology function
(net.layers{i}.topologyFcn).

Side Effects. Whenever this property is altered, the layers’s size
(net.layers{i}.size) changes to remain consistent. The layer’s neuron
positions (net.layers{i}.positions) and the distances between the neurons
(net.layers{i}.distances) are also updated.

distanceFcn
This property defines the function used to calculate distances between neurons
in the ith layer (net.layers{i}.distances) from the neuron positions
(net.layers{i}.positions). Neuron distances are used by self-organizing
maps.

Subobject Properties

13-19

net.layers{i}.distanceFcn

It can be set to the name of any distance function, including these toolbox
functions.

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom distance functions.

Side Effects. Whenever this property is altered, the distance between the layer’s
neurons (net.layers{i}.distances) is updated.

distances (read-only)
This property defines the distances between neurons in the ith layer. These
distances are used by self-organizing maps.

net.layers{i}.distances

It is always set to the result of applying the layer’s distance function
(net.layers{i}.distanceFcn) to the positions of the layers neurons
(net.layers{i}.positions).

initFcn
This property defines the initialization function used to initialize the ith layer,
if the network initialization function (net.initFcn) is initlay.

net.layers{i}.initFcn

Distance Functions

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

13 Network Object Reference

13-20

It can be set to the name of any layer initialization function, including these
toolbox functions.

If the network initialization is set to initlay, then the function indicated by
this property is used to initialize the layer’s weights and biases when init is
called.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom initialization functions.

netInputFcn
This property defines the net input function use to calculate the ith layer’s net
input, given the layer’s weighted inputs and bias.

net.layers{i}.netInputFcn

It can be set to the name of any net input function, including these toolbox
functions.

The net input function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom net input functions.

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function.

Net Input Functions

netprod Product net input function.

netsum Sum net input function.

Subobject Properties

13-21

positions (read-only)
This property defines the positions of neurons in the ith layer. These positions
are used by self-organizing maps.

net.layers{i}.positions

It is always set to the result of applying the layer’s topology function
(net.layers{i}.topologyFcn) to the positions of the layer’s dimensions
(net.layers{i}.dimensions).

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with
dimensions (net.layers{1}.dimensions) of [4 5] and the topology function
(net.layers{1}.topologyFcn) is hextop, the neuron’s positions can be plotted
as shown below.

plotsom(net.layers{1}.positions)

0 1 2 3
0

0.5

1

1.5

2

2.5

3

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

13 Network Object Reference

13-22

size
This property defines the number of neurons in the ith layer.

net.layers{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the sizes of any input weights
going to the layer (net.inputWeights{i,:}.size), and any layer weights
going to the layer (net.layerWeights{i,:}.size) or coming from the layer
(net.inputWeights{i,:}.size), and the layer’s bias (net.biases{i}.size)
change.

The dimensions of the corresponding weight matrices (net.IW{i,:},
net.LW{i,:}, net.LW{:,i}) and biases (net.b{i}) also change.

Changing this property also changes the size of the layer’s output
(net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer’s neurons
(net.layers{i}.dimension) are set to the same value. (This results in a
one-dimensional arrangement of neurons. If another arrangement is required,
set the dimensions property directly instead of using size).

topologyFcn
This property defines the function used to calculate the ith layer’s neuron
positions (net.layers{i}.positions) from the layer’s dimensions
(net.layers{i}.dimensions).

net.topologyFcn

It can be set to the name of any topology function, including these toolbox
functions.

Topology Functions

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.

Subobject Properties

13-23

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom topology functions.

Side Effects. Whenever this property is altered, the positions of the layer’s
neurons (net.layers{i}.positions) is updated.

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with
dimensions (net.layers{1}.dimensions) of [8 10] and the topology function
(net.layers{1}.topologyFcn) is randtop, the neuron’s positions are arranged
something like those shown in the plot below.

plotsom(net.layers{1}.positions)

transferFcn
This function defines the transfer function used to calculate the ith layer’s
output, given the layer’s net input.

net.layers{i}.transferFcn

0 1 2 3 4 5 6
0

1

2

3

4

5

6

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions

13 Network Object Reference

13-24

It can be set to the name of any transfer function, including these toolbox
functions.

The transfer function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom transfer functions.

userdata
This property provides a place for users to add custom information to the ith
network layer.

net.layers{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

Transfer Functions

compet Competitive transfer function.

hardlim Hard-limit transfer function.

hardlims Symmetric hard-limit transfer function.

logsig Log-sigmoid transfer function.

poslin Positive linear transfer function.

purelin Hard-limit transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function.

softmax Soft max transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function.

Subobject Properties

13-25

net.layers{i}.userdata.note

Outputs

size (read-only)
This property defines the number of elements in the ith layer’s output.

net.outputs{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith
layer’s output.

net.outputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.outputs{i}.userdata.note

Targets

size (read-only)
This property defines the number of elements in the ith layer’s target.

net.targets{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith
layer’s target.

net.targets{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.targets{i}.userdata.note

13 Network Object Reference

13-26

Biases

initFcn
This property defines the function used to initialize the ith layer’s bias vector,
if the network initialization function is initlay, and the ith layer’s
initialization function is initwb.

net.biases{i}.initFcn

This function can be set to the name of any bias initialization function,
including the toolbox functions.

This function is used to calculate an initial bias vector for the ith layer
(net.b{i}) when init is called, if the network initialization function
(net.initFcn) is initlay, and the ith layer’s initialization function
(net.layers{i}.initFcn) is initwb.

net = init(net)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom initialization functions.

learn
This property defines whether the ith bias vector is to be altered during
training and adaption.

net.biases{i}.learn

It can be set to 0 or 1.

It enables or disables the bias’ learning during calls to either adapt or train.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

 Bias Initialization Functions

initcon Conscience bias initialization function.

initzero Zero-weight/bias initialization function.

rands Symmetric random weight/bias initialization function.

Subobject Properties

13-27

learnFcn
This property defines the function used to update the ith layer’s bias vector
during training, if the network training function is trainb, trainc, or trainr,
or during adaption, if the network adapt function is trains.

net.biases{i}.learnFcn

It can be set to the name of any bias learning function, including these toolbox
functions.

The learning function updates the ith bias vector (net.b{i}) during calls to
train, if the network training function (net.trainFcn) is trainb, trainc, or
trainr, or during calls to adapt, if the network adapt function (net.adaptFcn)
is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom learning functions.

Side Effects. Whenever this property is altered, the biases’s learning parameters
(net.biases{i}.learnParam) are set to contain the fields and default values of
the new function.

learnParam
This property defines the learning parameters and values for the current
learning function of the ith layer’s bias.

Learning Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnwh Widrow-Hoff weight/bias learning rule.

13 Network Object Reference

13-28

net.biases{i}.learnParam

The fields of this property depend on the current learning function
(net.biases{i}.learnFcn). Evaluate the above reference to see the fields of
the current learning function.

Call help on the current learning function to get a description of what each
field means.

help(net.biases{i}.learnFcn)

size (read-only)
This property defines the size of the ith layer’s bias vector.

net.biases{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith
layer’s bias.

net.biases{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.biases{i}.userdata.note

Input Weights

delays
This property defines a tapped delay line between the jth input and its weight
to the ith layer.

net.inputWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

Side Effects. Whenever this property is altered, the weight’s size
(net.inputWeights{i,j}.size) and the dimensions of its weight matrix
(net.IW{i,j}) are updated.

Subobject Properties

13-29

initFcn
This property defines the function used to initialize the weight matrix going to
the ith layer from the jth input, if the network initialization function is
initlay, and the ith layer’s initialization function is initwb.

net.inputWeights{i,j}.initFcn

This function can be set to the name of any weight initialization function,
including these toolbox functions.

This function is used to calculate an initial weight matrix for the weight going
to the ith layer from the jth input (net.IW{i,j}) when init is called, if the
network initialization function (net.initFcn) is initlay, and the ith layer’s
initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth
input is to be altered during training and adaption.

net.inputWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or
train.

Weight Initialization Functions

initzero Zero-weight/bias initialization function.

midpoint Midpoint-weight initialization function.

randnc Normalized column-weight initialization function.

randnr Normalized row-weight initialization function.

rands Symmetric random-weight/bias initialization function.

13 Network Object Reference

13-30

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

learnFcn
This property defines the function used to update the weight matrix going to
the ith layer from the jth input during training, if the network training
function is trainb, trainc, or trainr, or during adaption, if the network adapt
function is trains.

net.inputWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these
toolbox functions.

The learning function updates the weight matrix of the ith layer from the jth
input (net.IW{i,j}) during calls to train, if the network training function

Weight Learning Functions

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/ momentum weight/bias learning function.

learnh Hebb-weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar-weight learning function.

learnk Kohonen-weight learning function.

learnlv1 LVQ1-weight learning function.

learnlv2 LVQ2-weight learning function.

learnos Outstar-weight learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron-weight/bias learning function.

learnsom Self-organizing map-weight learning function.

learnwh Widrow-Hoff weight/bias learning rule.

Subobject Properties

13-31

(net.trainFcn) is trainb, trainc, or trainr, or during calls to adapt, if the
network adapt function (net.adaptFcn) is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom learning functions.

learnParam
This property defines the learning parameters and values for the current
learning function of the ith layer’s weight coming from the jth input.

net.inputWeights{i,j}.learnParam

The fields of this property depend on the current learning function
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the
fields of the current learning function.

Call help on the current learning function to get a description of what each
field means.

help(net.inputWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the
jth network input.

net.inputWeights{i,j}.size

It is always set to a two-element row vector indicating the number of rows and
columns of the associated weight matrix (net.IW{i,j}). The first element is
equal to the size of the ith layer (net.layers{i}.size). The second element is
equal to the product of the length of the weights delay vectors with the size of
the jth input:

length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th
input weight.

net.inputWeights{i,j}.userdata

13 Network Object Reference

13-32

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.inputWeights{i,j}.userdata.note

weightFcn
This property defines the function used to apply the ith layer’s weight from the
jth input to that input.

net.inputWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox
functions.

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating
custom weight functions.

Layer Weights

delays
This property defines a tapped delay line between the jth layer and its weight
to the ith layer.

net.layerWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

Weight Functions

dist Conscience bias initialization function.

dotprod Zero-weight/bias initialization function.

mandist Manhattan-distance weight function.

negdist Normalized column-weight initialization function.

normprod Normalized row-weight initialization function.

Subobject Properties

13-33

initFcn
This property defines the function used to initialize the weight matrix going to
the ith layer from the jth layer, if the network initialization function is
initlay, and the ith layer’s initialization function is initwb.

net.layerWeights{i,j}.initFcn

This function can be set to the name of any weight initialization function,
including the toolbox functions.

This function is used to calculate an initial weight matrix for the weight going
to the ith layer from the jth layer (net.LW{i,j}) when init is called, if the
network initialization function (net.initFcn) is initlay, and the ith layer’s
initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth
layer is to be altered during training and adaption.

net.layerWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or
train.

Weight and Bias Initialization Functions

initzero Zero-weight/bias initialization function.

midpoint Midpoint-weight initialization function.

randnc Normalized column-weight initialization function.

randnr Normalized row-weight initialization function.

rands Symmetric random-weight/bias initialization function.

13 Network Object Reference

13-34

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

learnFcn
This property defines the function used to update the weight matrix going to
the ith layer from the jth layer during training, if the network training function
is trainb, trainc, or trainr, or during adaption, if the network adapt function
is trains.

net.layerWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these
toolbox functions.

The learning function updates the weight matrix of the ith layer form the jth
layer (net.LW{i,j}) during calls to train, if the network training function

Learning Functions

learngd Gradient-descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnh Hebb-weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar-weight learning function.

learnk Kohonen-weight learning function.

learnlv1 LVQ1-weight learning function.

learnlv2 LVQ2-weight learning function.

learnos Outstar-weight learning function.

learnp Perceptron-weight/bias learning function.

learnpn Normalized perceptron-weight/bias learning function.

learnsom Self-organizing map-weight learning function.

learnwh Widrow-Hoff weight/bias learning rule.

Subobject Properties

13-35

(net.trainFcn) is trainb, trainc, or trainr, or during calls to adapt, if the
network adapt function (net.adaptFcn) is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom learning functions.

learnParam
This property defines the learning parameters fields and values for the current
learning function of the ith layer’s weight coming from the jth layer.

net.layerWeights{i,j}.learnParam

The subfields of this property depend on the current learning function
(net.layerWeights{i,j}.learnFcn). Evaluate the above reference to see the
fields of the current learning function.

Get help on the current learning function to get a description of what each field
means.

help(net.layerWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the
jth layer.

net.layerWeights{i,j}.size

It is always set to a two-element row vector indicating the number of rows and
columns of the associated weight matrix (net.LW{i,j}). The first element is
equal to the size of the ith layer (net.layers{i}.size). The second element is
equal to the product of the length of the weights delay vectors with the size of
the jth layer.

length(net.layerWeights{i,j}.delays) * net.layers{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th
layer weight.

net.layerWeights{i,j}.userdata

13 Network Object Reference

13-36

Only one field is predefined. It contains a secret message to all Neural Network
Toolbox users.

net.layerWeights{i,j}.userdata.note

weightFcn
This property defines the function used to apply the ith layer’s weight from the
jth layer to that layer’s output.

net.layerWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox
functions.

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating
custom weight functions.

Weight Functions

dist Euclidean-distance weight function.

dotprod Dot-product weight function.

mandist Manhattan-distance weight function.

negdist Dot-product weight function.

normprod Normalized dot-product weight function.

14

Reference

Functions — Categorical List
(p. 14-2)

Provides tables of Neural Network Toolbox functions by
category

Transfer Function Graphs (p. 14-14) Provides graphical depictions of the transfer functions of the
Neural Network toolbox

Functions — Alphabetical List
(p. 14-18)

Provides an alphabetical list of Neural Network Toolbox
functions

14 Reference

14-2

Functions — Categorical List

Analysis Functions

Distance Functions

Graphical Interface Function

Layer Initialization Functions

errsurf Error surface of a single input neuron.

maxlinlr Maximum learning rate for a linear neuron.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

nntool Neural Network Tool - Graphical User Interface.

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function.

Functions — Categorical List

14-3

Learning Functions

Line Search Functions

Net Input Derivative Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnh Hebb weight learning function.

learnhd Hebb with decay weight learning rule.

learnis Instar weight learning function.

learnk Kohonen weight learning function.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

learnos Outstar weight learning function.

learnp Perceptron weight and bias learning function.

learnpn Normalized perceptron weight and bias learning function.

learnsom Self-organizing map weight learning function.

learnwh Widrow-Hoff weight and bias learning rule.

srchbac One-dim. minimization using backtracking search.

srchbre One-dim. interval location using Brent’s method.

srchcha One-dim. minimization using Charalambous’ method.

srchgol One-dim. minimization using Golden section search.

srchhyb One-dim. minimization using Hybrid bisection/cubic search.

dnetprod Product net input derivative function.

dnetsum Sum net input derivative function.

14 Reference

14-4

Net Input Functions

Network Functions

Network Initialization Function

Network Use Functions

netprod Product net input function.

netsum Sum net input function.

assoclr Associative learning rules

backprop Backpropagation networks

elman Elman recurrent networks

hopfield Hopfield recurrent networks

linnet Linear networks

lvq Learning vector quantization

percept Perceptrons

radbasis Radial basis networks

selforg Self-organizing networks

initlay Layer-by-layer network initialization function.

adapt Allow a neural network to adapt.

disp Display a neural network's properties.

display Display a neural network variable’s name and properties.

init Initialize a neural network.

sim Simulate a neural network.

train Train a neural network.

Functions — Categorical List

14-5

New Networks Functions

Performance Derivative Functions

network Create a custom neural network.

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.

dmae Mean absolute error performance derivative function.

dmse Mean squared error performance derivatives function.

dmsereg Mean squared error w/reg performance derivative function.

dsse Sum squared error performance derivative function.

14 Reference

14-6

Performance Functions

Plotting Functions

mae Mean absolute error performance function.

mse Mean squared error performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error performance function.

hintonw Hinton graph of weight matrix.

hintonwb Hinton graph of weight matrix and bias vector.

plotbr Plot network perf. for Bayesian regularization training.

plotep Plot weight and bias position on error surface.

plotes Plot error surface of single input neuron.

plotpc Plot classification line on perceptron vector plot.

plotperf Plot network performance.

plotpv Plot perceptron input target vectors.

plotsom Plot self-organizing map.

plotv Plot vectors as lines from the origin.

plotvec Plot vectors with different colors.

Functions — Categorical List

14-7

Pre- and Postprocessing Functions

Simulink Support Function

Topology Functions

postmnmx Unnormalize data which has been norm. by prenmmx.

postreg Postprocess network response w. linear regression analysis.

poststd Unnormalize data which has been normalized by prestd.

premnmx Normalize data for maximum of 1 and minimum of -1.

prepca Principal component analysis on input data.

prestd Normalize data for unity standard deviation and zero mean.

tramnmx Transform data with precalculated minimum and max.

trapca Transform data with PCA matrix computed by prepca.

trastd Transform data with precalc. mean & standard deviation.

gensim Generate a Simulink® block for neural network simulation.

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.

14 Reference

14-8

Training Functions
trainb Batch training with weight and bias learning rules.

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

trainc Cyclical order incremental update.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent with adaptive lr backpropagation.

traingdm Gradient descent with momentum backpropagation.

traingdx Gradient descent with momentum & adaptive lr backprop.

trainlm Levenberg-Marquardt backpropagation.

trainoss One step secant backpropagation.

trainr Random order incremental update.

trainrp Resilient backpropagation (Rprop).

trains Sequential order incremental update.

trainscg Scaled conjugate gradient backpropagation.

Functions — Categorical List

14-9

Transfer Derivative Functions
dhardlim Hard limit transfer derivative function.

dhardlms Symmetric hard limit transfer derivative function.

dlogsig Log sigmoid transfer derivative function.

dposlin Positive linear transfer derivative function.

dpurelin Linear transfer derivative function.

dradbas Radial basis transfer derivative function.

dsatlin Saturating linear transfer derivative function.

dsatlins Symmetric saturating linear transfer derivative function.

dtansig Hyperbolic tangent sigmoid transfer derivative function.

dtribas Triangular basis transfer derivative function.

14 Reference

14-10

Transfer Functions
compet Competitive transfer function.

hardlim Hard limit transfer function.

hardlims Symmetric hard limit transfer function

logsig Log sigmoid transfer function.

poslin Positive linear transfer function

purelin Linear transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function

softmax Softmax transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function.

C

S

Functions — Categorical List

14-11

Utility Functions
calca Calculate network outputs and other signals.

calca1 Calculate network signals for one time step.

calce Calculate layer errors.

calce1 Calculate layer errors for one time step.

calcgx Calc. weight and bias perform. gradient as a single vector.

calcjejj Calculate Jacobian performance vector.

calcjx Calculate weight and bias performance Jacobian as a single
matrix.

calcpd Calculate delayed network inputs.

calcperf Calculation network outputs, signals, and performance.

formx Form bias and weights into single vector.

getx Get all network weight and bias values as a single vector.

setx Set all network weight and bias values with a single vector.

14 Reference

14-12

Vector Functions

Weight and Bias Initialization Functions

cell2mat Combine a cell array of matrices into one matrix.

combvec Create all combinations of vectors.

con2seq Converts concurrent vectors to sequential vectors.

concur Create concurrent bias vectors.

ind2vec Convert indices to vectors.

mat2cell Break matrix up into cell array of matrices.

minmax Ranges of matrix rows.

normc Normalize columns of matrix.

normr Normalize rows of matrix.

pnormc Pseudo-normalize columns of matrix.

quant Discretize value as multiples of a quantity.

seq2con Convert sequential vectors to concurrent vectors.

sumsqr Sum squared elements of matrix.

vec2ind Convert vectors to indices.

initcon Conscience bias initialization function.

initzero Zero weight and bias initialization function.

midpoint Midpoint weight initialization function.

randnc Normalized column weight initialization function.

randnr Normalized row weight initialization function.

rands Symmetric random weight/bias initialization function.

revert Change ntwk wts. and biases to prev. initialization values.

Functions — Categorical List

14-13

Weight Derivative Functions

Weight Functions

ddotprod Dot product weight derivative function.

dist Euclidean distance weight function.

dotprod Dot product weight function.

mandist Manhattan distance weight function.

negdist Negative distance weight function.

normprod Normalized dot product weight function.

14 Reference

14-14

Transfer Function Graphs

Compet Transfer Function C

2 1 4 3

Input n

0 0 1 0

Output a

a = softmax(n)

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

��
��

a = hardlims(n)

Symmetric Hard-Limit Trans. Funct.

-1

n
0

+1
a

Transfer Function Graphs

14-15

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Funct.

a

��1

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

14 Reference

14-16

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

a = satlin(n)

n
0

-1

+1

+1-1

Satlin Transfer Function

�
�

a

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a

Transfer Function Graphs

14-17

Softmax Transfer Function S

0 1
-0.5

0.5

Input n

0.17 0.46 0.1 0.28

Output a

a = softmax(n)

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

n
0

-1

+1

a = tribas(n)

Triangular Basis Function

a

-1 +1

14

14-18

Functions — Alphabetical List 14

adapt . 14-23
boxdist . 14-27
calca . 14-28
calca1 . 14-30
calce . 14-32
calce1 . 14-34
calcgx . 14-36
calcjejj . 14-38
calcjx . 14-40
calcpd . 14-42
calcperf . 14-43
combvec . 14-45
compet . 14-46
con2seq . 14-48
concur . 14-49
ddotprod . 14-50
dhardlim . 14-51
dhardlms . 14-52
disp . 14-53
display . 14-54
dist . 14-55
dlogsig . 14-57
dmae . 14-58
dmse . 14-59
dmsereg . 14-60
dnetprod . 14-61
dnetsum . 14-62
dotprod . 14-63
dposlin . 14-64
dpurelin . 14-65
dradbas . 14-66
dsatlin . 14-67
dsatlins . 14-68
dsse . 14-69
dtansig . 14-70

Functions — Alphabetical List

14-19

dtribas . 14-71
errsurf . 14-72
formx . 14-73
gensim . 14-74
getx . 14-75
gridtop . 14-76
hardlim . 14-77
hardlims . 14-79
hextop . 14-81
hintonw . 14-82
hintonwb . 14-83
ind2vec . 14-84
init . 14-85
initcon . 14-87
initlay . 14-88
initnw . 14-89
initwb . 14-91
initzero . 14-92
learncon . 14-93
learngd . 14-96
learngdm . 14-98
learnh . 14-101
learnhd . 14-103
learnis . 14-105
learnk . 14-107
learnlv1 . 14-109
learnlv2 . 14-111
learnos . 14-114
learnp . 14-116
learnpn . 14-119
learnsom . 14-122
learnwh . 14-125
linkdist . 14-128
logsig . 14-129
mae . 14-131
mandist . 14-133
maxlinlr . 14-135

14

14-20

midpoint . 14-136
minmax . 14-137
mse . 14-138
msereg . 14-140
negdist . 14-142
netprod . 14-143
netsum . 14-144
network . 14-145
newc . 14-150
newcf . 14-152
newelm . 14-154
newff . 14-156
newfftd . 14-158
newgrnn . 14-160
newhop . 14-162
newlin . 14-164
newlind . 14-166
newlvq . 14-168
newp . 14-170
newpnn . 14-172
newrb . 14-174
newrbe . 14-176
newsom . 14-178
nncopy . 14-180
nnt2c . 14-181
nnt2elm . 14-182
nnt2ff . 14-183
nnt2hop . 14-184
nnt2lin . 14-185
nnt2lvq . 14-186
nnt2p . 14-187
nnt2rb . 14-188
nnt2som . 14-189
nntool . 14-190
normc . 14-191
normprod . 14-192
normr . 14-193

Functions — Alphabetical List

14-21

plotbr . 14-194
plotep . 14-195
plotes . 14-196
plotpc . 14-197
plotperf . 14-198
plotpv . 14-199
plotsom . 14-200
plotv . 14-201
plotvec . 14-202
pnormc . 14-203
poslin . 14-204
postmnmx . 14-206
postreg . 14-208
poststd . 14-210
premnmx . 14-212
prepca . 14-213
prestd . 14-215
purelin . 14-216
quant . 14-218
radbas . 14-219
randnc . 14-221
randnr . 14-222
rands . 14-223
randtop . 14-224
revert . 14-225
satlin . 14-226
satlins . 14-228
seq2con . 14-230
setx . 14-231
sim . 14-232
softmax . 14-237
srchbac . 14-239
srchbre . 14-243
srchcha . 14-246
srchgol . 14-249
srchhyb . 14-252
sse . 14-255

14

14-22

sumsqr . 14-257
tansig . 14-258
train . 14-260
trainb . 14-264
trainbfg . 14-267
trainbr . 14-273
trainc . 14-278
traincgb . 14-281
traincgf . 14-286
traincgp . 14-292
traingd . 14-298
traingda . 14-301
traingdm . 14-305
traingdx . 14-308
trainlm . 14-312
trainoss . 14-316
trainr . 14-321
trainrp . 14-324
trains . 14-329
trainscg . 14-332
tramnmx . 14-336
trapca . 14-338
trastd . 14-340
tribas . 14-342
vec2ind . 14-344

adapt

14-23

14adaptPurpose Allow a neural network to adapt (change weights and biases on each
presentation of an input)

Syntax [net,Y,E,Pf,Af] = adapt(net,P,T,Pi,Ai)

To Get Help Type help network/adapt

Description This function calculates network outputs and errors after each presentation of
an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes,

net — Network

P — Network inputs

T — Network targets, default = zeros

Pi — Initial input delay conditions, default = zeros

Ai — Initial layer delay conditions, default = zeros

and returns the following after applying the adapt function net.adaptFcn with
the adaption parameters net.adaptParam:

net — Updated network

Y — Network outputs

E — Network errors

Pf — Final input delay conditions

Af — Final layer delay conditions

tr — Training record (epoch and perf)

Note that T is optional and only needs to be used for networks that require
targets. Pi and Pf are also optional and only need to be used for networks that
have input or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.

adapt

14-24

The cell array format is easiest to describe. It is most convenient for networks
with multiple inputs and outputs, and allows sequences of inputs to be
presented:

P — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

T — Nt x TS cell array, each element T{i,ts} is a Vi x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Y — NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix

E — Nt x TS cell array, each element E{i,ts} is a Vi x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
Nt = net.numTargets
ID = net.numInputDelays
LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size
Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to
most recent:

Pi{i,k} = input i at time ts = k ID

Pf{i,k} = input i at time ts = TS+k ID

Ai{i,k} = layer output i at time ts = k LD

Af{i,k} = layer output i at time ts = TS+k LD

adapt

14-25

The matrix format can be used if only one time step is to be simulated (TS = 1).
It is convenient for network’s with only one input and output, but can be used
with networks that have more.

Each matrix argument is found by storing the elements of the corresponding
cell array argument in a single matrix:

P — (sum of Ri) x Q matrix

T — (sum of Vi) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

Y — (sum of Ui) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

Examples Here two sequences of 12 steps (where T1 is known to depend on P1) are used
to define the operation of a filter.

p1 = {-1 0 1 0 1 1 -1 0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2 0 -1 -1 0 1 1};

Here newlin is used to create a layer with an input range of [-1 1]), one
neuron, input delays of 0 and 1, and a learning rate of 0.5. The linear layer is
then simulated.

net = newlin([-1 1],1,[0 1],0.5);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Since this is the first call of
adapt, the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note the errors are quite large. Here the network adapts to another 12 time
steps (using the previous Pf as the new initial delay conditions.)

p2 = {1 -1 -1 1 1 -1 0 0 0 1 -1 -1};
t2 = {2 0 -2 0 2 0 -1 0 0 1 0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)

adapt

14-26

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
net.adaptParam.passes = 100;
[net,y,e] = adapt(net,p3,t3);
mse(e)

The error after 100 passes through the sequence is very small. The network has
adapted to the relationship between the input and target signals.

Algorithm adapt calls the function indicated by net.adaptFcn, using the adaption
parameter values indicated by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows.
Each step in the sequence of inputs is presented to the network one at a time.
The network’s weight and bias values are updated after each step, before the
next step in the sequence is presented. Thus the network is updated TS times.

See Also sim, init, train, revert

boxdist

14-27

14boxdistPurpose Box distance function

Syntax d = boxdist(pos);

Description boxdist is a layer distance function that is used to find the distances between
the layer’s neurons, given their positions.

boxdist(pos) takes one argument,

pos N x S matrix of neuron positions

and returns the S x S matrix of distances

boxdist is most commonly used in conjunction with layers whose topology
function is gridtop.

Examples Here we define a random matrix of positions for 10 neurons arranged in
three-dimensional space and then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use You can create a standard network that uses boxdist as a distance function by
calling newsom.

To change a network so that a layer’s topology uses boxdist, set
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist. See newsom for
training and adaption examples.

Algorithm The box distance D between two position vectors Pi and Pj from a set of S
vectors is:

Dij = max(abs(Pi-Pj))

See Also sim, dist, mandist, linkdist

calca

14-28

14calcaPurpose Calculate network outputs and other signals

Syntax [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,Q,TS)

Description This function calculates the outputs of each layer in response to a network’s
delayed inputs and initial layer delay conditions.

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,Q,TS) takes,

 net — Neural network

 Pd — Delayed inputs

 Ai — Initial layer delay conditions

 Q — Concurrent size

 TS — Time steps

 and returns,

 Ac — Combined layer outputs = [Ai, calculated layer outputs]

 N — Net inputs

 LWZ — Weighted layer outputs

 IWZ — Weighted inputs

 BZ — Concurrent biases

Examples Here we create a linear network with a single input element ranging from 0 to
1, three neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],3,[0 2 4]);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8), and
the four initial input delay conditions Pi, combined inputs Pc, and delayed
inputs Pd.

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)

calca

14-29

 Here the two initial layer delay conditions for each of the three neurons are
defined:

Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};

 Here we calculate the network’s combined outputs Ac, and other signals
described above.

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,8)

calca1

14-30

14calca1Purpose Calculate network signals for one time step

Syntax [Ac,N,LWZ,IWZ,BZ] = calca1(net,Pd,Ai,Q)

Description This function calculates the outputs of each layer in response to a network’s
delayed inputs and initial layer delay conditions, for a single time step.

Calculating outputs for a single time step is useful for sequential iterative
algorithms such as trains, which need to calculate the network response for
each time step individually.

[Ac,N,LWZ,IWZ,BZ] = calca1(net,Pd,Ai,Q) takes,

 net — Neural network

 Pd — Delayed inputs for a single time step

 Ai — Initial layer delay conditions for a single time step

 Q — Concurrent size

 and returns,

 A — Layer outputs for the time step

 N — Net inputs for the time step

 LWZ — Weighted layer outputs for the time step

 IWZ — Weighted inputs for the time step

 BZ — Concurrent biases for the time step

Examples Here we create a linear network with a single input element ranging from 0 to
1, three neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],3,[0 2 4]);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8), and
the four initial input delay conditions Pi, combined inputs Pc, and delayed
inputs Pd.

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
Pi = {0.2 0.3 0.4 0.1};

calca1

14-31

Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)

Here the two initial layer delay conditions for each of the three neurons are
defined:

Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};

Here we calculate the network’s combined outputs Ac, and other signals
described above.

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,8)

calce

14-32

14calcePurpose Calculate layer errors

Syntax El = calce(net,Ac,Tl,TS)

Description This function calculates the errors of each layer in response to layer outputs
and targets.

El = calce(net,Ac,Tl,TS) takes,

net — Neural network

Ac — Combined layer outputs

Tl — Layer targets

Q — Concurrent size

and returns,

El — Layer errors

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at 0, 2, and 4 time steps.
The network is also given a recurrent connection from layer 1 to itself with tap
delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are
defined, and the networks combined outputs Ac and other signals are
calculated.

Ai = {[0.5; 0.1] [0.6; 0.5]};
[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);

calce

14-33

Here we define the layer targets for the two neurons for each of the five time
steps, and calculate the layer errors.

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
El = calce(net,Ac,Tl,5)

Here we view the network’s error for layer 1 at time step 2.

El{1,2}

calce1

14-34

14calce1Purpose Calculate layer errors for one time step

Syntax El = calce1(net,A,Tl)

Description This function calculates the errors of each layer in response to layer outputs
and targets, for a single time step. Calculating errors for a single time step is
useful for sequential iterative algorithms such as trains which need to
calculate the network response for each time step individually.

El = calce1(net,A,Tl) takes,

net — Neural network

A — Layer outputs, for a single time step

Tl — Layer targets, for a single time step

and returns,

El — Layer errors, for a single time step

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are
defined, and the networks combined outputs Ac and other signals are
calculated.

Ai = {[0.5; 0.1] [0.6; 0.5]};

calce1

14-35

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);

Here we define the layer targets for the two neurons for each of the five time
steps, and calculate the layer error using the first time step layer output
Ac(:,5) (The five is found by adding the number of layer delays, 2, to the time
step 1.), and the first time step targets Tl(:,1).

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
El = calce1(net,Ac(:,3),Tl(:,1))

Here we view the network’s error for layer 1.

El{1}

calcgx

14-36

14calcgxPurpose Calculate weight and bias performance gradient as a single vector

Syntax [gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS);

Description This function calculates the gradient of a network’s performance with respect
to its vector of weight and bias values X.

If the network has no layer delays with taps greater than 0 the result is the
true gradient.

If the network as layer delays greater than 0, the result is the Elman gradient,
an approximation of the true gradient.

[gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS) takes,

net — Neural network

X — Vector of weight and bias values

Pd — Delayed inputs

BZ — Concurrent biases

IWZ — Weighted inputs

LWZ — Weighted layer outputs

N — Net inputs

Ac — Combined layer outputs

El — Layer errors

perf — Network performance

Q — Concurrent size

TS — Time steps

and returns,

gX — Gradient dPerf/dX

normgX — Norm of gradient

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],2);

calcgx

14-37

net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons, and the
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s
performance and other signals are calculated.

X = getx(net);
[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcgz to calculate the gradient of performance with respect
to the weight and bias values X.

[gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,1,5);

See Also calcjx, calcjejj

calcjejj

14-38

14calcjejjPurpose Calculate Jacobian performance vector

Syntax [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR)

Description This function calculates two values (related to the Jacobian of a network)
required to calculate the network’s Hessian, in a memory efficient way.

Two values needed to calculate the Hessian of a network are J*E (Jacobian
times errors) and J'J (Jacobian squared). However the Jacobian J can take up
a lot of memory. This function calculates J*E and J'J by dividing up training
vectors into groups, calculating partial Jacobians Ji and its associated values
Ji*Ei and Ji'Ji, then summing the partial values into the full J*E and J'J
values.

This allows the J*E and J'J values to be calculated with a series of smaller Ji
matrices, instead of a larger J matrix.

[je,jj,normgX] = calcjejj(net,PD,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR) takes,

net — Neural network

PD — Delayed inputs

BZ — Concurrent biases

IWZ — Weighted inputs

LWZ — Weighted layer outputs

N — Net inputs

Ac — Combined layer outputs

El — Layer errors

Q — Concurrent size

TS — Time steps

MR — Memory reduction factor

and returns,

je — Jacobian times errors

jj — Jacobian transposed time the Jacobian.normgX

normgX — Norm of gradient

calcjejj

14-39

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons, and the
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s
performance and other signals are calculated.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcgx to calculate the Jacobian times error, Jacobian
squared, and the norm of the Jocobian times error using a memory reduction
of 2.

[je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,2);

The results should be the same whatever the memory reduction used. Here a
memory reduction of 3 is used.

[je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,3);

See Also calcjx, calcjejj

calcjx

14-40

14calcjxPurpose Calculate weight and bias performance Jacobian as a single matrix

Syntax jx = calcjx(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS)

Description This function calculates the Jacobian of a network’s errors with respect to its
vector of weight and bias values X.

[jX] = calcjx(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS) takes,

net — Neural network

PD — Delayed inputs

BZ — Concurrent biases

IWZ — Weighted inputs

LWZ — Weighted layer outputs

N — Net inputs

Ac — Combined layer outputs

Q — Concurrent size

TS — Time steps

and returns,

jX — Jacobian of network errors with respect to X

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

calcjx

14-41

Here the two initial layer delay conditions for each of the two neurons, and the
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s
performance and other signals are calculated.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcjx to calculate the Jacobian.

jX = calcjx(net,Pd,BZ,IWZ,LWZ,N,Ac,1,5);calcpd

See Also calcgx, calcjejj

calcpd

14-42

14calcpdPurpose Calculate delayed network inputs

Syntax Pd = calcpd(net,TS,Q,Pc)

Description This function calculates the results of passing the network inputs through each
input weights tap delay line.

Pd = calcpd(net,TS,Q,Pc) takes,

net — Neural network

TS — Time steps

Q — Concurrent size

Pc — Combined inputs = [initial delay conditions, network inputs]

and returns,

Pd — Delayed inputs

Examples Here we create a linear network with a single input element ranging from 0 to
1, three neurons, and a tap delay on the input with taps at zero, two, and four
time steps.

net = newlin([0 1],3,[0 2 4]);

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8).

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};

Here we define the four initial input delay conditions Pi.

Pi = {0.2 0.3 0.4 0.1};

The delayed inputs (the inputs after passing through the tap delays) can be
calculated with calcpd.

Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)

Here we view the delayed inputs for input weight going to layer 1, from input
1 at time steps 1 and 2.

Pd{1,1,1}
Pd{1,1,2}

calcperf

14-43

14calcperfPurpose Calculate network outputs, signals, and performance

Syntax [perf,El,Ac,N,BZ,IWZ,LWZ]=calcperf(net,X,Pd,Tl,Ai,Q,TS)

Description This function calculates the outputs of each layer in response to a networks
delayed inputs and initial layer delay conditions.

[perf,El,Ac,N,LWZ,IWZ,BZ] = calcperf(net,X,Pd,Tl,Ai,Q,TS) takes,

net — Neural network

X — Network weight and bias values in a single vector

Pd — Delayed inputs

Tl — Layer targets

Ai — Initial layer delay conditions

Q — Concurrent size

TS — Time steps

and returns,

perf — Network performance

El — Layer errors

Ac — Combined layer outputs = [Ai, calculated layer outputs]

N — Net inputs

LWZ — Weighted layer outputs

IWZ — Weighted inputs

BZ — Concurrent biases

Examples Here we create a linear network with a single input element ranging from 0 to
1, two neurons, and a tap delay on the input with taps at zero, two, and four
time steps. The network is also given a recurrent connection from layer 1 to
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

calcperf

14-44

Here is a single (Q = 1) input sequence P with five time steps (TS = 5),and the
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are
defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};

Here we define the layer targets for the two neurons for each of the five time
steps.

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted.

X = getx(net);

Here we calculate the network’s combined outputs Ac, and other signals
described above.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5)

combvec

14-45

14combvecPurpose Create all combinations of vectors

Syntax combvec(a1,a2...)

Description combvec(A1,A2...) takes any number of inputs,

A1 — Matrix of N1 (column) vectors

A2 — Matrix of N2 (column) vectors

and returns a matrix of (N1*N2*...) column vectors, where the columns
consist of all possibilities of A2 vectors, appended to A1 vectors, etc.

Examples a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

compet

14-46

14competPurpose Competitive transfer function

Graph and
Symbol

Syntax A = compet(N)

info = compet(code)

Description compet is a transfer function. Transfer functions calculate a layer’s output from
its net input.

compet(N) takes one input argument,

N - S x Q matrix of net input (column) vectors.

and returns output vectors with 1 where each net input vector has its
maximum value, and 0 elsewhere.

compet(code) returns information about this function.

These codes are defined:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

compet does not have a derivative function

In many network paradigms it is useful to have a layer whose neurons compete
for the ability to output a 1. In biology this is done by strong inhibitory
connections between each of the neurons in a layer. The result is that the only
neuron that can respond with appreciable output is the neuron whose net input
is the highest. All other neurons are inhibited so strongly by the winning
neuron that their outputs are negligible.

Compet Transfer Function C

2 1 4 3

Input n

0 0 1 0

Output a

a = softmax(n)

compet

14-47

To model this type of layer efficiently on a computer, a competitive transfer
function is often used. Such a function transforms the net input vector of a
layer of neurons so that the neuron receiving the greatest net input has an
output of 1 and all other neurons have outputs of 0.

Examples Here we define a net input vector N, calculate the output, and plot both with
bar graphs.

n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Network Use You can create a standard network that uses compet by calling newc or newpnn.

To change a network so a layer uses compet, set
net.layers{i,j}.transferFcn to 'compet'.

In either case, call sim to simulate the network with compet.

See newc or newpnn for simulation examples.

See Also sim, softmax

con2seq

14-48

14con2seqPurpose Convert concurrent vectors to sequential vectors

Syntax s = con2seq(b)

Description The Neural Network Toolbox arranges concurrent vectors with a matrix, and
sequential vectors with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential
vectors, and back again.

con2seq(b)takes one input,

b — R x TS matrix

and returns one output,

S — 1 x TS cell array of R x 1 vectors

con2seq(b,TS) can also convert multiple batches,

b — N x 1 cell array of matrices with M*TS columns

TS — Time steps

and will return,

S — N x TS cell array of matrices with M columns

Examples Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also seq2con, concur

concur

14-49

14concurPurpose Create concurrent bias vectors

Syntax concur(B,Q)

Description concur(B,Q)

B — S x 1 bias vector (or Nl x 1 cell array of vectors)

Q — Concurrent size

Returns an S x B matrix of copies of B (or Nl x 1 cell array of matrices).

Examples Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use To calculate a layer’s net input, the layer’s weighted inputs must be combined
with its biases. The following expression calculates the net input for a layer
with the netsum net input function, two input weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S x 1 vectors. However, if
the network is being simulated by sim (or adapt or train) in response to Q
concurrent vectors, then Z1 and Z2 will be S x Q matrices. Before B can be
combined with Z1 and Z2, we must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also netsum, netprod, sim, seq2con, con2seq

ddotprod

14-50

14ddotprodPurpose Dot product weight derivative function

Syntax dZ_dP = ddotprod('p',W,P,Z)

dZ_dW = ddotprod('w',W,P,Z)

Description ddotprod is a weight derivative function.

ddotprod('p',W,P,Z) takes three arguments,

W — S x R weight matrix

P — R x Q inputs

Z — S x Q weighted input

and returns the S x R derivative dZ/dP.

ddotprod('w',W,P,Z) returns the R x Q derivative dZ/dW.

Examples Here we define a weight W and input P for an input with three elements and a
layer with two neurons.

W = [0 -1 0.2; -1.1 1 0];
P = [0.1; 0.6; -0.2];

Here we calculate the weighted input with dotprod, then calculate each
derivative with ddotprod.

Z = dotprod(W,P)
dZ_dP = ddotprod('p',W,P,Z)
dZ_dW = ddotprod('w',W,P,Z)

Algorithm The derivative of a product of two elements with respect to one element is the
other element.

dZ/dP = W
dZ/dW = P

See Also dotprod

dhardlim

14-51

14dhardlimPurpose Derivative of hard limit transfer function

Syntax dA_dN = dhardlim(N,A)

Description dhardlim is the derivative function for hardlim.

dhardlim(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlim neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with hardlim and then the derivative of A
with respect to N.

A = hardlim(N)
dA_dN = dhardlim(N,A)

Algorithm The derivative of hardlim is calculated as follows:

d = 0

See Also hardlim

dhardlms

14-52

14dhardlmsPurpose Derivative of symmetric hard limit transfer function

Syntax dA_dN = dhardlms(N,A)

Description dhardlms is the derivative function for hardlims.

dhardlms(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlims neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with hardlims and then the derivative of A
with respect to N.

A = hardlims(N)
dA_dN = dhardlms(N,A)

Algorithm The derivative of hardlims is calculated as follows:

d = 0

See Also hardlims

disp

14-53

14dispPurpose Display a neural network’s properties

Syntax disp(net)

To Get Help Type help network/disp

Description disp(net) displays a network’s properties.

Examples Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);
disp(net)

See Also display, sim, init, train, adapt

display

14-54

14displayPurpose Display the name and properties of a neural network’s variables

Syntax display(net)

To Get Help Type help network/disp

Description display(net) displays a network variable’s name and properties.

Examples Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);
display(net)

display is automatically called as follows:

net

See Also disp, sim, init, train, adapt

dist

14-55

14distPurpose Euclidean distance weight function

Syntax Z = dist(W,P)

df = dist('deriv')

D = dist(pos)

Description dist is the Euclidean distance weight function. Weight functions apply weights
to an input to get weighted inputs.

 dist (W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of vector distances.

dist('deriv') returns '' because dist does not have a derivative function.

dist is also a layer distance function, which can be used to find the distances
between neurons in a layer.

dist(pos) takes one argument,

pos N x S matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in
three-dimensional space and find their distances.

pos = rand(3,10);
D = dist(pos)

Network Use You can create a standard network that uses dist by calling newpnn or
newgrnn.

dist

14-56

To change a network so an input weight uses dist, set
net.inputWeight{i,j}.weightFcn to 'dist'.

For a layer weight set net.inputWeight{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set
net.layers{i}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist.

See newpnn or newgrnn for simulation examples.

Algorithm The Euclidean distance d between two vectors X and Y is:

d = sum((x-y).^2).^0.5

See Also sim, dotprod, negdist, normprod, mandist, linkdist

dlogsig

14-57

14dlogsigPurpose Log sigmoid transfer derivative function

Syntax dA_dN = dlogsig(N,A)

Description dlogsig is the derivative function for logsig.

dlogsig(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with logsig and then the derivative of A with
respect to N.

A = logsig(N)
dA_dN = dlogsig(N,A)

Algorithm The derivative of logsig is calculated as follows:

d = a * (1 - a)

See Also logsig, tansig, dtansig

dmae

14-58

14dmaePurpose Mean absolute error performance derivative function

Syntax dPerf_dE = dmae('e',E,X,PERF,PP)

dPerf_dX = dmae('x',E,X,PERF,PP)

Description dmae is the derivative function for mae.

dmae('d',E,X,PERF,PP) takes these arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values

perf — Network performance (ignored)

PP — Performance parameters (ignored)

and returns the derivative dPerf/dE.

dmae('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s mean absolute error performance, and
derivatives of performance.

perf = mae(E)
dPerf_dE = dmae('e',E,X)
dPerf_dX = dmae('x',E,X)

Note that mae can be called with only one argument and dmae with only three
arguments because the other arguments are ignored. The other arguments
exist so that mae and dmae conform to standard performance function argument
lists.

See Also mae

dmse

14-59

14dmsePurpose Mean squared error performance derivatives function

Syntax dPerf_dE = dmse('e',E,X,perf,PP)

dPerf_dX = dmse('x',E,X,perf,PP)

Description dmse is the derivative function for mse.

dmse('d',E,X,PERF,PP) takes these arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values

perf — Network performance (ignored)

PP — Performance parameters (ignored)

and returns the derivative dPerf/dE.

dmse('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s mean squared error performance, and
derivatives of performance.

perf = mse(E)
dPerf_dE = dmse('e',E,X)
dPerf_dX = dmse('x',E,X)

Note that mse can be called with only one argument and dmse with only three
arguments because the other arguments are ignored. The other arguments
exist so that mse and dmse conform to standard performance function argument
lists.

See Also mse

dmsereg

14-60

14dmseregPurpose Mean squared error with regularization or performance derivative function

Syntax dPerf_dE = dmsereg('e',E,X,perf,PP)

dPerf_dX = dmsereg('x',E,X,perf,PP)

Description dmsereg is the derivative function for msereg.

dmsereg('d',E,X,perf,PP) takes these arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values

perf — Network performance (ignored)

PP — mse performance parameter

where PP defines one performance parameters,

PP.ratio — Relative importance of errors vs. weight and bias values

and returns the derivative dPerf/dE.

dmsereg('x',E,X,perf) returns the derivative dPerf/dX.

mse has only one performance parameter.

Examples Here we define an error E and X for a network with one 3-element output and
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here the ratio performance parameter is defined so that squared errors are 5
times as important as squared weight and bias values.

pp.ratio = 5/(5+1);

Here we calculate the network’s performance, and derivatives of performance.

perf = msereg(E,X,pp)
dPerf_dE = dmsereg('e',E,X,perf,pp)
dPerf_dX = dmsereg('x',E,X,perf,pp)

See Also msereg

dnetprod

14-61

14dnetprodPurpose Derivative of net input product function

Syntax dN_dZ = dnetprod(Z,N)

Description dnetprod is the net input derivative function for netprod.

dnetprod takes two arguments,

Z — S x Q weighted input

N — S x Q net input

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer’s net input N with netprod and then the derivative of N
with respect to each weighted input.

N = netprod(Z1,Z2)
dN_dZ1 = dnetprod(Z1,N)
dN_dZ2 = dnetprod(Z2,N)

Algorithm The derivative of a product with respect to any element of that product is the
product of the other elements.

See Also netsum, netprod, dnetsum

dnetsum

14-62

14dnetsumPurpose Sum net input derivative function

Syntax dN_dZ = dnetsum(Z,N)

Description dnetsum is the net input derivative function for netsum.

dnetsum takes two arguments,

Z — S x Q weighted input

N — S x Q net input

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer’s net input N with netsum and then the derivative of N
with respect to each weighted input.

N = netsum(Z1,Z2)
dN_dZ1 = dnetsum(Z1,N)
dN_dZ2 = dnetsum(Z2,N)

Algorithm The derivative of a sum with respect to any element of that sum is always a
ones matrix that is the same size as the sum.

See Also netsum, netprod, dnetprod

dotprod

14-63

14dotprodPurpose Dot product weight function

Syntax Z = dotprod(W,P)

df = dotprod('deriv')

Description dotprod is the dot product weight function. Weight functions apply weights to
an input to get weighted inputs.

dotprod(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q dot product of W and P.

Examples Here we define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)

Network Use You can create a standard network that uses dotprod by calling newp or
newlin.

To change a network so an input weight uses dotprod, set
net.inputWeight{i,j}.weightFcn to 'dotprod'. For a layer weight, set
net.inputWeight{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See newp and newlin for simulation examples.

See Also sim, ddotprod, dist, negdist, normprod

dposlin

14-64

14dposlinPurpose Derivative of positive linear transfer function

Syntax dA_dN = dposlin(N,A)

Description dposlin is the derivative function for poslin.

dposlin(N,A) takes two arguments, and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 poslin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with poslin and then the derivative of A with
respect to N.

A = poslin(N)
dA_dN = dposlin(N,A)

Algorithm The derivative of poslin is calculated as follows:

d = 1, if 0 <= n; 0, Otherwise.

See Also poslin

dpurelin

14-65

14dpurelinPurpose Linear transfer derivative function

Syntax dA_dN = dpurelin(N,A)

Description dpurelin is the derivative function for logsig.

dpurelin(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA_dN.

Examples Here we define the net input N for a layer of 3 purelin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with purelin and then the derivative of A
with respect to N.

A = purelin(N)
dA_dN = dpurelin(N,A)

Algorithm The derivative of purelin is calculated as follows:

D(i,q) = 1

See Also purelin

dradbas

14-66

14dradbasPurpose Derivative of radial basis transfer function

Syntax dA_dN = dradbas(N,A)

Description dradbas is the derivative function for radbas.

dradbas(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 radbas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with radbas and then the derivative of A with
respect to N.

A = radbas(N)

Algorithm The derivative of radbas is calculated as follows:

d = -2*n*a

See Also radbas

dsatlin

14-67

14dsatlinPurpose Derivative of saturating linear transfer function

Syntax dA_dN = dsatlin(N,A)

Description dsatlin is the derivative function for satlin.

dsatlin(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with satlin and then the derivative of A with
respect to N.

A = satlin(N)
dA_dN = dsatlin(N,A)

Algorithm The derivative of satlin is calculated as follows:

d = 1, if 0 <= n <= 1; 0, otherwise.

See Also satlin

dsatlins

14-68

14dsatlinsPurpose Derivative of symmetric saturating linear transfer function

Syntax dA_dN = dsatlins(N,A)

Description dsatlins is the derivative function for satlins.

dsatlins(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlins neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with satlins and then the derivative of A
with respect to N.

A = satlins(N)
dA_dN = dsatlins(N,A)

Algorithm The derivative of satlins is calculated as follows:

d = 1, if -1 <= n <= 1; 0, otherwise.

See Also satlins

dsse

14-69

14dssePurpose Sum squared error performance derivative function

Syntax dPerf_dE = dsse('e',E,X,perf,PP)

dPerf_dX = dsse('x',E,X,perf,PP)

Description dsse is the derivative function for sse.

dsse('d',E,X,perf,PP) takes these arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values

perf — Network performance (ignored)

PP — Performance parameters (ignored)

and returns the derivative dPerf_dE.

dsse('x',E,X,perf,PP)returns the derivative dPerf_dX.

Examples Here we define an error E and X for a network with one 3-element output and
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s sum squared error performance, and
derivatives of performance.

perf = sse(E)
dPerf_dE = dsse('e',E,X)
dPerf_dX = dsse('x',E,X)

Note that sse can be called with only one argument and dsse with only three
arguments because the other arguments are ignored. The other arguments
exist so that sse and dsse conform to standard performance function argument
lists.

See Also sse

dtansig

14-70

14dtansigPurpose Hyperbolic tangent sigmoid transfer derivative function

Syntax dA_dN = dtansig(N,A)

Description dtansig is the derivative function for tansig.

dtansig(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with tansig and then the derivative of A with
respect to N.

A = tansig(N)
dA_dN = dtansig(N,A)

Algorithm The derivative of tansig is calculated as follows:

d = 1-a^2

See Also tansig, logsig, dlogsig

dtribas

14-71

14dtribasPurpose Derivative of triangular basis transfer function

Syntax dA_dN = dtribas(N,A)

Description dtribas is the derivative function for tribas.

dtribas(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tribas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with tribas and then the derivative of A with
respect to N.

A = tribas(N)
dA_dN = dtribas(N,A)

Algorithm The derivative of tribas is calculated as follows:

d = 1, if -1 <= n < 0; -1, if 0 < n <= 1; 0, otherwise.

See Also tribas

errsurf

14-72

14errsurfPurpose Error surface of single input neuron

Syntax errsurf(P,T,WV,BV,F)

Description errsurf(P,T,WV,BV,F) takes these arguments,

P — 1 x Q matrix of input vectors

T — 1 x Q matrix of target vectors

WV — Row vector of values of W

BV — Row vector of values of B

F — Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also plotes

formx

14-73

14formxPurpose Form bias and weights into single vector

Syntax X = formx(net,B,IW,LW)

Description This function takes weight matrices and bias vectors for a network and
reshapes them into a single vector.

X = formx(net,B,IW,LW) takes these arguments,

net — Neural network

B — Nlx1 cell array of bias vectors

IW — NlxNi cell array of input weight matrices

LW — NlxNl cell array of layer weight matrices

and returns,

X — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three
neurons.

net = newff([0 1; -1 1],[3]);

We can get view its weight matrices and bias vectors as follows:

b = net.b
iw = net.iw
lw = net.lw

We can put these values into a single vector as follows:

x = formx(net,net.b,net.iw,net.lw))

See Also getx, setx

gensim

14-74

14gensimPurpose Generate a Simulink® block for neural network simulation

Syntax gensim(net,st)

To Get Help Type help network/gensim

Description gensim(net,st) creates a Simulink system containing a block that simulates
neural network net.

gensim(net,st) takes these inputs,

net — Neural network

st — Sample time (default = 1)

and creates a Simulink system containing a block that simulates neural
network net with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and
net.numLayerDelays are both 0) then you can use -1 for st to get a
continuously sampling network.

Examples net = newff([0 1],[5 1]);
gensim(net)

getx

14-75

14getxPurpose Get all network weight and bias values as a single vector

Syntax X = getx(net)

Description This function gets a network’s weight and biases as a vector of values.

X = getx(NET)

NET — Neural network

X — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three
neurons.

net = newff([0 1; -1 1],[3]);

We can get its weight and bias values as follows:

net.iw{1,1}
net.b{1}

We can get these values as a single vector as follows:

x = getx(net);

See Also setx, formx

gridtop

14-76

14gridtopPurpose Grid layer topology function

Syntax pos = gridtop(dim1,dim2,...,dimN)

Description gridtop calculates neuron positions for layers whose neurons are arranged in
an N dimensional grid.

gridtop(dim1,dim2,...,dimN) takes N arguments,

dimi — Length of layer in dimension i

and returns an N x S matrix of N coordinate vectors where S is the product of
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons
arranged in a 8-by-5 grid.

pos = gridtop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each
neuron at the location of its weight vector. The weights are generated randomly
so the layer is very disorganized as is evident in the plot generated by the
following code.

W = rands(40,2); plotsom(W,dist(pos))

See Also hextop, randtop

hardlim

14-77

14hardlimPurpose Hard limit transfer function

Graph and
Symbol

Syntax A = hardlim(N)

info = hardlim(code)

Description The hard limit transfer function forces a neuron to output a 1 if its net input
reaches a threshold, otherwise it outputs 0. This allows a neuron to make a
decision or classification. It can say yes or no. This kind of neuron is often
trained with the perceptron learning rule.

hardlim is a transfer function. Transfer functions calculate a layer’s output
from its net input.

hardlim(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns 1 where N is positive, 0 elsewhere

hardlim(code) returns useful information for each code string,

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

hardlim

14-78

Network Use You can create a standard network that uses hardlim by calling newp.

To change a network so that a layer uses hardlim, set
net.layers{i}.transferFcn to 'hardlim'.

In either case call sim to simulate the network with hardlim.

See newp for simulation examples.

Algorithm The transfer function output is one is n is less than or equal to 0 and zero if n
is less than 0.

hardlim(n) = 1, if n >= 0; 0 otherwise.

See Also sim, hardlims

hardlims

14-79

14hardlimsPurpose Symmetric hard limit transfer function

Graph and
Symbol

Syntax A = hardlims(N)

info = hardlims(code)

Description The symmetric hard limit transfer function forces a neuron to output a 1 if its
net input reaches a threshold. Otherwise it outputs -1. Like the regular hard
limit function, this allows a neuron to make a decision or classification. It can
say yes or no.

hardlims is a transfer function. Transfer functions calculate a layer’s output
from its net input.

hardlims(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns 1 where N is positive, -1 elsewhere.

hardlims(code) return useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

��
��

a = hardlims(n)

Symmetric Hard-Limit Trans. Funct.

-1

n
0

+1
a

hardlims

14-80

Network Use You can create a standard network that uses hardlims by calling newp.

To change a network so that a layer uses hardlims, set
net.layers{i}.transferFcn to 'hardlims'.

In either case call sim to simulate the network with hardlims.

See newp for simulation examples.

Algorithm The transfer function output is one is n is greater than or equal to 0 and -1
otherwise.

hardlim(n) = 1, if n >= 0; -1 otherwise.

See Also sim, hardlim

hextop

14-81

14hextopPurpose Hexagonal layer topology function

Syntax pos = hextop(dim1,dim2,...,dimN)

Description hextop calculates the neuron positions for layers whose neurons are arranged
in a N dimensional hexagonal pattern.

hextop(dim1,dim2,...,dimN) takes N arguments,

dimi — Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors where S is the product of
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons
arranged in a 8-by-5 hexagonal pattern.

pos = hextop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each
neuron at the location of its weight vector. The weights are generated randomly
so that the layer is very disorganized, as is evident in the fplo generated by the
following code.

W = rands(40,2); plotsom(W,dist(pos))

See Also gridtop, randtop

hintonw

14-82

14hintonwPurpose Hinton graph of weight matrix

Syntax hintonw(W,maxw,minw)

Description hintonw(W,maxw,minw) takes these inputs,

W — S x R weight matrix

maxw — Maximum weight, default = max(max(abs(W)))

minw — Minimum weight, default = M1/100

and displays a weight matrix represented as a grid of squares.

Each square’s area represents a weight’s magnitude. Each square’s projection
(color) represents a weight’s sign; inset (red) for negative weights, projecting
(green) for positive.

Examples W = rands(4,5);

The following code displays the matrix graphically.

hintonw(W)

See Also hintonwb

N
eu

ro
n

1 2 3 4 5

1

2

3

4

Input

hintonwb

14-83

14hintonwbPurpose Hinton graph of weight matrix and bias vector

Syntax hintonwb(W,B,maxw,minw)

Description hintonwb(W,B,maxw,minw) takes these inputs,

W — S x R weight matrix

B — S x 1 bias vector

maxw — Maximum weight, default = max(max(abs(W)))

minw — Minimum weight, default = M1/100

and displays a weight matrix and a bias vector represented as a grid of squares.

Each square’s area represents a weight’s magnitude. Each square’s projection
(color) represents a weight’s sign; inset (red) for negative weights, projecting
(green) for positive. The weights are shown on the left.

Examples The following code produces the result shown below.

W = rands(4,5);
b = rands(4,1);
hintonwb(W,B)

See Also hintonw

N
eu

ro
n

0 1 2 3 4 5

1

2

3

4

Input

ind2vec

14-84

14ind2vecPurpose Convert indices to vectors

Syntax vec = ind2vec(ind)

Description ind2vec and vec2ind allow indices to either be represented by themselves, or
as vectors containing a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

ind — Row vector of indices

and returns a sparse matrix of vectors, with one 1 in each column, as indicated
by ind.

Examples Here four indices are defined and converted to vector representation.

ind = [1 3 2 3]
vec = ind2vec(ind)

See Also vec2ind

init

14-85

14initPurpose Initialize a neural network

Syntax net = init(net)

To Get Help Type help network/init

Description init(net) returns neural network net with weight and bias values updated
according to the network initialization function, indicated by net.initFcn, and
the parameter values, indicated by net.initParam.

Examples Here a perceptron is created with a two-element input (with ranges of 0 to 1,
and -2 to 2) and 1 neuron. Once it is created we can display the neuron’s
weights and bias.

net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

P = [0 1 0 1; 0 0 1 1];
T = [0 0 0 1];
net = train(net,P,T);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by
perceptron networks (see newp).

Algorithm init calls net.initFcn to initialize the weight and bias values according to the
parameter values net.initParam.

Typically, net.initFcn is set to 'initlay' which initializes each layer’s
weights and biases according to its net.layers{i}.initFcn.

init

14-86

Backpropagation networks have net.layers{i}.initFcn set to 'initnw',
which calculates the weight and bias values for layer i using the
Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which
initializes each weight and bias with its own initialization function. The most
common weight and bias initialization function is rands, which generates
random values between -1 and 1.

See Also sim, adapt, train, initlay, initnw, initwb, rands, revert

initcon

14-87

14initconPurpose Conscience bias initialization function

Syntax b = initcon(s,pr)

Description initcon is a bias initialization function that initializes biases for learning with
the learncon learning function.

initcon (S,PR) takes two arguments,

S — Number of rows (neurons)

PR — R x 2 matrix of R = [Pmin Pmax], default = [1 1]

and returns an S x 1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize
weights, but it is not recommended for that purpose.

Examples Here initial bias values are calculated for a 5 neuron layer.

b = initcon(5)

Network Use You can create a standard network that uses initcon to initialize weights by
calling newc.

To prepare the bias of layer i of a custom network to initialize with initcon:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init. See newc for initialization examples.

Algorithm learncon updates biases so that each bias value b(i) is a function of the
average output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded
to equal numbers of vectors in the “past.”

See Also initwb, initlay, init, learncon

initlay

14-88

14initlayPurpose Layer-by-layer network initialization function

Syntax net = initlay(net)

info = initlay(code)

Description initlay is a network initialization function that initializes each layer i
according to its own initialization function net.layers{i}.initFcn.

initlay(net) takes,

net — Neural network

and returns the network with each layer updated. initlay(code) returns
useful information for each code string:

'pnames' — Names of initialization parameters

'pdefaults' — Default initialization parameters

initlay does not have any initialization parameters

Network Use You can create a standard network that uses initlay by calling newp, newlin,
newff, newcf, and many other new network functions.

To prepare a custom network to be initialized with initlay

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty
matrix [] since initlay has no initialization parameters.)

2 Set each net.layers{i}.initFcn to a layer initialization function.
(Examples of such functions are initwb and initnw).

To initialize the network, call init. See newp and newlin for initialization
examples.

Algorithm The weights and biases of each layer i are initialized according to
net.layers{i}.initFcn.

See Also initwb, initnw, init

initnw

14-89

14initnwPurpose Nguyen-Widrow layer initialization function

Syntax net = initnw(net,i)

Description initnw is a layer initialization function that initializes a layer’s weights and
biases according to the Nguyen-Widrow initialization algorithm. This
algorithm chooses values in order to distribute the active region of each neuron
in the layer approximately evenly across the layer’s input space.

initnw(net,i) takes two arguments,

net — Neural network

i — Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use You can create a standard network that uses initnw by calling newff or newcf.

To prepare a custom network to be initialized with initnw

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty
matrix [] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network call init. See newff and newcf for training examples.

Algorithm The Nguyen-Widrow method generates initial weight and bias values for a
layer, so that the active regions of the layer’s neurons will be distributed
approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (since all the neurons are in the input space).

• Training works faster (since each area of the input space has neurons). The
Nguyen-Widrow method can only be applied to layers

- with a bias

- with weights whose "weightFcn" is dotprod

- with "netInputFcn" set to netsum

If these conditions are not met, then initnw uses rands to initialize the layer’s
weights and biases.

initnw

14-90

See Also initwb, initlay, init

initwb

14-91

14initwbPurpose By-weight-and-bias layer initialization function

Syntax net = initwb(net,i)

Description initwb is a layer initialization function that initializes a layer’s weights and
biases according to their own initialization functions.

initwb(net,i) takes two arguments,

net — Neural network

i — Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use You can create a standard network that uses initwb by calling newp or newlin.

To prepare a custom network to be initialized with initwb

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty
matrix [] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to a weight initialization
function. Set each net.layerWeights{i,j}.initFcn to a weight
initialization function. Set each net.biases{i}.initFcn to a bias
initialization function. (Examples of such functions are rands and
midpoint.)

To initialize the network, call init.

See newp and newlin for training examples.

Algorithm Each weight (bias) in layer i is set to new values calculated according to its
weight (bias) initialization function.

See Also initnw, initlay, init

initzero

14-92

14initzeroPurpose Zero weight and bias initialization function

Syntax W = initzero(S,PR)

b = initzero(S,[1 1])

Description initzero(S,PR) takes two arguments,

S — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R weight matrix of zeros.

initzero(S,[1 1]) returns S x 1 bias vector of zeros.

Examples Here initial weights and biases are calculated for a layer with two inputs
ranging over [0 1] and [-2 2], and 4 neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Network Use You can create a standard network that uses initzero to initialize its weights
by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be
initialized with midpoint

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'initzero'. Set each
net.layerWeights{i,j}.initFcn to 'initzero'. Set each
net.biases{i}.initFcn to 'initzero'.

To initialize the network, call init.

See newp or newlin for initialization examples.

See Also initwb, initlay, init

learncon

14-93

14learnconPurpose Conscience bias learning function

Syntax [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learncon(code)

Description learncon is the conscience bias learning function used to increase the net input
to neurons that have the lowest average output until each neuron responds
approximately an equal percentage of the time.

learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B — S x 1 bias vector

P — 1x Q ones vector

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns

dB — S x 1 weight (or bias) change matrix

LS — New learning state

Learning occurs according to learncon’s learning parameter, shown here with
its default value.

LP.lr - 0.001 — Learning rate

learncon(code) returns useful information for each code string.

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learncon

14-94

Neural Network Toolbox 2.0 compatibility: The LP.lr described above equals
1 minus the bias time constant used by trainc in Neural Network Toolbox 2.0.

Examples Here we define a random output A, and bias vector W for a layer with 3 neurons.
We also define the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Since learncon only needs these values to calculate a bias change (see
algorithm below), we will use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the bias of layer i of a custom network to learn with learncon

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'. Set each
net.layerWeights{i,j}.learnFcn to 'learncon'. (Each weight learning
parameter property will automatically be set to learncon’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learncon calculates the bias change db for a given neuron by first updating
each neuron’s conscience, i.e. the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest
for smaller conscience values.

b = exp(1-log(c)) - b

learncon

14-95

(Note that learncon is able to recover C each time it is called from the bias
values.)

See Also learnk, learnos, adapt, train

learngd

14-96

14learngdPurpose Gradient descent weight and bias learning function

Syntax [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngd(code)

Description learngd is the gradient descent weight and bias learning function.

learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learngd’s learning parameter shown here with
its default value.

LP.lr - 0.01 — Learning rate

learngd(code) returns useful information for each code string:

'pnames' -— Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learngd

14-97

Examples Here we define a random gradient gW for a weight going to a layer with 3
neurons, from an input with 2 elements. We also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Since learngd only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network Use You can create a standard network that uses learngd with newff, newcf, or
newelm. To prepare the weights and the bias of layer i of a custom network to
adapt with learngd

1 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'. Set each
net.layerWeights{i,j}.learnFcn to 'learngd'. Set
net.biases{i}.learnFcn to 'learngd'. Each weight and bias learning
parameter property will automatically be set to learngd’s default
parameters.

To allow the network to adapt

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See newff or newcf for examples.

Algorithm learngd calculates the weight change dW for a given neuron from the neuron’s
input P and error E, and the weight (or bias) learning rate LR, according to the
gradient descent: dw = lr*gW.

See Also learngdm, newff, newcf, adapt, train

learngdm

14-98

14learngdmPurpose Gradient descent with momentum weight and bias learning function

Syntax [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngdm(code)

Description learngdm is the gradient descent with momentum weight and bias learning
function.

learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learngdm’s learning parameters, shown here with
their default values.

LP.lr - 0.01 — Learning rate

LP.mc - 0.9 — Momentum constant

learngdm

14-99

learngdm(code) returns useful information for each code string:

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA

Examples Here we define a random gradient G for a weight going to a layer with 3
neurons, from an input with 2 elements. We also define a learning rate of 0.5
and momentum constant of 0.8;

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Since learngdm only needs these values to calculate a weight change (see
algorithm below), we will use them to do so. We will use the default initial
learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Network Use You can create a standard network that uses learngdm with newff, newcf, or
newelm.

To prepare the weights and the bias of layer i of a custom network to adapt
with learngdm

1 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'. Set each
net.layerWeights{i,j}.learnFcn to 'learngdm'. Set
net.biases{i}.learnFcn to 'learngdm'. Each weight and bias learning
parameter property will automatically be set to learngdm’s default
parameters.

To allow the network to adapt

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

learngdm

14-100

See newff or newcf for examples.

Algorithm learngdm calculates the weight change dW for a given neuron from the neuron’s
input P and error E, the weight (or bias) W, learning rate LR, and momentum
constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state
LS.

See Also learngd, newff, newcf, adapt, train

learnh

14-101

14learnhPurpose Hebb weight learning rule

Syntax [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnh(code)

Description learnh is the Hebb weight learning function.

learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnh’s learning parameter, shown here with its
default value.

LP.lr - 0.01 — Learning rate

learnh(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnh

14-102

Examples Here we define a random input P and output A for a layer with a two-element
input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Since learnh only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with
learnh

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'. Set each
net.layerWeights{i,j}.learnFcn to 'learnh'. Each weight learning
parameter property will automatically be set to learnh’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnh calculates the weight change dW for a given neuron from the neuron’s
input P, output A, and learning rate LR according to the Hebb learning rule:

dw = lr*a*p'

See Also learnhd, adapt, train

References Hebb, D.O., The Organization of Behavior, New York: Wiley, 1949.

learnhd

14-103

14learnhdPurpose Hebb with decay weight learning rule

Syntax [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnhd(code)

Description learnhd is the Hebb weight learning function.

learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnhd’s learning parameters shown here with
default values.

LP.dr - 0.01 — Decay rate

LP.lr - 0.1 — Learning rate

learnhd(code) returns useful information for each code string:

'pnames' - — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnhd

14-104

Examples Here we define a random input P, output A, and weights W for a layer with a
two-element input and three neurons. We also define the decay and learning
rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Since learnhd only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with
learnhd

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'. Set each
net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight learning
parameter property will automatically be set to learnhd’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnhd calculates the weight change dW for a given neuron from the neuron’s
input P, output A, decay rate DR, and learning rate LR according to the Hebb
with decay learning rule:

dw = lr*a*p' - dr*w

See Also learnh, adapt, train

learnis

14-105

14learnisPurpose Instar weight learning function

Syntax [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnis(code)

Description learnis is the instar weight learning function.

learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnis’s learning parameter, shown here with
its default value.

LP.lr - 0.01 — Learning rate

learnis(code) return useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnis

14-106

Examples Here we define a random input P, output A, and weight matrix W for a layer with
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnis only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network so that it
can learn with learnis

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'. Set each
net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight learning
parameter property will automatically be set to learnis’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnis calculates the weight change dW for a given neuron from the neuron’s
input P, output A, and learning rate LR according to the instar learning rule:

dw = lr*a*(p'-w)

See Also learnk, learnos, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel
Press, 1982.

learnk

14-107

14learnkPurpose Kohonen weight learning function

Syntax [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnk(code)

Description learnk is the Kohonen weight learning function.

learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnk’s learning parameter, shown here with its
default value.

LP.lr - 0.01 — Learning rate

learnk(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnk

14-108

Examples Here we define a random input P, output A, and weight matrix W for a layer with
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnk only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights of layer i of a custom network to learn with learnk

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'. Set each
net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning
parameter property will automatically be set to learnk’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnk calculates the weight change dW for a given neuron from the neuron’s
input P, output A, and learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise.

See Also learnis, learnos, adapt, train

References Kohonen, T., Self-Organizing and Associative Memory, New York:
Springer-Verlag, 1984.

learnlv1

14-109

14learnlv1Purpose LVQ1 weight learning function

Syntax [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv1(code)

Description learnlv1 is the LVQ1 weight learning function.

learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x R neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnlv1’s learning parameter shown here with
its default value.

LP.lr - 0.01 — Learning rate

learnlv1(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

needg' — Returns 1 if this function uses gW or gA

learnlv1

14-110

Examples Here we define a random input P, output A, weight matrix W, and output
gradient gA for a layer with a two-element input and three neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv1 only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv1 with newlvq. To prepare
the weights of layer i of a custom network to learn with learnlv1

1 Set net.trainFcn to ‘trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'. Set each
net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning
parameter property will automatically be set to learnlv1’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv1 calculates the weight change dW for a given neuron from the neuron’s
input P, output A, output gradient gA and learning rate LR, according to the
LVQ1 rule, given i the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also learnlv2, adapt, train

learnlv2

14-111

14learnlv2Purpose LVQ2.1 weight learning function

Syntax [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv2(code)

Description learnlv2 is the LVQ2 weight learning function.

learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnlv1’s learning parameter, shown here with
its default value.

LP.lr - 0.01 — Learning rate

LP.window - 0.25 — Window size (0 to 1, typically 0.2 to 0.3)

learnlv2(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnlv2

14-112

Examples Here we define a sample input P, output A, weight matrix W, and output
gradient gA for a layer with a two-element input and three neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv2 only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv2 with newlvq.

To prepare the weights of layer i of a custom network to learn with learnlv2

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'. Set each
net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning
parameter property will automatically be set to learnlv2’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv2 implements Learning Vector Quantization 2.1, which works as
follows:

For each presentation, if the winning neuron i should not have won, and the
runner up j should have, and the distance di between the winning neuron and

learnlv2

14-113

the input p is roughly equal to the distance dj from the runner up neuron to
the input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move
the runner up neuron j weights toward the input according to:

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))

See Also learnlv1, adapt, train

learnos

14-114

14learnosPurpose Outstar weight learning function

Syntax [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnos(code)

Description learnos is the outstar weight learning function.

learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnos’s learning parameter, shown here with
its default value.

LP.lr - 0.01 — Learning rate

learnos(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnos

14-115

Examples Here we define a random input P, output A, and weight matrix W for a layer with
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnos only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with
learnos

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'. Set each
net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight learning
parameter property will automatically be set to learnos’s default
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnos calculates the weight change dW for a given neuron from the neuron’s
input P, output A, and learning rate LR according to the outstar learning rule:

dw = lr*(a-w)*p'

See Also learnis, learnk, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel
Press, 1982.

learnp

14-116

14learnpPurpose Perceptron weight and bias learning function

Syntax [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnp(code)

Description learnp is the perceptron weight/bias learning function.

learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or b, and S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

learnp(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

Examples Here we define a random input P and error E to a layer with a two-element
input and three neurons.

p = rand(2,1);

learnp

14-117

e = rand(3,1);

Since learnp only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to learn with
learnp

1 Set net.trainFcn to 'trainb'. (net.trainParam will automatically become
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'. Set each
net.layerWeights{i,j}.learnFcn to 'learnp'. Set
net.biases{i}.learnFcn to 'learnp'. (Each weight and bias learning
parameter property will automatically become the empty matrix since
learnp has no learning parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnp calculates the weight change dW for a given neuron from the neuron’s
input P and error E according to the perceptron learning rule:

dw = 0, if e = 0
= p', if e = 1
= -p', if e = -1

This can be summarized as:

dw = e*p'

See Also learnpn, newp, adapt, train

learnp

14-118

References Rosenblatt, F., Principles of Neurodynamics, Washington D.C.: Spartan Press,
1961.

learnpn

14-119

14learnpnPurpose Normalized perceptron weight and bias learning function

Syntax [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnpn(code)

Description learnpn is a weight and bias learning function. It can result in faster learning
than learnp when input vectors have widely varying magnitudes.

learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

learnpn(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

Examples Here we define a random input P and error E to a layer with a two-element
input and three neurons.

p = rand(2,1);
e = rand(3,1);

learnpn

14-120

Since learnpn only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to learn with
learnpn

1 Set net.trainFcn to 'trainb'. (net.trainParam will automatically become
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'. Set each
net.layerWeights{i,j}.learnFcn to 'learnpn'. Set
net.biases{i}.learnFcn to 'learnpn'. (Each weight and bias learning
parameter property will automatically become the empty matrix since
learnpn has no learning parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnpn calculates the weight change dW for a given neuron from the neuron’s
input P and error E according to the normalized perceptron learning rule

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0, if e = 0
= pn', if e = 1
= -pn', if e = -1

The expression for dW can be summarized as:

dw = e*pn'

Limitations Perceptrons do have one real limitation. The set of input vectors must be
linearly separable if a solution is to be found. That is, if the input vectors with

learnpn

14-121

targets of 1 cannot be separated by a line or hyperplane from the input vectors
associated with values of 0, the perceptron will never be able to classify them
correctly.

See Also learnp, newp, adapt, train

learnsom

14-122

14learnsomPurpose Self-organizing map weight learning function

Syntax [dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnsom(code)

Description learnsom is the self-organizing map weight learning function.

learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnsom’s learning parameter, shown here with
its default value.

LP.order_lr 0.9 Ordering phase learning rate.

LP.order_steps 1000 Ordering phase steps.

LP.tune_lr 0.02 Tuning phase learning rate.

LP.tune_nd 1 Tuning phase neighborhood distance.

learnsom

14-123

learnpn(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

Examples Here we define a random input P, output A, and weight matrix W, for a layer
with a two-element input and six neurons. We also calculate positions and
distances for the neurons, which are arranged in a 2-by-3 hexagonal pattern.
Then we define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Since learnsom only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'. Set each
net.layerWeights{i,j}.learnFcn to 'learnsom'. Set
net.biases{i}.learnFcn to 'learnsom'. (Each weight learning parameter
property will automatically be set to learnsom’s default parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

learnsom

14-124

2 Call train (adapt).

Algorithm learnsom calculates the weight change dW for a given neuron from the neuron’s
input P, activation A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances
D and the current neighborhood size ND:

a2(i,q) = 1, if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases:
an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this
phase LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted
from the maximum neuron distance down to 1. It is during this phase that
neuron weights are expected to order themselves in the input space consistent
with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always
set to LP.tune_nd. During this phase the weights are expected to spread out
relatively evenly over the input space while retaining their topological order
found during the ordering phase.

See Also adapt, train

learnwh

14-125

14learnwhPurpose Widrow-Hoff weight/bias learning function

Syntax [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh(code)

Description learnwh is the Widrow-Hoff weight/bias learning function, and is also known
as the delta or least mean squared (LMS) rule.

learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W — S x R weight matrix (or b, and S x 1 bias vector)

P — R x Q input vectors (or ones(1,Q))

Z — S x Q weighted input vectors

N — S x Q net input vectors

A — S x Q output vectors

T — S x Q layer target vectors

E — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnwh’s learning parameter shown here with
its default value.

LP.lr 0.01 — Learning rate

learnwh(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA

learnwh

14-126

Examples Here we define a random input P and error E to a layer with a two-element
input and three neurons. We also define the learning rate LR learning
parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Since learnwh only needs these values to calculate a weight change (see
algorithm below), we will use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use You can create a standard network that uses learnwh with newlin.

To prepare the weights and the bias of layer i of a custom network to learn with
learnwh

1 Set net.trainFcn to 'trainb'. net.trainParam will automatically become
trainb’s default parameters.

2 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become
trains’s default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'. Set each
net.layerWeights{i,j}.learnFcn to 'learnwh'. Set
net.biases{i}.learnFcn to 'learnwh'.

 Each weight and bias learning parameter property will automatically be set to
learnwh’s default parameters.

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train(adapt).

See newlin for adaption and training examples.

Algorithm learnwh calculates the weight change dW for a given neuron from the neuron’s
input P and error E, and the weight (or bias) learning rate LR, according to the
Widrow-Hoff learning rule:

dw = lr*e*pn'

learnwh

14-127

See Also newlin, adapt, train

References Widrow, B., and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON
Convention Record, New York IRE, pp. 96-104, 1960.

Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York:
Prentice-Hall, 1985.

linkdist

14-128

14linkdistPurpose Link distance function

Syntax d = linkdist(pos)

Description linkdist is a layer distance function used to find the distances between the
layer’s neurons given their positions.

linkdist(pos) takes one argument,

pos — N x S matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random matrix of positions for 10 neurons arranged in three-
dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use You can create a standard network that uses linkdist as a distance function
by calling newsom.

To change a network so that a layer’s topology uses linkdist, set
net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist. See newsom for
training and adaption examples.

Algorithm The link distance D between two position vectors Pi and Pj from a set of S
vectors is

Dij = 0, if i==j
= 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
= 2, if k exists, Dik = Dkj = 1
= 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
= N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
= S, if none of the above conditions apply.

See Also sim, dist, mandist

logsig

14-129

14logsigPurpose Log sigmoid transfer function

Graph and
Symbol

Syntax A = logsig(N)

info = logsig(code)

Description logsig is a transfer function. Transfer functions calculate a layer’s output from
its net input.

logsig(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N squashed between 0 and 1.

logsig(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Network Use You can create a standard network that uses logsig by calling newff or newcf.

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

logsig

14-130

To change a network so a layer uses logsig, set net.layers{i}.transferFcn
to 'logsig'.

In either case, call sim to simulate the network with purelin.

See newff or newcf for simulation examples.

Algorithm logsig(n) = 1 / (1 + exp(-n))

See Also sim, dlogsig, tansig

mae

14-131

14maePurpose Mean absolute error performance function

Syntax perf = mae(E,X,PP)

perf = mae(E,net,PP)

info = mae(code)

Description mae is a network performance function.

mae(E,X,PP) takes from one to three arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the mean absolute error.

The errors E can be given in cell array form,

E — Nt x TS cell array, each element E{i,ts} is a Vi x Q matrix or[]

or as a matrix,

E — (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q = Batch size

Vi = net.targets{i}.size

mae(E,net,PP) can take an alternate argument to X,

net - Neural network from which X can be obtained (ignored).

mae(code) returns useful information for each code string:

'deriv' Name of derivative function

'name' Full name

'pnames' Names of training parameters

'pdefaults' — Default training parameters

mae

14-132

Examples Here a perceptron is created with a 1-element input ranging from -10 to 10, and
one neuron.

net = newp([-10 10],1);

Here the network is given a batch of inputs P. The error is calculated by
subtracting the output A from target T. Then the mean absolute error is
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other
arguments are ignored. mae supports those arguments to conform to the
standard performance function argument list.

Network Use You can create a standard network that uses mae with newp.

To prepare a custom network to be trained with mae, set net.performFcn to
'mae'. This will automatically set net.performParam to the empty matrix [], as
mae has no performance parameters.

In either case, calling train or adapt will result in mae being used to calculate
performance.

See newp for examples.

See Also mse, msereg, dmae

mandist

14-133

14mandistPurpose Manhattan distance weight function

Syntax Z = mandist(W,P)

df = mandist('deriv')

D = mandist(pos);

Description mandist is the Manhattan distance weight function. Weight functions apply
weights to an input to get weighted inputs.

mandist(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of vector distances.

mandist('deriv') returns '' because mandist does not have a derivative
function.

mandist is also a layer distance function, which can be used to find the
distances between neurons in a layer.

mandist(pos) takes one argument,

pos — An S row matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in three-
dimensional space and then find their distances.

pos = rand(3,10);
D = mandist(pos)

Network Use You can create a standard network that uses mandist as a distance function by
calling newsom.

mandist

14-134

To change a network so an input weight uses mandist, set
net.inputWeight{i,j}.weightFcn to 'mandist'. For a layer weight, set
net.inputWeight{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or
newgrnn for simulation examples.

Algorithm The Manhattan distance D between two vectors X and Y is:

D = sum(abs(x-y))

See Also sim, dist, linkdist

maxlinlr

14-135

14maxlinlrPurpose Maximum learning rate for a linear layer

Syntax lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description maxlinlr is used to calculate learning rates for newlin.

maxlinlr(P) takes one argument,

P — R x Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that
is to be trained only on the vectors in P.

maxlinlr(P,'bias') returns the maximum learning rate for a linear layer
with a bias.

Examples Here we define a batch of four two-element input vectors and find the
maximum learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also linnet, newlin, newlind

midpoint

14-136

14midpointPurpose Midpoint weight initialization function

Syntax W = midpoint(S,PR)

Description midpoint is a weight initialization function that sets weight (row) vectors to
the center of the input ranges.

midpoint(S,PR) takes two arguments,

S — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R matrix with rows set to (Pmin+Pmax)'/2.

Examples Here initial weight values are calculated for a 5 neuron layer with input
elements ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network Use You can create a standard network that uses midpoint to initialize weights by
calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize
with midpoint:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. Set each
net.layerWeights{i,j}.initFcn to 'midpoint';

To initialize the network call init.

See Also initwb, initlay, init

minmax

14-137

14minmaxPurpose Ranges of matrix rows

Syntax pr = minmax(p)

Description minmax(P) takes one argument,

P — R x Q matrix

and returns the R x 2 matrix PR of minimum and maximum values for each row
of P.

Examples P = [0 1 2; -1 -2 -0.5]
pr = minmax(P)

mse

14-138

14msePurpose Mean squared error performance function

Syntax perf = mse(E,X,PP)

perf = mse(E,net,PP)

info = mse(code)

Description mse is a network performance function. It measures the network’s performance
according to the mean of squared errors.

mse(E,X,PP) takes from one to three arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the mean squared error.

mse(E,net,PP) can take an alternate argument to X,

net — Neural network from which X can be obtained (ignored)

mse(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward network is created with a 1-element input
ranging from -10 to 10, four hidden tansig neurons, and one purelin output
neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

Here the network is given a batch of inputs P. The error is calculated by
subtracting the output A from target T. Then the mean squared error is
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y

mse

14-139

perf = mse(e)

Note that mse can be called with only one argument because the other
arguments are ignored. mse supports those ignored arguments to conform to
the standard performance function argument list.

Network Use You can create a standard network that uses mse with newff, newcf, or newelm.

To prepare a custom network to be trained with mse, set net.performFcn to
'mse'. This will automatically set net.performParam to the empty matrix [],
as mse has no performance parameters.

In either case, calling train or adapt will result in mse being used to calculate
performance.

See newff or newcf for examples.

See Also msereg, mae, dmse

msereg

14-140

14mseregPurpose Mean squared error with regularization performance function

Syntax perf = msereg(E,X,PP)

perf = msereg(E,net,PP)

info = msereg(code)

Description msereg is a network performance function. It measures network performance
as the weight sum of two factors: the mean squared error and the mean
squared weight and bias values.

msereg(E,X,PP) takes from three arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values

PP — Performance parameter

where PP defines one performance parameters,

PP.ratio — Relative importance of errors vs. weight and bias values

and returns the sum of mean squared errors (times PP.ratio) with the mean
squared weight and bias values (times 1 PP.ratio).

The errors E can be given in cell array form,

E — Nt x TS cell array, each element E{i,ts} is an Vi x Q matrix or []

or as a matrix,

E — (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q = Batch size
Vi = net.targets{i}.size

msereg(E,net) takes an alternate argument to X and PP,

net — Neural network from which X and PP can be obtained

msereg

14-141

msereg(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward is created with a one-element input ranging
from -2 to 2, four hidden tansig neurons, and one purelin output neuron.

net = newff([-2 2],[4 1]
{'tansig','purelin'},'trainlm','learngdm','msereg');

Here the network is given a batch of inputs P. The error is calculated by
subtracting the output A from target T. Then the mean squared error is
calculated using a ratio of 20/(20+1). (Errors are 20 times as important as
weight and bias values).

p = [-2 -1 0 1 2];
t = [0 1 1 1 0];
y = sim(net,p)
e = t-y
net.performParam.ratio = 20/(20+1);
perf = msereg(e,net)

Network Use You can create a standard network that uses msereg with newff, newcf, or
newelm.

To prepare a custom network to be trained with msereg, set net.performFcn to
'msereg'. This will automatically set net.performParam to msereg’s default
performance parameters.

In either case, calling train or adapt will result in msereg being used to
calculate performance.

See newff or newcf for examples.

See Also mse, mae, dmsereg

negdist

14-142

14negdistPurpose Negative distance weight function

Syntax Z = negdist(W,P)

df = negdist('deriv')

Description negdist is a weight function. Weight functions apply weights to an input to get
weighted inputs.

negdist(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of negative vector distances.

negdist('deriv') returns '' because negdist does not have a derivative
function.

Examples Here we define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use You can create a standard network that uses negdist by calling newc or
newsom.

To change a network so an input weight uses negdist, set
net.inputWeight{i,j}.weightFcn to 'negdist'. For a layer weight set
net.inputWeight{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist. See newc or
newsom for simulation examples.

Algorithm negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also sim, dotprod, dist

netprod

14-143

14netprodPurpose Product net input function

Syntax N = netprod(Z1,Z2,...,Zn)

df = netprod('deriv')

Description netprod is a net input function. Net input functions calculate a layer’s net
input by combining its weighted inputs and biases.

netprod(Z1,Z2,...,Zn) takes,

Zi — S x Q matrices

and returns an element-wise sum of Zi’s.

netprod('deriv') returns netprod’s derivative function.

Examples Here netprod combines two sets of weighted input vectors (which we have
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netprod(Z1,Z2)

Here netprod combines the same weighted inputs with a bias vector. Because
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B
must be created with concur so that all sizes match up.

b = [0; -1];
n = netprod(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netprod by calling newpnn or
newgrnn.

To change a network so that a layer uses netprod, set
net.layers{i}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or
newgrnn for simulation examples.

See Also sim, dnetprod, netsum, concur

netsum

14-144

14netsumPurpose Sum net input function

Syntax N = netsum(Z1,Z2,...,Zn)

df = netsum('deriv')

Description netsum is a net input function. Net input functions calculate a layer’s net input
by combining its weighted inputs and biases.

netsum(Z1,Z2,...,Zn) takes any number of inputs,

Zi — S x Q matrices,

and returns N, the element-wise sum of Zi’s.

netsum('deriv') returns netsum’s derivative function.

Examples Here netsum combines two sets of weighted input vectors (which we have
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netsum(Z1,Z2)

Here netsum combines the same weighted inputs with a bias vector. Because
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B
must be created with concur so that all sizes match up.

b = [0; -1];
n = netsum(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netsum by calling newp or newlin.

To change a network so a layer uses netsum, set net.layers{i}.netInputFcn
to 'netsum'.

In either case, call sim to simulate the network with netsum. See newp or
newlin for simulation examples.

See Also sim, dnetprod, netprod, concur

network

14-145

14networkPurpose Create a custom neural network

Syntax net = network

net = network(numInputs,numLayers,biasConnect,inputConnect,
layerConnect,outputConnect,targetConnect)

To Get Help Type help network/network

Description network creates new custom networks. It is used to create networks that are
then customized by functions such as newp, newlin, newff, etc.

network takes these optional arguments (shown with default values):

numInputs — Number of inputs, 0

numLayers — Number of layers, 0

biasConnect — numLayers-by-1 Boolean vector, zeros

inputConnect — numLayers-by-numInputs Boolean matrix, zeros

layerConnect — numLayers-by-numLayers Boolean matrix, zeros

outputConnect — 1-by-numLayers Boolean vector, zeros

targetConnect — 1-by-numLayers Boolean vector, zeros

and returns,

net — New network with the given property values.

network

14-146

Properties Architecture properties:

net.numInputs: 0 or a positive integer.

Number of inputs.

net.numLayers: 0 or a positive integer.

Number of layers.

net.biasConnect: numLayer-by-1 Boolean vector.

If net.biasConnect(i) is 1, then the layer i has a bias and net.biases{i}
is a structure describing that bias.

net.inputConnect: numLayer-by-numInputs Boolean vector.

If net.inputConnect(i,j) is 1, then layer i has a weight coming from
input j and net.inputWeights{i,j} is a structure describing that weight.

net.layerConnect: numLayer-by-numLayers Boolean vector.

If net.layerConnect(i,j) is 1, then layer i has a weight coming from
layer j and net.layerWeights{i,j} is a structure describing that weight.

net.outputConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1, then the network has an output from layer
i and net.outputs{i} is a structure describing that output.

net.targetConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1, then the network has a target from layer i
and net.targets{i} is a structure describing that target.

net.numOutputs: 0 or a positive integer. Read only.

Number of network outputs according to net.outputConnect.

net.numTargets: 0 or a positive integer. Read only.

Number of targets according to net.targetConnect.

net.numInputDelays: 0 or a positive integer. Read only.

Maximum input delay according to all net.inputWeight{i,j}.delays.

net.numLayerDelays: 0 or a positive number. Read only.

Maximum layer delay according to all net.layerWeight{i,j}.delays.

network

14-147

Subobject structure properties:

net.inputs: numInputs-by-1 cell array.

net.inputs{i} is a structure defining input i.

net.layers: numLayers-by-1 cell array.

net.layers{i} is a structure defining layer i.

net.biases: numLayers-by-1 cell array.

If net.biasConnect(i) is 1, then net.biases{i} is a structure defining
the bias for layer i.

net.inputWeights: numLayers-by-numInputs cell array.

If net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a
structure defining the weight to layer i from input j.

net.layerWeights: numLayers-by-numLayers cell array.

If net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a
structure defining the weight to layer i from layer j.

net.outputs: 1-by-numLayers cell array.

If net.outputConnect(i) is 1, then net.outputs{i} is a structure
defining the network output from layer i.

net.targets: 1-by-numLayers cell array.

If net.targetConnect(i) is 1, then net.targets{i} is a structure
defining the network target to layer i.

Function properties:

net.adaptFcn: name of a network adaption function or ''.

net.initFcn: name of a network initialization function or ''.

net.performFcn: name of a network performance function or ''.

net.trainFcn: name of a network training function or ''.

Parameter properties:

net.adaptParam: network adaption parameters.

net.initParam: network initialization parameters.

net.performParam: network performance parameters.

net.trainParam: network training parameters.

network

14-148

Weight and bias value properties:

net.IW: numLayers-by-numInputs cell array of input weight values.

net.LW: numLayers-by-numLayers cell array of layer weight values.

net.b: numLayers-by-1 cell array of bias values.

Other properties:

net.userdata: structure you can use to store useful values.

Examples Here is the code to create a network without any inputs and layers, and then
set its number of inputs and layer to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Here is the code to create the same network with one line of code.

net = network(1,2)

Here is the code to create a 1 input, 2 layer, feed-forward network. Only the
first layer will have a bias. An input weight will connect to layer 1 from input
1. A layer weight will connect to layer 2 from layer 1. Layer 2 will be a network
output, and have a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1],[0 1])

We can then see the properties of subobjects as follows:

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
net.targets{2}

We can get the weight matrices and bias vector as follows:

net.iw.{1,1}, net.iw{2,1}, net.b{1}

We can alter the properties of any of these subobjects. Here we change the
transfer functions of both layers:

network

14-149

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

Here we change the number of elements in input 1 to 2, by setting each
element’s range:

net.inputs{1}.range = [0 1; -1 1];

Next we can simulate the network for a two-element input vector:

p = [0.5; -0.1];
y = sim(net,p)

See Also sim

newc

14-150

14newcPurpose Create a competitive layer

Syntax net = newc

net = newc(PR,S,KLR,CLR)

Description Competitive layers are used to solve classification problems.

net = newc creates a new network with a dialog box.

net = newc(PR,S,KLR,CLR) takes these inputs,

PR — R x 2 matrix of min and max values for R input elements

S — Number of neurons

KLR — Kohonen learning rate, default = 0.01

CLR — Conscience learning rate, default = 0.001

and returns a new competitive layer.

Properties Competitive layers consist of a single layer with the negdist weight function,
netsum net input function, and the compet transfer function.

The layer has a weight from the input, and a bias.

Weights and biases are initialized with midpoint and initcon.

Adaption and training are done with trains and trainr, which both update
weight and bias values with the learnk and learncon learning functions.

Examples Here is a set of four two-element vectors P.

P = [.1 .8 .1 .9; .2 .9 .1 .8];

A competitive layer can be used to divide these inputs into two classes. First a
two neuron layer is created with two input elements ranging from 0 to 1, then
it is trained.

net = newc([0 1; 0 1],2);
net = train(net,P);

The resulting network can then be simulated and its output vectors converted
to class indices.

Y = sim(net,P)

newc

14-151

Yc = vec2ind(Y)

See Also sim, init, adapt, train, trains, trainr, newcf

newcf

14-152

14newcfPurpose Create a trainable cascade-forward backpropagation network

Syntax net = newcf

net = newcf(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newcf creates a new network with a dialog box.

newcf(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR — R x 2 matrix of min and max values for R input elements

Si — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingd'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns an N layer cascade-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it
requires a lot of memory to run. If you get an “out-of-memory” error when
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance
functions such as mse or msereg.

newcf

14-153

Examples Here is a problem consisting of inputs P and targets T that we would like to
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];

Here a two-layer cascade-forward network is created. The network’s input
ranges from [0 to 10]. The first layer has five tansig neurons, the second layer
has one purelin neuron. The trainlm network training function is to be used.

net = newcf([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network’s output is
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Cascade-forward networks consist of Nl layers using the dotprod weight
function, netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has
weights coming from the input and all previous layers. All layers have biases.
The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified
learning function. Training is done with the specified training function.
Performance is measured according to the specified performance function.

See Also newff, newelm, sim, init, adapt, train, trains

newelm

14-154

14newelmPurpose Create an Elman backpropagation network

Syntax net = newelm

net = newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newelm creates a new network with a dialog box.

newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes several
arguments,

PR — R x 2 matrix of min and max values for R input elements

Si — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns an Elman network.

The training function BTF can be any of the backprop training functions such
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it
requires a lot of memory to run. If you get an “out-of-memory” error when
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance
functions such as mse or msereg.

newelm

14-155

Examples Here is a series of Boolean inputs P, and another sequence T, which is 1
wherever P has had two 1’s in a row.

P = round(rand(1,20));
T = [0 (P(1:end-1)+P(2:end) == 2)];

We would like the network to recognize whenever two 1’s occur in a row. First
we arrange these values as sequences.

Pseq = con2seq(P);
Tseq = con2seq(T);

Next we create an Elman network whose input varies from 0 to 1, and has five
hidden neurons and 1 output.

net = newelm([0 1],[10 1],{'tansig','logsig'});

Then we train the network with a mean squared error goal of 0.1, and simulate
it.

net = train(net,Pseq,Tseq);
Y = sim(net,Pseq)

Algorithm Elman networks consist of Nl layers using the dotprod weight function, netsum
net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has
a weight coming from the previous layer. All layers except the last have a
recurrent weight. All layers have biases. The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified
learning function. Training is done with the specified training function.
Performance is measured according to the specified performance function.

See Also newff, newcf, sim, init, adapt, train, trains

newff

14-156

14newffPurpose Create a feed-forward backpropagation network

Syntax net = newff

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newff creates a new network with a dialog box.

newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR — R x 2 matrix of min and max values for R input elements

Si — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it
requires a lot of memory to run. If you get an "out-of-memory" error when
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance
functions such as mse or msereg.

newff

14-157

Examples Here is a problem consisting of inputs P and targets T that we would like to
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has five tansig neurons, the second layer has one
purelin neuron. The trainlm network training function is to be used.

net = newff([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network’s output is
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function,
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has
a weight coming from the previous layer. All layers have biases. The last layer
is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified
learning function. Training is done with the specified training function.
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train, trains

newfftd

14-158

14newfftdPurpose Create a feed-forward input-delay backpropagation network

Syntax net = newfftd

net = newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newfftd creates a new network with a dialog box.

newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR — R x 2 matrix of min and max values for R input elements

ID — Input delay vector

Si — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backprop network training function, default = 'traingdx'

BLF — Backprop weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it
requires a lot of memory to run. If you get an "out-of-memory" error when
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

newfftd

14-159

The performance function can be any of the differentiable performance
functions such as mse or msereg.

Examples Here is a problem consisting of an input sequence P and target sequence T that
can be solved by a network with one delay.

P = {1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1};
T = {1 -1 0 1 0 -1 1 -1 0 0 0 1 0 -1 0 1};

Here a two-layer feed-forward network is created with input delays of 0 and 1.
The network’s input ranges from [0 to 1]. The first layer has five tansig
neurons, the second layer has one purelin neuron. The trainlm network
training function is to be used.

net = newfftd([0 1],[0 1],[5 1],{'tansig' 'purelin'});

Here the network is simulated.

Y = sim(net,P)

Here the network is trained for 50 epochs. Again the network’s output is
calculated.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P)

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function,
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input with the specified input
delays. Each subsequent layer has a weight coming from the previous layer. All
layers have biases. The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified
learning function. Training is done with the specified training function.
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train, trains

newgrnn

14-160

14newgrnnPurpose Design a generalized regression neural network (grnn)

Syntax net = newgrnn

net = newgrnn(P,T,spread)

Description net = newgrnn creates a new network with a dialog box.

Generalized regression neural networks are a kind of radial basis network that
is often used for function approximation. grnn's can be designed very quickly.

newgrnn(P,T,spread) takes three inputs,

P — R x Q matrix of Q input vectors

T — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 1.0

and returns a new generalized regression neural network.

The larger the spread, is the smoother the function approximation will be. To
fit data very closely, use a spread smaller than the typical distance between
input vectors. To fit the data more smoothly, use a larger spread.

Properties newgrnn creates a two-layer network. The first layer has radbas neurons,
calculates weighted inputs with dist and net input with netprod. The second
layer has purelin neurons, calculates weighted input with normprod and net
inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set
to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted
inputs of +/- spread. The second layer weights W2 are set to T.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

newgrnn

14-161

See Also sim, newrb, newrbe, newpnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van
Nostrand Reinhold, pp. 155-61, 1993.

newhop

14-162

14newhopPurpose Create a Hopfield recurrent network

Syntax net = newhop

net = newhop(T)

Description Hopfield networks are used for pattern recall.

net = newhop creates a new network with a dialog box.

newhop(T) takes one input argument,

T — R x Q matrix of Q target vectors (values must be +1 or -1)

and returns a new Hopfield recurrent neural network with stable points at the
vectors in T.

Properties Hopfield networks consist of a single layer with the dotprod weight function,
netsum net input function, and the satlins transfer function.

The layer has a recurrent weight from itself and a bias.

Examples Here we create a Hopfield network with two three-element stable points T.

T = [-1 -1 1; 1 -1 1]';
net = newhop(T);

Below we check that the network is stable at these points by using them as
initial layer delay conditions. If the network is stable we would expect that the
outputs Y will be the same. (Since Hopfield networks have no inputs, the second
argument to sim is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

To see if the network can correct a corrupted vector, run the following code,
which simulates the Hopfield network for five time steps. (Since Hopfield
networks have no inputs, the second argument to sim is {Q TS} = [1 5] when
using cell array notation.)

Ai = {[-0.9; -0.8; 0.7]};
[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

newhop

14-163

If you run the above code, Y{1} will equal T(:,1) if the network has managed
to convert the corrupted vector Ai to the nearest target vector.

Algorithm Hopfield networks are designed to have stable layer outputs as defined by user-
supplied targets. The algorithm minimizes the number of unwanted stable
points.

See Also sim, satlins

References Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural
networks: linear systems operating on a closed hypercube,” IEEE Transactions
on Circuits and Systems, vol. 36, no. 11, pp. 1405-1422, November 1989.

newlin

14-164

14newlinPurpose Create a linear layer

Syntax net = newlin

net = newlin(PR,S,ID,LR)

Description Linear layers are often used as adaptive filters for signal processing and
prediction.

net = newlin creates a new network with a dialog box.

newlin(PR,S,ID,LR) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

S — Number of elements in the output vector

ID — Input delay vector, default = [0]

LR — Learning rate, default = 0.01

and returns a new linear layer.

net = newlin(PR,S,0,P) takes an alternate argument,

P — Matrix of input vectors

and returns a linear layer with the maximum stable learning rate for learning
with inputs P.

Examples This code creates a single input (range of [-1 1] linear layer with one neuron,
input delays of 0 and 1, and a learning rate of 0.01. It is simulated for an input
sequence P1.

net = newlin([-1 1],1,[0 1],0.01);
P1 = {0 -1 1 1 0 -1 1 0 0 1};
Y = sim(net,P1)

Here targets T1 are defined and the layer adapts to them. (Since this is the first
call to adapt, the default input delay conditions are used.)

T1 = {0 -1 0 2 1 -1 0 1 0 1};
[net,Y,E,Pf] = adapt(net,P1,T1); Y

Here the linear layer continues to adapt for a new sequence using the previous
final conditions PF as initial conditions.

newlin

14-165

P2 = {1 0 -1 -1 1 1 1 0 -1};
T2 = {2 1 -1 -2 0 2 2 1 0};
[net,Y,E,Pf] = adapt(net,P2,T2,Pf); Y

Here we initialize the layer’s weights and biases to new values.

net = init(net);

Here we train the newly initialized layer on the entire sequence for 200 epochs
to an error goal of 0.1.

P3 = [P1 P2];
T3 = [T1 T2];
net.trainParam.epochs = 200;
net.trainParam.goal = 0.1;
net = train(net,P3,T3);
Y = sim(net,[P1 P2])

Algorithm Linear layers consist of a single layer with the dotprod weight function, netsum
net input function, and purelin transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with trains and trainb, which both update
weight and bias values with learnwh. Performance is measured with mse.

See Also newlind, sim, init, adapt, train, trains, trainb

newlind

14-166

14newlindPurpose Design a linear layer

Syntax net = newlind

net = newlind(P,T,Pi)

Description net = newlind creates a new network with a dialog box.

newlind(P,T,Pi) takes these input arguments,

P — R x Q matrix of Q input vectors

T — S x Q matrix of Q target class vectors

Pi — 1 x ID cell array of initial input delay states

where each element Pi{i,k} is an RixQ matrix, default = []

and returns a linear layer designed to output T (with minimum sum square
error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and
multiple inputs and layers by supplying input and target data in cell array
form:

P — NixTS cell array, each element P{i,ts} is an Ri x Q input matrix

T — NtxTS cell array, each element P{i,ts} is an Vi x Q matrix

Pi — NixID cell array, each element Pi{i,k} is an Ri x Q matrix, default = []

returns a linear network with ID input delays, Ni network inputs, Nl layers,
and designed to output T (with minimum sum square error) given input P.

Examples We would like a linear layer that outputs T given P for the following definitions.

P = [1 2 3];
T = [2.0 4.1 5.9];

Here we use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

We would like another linear layer that outputs the sequence T given the
sequence P and two initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};

newlind

14-167

T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)

We would like a linear network with two outputs Y1 and Y2 that generate
sequences T1 and T2, given the sequences P1 and P2 with three initial input
delay states Pi1 for input 1, and three initial delays states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithm newlind calculates weight W and bias B values for a linear layer from inputs P
and targets T by solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also sim, newlin

newlvq

14-168

14newlvqPurpose Create a learning vector quantization network

Syntax net = newlvq

net = newlvq(PR,S1,PC,LR,LF)

Description Learning vector quantization (LVQ) networks are used to solve classification
problems.

net = newlvq creates a new network with a dialog box.

net = newlvq(PR,S1,PC,LR,LF) takes these inputs,

PR R x 2 matrix of min and max values for R input elements

S1 Number of hidden neurons

PC S2 element vector of typical class percentages

LR Learning rate, default = 0.01

LF Learning function, default = 'learnlv2'

returns a new LVQ network.

The learning function LF can be learnlv1 or learnlv2.

Properties newlvq creates a two-layer network. The first layer uses the compet transfer
function, calculates weighted inputs with negdist, and net input with netsum.
The second layer has purelin neurons, calculates weighted input with dotprod
and net inputs with netsum. Neither layer has biases.

First layer weights are initialized with midpoint. The second layer weights are
set so that each output neuron i has unit weights coming to it from PC(i)
percent of the hidden neurons.

Adaption and training are done with trains and trainr, which both update
the first layer weights with the specified learning functions.

Examples The input vectors P and target classes Tc below define a classification problem
to be solved by an LVQ network.

P = [-3 -2 -2 0 0 0 0 +2 +2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
Tc = [1 1 1 2 2 2 2 1 1 1];

newlvq

14-169

The target classes Tc are converted to target vectors T. Then, an LVQ network
is created (with inputs ranges obtained from P, four hidden neurons, and class
percentages of 0.6 and 0.4) and is trained.

T = ind2vec(Tc);
net = newlvq(minmax(P),4,[.6 .4]);
net = train(net,P,T);

The resulting network can be tested.

Y = sim(net,P)
Yc = vec2ind(Y)

See Also sim, init, adapt, train, trains, trainr, learnlv1, learnlv2

newp

14-170

14newpPurpose Create a perceptron

Syntax net = newp

net = newp(PR,S,TF,LF)

Description Perceptrons are used to solve simple (i.e. linearly separable) classification
problems.

net = newp creates a new network with a dialog box.

net = newp(PR,S,TF,LF) takes these inputs,

PR — R x 2 matrix of min and max values for R input elements

S — Number of neurons

TF — Transfer function, default = 'hardlim'

LF — Learning function, default = 'learnp'

and returns a new perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF
can be learnp or learnpn.

Properties Perceptrons consist of a single layer with the dotprod weight function, the
netsum net input function, and the specified transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with trains and trainc, which both update
weight and bias values with the specified learning function. Performance is
measured with mae.

Examples This code creates a perceptron layer with one two-element input (ranges [0 1]
and [-2 2]) and one neuron. (Supplying only two arguments to newp results in
the default perceptron learning function learnp being used.)

net = newp([0 1; -2 2],1);

Here we simulate the network to a sequence of inputs P.

P1 = {[0; 0] [0; 1] [1; 0] [1; 1]};
Y = sim(net,P1)

newp

14-171

Here we define a sequence of targets T (together P and T define the operation of
an AND gate), and then let the network adapt for 10 passes through the
sequence. We then simulate the updated network.

T1 = {0 0 0 1};
net.adaptParam.passes = 10;
net = adapt(net,P1,T1);
Y = sim(net,P1)

Now we define a new problem, an OR gate, with batch inputs P and targets T.

P2 = [0 0 1 1; 0 1 0 1];
T2 = [0 1 1 1];

Here we initialize the perceptron (resulting in new random weight and bias
values), simulate its output, train for a maximum of 20 epochs, and then
simulate it again.

net = init(net);
Y = sim(net,P2)
net.trainParam.epochs = 20;
net = train(net,P2,T2);
Y = sim(net,P2)

Notes Perceptrons can classify linearly separable classes in a finite amount of time.
If input vectors have a large variance in their lengths, the learnpn can be
faster than learnp.

See Also sim, init, adapt, train, hardlim, hardlims, learnp, learnpn, trains, trainc

newpnn

14-172

14newpnnPurpose Design a probabilistic neural network

Syntax net = newpnn

net = newpnn(P,T,spread)

Description Probabilistic neural networks (PNN) are a kind of radial basis network
suitable for classification problems.

net = newpnn creates a new network with a dialog box.

net = newpnn(P,T,spread)takes two or three arguments,

P — R x Q matrix of Q input vectors

T — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 0.1

and returns a new probabilistic neural network.

If spread is near zero, the network will act as a nearest neighbor classifier. As
spread becomes larger, the designed network will take into account several
nearby design vectors.

Examples Here a classification problem is defined with a set of inputs P and class indices
Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

Here the class indices are converted to target vectors, and a PNN is designed
and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithm newpnn creates a two-layer network. The first layer has radbas neurons, and
calculates its weighted inputs with dist, and its net input with netprod. The
second layer has compet neurons, and calculates its weighted input with
dotprod and its net inputs with netsum. Only the first layer has biases.

newpnn

14-173

newpnn sets the first layer weights to P', and the first layer biases are all set to
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted
inputs of +/- spread. The second layer weights W2 are set to T.

See Also sim, ind2vec, vec2ind, newrb, newrbe, newgrnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van
Nostrand Reinhold, pp. 35-55, 1993.

newrb

14-174

14newrbPurpose Design a radial basis network

Syntax net = newrb

[net,tr] = newrb(P,T,goal,spread,MN,DF)

Description Radial basis networks can be used to approximate functions. newrb adds
neurons to the hidden layer of a radial basis network until it meets the
specified mean squared error goal.

net = newrb creates a new network with a dialog box.

newrb(P,T,goal,spread,MN, DF) takes two to these arguments,

P — R x Q matrix of Q input vectors

T — S x Q matrix of Q target class vectors

goal — Mean squared error goal, default = 0.0

spread — Spread of radial basis functions, default = 1.0

MN — Maximum number of neurons, default is Q

DF — Number of neurons to add between displays, default = 25

and returns a new radial basis network.

The larger that spread is, the smoother the function approximation will be. Too
large a spread means a lot of neurons will be required to fit a fast changing
function. Too small a spread means many neurons will be required to fit a
smooth function, and the network may not generalize well. Call newrb with
different spreads to find the best value for a given problem.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrb creates a two-layer network. The first layer has radbas neurons, and
calculates its weighted inputs with dist, and its net input with netprod. The

newrb

14-175

second layer has purelin neurons, and calculates its weighted input with
dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated
until the network’s mean squared error falls below goal.

1 The network is simulated.

2 The input vector with the greatest error is found.

3 A radbas neuron is added with weights equal to that vector.

4 The purelin layer weights are redesigned to minimize error.

See Also sim, newrbe, newgrnn, newpnn

newrbe

14-176

14newrbePurpose Design an exact radial basis network

Syntax net = newrbe

net = newrbe(P,T,spread)

Description Radial basis networks can be used to approximate functions. newrbe very
quickly designs a radial basis network with zero error on the design vectors.

net = newrbe creates a new network with a dialog box.

newrbe(P,T,spread) takes two or three arguments,

P — R x Q matrix of Q input vectors

T — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 1.0

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too
large a spread can cause numerical problems.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrbe creates a two-layer network. The first layer has radbas neurons, and
calculates its weighted inputs with dist, and its net input with netprod. The
second layer has purelin neurons, and calculates its weighted input with
dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first layer weights to P', and the first layer biases are all set to
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted
inputs of +/- spread.

The second layer weights IW{2,1} and biases b{2} are found by simulating the
first layer outputs A{1}, and then solving the following linear expression:

newrbe

14-177

[W{2,1} b{2}] * [A{1}; ones] = T

See Also sim, newrb, newgrnn, newpnn

newsom

14-178

14newsomPurpose Create a self-organizing map

Syntax net = newsom

net = newsom(PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TND)

Description Competitive layers are used to solve classification problems.

net = newsom creates a new network with a dialog box.

net = newsom (PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TND) takes,

PR — R x 2 matrix of min and max values for R input elements

Di — Size of ith layer dimension, defaults = [5 8]

TFCN — Topology function, default ='hextop'

DFCN — Distance function, default ='linkdist'

OLR — Ordering phase learning rate, default = 0.9

OSTEPS — Ordering phase steps, default = 1000

TLR — Tuning phase learning rate, default = 0.02

TND — Tuning phase neighborhood distance, default = 1

and returns a new self-organizing map.

The topology function TFCN can be hextop, gridtop, or randtop. The distance
function can be linkdist, dist, or mandist.

Properties Self-organizing maps (SOM) consist of a single layer with the negdist weight
function, netsum net input function, and the compet transfer function.

The layer has a weight from the input, but no bias. The weight is initialized
with midpoint.

Adaption and training are done with trains and trainr, which both update
the weight with learnsom.

Examples The input vectors defined below are distributed over an two-dimension input
space varying over [0 2] and [0 1]. This data will be used to train a SOM with
dimensions [3 5].

P = [rand(1,400)*2; rand(1,400)];
net = newsom([0 2; 0 1],[3 5]);

newsom

14-179

plotsom(net.layers{1}.positions)

Here the SOM is trained and the input vectors are plotted with the map that
the SOM’s weights have formed.

net = train(net,P);
plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

See Also sim, init, adapt, train

nncopy

14-180

14nncopyPurpose Copy matrix or cell array

Syntax nncopy(X,M,N)

Description nncopy(X,M,N) takes two arguments,

X — R x C matrix (or cell array)

M — Number of vertical copies

N — Number of horizontal copies

and returns a new (R*M) x (C*N) matrix (or cell array).

Examples x1 = [1 2 3; 4 5 6];
y1 = nncopy(x1,3,2)
x2 = {[1 2]; [3; 4; 5]}
y2 = nncopy(x2,2,3)

nnt2c

14-181

14nnt2cPurpose Update NNT 2.0 competitive layer

Syntax net = nnt2c(PR,W,KLR,CLR)

Description nnt2c(PR,W,KLR,CLR) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W — S x R weight matrix

KLR — Kohonen learning rate, default = 0.01

CLR — Conscience learning rate, default = 0.001

and returns a competitive layer.

Once a network has been updated, it can be simulated, initialized, or trained
with sim, init, adapt, and train.

See Also newc

nnt2elm

14-182

14nnt2elmPurpose Update NNT 2.0 Elman backpropagation network

Syntax net = nnt2elm(PR,W1,B1,W2,B2,BTF,BLF,PF)

Description nnt2elm(PR,W1,B1,W2,B2,BTF,BLF,PF) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W1 — S1 x (R+S1) weight matrix

B1 — S1 x 1 bias vector

W2 — S2 x S1 weight matrix

B2 — S2 x 1 bias vector

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns a feed-forward network.

The training function BTF can be any of the backpropagation training functions
such as traingd, traingdm, traingda, and traingdx. Large step-size
algorithms, such as trainlm, are not recommended for Elman networks.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance
functions such as mse or msereg.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newelm

nnt2ff

14-183

14nnt2ffPurpose Update NNT 2.0 feed-forward network

Syntax net = nnt2ff(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF)

Description nnt2ff(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF) takes
these arguments,

PR — R x 2 matrix of min and max values for R input elements

Wi — Weight matrix for the ith layer

Bi — Bias vector for the ith layer

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF — Performance function, default = 'mse'

and returns a feed-forward network.

The training function BTF can be any of the backpropagation training functions
such as traingd, traingdm, traingda, traingdx or trainlm.

The learning function BLF can be either of the backpropagation learning
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance
functions such as mse or msereg.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newff, newcf, newfftd, newelm

nnt2hop

14-184

14nnt2hopPurpose Update NNT 2.0 Hopfield recurrent network

Syntax net = nnt2hop(W,B)

Description nnt2hop(W,B) takes these arguments,

W — S x S weight matrix

B — S x 1 bias vector

and returns a perceptron.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newhop

nnt2lin

14-185

14nnt2linPurpose Update NNT 2.0 linear layer

Syntax net = nnt2lin(PR,W,B,LR)

Description nnt2lin(PR,W,B) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W — S x R weight matrix

B — S x 1 bias vector

LR — Learning rate, default = 0.01

and returns a linear layer.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newlin

nnt2lvq

14-186

14nnt2lvqPurpose Update NNT 2.0 learning vector quantization network

Syntax net = nnt2lvq(PR,W1,W2,LR,LF)

Description nnt2lvq(PR,W1,W2,LR,LF) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W1 — S1 x R weight matrix

W2 — S2 x S1 weight matrix

LR — Learning rate, default = 0.01

LF — Learning function, default = 'learnlv2'

and returns a radial basis network.

The learning function LF can be learnlv1 or learnlv2.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newlvq

nnt2p

14-187

14nnt2pPurpose Update NNT 2.0 perceptron

Syntax net = nnt2p(PR,W,B,TF,LF)

Description nnt2p(PR,W,B,TF,LF) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W — S x R weight matrix

B — S x 1 bias vector

TF — Transfer function, default = 'hardlim'

LF — Learning function, default = 'learnp'

and returns a perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF
can be learnp or learnpn.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newp

nnt2rb

14-188

14nnt2rbPurpose Update NNT 2.0 radial basis network

Syntax net = nnt2rb(PR,W1,B1,W2,B2)

Description nnt2rb(PR,W1,B1,W2,B2) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W1 — S1 x R weight matrix

B1 — S1 x 1 bias vector

W2 — S2 x S1 weight matrix

B2 — S2 x 1 bias vector

and returns a radial basis network.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newrb, newrbe, newgrnn, newpnn

nnt2som

14-189

14nnt2somPurpose Update NNT 2.0 self-organizing map

Syntax net = nnt2som(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TND)

Description nnt2som(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TND) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

Di — Size of ith layer dimension

W — S x R weight matrix

OLR — Ordering phase learning rate, default = 0.9

OSTEPS — Ordering phase steps, default = 1000

TLR — Tuning phase learning rate, default = 0.02

TND — Tuning phase neighborhood distance, default = 1

and returns a self-organizing map.

nnt2som assumes that the self-organizing map has a grid topology (gridtop)
using link distances (linkdist). This corresponds with the neighborhood
function in NNT 2.0.

The new network will only output 1 for the neuron with the greatest net input.
In NNT 2.0 the network would also output 0.5 for that neuron’s neighbors.

Once a network has been updated, it can be simulated, initialized, adapted, or
trained with sim, init, adapt, and train.

See Also newsom

nntool

14-190

14nntoolPurpose Neural Network Tool - Graphical User Interface

Syntax nntool

Description nntool opens the Network/Data Manager window, which allows you to import,
create, use, and export neural networks and data.

normc

14-191

14normcPurpose Normalize the columns of a matrix

Syntax normc(M)

Description normc(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normc(m)
ans =

0.3162 0.4472
0.9487 0.8944

See Also normr

normprod

14-192

14normprodPurpose Normalized dot product weight function

Syntax Z = normprod(W,P)

df = normprod('deriv')

Description normprod is a weight function. Weight functions apply weights to an input to
get weighted inputs.

normprod(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of normalized dot products.

normprod('deriv') returns '' because normprod does not have a derivative
function.

Examples Here we define a random weight matrix W and input vector P and calculate the
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set
net.inputWeight{i,j}.weightFcn to 'normprod'. For a layer weight, set
net.inputWeight{i,j}.weightFcn to 'normprod'.

In either case call sim to simulate the network with normprod. See newgrnn for
simulation examples.

Algorithm normprod returns the dot product normalized by the sum of the input vector
elements.

z = w*p/sum(p)

See Also sim, dotprod, negdist, dist

normr

14-193

14normrPurpose Normalize the rows of a matrix

Syntax normr(M)

Description normr(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normr(m)
ans =

 0.4472 0.8944
0.6000 0.8000

See Also normc

plotbr

14-194

14plotbr

Purpose Plot network performance for Bayesian regularization training.

Syntax plotbr(TR,name,epoch)

Description plotbr(tr,name,epoch) takes these inputs,

TR — Training record returned by train

name — Training function name, default = ''

epoch — Number of epochs, default = length of training record

and plots the training sum squared error, the sum squared weight, and the
effective number of parameters.

Examples Here are input values P and associated targets T.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

The code below creates a network and trains it on this problem.

net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
[net,tr] = train(net,p,t);

During training plotbr was called to display the training record. You can also
call plotbr directly with the final training record TR, as shown below.

plotbr(tr)

plotep

14-195

14plotepPurpose Plot a weight-bias position on an error surface

Syntax h = plotep(W,B,E)
h = plotep(W,B,E,H)

Description plotep is used to show network learning on a plot already created by plotes.

plotep(W,B,E) takes these arguments,

W — Current weight value

B — Current bias value

E — Current error

and returns a vector H, containing information for continuing the plot.

plotep(W,B,E,H) continues plotting using the vector H returned by the last call
to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted
next time, as well as points on the error contour, so they can be connected.

See Also errsurf, plotes

plotes

14-196

14plotesPurpose Plot the error surface of a single input neuron

Syntax plotes(WV,BV,ES,V)

Description plotes(WV,BV,ES,V) takes these arguments,

WV — 1 x N row vector of values of W

BV — 1 x M row vector of values of B

ES — M x N matrix of error vectors

V — View, default = [-37.5, 30]

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4; bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also errsurf

plotpc

14-197

14plotpcPurpose Plot a classification line on a perceptron vector plot

Syntax plotpc(W,B)

plotpc(W,B,H)

Description plotpc(W,B) takes these inputs,

W — S x R weight matrix (R must be 3 or less)

B — S x 1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes anadditional input,

H — Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after
plotpv.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in
P, assigns values to its weights and biases, and plots the resulting classification
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpv

plotperf

14-198

14plotperfPurpose Plot network performance

Syntax plotperf(TR,goal,name,epoch)

Description plotperf(TR,goal,name,epoch) takes these inputs,

TR — Training record returned by train.

goal — Performance goal, default = NaN.

name — Training function name, default = ''.

epoch — Number of epochs, default = length of training record.

and plots the training performance, and if available, the performance goal,
validation performance, and test performance.

Examples Here are eight input values P and associated targets T, plus a like number of
validation inputs VV.P and targets VV.T.

P = 1:8; T = sin(P);
VV.P = P; VV.T = T+rand(1,8)*0.1;

The code below creates a network and trains it on this problem.

net = newff(minmax(P),[4 1],{'tansig','tansig'});
[net,tr] = train(net,P,T,[],[],VV);

During training plotperf was called to display the training record. You can
also call plotperf directly with the final training record TR, as shown below.

plotperf(tr)

plotpv

14-199

14plotpvPurpose Plot perceptron input/target vectors

Syntax plotpv(P,T)

plotpv(P,T,V)

Description plotpv(P,T) take these inputs,

P — R x Q matrix of input vectors (R must be 3 or less)

T — S x Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T

plotpv(P,T,V) takes an additional input,

V — Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in
P, assigns values to its weights and biases, and plots the resulting classification
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpc

plotsom

14-200

14plotsomPurpose Plot self-organizing map

Syntax plotsom(pos)

plotsom(W,D,ND)

Description plotsom(pos) takes one argument,

POS — NxS matrix of S N-dimension neural positions and plots the neuron
positions with red dots, linking the neurons within a Euclidean distance of 1

plotsom(W,d,nd) takes three arguments,

W — SxR weight matrix

D — SxS distance matrix

ND — Neighborhood distance, default = 1

and plots the neuron’s weight vectors with connections between weight vectors
whose neurons are within a distance of 1.

Examples Here are some neat plots of various layer topologies:

pos = hextop(5,6); plotsom(pos)
pos = gridtop(4,5); plotsom(pos)
pos = randtop(18,12); plotsom(pos)
pos = gridtop(4,5,2); plotsom(pos)
pos = hextop(4,4,3); plotsom(pos)

See newsom for an example of plotting a layer’s weight vectors with the input
vectors they map.

See Also newsom, learnsom, initsom.

plotv

14-201

14plotvPurpose Plot vectors as lines from the origin

Syntax plotv(M,T)

Description plotv(M,T) takes two inputs,

M — R x Q matrix of Q column vectors with R elements

T — (optional) the line plotting type, default = '-'

and plots the column vectors of M.

R must be 2 or greater. If R is greater than two, only the first two rows of M are
used for the plot.

Examples plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')

plotvec

14-202

14plotvecPurpose Plot vectors with different colors

Syntax plotvec(X,C,M)

Description plotvec(X,C,M) takes these inputs,

X — Matrix of (column) vectors

C — Row vector of color coordinate

M — Marker, default = '+'

and plots each ith vector in X with a marker M and using the ith value in C as
the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker
'+' using the index i as the color coordinate.

Examples x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)

pnormc

14-203

14pnormcPurpose Pseudo-normalize columns of a matrix

Syntax pnormc(X,R)

Description pnormc(X,R) takes these arguments,

X — M x N matrix

R — (optional) radius to normalize columns to, default = 1

and returns X with an additional row of elements, which results in new column
vector lengths of R.

Caution: For this function to work properly, the columns of X must originally
have vector lengths less than R.

Examples x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also normc, normr

poslin

14-204

14poslinPurpose Positive linear transfer function

Graph and
Symbol

Syntax A = poslin(N)

info = poslin(code)

Description poslin is a transfer function. Transfer functions calculate a layer’s output from
its net input.

poslin(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns the maximum of 0 and each element of N.

poslin(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Network Use To change a network so that a layer uses poslin, set
net.layers{i}.transferFcn to 'poslin'.

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Funct.

a

��1

poslin

14-205

Call sim to simulate the network with poslin.

Algorithm The transfer function poslin returns the output n if n is greater than or equal
to zero and 0 if n is less than or equal to zero.

poslin(n) = n, if n >= 0; = 0, if n <= 0.

See Also sim, purelin, satlin, satlins

postmnmx

14-206

14postmnmxPurpose Postprocess data that has been preprocessed by premnmx

Syntax [P,T] = postmnmx(PN,minp,maxp,TN,mint,maxt)

[p] = postmnmx(PN,minp,maxp)

Description postmnmx postprocesses the network training set that was preprocessed by
premnmx. It converts the data back into unnormalized units.

postmnmx takes these inputs,

PN — R x Q matrix of normalized input vectors

minp — R x 1 vector containing minimums for each P

maxp — R x 1 vector containing maximums for each P

TN — S x Q matrix of normalized target vectors

mint — S x 1 vector containing minimums for each T

maxt — S x 1 vector containing maximums for each T

and returns,

P — R x Q matrix of input (column) vectors

T — R x Q matrix of target vectors

Examples In this example we normalize a set of training data with premnmx, create and
train a network using the normalized data, simulate the network, unnormalize
the output of the network using postmnmx, and perform a linear regression
between the network outputs (unnormalized) and the targets to check the
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);
[m,b,r] = postreg(a,t);

Algorithm p = 0.5(pn+1)*(maxp-minp) + minp;

postmnmx

14-207

See Also premnmx, prepca, poststd

postreg

14-208

14postregPurpose Postprocess the trained network response with a linear regression

Syntax [M,B,R] = postreg(A,T)

Description postreg postprocesses the network training set by performing a linear
regression between each element of the network response and the
corresponding target.

postreg(A,T) takes these inputs,

A — 1 x Q array of network outputs. One element of the network output

T — 1 x Q array of targets. One element of the target vector

and returns,

M — Slope of the linear regression

B — Y intercept of the linear regression

R — Regression R-value. R=1 means perfect correlation

Examples In this example we normalize a set of training data with prestd, perform a
principal component transformation on the normalized data, create and train
a network using the pca data, simulate the network, unnormalize the output
of the network using poststd, and perform a linear regression between the
network outputs (unnormalized) and the targets to check the quality of the
network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);
an = sim(net,ptrans);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm Performs a linear regression between the network response and the target, and
then computes the correlation coefficient (R-value) between the network
response and the target.

postreg

14-209

See Also premnmx, prepca

poststd

14-210

14poststdPurpose Postprocess data which has been preprocessed by prestd

Syntax [P,T] = poststd(PN,meanp,stdp,TN,meant,stdt)

[p] = poststd(PN,meanp,stdp)

Description poststd postprocesses the network training set that was preprocessed by
prestd. It converts the data back into unnormalized units.

poststd takes these inputs,

PN — R x Q matrix of normalized input vectors

meanp — R x 1 vector containing standard deviations for each P

stdp — R x 1 vector containing standard deviations for each P

TN — S x Q matrix of normalized target vectors

meant — S x 1 vector containing standard deviations for each T

stdt — S x 1 vector containing standard deviations for each T

and returns,

P — R x Q matrix of input (column) vectors

T — S x Q matrix of target vectors

Examples In this example we normalize a set of training data with prestd, create and
train a network using the normalized data, simulate the network, unnormalize
the output of the network using poststd, and perform a linear regression
between the network outputs (unnormalized) and the targets to check the
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm p = stdp*pn + meanp;

poststd

14-211

See Also premnmx, prepca, postmnmx, prestd

premnmx

14-212

14premnmxPurpose Preprocess data so that minimum is -1 and maximum is 1

Syntax [PN,minp,maxp,TN,mint,maxt] = premnmx(P,T)

[PN,minp,maxp] = premnmx(P)

Description premnmx preprocesses the network training set by normalizing the inputs and
targets so that they fall in the interval [-1,1].

premnmx(P,T) takes these inputs,

P — R x Q matrix of input (column) vectors

T — S x Q matrix of target vectors

and returns,

PN — R x Q matrix of normalized input vectors

minp — R x 1 vector containing minimums for each P

maxp — R x 1 vector containing maximums for each P

TN — S x Q matrix of normalized target vectors

mint — S x 1 vector containing minimums for each T

maxt — S x 1 vector containing maximums for each T

Examples Here is the code to normalize a given data set so that the inputs and targets
will fall in the range [-1,1].

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

If you just want to normalize the input,

[pn,minp,maxp] = premnmx(p);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;

See Also prestd, prepca, postmnmx

prepca

14-213

14prepcaPurpose Principal component analysis

Syntax [ptrans,transMat] = prepca(P,min_frac)

Description prepca preprocesses the network input training set by applying a principal
component analysis. This analysis transforms the input data so that the
elements of the input vector set will be uncorrelated. In addition, the size of the
input vectors may be reduced by retaining only those components which
contribute more than a specified fraction (min_frac) of the total variation in
the data set.

prepca(P,min_frac) takes these inputs

P — R x Q matrix of centered input (column) vectors

min_frac — Minimum fraction variance component to keep

and returns

ptrans — Transformed data set

transMat — Transformation matrix

Examples Here is the code to perform a principal component analysis and retain only
those components that contribute more than two percent to the variance in the
data set. prestd is called first to create zero mean data, which is needed for
prepca.

p=[-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4 -1.2];
[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Since the second row of p is almost a multiple of the first row, this example will
produce a transformed data set that contains only one row.

Algorithm This routine uses singular value decomposition to compute the principal
components. The input vectors are multiplied by a matrix whose rows consist
of the eigenvectors of the input covariance matrix. This produces transformed
input vectors whose components are uncorrelated and ordered according to the
magnitude of their variance.

Those components that contribute only a small amount to the total variance in
the data set are eliminated. It is assumed that the input data set has already

prepca

14-214

been normalized so that it has a zero mean. The function prestd can be used
to normalize the data.

See Also prestd, premnmx

References Jolliffe, I.T., Principal Component Analysis, New York: Springer-Verlag, 1986.

prestd

14-215

14prestdPurpose Preprocess data so that its mean is 0 and the standard deviation is 1

Syntax [pn,meanp,stdp,tn,meant,stdt] = prestd(p,t)

[pn,meanp,stdp] = prestd(p)

Description prestd preprocesses the network training set by normalizing the inputs and
targets so that they have means of zero and standard deviations of 1.

prestd(p,t) takes these inputs,

p — R x Q matrix of input (column) vectors

t — S x Q matrix of target vectors

and returns,

pn — R x Q matrix of normalized input vectors

meanp — R x 1 vector containing mean for each P

stdp — R x 1 vector containing standard deviations for each P

tn — S x Q matrix of normalized target vectors

meant — S x 1 vector containing mean for each T

stdt — S x 1 vector containing standard deviations for each T

Examples Here is the code to normalize a given data set so that the inputs and targets
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

If you just want to normalize the input,

[pn,meanp,stdp] = prestd(p);

Algorithm pn = (p-meanp)/stdp;

See Also premnmx, prepca

purelin

14-216

14purelinPurpose Linear transfer function

Graph and
Symbol

Syntax A = purelin(N)
info = purelin(code)

Description purelin is a transfer function. Transfer functions calculate a layer’s output
from its net input.

purelin(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns N.

purelin(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Network Use You can create a standard network that uses purelin by calling newlin or
newlind.

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

purelin

14-217

To change a network so a layer uses purelin, set net.layers{i}.transferFcn
to 'purelin'.

In either case, call sim to simulate the network with purelin. See newlin or
newlind for simulation examples.

Algorithm purelin(n) = n

See Also sim, dpurelin, satlin, satlins

quant

14-218

14quantPurpose Discretize values as multiples of a quantity

Syntax quant(X,Q)

Description quant(X,Q) takes two inputs,

X — Matrix, vector or scalar

Q — Minimum value

and returns values in X rounded to nearest multiple of Q.

Examples x = [1.333 4.756 -3.897];
y = quant(x,0.1)

radbas

14-219

14radbasPurpose Radial basis transfer function

Graph and
Symbol

Syntax A = radbas(N)
info = radbas(code)

Description radbas is a transfer function. Transfer functions calculate a layer’s output from
its net input.

radbas(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N passed through a radial basis function.

radbas(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here we create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Network Use You can create a standard network that uses radbas by calling newpnn or
newgrnn.

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

radbas

14-220

To change a network so that a layer uses radbas, set
net.layers{i}.transferFcn to 'radbas'.

In either case, call sim to simulate the network with radbas. See newpnn or
newgrnn for simulation examples.

Algorithm radbas(N) calculates its output as:

a = exp(-n2)

See Also sim, tribas, dradbas

randnc

14-221

14randncPurpose Normalized column weight initialization function

Syntax W = randnc(S,PR)
W = randnc(S,R)

Description randnc is a weight initialization function.

randnc(S,P) takes two inputs,

S — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R random matrix with normalized columns.

Can also be called as randnc(S,R).

Examples A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =

0.6007 0.4715 0.2724 0.5596
0.7628 0.6967 0.9172 0.7819
0.2395 0.5406 0.2907 0.2747

See Also randnr

randnr

14-222

14randnrPurpose Normalized row weight initialization function

Syntax W = randnr(S,PR)
W = randnr(S,R)

Description randnr is a weight initialization function.

randnr(S,PR) takes two inputs,

S — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R random matrix with normalized rows.

Can also be called as randnr(S,R).

Examples A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =

0.9713 0.0800 0.1838 0.1282
0.8228 0.0338 0.1797 0.5381
0.3042 0.5725 0.5436 0.5331

See Also randnc

rands

14-223

14randsPurpose Symmetric random weight/bias initialization function

Syntax W = rands(S,PR)
M = rands(S,R)
v = rands(S);

Description rands is a weight/bias initialization function.

rands(S,PR) takes,

S — Number of neurons

PR — R x 2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between -1 and 1.

rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an
S-by-1 vector of random values.

Examples Here three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use To prepare the weights and the bias of layer i of a custom network to be
initialized with rands

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'rands'. Set each
net.layerWeights{i,j}.initFcn to 'rands'. Set each
net.biases{i}.initFcn to 'rands'.

To initialize the network call init.

See Also randnr, randnc, initwb, initlay, init

randtop

14-224

14randtopPurpose Random layer topology function

Syntax pos = randtop(dim1,dim2,...,dimN)

Description randtop calculates the neuron positions for layers whose neurons are arranged
in an N dimensional random pattern.

randtop(dim1,dim2,...,dimN)) takes N arguments,

dimi — Length of layer in dimension i

and returns an N x S matrix of N coordinate vectors, where S is the product of
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 192 neurons
arranged in a 16-by-12 random pattern.

pos = randtop(16,12); plotsom(pos)

This code plots the connections between the same neurons, but shows each
neuron at the location of its weight vector. The weights are generated randomly
so that the layer is very unorganized, as is evident in the plot.

W = rands(192,2); plotsom(W,dist(pos))

See Also gridtop, hextop

revert

14-225

14revertPurpose Change network weights and biases to previous initialization values

Syntax net = revert(net)

Description revert (net) returns neural network net with weight and bias values
restored to the values generated the last time the network was initialized.

If the network has been altered so that it has different weight and bias
connections or different input or layer sizes, then revert cannot set the
weights and biases to their previous values and they will be set to zeros
instead.

Examples Here a perceptron is created with a two-element input (with ranges of 0 to 1,
and -2 to 2) and one neuron. Once it is created we can display the neuron’s
weights and bias.

net = newp([0 1;-2 2],1);

 The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

 We can change these values as follows.

net.iw{1,1} = [1 2];
net.b{1} = 5;
net.iw{1,1}, net.b{1}

 We can recover the network’s initial values as follows.

net = revert(net);
net.iw{1,1}, net.b{1}

See Also init, sim, adapt, train.

satlin

14-226

14satlinPurpose Saturating linear transfer function

Graph and
Symbol

Syntax A = satlin(N)
info = satlin(code)

Description satlin is a transfer function. Transfer functions calculate a layer’s output from
its net input.

satlin(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns values of N truncated into the interval [-1, 1].

satlin(code) returns useful information for each code string:

'deriv' — Name of derivative function.

'name' — Full name.

'output' — Output range.

'active' — Active input range.

Examples Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Network Use To change a network so that a layer uses satlin, set
net.layers{i}.transferFcn to 'satlin'.

a = satlin(n)

n
0

-1

+1

+1-1

Satlin Transfer Function

�
�

a

satlin

14-227

Call sim to simulate the network with satlin. See newhop for simulation
examples.

Algorithm satlin(n) = 0, if n <= 0; n, if 0 <= n <= 1; 1, if 1 <= n.

See Also sim, poslin, satlins, purelin

satlins

14-228

14satlinsPurpose Symmetric saturating linear transfer function

Graph and
Symbol

Syntax A = satlins(N)
info = satlins(code)

Description satlins is a transfer function. Transfer functions calculate a layer’s output
from its net input.

satlins(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns values of N truncated into the interval [-1, 1].

satlins(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Network Use You can create a standard network that uses satlins by calling newhop.

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a

satlins

14-229

To change a network so that a layer uses satlins, set
net.layers{i}.transferFcn to 'satlins'.

In either case, call sim to simulate the network with satlins. See newhop for
simulation examples.

Algorithm satlins(n) = -1, if n <= -1; n, if -1 <= n <= 1; 1, if 1 <= n.

See Also sim, satlin, poslin, purelin

seq2con

14-230

14seq2conPurpose Convert sequential vectors to concurrent vectors

Syntax b = seq2con(s)

Description The Neural Network Toolbox represents batches of vectors with a matrix, and
sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential
vectors, and back again.

seq2con(S) takes one input,

S — N x TS cell array of matrices with M columns

and returns,

B — N x 1 cell array of matrices with M*TS columns.

Examples Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent
vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also con2seq, concur

setx

14-231

14setxPurpose Set all network weight and bias values with a single vector

Syntax net = setx(net,X)

Description This function sets a networks weight and biases to a vector of values.

net = setx(net,X)

net — Neural network

X — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three
neurons.

net = newff([0 1; -1 1],[3]);

The network has six weights (3 neurons * 2 input elements) and three biases
(3 neurons) for a total of nine weight and bias values. We can set them to
random values as follows:

net = setx(net,rand(9,1));

We can then view the weight and bias values as follows:

net.iw{1,1}
net.b{1}

See Also getx, formx

sim

14-232

14simPurpose Simulate a neural network

Syntax [Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T)

[Y,Pf,Af,E,perf] = sim(net,{Q TS},Pi,Ai,T)

[Y,Pf,Af,E,perf] = sim(net,Q,Pi,Ai,T)

To Get Help Type help network/sim

Description sim simulates neural networks.

[Y,Pf,Af,E,perf] = sim(net,P,PiAi,T) takes,

net — Network

P — Network inputs

Pi — Initial input delay conditions, default = zeros

Ai — Initial layer delay conditions, default = zeros

T — Network targets, default = zeros

and returns,

Y — Network outputs

Pf — Final input delay conditions

Af — Final layer delay conditions

E — Network errors

perf — Network performance

Note that arguments Pi, Ai, Pf, and Af are optional and need only be used for
networks that have input or layer delays.

sim’s signal arguments can have two formats: cell array or matrix.

sim

14-233

The cell array format is easiest to describe. It is most convenient for networks
with multiple inputs and outputs, and allows sequences of inputs to be
presented:

P — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

T — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Y — NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

E — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs
D = net.numInputDelays
LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size
Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Pi, Ai, Pf, and Af are ordered from oldest delay condition to
most recent:

Pi{i,k} = input i at time ts=k ID

Pf{i,k} = input i at time ts=TS+k ID

Ai{i,k} = layer output i at time ts=k LD

Af{i,k} = layer output i at time ts=TS+k LD

The matrix format can be used if only one time step is to be simulated
(TS = 1). It is convenient for networks with only one input and output, but can
also be used with networks that have more.

sim

14-234

Each matrix argument is found by storing the elements of the corresponding
cell array argument into a single matrix:

P — (sum of Ri) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

T — (sum of Vi)xQ matrix

Y — (sum of Ui) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

E — (sum of Vi)xQ matrix

[Y,Pf,Af] = sim(net,{Q TS},Pi,Ai) is used for networks which do not have
an input, such as Hopfield networks, when cell array notation is used.

Examples Here newp is used to create a perceptron layer with a two-element input (with
ranges of [0 1]), and a single neuron.

net = newp([0 1;0 1],1);

Here the perceptron is simulated for an individual vector, a batch of three
vectors, and a sequence of three vectors.

p1 = [.2; .9]; a1 = sim(net,p1)
p2 = [.2 .5 .1; .9 .3 .7]; a2 = sim(net,p2)
p3 = {[.2; .9] [.5; .3] [.1; .7]}; a3 = sim(net,p3)

Here newlind is used to create a linear layer with a three-element input, two
neurons.

net = newlin([0 2;0 2;0 2],2,[0 1]);

Here the linear layer is simulated with a sequence of two input vectors using
the default initial input delay conditions (all zeros).

p1 = {[2; 0.5; 1] [1; 1.2; 0.1]};
[y1,pf] = sim(net,p1)

Here the layer is simulated for three more vectors using the previous final
input delay conditions as the new initial delay conditions.

p2 = {[0.5; 0.6; 1.8] [1.3; 1.6; 1.1] [0.2; 0.1; 0]};

sim

14-235

[y2,pf] = sim(net,p2,pf)

Here newelm is used to create an Elman network with a one-element input, and
a layer 1 with three tansig neurons followed by a layer 2 with two purelin
neurons. Because it is an Elman network it has a tap delay line with a delay of
1 going from layer 1 to layer 1.

net = newelm([0 1],[3 2],{'tansig','purelin'});

Here the Elman network is simulated for a sequence of three values using
default initial delay conditions.

p1 = {0.2 0.7 0.1};
[y1,pf,af] = sim(net,p1)

Here the network is simulated for four more values, using the previous final
delay conditions as the new initial delay conditions.

p2 = {0.1 0.9 0.8 0.4};
[y2,pf,af] = sim(net,p2,pf,af)

Algorithm sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values, and the
number of delays associated with each weight:

net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to
inputs to get each layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

sim

14-236

See Chapter 2, “Neuron Model and Network Architectures” for more
information on network simulation.

See Also init, adapt, train, revert

softmax

14-237

14softmaxPurpose Soft max transfer function

Graph and
Symbol

Syntax A = softmax(N)

info = softmax(code)

Description softmax is a transfer function. Transfer functions calculate a layer’s output
from its net input.

softmax(N) takes one input argument,

N — S x Q matrix of net input (column) vectors

and returns output vectors with elements between 0 and 1, but with their size
relations intact.

softmax('code') returns information about this function.

These codes are defined:

'deriv' — Name of derivative function.

'name' — Full name.

'output' — Output range.

'active' — Active input range.

compet does not have a derivative function.

Examples Here we define a net input vector N, calculate the output, and plot both with
bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')

Softmax Transfer Function S

0 1
-0.5

0.5

Input n

0.17 0.46 0.1 0.28

Output a

a = softmax(n)

softmax

14-238

subplot(2,1,2), bar(a), ylabel('a')

Network Use To change a network so that a layer uses softmax, set
net.layers{i,j}.transferFcn to 'softmax'.

Call sim to simulate the network with softmax. See newc or newpnn for
simulation examples.

See Also sim, compet

srchbac

14-239

14srchbacPurpose One-dimensional minimization using backtracking

Syntax [a,gX,perf,retcode,delta,tol] =
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description srchbac is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique
called backtracking.

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)
takes these inputs,

net — Neural network

X — Vector containing current values of weights and biases

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

dX — Search direction vector

gX — Gradient vector

perf — Performance value at current X

dperf — Slope of performance value at current X in direction of dX

delta — Initial step size

tol — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a — Step size, which minimizes performance

gX — Gradient at new minimum point

perf — Performance value at new minimum point

retcode — Return code which has three elements. The first two elements
correspond to the number of function evaluations in the two stages of the
search. The third element is a return code. These will have different

srchbac

14-240

meanings for different search algorithms. Some may not be used in this
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta — New initial step size. Based on the current step size

tol — New tolerance on search

Parameters used for the backstepping algorithm are:

alpha — Scale factor that determines sufficient reduction in perf

beta — Scale factor that determines sufficiently large step size

low_lim — Lower limit on change in step size

up_lim — Upper limit on change in step size

maxstep — Maximum step length

minstep — Minimum step length

scale_tol — Parameter which relates the tolerance tol to the initial step
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it.
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

srchbac

14-241

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgf network training function and the
srchbac search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbac with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchbac

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'.

The srchbac function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbac locates the minimum of the performance function in the search
direction dX, using the backtracking algorithm described on page 126 and 328
of Dennis and Schnabel’s book noted below.

See Also srchcha, srchgol, srchhyb

srchbac

14-242

References Dennis, J. E., and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall,
1983.

srchbre

14-243

14srchbrePurpose One-dimensional interval location using Brent’s method

Syntax [a,gX,perf,retcode,delta,tol] =
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbre is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique
called Brent’s technique.

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net — Neural network

X — Vector containing current values of weights and biases

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

dX — Search direction vector

gX — Gradient vector

perf — Performance value at current X

dperf — Slope of performance value at current X in direction of dX

delta — Initial step size

tol — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a — Step size, which minimizes performance

gX — Gradient at new minimum point

perf — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements
correspond to the number of function evaluations in the two stages of the
search. The third element is a return code. These will have different

srchbre

14-244

meanings for different search algorithms. Some may not be used in this
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta — New initial step size. Based on the current step size

tol — New tolerance on search

Parameters used for the brent algorithm are:

alpha — Scale factor, which determines sufficient reduction in perf

beta — Scale factor, which determines sufficiently large step size

bmax — Largest step size

scale_tol — Parameter which relates the tolerance tol to the initial step
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it.
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

srchbre

14-245

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgf network training function and the
srchbac search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbre with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchbre

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'.

The srchbre function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbre brackets the minimum of the performance function in the search
direction dX, using Brent’s algorithm described on page 46 of Scales (see
reference below). It is a hybrid algorithm based on the golden section search
and the quadratic approximation.

See Also srchbac, srchcha, srchgol, srchhyb

References Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

srchcha

14-246

14srchchaPurpose One-dimensional minimization using Charalambous’ method

Syntax [a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchcha is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique
based on Charalambous’ method.

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net — Neural network

X — Vector containing current values of weights and biases

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

dX — Search direction vector

gX — Gradient vector

perf — Performance value at current X

dperf — Slope of performance value at current X in direction of dX

delta — Initial step size

tol — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a — Step size, which minimizes performance

gX — Gradient at new minimum point

perf — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements
correspond to the number of function evaluations in the two stages of the
search. The third element is a return code. These will have different

srchcha

14-247

meanings for different search algorithms. Some may not be used in this
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta — New initial step size. Based on the current step size

tol — New tolerance on search

Parameters used for the Charalambous algorithm are:

alpha — Scale factor, which determines sufficient reduction in perf

beta — Scale factor, which determines sufficiently large step size

gama — Parameter to avoid small reductions in performance. Usually
set to 0.1

scale_tol — Parameter, which relates the tolerance tol to the initial step
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it.
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are

Pd No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

srchcha

14-248

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgf network training function and the
srchcha search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchcha with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchcha

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'.

The srchcha function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchcha locates the minimum of the performance function in the search
direction dX, using an algorithm based on the method described in
Charalambous (see reference below).

See Also srchbac, srchbre, srchgol, srchhyb

References Charalambous, C.,“Conjugate gradient algorithm for efficient training of
artificial neural networks,” IEEE Proceedings, vol. 139, no. 3, pp. 301–310, June
1992.

srchgol

14-249

14srchgolPurpose One-dimensional minimization using golden section search

Syntax [a,gX,perf,retcode,delta,tol] =
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchgol is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique
called the golden section search.

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net — Neural network

X — Vector containing current values of weights and biases

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

dX — Search direction vector

gX — Gradient vector

perf — Performance value at current X

dperf — Slope of performance value at current X in direction of dX

delta — Initial step size

tol — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a — Step size, which minimizes performance

gX — Gradient at new minimum point

perf — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements
correspond to the number of function evaluations in the two stages of the
search. The third element is a return code. These will have different

srchgol

14-250

meanings for different search algorithms. Some may not be used in this
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta — New initial step size. Based on the current step size.

tol — New tolerance on search

Parameters used for the golden section algorithm are:

alpha — Scale factor, which determines sufficient reduction in perf

bmax — Largest step size

scale_tol — Parameter, which relates the tolerance tol to the initial step
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it.
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer

srchgol

14-251

has one logsig neuron. The traincgf network training function and the
srchgol search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchgol with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchgol

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'.

The srchgol function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchgol locates the minimum of the performance function in the search
direction dX, using the golden section search. It is based on the algorithm as
described on page 33 of Scales (see reference below).

See Also srchbac, srchbre, srchcha, srchhyb

References Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

srchhyb

14-252

14srchhybPurpose One-dimensional minimization using a hybrid bisection-cubic search

Syntax [a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,P,T,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchhyb is a linear search routine. It searches in a given direction to locate the
minimum of the performance function in that direction. It uses a technique
that is a combination of a bisection and a cubic interpolation.

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
takes these inputs,

net — Neural network

X — Vector containing current values of weights and biases

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

dX — Search direction vector

gX — Gradient vector

perf — Performance value at current X

dperf — Slope of performance value at current X in direction of dX

delta — Initial step size

tol — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a — Step size, which minimizes performance

gX — Gradient at new minimum point

perf — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements
correspond to the number of function evaluations in the two stages of the
search. The third element is a return code. These will have different

srchhyb

14-253

meanings for different search algorithms. Some may not be used in this
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta — New initial step size. Based on the current step size.

tol — New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are:

alpha — Scale factor, which determines sufficient reduction in perf

beta — Scale factor, which determines sufficiently large step size

bmax — Largest step size

scale_tol — Parameter, which relates the tolerance tol to the initial step
size delta. Usually set to 20.

The defaults for these parameters are set in the training function that calls it.
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

srchhyb

14-254

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgf network training function and the
srchhyb search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchhyb with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf, using the line search
function srchhyb

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'.

The srchhyb function can be used with any of the following training functions:
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchhyb locates the minimum of the performance function in the search
direction dX, using the hybrid bisection-cubic interpolation algorithm described
on page 50 of Scales (see reference below).

See Also srchbac, srchbre, srchcha, srchgol

References Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

sse

14-255

14ssePurpose Sum squared error performance function

Syntax perf = sse(E,X,PP)

perf = sse(E,net,PP)

info = sse(code)

Description sse is a network performance function. It measures performance according to
the sum of squared errors.

sse(E,X,PP) takes from one to three arguments,

E — Matrix or cell array of error vector(s)

X — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the sum squared error.

sse(E,net,PP) can take an alternate argument to X,

net — Neural network from which X can be obtained (ignored)

sse(code) returns useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward is created with a 1-element input ranging from
-10 to 10, four hidden tansig neurons, and one purelin output neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

Here the network is given a batch of inputs P. The error is calculated by
subtracting the output A from target T. Then the sum squared error is
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = sse(e)

sse

14-256

Note that sse can be called with only one argument because the other
arguments are ignored. sse supports those arguments to conform to the
standard performance function argument list.

Network Use To prepare a custom network to be trained with sse, set net.performFcn to
'sse'. This will automatically set net.performParam to the empty matrix [], as
sse has no performance parameters.

Calling train or adapt will result in sse being used to calculate performance.

See Also dsse

sumsqr

14-257

14sumsqrPurpose Sum squared elements of a matrix

Syntax sumsqr(m)

Description sumsqr(M) returns the sum of the squared elements in M.

Examples s = sumsqr([1 2;3 4])

tansig

14-258

14tansigPurpose Hyperbolic tangent sigmoid transfer function

Graph and
Symbol

Syntax A = tansig(N)
info = tansig(code)

Description tansig is a transfer function. Transfer functions calculate a layer’s output from
its net input.

tansig(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N squashed between -1 and 1.

tansig(code) return useful information for each code string:

'deriv' — Name of derivative function

'name' — Full name

'output' — Output range

'active' — Active input range

tansig is named after the hyperbolic tangent, which has the same shape.
However, tanh may be more accurate and is recommended for applications that
require the hyperbolic tangent.

Examples Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

tansig

14-259

Network Use You can create a standard network that uses tansig by calling newff or newcf.

To change a network so a layer uses tansig, set
net.layers{i,j}.transferFcn to 'tansig'.

In either case, call sim to simulate the network with tansig. See newff or
newcf for simulation examples.

Algorithm tansig(N) calculates its output according to:

n = 2/(1+exp(-2*n))-1

This is mathematically equivalent to tanh(N). It differs in that it runs faster
than the MATLAB® implementation of tanh, but the results can have very
small numerical differences. This function is a good trade off for neural
networks, where speed is important and the exact shape of the transfer
function is not.

See Also sim, dtansig, logsig

References Vogl, T. P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating
the convergence of the backpropagation method,” Biological Cybernetics, vol.
59, pp. 257-263, 1988.

train

14-260

14trainPurpose Train a neural network

Syntax [net,tr,Y,E,Pf,Af] = train(net,P,T,Pi,Ai,VV,TV)

To Get Help Type help network/train

Description train trains a network net according to net.trainFcn and net.trainParam.

train(NET,P,T,Pi,Ai,VV,TV) takes,

net — Neural Network

P — Network inputs

T — Network targets, default = zeros

Pi — Initial input delay conditions, default = zeros

Ai — Initial layer delay conditions, default = zeros

VV — Structure of validation vectors, default = []

TV — Structure of test vectors, default = []

and returns,

net — New network

TR — Training record (epoch and perf)

Y — Network outputs

E — Network errors.

Pf — Final input delay conditions

Af — Final layer delay conditions

Note that T is optional and need only be used for networks that require targets.
Pi and Pf are also optional and need only be used for networks that have input
or layer delays.

Optional arguments VV and TV are described below.

train’s signal arguments can have two formats: cell array or matrix.

train

14-261

The cell array format is easiest to describe. It is most convenient for networks
with multiple inputs and outputs, and allows sequences of inputs to be
presented:

P — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

T — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Y — NO x TS cell array, each element Y{i,ts} is an Ui x Q matrix

E — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

where

Ni = net.numInputs

Nl = net.numLayers

Nt = net.numTargets

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from the oldest delay condition to
the most recent:

Pi{i,k} = input i at time ts=k ID.

Pf{i,k} = input i at time ts=TS+k ID.

Ai{i,k} = layer output i at time ts=k LD.

Af{i,k} = layer output i at time ts=TS+k LD.

The matrix format can be used if only one time step is to be simulated (TS = 1).
It is convenient for networks with only one input and output, but can be used
with networks that have more.

train

14-262

Each matrix argument is found by storing the elements of the corresponding
cell array argument into a single matrix:

P — (sum of Ri) x Q matrix

T — (sum of Vi) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

Y — (sum of Ui) x Q matrix

E — (sum of Vi) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

If VV and TV are supplied they should be an empty matrix [] or a structure with
the following fields:

VV.P, TV.P — Validation/test inputs

VV.T, TV.T — Validation/test targets, default = zeros

VV.Pi, TV.Pi — Validation/test initial input delay conditions, default =
zeros

VV.Ai, TV.Ai — Validation/test layer delay conditions, default = zeros

The validation vectors are used to stop training early if further training on the
primary vectors will hurt generalization to the validation vectors. Test vector
performance can be used to measure how well the network generalizes beyond
primary and validation vectors. If VV.T, VV.Pi, or VV.Ai are set to an empty
matrix or cell array, default values will be used. The same is true for TV.T,
TV.Pi, TV.Ai.

Examples Here input P and targets T define a simple function which we can plot:

p = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(p,t,'o')

Here newff is used to create a two-layer feed-forward network. The network
will have an input (ranging from 0 to 8), followed by a layer of 10 tansig
neurons, followed by a layer with 1 purelin neuron. trainlm backpropagation
is used. The network is also simulated.

net = newff([0 8],[10 1],{'tansig' 'purelin'},'trainlm');

train

14-263

y1 = sim(net,p)
plot(p,t,'o',p,y1,'x')

Here the network is trained for up to 50 epochs to a error goal of 0.01, and then
resimulated.

net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net = train(net,p,t);
y2 = sim(net,p)
plot(p,t,'o',p,y1,'x',p,y2,'*')

Algorithm train calls the function indicated by net.trainFcn, using the training
parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input
vectors to the network. The network is then updated according to the results of
all those presentations.

Training occurs until a maximum number of epochs occurs, the performance
goal is met, or any other stopping condition of the function net.trainFcn
occurs.

Some training functions depart from this norm by presenting only one input
vector (or sequence) each epoch. An input vector (or sequence) is chosen
randomly each epoch from concurrent input vectors (or sequences). newc and
newsom return networks that use trainr, a training function that presents
each input vector once in random order.

See Also sim, init, adapt, revert

trainb

14-264

14trainbPurpose Batch training with weight and bias learning rules.

Syntax [net,TR,Ac,El] = trainb(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainb(code)

Description trainb is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainb'.

trainb trains a network with weight and bias learning rules with batch
updates. The weights and biases are updated at the end of an entire pass
through the input data.

trainb(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd — Delayed inputs

Tl — Layer targets

Ai — Initial input conditions

Q — Batch size

TS — Time steps

VV — Empty matrix [] or structure of validation vectors

TV — Empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch

trainb

14-265

Training occurs according to the trainb’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.show 25 Epochs between displays (NaN for no
 displays)

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of vectors:

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q, TV.Q — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

trainb

14-266

trainb(CODE) returns useful information for each CODE string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainb by calling newlin.

To prepare a custom network to be trained with trainb

1 Set net.trainFcn to 'trainb'.

(This will set NET.trainParam to trainb’s default parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.

3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.

4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias
learning parameters will automatically be set to default values for the given
learning function.)

To train the network

1 Set NET.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newlin for training examples

Algorithm Each weight and bias updates according to its learning function after each
epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

• Validation performance has increase more than max_fail times since the
last time it decreased (when using validation).

See Also newp, newlin, train

trainbfg

14-267

14trainbfgPurpose BFGS quasi-Newton backpropagation

Syntax [net,TR,Ac,El] = trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainbfg(code)

Description trainbfg is a network training function that updates weight and bias values
according to the BFGS quasi-Newton method.

trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

VV — Either empty matrix [] or structure of validation vectors

TV — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac — Collective layer outputs for last epoch

El — Layer errors for last epoch

trainbfg

14-268

Training occurs according to trainbfg’s training parameters, shown here with
their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use.
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha 0.001

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta 0.1

Scale factor, which determines sufficiently large step size.

net.trainParam.delta 0.01

Initial step size in interval location step.

net.trainParam.gama 0.1

Parameter to avoid small reductions in performance. Usually set to 0.1.
(See use in srch_cha.)

trainbfg

14-269

net.trainParam.low_lim 0.1 Lower limit on change in step size.

net.trainParam.up_lim 0.5 Upper limit on change in step size.

net.trainParam.maxstep 100 Maximum step length.

net.trainParam.minstep 1.0e-6 Minimum step length.

net.trainParam.bmax 26 Maximum step size.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs

VV.Tl — Validation layer targets

VV.Ai — Validation initial input conditions

VV.Q — Validation batch size

VV.TS — Validation time steps

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

trainbfg

14-270

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainbfg(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs P and targets T that we would like to
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The trainbfg network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainbfg');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples

Network Use You can create a standard network that uses trainbfg with newff, newcf, or
newelm.

trainbfg

14-271

To prepare a custom network to be trained with trainbfg:

1 Set net.trainFcn to 'trainbfg'. This will set net.trainParam to trainbfg’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainbfg.

Algorithm trainbfg can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of
the gradient of performance. In succeeding iterations the search direction is
computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119
of Gill, Murray, and Wright (see reference below) for a more detailed discussion
of the BFGS quasi-Newton method.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp,
traincgf, traincgb, trainscg, traincgp, trainoss.

trainbfg

14-272

References Gill, P. E.,W. Murray, and M. H. Wright, Practical Optimization, New York:
Academic Press, 1981.

trainbr

14-273

14trainbrPurpose Bayesian regularization backpropagation

Syntax [net,TR,Ac,El] = trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainbr(code)

Description trainbr is a network training function that updates the weight and bias values
according to Levenberg-Marquardt optimization. It minimizes a combination of
squared errors and weights, and then determines the correct combination so as
to produce a network that generalizes well. The process is called Bayesian
regularization.

trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

VV — Either empty matrix [] or structure of validation vectors

TV — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

TR.mu — Adaptive mu value

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch

trainbr

14-274

Training occurs according to the trainlm’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e-10 Maximum value for mu

net.trainParam.max_fail 5 Maximum validation failures
net.trainParam.mem_reduc 1

Factor to use for memory/speed trade-off

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainbr

14-275

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs

VV.Tl — Validation layer targets

VV.Ai — Validation initial input conditions

VV.Q — Validation batch size

VV.TS — Validation time steps

which is normally used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

 TV.PD — Validation delayed inputs

 TV.Tl — Validation layer targets

 TV.Ai — Validation initial input conditions

 TV.Q — Validation batch size

 TV.TS — Validation time steps

 which is used to test the generalization capability of the trained network.

trainbr(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network. It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Here a two-layer feed-forward network is created. The network’s input ranges
from [-1 to 1]. The first layer has 20 tansig neurons, the second layer has one
purelin neuron. The trainbr network training function is to be used. The plot
of the resulting network output should show a smooth response, without
overfitting.

Create a Network
net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');

trainbr

14-276

Train and Test the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net = train(net,p,t);
a = sim(net,p)
plot(p,a,p,t,'+')

Network Use You can create a standard network that uses trainbr with newff, newcf, or
newelm.

To prepare a custom network to be trained with trainbr

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainbr’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainbr.

See newff, newcf, and newelm for examples.

Algorithm trainbr can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and
weights. It also modifies the linear combination so that at the end of training
the resulting network has good generalization qualities. See MacKay (Neural
Computation) and Foresee and Hagan (Proceedings of the International Joint
Conference on Neural Networks) for more detailed discussions of Bayesian
regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt
algorithm. Backpropagation is used to calculate the Jacobian jX of
performance perf with respect to the weight and bias variables X. Each
variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

trainbr

14-277

The adaptive value mu is increased by mu_inc until the change shown above
results in a reduced performance value. The change is then made to the
network and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can
require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory
required by a factor of two, but slows trainlm somewhat. Higher values
continue to decrease the amount of memory needed and increase the training
times.

Training stops when any one of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp,
traincgf, traincgb, trainscg, traincgp, trainoss

References Foresee, F. D., and M. T. Hagan, “Gauss-Newton approximation to Bayesian
regularization,” Proceedings of the 1997 International Joint Conference on
Neural Networks, 1997.

MacKay, D. J. C., “Bayesian interpolation,” Neural Computation, vol. 4, no. 3,
pp. 415-447, 1992.

trainc

14-278

14traincPurpose Cyclical order incremental training with learning functions

Syntax [net,TR,Ac,El] = trainc(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainc(code)

Description trainc is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainc'.

trainc trains a network with weight and bias learning rules with incremental
updates after each presentation of an input. Inputs are presented in cyclic
order.

trainc(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd — Delayed inputs

Tl — Layer targets

Ai — Initial input conditions

Q — Batch size

TS — Time steps

VV — Ignored

TV — Ignored

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

Ac — Collective layer outputs

El — Layer errors

trainc

14-279

Training occurs according to the trainc’s training parameters shown here with
their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no
 displays)

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainc does not implement validation or test vectors, so arguments VV and TV
are ignored.

trainc(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainc by calling newp.

To prepare a custom network to be trained with trainc

1 Set net.trainFcn to 'trainc'.

(This will set net.trainParam to trainc default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

trainc

14-280

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias
learning parameters will automatically be set to default values for the given
learning function.)

To train the network

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newp for training examples.

Algorithm For each epoch, each vector (or sequence) is presented in order to the network
with the weight and bias values updated accordingly after each individual
presentation.

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

See Also newp, newlin, train

traincgb

14-281

14traincgbPurpose Conjugate gradient backpropagation with Powell-Beale restarts

Syntax [net,TR,Ac,El] = traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgb(code)

Description traincgb is a network training function that updates weight and bias values
according to the conjugate gradient backpropagation with Powell-Beale
restarts.

traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

VV — Either empty matrix [] or structure of validation vectors

TV — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac — Collective layer outputs for last epoch

El — Layer errors for last epoch

traincgb

14-282

Training occurs according to the traincgb’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use.
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha 0.001

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta 0.1

Scale factor, which determines sufficiently large step size.

net.trainParam.delta 0.01

Initial step size in interval location step.

net.trainParam.gama 0.1

Parameter to avoid small reductions in performance. Usually set to 0.1.
(See use in srch_cha.)

net.trainParam.low_lim 0.1 Lower limit on change in step size.

net.trainParam.up_lim 0.5 Upper limit on change in step size.

net.trainParam.maxstep 100 Maximum step length.

net.trainParam.minstep 1.0e-6 Minimum step length.

net.trainParam.bmax 26 Maximum step size.

traincgb

14-283

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.

traincgb

14-284

traincgb(code) returns useful information for each code string:

'pnames' — Names of training parameters.

'pdefaults' — Default training parameters.

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgb network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgb');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgb with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgb

1 Set net.trainFcn to 'traincgb'. This will set net.trainParam to traincgb’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traincgb.

traincgb

14-285

Algorithm traincgb can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of
the gradient of performance. In succeeding iterations the search direction is
computed from the new gradient and the previous search direction according
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different
ways. The Powell-Beale variation of conjugate gradient is distinguished by two
features. First, the algorithm uses a test to determine when to reset the search
direction to the negative of the gradient. Second, the search direction is
computed from the negative gradient, the previous search direction, and the
last search direction before the previous reset. See Powell, Mathematical
Programming, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp,
traincgf, traincgb, trainscg, trainoss, trainbfg

References Powell, M. J. D.,“Restart procedures for the conjugate gradient method,”
Mathematical Programming, vol. 12, pp. 241-254, 1977.

traincgf

14-286

14traincgfPurpose Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax [net,TR,Ac,El] = traincgf(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgf(code)

Description traincgf is a network training function that updates weight and bias values
according to the conjugate gradient backpropagation with Fletcher-Reeves
updates.

traincgf(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

traincgf

14-287

Training occurs according to the traincgf’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha 0.001

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta 0.1

Scale factor, which determines sufficiently large step size.

net.trainParam.delta 0.01

Initial step size in interval location step.

net.trainParam.gama 0.1

Parameter to avoid small reductions in performance. Usually set to 0.1.
(See use in srch_cha.)

net.trainParam.low_lim 0.1 Lower limit on change in step size.

net.trainParam.up_lim 0.5 Upper limit on change in step size.

net.trainParam.maxstep 100 Maximum step length.

net.trainParam.minstep 1.0e-6 Minimum step length.

net.trainParam.bmax 26 Maximum step size.

traincgf

14-288

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.

traincgf

14-289

traincgf(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgf network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgf with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgf

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traincgf.

traincgf

14-290

Algorithm traincgf can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of
the gradient of performance. In succeeding iterations the search direction is
computed from the new gradient and the previous search direction, according
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different
ways. For the Fletcher-Reeves variation of conjugate gradient it is computed
according to

Z=normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr
is the norm square of the current gradient. See page 78 of Scales (Introduction
to Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp,
traincgb, trainscg, traincgp, trainoss, trainbfg

traincgf

14-291

References Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

traincgp

14-292

14traincgpPurpose Conjugate gradient backpropagation with Polak-Ribiere updates

Syntax [net,TR,Ac,El] = traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgp(code)

Description traincgp is a network training function that updates weight and bias values
according to the conjugate gradient backpropagation with Polak-Ribiere
updates.

traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

traincgp

14-293

Training occurs according to the traincgp’s training parameters shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha 0.001

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta 0.1

Scale factor which determines sufficiently large step size.

net.trainParam.delta 0.01

Initial step size in interval location step.

net.trainParam.gama 0.1

Parameter to avoid small reductions in performance. Usually set to 0.1.
(See use in srch_cha.)

net.trainParam.low_lim 0.1 Lower limit on change in step size.

net.trainParam.up_lim 0.5 Upper limit on change in step size.

net.trainParam.maxstep 100 Maximum step length.

net.trainParam.minstep 1.0e-6 Minimum step length.

net.trainParam.bmax 26 Maximum step size.

traincgp

14-294

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.

traincgp

14-295

traincgp(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The traincgp network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgp');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgp with newff, newcf, or
newelm.

To prepare a custom network to be trained with traincgp

1 Set net.trainFcn to 'traincgp'. This will set net.trainParam to traincgp’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traincgp.

traincgp

14-296

Algorithm traincgp can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of
the gradient of performance. In succeeding iterations the search direction is
computed from the new gradient and the previous search direction according
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different
ways. For the Polak-Ribiere variation of conjugate gradient it is computed
according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient and gX_old is the
gradient on the previous iteration. See page 78 of Scales (Introduction to
Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp,
traincgf, traincgb, trainscg, trainoss, trainbfg

traincgp

14-297

References Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

traingd

14-298

14traingdPurpose Gradient descent backpropagation

Syntax [net,TR,Ac,El] = traingd(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingd(code)

Description traingd is a network training function that updates weight and bias values
according to gradient descent.

traingd(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either an empty matrix [] or a structure of validation vectors.

TV — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

traingd

14-299

Training occurs according to the traingd’s training parameters shown here
with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs.

VV.Tl, TV.Tl — Validation/test layer targets.

VV.Ai, TV.Ai — Validation/test initial input conditions.

VV.Q, TV.Q — Validation/test batch size.

VV.TS, TV.TS — Validation/test time steps.

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

traingd

14-300

traingd(code) returns useful information for each code string:

'pnames' Names of training parameters.

'pdefaults' Default training parameters.

Network Use You can create a standard network that uses traingd with newff, newcf, or
newelm.

To prepare a custom network to be trained with traingd:

1 Set net.trainFcn to 'traingd'. This will set net.trainParam to traingd’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traingd.

See newff, newcf, and newelm for examples.

Algorithm traingd can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm

traingda

14-301

14traingdaPurpose Gradient descent with adaptive learning rate backpropagation

Syntax [net,TR,Ac,El] = traingda(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingda(code)

Description traingda is a network training function that updates weight and bias values
according to gradient descent with adaptive learning rate.

traingda(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.lr — Adaptive learning rate.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

traingda

14-302

Training occurs according to the traingda’s training parameters, shown here
with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q, TV.Q — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

traingda

14-303

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

traingda(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingda with newff, newcf, or
newelm.

To prepare a custom network to be trained with traingda

1 Set net.trainFcn to 'traingda'. This will set net.trainParam to traingda’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traingda.

See newff, newcf, and newelm for examples.

Algorithm traingda can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with
respect to the weight and bias variables X. Each variable is adjusted according
to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate
is increased by the factor lr_inc. If performance increases by more than the
factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the
change, which increased the performance, is not made.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

traingda

14-304

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingdx, trainlm

traingdm

14-305

14traingdmPurpose Gradient descent with momentum backpropagation

Syntax [net,TR,Ac,El] = traingdm(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingdm(code)

Description traingdm is a network training function that updates weight and bias values
according to gradient descent with momentum.

traingdm(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network

Pd — Delayed input vectors

Tl — Layer target vectors

Ai — Initial input delay conditions

Q — Batch size

TS — Time steps

VV — Either empty matrix [] or structure of validation vectors

TV — Empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac — Collective layer outputs for last epoch

El — Layer errors for last epoch

traingdm

14-306

Training occurs according to the traingdm’s training parameters shown here
with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mc 0.9 Momentum constant.

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q, TV.Q — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

traingdm

14-307

traingdm(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingdm with newff, newcf, or
newelm.

To prepare a custom network to be trained with traingdm

1 Set net.trainFcn to 'traingdm'. This will set net.trainParam to traingdm’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traingdm.

See newff, newcf, and newelm for examples.

Algorithm traingdm can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increase more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingda, traingdx, trainlm

traingdx

14-308

14traingdxPurpose Gradient descent with momentum and adaptive learning rate backpropagation

Syntax [net,TR,Ac,El] = traingdx(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingdx(code)

Description traingdx is a network training function that updates weight and bias values
according to gradient descent momentum and an adaptive learning rate.

traingdx(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS —Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.lr — Adaptive learning rate.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

traingdx

14-309

Training occurs according to the traingdx’s training parameters shown here
with their default values:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.mc 0.9 Momentum constant.

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q, TV.Q — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

traingdx

14-310

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

traingdx(code) return useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingdx with newff, newcf, or
newelm.

To prepare a custom network to be trained with traingdx

1 Set net.trainFcn to 'traingdx'. This will set net.trainParam to traingdx’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with traingdx.

See newff, newcf, and newelm for examples.

Algorithm traingdx can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning
rate is increased by the factor lr_inc. If performance increases by more than
the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and
the change, which increased the performance, is not made.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

traingdx

14-311

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increase more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, trainlm

trainlm

14-312

14trainlmPurpose Levenberg-Marquardt backpropagation

Syntax [net,TR] = trainlm(net,Pd,Tl,Ai,Q,TS,VV,TV)
info = trainlm(code)

Description trainlm is a network training function that updates weight and bias values
according to Levenberg-Marquardt optimization.

trainlm(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of validation vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.mu — Adaptive mu value.

trainlm

14-313

Training occurs according to the trainlm’s training parameters shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mem_reduc 1 Factor to use for memory/speed
tradeoff

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.mu 0.001 Initial Mu

net.trainParam.mu_dec 0.1 Mu decrease factor

net.trainParam.mu_inc 10 Mu increase factor

net.trainParam.mu_max 1e10 Maximum Mu

net.trainParam.show 25 Epochs between showing progress

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainlm

14-314

If VV or TV is not [], it must be a structure of vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q, TV.Q — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network performance
on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is
generalizing well, but do not have any effect on training.

trainlm(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainlm with newff, newcf, or
newelm.

To prepare a custom network to be trained with trainlm

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainlm’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainlm.

See newff, newcf, and newelm for examples.

Algorithm trainlm can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

trainlm

14-315

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in
a reduced performance value. The change is then made to the network and mu
is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can
require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory
required by a factor of two, but slows trainlm somewhat. Higher values
continue to decrease the amount of memory needed and increase training
times.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, traingdx

trainoss

14-316

14trainossPurpose One step secant backpropagation

Syntax [net,TR,Ac,El] = trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainoss(code)

Description trainoss is a network training function that updates weight and bias values
according to the one step secant method.

trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of test vectors.

TV — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

trainoss

14-317

Training occurs according to the trainoss’s training parameters, shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol 20

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha 0.001

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta 0.1

Scale factor, which determines sufficiently large step size.

net.trainParam.delta 0.01

Initial step size in interval location step.

net.trainParam.gama 0.1

Parameter to avoid small reductions in performance. Usually set to 0.1.
(See use in srch_cha.)

net.trainParam.low_lim 0.1 Lower limit on change in step size.

net.trainParam.up_lim 0.5 Upper limit on change in step size.

net.trainParam.maxstep 100 Maximum step length.

net.trainParam.minstep 1.0e-6 Minimum step length.

net.trainParam.bmax 26 Maximum step size.

trainoss

14-318

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.

trainoss

14-319

trainoss(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The trainoss network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainoss');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses trainoss with newff, newcf, or
newelm.

To prepare a custom network to be trained with trainoss

1 Set net.trainFcn to 'trainoss'. This will set net.trainParam to trainoss’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainoss.

trainoss

14-320

Algorithm trainoss can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of
the gradient of performance. In succeeding iterations the search direction is
computed from the new gradient and the previous steps and gradients
according to the following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous
iteration, and dgX is the change in the gradient from the last iteration. See
Battiti (Neural Computation) for a more detailed discussion of the one step
secant algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp,
traincgf, traincgb, trainscg, traincgp, trainbfg

References Battiti, R. “First and second order methods for learning: Between steepest
descent and Newton’s method,” Neural Computation, vol. 4, no. 2, pp. 141–166,
1992.

trainr

14-321

14trainrPurpose Random order incremental training with learning functions.

Syntax [net,TR,Ac,El] = trainr(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainr(code)

Description trainr is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trainr'.

trainr trains a network with weight and bias learning rules with incremental
updates after each presentation of an input. Inputs are presented in random
order.

trainr(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd — Delayed inputs.

Tl — Layer targets.

Ai — Initial input conditions.

Q — Batch size.

TS — Time steps.

VV — Ignored.

TV — Ignored.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

Ac — Collective layer outputs.

El — Layer errors.

trainr

14-322

Training occurs according to trainr’s training parameters shown here with
their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no
 displays)

net.trainParam.time inf Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or [].

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainr does not implement validation or test vectors, so arguments VV and TV
are ignored.

trainr(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainr by calling newc or newsom.

To prepare a custom network to be trained with trainr

1 Set net.trainFcn to 'trainr'.

(This will set net.trainParam to trainr’s default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

trainr

14-323

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias
learning parameters will automatically be set to default values for the given
learning function.)

To train the network

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newc and newsom for training examples.

Algorithm For each epoch, all training vectors (or sequences) are each presented once in
a different random order with the network and weight and bias values updated
accordingly after each individual presentation.

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

See Also newp, newlin, train

trainrp

14-324

14trainrpPurpose Resilient backpropagation

Syntax [net,TR,Ac,El] = trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainrp(code)

Description trainrp is a network training function that updates weight and bias values
according to the resilient backpropagation algorithm (RPROP).

trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

trainrp

14-325

Training occurs according to the trainrp’s training parameters shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.lr 0.01 Learning rate

net.trainParam.delt_inc 1.2 Increment to weight change

net.trainParam.delt_dec 0.5 Decrement to weight change

net.trainParam.delta0 0.07 Initial weight change

net.trainParam.deltamax 50.0 Maximum weight change

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

trainrp

14-326

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainrp(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The trainrp network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

trainrp

14-327

Network Use You can create a standard network that uses trainrp with newff, newcf, or
newelm.

To prepare a custom network to be trained with trainrp

1 Set net.trainFcn to 'trainrp'. This will set net.trainParam to trainrp’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainrp.

Algorithm trainrp can train any network as long as its weight, net input, and transfer
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0 and gX is the
gradient. At each iteration the elements of deltaX are modified. If an element
of gX changes sign from one iteration to the next, then the corresponding
element of deltaX is decreased by delta_dec. If an element of gX maintains the
same sign from one iteration to the next, then the corresponding element of
deltaX is increased by delta_inc. See Reidmiller and Braun, Proceedings of
the IEEE International Conference on Neural Networks.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp,
traincgf, traincgb, trainscg, trainoss, trainbfg

trainrp

14-328

References Riedmiller, M., and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE
International Conference on Neural Networks, San Francisco,1993.

trains

14-329

14trainsPurpose Sequential order incremental training w/learning functions

Syntax [net,TR,Ac,El] = trains(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trains(code)

Description trains is not called directly. Instead it is called by train for networks whose
net.trainFcn property is set to 'trains'.

trains trains a network with weight and bias learning rules with sequential
updates. The sequence of inputs is presented to the network with updates
occurring after each time step.

This incremental training algorithm is commonly used for adaptive
applications.

trains takes these inputs:

net — Neural network

Pd — Delayed inputs

Tl — Layer targets

Ai — Initial input conditions

Q — Batch size

TS — Time steps

VV — Ignored

TV — Ignored

and after training the network with its weight and bias learning functions
returns:

net — Updated network

TR — Training record

TR.time steps — Number of time steps

TR.perf — Performance for each time step

Ac — Collective layer outputs

El — Layer errors

trains

14-330

Training occurs according to trains’s training parameter shown here with its
default value:

net.trainParam.passes 1 Number of times to present sequence

Dimensions for these variables are

Pd — No x NixTS cell array, each element P{i,j,ts} is a Zij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Ac — Nl x (LD+TS) cell array, each element Ac{i,k} is an Si x Q matrix

El — Nl x TS cell array, each element El{i,k} is an Si x Q matrix or []

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Zij = Ri * length(net.inputWeights{i,j}.delays)

trains(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trains for adapting by calling
newp or newlin.

To prepare a custom network to adapt with trains

1 Set net.adaptFcn to 'trains'.

(This will set net.adaptParam to trains’s default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias
learning parameters will automatically be set to default values for the given
learning function.)

trains

14-331

To allow the network to adapt

1 Set weight and bias learning parameters to desired values.

2 Call adapt.

See newp and newlin for adaption examples.

Algorithm Each weight and bias is updated according to its learning function after each
time step in the input sequence.

See Also newp, newlin, train, trainb, trainc, trainr

trainscg

14-332

14trainscgPurpose Scaled conjugate gradient backpropagation

Syntax [net,TR,Ac,El] = trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainscg(code)

Description trainscg is a network training function that updates weight and bias values
according to the scaled conjugate gradient method.

trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd — Delayed input vectors.

Tl — Layer target vectors.

Ai — Initial input delay conditions.

Q — Batch size.

TS — Time steps.

VV — Either empty matrix [] or structure of validation vectors.

TV — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac — Collective layer outputs for last epoch.

El — Layer errors for last epoch.

trainscg

14-333

Training occurs according to the trainscg’s training parameters shown here
with their default values:

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between showing progress

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.sigma 5.0e-5 Determines change in weight for
second derivative approximation.

net.trainParam.lambda 5.0e-7 Parameter for regulating the
indefiniteness of the Hessian.

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q — Validation batch size.

VV.TS — Validation time steps.

trainscg

14-334

which is used to stop training early if the network performance on the
validation vectors fails to improve or remains the same for max_fail epochs in
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainscg(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges
from [0 to 10]. The first layer has two tansig neurons, and the second layer
has one logsig neuron. The trainscg network training function is used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainscg');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

trainscg

14-335

Network Use You can create a standard network that uses trainscg with newff, newcf, or
newelm.

To prepare a custom network to be trained with trainscg

1 Set net.trainFcn to 'trainscg'. This will set net.trainParam to trainscg’s
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network
with trainscg.

Algorithm trainscg can train any network as long as its weight, net input, and transfer
functions have derivative functions. Backpropagation is used to calculate
derivatives of performance perf with respect to the weight and bias variables
X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in
traincgp, traincgf and traincgb, but this algorithm does not perform a line
search at each iteration. See Moller (Neural Networks) for a more detailed
discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp,
traincgf, traincgb, trainbfg, traincgp, trainoss

References Moller, M. F., “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, pp. 525-533, 1993.

tramnmx

14-336

14tramnmxPurpose Transform data using a precalculated minimum and maximum value

Syntax [PN] = tramnmx(P,minp,maxp)

Description tramnmx transforms the network input set using minimum and maximum
values that were previously computed by premnmx. This function needs to be
used when a network has been trained using data normalized by premnmx. All
subsequent inputs to the network need to be transformed using the same
normalization.

tramnmx(P,minp, maxp)takes these inputs

P — R x Q matrix of input (column) vectors.

minp — R x 1 vector containing original minimums for each input.

maxp — R x 1 vector containing original maximums for each input.

and returns,

PN — R x Q matrix of normalized input vectors

Examples Here is the code to normalize a given data set, so that the inputs and targets
will fall in the range [-1,1], using premnmx, and also code to train a network
with the normalized data.

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use
tramnmx to transform them first. Then the transformed inputs can be used to
simulate the previously trained network. The network output must also be
unnormalized using postmnmx.

p2 = [4 -7];
[p2n] = tramnmx(p2,minp,maxp);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;

tramnmx

14-337

See Also premnmx, prestd, prepca, trastd, trapca

trapca

14-338

14trapcaPurpose Principal component transformation

Syntax [Ptrans] = trapca(P,transMat)

Description trapca preprocesses the network input training set by applying the principal
component transformation that was previously computed by prepca. This
function needs to be used when a network has been trained using data
normalized by prepca. All subsequent inputs to the network need to be
transformed using the same normalization.

trapca(P,transMat) takes these inputs,

P — R x Q matrix of centered input (column) vectors.

transMat — Transformation matrix.

and returns,

Ptrans — Transformed data set.

Examples Here is the code to perform a principal component analysis and retain only
those components that contribute more than two percent to the variance in the
data set. prestd is called first to create zero mean data, which is needed for
prepca.

p = [-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4 -1.2];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);

If we then receive new inputs to apply to the trained network, we will use
trastd and trapca to transform them first. Then the transformed inputs can
be used to simulate the previously trained network. The network output must
also be unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
[p2trans] = trapca(p2n,transMat)
an = sim(net,p2trans);
[a] = poststd(an,meant,stdt);

trapca

14-339

Algorithm Ptrans = transMat*P;

See Also prestd, premnmx, prepca, trastd, tramnmx

trastd

14-340

14trastdPurpose Preprocess data using a precalculated mean and standard deviation

Syntax [PN] = trastd(P,meanp,stdp)

Description trastd preprocesses the network training set using the mean and standard
deviation that were previously computed by prestd. This function needs to be
used when a network has been trained using data normalized by prestd. All
subsequent inputs to the network need to be transformed using the same
normalization.

trastd(P,T) takes these inputs,

P — R x Q matrix of input (column) vectors.

meanp — R x 1 vector containing the original means for each input.

stdp — R x 1 vector containing the original standard deviations for each
input.

and returns,

PN — R x Q matrix of normalized input vectors.

Examples Here is the code to normalize a given data set so that the inputs and targets
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use
trastd to transform them first. Then the transformed inputs can be used to
simulate the previously trained network. The network output must also be
unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
an = sim(net,pn);
[a] = poststd(an,meant,stdt);

Algorithm pn = (p-meanp)/stdp;

trastd

14-341

See Also premnmx, prepca, prestd, trapca, tramnmx

tribas

14-342

14tribasPurpose Triangular basis transfer function

Graph and
Symbol

Syntax A = tribas(N)

info = tribas(code)

Description tribas is a transfer function. Transfer functions calculate a layer’s output from
its net input.

tribas(N) takes one input,

N — S x Q matrix of net input (column) vectors.

and returns each element of N passed through a radial basis function.

tribas(code) returns useful information for each code string:

'deriv' — Name of derivative function.

'name' — Full name.

'output' — Output range.

'active' — Active input range.

Examples Here we create a plot of the tribas transfer function.

n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Network Use To change a network so that a layer uses tribas, set
net.layers{i}.transferFcn to 'tribas'.

n
0

-1

+1

a = tribas(n)

Triangular Basis Function

a

-1 +1

tribas

14-343

Call sim to simulate the network with tribas.

Algorithm tribas(N) calculates its output with according to:

tribas(n) = 1-abs(n), if -1 <= n <= 1; = 0, otherwise.

See Also sim, radbas

vec2ind

14-344

14vec2indPurpose Convert vectors to indices

Syntax ind = vec2ind(vec)

Description ind2vec and vec2ind allow indices to be represented either by themselves or
as vectors containing a 1 in the row of the index they represent.

vec2ind(vec) takes one argument,

vec — Matrix of vectors, each containing a single 1.

and returns the indices of the 1’s.

Examples Here four vectors (each containing only one “1” element) are defined and the
indices of the 1’s are found.

vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
ind = vec2ind(vec)

See Also ind2vec

A

Glossary

A Glossary

A-2

ADALINE - An acronym for a linear neuron: ADAptive LINear Element.

adaption - A training method that proceeds through the specified sequence of
inputs, calculating the output, error and network adjustment for each input
vector in the sequence as the inputs are presented.

adaptive learning rate - A learning rate that is adjusted according to an
algorithm during training to minimize training time.

adaptive filter - A network that contains delays and whose weights are
adjusted after each new input vector is presented. The network “adapts” to
changes in the input signal properties if such occur. This kind of filter is used
in long distance telephone lines to cancel echoes.

architecture - A description of the number of the layers in a neural network,
each layer’s transfer function, the number of neurons per layer, and the
connections between layers.

backpropagation learning rule - A learning rule in which weights and biases
are adjusted by error-derivative (delta) vectors backpropagated through the
network. Backpropagation is commonly applied to feedforward multilayer
networks. Sometimes this rule is called the generalized delta rule.

backtracking search - Linear search routine that begins with a step
multiplier of 1 and then backtracks until an acceptable reduction in the
performance is obtained.

batch - A matrix of input (or target) vectors applied to the network
“simultaneously.” Changes to the network weights and biases are made just
once for the entire set of vectors in the input matrix. (This term is being
replaced by the more descriptive expression “concurrent vectors.”)

batching - The process of presenting a set of input vectors for simultaneous
calculation of a matrix of output vectors and/or new weights and biases.

Bayesian framework - Assumes that the weights and biases of the network
are random variables with specified distributions.

BFGS quasi-Newton algorithm - A variation of Newton’s optimization
algorithm, in which an approximation of the Hessian matrix is obtained from
gradients computed at each iteration of the algorithm.

bias - A neuron parameter that is summed with the neuron’s weighted inputs
and passed through the neuron’s transfer function to generate the neuron’s
output.

A-3

bias vector - A column vector of bias values for a layer of neurons.

Brent’s search - A linear search that is a hybrid combination of the golden
section search and a quadratic interpolation.

Charalambous’ search - A hybrid line search that uses a cubic interpolation,
together with a type of sectioning.

cascade forward network - A layered network in which each layer only
receives inputs from previous layers.

classification - An association of an input vector with a particular target
vector.

competitive layer - A layer of neurons in which only the neuron with
maximum net input has an output of 1 and all other neurons have an output of
0. Neurons compete with each other for the right to respond to a given input
vector.

competitive learning - The unsupervised training of a competitive layer with
the instar rule or Kohonen rule. Individual neurons learn to become feature
detectors. After training, the layer categorizes input vectors among its
neurons.

competitive transfer function - Accepts a net input vector for a layer and
returns neuron outputs of 0 for all neurons except for the “winner,” the neuron
associated with the most positive element of the net input n.

concurrent input vectors - Name given to a matrix of input vectors that are
to be presented to a network “simultaneously.” All the vectors in the matrix will
be used in making just one set of changes in the weights and biases.

conjugate gradient algorithm - In the conjugate gradient algorithms a search
is performed along conjugate directions, which produces generally faster
convergence than a search along the steepest descent directions.

connection - A one-way link between neurons in a network.

connection strength - The strength of a link between two neurons in a
network. The strength, often called weight, determines the effect that one
neuron has on another.

cycle - A single presentation of an input vector, calculation of output, and new
weights and biases.

A Glossary

A-4

dead neurons - A competitive layer neuron that never won any competition
during training and so has not become a useful feature detector. Dead neurons
do not respond to any of the training vectors.

decision boundary - A line, determined by the weight and bias vectors, for
which the net input n is zero.

delta rule - See the Widrow-Hoff learning rule.

delta vector - The delta vector for a layer is the derivative of a network’s
output error with respect to that layer’s net input vector.

distance - The distance between neurons, calculated from their positions with
a distance function.

distance function - A particular way of calculating distance, such as the
Euclidean distance between two vectors.

early stopping - A technique based on dividing the data into three subsets. The
first subset is the training set used for computing the gradient and updating
the network weights and biases. The second subset is the validation set. When
the validation error increases for a specified number of iterations, the training
is stopped, and the weights and biases at the minimum of the validation error
are returned. The third subset is the test set. It is used to verify the network
design.

epoch - The presentation of the set of training (input and/or target) vectors to
a network and the calculation of new weights and biases. Note that training
vectors can be presented one at a time or all together in a batch.

error jumping - A sudden increase in a network’s sum-squared error during
training. This is often due to too large a learning rate.

error ratio - A training parameter used with adaptive learning rate and
momentum training of backpropagation networks.

error vector - The difference between a network’s output vector in response to
an input vector and an associated target output vector.

feedback network - A network with connections from a layer’s output to that
layer’s input. The feedback connection can be direct or pass through several
layers.

feedforward network - A layered network in which each layer only receives
inputs from previous layers.

A-5

Fletcher-Reeves update - A method developed by Fletcher and Reeves for
computing a set of conjugate directions. These directions are used as search
directions as part of a conjugate gradient optimization procedure.

function approximation - The task performed by a network trained to
respond to inputs with an approximation of a desired function.

generalization - An attribute of a network whose output for a new input vector
tends to be close to outputs for similar input vectors in its training set.

generalized regression network - Approximates a continuous function to an
arbitrary accuracy, given a sufficient number of hidden neurons.

global minimum - The lowest value of a function over the entire range of its
input parameters. Gradient descent methods adjust weights and biases in
order to find the global minimum of error for a network.

golden section search - A linear search that does not require the calculation
of the slope. The interval containing the minimum of the performance is
subdivided at each iteration of the search, and one subdivision is eliminated at
each iteration.

gradient descent - The process of making changes to weights and biases,
where the changes are proportional to the derivatives of network error with
respect to those weights and biases. This is done to minimize network error.

hard-limit transfer function - A transfer that maps inputs greater-than or
equal-to 0 to 1, and all other values to 0.

Hebb learning rule - Historically the first proposed learning rule for neurons.
Weights are adjusted proportional to the product of the outputs of pre- and
post-weight neurons.

hidden layer - A layer of a network that is not connected to the network
output. (For instance, the first layer of a two-layer feedforward network.)

home neuron - A neuron at the center of a neighborhood.

hybrid bisection-cubicsearch - A line search that combines bisection and
cubic interpolation.

input layer - A layer of neurons receiving inputs directly from outside the
network.

initialization - The process of setting the network weights and biases to their
original values.

A Glossary

A-6

input space - The range of all possible input vectors.

input vector - A vector presented to the network.

input weights - The weights connecting network inputs to layers.

input weight vector - The row vector of weights going to a neuron.

Jacobian matrix - Contains the first derivatives of the network errors with
respect to the weights and biases.

Kohonen learning rule - A learning rule that trains selected neuron’s weight
vectors to take on the values of the current input vector.

layer - A group of neurons having connections to the same inputs and sending
outputs to the same destinations.

layer diagram - A network architecture figure showing the layers and the
weight matrices connecting them. Each layer’s transfer function is indicated
with a symbol. Sizes of input, output, bias and weight matrices are shown.
Individual neurons and connections are not shown. (See Chapter 2.)

layer weights - The weights connecting layers to other layers. Such weights
need to have non-zero delays if they form a recurrent connection (i.e., a loop).

learning - The process by which weights and biases are adjusted to achieve
some desired network behavior.

learning rate - A training parameter that controls the size of weight and bias
changes during learning.

learning rules - Methods of deriving the next changes that might be made in
a network OR a procedure for modifying the weights and biases of a network.

Levenberg-Marquardt - An algorithm that trains a neural network 10 to 100
faster than the usual gradient descent backpropagation method. It will always
compute the approximate Hessian matrix, which has dimensions n-by-n.

line search function - Procedure for searching along a given search direction
(line) to locate the minimum of the network performance.

linear transfer function - A transfer function that produces its input as its
output.

link distance - The number of links, or steps, that must be taken to get to the
neuron under consideration.

A-7

local minimum - The minimum of a function over a limited range of input
values. A local minimum may not be the global minimum.

log-sigmoid transfer function - A squashing function of the form shown below
that maps the input to the interval (0,1). (The toolbox function is logsig.)

Manhattan distance - The Manhattan distance between two vectors x and y is
calculated as:

D = sum(abs(x-y))

maximum performance increase - The maximum amount by which the
performance is allowed to increase in one iteration of the variable learning rate
training algorithm.

maximum step size - The maximum step size allowed during a linear search.
The magnitude of the weight vector is not allowed to increase by more than this
maximum step size in one iteration of a training algorithm.

mean square error function - The performance function that calculates the
average squared error between the network outputs a and the target outputs t.

momentum - A technique often used to make it less likely for a
backpropagation networks to get caught in a shallow minima.

momentum constant - A training parameter that controls how much
“momentum” is used.

mu parameter - The initial value for the scalar µ.

neighborhood - A group of neurons within a specified distance of a particular
neuron. The neighborhood is specified by the indices for all of the neurons that
lie within a radius of the winning neuron :

net input vector - The combination, in a layer, of all the layer’s weighted input
vectors with its bias.

neuron - The basic processing element of a neural network. Includes weights
and bias, a summing junction and an output transfer function. Artificial

f n() 1
1 e n–+
------------------=

d i∗

Ni d() j dij d≤,{ }=

A Glossary

A-8

neurons, such as those simulated and trained with this toolbox, are
abstractions of biological neurons.

neuron diagram - A network architecture figure showing the neurons and the
weights connecting them. Each neuron’s transfer function is indicated with a
symbol.

ordering phase - Period of training during which neuron weights are expected
to order themselves in the input space consistent with the associated neuron
positions.

output layer - A layer whose output is passed to the world outside the network.

output vector - The output of a neural network. Each element of the output
vector is the output of a neuron.

output weight vector - The column vector of weights coming from a neuron or
input. (See outstar learning rule.)

outstar learning rule - A learning rule that trains a neuron’s (or input’s)
output weight vector to take on the values of the current output vector of the
post-weight layer. Changes in the weights are proportional to the neuron’s
output.

overfitting - A case in which the error on the training set is driven to a very
small value, but when new data is presented to the network, the error is large.

pass - Each traverse through all of the training input and target vectors.

pattern - A vector.

pattern association - The task performed by a network trained to respond
with the correct output vector for each presented input vector.

pattern recognition - The task performed by a network trained to respond
when an input vector close to a learned vector is presented. The network
“recognizes” the input as one of the original target vectors.

performance function - Commonly the mean squared error of the network
outputs. However, the toolbox also considers other performance functions.
Type nnets and look under performance functions.

perceptron - A single-layer network with a hard-limit transfer function. This
network is often trained with the perceptron learning rule.

A-9

perceptron learning rule - A learning rule for training single-layer hard-limit
networks. It is guaranteed to result in a perfectly functioning network in finite
time, given that the network is capable of doing so.

performance - The behavior of a network.

Polak-Ribiére update - A method developed by Polak and Ribiére for
computing a set of conjugate directions. These directions are used as search
directions as part of a conjugate gradient optimization procedure.

positive linear transfer function - A transfer function that produces an
output of zero for negative inputs and an output equal to the input for positive
inputs.

postprocessing - Converts normalized outputs back into the same units that
were used for the original targets.

Powell-Beale restarts - A method developed by Powell and Beale for
computing a set of conjugate directions. These directions are used as search
directions as part of a conjugate gradient optimization procedure. This
procedure also periodically resets the search direction to the negative of the
gradient.

preprocessing - Perform some transformation of the input or target data
before it is presented to the neural network.

principal component analysis - Orthogonalize the components of network
input vectors. This procedure can also reduce the dimension of the input
vectors by eliminating redundant components.

quasi-Newton algorithm - Class of optimization algorithm based on Newton’s
method. An approximate Hessian matrix is computed at each iteration of the
algorithm based on the gradients.

radial basis networks - A neural network that can be designed directly by
fitting special response elements where they will do the most good.

radial basis transfer function - The transfer function for a radial basis
neuron is:

radbas n() e n2–=

A Glossary

A-10

regularization - Involves modifying the performance function, which is
normally chosen to be the sum of squares of the network errors on the training
set, by adding some fraction of the squares of the network weights.

resilient backpropagation - A training algorithm that eliminates the harmful
effect of having a small slope at the extreme ends of the sigmoid “squashing”
transfer functions.

saturating linear transfer function - A function that is linear in the interval
(-1,+1) and saturates outside this interval to -1 or +1. (The toolbox function is
satlin.)

scaled conjugate gradient algorithm - Avoids the time consuming line search
of the standard conjugate gradient algorithm.

sequential input vectors - A set of vectors that are to be presented to a
network “one after the other.” The network weights and biases are adjusted on
the presentation of each input vector.

sigma parameter - Determines the change in weight for the calculation of the
approximate Hessian matrix in the scaled conjugate gradient algorithm.

sigmoid - Monotonic S-shaped function mapping numbers in the interval
(-∞,∞) to a finite interval such as (-1,+1) or (0,1).

simulation - Takes the network input p, and the network object net, and
returns the network outputs a.

spread constant - The distance an input vector must be from a neuron’s weight
vector to produce an output of 0.5.

squashing function - A monotonic increasing function that takes input values
between -∞ and +∞ and returns values in a finite interval.

star learning rule - A learning rule that trains a neuron’s weight vector to take
on the values of the current input vector. Changes in the weights are
proportional to the neuron’s output.

sum-squared error - The sum of squared differences between the network
targets and actual outputs for a given input vector or set of vectors.

supervised learning - A learning process in which changes in a network’s
weights and biases are due to the intervention of any external teacher. The
teacher typically provides output targets.

A-11

symmetric hard-limit transfer function - A transfer that maps inputs
greater-than or equal-to 0 to +1, and all other values to -1.

symmetric saturating linear transfer function - Produces the input as its
output as long as the input i in the range -1 to 1. Outside that range the output
is -1 and +1 respectively.

tan-sigmoid transfer function - A squashing function of the form shown
below that maps the input to the interval (-1,1). (The toolbox function is
tansig.)

tapped delay line - A sequential set of delays with outputs available at each
delay output.

target vector - The desired output vector for a given input vector.

test vectors - A set of input vectors (not used directly in training) that is used
to test the trained network.

topology functions - Ways to arrange the neurons in a grid, box, hexagonal, or
random topology.

training - A procedure whereby a network is adjusted to do a particular job.
Commonly viewed as an “offline” job, as opposed to an adjustment made during
each time interval as is done in adaptive training.

training vector - An input and/or target vector used to train a network.

transfer function - The function that maps a neuron’s (or layer’s) net output
n to its actual output.

tuning phase - Period of SOFM training during which weights are expected to
spread out relatively evenly over the input space while retaining their
topological order found during the ordering phase.

underdetermined system - A system that has more variables than
constraints.

unsupervised learning - A learning process in which changes in a network’s
weights and biases are not due to the intervention of any external teacher.
Commonly changes are a function of the current network input vectors, output
vectors, and previous weights and biases.

f n() 1
1 e n–+
------------------=

A Glossary

A-12

update - Make a change in weights and biases. The update can occur after
presentation of a single input vector or after accumulating changes over
several input vectors.

validation vectors - A set of input vectors (not used directly in training) that
is used to monitor training progress so as to keep the network from overfitting.

weighted input vector - The result of applying a weight to a layer's input,
whether it is a network input or the output of another layer.

weight function - Weight functions apply weights to an input to get weighted
inputs as specified by a particular function.

weight matrix - A matrix containing connection strengths from a layer’s
inputs to its neurons. The element wi,j of a weight matrix W refers to the
connection strength from input j to neuron i.

Widrow-Hoff learning rule - A learning rule used to trained single-layer
linear networks. This rule is the predecessor of the backpropagation rule and
is sometimes referred to as the delta rule.

B

Bibliography

B Bibliography

B-2

[Batt92] Battiti, R., “First and second order methods for learning: Between
steepest descent and Newton’s method,” Neural Computation, vol. 4, no. 2, pp.
141–166, 1992.

[Beal72] Beale, E. M. L., “A derivation of conjugate gradients,” in F. A.
Lootsma, ed., Numerical methods for nonlinear optimization, London:
Academic Press, 1972.

[Bren73] Brent, R. P., Algorithms for Minimization Without Derivatives,
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[Caud89] Caudill, M., Neural Networks Primer, San Francisco, CA: Miller
Freeman Publications, 1989.

This collection of papers from the AI Expert Magazine gives an excellent
introduction to the field of neural networks. The papers use a minimum of
mathematics to explain the main results clearly. Several good suggestions for
further reading are included.

[CaBu92] Caudill, M., and C. Butler, Understanding Neural Networks:
Computer Explorations, Vols. 1 and 2, Cambridge, MA: the MIT Press, 1992.

This is a two volume workbook designed to give students “hands on” experience
with neural networks. It is written for a laboratory course at the senior or
first-year graduate level. Software for IBM PC and Apple Macintosh computers
is included. The material is well written, clear and helpful in understanding a
field that traditionally has been buried in mathematics.

[Char92] Charalambous, C.,“Conjugate gradient algorithm for efficient
training of artificial neural networks,” IEEE Proceedings, vol. 139, no. 3, pp.
301–310, 1992.

[ChCo91] Chen, S., C. F. N. Cowan, and P. M. Grant, “Orthogonal least
squares learning algorithm for radial basis function networks,” IEEE
Transactions on Neural Networks, vol. 2, no. 2, pp. 302-309, 1991.

This paper gives an excellent introduction to the field of radial basis functions.
The papers use a minimum of mathematics to explain the main results clearly.
Several good suggestions for further reading are included.

[DARP88] DARPA Neural Network Study, Lexington, MA: M.I.T. Lincoln
Laboratory, 1988.

This book is a compendium of knowledge of neural networks as they were
known to 1988. It presents the theoretical foundations of neural networks and

B-3

discusses their current applications. It contains sections on associative
memories, recurrent networks, vision, speech recognition, and robotics.
Finally, it discusses simulation tools and implementation technology.

[DeSc83] Dennis, J. E., and R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ:
Prentice-Hall, 1983.

[Elma90] Elman, J. L.,“Finding structure in time,” Cognitive Science, vol. 14,
pp. 179-211, 1990.

This paper is a superb introduction to the Elman networks described in
Chapter 10, “Recurrent Networks.”

[FlRe64] Fletcher, R., and C. M. Reeves, “Function minimization by conjugate
gradients,” Computer Journal, vol. 7, pp. 149-154, 1964.

[FoHa97] Foresee, F. D., and M. T. Hagan, “Gauss-Newton approximation to
Bayesian regularization,” Proceedings of the 1997 International Joint
Conference on Neural Networks, pages 1930-1935, 1997.

[GiMu81] Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization,
New York: Academic Press, 1981.

[Gros82] Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland:
Reidel Press, 1982.

This book contains articles summarizing Grossberg’s theoretical
psychophysiology work up to 1980. Each article contains a preface explaining
the main points.

[HaDe99] Hagan,M.T. and H.B. Demuth, “Neural Networks for Control,”
Proceedings of the 1999 American Control Conference, San Diego, CA, 1999, pp.
1642-1656.

[HaJe99] Hagan, M.T., O. De Jesus, and R. Schultz, “Training Recurrent
Networks for Filtering and Control,” Chapter 12 in Recurrent Neural
Networks: Design and Applications, L. Medsker and L.C. Jain, Eds., CRC
Press, 1999, pp. 311-340.

[HaMe94] Hagan, M. T., and M. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no.
6, pp. 989–993, 1994.

B Bibliography

B-4

This paper reports the first development of the Levenberg-Marquardt
algorithm for neural networks. It describes the theory and application of the
algorithm, which trains neural networks at a rate 10 to 100 times faster than
the usual gradient descent backpropagation method.

[HDB96] Hagan, M. T., H. B. Demuth, and M. H. Beale, Neural Network
Design, Boston, MA: PWS Publishing, 1996.

This book provides a clear and detailed survey of basic neural network
architectures and learning rules. It emphasizes mathematical analysis of
networks, methods of training networks, and application of networks to
practical engineering problems. It has demonstration programs, an instructor’s
guide and transparency overheads for teaching.

[Hebb49] Hebb, D. O., The Organization of Behavior, New York: Wiley, 1949.

This book proposed neural network architectures and the first learning rule.
The learning rule is used to form a theory of how collections of cells might form
a concept.

[Himm72] Himmelblau, D. M., Applied Nonlinear Programming, New York:
McGraw-Hill, 1972.

[Joll86] Jolliffe, I. T., Principal Component Analysis, New York:
Springer-Verlag, 1986.

[HuSb92] Hunt, K.J., D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, Neural
Networks for Control System - A Survey,” Automatica, Vol. 28, 1992, pp.
1083-1112.

[Koho87] Kohonen, T., Self-Organization and Associative Memory, 2nd
Edition, Berlin: Springer-Verlag, 1987.

This book analyzes several learning rules. The Kohonen learning rule is then
introduced and embedded in self-organizing feature maps. Associative
networks are also studied.

[Koho97] Kohonen, T., Self-Organizing Maps, Second Edition, Berlin:
Springer-Verlag, 1997.

This book discusses the history, fundamentals, theory, applications and
hardware of self-organizing maps. It also includes a comprehensive literature
survey.

B-5

[LiMi89] Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class
of neural networks: linear systems operating on a closed hypercube,” IEEE
Transactions on Circuits and Systems, vol. 36, no. 11, pp. 1405-1422, 1989.

This paper discusses a class of neural networks described by first order linear
differential equations that are defined on a closed hypercube. The systems
considered retain the basic structure of the Hopfield model but are easier to
analyze and implement. The paper presents an efficient method for
determining the set of asymptotically stable equilibrium points and the set of
unstable equilibrium points. Examples are presented. The method of Li et. al.
is implemented in Chapter 9 of this User’s Guide.

[Lipp87] Lippman, R. P., “An introduction to computing with neural nets,”
IEEE ASSP Magazine, pp. 4-22, 1987.

This paper gives an introduction to the field of neural nets by reviewing six
neural net models that can be used for pattern classification. The paper shows
how existing classification and clustering algorithms can be performed using
simple components that are like neurons. This is a highly readable paper.

[MacK92] MacKay, D. J. C., “Bayesian interpolation,” Neural Computation,
vol. 4, no. 3, pp. 415-447, 1992.

[McPi43] McCulloch, W. S., and W. H. Pitts, “A logical calculus of ideas
immanent in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp.
115-133, 1943.

A classic paper that describes a model of a neuron that is binary and has a fixed
threshold. A network of such neurons can perform logical operations.

[Moll93] Moller, M. F., “A scaled conjugate gradient algorithm for fast
supervised learning,” Neural Networks, vol. 6, pp. 525-533, 1993.

[MuNe92]Murray, R., D. Neumerkel, and D. Sbarbaro, “Neural Networks for
Modeling and Control of a Non-linear Dynamic System,” Proceedings of the
1992 IEEE International Symposium on Intelligent Control, 1992, pp. 404-409.

[NaMu97]Narendra, K.S. and S. Mukhopadhyay, “Adaptive Control Using
Neural Networks and Approximate Models,” IEEE Transactions on Neural
Networks Vol. 8, 1997, pp. 475-485.

[NgWi89] Nguyen, D., and B. Widrow, “The truck backer-upper: An example of
self-learning in neural networks,” Proceedings of the International Joint
Conference on Neural Networks, vol 2, pp. 357-363, 1989.

B Bibliography

B-6

This paper describes a two-layer network that first learned the truck dynamics
and then learned how to back the truck to a specified position at a loading dock.
To do this, the neural network had to solve a highly nonlinear control systems
problem.

[NgWi90] Nguyen, D., and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,”
Proceedings of the International Joint Conference on Neural Networks, vol 3,
pp. 21-26, 1990.

Nguyen and Widrow demonstrate that a two-layer sigmoid/linear network can
be viewed as performing a piecewise linear approximation of any learned
function. It is shown that weights and biases generated with certain
constraints result in an initial network better able to form a function
approximation of an arbitrary function. Use of the Nguyen-Widrow (instead of
purely random) initial conditions often shortens training time by more than an
order of magnitude.

[Powe77] Powell, M. J. D., “Restart procedures for the conjugate gradient
method,” Mathematical Programming, vol. 12, pp. 241-254, 1977.

[Pulu92] N. Purdie, E.A. Lucas and M.B. Talley, “Direct measure of total
cholesterol and its distribution among major serum lipoproteins,” Clinical
Chemistry, vol. 38, no. 9, pp. 1645-1647, 1992.

[RiBr93] Riedmiller, M., and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE
International Conference on Neural Networks, 1993.

[Rose61] Rosenblatt, F., Principles of Neurodynamics, Washington D.C.:
Spartan Press, 1961.

This book presents all of Rosenblatt’s results on perceptrons. In particular, it
presents his most important result, the perceptron learning theorem.

[RuHi86a] Rumelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,”, in D. E. Rumelhart and J. L.
McClelland, eds. Parallel Data Processing, vol.1, Cambridge, MA: The M.I.T.
Press, pp. 318-362, 1986.

This is a basic reference on backpropagation.

B-7

[RuHi86b] Rumelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[RuMc86] Rumelhart, D. E., J. L. McClelland, and the PDP Research Group,
eds., Parallel Distributed Processing, Vols. 1 and 2, Cambridge, MA: The M.I.T.
Press, 1986.

These two volumes contain a set of monographs that present a technical
introduction to the field of neural networks. Each section is written by different
authors. These works present a summary of most of the research in neural
networks to the date of publication.

[Scal85] Scales, L. E., Introduction to Non-Linear Optimization, New York:
Springer-Verlag, 1985.

[SoHa96] Soloway, D. and P.J. Haley, “Neural Generalized Predictive
Control,” Proceedings of the 1996 IEEE International Symposium on Intelligent
Control, 1996, pp. 277-281.

[VoMa88] Vogl, T. P., J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon,
“Accelerating the convergence of the backpropagation method,” Biological
Cybernetics, vol. 59, pp. 256-264, 1988.

Backpropagation learning can be speeded up and made less sensitive to small
features in the error surface such as shallow local minima by combining
techniques such as batching, adaptive learning rate, and momentum.

[Wass93] Wasserman, P. D., Advanced Methods in Neural Computing, New
York: Van Nostrand Reinhold, 1993.

[WiHo60] Widrow, B., and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE
WESCON Convention Record, New York IRE, pp. 96-104, 1960.

[WiSt85] Widrow, B., and S. D. Sterns, Adaptive Signal Processing, New York:
Prentice-Hall, 1985.

This is a basic paper on adaptive signal processing.

B Bibliography

B-8

C
Demonstrations and
Applications

C Demonstrations and Applications

C-2

Tables of Demonstrations and Applications

Chapter 2: Neuron Model and Network
Architectures

Chapter 3: Perceptrons

Filename Page

Simple neuron and transfer functions nnd2n1 page 2-5

Neuron with vector input nnd2n2 page 2-7

Filename Page

Decision boundaries nnd4db page 3-5

Perceptron learning rule. Pick boundaries nnd4pr page 3-15

Classification with a two-input perceptron demop1 page 3-20

Outlier input vectors demop4 page 3-21

Normalized perceptron rule demop5 page 3-22

Linearly nonseparable vectors demop6 page 3-21

Tables of Demonstrations and Applications

C-3

Chapter 4: Linear Filters

Chapter 5: Backpropagation

Filename Page

Pattern association showing error surface demolin1 page 4-9

Training a linear neuron demolin2 page 4-17

Linear classification system nnd10lc page 4-17

Linear fit of nonlinear problem demolin4 page 4-18

Underdetermined problem demolin5 page 4-18

Linearly dependent problem demolin6 page 4-19

Too large a learning rate demolin7 page 4-19

Filename Page

Generalization nnd11gn page 5-51

Steepest descent backpropagation nnd12sd1 page 5-11

Momentum backpropagation nnd12mo page 5-13

Variable learning rate backpropagation nnd12vl page 5-15

Conjugate gradient backpropagation nnd12cg page 5-19

Marquardt backpropagation nnd12m page 5-30

Sample training session demobp1 page 5-30

C Demonstrations and Applications

C-4

Chapter 7: Radial Basis Networks

Chapter 8: Self-Organizing and Learn. Vector
Quant. Nets

Chapter 9: Recurrent Networks

Filename Page

Radial basis approximation demorb1 page 7-8

Radial basis underlapping neurons demorb3 page 7-8

Radial basis overlapping neurons demorb4 page 7-8

GRNN function approximation demogrn1 page 7-11

PNN classification demopnn1 page 7-14

Filename Page

Competitive learning democ1 page 8-8

One-dimensional self-organizing map demosm1 page 8-23

Two-dimensional self-organizing map demosm2 page 8-23

Learning vector quantization demolvq1 page 8-38

Filename Page

Hopfield two neuron design demohop1 page 9-1

Hopfield unstable equilibria demohop2 page 9-14

Hopfield three neuron design demohop3 page 9-14

Hopfield spurious stable points demohop4 page 9-14

Tables of Demonstrations and Applications

C-5

Chapter 10: Adaptive Networks

Chapter 11: Applications

Filename Page

Adaptive noise cancellation, toolbox example demolin8 page 10-16

Adaptive noise cancellation in airplane cockpit nnd10nc page 10-14

Filename Page

Linear design applin1 page 11-3

Adaptive linear prediction applin2 page 11-7

Elman amplitude detection appelm1 page 11-11

Character recognition appcr1 page 11-16

C Demonstrations and Applications

C-6

D

Simulink

Block Set (p. D-2) Introduces the Simulink® blocks provided by the Neural Network
Toolbox

Block Generation (p. D-5) Demonstrates block generation with the function gensim

D Simulink

D-2

Block Set
The Neural Network Toolbox provides a set of blocks you can use to build
neural networks in Simulink or which can be used by the function gensim to
generate the Simulink version of any network you have created in MATLAB®.

Bring up the Neural Network Toolbox blockset with this command.

neural

The result is a window that contains four blocks. Each of these blocks contains
additional blocks.

Transfer Function Blocks
Double-click on the Transfer Functions block in the Neural window to bring up
a window containing several transfer function blocks.

Block Set

D-3

Each of these blocks takes a net input vector and generates a corresponding
output vector whose dimensions are the same as the input vector.

Net Input Blocks
Double-click on the Net Input Functions block in the Neural window to bring
up a window containing two net-input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer
output vectors, and bias vectors, and returns a net-input vector.

Weight Blocks
Double-click on the Weight Functions block in the Neural window to bring up
a window containing three weight function blocks.

D Simulink

D-4

Each of these blocks takes a neuron’s weight vector and applies it to an input
vector (or a layer output vector) to get a weighted input value for a neuron.

It is important to note that the blocks above expect the neuron’s weight vector
to be defined as a column vector. This is because Simulink signals can be
column vectors, but cannot be matrices or row vectors.

It is also important to note that because of this limitation you have to create S
weight function blocks (one for each row), to implement a weight matrix going
to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function
and one transfer function block are required for each layer.

Block Generation

D-5

Block Generation
The function gensim generates block descriptions of networks so you can
simulate them in Simulink.

gensim(net,st)

The second argument to gensim determines the sample time, which is normally
chosen to be some positive real value.

If a network has no delays associated with its input weights or layer weights,
this value can be set to -1. A value of -1 tells gensim to generate a network with
continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets t.

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

We can test the network on our original inputs with sim.

y = sim(net,p)

The results returned show the network has solved the problem.

y =
1.0000 3.0000 5.0000 7.0000 9.0000

Call gensim as follows to generate a Simulink version of the network.

gensim(net,-1)

The second argument is -1 so the resulting network block samples
continuously.

The call to gensim results in the following screen. It contains a Simulink
system consisting of the linear network connected to a sample input and a
scope.

D Simulink

D-6

To test the network, double-click on the Input 1 block at left.

The input block is actually a standard Constant block. Change the constant
value from the initial randomly generated value to 2, and then select Close.

Select Start from the Simulation menu. Simulink momentarily pauses as it
simulates the system.

When the simulation is over, double-click the scope at the right to see the
following display of the network’s response.

Block Generation

D-7

Note that the output is 3, which is the correct output for an input of 2.

Exercises
Here are a couple of exercises you can try.

Changing Input Signal
Replace the constant input block with a signal generator from the standard
Simulink block set Sources. Simulate the system and view the network’s
response.

Discrete Sample Time
Recreate the network, but with a discrete sample time of 0.5, instead of
continuous sampling.

gensim(net,0.5)

Again replace the constant input with a signal generator. Simulate the system
and view the network’s response.

D Simulink

D-8

E

Code Notes

Dimensions (p. E-2) Defines common code dimensions

Variables (p. E-3) Defines common variables to use when you define a
simulation or training session

Functions (p. E-7) Discusses the utility functions that you can call to perform
a lot of the work of simulating or training a network

Code Efficiency (p. E-8) Discusses the functions you can use to convert a network
object to a structure, and a structure to a network

Argument Checking (p. E-9) Discusses advanced functions you can use to increase
speed

E Code Notes

E-2

Dimensions
The following code dimensions are used in describing both the network signals
that users commonly see, and those used by the utility functions:

Ni = number of network inputs = net.numInputs

Ri = number of elements in input i = net.inputs{i}.size

Nl = number of layers = net.numLayers

Si = number of neurons in layer i = net.layers{i}.size

Nt = number of targets = net.numTargets

Vi = number of elements in target i, equal to Sj, where j is the ith layer with a
target. (A layer n has a target if net.targets(n) == 1.)

No = number of network outputs = net.numOutputs

Ui = number of elements in output i, equal to Sj, where j is the ith layer with
an output (A layer n has an output if net.outputs(n) == 1.)

 ID = number of input delays = net.numInputDelays

 LD = number of layer delays = net.numLayerDelays

 TS = number of time steps

 Q = number of concurrent vectors or sequences.

Variables

E-3

Variables
The variables a user commonly uses when defining a simulation or training
session are

P

Network inputs.

Ni-by-TS cell array, each element P{i,ts} is an Ri-by-Q matrix.

Pi

Initial input delay conditions.

Ni-by-ID cell array, each element Pi{i,k} is an Ri-by-Q matrix.

Ai

Initial layer delay conditions.

Nl-by-LD cell array, each element Ai{i,k} is an Si-by-Q matrix.

T

Network targets.

Nt-by-TS cell array, each element P{i,ts} is an Vi-by-Q matrix.

These variables are returned by simulation and training

calls:

Y

 Network outputs.

 No-by-TS cell array, each element Y{i,ts} is a Ui-by-Q matrix.

E Code Notes

E-4

E

 Network errors.

 Nt-by-TS cell array, each element P{i,ts} is an Vi-by-Q matrix.

perf

 network performance

Utility Function Variables
These variables are used only by the utility functions.

Pc

Combined inputs.

Ni-by-(ID+TS) cell array, each element P{i,ts} is an Ri-by-Q matrix.

Pc = [Pi P] = Initial input delay conditions and network inputs.

Pd

Delayed inputs.

Ni-by-Nj-by-TS cell array, each element Pd{i,j,ts} is an (Ri*IWD(i,j))-by-Q
matrix, where IWD(i,j) is the number of delay taps associated with input
weight to layer i from input j.

Equivalently, IWD(i,j) = length(net.inputWeights{i,j}.delays).

Pd is the result of passing the elements of P through each input weights
tap delay lines. Since inputs are always transformed by input delays in
the same way it saves time to only do that operation once, instead of for
every training step.

BZ

Concurrent bias vectors.

Nl-by-1 cell array, each element BZ{i} is a Si-by-Q matrix.

Each matrix is simply Q copies of the net.b{i} bias vector.

Variables

E-5

IWZ

Weighted inputs.

Ni-by-Nl-by-TS cell array, each element IWZ{i,j,ts} is a Si-by--by-Q
matrix.

LWZ

Weighed layer outputs.

Ni-by-Nl-by-TS cell array, each element LWZ{i,j,ts} is a Si-by-Q matrix.

N

Net inputs.

Ni-by-TS cell array, each element N{i,ts} is a Si-by-Q matrix.

A

Layer outputs.

Nl-by-TS cell array, each element A{i,ts} is a Si-by-Q matrix.

Ac

Combined layer outputs.

Nl-by-(LD+TS) cell array, each element A{i,ts} is a Si-by-Q matrix.

Ac = [Ai A] = Initial layer delay conditions and layer outputs.

Tl

Layer targets.

Nl-by-TS cell array, each element Tl{i,ts} is a Si-by-Q matrix.

Tl contains empty matrices [] in rows of layers i not associated with
targets, indicated by net.targets(i) == 0.

E Code Notes

E-6

El

Layer errors.

Nl-by-TS cell array, each element El{i,ts} is a Si-by-Q matrix.

El contains empty matrices [] in rows of layers i not associated with
targets, indicated by net.targets(i) == 0.

X

Column vector of all weight and bias values.

Functions

E-7

Functions
The following functions are the utility functions that you can call to perform a
lot of the work of simulating or training a network. You can read about them
in their respective help comments.

These functions calculate signals.

calcpd, calca, calca1, calce, calce1, calcperf

These functions calculate derivatives, Jacobians, and values associated with
Jacobians.

calcgx, calcjx, calcjejj

calcgx is used for gradient algorithms; calcjx and calcjejj can be used for
calculating approximations of the Hessian for algorithms like
Levenberg-Marquardt.

These functions allow network weight and bias values to be accessed and
altered in terms of a single vector X.

setx, getx, formx

E Code Notes

E-8

Code Efficiency
The functions sim, train, and adapt all convert a network object to a structure,

net = struct(net);

before simulation and training, and then recast the structure back to a
network.

net = class(net,'network')

This is done for speed efficiency since structure fields are accessed directly,
while object fields are accessed using the MATLAB® object method handling
system. If users write any code that uses utility functions outside of sim, train,
or adapt, they should use the same technique.

Argument Checking

E-9

Argument Checking
These functions are only recommended for advanced users.

None of the utility functions do any argument checking, which means that the
only feedback you get from calling them with incorrectly sized arguments is an
error.

The lack of argument checking allows these functions to run as fast as possible.

For “safer” simulation and training, use sim, train and adapt.

E Code Notes

E-10

Index-1

Index

A
ADALINE network

decision boundary 4-5, 10-5
adaption

custom function 12-30
function 13-9
parameters 13-12

adaptive filter 10-9
example 10-10
noise cancellation example 10-14
prediction application 11-7
prediction example 10-13
training 2-18

adaptive linear networks 10-2, 10-18
amplitude detection 11-11
applications

adaptive filtering 10-9
aerospace 1-5
automotive 1-5
banking 1-5
defense 1-6
electronics 1-6
entertainment 1-6
financial 1-6
insurance 1-6
manufacturing 1-6
medical 1-7, 5-66
oil and gas exploration 1-7
robotics 1-7
speech 1-7
telecommunications 1-7
transportation 1-7

architecture
bias connection 12-5, 13-3
input connection 12-5, 13-3
input delays 13-5
layer connection 12-5, 13-4

layer delays 13-6
number of inputs 12-4, 13-2
number of layers 12-4, 13-2
number of outputs 12-6, 13-5
number of targets 12-6, 13-5
output connection 12-6, 13-4
target connection 12-6, 13-4

B
backpropagation 5-2, 6-2

algorithm 5-9
example 5-66

backtracking search 5-25
batch training 2-18, 2-20, 5-9

dynamic networks 2-22
static networks 2-20

Bayesian framework 5-53
benchmark 5-32, 5-58
BFGS quasi-Newton algorithm 5-26
bias

connection 12-5
definition 2-2
initialization function 13-26
learning 13-26
learning function 13-27
learning parameters 13-27
subobject 12-10, 13-26
value 12-11, 13-15

box distance 8-16
Brent’s search 5-24

C
cell array

derivatives 12-34

Index

Index-2

errors 12-29
initial layer delay states 12-28
input P 2-17
input vectors 12-13
inputs and targets 2-20
inputs property 12-7
layer targets 12-28
layers property 12-8
matrix of concurrent vectors 2-17
matrix of sequential vectors 2-19
sequence of outputs 2-15
sequential inputs 2-15
tap delayed inputs 12-28
weight matrices and bias vectors 12-12

Charalambous’ search 5-25
classification 7-12

input vectors 3-4
linear 4-15
regions 3-5

code
mathematical equivalents 2-10
perceptron network 3-7
writing 2-5

competitive layer 8-3
competitive neural network 8-4

example 8-7
competitive transfer function 7-12, 8-3, 8-17
concurrent inputs 2-13, 2-16
conjugate gradient algorithm 5-17

Fletcher-Reeves update 5-18
Polak-Ribiere update 5-20
Powell-Beale restarts 5-21
scaled 5-22

continuous stirred tank reactor 6-6
control

control design 6-2
electromagnet 6-18, 6-19

feedback linearization 6-2, 6-14
model predictive control 6-2, 6-3, 6-5, 6-6, 6-8,

6-38
model reference control 6-2, 6-3, 6-23, 6-25, 6-26,

6-38
NARMA-L2 6-2, 6-3, 6-14, 6-16, 6-18, 6-38
plant 6-2, 6-3, 6-23
robot arm 6-25
time horizon 6-5
training data 6-11

CSTR 6-6
custom neural network 12-2

D
dead neurons 8-5
decision boundary 4-5, 10-5

definition 3-5
demonstrations

appelm1 11-11
applin3 11-10
definition 1-2
demohop1 9-14
demohop2 9-14
demorb4 7-8
nnd10lc 4-17
nnd11gn 5-51
nnd12cg 5-19
nnd12m 5-30
nnd12mo 5-13
nnd12sd1 5-11, 5-24
nnd12vl 5-15

distance 8-9, 8-14
box 8-16
custom function 12-38
Euclidean 8-14
link 8-16

Index

Index-3

Manhattan 8-16
tuning phase 8-18

dynamic networks 2-14, 2-16
training 2-19, 2-22

E
early stopping 1-4, 5-55
electromagnet 6-18, 6-19
Elman network 9-3

recurrent connection 9-3
Euclidean distance 8-14
export 6-31

networks 6-31, 6-32
training data 6-35

F
feedback linearization 6-2, 6-14
feedforward network 5-6
finite impulse response filter 4-11, 10-10
Fletcher-Reeves update 5-18

G
generalization 5-51

regularization 5-52
generalized regression network 7-9
golden section search 5-23
gradient descent algorithm 5-2, 5-9

batch 5-10
with momentum 5-11, 5-12

graphical user interface 1-3, 3-23
gridtop topology 8-10

H
Hagan, Martin xii, xiii
hard limit transfer function 2-3, 2-25, 3-4
heuristic techniques 5-14
hidden layer

definition 2-12
home neuron 8-15
Hopfield network

architecture 9-8
design equilibrium point 9-10
solution trajectories 9-14
stable equilibrium point 9-10
target equilibrium points 9-10

horizon 6-5
hybrid bisection-cubic search 5-24

I
import 6-31

networks 6-31, 6-32
training data 6-35, 6-36

incremental training 2-18
initial step size function 5-16
initialization

additional functions 12-16
custom function 12-24
definition 3-9
function 13-10
parameters 13-12, 13-13

input
connection 12-5
number 12-4
range 13-17
size 13-17
subobject 12-7, 12-8, 13-17

input vector
outlier 3-21

Index

Index-4

input vectors
classification 3-4
dimension reduction 5-63
distance 8-9
topology 8-9

input weights
definition 2-10

inputs
concurrent 2-13, 2-16
sequential 2-13, 2-14

installation
guide 1-2

J
Jacobian matrix 5-28

K
Kohonen learning rule 8-5

L
lambda parameter 5-22
layer

connection 12-5
dimensions 13-18
distance function 13-18
distances 13-19
initialization function 13-19
net input function 13-20
number 12-4
positions 13-21
size 13-22
subobject 13-18
topology function 13-22
transfer function 13-23

layer weights
definition 2-10

learning rate
adaptive 5-14
maximum stable 4-14
optimal 5-14
ordering phase 8-18
too large 4-19
tuning phase 8-18

learning rules 3-2
custom 12-35
Hebb 12-17
Hebb with decay 12-17
instar 12-17
Kohonen 8-5
outstar 12-17
supervised learning 3-12
unsupervised learning 3-12
Widrow-Hoff 4-13, 5-2, 10-2, 10-4, 10-8, 10-18

learning vector quantization 8-2
creation 8-32
learning rule 8-35, 8-38
LVQ network 8-31
subclasses 8-31
target classes 8-31
union of two subclasses 8-35

least mean square error 4-8, 10-7
Levenberg-Marquardt algorithm 5-28

reduced memory 5-30
line search functions 5-19

backtracking search 5-25
Brent’s search 5-24
Charalambous’ search 5-25
golden section search 5-23
hybrid bisection-cubic search 5-24

linear networks
design 4-9

Index

Index-5

linear transfer function 2-3, 2-26, 4-3, 10-3
linear transfer functions 5-5
linearly dependent vectors 4-19
link distance 8-16
log-sigmoid transfer function 2-4, 2-26, 5-4

M
MADALINE 10-4
magnet 6-18, 6-19
Manhattan distance 8-16
maximum performance increase 5-12
maximum step size 5-16
mean square error function 5-9

least 4-8, 10-7
memory reduction 5-30
model predictive control 6-2, 6-3, 6-5, 6-6, 6-8,

6-38
model reference control 6-2, 6-3, 6-23, 6-25, 6-26,

6-38
momentum constant 5-12
mu parameter 5-29

N
NARMA-L2 6-2, 6-3, 6-14, 6-16, 6-18, 6-38
neighborhood 8-9
net input function

custom 12-20
network

definition 12-4
dynamic 2-14, 2-16
static 2-13

network function 12-11
network layer

competitive 8-3
definition 2-6

network/Data Manager window 3-23
Neural network

definition vi
neural network

adaptive linear 10-2, 10-18
competitive 8-4
custom 12-2
feedforward 5-6
generalized regression 7-9
multiple layer 2-11, 5-2, 10-16
one layer 2-8, 3-6, 4-4, 10-4, 10-19
probabilistic 7-12
radial basis 7-2
self organizing 8-2
self-organizing feature map 8-9

Neural Network Design xii
Instructor’s Manual xii
Overheads xii

neuron
dead (not allocated) 8-5
definition 2-2
home 8-15

Newton’s method 5-29
NN predictive control 6-2, 6-3, 6-5, 6-6, 6-8, 6-38
normalization

inputs and targets 5-61
mean and standard deviation 5-62

notation
abbreviated 2-6, 10-17
layer 2-11
transfer function symbols 2-4, 2-7

numerical optimization 5-14

O
one step secant algorithm 5-27
ordering phase learning rate 8-18

Index

Index-6

outlier input vector 3-21
output

connection 12-6
number 12-6
size 13-25
subobject 12-9, 13-25

output layer
definition 2-12
linear 5-6

overdetermined systems 4-18
overfitting 5-51

P
pass

definition 3-16
pattern recognition 11-16
perceptron learning rule 3-2, 3-13

normalized 3-22
perceptron network 3-2

code 3-7
creation 3-2
limitations 3-21

performance function 13-10
custom 12-32
modified 5-52
parameters 13-13

plant 6-2, 6-3, 6-23
plant identification 6-9, 6-14, 6-23, 6-27
Polak-Ribiere update 5-20
postprocessing 5-61
post-training analysis 5-64
Powell-Beale restarts 5-21
predictive control 6-2, 6-3, 6-5, 6-6, 6-8, 6-38
preprocessing 5-61
principal component analysis 5-63
probabilistic neural network 7-12

design 7-13

Q
quasi-Newton algorithm 5-25

BFGS 5-26

R
radial basis

design 7-10
efficient network 7-7
function 7-2
network 7-2
network design 7-5

radial basis transfer function 7-4
recurrent connection 9-3
recurrent networks 9-2
regularization 5-52

automated 5-53
resilient backpropagation 5-16
robot arm 6-25

S
self-organizing feature map (SOFM) network 8-9

neighborhood 8-9
one-dimensional example 8-24
two-dimensional example 8-26

self-organizing networks 8-2
sequential inputs 2-13, 2-14
S-function 14-2
sigma parameter 5-22
simulation 5-8

definition 3-8
SIMULINK

generating networks D-5

Index

Index-7

NNT block set D-2
Simulink

NNT blockset E-2
spread constant 7-5
squashing functions 5-16
static networks 2-13

batch training 2-20
training 2-18

subobject
bias 12-10, 13-8, 13-26
input 12-7, 12-8, 13-6, 13-17
layer 13-7, 13-18
output 12-9, 13-7, 13-25
target 12-9, 13-7, 13-25
weight 12-10, 13-8, 13-9, 13-28, 13-32

supervised learning 3-12
target output 3-12
training set 3-12

system identification 6-2, 6-4, 6-9, 6-14, 6-23,
6-27

T
tan-sigmoid transfer function 5-5
tapped delay line 4-10, 10-9
target

connection 12-6
number 12-6
size 13-25
subobject 12-9, 13-25

target output 3-12
time horizon 6-5
topologies 8-9

custom function 12-36
gridtop 8-10

topologies for SOFM neuron locations 8-10
training 5-8

batch 2-18, 5-9
competitive networks 8-6
custom function 12-27
definition 2-2, 3-2
efficient 5-61
faster 5-14
function 13-11
incremental 2-18
ordering phase 8-20
parameters 13-13
post-training analysis 5-64
self organizing feature map 8-19
styles 2-18
tuning phase 8-20

training data 6-11
training set 3-12
training styles 2-18
training with noise 11-19
transfer functions

competitive 7-12, 8-3, 8-17
custom 12-18
definition 2-2
derivatives 5-5
hard limit 2-3, 3-4
linear 4-3, 5-5, 10-3
log-sigmoid 2-4, 2-26, 5-4
radial basis 7-4
saturating linear 12-16
soft maximum 12-16
tan-sigmoid 5-5
triangular basis 12-16

transformation matrix 5-63
tuning phase learning rate 8-18
tuning phase neighborhood distance 8-18

Index

Index-8

U
underdetermined systems 4-18
unsupervised learning 3-12

V
variable learning rate algorithm 5-15
vectors

linearly dependent 4-19

W
weight

definition 2-2
delays 13-28, 13-32
initialization function 13-29, 13-33
learning 13-29, 13-33
learning function 13-30, 13-34
learning parameters 13-31, 13-35
size 13-31, 13-35
subobject 12-10, 13-28, 13-32
value 12-11, 13-14, 13-15
weight function 13-32, 13-36

weight function
custom 12-22

weight matrix
definition 2-8

Widrow-Hoff learning rule 4-13, 5-2, 10-2, 10-4,
10-8, 10-18

workspace (command line) 3-23

	Preface
	Neural Networks
	Basic Chapters
	Mathematical Notation for Equations and Figures
	Basic Concepts
	Language
	Weight Matrices
	Layer Notation
	Figure and Equation Examples

	Mathematics and Code Equivalents
	Neural Network Design Book
	Acknowledgments

	Introduction
	Getting Started
	Basic Chapters
	Help and Installation

	What’s New in Version 4.0
	Control System Applications
	Graphical User Interface
	New Training Functions
	Design of General Linear Networks
	Improved Early Stopping
	Generalization and Speed Benchmarks
	Demonstration of a Sample Training Session

	Neural Network Applications
	Applications in this Toolbox
	Business Applications
	Aerospace
	Automotive
	Banking
	Credit Card Activity Checking
	Defense
	Electronics
	Entertainment
	Financial
	Industrial
	Insurance
	Manufacturing
	Medical
	Oil and Gas
	Robotics
	Speech
	Securities
	Telecommunications
	Transportation
	Summary

	Neuron Model and Network Architectures
	Neuron Model
	Simple Neuron
	Transfer Functions
	Neuron with Vector Input

	Network Architectures
	A Layer of Neurons
	Multiple Layers of Neurons

	Data Structures
	Simulation With Concurrent Inputs in a Static Network
	Simulation With Sequential Inputs in a Dynamic Network
	Simulation With Concurrent Inputs in a Dynamic Network

	Training Styles
	Incremental Training (of Adaptive and Other Networks)
	Batch Training

	Summary
	Figures and Equations

	Perceptrons
	Introduction
	Important Perceptron Functions

	Neuron Model
	Perceptron Architecture
	Creating a Perceptron (newp)
	Simulation (sim)
	Initialization (init)

	Learning Rules
	Perceptron Learning Rule (learnp)
	Training (train)
	Limitations and Cautions
	Outliers and the Normalized Perceptron Rule

	Graphical User Interface
	Introduction to the GUI
	Create a Perceptron Network (nntool)
	Train the Perceptron
	Export Perceptron Results to Workspace
	Clear Network/Data Window
	Importing from the Command Line
	Save a Variable to a File and Load It Later

	Summary
	Figures and Equations
	New Functions

	Linear Filters
	Introduction
	Neuron Model
	Network Architecture
	Creating a Linear Neuron (newlin)

	Mean Square Error
	Linear System Design (newlind)
	Linear Networks with Delays
	Tapped Delay Line
	Linear Filter

	LMS Algorithm (learnwh)
	Linear Classification (train)
	Limitations and Cautions
	Overdetermined Systems
	Underdetermined Systems
	Linearly Dependent Vectors
	Too Large a Learning Rate

	Summary
	Figures and Equations
	New Functions

	Backpropagation
	Introduction
	Fundamentals
	Architecture
	Simulation (sim)
	Training

	Faster Training
	Variable Learning Rate (traingda, traingdx)
	Resilient Backpropagation (trainrp)
	Conjugate Gradient Algorithms
	Line Search Routines
	Quasi-Newton Algorithms
	Levenberg-Marquardt (trainlm)
	Reduced Memory Levenberg-Marquardt (trainlm)

	Speed and Memory Comparison
	Summary

	Improving Generalization
	Regularization
	Early Stopping
	Summary and Discussion

	Preprocessing and Postprocessing
	Min and Max (premnmx, postmnmx, tramnmx)
	Mean and Stand. Dev. (prestd, poststd, trastd)
	Principal Component Analysis (prepca, trapca)
	Post-Training Analysis (postreg)

	Sample Training Session
	Limitations and Cautions
	Summary

	Control Systems
	Introduction
	NN Predictive Control
	System Identification
	Predictive Control
	Using the NN Predictive Controller Block

	NARMA-L2 (Feedback Linearization) Control
	Identification of the NARMA-L2 Model
	NARMA-L2 Controller
	Using the NARMA-L2 Controller Block

	Model Reference Control
	Using the Model Reference Controller Block

	Importing and Exporting
	Importing and Exporting Networks
	Importing and Exporting Training Data

	Summary

	Radial Basis Networks
	Introduction
	Important Radial Basis Functions

	Radial Basis Functions
	Neuron Model
	Network Architecture
	Exact Design (newrbe)
	More Efficient Design (newrb)
	Demonstrations

	Generalized Regression Networks
	Network Architecture
	Design (newgrnn)

	Probabilistic Neural Networks
	Network Architecture
	Design (newpnn)

	Summary
	Figures
	New Functions

	Self-Organizing and Learn. Vector Quant. Nets
	Introduction
	Important Self-Organizing and LVQ Functions

	Competitive Learning
	Architecture
	Creating a Competitive Neural Network (newc)
	Kohonen Learning Rule (learnk)
	Bias Learning Rule (learncon)
	Training
	Graphical Example

	Self-Organizing Maps
	Topologies (gridtop, hextop, randtop)
	Distance Funct. (dist, linkdist, mandist, boxdist)
	Architecture
	Creating a Self Organizing MAP Neural Network (newsom)
	Training (learnsom)
	Examples

	Learning Vector Quantization Networks
	Architecture
	Creating an LVQ Network (newlvq)
	LVQ1 Learning Rule (learnlv1)
	Training
	Supplemental LVQ2.1 Learning Rule (learnlv2)

	Summary
	Self-Organizing Maps
	Learning Vector Quantizaton Networks
	Figures
	New Functions

	Recurrent Networks
	Introduction
	Important Recurrent Network Functions

	Elman Networks
	Architecture
	Creating an Elman Network (newelm)
	Training an Elman Network

	Hopfield Network
	Fundamentals
	Architecture
	Design (newhop)

	Summary
	Figures
	New Functions

	Adaptive Filters and Adaptive Training
	Introduction
	Important Adaptive Functions

	Linear Neuron Model
	Adaptive Linear Network Architecture
	Single ADALINE (newlin)

	Mean Square Error
	LMS Algorithm (learnwh)
	Adaptive Filtering (adapt)
	Tapped Delay Line
	Adaptive Filter
	Adaptive Filter Example
	Prediction Example
	Noise Cancellation Example
	Multiple Neuron Adaptive Filters

	Summary
	Figures and Equations
	New Functions

	Applications
	Introduction
	Application Scripts

	Applin1: Linear Design
	Problem Definition
	Network Design
	Network Testing
	Thoughts and Conclusions

	Applin2: Adaptive Prediction
	Problem Definition
	Network Initialization
	Network Training
	Network Testing
	Thoughts and Conclusions

	Appelm1: Amplitude Detection
	Problem Definition
	Network Initialization
	Network Training
	Network Testing
	Network Generalization
	Improving Performance

	Appcr1: Character Recognition
	Problem Statement
	Neural Network
	System Performance
	Summary

	Advanced Topics
	Custom Networks
	Custom Network
	Network Definition
	Network Behavior

	Additional Toolbox Functions
	Initialization Functions
	Transfer Functions
	Learning Functions

	Custom Functions
	Simulation Functions
	Initialization Functions
	Learning Functions
	Self-Organizing Map Functions

	Network Object Reference
	Network Properties
	Architecture
	Subobject Structures
	Functions
	Parameters
	Weight and Bias Values
	Other

	Subobject Properties
	Inputs
	Layers
	Outputs
	Targets
	Biases
	Input Weights
	Layer Weights

	Reference
	Functions — Categorical List
	Analysis Functions
	Distance Functions
	Graphical Interface Function
	Layer Initialization Functions
	Learning Functions
	Line Search Functions
	Net Input Derivative Functions
	Net Input Functions
	Network Functions
	Network Initialization Function
	Network Use Functions
	New Networks Functions
	Performance Derivative Functions
	Performance Functions
	Plotting Functions
	Pre- and Postprocessing Functions
	Simulink Support Function
	Topology Functions
	Training Functions
	Transfer Derivative Functions
	Transfer Functions
	Utility Functions
	Vector Functions
	Weight and Bias Initialization Functions
	Weight Derivative Functions
	Weight Functions

	Transfer Function Graphs
	Functions — Alphabetical List
	adapt
	boxdist
	calca
	calca1
	calce
	calce1
	calcgx
	calcjejj
	calcjx
	calcpd
	calcperf
	combvec
	compet
	con2seq
	concur
	ddotprod
	dhardlim
	dhardlms
	disp
	display
	dist
	dlogsig
	dmae
	dmse
	dmsereg
	dnetprod
	dnetsum
	dotprod
	dposlin
	dpurelin
	dradbas
	dsatlin
	dsatlins
	dsse
	dtansig
	dtribas
	errsurf
	formx
	gensim
	getx
	gridtop
	hardlim
	hardlims
	hextop
	hintonw
	hintonwb
	ind2vec
	init
	initcon
	initlay
	initnw
	initwb
	initzero
	learncon
	learngd
	learngdm
	learnh
	learnhd
	learnis
	learnk
	learnlv1
	learnlv2
	learnos
	learnp
	learnpn
	learnsom
	learnwh
	linkdist
	logsig
	mae
	mandist
	maxlinlr
	midpoint
	minmax
	mse
	msereg
	negdist
	netprod
	netsum
	network
	newc
	newcf
	newelm
	newff
	newfftd
	newgrnn
	newhop
	newlin
	newlind
	newlvq
	newp
	newpnn
	newrb
	newrbe
	newsom
	nncopy
	nnt2c
	nnt2elm
	nnt2ff
	nnt2hop
	nnt2lin
	nnt2lvq
	nnt2p
	nnt2rb
	nnt2som
	nntool
	normc
	normprod
	normr
	plotbr
	plotep
	plotes
	plotpc
	plotperf
	plotpv
	plotsom
	plotv
	plotvec
	pnormc
	poslin
	postmnmx
	postreg
	poststd
	premnmx
	prepca
	prestd
	purelin
	quant
	radbas
	randnc
	randnr
	rands
	randtop
	revert
	satlin
	satlins
	seq2con
	setx
	sim
	softmax
	srchbac
	srchbre
	srchcha
	srchgol
	srchhyb
	sse
	sumsqr
	tansig
	train
	trainb
	trainbfg
	trainbr
	trainc
	traincgb
	traincgf
	traincgp
	traingd
	traingda
	traingdm
	traingdx
	trainlm
	trainoss
	trainr
	trainrp
	trains
	trainscg
	tramnmx
	trapca
	trastd
	tribas
	vec2ind

	Glossary
	Bibliography
	Demonstrations and Applications
	Tables of Demonstrations and Applications
	Chapter 2: Neuron Model and Network Architectures
	Chapter 3: Perceptrons
	Chapter 4: Linear Filters
	Chapter 5: Backpropagation
	Chapter 7: Radial Basis Networks
	Chapter 8: Self-Organizing and Learn. Vector Quant. Nets
	Chapter 9: Recurrent Networks
	Chapter 10: Adaptive Networks
	Chapter 11: Applications

	Simulink
	Block Set
	Transfer Function Blocks
	Net Input Blocks
	Weight Blocks

	Block Generation
	Example
	Exercises

	Code Notes
	Dimensions
	Variables
	Utility Function Variables

	Functions
	Code Efficiency
	Argument Checking

	Index

