MATLAB

The Language of Technical Computing

Computation
Visualization

Programming

Function Reference
Volume 1: A-E -.«‘\The MathWorks

Version 7

X L8

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 1: A - E
0 COPYRIGHT 1984 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

For MATLAB 5.0 (Release 8)
Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11

Printing History: December 1996 First printing
June 1997 Online only
October 1997 Online only
January 1999 Online only

June 1999 Second printing For MATLAB 5.3 (Release 11)

June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)

June 2004 Online only Revised for 7.0 (Release 14)

Contents

Functions — Categorical List

1]

Desktop Tools and Development Environment 1-2
Startup and Shutdown 1-2
Command Window and History 1-3
Help for Using MATLAB 1-3
Workspace, Search Path, and File Operations 1-3

WoOrkspacet e 14
Search Path 14
File Operationsouiiiiiiinnnnnnnnnnn.. 14
Programming Tools 1-5
Editing and Debugging 1-5
Performance Improvement and
Tuning Tools and Techniques 1-5
Source Control i 1-6
Publishing 1-6
System e 1-6

Mathematics 1-7

Arrays and Matrices 1-8
Basic Information i, 1-8
Operatorsc.oiiiiiiiii e e 1-8
Operations and Manipulation 1-9
Elementary Matrices and Arrays 1-10
Specialized Matrices 1-10

Linear Algebra 1-10
Matrix Analysist 1-11
Linear Equations 1-11
Eigenvalues and Singular Values 1-11
Matrix Logarithms and Exponentials 1-12
Factorization 1-12

Elementary Math 1-12
Trigonometricttt .. 1-13
Exponential 1-14
Complex e 1-14
Rounding and Remainder 1-14

Discrete Math (e.g., Prime Factors) 1-15

Data Analysis and Fourier Transforms 1-15
BasicOperationsciiiiiiininnnnn.. 1-15
Finite Differences 1-15
Correlation 1-16
Filtering and Convolution 1-16
Fourier Transforms 1-16

Polynomials i 1-16

Interpolation and Computational Geometry 1-17
Interpolation 1-17
Delaunay Triangulation and Tessellation 1-17
ConvexHull 1-18
Voronoi Diagramsciiiiinnnn... 1-18
Domain Generation i, 1-18

Coordinate System Conversion 1-18
Cartesianottt e 1-18

Nonlinear Numerical Methods 1-18
Ordinary Differential Equations IVP) 1-19
Delay Differential Equations 1-19
Boundary Value Problems 1-19
Partial Differential Equations 1-19
Optimization 1-19
Numerical Integration (Quadrature) 1-20

Specialized Math 1-20

Sparse Matrices i 1-20
Elementary Sparse Matrices 1-21
Full to Sparse Conversioncouuuenn... 1-21
Working with Sparse Matrices 1-21
Reordering Algorithms 1-21
Linear Algebra 1-21
Linear Equations (Iterative Methods) 1-22
Tree Operationsuuiiiinneennnennnennns 1-22

Math Constants 1-22

Programming and DataTypes 1-23

DataTypes ... e e 1-23
Numeric 1-24
Charactersand Strings 1-24
Structures 1-26
Cell Arrays 1-26

ii Contents

Data Type Conversionoiiiiiinno... 1-27

Determine Data Type 1-28
ATTaYS .ttt e 1-28
Array Operationsc.uiiiiiiiinnnnnnnn. 1-28
Basic Array Information 1-29
Array Manipulation 1-29
Elementary Arrays 1-30
Operators and Operationscccuiiieeninn... 1-30
Special Characters, 1-30
Arithmetic Operations 1-31
Bit-wise Operations 1-31
Relational Operations 1-31
Logical Operationsc0iiiiiiiiinnn... 1-32
Set Operationsciiiiiiiiieninnenn.. 1-32
Date and Time Operations 1-32
Programming in MATLAB 1-33
M-File Functions and Scripts 1-33
Evaluation of Expressions and Functions 1-34
Timer Functions 1-34
Variables and Functions in Memory 1-34
Control Flow i 1-35
Function Handles 1-35
Object-Oriented Programming 1-35
ErrorHandling 1-36
MEX Programmingc..uuiuimmneneneeeennnn 1-37
File /O 1-38
Filename Construction 1-38
Opening, Loading, Saving Files 1-39
Low-Level File /O 1-39
Text Files 1-39
XML Documentsoiutini i 1-39
Spreadsheets 1-40
Microsoft Excel Functions 1-40
Lotusl23 Functions, 1-40
ScientificData 1-40
Common Data Format (CDF) 1-40
Flexible Image Transport System 1-40
Hierarchical Data Format (HDF) 1-40
Band-Interleaved Data 1-40

iii

Audio and Audio/Video 1-41

General e 141
SPARCstation-Specific Sound Functions 1-41
Microsoft WAVE Sound Functions 141
Audio/Video Interleaved (AVI) Functions 1-41
Imagesc i 1-41
Internet Exchange 1-42
Graphics e 1-43
BasicPlotsand Graphs 1-43
Plotting Tools 1-43
Annotating Plots 1-44
Annotation Object Properties 1-44
Specialized Plotting 1-44
Area, Bar,and PiePlots 1-45
Contour Plots 1-45
Direction and Velocity Plots 1-45
Discrete DataPlots 1-45
FunctionPlots i, 1-45
Histograms i, 1-46
Polygons and Surfaces 1-46
Scatter/Bubble Plots 1-46
Animation 1-46
Bit-Mapped Images 1-47
Printing 1-47
Handle Graphics, 1-47
Finding and Identifying Graphics Objects 1-48
Object Creation Functions 1-48
Plot Objects 1-48
Figure Windows 1-49
Axes Operationsoiiiiiiinennnnennnn.. 1-49
Operating on Object Properties 1-49
3-D Visualization 1-50
Surface and Mesh Plots 1-50
Creating Surfaces and Meshes 1-50
Domain Generation 1-50
Color Operationsouiiiiiieennnnnnnnn.. 1-51
Colormapsot 1-51
View Control i 1-51

iv Contents

Controlling the Camera Viewpoint 1-52

Setting the Aspect Ratio and Axis Limits 1-52
Object Manipulation 1-52
Selecting Region of Interest 1-52
Lighting 1-53
Transparencyc..ueiimiiiiee .. 1-53
Volume Visualization 1-53
Creating Graphical User Interfaces 1-54
Predefined Dialog Boxes 1-54
Deploying User Interfaces 1-55
Developing User Interfaces 1-55
Working with Application Data 1-55
Interactive User Input 1-55
User Interface Objects 1-55
Finding Objects from Callbacks 1-55

Functions — Alphabetical List

Stretch-to-Fill 2-139
Positioningthe Axes 2-140
Setting Default Properties 2-142
Properties That Control the X-, Y-, or Z-Axis 2-170
Specifying Colormapsccuiiiiinnninn.. 2-387

Supported Colormapsc.cuiiiiinnnnnnn. 2-387

vi Contents

Functions — Categorical

List

The MATLAB® Function Reference contains descriptions of all MATLAB

commands and functions.

Select a category from the following table to see a list of related functions.

Desktop Tools and
Development Environment

Mathematics

Programming and Data
Types

File I/O

Graphics
3-D Visualization
Creating Graphical User

Interface

External Interfaces

Startup, Command Window, help, editing and
debugging, tuning, other general functions

Arrays and matrices, linear algebra, data
analysis, other areas of mathematics

Function/expression evaluation, program
control, function handles, object oriented
programming, error handling, operators, data
types, dates and times, timers

General and low-level file I/O, plus specific
file formats, like audio, spreadsheet, HDF,
images

Line plots, annotating graphs, specialized
plots, images, printing, Handle Graphics®

Surface and mesh plots, view control, lighting
and transparency, volume visualization.

GUIDE, programming graphical user
interfaces.

Java, COM, Serial Port functions.

See Simulink®, Stateﬂow®, Real-Time Workshop®, and the individual
toolboxes for lists of their functions

1 Funciions — Categorical List

Desktop Tools and Development Environment

General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

“Startup and Shutdown” Startup and shutdown options

“Command Window and Controlling Command Window and History

History”

“Help for Using Finding information

MATLAB”

“Workspace, Search File, search path, variable management

Path, and File

Operations”

“Programming Tools” Editing and debugging, source control, Notebook
“System” Identifying current computer, license, product

version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

genpath Generate a path string

matlab Start MATLAB (UNIX systems)

matlab Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for single user systems or administrators
prefdir Return directory containing preferences, history, and layout files
preferences Display Preferences dialog box for MATLAB and related products
quit Terminate MATLAB

startup MATLAB startup M-file for user-defined options

1-2

Desktop Tools and Development Environment

Command Window and History

clc

Clear Command Window

commandhistoryOpen the Command History, or select it if already open
commandwindow Open the Command Window, or select it if already open

diary
dos
format
home
matlab:
more
perl
system
unix

Save session to file

Execute DOS command and return result

Control display format for output

Move cursor to upper left corner of Command Window

Run specified function via hyperlink (matlabcolon)
Control paged output for Command Window

Call Perl script using appropriate operating system executable
Execute operating system command and return result

Execute UNIX command and return result

Help for Using MATLAB

doc

demo
docopt
docsearch
help
helpbrowser
helpwin
info
lookfor
playshow
support
web
whatsnew

Display online documentation in MATLAB Help browser

Access product demos via Help browser

Web browser for UNIX platforms

Open Help browser Search pane and run search for specified term
Display help for MATLAB functions in Command Window
Display Help browser for access to full online documentation and demos
Provide access to and display M-file help for all functions
Display Release Notes for MathWorks products

Search for specified keyword in all help entries

Run published M-file demo

Open MathWorks Technical Support Web page

Open Web site or file in Web browser or Help browser

Display Release Notes for MathWorks products

Workspace, Search Path, and File Operations

* “Workspace”

e “Search Path”
¢ “File Operations”

1-3

1 Funciions — Categorical List

14

Workspace
assignin
clear
evalin
exist
openvar
pack
uiimport
which
who, whos
workspace

Search Path

addpath
genpath
partialpath
path
path2rc
pathdef
pathsep
pathtool

Assign value to workspace variable

Remove items from workspace, freeing up system memory
Execute string containing MATLAB expression in a workspace
Check if variables or functions are defined

Open workspace variable in Array Editor for graphical editing
Consolidate workspace memory

Open Import Wizard, the graphical user interface to import data
Locate functions and files

List variables in the workspace

Display Workspace browser, a tool for managing the workspace

Add directories to MATLAB search path

Generate path string

Partial pathname

View or change the MATLAB directory search path

Replaced by savepath

List of directories in the MATLAB search path

Return path separator for current platform

Open Set Path dialog box to view and change MATLAB path

restoredefaultpathRestore the default search path

rmpath
savepath

Remove directories from MATLAB search path
Save current MATLAB search path to pathdef.m file

File Operations

cd
copyfile
delete

dir

exist
fileattrib
filebrowser
lookfor

1s
matlabroot
mkdir
movefile
pwd
recycle
rehash
rmdir

Change working directory

Copy file or directory

Delete files or graphics objects

Display directory listing

Check if variables or functions are defined

Set or get attributes of file or directory

Display Current Directory browser, a tool for viewing files
Search for specified keyword in all help entries
List directory on UNIX

Return root directory of MATLAB installation
Make new directory

Move file or directory

Display current directory

Set option to move deleted files to recycle folder
Refresh function and file system path caches
Remove directory

Desktop Tools and Development Environment

type List file

web Open Web site or file in Web browser or Help browser
what List MATLARB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Programming Tools
¢ “Editing and Debugging”

¢ “Performance Improvement and Tuning Tools and Techniques”
® “Source Control”
¢ “Publishing”

Editing and Debugging

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
dbquit Quit debug mode

dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints

dbtype List M-file with line numbers
dbup Change local workspace context
debug M-file debugging functions
edit Edit or create M-file

keyboard Invoke the keyboard in an M-file

Performance Improvement and Tuning Tools and Techniques

memory Help for memory limitations

mlint Check M-files for possible problems, and report results
mlintrpt Run mlint for file or directory, reporting results in Web browser
pack Consolidate workspace memory

profile Profile the execution time for a function

profsave Save profile report in HTML format

rehash Refresh function and file system path caches

sparse Create sparse matrix

zeros Create array of all zeros

1-5

1 Funciions — Categorical List

1-6

Source Control

checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system

customverctrl Allow custom source control system
undocheckout Undo previous checkout from source control system

verctrl Version control operations on PC platforms

Publishing

notebook Open M-book in Microsoft Word (Windows only)

publish Run M-file containing cells, and save results to file of specified type
System

computer Identify information about computer on which MATLAB is running
javachk Generate error message based on Java feature support

license Show license number for MATLAB

prefdir Return directory containing preferences, history, and layout files
usejava Determine if a Java feature is supported in MATLAB

ver Display version information for MathWorks products

version Get MATLAB version number

Mathematics

Mathematics

Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices”

“Linear Algebra”

“Elementary Math”

“Data Analysis and
Fourier Transforms’

4

“Polynomials”

“Interpolation and
Computational
Geometry”

“Coordinate System
Conversion”

“Nonlinear Numerical
Methods”

“Specialized Math”

“Sparse Matrices”

“Math Constants”

Basic array operators and operations, creation of
elementary and specialized arrays and matrices

Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

Conversions between Cartesian and polar or
spherical coordinates

Differential equations, optimization, integration

Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

1-7

1 Funciions — Categorical List

Arrays and Matrices

e “Basic Information”
® “Operators”

® “Operations and Manipulation”

¢ “Elementary Matrices and Arrays”

® “Specialized Matrices”

Basic Information

disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
isfloat True for floating-point arrays
isinteger True for integer arrays
islogical True for logical array
isnumeric True for numeric arrays
isscalar True for scalars
issparse True for sparse matrix
isvector True for vectors
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix
Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
» Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
: Nonconjugated transpose
Lx Array multiplication (element-wise)
~ Array power (element-wise)
A Left array divide (element-wise)
i Right array divide (element-wise)

Mathematics

Operations and Manipulation

: (colon) Index into array, rearrange array
accumarray Construct an array with accumulation
blkdiag Block diagonal concatenation

cat Concatenate arrays

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

diag Diagonal matrices and diagonals of matrix
dot Vector dot product

end Last index

find Find indices of nonzero elements

fliplr Flip matrices left-right

flipud Flip matrices up-down

flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation

ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product

max Maximum value of array

min Minimum value of array

permute Rearrange dimensions of multidimensional array
prod Product of array elements

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

sum Sum of array elements

sqrtm Matrix square root

sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix

triu Upper triangular part of matrix

vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

1-9

1 Funciions — Categorical List

1-10

Elementary Matrices and Arrays

: (colon)
blkdiag
diag

eye
freqgspace
linspace
logspace
meshgrid
ndgrid
ones
rand
randn
repmat
zeros

Regularly spaced vector

Construct block diagonal matrix from input arguments
Diagonal matrices and diagonals of matrix

Identity matrix

Frequency spacing for frequency response

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Replicate and tile array

Create array of all zeros

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal
rosser
toeplitz
vander
wilkinson

Companion matrix

Test matrices

Hadamard matrix

Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix

Magic square

Pascal matrix

Classic symmetric eigenvalue test problem
Toeplitz matrix

Vandermonde matrix

Wilkinson’s eigenvalue test matrix

Linear Algebra

e “Matrix Analysis”

¢ “Linear Equations”

¢ “Eigenvalues and Singular Values”

e “Matrix Logarithms and Exponentials”

e “Factorization”

Mathematics

Matrix Analysis

cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant

norm Matrix or vector norm

normest Estimate matrix 2-norm

null Null space

orth Orthogonalization

rank Matrix rank

rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

\ and /
chol
cholinc
cond
condest
funm

inv
linsolve
1scov
1sgnonneg
1u

luinc
pinv

qr

rcond

Linear equation solution

Cholesky factorization

Incomplete Cholesky factorization
Condition number with respect to inversion
1-norm condition number estimate

Evaluate general matrix function

Matrix inverse

Solve linear systems of equations

Least squares solution in presence of known covariance
Nonnegative least squares

LU matrix factorization

Incomplete LU factorization

Moore-Penrose pseudoinverse of matrix
Orthogonal-triangular decomposition
Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

balance
cdf2rdf
condeig
eig
eigs
gsvd
hess
poly
polyeig
qz

Improve accuracy of computed eigenvalues

Convert complex diagonal form to real block diagonal form

Condition number with respect to eigenvalues
Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of sparse matrix
Generalized singular value decomposition
Hessenberg form of matrix

Polynomial with specified roots

Polynomial eigenvalue problem

QZ factorization for generalized eigenvalues

1-11

1 Funciions — Categorical List

1-12

rsf2csf
schur
svd
svds

Convert real Schur form to complex Schur form
Schur decomposition

Singular value decomposition

Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm
logm
sqrtm

Factorization

balance
cdf2rdf
chol
cholinc
cholupdate
1u

luinc
planerot
qr
grdelete
grinsert
qrupdate
qz
rsf2csf

Matrix exponential
Matrix logarithm
Matrix square root

Diagonal scaling to improve eigenvalue accuracy
Complex diagonal form to real block diagonal form
Cholesky factorization

Incomplete Cholesky factorization

Rank 1 update to Cholesky factorization

LU matrix factorization

Incomplete LU factorization

Givens plane rotation

Orthogonal-triangular decomposition

Delete column or row from QR factorization

Insert column or row into QR factorization

Rank 1 update to QR factorization

QZ factorization for generalized eigenvalues

Real block diagonal form to complex diagonal form

Elementary Math

® “Trigonometric”

¢ “Exponential”

* “Complex”

¢ “Rounding and Remainder”

® “Discrete Math (e.g., Prime Factors)”

Mathematics

Trigonometric

acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech
asin
asind
asinh
atan
atand
atanh
atan2
cos
cosd
cosh
cot
cotd
coth
csc
cscd
csch
sec
secd
sech
sin
sind
sinh
tan
tand
tanh

Inverse cosine

Inverse cosine, degrees
Inverse hyperbolic cosine
Inverse cotangent
Inverse cotangent, degrees
Inverse hyperbolic cotangent
Inverse cosecant

Inverse cosecant, degrees
Inverse hyperbolic cosecant
Inverse secant

Inverse secant, degrees
Inverse hyperbolic secant
Inverse sine
Inverse sine, degrees
Inverse hyperbolic sine
Inverse tangent

Inverse tangent, degrees
Inverse hyperbolic tangent
Four-quadrant inverse tangent
Cosine

Cosine, degrees
Hyperbolic cosine
Cotangent

Cotangent, degrees
Hyperbolic cotangent
Cosecant

Cosecant, degrees
Hyperbolic cosecant
Secant

Secant, degrees
Hyperbolic secant

Sine

Sine, degrees

Hyperbolic sine

Tangent

Tangent, degrees
Hyperbolic tangent

1-13

1 Funciions — Categorical List

Exponential

exp Exponential

expmi Exponential of x minus 1

log Natural logarithm

logip Logarithm of 1+x

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

nextpow?2 Next higher power of 2

pow2 Base 2 power and scale floating-point number

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

nthroot Real nth root

Complex

abs Absolute value

angle Phase angle

complex Construct complex data from real and imaginary parts

conj Complex conjugate

cplxpair Sort numbers into complex conjugate pairs

i Imaginary unit

imag Complex imaginary part

isreal True for real array

j Imaginary unit

real Complex real part

sign Signum

unwrap Unwrap phase angle

Rounding and Remainder

fix Round towards zero

floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division

rem Remainder after division

1-14

Mathematics

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

ged Greatest common divisor

isprime True for prime numbers

lcm Least common multiple

nchoosek All combinations of N elements taken K at a time
perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms

¢ “Basic Operations”

¢ “Finite Differences”

¢ “Correlation”

¢ “Filtering and Convolution”

e “Fourier Transforms”

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array

mean Average or mean value of arrays

median Median value of arrays

min Minimum elements of array

prod Product of array elements

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

std Standard deviation

sum Sum of array elements

trapz Trapezoidal numerical integration

var Variance

Finite Differences

del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1-15

1 Funciions — Categorical List

1-16

Correlation

corrcoef Correlation coefficients

cov Covariance matrix

subspace Angle between two subspaces

Filtering and Convolution

conv Convolution and polynomial multiplication

conv2 Two-dimensional convolution

convn N-dimensional convolution

deconv Deconvolution and polynomial division

detrend Linear trend removal

filter Filter data with infinite impulse response (IIR) or finite impulse response
(FIR) filter

filter2 Two-dimensional digital filtering

Fourier Transforms

abs Absolute value and complex magnitude

angle Phase angle

fft One-dimensional discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier Transform

fftshift Shift DC component of discrete Fourier transform to center of spectrum
fftw Interface to the FFTW library run-time algorithm for tuning FFTs
ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse multidimensional discrete Fourier transform

ifftshift Inverse fast Fourier transform shift

nextpow2 Next power of two

unwrap Correct phase angles

Polynomials

conv Convolution and polynomial multiplication

deconv Deconvolution and polynomial division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Analytic polynomial integration

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Mathematics

Interpolation and Computational Geometry

® “Interpolation”

¢ “Delaunay Triangulation and Tessellation”
® “Convex Hull”

® “Voronoi Diagrams”

® “Domain Generation”

Interpolation

dsearch Search for nearest point

dsearchn Multidimensional closest point search

griddata Data gridding

griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)

interp2 Two-dimensional data interpolation (table lookup)

interp3 Three-dimensional data interpolation (table lookup)

interpft One-dimensional interpolation using fast Fourier transform method
interpn Multidimensional data interpolation (table lookup)

meshgrid Generate X and Y matrices for three-dimensional plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

tsearchn Multidimensional closest simplex search

unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point

dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot Two-dimensional triangular plot
trisurf Triangular surface plot

tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

1-17

1 Funciions — Categorical List

Convex Hull

convhull Convex hull

convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search for nearest point

patch Create patch graphics object

plot Linear two-dimensional plot
voronoi Voronoi diagram

voronoin Multidimensional Voronoi diagrams

Domain Generation

meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation

Coordinate System Conversion

Cartesian

cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods

¢ “Ordinary Differential Equations (IVP)”
¢ “Delay Differential Equations”

¢ “Boundary Value Problems”

e “Partial Differential Equations”

® “Optimization”

® “Numerical Integration (Quadrature)”

1-18

Mathematics

Ordinary Differential Equations (IVP)

ode113 Solve non-stiff differential equations, variable order method
ode151 Solve fully implicit differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method

0de23s Solve stiff differential equations, low order method

ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule
ode23tb Solve stiff differential equations, low order method

ode45 Solve non-stiff differential equations, medium order method
odextend Extend the solution of an initial value problem

odeget Get ODE options parameters

odeset Create/alter ODE options structure

decic Compute consistent initial conditions for ode151

deval Evaluate solution of differential equation problem

Delay Differential Equations

dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters

ddeset Create/alter DDE options structure

deval Evaluate solution of differential equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for ODEs
bvpget Get BVP options parameters

bvpset Create/alter BVP options structure

deval Evaluate solution of differential equation problem

Partial Differential Equations

pdepe Solve initial-boundary value problems for parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe
Optimization

fminbnd Scalar bounded nonlinear function minimization

fminsearch Multidimensional unconstrained nonlinear minimization, by
Nelder-Mead direct search method

fzero Scalar nonlinear zero finding

1sgnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

1-19

1 Funciions — Categorical List

1-20

Numerical Integration (Quadrature)

quad

quadl
quadv
dblquad
triplequad

Numerically evaluate integral, adaptive Simpson quadrature (low order)
Numerically evaluate integral, adaptive Lobatto quadrature (high order)
Vectorized quadrature

Numerically evaluate double integral

Numerically evaluate triple integral

Specialized Math

airy
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
ellipj
ellipke
erf
erfc
erfcinv
erfcx
erfinv
expint
gamma
gammainc
gammaln
legendre
psi

Airy functions

Bessel functions of third kind (Hankel functions)
Modified Bessel function of first kind
Bessel function of first kind

Modified Bessel function of second kind
Bessel function of second kind

Beta function

Incomplete beta function

Logarithm of beta function

Jacobi elliptic functions

Complete elliptic integrals of first and second kind
Error function

Complementary error function

Inverse complementary error function
Scaled complementary error function
Inverse error function

Exponential integral

Gamma function

Incomplete gamma function

Logarithm of gamma function
Associated Legendre functions

Psi (polygamma) function

Sparse Matrices

¢ “Elementary Sparse Matrices”

® “Full to Sparse Conversion”

® “Working with Sparse Matrices”

® “Reordering Algorithms”

® “Linear Algebra”

¢ “Linear Equations (Iterative Methods)”

® “Tree Operations”

Mathematics

Elementary Sparse Matrices

spdiags
speye
sprand
sprandn
sprandsym

Sparse matrix formed from diagonals
Sparse identity matrix

Sparse uniformly distributed random matrix
Sparse normally distributed random matrix
Sparse random symmetric matrix

Full to Sparse Conversion

find

full
sparse
spconvert

Find indices of nonzero elements

Convert sparse matrix to full matrix
Create sparse matrix

Import from sparse matrix external format

Working with Sparse Matrices

issparse
nnz
nonzeros
nzmax
spalloc
spfun
spones
spparms
spy

True for sparse matrix

Number of nonzero matrix elements

Nonzero matrix elements

Amount of storage allocated for nonzero matrix elements
Allocate space for sparse matrix

Apply function to nonzero matrix elements

Replace nonzero sparse matrix elements with ones

Set parameters for sparse matrix routines

Visualize sparsity pattern

Reordering Algorithms

colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation

colperm Column permutation

dmperm Dulmage-Mendelsohn permutation

randperm Random permutation

symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation

symrcm Symmetric reverse Cuthill-McKee permutation
Linear Algebra

cholinc Incomplete Cholesky factorization

condest 1-norm condition number estimate

eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization

normest Estimate matrix 2-norm

sprank Structural rank

svds Singular values and vectors of sparse matrix

1-21

1 Funciions — Categorical List

Linear Equations (lterative Methods)

bicg BiConjugate Gradients method

bicgstab BiConjugate Gradients Stabilized method

cgs Conjugate Gradients Squared method

gmres Generalized Minimum Residual method

lsqr LSQR implementation of Conjugate Gradients on Normal Equations
minres Minimum Residual method

pcg Preconditioned Conjugate Gradients method

qmr Quasi-Minimal Residual method

spaugment Form least squares augmented system

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity, o

intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type

j Imaginary unit

NaN Not-a-Number

pi Ratio of a circle’s circumference to its diameter, Tt
realmax Largest positive floating-point number

realmin Smallest positive floating-point number

1-22

Programming and Data Types

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB

programs.

“Data Types”

“Arrays”

“Operators and Operations”

“Programming in MATLAB”

Data Types

® “Numeric”

® “Characters and Strings”
® “Structures”

e “Cell Arrays”

® “Data Type Conversion”
¢ “Determine Data Type”

Numeric, character, structures, cell arrays,
and data type conversion

Basic array operations and manipulation

Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1-23

1 Funciions — Categorical List

1-24

Numeric
[]

cat

class

find
intmax
intmin
intwarning
ipermute
isa
isequal

Array constructor

Concatenate arrays

Return object’s class name (e.g., numeric)

Find indices and values of nonzero array elements
Largest possible value of specified integer type
Smallest possible value of specified integer type

Enable or disable integer warnings

Inverse permute dimensions of multidimensional array
Determine if item is object of given class (e.g., numeric)
Determine if arrays are numerically equal

isequalwithequalnansTest for equality, treating NaNs as equal

isnumeric
isreal
isscalar
isvector
permute
realmax
realmin
reshape
squeeze
zeros

Determine if item is numeric array

Determine if all array elements are real numbers
True for scalars (1-by-1 matrices)

True for vectors (1-by-N or N-by-1 matrices)
Rearrange dimensions of multidimensional array
Largest positive floating-point number

Smallest positive floating-point number
Reshape array

Remove singleton dimensions from array

Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings

Describes MATLAB string handling

Creating and Manipulating Strings

blanks
char
cellstr
datestr
deblank
lower
sprintf
sscanf
strcat

Create string of blanks

Create character array (string)

Create cell array of strings from character array
Convert to date string format

Strip trailing blanks from the end of string
Convert string to lower case

Write formatted data to string

Read string under format control

String concatenation

Programming and Data Types

strjust
strread
strrep
strtrim
strvcat
upper

Justify character array

Read formatted data from string

String search and replace

Remove leading and trailing whitespace from string
Vertical concatenation of strings

Convert string to upper case

Comparing and Searching Strings

class
findstr
isa
iscellstr
ischar
isletter
isscalar
isspace
isstrprop
isvector
regexp
regexpi
regexprep
strcmp
strcmpi
strfind
strmatch
strncmp
strncmpi
strtok

Return object’s class name (e.g., char)

Find string within another, longer string

Determine if item is object of given class (e.g., char)
Determine if item is cell array of strings

Determine if item is character array

Detect array elements that are letters of the alphabet
True for scalars (1-by-1 matrices)

Detect elements that are ASCII white spaces
Determine content of each element of string

True for vectors (1-by-N or N-by-1 matrices)
Match regular expression

Match regular expression, ignoring case

Replace string using regular expression

Compare strings

Compare strings, ignoring case

Find one string within another

Find possible matches for string

Compare first n characters of strings

Compare first n characters of strings, ignoring case
First token in string

Evaluating String Expressions

eval
evalc
evalin

Execute string containing MATLAB expression
Evaluate MATLAB expression with capture
Execute string containing MATLAB expression in workspace

1-25

1 Funciions — Categorical List

Structures

cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs

fieldnames Field names of structure

isa Determine if item is object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isscalar True for scalars (1-by-1 matrices)

isstruct Determine if item is structure array
isvector True for vectors (1-by-N or N-by-1 matrices)
orderfields Order fields of a structure array

rmfield Remove structure fields

struct Create structure array

struct2cell Structure to cell array conversion

Cell Arrays

{} Construct cell array

cell Construct cell array

cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents

cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)

deal Deal inputs to outputs

isa Determine if item is object of given class (e.g., cell)
iscell Determine if item is cell array

iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
isscalar True for scalars (1-by-1 matrices)

isvector True for vectors (1-by-N or N-by-1 matrices)
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array

struct2cell Structure to cell array conversion

1-26

Programming and Data Types

Data Type Conversion

Numeric

double Convert to double-precision

int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision

uint8 Convert to unsigned 8-bit integer
uinti16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String fo Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number

str2num Convert string to number

Numeric to String

char Convert to character array (string)

dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string

mat2str Convert a matrix to string

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array

datestr Convert serial date number to string

func2str Convert function handle to function name string
logical Convert numeric to logical array

mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array

str2func Convert function name string to function handle

struct2cell Convert structure to cell array

1-27

1 Funciions — Categorical List

Determine Data Type

is* Detect state

isa Determine if item is object of given class
iscell Determine if item is cell array

iscellstr Determine if item is cell array of strings
ischar Determine if item is character array

isfield Determine if item is character array

isfloat True for floating-point arrays

isinteger True for integer arrays

isjava Determine if item is Java object

islogical Determine if item is logical array

isnumeric Determine if item is numeric array

isobject Determine if item is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if item is MATLAB structure array
Arrays

® “Array Operations”
® “Basic Array Information”
® “Array Manipulation”

¢ “Elementary Arrays”

Array Operations

[1] Array constructor
) Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
L* Array multiplication
./ Array right division
\ Array left division
” Array power
Array (nonconjugated) transpose

1-28

Programming and Data Types

Basic Array Information

disp

display
isempty
isequal

Display text or array

Overloaded method to display text or array
Determine if array is empty

Determine if arrays are numerically equal

isequalwithequalnansTest for equality, treating NaNs as equal

islogical Determine if item is logical array

isnumeric Determine if item is numeric array

isscalar Determine if item is a scalar

isvector Determine if item is a vector

length Length of vector

ndims Number of array dimensions

numel Number of elements in matrix or cell array

size Array dimensions

Array Manipulation

: Specify range of array elements

blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays

circshift Shift array circularly

find Find indices and values of nonzero elements

fliplr Flip matrices left-right

flipud Flip matrices up-down

flipdim Flip array along specified dimension

horzcat Horizontal concatenation

ind2sub Subscripts from linear index

ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

vertcat Horizontal concatenation

1-29

1 Funciions — Categorical List

1-30

Elementary Arrays

blkdiag
eye
linspace
logspace
meshgrid
ndgrid
ones
rand
randn
zeros

Regularly spaced vector

Construct block diagonal matrix from input arguments
Identity matrix

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create array of all zeros

Operators and Operations

® “Special Characters”

¢ “Arithmetic Operations”

* “Bit-wise Operations”

® “Relational Operations”

® “Logical Operations”

® “Set Operations”

¢ “Date and Time Operations”

Special Characters

" A~ s
e —

— g0 =

Specify range of array elements

Pass function arguments, or prioritize operations
Construct array

Construct cell array

Decimal point, or structure field separator
Continue statement to next line

Array row element separator

Array column element separator

Insert comment line into code

Command to operating system
Assignment

Programming and Data Types

Arithmetic Operations

+

> — ~ % |l =

> — ~ *

Plus

Minus

Decimal point

Assignment

Matrix multiplication

Matrix right division

Matrix left division

Matrix power

Matrix transpose

Array multiplication (element-wise)
Array right division (element-wise)
Array left division (element-wise)
Array power (element-wise)

Array transpose

Bit-wise Operations

bitand
bitcmp
bitor
bitmax
bitset
bitshift
bitget
bitxor

Bit-wise AND

Bit-wise complement

Bit-wise OR

Maximum floating-point integer
Set bit at specified position
Bit-wise shift

Get bit at specified position
Bit-wise XOR

Relational Operations

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

1-31

1 Funciions — Categorical List

1-32

Logical Operations

&&

| |
&
I

all

any

false
find

is*

isa
iskeyword
isvarname
logical
true

xor

Logical AND

Logical OR

Logical AND for arrays

Logical OR for arrays

Logical NOT

Test to determine if all elements are nonzero
Test for any nonzero elements

False array

Find indices and values of nonzero elements
Detect state

Determine if item is object of given class
Determine if string is MATLAB keyword
Determine if string is valid variable name
Convert numeric values to logical

True array

Logical EXCLUSIVE OR

Set Operations

intersect
ismember
setdiff
issorted
setxor
union
unique

Set intersection of two vectors

Detect members of set

Return set difference of two vectors
Determine if set elements are in sorted order
Set exclusive or of two vectors

Set union of two vectors

Unique elements of vector

Date and Time Operations

addtodate
calendar
clock
cputime
date
datenum
datestr
datevec
eomday
etime
now

tic, toc
weekday

Modify particular field of date number
Calendar for specified month
Current time as date vector

Elapsed CPU time

Current date string

Serial date number

Convert serial date number to string
Date components

End of month

Elapsed time

Current date and time

Stopwatch timer

Day of the week

Programming and Data Types

Programming in MATLAB

¢ “M-File Functions and Scripts”

* “Evaluation of Expressions and Functions”

* “Timer Functions”

® “Variables and Functions in Memory”
¢ “Control Flow”

® “Function Handles”

® “Object-Oriented Programming”

¢ “Error Handling”

* “MEX Programming”

M-File Functions and Scripts

()

[
%

depfun
depdir
echo
function
input
inputname
mfilename

Pass function arguments

Insert comment line into code

Continue statement to next line

List dependent functions of M-file or P-file
List dependent directories of M-file or P-file
Echo M-files during execution

Function M-files

Request user input

Input argument name

Name of currently running M-file

namelengthmax Return maximum identifier length

nargin
nargout
nargchk
nargoutchk
pcode
script
varargin
varargout

Number of function input arguments
Number of function output arguments
Check number of input arguments
Validate number of output arguments
Create preparsed pseudocode file (P-file)
Describes script M-file

Accept variable number of arguments
Return variable number of arguments

1-33

1 Funciions — Categorical List

1-34

Evaluation of Expressions and Functions

builtin Execute built-in function from overloaded method
cellfun Apply function to each element in cell array

echo Echo M-files during execution

eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace

feval Evaluate function

iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name

pause Halt execution temporarily

run Run script that is not on current path

script Describes script M-file

symvar Determine symbolic variables in expression

tic, toc Stopwatch timer

Timer Functions

delete Delete timer object from memory

disp Display information about timer object

get Retrieve information about timer object properties
isvalid Determine if timer object is valid

set Display or set timer object properties

start Start a timer

startat Start a timer at a specific timer

stop Stop a timer

timer Create a timer object

timerfind Return an array of all visible timer objects in memory
timerfindall Return an array of all timer objects in memory
wait Block command line until timer completes

Variables and Functions in Memory

assignin Assign value to workspace variable
genvarname Construct valid variable name from string
global Define global variables

inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared

mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmax Return maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable

rehash Refresh function and file system caches

Programming and Data Types

Control Flow

break
case
catch
continue
else
elseif
end
error
for

if
otherwise
return
switch
try
while

Terminate execution of for loop or while loop
Case switch

Begin catch block

Pass control to next iteration of for or while loop
Conditionally execute statements

Conditionally execute statements

Terminate conditional statements, or indicate last index
Display error messages

Repeat statements specific number of times
Conditionally execute statements

Default part of switch statement

Return to invoking function

Switch among several cases based on expression
Begin try block

Repeat statements indefinite number of times

Function Handles

class
feval

Return object’s class name (e.g. function _handle)
Evaluate function

function_handle

functions
func2str
isa
isequal
str2func

Describes function handle data type

Return information about function handle

Constructs function name string from function handle
Determine if item is object of given class (e.g. function handle)
Determine if function handles are equal

Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object

fieldnames List public fields belonging to object,

inferiorto Establish inferior class relationship

isa Determine if item is object of given class

isobject Determine if item is MATLAB OOPs object

loadobj User-defined extension of 1oad function for user objects
methods Display information on class methods

methodsview Display information on class methods in separate window
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B

1-35

1 Funciions — Categorical List

1-36

subsindex
subsref
substruct
superiorto

Overloaded method for X (A)

Overloaded method for A(I), A{I} and A.field
Create structure argument for subsasgn or subsref
Establish superior class relationship

Java Classes and Objects

cell

class
clear
depfun
exist
fieldnames
im2java
import
inmem

isa

isjava
javaaddpath
javaArray
javachk

Convert Java array object to cell array

Return class name of Java object

Clear Java import list or Java class definitions
List Java classes used by M-file

Determine if item is Java class

List public fields belonging to object

Convert image to instance of Java image object
Add package or class to current Java import list
List names of Java classes loaded into memory
Determine if item is object of given class
Determine if item is Java object

Add entries to dynamic Java class path
Construct Java array

Generate error message based on Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java class path
methods Display information on class methods

methodsview Display information on class methods in separate window
usejava Determine if a Java feature is supported in MATLAB
which Display package and class name for method

Error Handling

catch Begin catch block of try/catch statement

error Display error message

ferror Query MATLAB about errors in file input or output
intwarning Enable or disable integer warnings

lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error

try Begin try block of try/catch statement

warning Display warning message

Programming and Data Types

MEX Programming

dbmex Enable MEX-file debugging

inmem Return names of currently loaded MEX-files

mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1-37

1 Funciions — Categorical List

1-38

File 1/0

Functions to read and write data to files of different format types.

“Filename Construction” Get path, directory, filename

information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/0” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,

WAVE, AVI files
“Images” Graphics files

“Internet Exchange” URL, zip, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction

fileparts Return parts of filename

filesep Return directory separator for this platform
fullfile Build full filename from parts

tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

File 1/O

Opening, Loading, Saving Files

importdata
load

open

save
uiimport
winopen

Load data from various types of files

Load all or specific data from MAT or ASCII file

Open files of various types using appropriate editor or program
Save all or specific data to MAT or ASCII file

Open Import Wizard, the graphical user interface to import data
Open file in appropriate application (Windows only)

Low-Level File I/O

fclose
feof
ferror
fgetl
fgets
fopen
fprintf
fread
frewind
fscanf
fseek
ftell
fwrite

Text Files

csvread
csvwrite
dlmread
dlmwrite
textread
textscan

Close one or more open files

Test for end-of-file

Query MATLAB about errors in file input or output
Return next line of file as string without line terminator(s)
Return next line of file as string with line terminator(s)
Open file or obtain information about open files

Write formatted data to file

Read binary data from file

Rewind open file

Read formatted data from file

Set file position indicator

Get file position indicator

Write binary data to file

Read numeric data from text file, using comma delimiter

Write numeric data to text file, using comma delimiter

Read numeric data from text file, specifying your own delimiter
Write numeric data to text file, specifying your own delimiter
Read data from text file, write to multiple outputs

Read data from text file, convert and write to cell array

XML Documents

xmlread
xmlwrite
xslt

Parse XML document
Serialize XML Document Object Model node
Transform XML document using XSLT engine

1-39

1 Funciions — Categorical List

Spreadsheets

Microsoft Excel Functions

xlsfinfo Determine if file contains Microsoft Excel (. x1s) spreadsheet
x1lsread Read Microsoft Excel spreadsheet file (. x1s)
xlswrite Write Microsoft Excel spreadsheet file (. x1s)

Lotus123 Functions

wk1read Read Lotus123 WK1 spreadsheet file into matrix
wkiwrite Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)

cdfepoch Convert MATLAB date number or date string into CDF epoch
cdfinfo Return information about CDF file

cdfread Read CDF file

cdfwrite Write CDF file

Flexible Image Transport System

fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)

hdf Interface to HDF4 files

hdfinfo Return information about HDF4 or HDF-EOS file
hdfread Read HDF4 file

hdftool Start HDF4 Import Tool

hdf5 Describes HDF5 data type objects

hdf5info Return information about HDF5 file

hdf5read Read HDFS5 file

hdf5write Write data to file in HDF5 format
Band-Interleaved Data

multibandread Read band-interleaved data from file
multibandwriteWrite band-interleaved data to file

1-40

File 1/O

Audio and Audio/Video

General

audioplayer

Create audio player object

audiorecorder Perform real-time audio capture

beep
1lin2mu
mmfileinfo
mu2lin
sound
soundsc

Produce beep sound

Convert linear audio signal to mu-law
Information about a multimedia file
Convert mu-law audio signal to linear
Convert vector into sound

Scale data and play as sound

SPARCstation-Specific Sound Functions

auread
auwrite

Read NeXT/SUN (. au) sound file
Write NeXT/SUN (. au) sound file

Microsoft WAVE Sound Functions

wavplay
wavread
wavrecord
wavwrite

Play sound on PC-based audio output device
Read Microsoft WAVE (.wav) sound file
Record sound using PC-based audio input device
Write Microsoft WAVE (.wav) sound file

Audio/Video Interleaved (AVI) Functions

addframe
avifile
aviinfo
aviread
close
movie2avi

Images
im2java
imfinfo
imread
imwrite

Add frame to AVI file

Create new AVI file

Return information about AVI file

Read AVI file

Close AVI file

Create AVI movie from MATLAB movie

Convert image to instance of Java image object
Return information about graphics file

Read image from graphics file

Write image to graphics file

1-41

1 Funciions — Categorical List

Internet Exchange

ftp Connect to FTP server, creating an FTP object

sendmail Send e-mail message (attachments optional) to list of addresses
unzip Extract contents of zip file

urlread Read contents at URL

urlwrite Save contents of URL to file

zip Create compressed version of files in zip format

1-42

Graphics

Graphics

2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

Basic Plots and Graphs

box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars

hold Hold current graph

LineSpec Line specification syntax
loglog Plot using log-log scales

polar Polar coordinate plot

plot Plot vectors or matrices.

plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot

semilogy Semi-log scale plot

subplot Create axes in tiled positions

Plotting Tools

figurepalette Display figure palette on figure
pan Turn panning on or off.
plotbrowser Display plot browser on figure
plottools Start plotting tools
propertyeditorDisplay property editor on figure
zoom Turn zooming on or off

1-43

1 Funciions — Categorical List

1-44

Annotating Plots

annotation
clabel
datetick
gtext
legend
texlabel
title
xlabel
ylabel
zlabel

Create annotation objects

Add contour labels to contour plot

Date formatted tick labels

Place text on 2-D graph using mouse

Graph legend for lines and patches

Produce the TeX format from character string
Titles for 2-D and 3-D plots

X-axis labels for 2-D and 3-D plots

Y-axis labels for 2-D and 3-D plots

Z-axis labels for 3-D plots

Annotation Object Properties

arrow
doublearrow
ellipse
line
rectangle
textarrow

Properties for annotation arrows

Properties for double-headed annotation arrows
Properties for annotation ellipses

Properties for annotation lines

Properties for annotation rectangles

Properties for annotation textbox

Specialized Plotting

® “Area, Bar, and Pie Plots”

¢ “Contour Plots”

® “Direction and Velocity Plots”
® “Discrete Data Plots”

® “Function Plots”

¢ “Histograms”

® “Polygons and Surfaces”
® “Scatter/Bubble Plots”

® “Animation”

Graphics

Area, Bar, and Pie Plots

area Area plot

bar Vertical bar chart

barh Horizontal bar chart

bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char

pie Pie plot

pie3d 3-D pie plot

Contour Plots

contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter

ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots

comet Comet plot

comet3 3-D comet plot

compass Compass plot

feather Feather plot

quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots

stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots

ezcontour Easy to use contour plotter

ezcontourf Easy to use filled contour plotter

ezmesh Easy to use 3-D mesh plotter

ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter

ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter

ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

1-45

1 Funciions — Categorical List

Histograms

hist
histc
rose

Plot histograms
Histogram count
Plot rose or angle histogram

Polygons and Surfaces

convhull
cylinder
delaunay
dsearch
ellipsoid
fill
fill3
inpolygon
pcolor
polyarea
ribbon
slice
sphere
tsearch
voronoi
waterfall

Convex hull

Generate cylinder

Delaunay triangulation

Search Delaunay triangulation for nearest point
Generate ellipsoid

Draw filled 2-D polygons

Draw filled 3-D polygons in 3-space
True for points inside a polygonal region
Pseudocolor (checkerboard) plot

Area of polygon

Ribbon plot

Volumetric slice plot

Generate sphere

Search for enclosing Delaunay triangle
Voronoi diagram

Waterfall plot

Scatter/Bubble Plots

plotmatrix

scatter
scatter3

Animation

frame2im
getframe
im2frame
movie
noanimate

1-46

Scatter plot matrix
Scatter plot
3-D scatter plot

Convert movie frame to indexed image
Capture movie frame

Convert image to movie frame

Play recorded movie frames

Change EraseMode of all objects to normal

Graphics

Bit-Mapped Images

frame2im Convert movie frame to indexed image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage file format registry

im2frame Convert image to movie frame

im2java Convert image to instance of Java image object
imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB image
Printing

frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation

pagesetupdlg Page setup dialog box

print Print graph or save graph to file

printdlg Print dialog box

printopt Configure local printer defaults
printpreview Preview figure to be printed

saveas Save figure to graphic file

Handle Graphics
¢ Finding and Identifying Graphics Objects

¢ Object Creation Functions
® Figure Windows
® Axes Operations

1-47

1 Funciions — Categorical List

1-48

Finding and Identifying Graphics Objects

allchild
ancestor
copyobj
delete
findall
figflag
findfigs
findobj
gca

gcho
gcbhf

gco

get
ishandle
set

Find all children of specified objects

Find ancestor of graphics object

Make copy of graphics object and its children
Delete files or graphics objects

Find all graphics objects (including hidden handles)
Test if figure is on screen

Display off-screen visible figure windows

Find objects with specified property values

Get current Axes handle

Return object whose callback is currently executing
Return handle of figure containing callback object
Return handle of current object

Get object properties

True if value is valid object handle

Set object properties

Obiject Creation Functions

axes Create axes object

figure Create figure (graph) windows
hggroup Create a group object

hgtransform Create a group to transform

image Create image (2-D matrix)

light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties

surface Create surface (quadrilaterals)

text Create text object (character strings)
uicontextmenu Create context menu (popup associated with object)
Plot Objects

areaseries Property list

barseries Property list

contourgroup Property list
errorbarseriesProperty list

lineseries Property list

quivergroup Property list

scattergroup Property list

stairseries Property list

stemseries Property list

surfaceplot Property list

Graphics

Figure Windows

clc

clf
close
closereq
drawnow
figflag
gcf
hgload
hgsave
newplot
opengl
refresh
saveas

Clear figure window

Clear figure

Close specified window

Default close request function

Complete any pending drawing

Test if figure is on screen

Get current figure handle

Load graphics object hierarchy from a FIG-file
Save graphics object hierarchy to a FIG-file
Graphics M-file preamble for NextPlot property
Change automatic selection mode of OpenGL rendering
Refresh figure

Save figure or model to desired output format

Axes Operations

axis

box

cla

gca

grid

ishold
makehgtform

Plot axis scaling and appearance
Display axes border

Clear Axes

Get current Axes handle

Grid lines for 2-D and 3-D plots
Get the current hold state

Create a transform matrix

Operating on Object Properties

get
linkaxes
linkprop
set

Get object properties

Synchronize limits of specified axes

Maintain same value for corresponding properties
Set object properties

1-49

1 Funciions — Categorical List

1-50

3-D Visualization

Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting
Transparency Specify and control object transparency
Volume Visualization Visualize gridded volume data

Surface and Mesh Plots

® Creating Surfaces and Meshes
® Domain Generation
® Color Operations

¢ Colormaps

Creating Surfaces and Meshes

hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

3-D Visualization

Color Operations

brighten Brighten or darken colormap

caxis Pseudocolor axis scaling
colormapeditorStart colormap editor

colorbar Display color bar (color scale)

colordef Set up color defaults

colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color

graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion

rgbplot Plot colormap

shading Color shading mode

spinmap Spin the colormap

surfnorm 3-D surface normals

whitebg Change axes background color for plots
Colormaps

autumn Shades of red and yellow colormap

bone Gray-scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap

flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap

hot Black-red-yellow-white colormap

hsv Hue-saturation-value (HSV) colormap

jet Variant of HSV

lines Line color colormap

prism Colormap of prism colors

spring Shades of magenta and yellow colormap
summer Shades of green and yellow colormap
winter Shades of blue and green colormap

View Control

® Controlling the Camera Viewpoint

® Setting the Aspect Ratio and Axis Limits
® Object Manipulation

® Selecting Region of Interest

1-51

1 Funciions — Categorical List

1-52

Controlling the Camera Viewpoint

camdolly Move camera position and target
camlookat View specific objects

camorbit Orbit about camera target

campan Rotate camera target about camera position
campos Set or get camera position

camproj Set or get projection type

camroll Rotate camera about viewing axis
camtarget Set or get camera target
cameratoolbar Control camera toolbar programmatically
camup Set or get camera up-vector

camva Set or get camera view angle

camzoom Zoom camera in or out

view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

makehgtform Create a transform matrix

Setting the Aspect Ratio and Axis Limits

daspect Set or get data aspect ratio

pbaspect Set or get plot box aspect ratio

x1lim Set or get the current x-axis limits

ylim Set or get the current y-axis limits

zlim Set or get the current z-axis limits

Object Manipulation

pan Turns panning on or off

reset Reset axis or figure

rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizelnteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest

dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

3-D Visualization

Lighting

camlight Cerate or position Light

light Light object creation function

lightangle Position light in sphereical coordinates

lighting Lighting mode

material Material reflectance mode

Transparency

alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Volume Visualization

coneplot
contourslice
curl
divergence
flow

Plot velocity vectors as cones in 3-D vector field
Draw contours in volume slice plane

Compute curl and angular velocity of vector field
Compute divergence of vector field

Generate scalar volume data

interpstreamspeedInterpolate streamline vertices from vector-field magnitudes

isocaps
isocolors
isonormals
isosurface
reducepatch
reducevolume
shrinkfaces
slice
smooth3
stream2
stream3
streamline

Compute isosurface end-cap geometry
Compute colors of isosurface vertices
Compute normals of isosurface vertices
Extract isosurface data from volume data
Reduce number of patch faces

Reduce number of elements in volume data set
Reduce size of patch faces

Draw slice planes in volume

Smooth 3-D data

Compute 2-D stream line data

Compute 3-D stream line data

Draw stream lines from 2- or 3-D vector data

streamparticlesDraws stream particles from vector volume data

streamribbon
streamslice
streamtube
surf2patch
subvolume
volumebounds

Draws stream ribbons from vector volume data

Draws well-spaced stream lines from vector volume data

Draws stream tubes from vector volume data

Convert surface data to patch data

Extract subset of volume data set

Return coordinate and color limits for volume (scalar and vector)

1-53

1 Funciions — Categorical List

1-54

Creating Graphical User Interfaces

Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes

Deploying User
Interfaces

Developing Use
Interfaces

Dialog boxes for error, user input, waiting, etc.

Launching GUIs, creating the handles structure

r Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from Finding object handles from within callbacks

Callbacks functions

GUI Utility Functions Moving objects, text wrapping
Controlling Program Wait and resume based on user input
Execution

Predefined Dialog Boxes

dialog
errordlg
helpdlg
inputdlg
listdlg
msgbox
pagesetupdlg
printdlg
questdlg
uigetdir
uigetfile
uiputfile
uisetcolor
uisetfont
waitbar
warndlg

Create dialog box

Create error dialog box

Display help dialog box

Create input dialog box

Create list selection dialog box

Create message dialog box

Page setup dialog box

Display print dialog box

Create question dialog box

Display dialog box to retrieve name of directory
Display dialog box to retrieve name of file for reading
Display dialog box to retrieve name of file for writing
Set ColorSpec using dialog box

Set font using dialog box

Display wait bar

Create warning dialog box

Creating Graphical User Inferfaces

Deploying User Interfaces

guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces

guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data

getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input

ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects

menu Generate menu of choices for user input
uibuttongroup Create component to exclusively manage radiobuttons and togglebuttons
uicontextmenu Create context menu

uicontrol Create user interface control
uimenu Create user interface menu
uipanel Create panel container object

uipushtool Create toolbar push button
uitoggletool Create toolbar toggle button
uitoolbar Create toolbar

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Display off-screen visible figure windows

findobj Find specific graphics object

gcbf Return handle of figure containing callback object
gcho Return handle of object whose callback is executing

1-56

1 Funciions — Categorical List

1-56

Functions — Alphabetical
List

Arithmetic Operators + - * / \ *'

2Arithmetic Operators + - 0/ \ *'

Purpose Matrix and array arithmetic
Syntax A+B
A-B
A[B A.[B
A/B A./B
A\B A.\B
A"B A.”B
A' Al
Description MATLAB has two different types of arithmetic operations. Matrix arithmetic

operations are defined by the rules of linear algebra. Array arithmetic
operations are carried out element by element, and can be used with
multidimensional arrays. The period character (.) distinguishes the array
operations from the matrix operations. However, since the matrix and array
operations are the same for addition and subtraction, the character pairs .+
and . - are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

O Matrix multiplication. C = A[B is the linear algebraic product of the
matrices A and B. More precisely,

n

C(@.j) = > A(.k)B(k.j)
k=1

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

.0 Array multiplication. A.[B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

2-2

Arithmetic Operators + - * / \ A"

Slash or matrix right division. B/A is roughly the same as Blinv (A).
More precisely, B/A = (A'\B')'. Seethe reference page for mrdivide for
more information.

Array right division. A. /B is the matrix with elements A(i,j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv (A) B, except it is computed in a different way. If A is an
n-by-n matrix and B is a column vector with n components, or a matrix
with several such columns, then X = A\B is the solution to the equation
AX = B computed by Gaussian elimination. A warning message is
displayed if A is badly scaled or nearly singular. See the reference page
for mldivide for more information.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A is determined
from the QR decomposition with pivoting (see “Algorithm” on

page 2-701 for details). A solution X is computed that has at most k
nonzero components per column. If k < n, this is usually not the same
solution as pinv (A) B, which is the least squares solution with the
smallest norm | X]| .

Array left division. A. \B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

Matrix power. X*p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated squaring. If the integer is negative,
X is inverted first. For other values of p, the calculation involves
eigenvalues and eigenvectors, such that if [V,D] = eig(X), then

X*p = VID.*p/V.

If x is a scalar and P is a matrix, x"P is x raised to the matrix power P
using eigenvalues and eigenvectors. X"P, where X and P are both
matrices, is an error.

Array power. A. *B is the matrix with elements A(i,j) totheB(i,j)
power. A and B must have the same size, unless one of them is a scalar.

2-3

Arithmetic Operators + - * / \ *'

Nondouble
Data Type
Support

2-4

Matrix transpose. A' is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

Array transpose. A. ' is the array transpose of A. For complex matrices,
this does not involve conjugation.

This section describes the arithmetic operators’ support for data types other
than double.

Data Type single

You can apply any of the arithmetic operators to arrays of type single and
MATLAB returns an answer of type single. You can also combine an array of
type double with an array of type single, and the result has type single.

Integer Data Types
You can apply most of the arithmetic operators to real arrays of the following
integer data types:

® int8 and uint8
® int16 and uint16
® int32 and uint32

All operands must have the same integer data type and MATLAB returns an
answer of that type.

Note The arithmetic operators do not support operations on the data types
int64 or uint64. Except for the unary operators +A and A. ', the arithmetic
operators do not support operations on complex arrays of any integer data

type.

For example,

X = int8(3) + int8(4);
class(x)

ans =

Arithmetic Operators + - * / \ A"

int8

The following table lists the binary arithmetic operators that you can apply to
arrays of the same integer data type. In the table, A and B are arrays of the
same integer data type and c is a scalar of type double or the same type as A
and B.

Operation Support when A and B Have Same Integer
Type

+A, -A Yes

A+B, A+c, c+B Yes

A-B,A-c,c-B Yes

A.*B Yes

A*c, c*B Yes

A*B No

A/c,c/B Yes

A.\B,A./B Yes

A\B, A/B No

A."B Yes, if B has nonnegative integer values.

c "k Yes, for a scalar ¢ and a nonnegative scalar

integer k, which have the same integer data
type or one of which has type double

Al A Yes

Combining Integer Data Types with Type Double

For the operations that support integer data types, you can combine a scalar or
array of an integer data type with a scalar, but not an array, of type double and
the result has the same integer data type as the input of integer type. For
example,

y =5 + int32(7);

2-5

Arithmetic Operators + - * / \ *'

Remarks

2-6

class(y)
ans =

int32

However, you cannot combine an array of an integer data type with either of

the following:

e A scalar or array of a different integer data type

® A scalar or array of type single

Nondouble Data Types, in the online MATLAB documentation, provides more
information about operations on nondouble data types.

The arithmetic operators have M-file function equivalents, as shown:

Binary addition

Unary plus

Binary subtraction
Unary minus

Matrix multiplication
Arraywise multiplication
Matrix right division
Arraywise right division
Matrix left division
Arraywise left division
Matrix power
Arraywise power
Complex transpose

Matrix transpose

A+B
+A
A-B
-A
ALB
A.B
A/B
A./B
A\B
A.\B
A"B
A."B
Al
Al

plus(A,B)
uplus(A)
minus(A,B)
uminus (A)
mtimes(A,B)
times(A,B)
mrdivide (A,B)
rdivide (A,B)
mldivide(A,B)
ldivide(A,B)
mpower (A,B)
power (A,B)
ctranspose(A)

transpose(A)

Arithmetic Operators + - * / \ A"

Examples

Note For some toolboxes, the arithmetic operators are overloaded, that is,
they perform differently in the context of that toolbox. To see the toolboxes
that overload a given operator, type help followed by the operator name. For
example, type help plus. The toolboxes that overload plus (+) are listed. For
information about using the operator in that toolbox, see the documentation
for the toolbox.

Here are two vectors, and the results of various matrix and array operations on
them, printed with format rat.

Matrix Operations Array Operations
X 1 y 4

2 5

3 6
x' 1 2 3 y' 4 5 6
Xty 5 X-y -3

7 -3

9 -3
X + 2 3 X-2 -1

4 0

5 1
x Oy Error x. Oy 4

10
18

x 'Oy 32 x' .0y Error
xOy! 4 5 6 x. 0y Error

8 10 12

12 15 18
x[R 2 x.[R 2

4 4

6 6

2-7

Arithmetic Operators + - * / \ *'

Matrix Operations Array Operations

x\y 16/7 X.\y 4

5/2

2

2\X 1/2 2./x 2

1 1

3/2 2/3

x/y 0o o0 1/6 X./y 1/4

0o 0 1/3 2/5

0o 0 1/2 1/2

x/2 1/2 X./2 1/2

1 1

3/2 3/2

X"y Error X."y 1

32

729

X2 Error X. 2 1

4

9

27X Error 2.7°X 2

4

8
(x+ily)" 1-41 2-5i 3-6i
(x+ily) . 1+4i 2+5i 3+6i
Diagnostics ¢ From matrix division, if a square A is singular,

Warning: Matrix is singular to working precision.

® From elementwise division, if the divisor has zero elements,
Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs where
appropriate.

2-8

Arithmetic Operators + - * / \ A"

e If the inverse was found, but is not reliable,

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = xxXx

¢ From matrix division, if a nonsquare A is rank deficient,
Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr, rref

2-9

Arithmetic Operators + - * / \ *'

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.0 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf),
Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2002.

2-10

]
n
4
n

Relational Operators < > <= >=

Purpose

Syntax

Description

Examples

Relational operations

A<B
A>1B
A <

\2
]

W W o @

> > >
Il
Il

The relational operators are <, >, <=, >= == and ~=. Relational operators
perform element-by-element comparisons between two arrays. They return a
logical array of the same size, with elements set to true (1) where the relation
is true, and elements set to false (0) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for the
comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded, that is,
they perform differently in the context of that toolbox. To see the toolboxes
that overload a given operator, type help followed by the operator name. For
example, type help 1t. The toolboxes that overload 1t (<) are listed. For
information about using the operator in that toolbox, see the documentation
for the toolbox.

If one of the operands is a scalar and the other a matrix, the scalar expands to
the size of the matrix. For example, the two pairs of statements

X =5; X> [123; 456; 78 10]
X = 50bnes(3,3); X >= [1 2 3; 45 6; 7 8 10]

produce the same result:

ans =

2-11

1]
]|
?
]|

Relational Operators < > <= >=

1 1 0
0 0 0
See Also all, any, find, strcmp

Elementwise Logical Operators, &, |, Short-Circuit Logical Operators, &&, | |, ~

2-12

Logical Operators: Elementwise & | ~

Purpose

Syntax

Description

Elementwise logical operations on arrays

A&B
A| B
-A

The symbols &, |, and ~ are the logical array operators AND, OR, and NOT. They
work element by element on arrays, with 0 representing logical false, and
anything nonzero representing logical true. The logical operators return a
logical array with elements set to true (1) or false (0), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and ~A
complements the elements of A. The function xor (A,B) implements the
exclusive OR operation. The truth table for these operators and functions is
shown below.

Inputs and or not xor
A B A &B A| B ~A xor (A,B)
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

The precedence for the logical operators with respect to each other is

Operator Operation Priority
- NOT Highest
& Elementwise AND

| Elementwise OR
&& Short-circuit AND

|| Short-circuit OR Lowest

2-13

Logical Operators: Elementwise & | ~

Remarks

Examples

See Also

2-14

MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression
a|b&c is evaluated as a| (b&c). It is a good idea to use parentheses to explicitly
specify the intended precedence of statements containing combinations of &
and |.

These logical operators have M-file function equivalents, as shown.

Logical Operation Equivalent Function
A&B and(A,B)

A| B or(A,B)

~A not(A)

This example shows the logical OR of the elements in the vector u with the
corresponding elements in the vector v:

00110 1];

u=I[
v=1[011001];
u | v

ans =
0 1 1 1 0 1
all, any, find, logical, xor, true, false
Logical operators, short-circuit, &&, | |

Relational operators <, <=, >, >=, == ~=

Logical Operators: Short-circuit && | |

Purpose

Syntax

Description

Examples

Logical operations, with short-circuiting capability

A && B
Al|l B

The symbols && and | | are the logical AND and OR operators used to evaluate
logical expressions. Use && and | | in the evaluation of compound expressions
of the form

expression_1 && expression_2

where expression_1and expression 2 each evaluate to a scalar logical result.

The && and | | operators support short-circuiting. This means that the second
operand is evaluated only when the result is not fully determined by the first
operand. See “Short-Circuit Operators” in the MATLAB documentation for a

discussion on short-circuiting with && and | |.

Note Always use the && and | | operators when short-circuiting is required.
Using the elementwise operators (& and |) for short-circuiting can yield
unexpected results.

In the following statement, it doesn’t make sense to evaluate the relation on the
right if the divisor, b, is zero. The test on the left is put in to avoid generating
a warning under these circumstances:

x = (b ~= 0) & (a/b > 18.5)

By definition, if any operands of an AND expression are false, the entire
expression must be false. So, if (b ~= 0) evaluates to false, MATLAB
assumes the entire expression to be false and terminates its evaluation of the
expression early. This avoids the warning that would be generated if MATLAB
were to evaluate the operand on the right.

2-15

Logical Operators: Short-circuit && | |

See Also all, any, find, logical, xor, true, false
Logical operators, elementwise, &, |, ~

Relational operators <, <=, >, >= == ~=

2-16

Special Characters [] () {} =" e, : %

Purpose
Syntax

Description

Special characters

[]

{1}

(

)y {y=", 5 1% ! @

Brackets are used to form vectors and matrices. [6.9 9.64 sqrt(-1)]
is a vector with three elements separated by blanks. [6.9, 9.64, i]
is the same thing. [1+] 2-j 3] and [1 +j 2 -j 3] are not the same.
The first has three elements, the second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the
first row.

Vectors and matrices can be used inside [] brackets. [A B;C] is
allowed if the number of rows of A equals the number of rows of B and
the number of columns of A plus the number of columns of B equals the
number of columns of C. This rule generalizes in a hopefully obvious
way to allow fairly complicated constructions.

A = [] stores an empty matrixin A. A(m,:) = [] deletes row mof A.

A(:,n) = [] deletes column n of A. A(n) = [] reshapes Ainto a
column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to multiple
variables.

For the use of [and] on the left of an “=” in multiple assignment
statements, see 1lu, eig, svd, and so on.

Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]},0r A{2,2} = ('str'). See
help paren for more information about { }.

2-17

Special Characters [] (){} ="' e, % ! @

2-18

Parentheses are used to indicate precedence in arithmetic expressions
in the usual way. They are used to enclose arguments of functions in
the usual way. They are also used to enclose subscripts of vectors and
matrices in a manner somewhat more general than usual. If X and V
are vectors, then X (V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An error
occurs if any such subscript is less than 1 or greater than the size of X.
Some examples are

® X (3) is the third element of X.
® X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same indirect
subscripting works in matrices. If V has m components and W has n
components, then A(V,W) is the m-by-n matrix formed from the
elements of A whose subscripts are the elements of V and W. For
example, A([1,5],:) = A([5,1],:) interchanges rows 1 and 5 of A.

Used in assignment statements. B = A stores the elements of A in B.
== is the relational equals operator. See the Relational Operators

page.
Matrix transpose. X' is the complex conjugate transpose of X. X. ' is the
nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are the
ASCII codes for the characters. A quotation mark within the text is
indicated by two quotation marks.

Decimal point. 314/100, 3.14, and .314e1 are all the same.
Element-by-element operations. These are obtained using .0, .", ./,
or .\. See the Arithmetic Operators page.

Field access. A. (field) and A(i).field, when A is a structure, access
the contents of field.

Parent directory. See cd.

Special Characters [] () {} =" e, : %

Remarks

o°

Continuation. Three or more periods at the end of a line continue the
current function on the next line. Three or more periods before the end
of a line cause MATLAB to ignore the remaining text on the current
line and continue the function on the next line. This effectively makes
a comment out of anything on the current line that follows the three
periods. See Entering Long Statements for more information.

Comma. Used to separate matrix subscripts and function arguments.
Used to separate statements in multistatement lines. For
multistatement lines, the comma can be replaced by a semicolon to
suppress printing.

Semicolon. Used inside brackets to end rows. Used after an expression
or statement to suppress printing or to separate statements.

Colon. Create vectors, array subscripting, and for loop iterations. See
colon (:) for details.

Percent. The percent symbol denotes a comment; it indicates a logical
end of line. Any following text is ignored. MATLAB displays the first
contiguous comment lines in a M-file in response to a help command.

Exclamation point. Indicates that the rest of the input line is issued as
a command to the operating system. See “Running External
Programs” for more information.

Function handle. MATLAB data type that is a handle to a function.
See function_handle (@) for details.

Some uses of special characters have M-file function equivalents, as shown:

Horizontal concatenation [A,B,C...] horzcat(A,B,C...)

Vertical concatenation [A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...) subsref(A,S). See help
subsref.

Subscript assignment A(i,j,k...)= B subsasgn(A,S,B).See help
subsasgn.

2-19

Special Characters [] (){} ="' e, % ! @

Note For some toolboxes, the special characters are overloaded, that is, they
perform differently in the context of that toolbox. To see the toolboxes that
overload a given character, type help followed by the character name. For
example, type help transpose. The toolboxes that overload transpose (."')
are listed. For information about using the character in that toolbox, see the
documentation for the toolbox.

See Also Arithmetic operators +, , 0/, \, *, '
Relational operators <, <=, >, >= == ~=
Elementwise Logical Operators, &, |, Short-Circuit Logical Operators, &&, ||,

2-20

colon ()

Purpose

Description

Create vectors, array subscripting, and for loop iterations

The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

jik is the same as [j,j+1,...,k]

jik is empty if j > k

jritk is the same as [j,j+i,j+2i, ...,k]

jrick isemptyifi > Oand j > korifi < 0and j < k

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional
arrays:

A(:,1) is the jth column of A
A(i,:) is the ith row of A
A(:,1) is the equivalent two-dimensional array. For matrices this is

the same as A.

A(j:k) isA(3), A(i+1),...,A(k)
A(:,7:k) iISA(:,3), A(:,3+1), ... A(:,K)
A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes
A(i,j,k,1),A(i,7,k,2),A(i,],k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.

2-21

colon ()

Examples

See Also

2-22

Using the colon with integers,

D=1:4
results in
D =

1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E =0:.1:.5
results in
E =

0 0.1000 0.2000 0.3000 0.4000 0.5000
The command
A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A, i,1) =
0 0 0
0 0 0
0 0 0
A(:,1,2) =
1 1 1
1 2 3
1 3 6

for, linspace, logspace, reshape

abs

Purpose Absolute value and complex magnitude
Syntax Y = abs(X)
Descripl'ion abs (X) returns an array Y such that each element of Y is the absolute value of

the corresponding element of X.

If X is complex, abs (X) returns the complex modulus (magnitude), which is the
same as

sqrt(real(X).”2 + imag(X)."2)

Examples abs(-5)
ans =
5
abs(3+41)
ans =
5
See Also angle, sign, unwrap

2-23

accumarray

Purpose

Syntax

Description

2-24

Construct an array with accumulation

accumarray
accumarray
accumarray
accumarray

ind, val)

ind, val, sz)

ind, val, sz, fun)

ind, val, sz, fun, fillvalue)

> > > >
Il

A = accumarray(ind, val) creates an array A from the elements of the vector
val, using the corresponding rows of ind as subscripts into A. val must have
the same length as the number of rows in ind, unless val is a scalar whose
value is repeated for all the rows of ind. If ind is a nonempty column vector,
then A is a column vector of length max (ind). If ind is a nonempty matrix with
k columns, then A is a k-dimensional array of size max (ind,[],1). If ind is
zeros (0, k) with k>1, then A is the k-dimensional empty array of size
0-by-0-by-...-by-0. accumarray accumulates by adding together elements of val
at repeated subscripts of A. accumarray fills in A at unspecified subscripts with
the value 0.

Note val may be full or sparse and A has the same sparsity as val. If val is
sparse and ind is a column vector, then A is the same as sparse(ind,1,val).
If val is sparse and ind is a matrix with two columns, then A is the same as
sparse(ind(:,1),ind(:,2),val).

A = accumarray(ind, val, sz) creates an array of size sz, where sz is a row
vector of nonnegative integer values. If ind is a nonempty column vector, then
sz must be [n 1] where n>=max (ind). If ind is a nonempty matrix with k
columns, then sz must be of length k with all(sz>=max(ind,[],1)).If indis
zeros (0, k) with k>1, then sz must be of length k with all(sz>=0). Nonzero sz
resizes A to a nonempty all-zero array.

A = accumarray(ind, val, sz, fun) accumulates values at repeated
subscripts of A by applying the function fun, which you specify by a function
handle. fun must accept a vector and return a scalar. For example, setting
fun=@sum produces the default behavior of accumarray when you do not specify
fun.

accumarray

Examples

A = accumarray(ind, val, sz, fun, fillvalue) where val is full, fills in
the values of A at unspecified indices with the value fillvalue. If ind is empty,
but sz resizes A to nonempty, then all the values of A are fillvalue.

The following command creates a vector, accumulating at the repeated index 2.

A

accumarray([1; 2; 2; 4; 5],11:15)
A =

11
25

0
14
15

The following commands create a 3-dimensional array, accumulating at
repeated subscript (2,3,4).

ind = [111; 21 2; 23 4; 23 4];
A = accumarray(ind,11:14)

A(:,:,1) =
11 0 0
0 0
A(:,1,2) =
0 0 0
12 0 0
A(:,1,3) =
0 0 0
0 0 0
A(:,:,4) =
0 0 0

2-25

accumarray

0 0 27

The following command repeats the scalar val = pi for all the rows in ind.

A = accumarray(ind,pi)

A(:,1,1) =
3.1416 0 0
0 0 0
A(:,:,2) =
0 0 0
3.1416 0 0
A(:,1,3) =
0 0 0
0 0 0
A(:,:,4) =
0 0 0
0 0 6.2832
Set
ind = [1 2; 3 2; 5 5; 5 5]

val = [10.1; 10.2; 10.3; 10.4]

The following command does the default summation accumulation at the
repeated subscript (5,5).

A = accumarray(ind, val);

The following command increases the size of A beyond max (ind,[],1).

A = accumarray(ind, val,[6 6]);

2-26

accumarray

The following command uses prod instead of sum as the accumulation function:
A = accumarray(ind, val, [6,6], @prod);

The following command uses max as the accumulation function and fills the
values at unspecified subscripts with -Inf.

A = accumarray(ind, val, [6,6], @max, -Inf);

See Also full, sparse, sum.

2-27

acos

Purpose
Syntax

Description

Examples

Definition

Algorithm

See Also

2-28

Inverse cosine, result in radians

Y

acos (X)

Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain , acos (X) is real and in the range . For real
elements of X outside the domain , acos (X) is complex.

The acos function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.
Graph the inverse cosine function over the domain .

X = -1:.05:1;
plot(x,acos(x)), grid on

The inverse cosine can be defined as

acos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

acosd, acosh, cos

acosd

Purpose Inverse cosine, result in degrees
Syntax Y = acosd(X)
Description Y = acosd(X) is the inverse cosine, expressed in degrees, of the elements of X.

See Also cosd, acos

2-29

acosh

Purpose Inverse hyperbolic cosine
Syntax Y = acosh(X)
Descripl'ion Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

The acosh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

X = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acos, cosh

2-30

acot

Purpose
Syntax

Description

Examples

Definition

Algorithm

See Also

Inverse cotangent, result in radians

Y acot (X)

Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.

The acot function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Graph the inverse cotangent over the domains and .

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2%pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

The inverse cotangent can be defined as

acot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

cot, acotd, acoth

2-31

acotd

Purpose Inverse cotangent, result in degrees

Syntax Y = acotd(X)

Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the elements
of X.

See Also cotd, acot

2-32

acoth

Purpose
Syntax

Description

Examples

Definition

Algorithm

See Also

Inverse hyperbolic cotangent

Y acoth(X)

Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

The acoth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.
Graph the inverse hyperbolic cotangent over the domains and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

The hyperbolic inverse cotangent can be defined as

acoth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

acot, coth

2-33

acsc

Purpose
Syntax

Description

Examples

Definition

Algorithm

See Also

2-34

Inverse cosecant, result in radians

Y

acsc(X)

Y

acsc(X) returns the inverse cosecant (arccosecant) for each element of X.
The acsc function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Graph the inverse cosecant over the domains and .

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

The inverse cosecant can be defined as

acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

csc, acscd, acsch

acscd

Purpose Inverse cosecant, result in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the elements
of X.

See Also cscd, acsc

2-35

acsch

Purpose
Syntax

Description

Examples

Definition

Algorithm

See Also

2-36

Inverse cosecant and inverse hyperbolic cosecant

Y

acsch(X)

Y

acsch (X) returns the inverse hyperbolic cosecant for each element of X.
The acsch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Graph the inverse hyperbolic cosecant over the domains and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

The hyperbolic inverse cosecant can be defined as

acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

acsc, csch

addframe

Purpose

Syntax

Description

Example

Add a frame to an Audio/Video Interleaved (AVI) file

aviobj = addframe(aviobj,frame)

(
aviobj = addframe(aviobj,framel,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

aviobj = addframe(aviobj,frame) appends the datain frame to the AVI file
identified by aviobj, which was created by a previous call to avifile. frame
can be either an indexed image (m-by-n) or a truecolor image (m-by-n-by-3) of
double or uint8 precision. If frame is not the first frame added to the AVI file,
it must be consistent with the dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For example,
addframe updates the TotalFrames property of the AVI file object each time it
adds a frame to the AVI file.

aviobj = addframe(aviobj,framei,frame2,frame3,...) adds multiple
frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store frames
as indexed images use the colormap in the first frame as the colormap for the
AVT file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or axis
handle h and appends this frame to the AVI file. addframe renders the figure
into an offscreen array before appending it to the AVI file. This ensures that
the figure is written correctly to the AVI file even if the figure is obscured on
the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to capture
the graphics into a frame of a MATLAB movie. You can then add the frame to
an AVI movie using the addframe syntax aviobj = addframe(aviobj,mov).
See the example for an illustration.

This example calls addframe to add frames to the AVI file object aviobj.

2-37

addframe

fig=figure;

set(fig, 'DoubleBuffer','on');

set(gca, 'xlim',[-80 80], 'ylim',[-80 80],...
'nextplot', 'replace', 'Visible', 'off"')

aviobj = avifile('example.avi')
X = -pi:.1:pi;

radius = 0:1length(x);
for i=1:length(x)

h = patch(sin(x)*radius(i),cos(x)*radius(i),...

[abs(cos(x(i))) 0 0]);
set (h, 'EraseMode’', 'xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);
end

aviobj = close(aviobj);

See Also avifile, close, movie2avi

2-38

addpath

Purpose

Graphical
Interface

Syntax

Description

Remarks

Add directories to MATLAB search path

As an alternative to the addpath function, use the Set Path dialog box. To open
it, select Set Path from the File menu in the MATLAB desktop.

addpath('directory')

addpath('dir', 'dir2','dir3' ...)
addpath('dir','dir2','dir8"' ...'-flag')
addpath dirt1 dir2 dir3 ... -flag

addpath('directory') prepends the specified directory to the current
MATLAB search path, that is, adds them to the top of the path. Use the full
pathname for directory.

addpath('dir','dir2','dir3"' ...) prepends all the specified directories to
the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') either prepends or appends the
specified directories to the path depending on the value of flag.

flag Argument Result

0 or begin Prepend specified directories

1 or end Append specified directories (add to bottom/end)
addpath dir1 dir2 dir3 ... -flag is the unquoted form of the syntax.

To recursively add subdirectories of your directory in addition to the directory
itself, run

addpath(genpath('directory'))

Use addpath statements in your startup.m file to use the modified path in
future sessions. For details, see “Modifying the Path in a startup.m File”.

2-39

addpath

Examples

See Also

2-40

For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by typing
addpath('c:/matlab/mymfiles")

Verify that the files were added to the path by typing
path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add subdirectories to
the path from the command line. For example, to add /control and its
subdirectories to the path, use

addpath(genpath('$matlabroot/toolbox/control'))
genpath, path, pathdef, pathsep, pathtool, rehash, restoredefaultpath,
rmpath, savepath, startup

“Search Path” in the MATLAB User Guide

addtodate

Purpose
Syntax

Description

Examples

See Also

References

Modify date number by field

R

addtodate(D, N, F)

R = addtodate(D, Q, F) adds quantity Q to the indicated date field F of a
serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and can be
either positive or negative. The date field F must be a 1-by-N character array
equal to one of the following: 'year', 'month', or 'day"’.

If the addition to the date field causes the field to roll over, MATLAB adjusts
the next more significant fields accordingly. Adding a negative quantity to the
indicated date field rolls back the calender on the indicated field. If the addition
causes the field to roll back, MATLAB adjusts the next less significant fields
accordingly.

Adding 20 days to the given date in late December causes the calendar to roll
over to January of the next year:

R = addtodate(datenum('12/24/1984 12:45'), 20, 'day');

datestr(R)
ans =
13-Jan-1999 12:45

date, datenum, datestr, datevec

[1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDS85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-41

airy

Purpose

Syntax

Definition

Description

2-42

Airy functions

W airy(2)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

The Airy functions form a pair of linearly independent solutions to

2
dW _zw=o0
dz2

The relationship between the Airy and modified Bessel functions is
Ai(Z) = [%A/Z/s] K, ()

Bi(zZ) = 4Z/3 [I_4,3(Q) + Iy,3(0)]

where

_ 2

3/2
(=32

W = airy(Z) returns the Airy function, Ai(Z), for each element of the complex
array Z.

W = airy(k,Z) returns different results depending on the value of k.

k Returns

0 The same result as airy(Z)

1 The derivative, Ai'(Z)

2 The Airy function of the second kind, Bi(Z)
3 The derivative, Bi'(Z)

airy

See Also

References

[W,ierr] = airy(k,Z) alsoreturns completion flags in an array the same size
as W.

ierr Description

0 airy succesfully computed the Airy function for this element.

1 Illegal arguments

2 Overflow. Returns Inf

3 Some loss of accuracy in argument reduction

4 Unacceptable loss of accuracy, Z too large

5 No convergence. Returns NaN

besseli, besselj, besselk, bessely

[1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDS85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-43

alim

Purpose

Syntax

Description

See Also

2-44

Set or query the axes alpha limits

alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode")
alim('alim_mode")
alim(axes_handle,...)

alpha_limits = alim returns the alpha limits (the axes ALim property) of the
current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin is the
value of the data mapped to the first alpha value in the alphamap, and amax is
the value of the data mapped to the last alpha value in the alphamap. Data
values in between are linearly interpolated across the alphamap, while data
values outside are clamped to either the first or last alphamap value,
whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes ALimMode
property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes. alim_mode
can be

¢ auto— MATLAB automatically sets the alpha limits based on the alpha data
of the objects in the axes.

® manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

alpha, alphamap, caxis

Axes ALim and ALimMode properties
Patch FaceVertexAlphaData property
Image and surface AlphaData properties
Transparency for related functions

Transparency in 3-D Visualization for examples

Purpose

Syntax

Description

Examples

Test to determine if all elements are nonzero

B = all(A)
B = all(A,dim)
B = all(A) tests whether all the elements along various dimensions of an

array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all the elements are nonzero
and returns logical false (0) if one or more elements are zero.

If Ais a matrix, all(A) treats the columns of A as vectors, returning a row
vector of 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the first
nonsingleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

K 10
110 10|

A allta 1) alltA,2)

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0O o 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

This makes all particularly useful in if statements:

if all(A < 0.5)
do something
end

2-45

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the all function twice to a matrix, asin all(all(A)), always reduces
it to a scalar condition.

all(all(eye(3)))
ans =
0

See Also any, logical operators (elementwise and short-circuit), relational operators,
colon

Other functions that collapse an array’s dimensions include max, mean, median,
min, prod, std, sum, and trapz.

2-46

allchild

Purpose
Syntax

Description

Examples

See Also

Find all children of specified objects

child_handles

allchild(handle_list)

child handles = allchild(handle list) returns the list of all children
(including ones with hidden handles) for each handle. If handle_listisa
single element, allchild returns the output in a vector. Otherwise, the output is
a cell array.

Compare the results returned by these two statements.

get(gca, 'Children')
allchild(gca)

findall, findobj

2-47

alpha

Purpose

Syntax

Description

2-48

Set transparency properties for objects in current axes

alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,...)

alpha sets one of three transparency properties, depending on what arguments
you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch, and
surface objects in the current axes. You can set face_alpha to

® A scalar — Set the FaceAlpha property to the specified value (for images, set
the AlphaData property to the specified value).

e 'flat' — Set the FaceAlpha property to flat.

® 'interp' — Set the FaceAlpha property to interp.

® 'texture' — Set the FaceAlpha property to texture.
® 'opaque' — Set the FaceAlpha property to 1.

e 'clear' — Set the FaceAlpha property to 0.

See Specifying a Single Transparency Value for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects in the
current axes. You can set alpha_data to

® A matrix the same size as CData — Set the AlphaData property to the
specified values.

® 'x' — Set the AlphaData property to be the same as XData.
e 'y' — Set the AlphaData property to be the same as YData.
e 'z' — Set the AlphaData property to be the same as ZData.
® 'color' — Set the AlphaData property to be the same as CData.

alpha

® 'rand' — Set the AlphaData property to a matrix of random values equal in
size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in the
current axes. You can set alpha_data to

® A matrix the same size as CData — Set the AlphaData property to the
specified value.

e 'x' — Ignored.

e 'y' — Ignored.

e 'z' — Ignored.

® 'color' — Set the AlphaData property to be the same as CData.

® 'rand' — Set the AlphaData property to a matrix of random values equal in
size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all patch
objects in the current axes. You can set alpha_data to

* A matrix the same size as FaceVertexCData — Set the
FaceVertexAlphaData property to the specified value.

e 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

e 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

e 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

® 'color' — Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.

® 'rand' — Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

2-49

alpha

See Also

2-50

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of all
image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

® 'scaled' — Set the AlphaDataMapping property to scaled.
e 'direct' — Set the AlphaDataMapping property to direct.
® 'none' — Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on the
object identified by object handle.

alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

alphamap

Purpose

Syntax

Description

Specify the figure alphamap (transparency)

alphamap(alpha_map)
alphamap('parameter')

alphamap('parameter',delta)

(

(
alphamap('parameter',length)

(

(

alphamap(figure_handle,...)
alpha_map = alphamap

alpha_map
alpha_map

alphamap(figure_handle)
alphamap('parameter')

alphamap enables you to set or modify a figure’s Alphamap property. Unless you
specify a figure handle as the first argument, alphamap operates on the current
figure.

alphamap (alpha_map) sets the AlphaMap of the current figure to the specified
m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the current
alphamap. You can specify the following parameters:

default — Set the AlphaMap property to the figure’s default alphamap.

rampup — Create a linear alphamap with increasing opacity (default 1ength
equals the current alphamap length).

rampdown — Create a linear alphamap with decreasing opacity (default
length equals the current alphamap length).

vup — Create an alphamap that is opaque in the center and becomes more
transparent linearly towards the beginning and end (default 1length equals
the current alphamap length).

vdown — Create an alphamap that is transparent in the center and becomes
more opaque linearly towards the beginning and end (default 1ength equals
the current alphamap length).

increase — Modify the alphamap making it more opaque (default deltais
.1, which is added to the current values).

decrease — Modify the alphamap making it more transparent (default
deltais .1, which is subtracted from the current values).

2-51

alphamap

See Also

2-52

¢ spin — Rotate the current alphamap (default delta is 1; note that delta
must be an integer).

alphamap('parameter',length) creates a new alphamap with the length
specified by 1length (used with parameters rampup, rampdown, vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap using the
value specified by delta (used with parameters increase, decrease, spin).

alphamap (figure handle,...) performs the operation on the alphamap of the
figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current alphamap from
the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified by the
parameter, but does not set the AlphaMap property.

alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, AlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

3,2, 7;
1, 5, 3
2, 6, 1];
area(Y)
grid on

colormap summer
set(gca, 'Layer', 'top')

ancestor

Purpose

Syntax

Description

Examples

Get ancestor of graphics object

ancestor(h,type)
ancestor(h,type, 'toplevel')

T T
Inun

p = ancestor(h,type) returns the handle of the closest ancestor of h, if the
ancestor is one of the types of graphics objects specified by type. type can be:

® a string that is the name of a single type of object. For example, 'figure'

¢ a cell array containing the names of multiple objects. For example,
{'hgtransform', 'hggroup', 'axes'}

If MATLAB cannot find an ancestor of h that is one of the specified types, then
ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h is not
the handle of a Handle Graphics object.

p = ancestor(h,type, 'toplevel') returns the highest-level ancestor of h, if
this type appears in the type argument.
Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl = line(randn(5),randn(5), 'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure', 'axes', 'hggroup'});
get(p, 'Type')
ans =

hggroup
Now get the top-level ancestor

p=ancestor(hgg, {'figure', 'axes', 'hggroup'}, 'toplevel');
get(p, 'type')
ans =

figure

2-53

ancestor

See Also findobj

2-54

angle

Purpose
Syntax

Description

Examples

Algorithm

See Also

Phase angle

o
1

angle(Z2)

P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between +71.

For complex Z, the magnitude R and phase angle theta are given by

R = abs(2)
theta = angle(2)

and the statement
Z = R.*exp(i*theta)

converts back to the original complex Z.

Z=11-11i 2 + 11 3 - 11 4 + 11
1 + 21 2 - 2i 3 + 2i 4 - 21
1 - 31 2 + 31 3 - 3i 4 + 3i
1 + 41 2 - 41 3 + 41 4 - 41]
P = angle(2)
P:

-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636
-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

abs, atan2, unwrap

2-55

annotation

Purpose

Syntax

Description

2-56

Create annotation objects

annotation('rectangle',[x y w h])
annotation(figure_handle,...)

annotation(..., 'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])

(

(

annotation(annotation_type) creates the specified annotation type using
default values for all properties. annotation type can be one of the following
strings:

line, arrow, doublearrow (two-headed arrow), textarrow (arrow with
attached text box), textbox, ellipse, or rectangle.

annotation('line',x,y) creates a line annotation object that extends from
the point defined by x(1),y(1) to the point defined by x(2),y(2), specified in
normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that extends
from the point defined by x (1),y (1) to the point defined by x(2),y (2), specified
in normalized figure units.

annotation('doublearrow',x,y) creates atwo-headed annotation object that
extends from the point defined by x(1),y (1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object that
extends from the point defined by x(1),y (1) to the point defined by x(2),y(2),
specified in normalized figure units. The tail end of the arrow is attached to an
editable textbox.

annotation

Annotation
Layer

annotation('textbox',[xywh]) creates an editable textbox annotation
with its lower-left corner at the point x,y, a width w, and a height h, specified in
normalized figure units. Specify x, y, w, and h in a single vector.

To type into the textbox, enable plot edit mode (plotedit) and double click
within the box.

annotation('ellipse',[x ywh]) creates an ellipse annotation with the
lower-left corner of the bounding rectangle at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in a single
vector.

annotation('rectangle',[xy wh]) creates a rectangle annotation with the
lower-left corner of the rectangle at the point x,y, a width w, and a height h,
specified in normalized figure units. Specify x, y, w, and h in a single vector.

annotation(figure_handle,...) creates the annotation in the specified
figure.
annotation(...,'PropertyName',PropertyValue,...) creates the

annotation and sets the specified properties to the specified values.

anno_obj_handle = annotation(...) returns the handle to the annotation
object that is created.

All annotation objects are displayed in an overlay axes that covers the figure.
This layer is designed to display only annotation objects. You should not parent
objects to this axes or set any properties of this axes. See the See Also section
for information on the properties of annotation objects that you can set.

Objects in the Plotting Axes

You can create lines, text, rectangles, and ellipses in data coordinates in the
axes of a graph using the 1ine, text, and rectangle functions. These objects
are not placed in the annotation axes and must be located inside their parent
axes.

Normalized Coordinates

Annotation objects use normalize coordinates to specify locations within the
figure. In normalized coordinates, the point 0,0 is always the lower-left corner

2-57

annotation

and the point 1,1 is always the upper-right corner of the figure window
regardless of the figure size.

See Also Properties for the annotation objects: arrow, doublearrow, ellipse, line,
rectangle, textarrow, textbox

See Annotating Graphs and Annotation Objects for more information.

2-58

Annotation Arrow Properties

Modifying
Properties

Annotation
Arrow
Property
Descriptions

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse object.

Color ColorSpec Default: [0 0 0]

Color of the arrow. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

HeadLength scalar value in points

Length of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadWidth.

HeadStyle select string from list

Style of the arrow head. Specify this property as one of the strings from the
following table.

Head Style String Head Head Style String Head
none star4 e
plain — rectangle B
ellipse _. diamond —0
vback1 —» rose —afa
vback2 (Default) — hypocycloid —

2-59

Annotation Arrow Properties

2-60

Head Style String Head Head Style String Head
vback3 o astroid —4
cback1 —» deltoid —

cback2 _}
cback3 %

HeadWidth scalar value in points

Width of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadLength.

LineStyle {-}| -— 1|] —-. | none

Line style. This property specifies the line style of the arrow stem. Available
line styles are shown in the following table.

Specifier String Line Style
- Solid line (default)
-— Dashed line

Dotted line
-. Dash-dot line

none No line

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = /74 inch).
The default LineWwidth is 0.5 points.

X vector [Xyegin Xend!

X-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of x-axis (horizontal) values that specify the beginning and
ending points of the arrow, units normalized to the figure.

Annotation Arrow Properties

Y vector [Yyegin Yendl

Y-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the arrow, units normalized to the figure.

2-61

Annotation Doublearrow Properties

Modifying
Properties

Annotation
Doublearrow
Property
Descriptions

2-62

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify

This section lists the properties you can modify on an annotation doublearrow
object.

Color ColorSpec Default: [0 0 0]

Color of the doublearrow. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.
HeadiLength scalar value in points

Length of the first arrow head. Specify this property in points (1 point = 1/72
inch). See also Head1Width.

The first arrow head is located at the end defined by the point x (1), y(1). See
also the X and Y properties.

Head2Length scalar value in points

Length of the second arrow head. Specify this property in points (1 point = 1/72
inch). See also Head1Width.

The first arrow head is located at the end defined by the point x(end), y (end).
See also the X and Y properties.

Head1Style select string from list

Style of the first arrow head. Specify this property as one of the strings from the
following table

Head2Style select string from list

Style of the second arrow head. Specify this property as one of the strings from
the following table.

Annotation Doublearrow Properties

Head Style String Head

Head Style String Head

none star4 —4
plain + rectangle _.
ellipse _. diamond —0
vback1 —» rose —afa
vback2 (Default) —- hypocycloid —
vback3 ., astroid _+
cbacki + deltoid —
cback2 _>

cback3 ?

Head1Width scalar value in points

Width of the first arrow head. Specify this property in points (1 point = 1/72

inch). See also Head1Length.

Head2Width scalar value in points

Width of the second arrow head. Specify this property in points (1 point = 1/72

inch). See also Head2Length.

2-63

Annotation Doublearrow Properties

2-64

LineStyle {-} | -—— | 1] -. | none

Line style. This property specifies the line style of the doublearrow stem.
Available line styles are shown in the following table.

Specifier String Line Style
- Solid line (default)

-— Dashed line
Dotted line
-. Dash-dot line

none No line

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

X vector [Xyegin Xendl

X-coordinates of the beginning and ending points for doublearrow. Specify this
property as a vector of x-axis (horizontal) values that specify the beginning and
ending points of the doublearrow, units normalized to the figure.

Y vector [Yyegin Yendl

Y-coordinates of the beginning and ending points for doublearrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the doublearrow, units normalized to the figure.

Annotation Ellipse Properties

Modifying
Properties

Annotation
Ellipse
Property
Descriptions

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor

command).

Use the annotation function to create annotation objects and obtain their

handles.

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse object.

EdgeColor

Color of the ellipse edge. A three-element RGB vector or one of the MATLAB

ColorSpec Default: [0 0 0]

predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceColor

Color of the ellipse interior. A three-element RGB vector or one of the MATLAB
predefined names, specifying the color of the interior of the ellipse.

See the ColorSpec reference page for more information on specifying color.

Height

Vertical dimension of the ellipse. This property specifies height of the ellipse in

ColorSpec Default: [0 0 0]

vertical dimension in normalized units

units normalized to the figure.

LineStyle

=+l -—=1:1-
Line style. This property specifies the line style of the ellipse edge. Available
line styles are shown in the following table.

Specifier String

Line Style

none

Solid line (default)
Dashed line
Dotted line
Dash-dot line

No line

| none

2-65

Annotation Ellipse Properties

2-66

LineWidth scalar

The width of the ellipse edge. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Width horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies width of the ellipse
in units normalized to the figure.

Note that, if Width and Height are equal, the ellipse becomes a circle when the
figure width and height (last two elements in the figure Position property
vector) are also equal.

X horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the horizontal
location of the center of the ellipse, in units normalized to the figure.

Y vertical dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the vertical location
of the center of the ellipse, in units normalized to the figure.

Annotation Line Properties

Modifying
Properties

Annotation
Line Property
Descriptions

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse object.
Color ColorSpec Default: [0 0 0]

Color of the line. A three-element RGB vector or one of the MATLAB predefined
names, specifying the line color.

See the ColorSpec reference page for more information on specifying color.
LineStyle {-} | -—— 1] 1] -.] none

Line style. This property specifies the line style. Available line styles are shown
in the following table.

Specifier String Line Style

- Solid line (default)

-- Dashed line
Dotted line

-. Dash-dot line

none No line

LineWidth scalar

The width of the line. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

X vector [Xpegin Xendl

X-coordinates of the beginning and ending points for line. Specify this property
as a vector of x-axis (horizontal) values that specify the beginning and ending
points of the line, units normalized to the figure.

2-67

Annotation Line Properties

Y vector [Yyegin Yendl

Y-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the line, units normalized to the figure.

2-68

Annotation Rectangle Properties

Modifying
Properties

Annotation
Rectangle
Property
Descriptions

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.
EdgeColor ColorSpec Default: [0 0 0]

Color of the rectangle edge. A three-element RGB vector or one of the MATLAB
predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceColor ColorSpec Default: [0 0 0]

Color of the rectangle interior. A three-element RGB vector or one of the
MATLAB predefined names, specifying the color of the interior of the
rectangle.

See the ColorSpec reference page for more information on specifying color.

Height vertical dimension in normalized units

Vertical dimension of the rectangle. This property specifies height of the
rectangle in units normalized to the figure.

LineStyle {-}| —— | + | —. | none

Line style. This property specifies the line style of the rectangle edge. Available
line styles are shown in the following table.

Specifier String Line Style
- Solid line (default)

—— Dashed line
Dotted line
-. Dash-dot line

none No line

2-69

Annotation Rectangle Properties

2-70

LineWidth scalar

The width of the rectangle edge. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Width horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies width of the ellipse
in units normalized to the figure.

Note that, if Width and Height are equal, the ellipse becomes a circle when the
figure width and height (last two elements in the figure Position property
vector) are also equal.

X horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the horizontal
location of the center of the ellipse, in units normalized to the figure.

Y vertical dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the vertical location
of the center of the ellipse, in units normalized to the figure.

Annotation Textarrow Properties

Modifying
Properties

Annotation
Textarrow
Property
Descriptions

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse object.

Color ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB vector or one of
the MATLAB predefined names, specifying the color of the arrow, the color of
the text (TextColor property), and the rectangle enclosing the text
(TextEdgeColor property).

Setting the Color property also sets the TextColor and TextEdgeColor
properties to the same color. However, if the value of the TextEdgeColor is
none, it remains none and the text box is not displayed. You can set TextColor
or TextEdgeColor independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow and black text
in a black box, you must:

1 Set the Color property to red — set(h, 'Color','r")

2 Set the TextColor to black — set(h, 'TextColor', 'k')

3 Set the TextEdgeColor to black.— set(h, 'TextEdgeColor', 'k"')

If you do not want display the text box, set the TextEdgeColor to none.
See the ColorSpec reference page for more information on specifying color.

FontName A name, such as Helvetica

Font family. A string specifying the name of the font to use for the text. To
display and print properly, this font must be supported on your system. The
default font is Helvetica.

FontSize size in points

Approximate size of text characters. A value specifying the font size to use in
points. The default size is 10 (1 point = 1/72 inch).

2-71

Annotation Textarrow Properties

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your system. Generally, setting this property to bold or demi
causes MATLAB to use a bold font.

HeadLength scalar value in points

Length of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadWidth.

HeadStyle select string from list

Style of the arrow head. Specify this property as one of the strings from the

following table.
Head Style String Head Head Style String Head
none star4 _*
plain _> rectangle _.
ellipse _. diamond —0
vback1 —» rose —afa
vback2 (Default) — hypocycloid —
vback3 . astroid —4
cback1i _> deltoid —
cback2 _}
cback3 —>»

2-72

Annotation Textarrow Properties

HeadWidth scalar value in points

Width of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadLength.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal alignment
of the text with respect to the arrow.

Interpreter {tex} | latex | none

Interpret TpX instructions. This property controls whether MATLAB
interprets certain characters in the String property as TgX instructions
(default) or displays all characters literally. See the text object String property
for a list of supported TgX instructions.

To enable a complete TgX interpreter for text objects, set the Interpreter
property to latex.

LineStyle {-} | -—— 1] 1] -. | none

Line style. This property specifies the line style of the arrow stem. Available
line styles are shown in the following table.

Specifier String Line Style
- Solid line (default)

-— Dashed line
Dotted line
-. Dash-dot line

none No line

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = 1/72 inch).
The default LineWwidth is 0.5 points.

String string

The text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings for multiline strings. MATLAB displays this string

2-73

Annotation Textarrow Properties

2-74

in the text box with the specified HorizontalAlignment and
VerticalAlignment. See the Interpreter property for information on using
TgX characters.

TextBackgroundColorColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or one of the
MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

TextColor ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB predefined
names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.
Setting the Color property also sets this property.

TextEdgeColor ColorSpec or none Default: none

Color of edge of text rectangle. A three-element RGB vector or one of the
MATLAB predefined names, specifying the color of the rectangle that encloses
the text.

See the ColorSpec reference page for more information on specifying color.
Setting the Color property also sets this property.

TextLineWidth width in points

The width of the text rectangle edge. Specify this value in points (1 point = 1/72
inch). The default LineWidth is 0.5 points.

TextMargin dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space around the
text string, but within the TextEgdeColor rectangle.

TextRotation rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the text string.
Specify values of rotation in degrees (positive angles cause counterclockwise
rotation). Angles do not acculate; a rotation of 0 degrees is alway horizontal.

VerticalAlignment top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical alignment of the
text with respect to the arrow. The possible values mean

Annotation Textarrow Properties

¢ top — Place the top of the string at the specified y-position.

e cap — Place the string so that the top of a capital letter is at the y-position.
® middle — Place the middle of the string at the y-position.

® baseline — Place font baseline at the y-position.

® bottom — Place the bottom of the string at the y-position.

X vector [Xpegin Xendl

Beginning and ending points for arrow. Specify this property as a vector of
x-axis (horizontal) values that specify the beginning and ending points of the
arrow, units normalized to the figure.

Y vector [Ypegin Yendl

Beginning and ending points for arrow. Specify this property as a vector of
y-axis (vertical) values that specify the beginning and ending points of the
arrow, units normalized to the figure.

2-75

Annotation Textbox Properties

Modifying
Properties

Annotation
Textbox
Property
Descriptions

2-76

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.
BackgroundColor ColorSpec Default: [0 0 0]

Color of textbox background. A three-element RGB vector or one of the
MATLAB predefined names, specifying the background color of the textbox. A
value of none makes the textbox transparent, enabling objects behind the
textbox to be visible.

Color ColorSpec Default: [0 0 0]

Color of the text. A three-element RGB vector or one of the MATLAB predefined
names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

EdgeColor ColorSpec Default: [0 0 0]

Color of the textbox edge. A three-element RGB vector or one of the MATLAB
predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceAlpha Scalar alpha value in range [0 1]

Transparency of textbox background. This property defines the degree to which
the textbox background color is transparent. A value of 1 (the default) makes
to color opaque, a value of 0 makes the background completely transparent
(i.e., invisible). The default FaceAlpha is 1.

FitHeightToText on | {off}

Automatically adjust textbox height to fit text. MATLAB automatically wraps
text strings to fit the width of the textbox. However, if the text string is long
enough, it extends beyond the bottom of the textbox.

Annotation Textbox Properties

10

This is a
long

string for
this
textbox

When you set this mode to on, MATLAB automatically adjusts the height of the
textbox to accommodate the string.

10

This is a
long
string for
this
texthox

The fit-height-to-text behavior continues to apply if you resize the textbox from
the two side handles.

] u]
This is a long
string
for this i

W textbox. But if ¥T*
you make it
even longer...

] u]

2-77

Annotation Textbox Properties

2-78

However, if you resize the textbox from any other handles, the position you set
is honored without regard to how the text fits the box.

10 T T T
al
[| u]
8- This is a long ‘
..strlng_ =
el for this ‘
texthbox. But if
Bou mals 1 L
6 even longer...
FontAngle {normal} | italic| oblique

Character slant. MATLAB uses this property to select a font from those
available on your particular system. Generally, setting this property to italic
or oblique selects a slanted font.

FontName A name, such as Helvetica

Font family. A string specifying the name of the font to use for the textbox
object. To display and print properly, this font must be supported on your
system. The default font is Helvetica.

FontSize size in points

Approximate size of text characters. A value specifying the font size to use in
points. The default size is 10 (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your system. Generally, setting this property to bold or demi
causes MATLAB to use a bold font.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal justification
of the textbox string. It determines where MATLAB places the string with
respect to the value of the Position property’s x value (the first element in the
position vector).

Annotation Textbox Properties

Interpreter {tex} | latex | none

Interpret TgX instructions. This property controls whether MATLAB
interprets certain characters in the String property as TgX instructions
(default) or displays all characters literally. See the text object String property
for a list of supported TgX instructions.

To enable a complete TgX interpreter for text objects, set the Interpreter
property to latex.
LineStyle {-}| -—— 1] :| —. | none

Line style of edge. This property specifies the line style of the textbox edge.
Available line styles are shown in the following table.

Specifier String Line Style
- Solid line (default)

-— Dashed line
Dotted line
-. Dash-dot line

none No line

LineWidth scalar

The width of the textbox edge. Specify this value in points (1 point = 1/72 inch).
The default Linewidth is 0.5 points.

Margin scalar pixel value

Space around text. Specify a value in pixels that defines the space around the
text string, but within the textbox.

Position four-element vector [x, y, width, height]

Size and location of textbox. Specify the lower-left corner of the textbox with the
first two elements of the vector defining the point x, y. The third and fourth
elements specify the width and height respectively.

2-79

Annotation Textbox Properties

2-80

String string

The text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings for multiline strings. MATLAB displays this string
at the specified Position. See the Interpreter property for more information
on using TEX characters.

VerticalAlignment top | cap | {middle} | baseline |
bottom

Vertical alignment of text within textbox. This property specifies the vertical
alignment of the text in the textbox. It determines where MATLAB places the
string with respect to the value of the Position property’s y value (the second
element in the position vector). The possible values mean

® top — Place the top of the string at the specified y-position.

® cap — Place the string so that the top of a capital letter is at the y-position.
® niddle — Place the middle of the string at the y-position.

® baseline — Place font baseline at the y-position.

® pottom — Place the bottom of the string at the y-position.

ans

Purpose
Syntax

Description

Examples

See Also

The most recent answer

ans

MATLAB creates the ans variable automatically when you specify no output

argument.

The statement

2+2

is the same as

ans =

display

2+2

2-81

any

Purpose

Syntax

Description

Examples

2-82

Test for any nonzeros

B
B

any (A)
any (A,dim)

B = any(A) tests whether any of the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, any (A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any (A) treats the columns of A as vectors, returning a row
vector of 1’s and 0’s.

If A is a multidimensional array, any (A) treats the values along the first
nonsingleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

ol 0[]
000 10|

A any(A1) any(A,2)

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0O o 1 1 1 1 0

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements:

if any(A < 0.5)
do something
end

any

See Also

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any (any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
1

all, logical operators (elementwise and short-circuit), relational operators,
colon

Other functions that collapse an array’s dimensions include max, mean, median,
min, prod, std, sum, and trapz.

2-83

area

Purpose

Syntax

Description

2-84

Filled area 2-D plot

area(yY)

area(X,Y)

area(...,basevalue)

area(..., 'PropertyName' ,PropertyValue,...)
area(axes_handle,...)

h = area(...)

area('ve',...)

An area graph displays elements in Y as one or more curves and fills the area
beneath each curve. When Y is a matrix, the curves are stacked showing the
relative contribution of each row element to the total height of the curve at each
x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis
automatically scales to 1:size(Y,1).

area(X,Y) Forvectors Xand Y, area(X,Y) is the same as plot(X,Y) except that
the area between 0 and Y is filled. When Y is a matrix, area(X,Y) plots the
columns of Y as filled areas. For each X, the net result is the sum of
corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y) and X must be monotonic. If
X is a matrix, size (X) must equal size(Y) and each column of X must be
monotonic. To make a vector or matrix monotonic, use sort.

area(...,basevalue) specifies the base value for the area fill. The default
basevalue is 0. See the BaseValue property for more information.

area(..., 'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the patch graphics object created by area.

area(axes_handles, ...) plotsinto the axes with handle axes_handle instead
of the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

area

Areaseries
Objects

Examples

Backward Compatible Version

hpatches = area('v6',...) returns the handles of patch objects instead of
areaseries objects for compatibility with MATLAB 6.5 and earlier. See patch
object properties for a discussion of the properties you can set to control the
appearance of these area graphs.

See Plot Objects and Backward Compatibility for more information.

Creating an area graph of an m-by-n matrix creates n areaseries objects (i.e.,
one per column), whereas a 1-by-n vector creates one area object.

Note that some areaseries object properties that you set on an individual
areaseries object set the value for all areaseries objects in the graph. See the
property descriptions for information on specific properties.

Stacked Area Graph

This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. Note that the

figure colormap controls the coloring of the individual areas. You can explicitly

set the color of an area using the EdgeColor and FaceColor properties.

Y =1[1, 5, 3;

bl b bl

J
3, 2
1, 5,
2, 6

)

- W N

H
y 6, 113
area(Y
grid on
colormap summer

set(gca, 'Layer', 'top')
title 'Stacked Area Plot'

2-85

area

Stacked Area Plot
12 T

10r T

Adjusting the Base Value

The area function uses a y-axis value of 0 as the base of the filled areas. You
can change this value by setting the area Basevalue property. For example,
negate one of the values of Y from the previous example and replot the data.

Y(3,1) = -1; % Was 1

h = area(Y);
set(gca, 'Layer', 'top')
grid on

colormap summer

The area graph now looks like this:

2-86

area

Adjusting the BaseValue property improves the appearance of the graph:
set(h, 'BasevValue',-2)

Note that setting the BaseValue property on one areaseries object sets the
values of all objects.

2-87

area

Specifying Colors and Line Styles

You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument

set(h(1), 'FaceColor',[.5 0 0])

set(h(2), 'FaceColor',[.7 0 0])

set(h(3), 'FaceColor',[1 0 0])

set(h, 'LineStyle',': "', 'LineWidth',2) % Set all to same value

2-88

area

See Also bar, plot, sort
“Area, Bar, and Pie Plots” for related functions

Area Graphs for more examples

“Areaseries Properties” for property descriptions

2-89

Areaseries Properties

Modifying
Properties

Areaseries
Property
Descriptions

2-90

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on areaseries objects.

This section provides a description of properties. Curly braces { } enclose
default values.

BaseValue double: y-axis value

Location of filled area base. You can specify the y-axis value where MATLAB
draws the base of the filled area.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is of f, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

¢ cancel — Discard the event that attempted to execute a second callback
routine.

Areaseries Properties

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the areaseries object.

This property can be

¢ A string that is a valid MATLAB expression

® The name of an M-file

® A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the bar object. The handle of a patch object that is the child of the
areaseries object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the areaseries Children property unless
you set the Root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping {on} | off

Clipping mode. MATLAB clips area graphs to the axes plot box by default. If
you set Clipping to off, areas can be displayed outside the axes plot box.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates an areaseries object. You must
specify the callback during the creation of the object. For example,

area(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

2-91

Areaseries Properties

2-92

MATLAB executes this routine after setting all other areaseries properties.
Setting this property on an existing areaseries object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
areaseries object is deleted (e.g., this might happen when you issue a delete
command on the areaseries object, its parent axes, or the figure containing it).
MATLAB executes the callback before destroying the object’s properties so the
callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any areaseries objects appearing in these legends.

EdgeColor {[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of the edge of the
filled areas to a three-element RGB vector or one of the MATLAB predefined
names, including the string none. The default edge color is black. See
ColorSpec for more information on specifying color.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase areaseries child objects (the patch object used to construct the area
graph). Alternative erase modes are useful for creating animated sequences,
where control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

Areaseries Properties

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

¢ xor — Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR on a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

FaceColor {flat} | none | ColorSpec
Color of filled areas. This property can be any of the following:

2-93

Areaseries Properties

2-94

® ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for all filled areas. See ColorSpec for more
information on specifying color.

® none — Do not draw faces. Note that EdgeColor is drawn independently of
FaceColor.

e flat — The color of the filled areas is determined by the figure colormap. See
colormap for information on setting the colormap.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the areaseries object.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

® of f — Setting HandleVisibility to of f makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Areaseries Properties

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can

set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the areaseries object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the objects that
compose the area graph. If HitTest is of f, clicking the areaseries object selects
the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select areaseries object on filled area or extent of graph. This property enables
you to select areaseries objects in two ways:

¢ Select by clicking bars (default).

® Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the bar object.
When HitTestArea is on, you can select the bar object by clicking anywhere

within the extent of the bar graph (i.e., anywhere within a rectangle that
encloses all the bars).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an areaseries object callback can be interrupted by callbacks invoked
subsequently.

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause

command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a bar property. Note that MATLAB does not

2-95

Areaseries Properties

2-96

save the state of variables or the display (e.g., the handle returned by the gca
or gcf command) when an interruption occurs.

LineStyle {-}| -— 1| 1] —-. | none

Line style. This property specifies the line style used for the lines that separate
filled areas. The following table shows available line styles.

Symbol Line Style

- Solid line (default)

-= Dashed line
Dotted line

-. Dash-dot line

none No line

LineWidth scalar

The width of the line separating filled areas. Specify this value in points
(1 point = /79 inch). The default LineWidth is 0.5 points.

Parent axes handle

Parent of areaseries object. This property contains the handle of the areaseries
object’s parent. The parent of an areaseries object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the areaseries object is
selected.

Areaseries Properties

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an areaseries object and set the Tag property.
t = area(Y,'Tag', 'areal’)

When you want to access the areaseries object, you can use findobj to find the
areaseries object’s handle. The following statement changes the FaceColor
property of the object whose Tag is area1.

set(findobj('Tag', 'areal'), 'FaceColor', 'red')

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For areaseries objects, Type is 'hggroup'.

The following statement finds all the hggroup objects in the current axes.
t = findobj(gca, 'Type', "hggroup');
UIContextMenu handle of a uicontextmenu object

Associate a context menu with the areaseries object. Assign this property the
handle of a uicontextmenu object created in the areaseries object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the areaseries object.

UserData array

User-specified data. This property can be any data you want to associate with
the areaseries object (including cell arrays and structures). The areaseries

2-97

Areaseries Properties

2-98

object does not set values for this property, but you can access it using the set
and get functions.

Visible {on} | off

Visibility of bar object and its children. By default, areaseries object visibility
is on. This means all children of the areaseries object are visible unless the
child object’s Visible property is set to of f. Setting an areaseries object’s
Visible property to off also makes its children invisible.

XData vector or matrix

The x-axis values for area graphs. The x-axis values for area graphs are
specified by the X input argument. If XData is a vector, 1length(XData) must
equal length(YData) and must be monotonic. If XData is a matrix,
size(XData) must equal size(YData) and each column must be monotonic.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the x input argument), MATLAB sets this
property to manual and uses the specified values to label the x-axis.

If you set XDataMode to auto after having specified XData, MATLAB resets the
x-axis ticks to 1:size(YData,1).

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

Areaseries Properties

and not render the graph until you have changed all data source properties to
appropriate values.

YData vector or matrix

Area plot data. YData contains the data plotted as filled areas (the Y input
argument). If YData is a vector, area creates a single filled area whose upper
boundary is defined by the elements of YData. If YData is a matrix, area creates
one filled area per column, stacking each on the previous plot.

The input argument Y in the area function calling syntax assigns values to
YData.

YDataSource string (MATLAB variable)
Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

2-99

ascii (ftp)

Purpose Set FTP transfer type to ASCII.
Syntax ascii(f)
Description ascii(f) sets the download and upload FTP mode to ASCII, which converts

new lines, where f was created using ftp. Use this function for text files only,
including HTML pages and Rich Text Format (RTF) files.

Examples Connect to The MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp function
to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary (ftp)

2-100

asec

Purpose Inverse secant, result in radians
Syntax Y = asec(X)
Description Y = asec(X) returns the inverse secant (arcsecant) for each element of X.

The asec function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains 1<x<5 and -5<sx<-1.

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

35
al
2.5F
5L
1.5r
1L
0.5f
95 6 5
Definition The inverse secant can be defined as

secl(z) = cosfl(i)

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-101

asec

See Also asecd, asech, sec

2-102

asecd

Purpose Inverse secant, result in degrees
Syntax Y = asecd(X)
Description Y = asecd(X) is the inverse secant, expressed in degrees, of the elements of X.

See Also secd, asec

2-103

asech

Purpose Inverse hyperbolic secant
Syntax Y = asech(X)
Descripl'ion Y = asech(X) returns the inverse hyperbolic secant for each element of X.

The asech function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.
Examples Graph the inverse hyperbolic secant over the domain 0.01<x<1.

X = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

sech 1(z) = cosh‘l(i)

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-104

asech

See Also asec, sech

2-105

asin

Purpose
Syntax

Description

Examples

Definition

2-106

Inverse sine, result in radians

Y

asin(X)

Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain [-1, 1] , asin(X) is in the range [-T1/2,T/2] . For
real elements of x outside the range [-1, 1], asin(X) is complex.

The asin function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.
Graph the inverse sine function over the domain -1 <x<1.

X = -1:.01:1;
plot(x,asin(x)), grid on

-1 -0.5 0 0.5 1

The inverse sine can be defined as

DN =

sin '(2) = —ilog| iz+(1-2%)

asin

Algorithm asinuses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also sin, asind, asinh

2-107

asind

Purpose Inverse sine, result in degrees
Syntax Y = asind(X)
Descripl'ion Y = asind(X) is the inverse sine, expressed in degrees, of the elements of X.

See Also sind, asin

2-108

asinh

Purpose Inverse hyperbolic sine
Syntax Y = asinh(X)
Descripl'ion Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain -5<x<5.

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

1

. — 2
sinh '(z) = log| 2+ (z2+1)

2-109

asinh

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also asin, sinh

2-110

assignin

Purpose
Syntax

Description

Remarks

Examples

Assign a value to a workspace variable
assignin(ws, 'var',val)

assignin(ws, 'var',val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of 'base' or
‘caller' todenote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

® Exporting data from a function to the MATLAB workspace

¢ Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note that the base and caller

workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user-entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {'Enter image name:', 'Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;

def = {'my_image', 'hsv'};

answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base', 'cmap',answer{2});

2-111

assignin

[Image display - assignin example E

Enter image name:

I my_image

Enter colormap name:
I hav

Cancel | ak. |

See Also evalin

2-112

atan

Purpose Inverse tangent, result in radians
Syntax Y = atan(X)
Descripl'ion Y = atan(X) returns the inverse tangent (arctangent) for each element of X.

For real elements of X, atan(X) is in the range [-TV/2,T/2] .
The atan function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain —20 <x <20.

X = -20:0.01:20;
plot(x,atan(x)), grid on

-20 -15 -10 -5 0 5 10 15 20

Definition The inverse tangent can be defined as

tan1(z) = %log(%)

2-113

atan

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also atan2, tan, atand, atanh

2-114

atan2

Purpose
Syntax

Description

Examples

Four-quadrant inverse tangent

o
1

atan2(Y,X)

P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the MATLAB
floating-point representation of 1. atan uses sign(Y) and sign(X) to
determine the specific quadrant.

Tt x

Y
w2

" @
-2

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the interval
[-TV/ 2, /2], or the right side of this diagram.

Any complex number z = x + iy is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z 4 + 3i;
r abs(z)
theta = atan2(imag(z),real(z))

a1

2-115

atan2

This is a common operation, so MATLAB provides a function, angle(z), that
computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
Z -
4.0000 + 3.0000i
Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,

Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also angle, atan, atanh

2-116

atand

Purpose Inverse tangent, result in degrees

Syntax Y = atand(X)

Descripl'ion Y = atand(X) is the inverse tangent, expressed in degrees, of the elements of X.
See Also tand, atan

2-117

atanh

Purpose Inverse hyperbolic tangent
Syntax Y = atanh(X)
Descripl'ion The atanh function operates element-wise on arrays. The function’s domains

and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse hyperbolic tangent function over the domain -1 <x <1.

X = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

-1 -0.5 0 0.5 1
Definition The hyperbolic inverse tangent can be defined as
1 _1 (1+ Z)
tanh=(z) 5 log 1>
Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,

Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-118

atanh

See Also atan2, atan, tanh

2-119

audioplayer

Purpose

Syntax

Description

2-120

Create an audio player object

= audioplayer
= audioplayer
= audioplayer
= audioplayer

x,Fs)
x,Fs,nbits)
r)

r,id)

<K<K <K <

Note To use all of the features of the audio player object, your system needs a
properly installed and configured sound card with 8- and 16-bit I/O, two
channels, and support for sampling rates of up to 48 kHz.

y = audioplayer(x,Fs) returns a handle to an audio player object y using
input audio signal x. The audio player object supports methods and properties
that you can use to play audio data.

The input signal x can be a vector or two-dimensional array containing single,
double, int8, uint8, or int16 MATLAB data types. The input sample value
range depends on the MATLAB data type.

Data Type Input Sample Value Range
int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

single -1to1l

double -1to1l

Fs is the sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most sound
cards are 8000, 11025, 22050, and 44100 Hz.

y = audioplayer(x,Fs,nbits) returns a handle to an audio player object

where nbits is the bit quantization to use for single or double data types. This
is an optional parameter with a default value of 16. Valid values for nbits are
8 and 16 (and 24, if a 24-bit device is installed). You do not need to specify nbits

audioplayer

Example

Methods

for int8, uint8, or int16 data because the quantization is set automatically to
8 or 16, respectively.

y = audioplayer(r) returns a handle to an audio player object from an
audiorecorder object r.

y = audioplayer(r,id) returns a handle to an audio player object from an
audiorecorder object r, using the audio device specified by id for output. This
option is only available on systems running Windows

Load a sample audio file, create an audio player object, and play the audio at a
higher sampling rate. x contains the audio samples and Fs is the sampling rate.
You can use any of the audioplayer functions listed above on the player.

load handel;
player=audioplayer(y,Fs);
play(player,[1 (get(player,'SampleRate')*3)]);

To stop the playback, use this command:
stop(player); % Equivalent to player.stop

After you create an audio player object, you can use the methods listed below
on that object. y represents the name of the returned audio player.

Method Description

play(y) Starts playback from the beginning
play(y,start) and plays to the end, or from start
play(y,[start stop]) sample to the end, or from start
play(y,range) sample to stop sample. The values of

start and stop can be specified in a
two-element vector range.

playblocking(y) Same as play, but does not return
playblocking(y,start) control until playback completes.
playblocking(y,[start stop])

playblocking(y,range)

stop(y) Stops playback.

2-121

audioplayer

Method Description
pause(y) Pauses playback.
resume(y) Restarts playback from where

playback was paused.

isplaying(y) Indicates whether playback is in
progress. If 0, playback is not in
progress. If 1, playback is in progress.

display(y) Displays all property information
disp(y) about audio player y.
get(y)

Properties Audio player objects have the properties listed below. To set a user-settable

property, use this syntax:
set(y, 'propertyl', value, 'property2',value,...)

To view a read-only property,

get(y, 'property') % Displays 'property' setting.
Property Description Type
Type Name of the object’s class Read-only
SampleRate Sampling frequency in Hz User-settable
BitsPerSample Number of bits per sample Read-only
NumberOfChannels Number of channels Read-only
TotalSamples Total length, in samples, of the Read-only
audio data
Running Status of the audio player ('on' Read-only
or 'off')

2-122

audioplayer

Property Description Type

CurrentSample Current sample being played by Read-only
the audio output device (if it is
not playing, currentsample is the
next sample to be played with
play or resume)

UserData User data of any type User-settable
Tag User-specified object label string User-settable

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([1).

TimerFcn Name of or handle to User-settable
user-specified function to be
called during playback

TimerPeriod Time, in seconds, between User-settable

TimerFcn callbacks

StartFcn Name of or handle to the function = User-settable
to be called once when playback
starts

StopFcn Name of or handle to the function User-settable
to be called once when playback
stops

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

2-123

audiorecorder

Purpose

Syntax

Description

Examples

2-124

Create an audio recorder object

y = audiorecorder
y = audiorecorder(Fs,nbits,channels)
y = audiorecorder(Fs,nbits,channels,id)

Note To use all of the features of the audio recorder object, your system must
have a properly installed and configured sound card with 8- and 16-bit I/O and
support for sampling rates of up to 48 kHz.

y = audiorecorder returns a handle to an 8-kHz, 8-bit, mono audio recorder
object. The audio recorder object supports methods and properties that you can
use to record audio data.

y = audiorecorder(Fs,nbits,channels) returns a handle to an audio
recorder object using the sampling rate Fs (in Hz), the sample size of nbits,
and the number of channels. Fs can be any sampling rate supported by the
audio hardware. Common sampling rates are 8000, 11025, 22050, and 44000.
The value of nbits must be 8 or 16 (or 24, if a 24-bit device is installed). For
mono or stereo, channels must be 1 or 2, respectively.

y = audiorecorder(Fs,nbits,channels,id) returns a handle to an audio
recorder object using the audio device specified by its id for input.

Example 1

Using a microphone, record 3.5 seconds of 44.1-kHz, 16-bit, stereo data, and
then return the data to the MATLAB workspace as a double array.

recorder = audiorecorder(44100,16,2);
recordblocking(recorder,3.5);
audioarray = getaudiodata(recorder);

Example 2

Using a microphone, record 8-bit, 22-kHz mono data, play it back, record again,
and return the data to the MATLAB workspace as a uint8 array.

micrecorder = audiorecorder(22050,8,1);
record(micrecorder);

audiorecorder

Remarks

Methods

% Now, speak into microphone

stop(micrecorder);

speechplayer = play(micrecorder);
% Now, listen to the recording

stop(speechplayer);

speechdata = getaudiodata(micrecorder, 'uint8');

The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage and
does not use disk buffering. When large recordings are attempted, MATLAB

performance may degrade.

After you create an audio recorder object, you can use the methods listed below
on that object. y represents the name of the returned audio recorder.

Method

Description

record(y)
record(y,length)

recordblocking(y,length)

stop(y)
pause (y)

resume(y)

isrecording(y)

play(y)

Starts recording.
Records for 1ength number of seconds.

Same as record, but does not return
control until recording completes.

Stops recording.
Pauses recording.

Restarts recording from where
recording was paused.

Indicates the status of recording. If 0,
recording is not in progress. If 1,
recording is in progress.

Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

2-125

audiorecorder

Method Description

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y) Returns the recorded audio data to the

getaudiodata(y, 'type')

display(y)
disp(y)
get(y)

MATLAB workspace. type is a string
containing the desired data type.
Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'. For
double and single, the array contains
values between -1 and 1. For int8,
values are between -128 to 127. For
uint8, values are from 0 to 255. For
int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

Displays all property information
about audio recorder y.

Properties
property, use this syntax:

Audio recorder objects have the properties listed below. To set a user-settable

set(y, 'propertyl', value, 'property2',value,...)

To view a read-only property,

get(y, 'property"’)

%displays 'property' setting.

Property Description Type
Type Name of the object’s class Read-only
SampleRate Sampling frequency in Hz Read-only

2-126

audiorecorder

Property Description Type

BitsPerSample Number of bits per recorded Read-only
sample

NumberOfChannels Number of channels of recorded Read-only
audio

TotalSamples Total length, in samples, of the Read-only
recording

Running Status of the audio recorder ('on' Read-only
or 'off')

CurrentSample Current sample being recorded Read-only
by the audio output device (if it is
not recording, currentsample is
the next sample to be recorded
with record or resume)

UserData User data of any type User-settable

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([1).

TimerFcn

TimerPeriod

StartFcn

StopFcn

Name of or handle to
user-specified function to be
called during recording

Time, in seconds, between
TimerFcn callbacks

Name of or handle to the function
to be called a single time when
recording starts

Name of or handle to the function
to be called a single time when
recording stops

User-settable

User-settable

User-settable

User-settable

2-127

audiorecorder

See Also

2-128

Property

Description

Type

NumberOfBuffers

BufferLength

Tag

Number of buffers used for
recording (you should adjust this
only if you have skips, dropouts,
etc., in your recording)

Length in seconds of buffer (you
should adjust this only if you
have skips, dropouts, etc., in your
recording)

User-specified object label string

User-settable

User-settable

User-settable

audioplayer, wavread, wavrecord, wavwrite, get, set, methods

aufinfo

Purpose Return information about the NeXT/SUN (. au) sound file
Syntax [m d] = aufinfo(aufile)
Descripl'ion [m d] = aufinfo(aufile) returns information about the contents of the AU

sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file. Otherwise, it
contains an empty string (' ').

d is a string that reports the number of samples in the file and the number of
channels of audio data. If filename is not an AU file, it contains the string 'Not
an AU file'.

See Also auread

2-129

auvread

Purpose

Graphical
Interface

Syntax

Description

See Also

2-130

Read NeXT/SUN (.au) sound file

As an alternative to auread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

y = auread('aufile')

[y,Fs,bits] = auread('aufile')

[...] = auread('aufile',N)

[...] = auread('aufile',[N1,N2])
= auread('aufile', 'size')

y = auread('aufile') loads a sound file specified by the string aufile,
returning the sampled data in y. The . au extension is appended if no extension
is given. Amplitude values are in the range [-1,+1]. auread supports
multichannel data in the following formats:

® 8-bit mu-law
® 8- 16-, and 32-bit linear
¢ Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[...] = auread('aufile',N) returns only the first N samples from each
channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread('aufile', 'size') returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector
siz = [samples channels].

auwrite, wavread

auwrite

Purpose

Syntax

Description

See Also

Write NeXT/SUN (. au) sound file

auwrite
auwrite
auwrite
auwrite

y, ‘aufile')

y,Fs, 'aufile')

y,Fs,N, 'aufile')

y,Fs,N, 'method', 'aufile')

Py

auwrite(y, 'aufile') writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [-1,+1] are clipped prior to writing. auwrite supports
multichannel data for 8-bit mu-law and 8- and 16-bit linear formats.

auwrite(y,Fs, 'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N, 'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N, 'method', 'aufile') allows selection of the encoding
method, which can be either mu or 1inear. Note that mu-law files must be 8-bit.
By default, method = 'mu’.

auread, wavwrite

2-131

avifile

Purpose

Syntax

Description

2-132

Create a new Audio/Video Interleaved (AVI) file

aviobj = avifile(filename)
aviobj =
avifile(filename, 'PropertyName',value, 'PropertyName',value,...)

aviobj = avifile(filename) creates an AVI file, giving it the name specified
in filename, using default values for all AVI file object properties. If filename
does not include an extension, avifile appends .avi to the filename. AVl is a
file format for storing audio and video data.

avifile returns a handle to an AVI file object aviobj. You use this object to
refer to the AVI file in other functions. An AVI file object supports properties
and methods that control aspects of the AVI file created.

aviobj = avifile(filename, 'Param',Value, 'Param',Value,...) creates
an AVI file with the specified parameter settings. This table lists available
parameters.

Parameter Value Default
‘colormap’ An m-by-3 matrix defining the colormap There is no
to be used for indexed AVI movies, where default
m must be no greater than 256 (236 if colormap.

using Indeo compression). You must set
this parameter before calling addframe,
unless you are using addframe with the
MATLAB movie syntax.

‘compression’' A text string specifying the compression
codec to use.

On Windows: On UNIX: ‘Indeo5"
'Indeo3' "None' on
‘Indeo5 Windows.
‘Cinepak’ ‘None' on
'MSVC' UNIX.
‘None'

avifile

Parameter Value

Default

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included in
the codec documentation). The addframe
function reports an error if it cannot find
the specified custom compressor.

'fps' A scalar value specifying the speed of the
AVI movie in frames per second (fps).

‘keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

'quality’ A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

'videoname' A descriptive name for the video stream.
This parameter must be no greater than
64 characters long.

15 fps

2 key
frames per
second.

75

The default
is the
filename.

You can also use structure syntax to set AVI file object properties. For
example, to set the quality property to 100, use the following syntax:

aviobj = avifile('myavifile');
aviobj.Quality = 100;

Example This example shows how to use the avifile function to create the AVI file

example.avi.

fig=figure;

set(fig, 'DoubleBuffer','on');

set(gca, 'x1lim',[-80 80], 'ylim',[-80 80],...
‘NextPlot', 'replace', 'Visible', 'off"')

2-133

avifile

See Also

2-134

mov = avifile('example.avi')
X = -pi:.1:pi;
radius = 0:length(x);
for k=1:1length(x)
h = patch(sin(x)*radius(k),c
[abs(cos(x(k)))
set(h, 'EraseMode', 'xor');
F = getframe(gca);
mov = addframe(mov,F);
end
mov = close(mov);

addframe, close, movie2avi

0s
0

(x)*radius(k), ...

01);

aviinfo

Purpose
Syntax

Description

Return information about an Audio/Video Interleaved (AVI) file

fileinfo

fileinfo

aviinfo(filename)

aviinfo(filename) returns a structure whose fields contain

information about the AVI file specified in the string filename. If filename
does not include an extension, then . avi is used. The file must be in the current
working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format used to
store the audio data, if audio data is present

AudioRate Integer indicating the sample rate in Hertz of the
audio stream, if audio data is present

Filename String specifying the name of the file

FileModDate String containing the modification date of the file

FileSize Integer indicating the size of the file in bytes

FramesPerSecond Integer indicating the desired frames per second

Height Integer indicating the height of the AVI movie in
pixels

ImageType String indicating the type of image. Either
"truecolor' for a truecolor (RGB) image, or
'indexed' for an indexed image.

NumAudioChannels Integer indicating the number of channels in the
audio stream, if audio data is present

NumFrames Integer indicating the total number of frames in
the movie

NumColormapEntries Integer specifying the number of colormap entries.

For a truecolor image, this value is 0 (zero).

2-135

aviinfo

See also

2-136

Field Name

Description

Quality

VideoCompression

Width

Number between 0 and 100 indicating the video
quality in the AVI file. Higher quality numbers
indicate higher video quality; lower quality
numbers indicate lower video quality. This value
is not always set in AVI files and therefore can be
inaccurate.

String containing the compressor used to
compress the AVI file. If the compressor is not
Microsoft Video 1, Run Length Encoding (RLE),
Cinepak, or Intel Indeo, aviinfo returns the
four-character code that identifies the compressor.

Integer indicating the width of the AVI movie in
pixels

avifile, aviread

aviread

Purpose

Syntax

Description

See also

Read an Audio/Video Interleaved (AVI) file

mov
mov

aviread(filename)
aviread(filename,index)

mov = aviread(filename) reads the AVI movie filename into the MATLAB
movie structure mov. If filename does not include an extension, then .avi is
used. Use the movie function to view the movie mov. On UNIX, filename must
be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields varies
depending on the type of image.

Image Type cdata Field colormap Field
Truecolor Height-by-width-by-3 array Empty
Indexed Height-by-width array m-by-3 array

The supported frame types are 8-bit, for indexed or grayscale images, 16-bit,
for grayscale images, or 24-bit, for truecolor.

mov = aviread(filename,index) reads only the frames specified by index.
index can be a single index or an array of indices into the video stream. In AVI
files, the first frame has the index value 1, the second frame has the index value
2, and so on.

aviinfo, avifile, movie

2-137

axes

Purpose

Syntax

Description

Remarks

2-138

Create axes graphics object

axes
axes('PropertyName' ,PropertyValue,...)
axes(h)

h = axes(...)

axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',PropertyValue,...) creates an axes object having the
specified property values. MATLAB uses default values for any properties that
you do not explicitly define as arguments.

axes (h) makes existing axes h the current axes. It also makes h the first axes
listed in the figure’s Children property and sets the figure’s CurrentAxes
property to h. The current axes is the target for functions that draw image, line,
patch, surface, and text graphics objects.

h = axes(...) returns the handle of the created axes object.

MATLAB automatically creates an axes, if one does not already exist, when
you issue a command that creates a graph.

The axes function accepts property name/property value pairs, structure
arrays, and cell arrays as input arguments (see the set and get commands for
examples of how to specify these data types). These properties, which control
various aspects of the axes object, are described in the “Axes Properties”
section.

Use the set function to modify the properties of an existing axes or the get
function to query the current values of axes properties. Use the gca command
to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly used
properties that control the scaling and appearance of axes.

axes

While the basic purpose of an axes object is to provide a coordinate system for
plotted data, axes properties provide considerable control over the way
MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position rectangle (the
rectangle defined by the last two elements in the Position property). This
results in graphs that use the available space in the rectangle. However, some
3-D graphs (such as a sphere) appear distorted because of this stretching, and
are better viewed with a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the
default). However, stretch-to-fill is turned off when the DataAspectRatio,
PlotBoxAspectRatio, or CameraViewAngle is user-specified, or when one or
more of the corresponding modes is set to manual (which happens
automatically when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the
stretch-to-fill. The dotted lines show the axes rectangle.

8t —

=)
[) S

1 L o L L L
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8

Stretch-to-fill active Stretch-to-fill disabled

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be as large
as possible within the constraints imposed by the Position rectangle without

2-139

axes

Examples

2-140

introducing distortion. In the picture above, the height of the rectangle
constrains the axes size.

Zooming
Zoom in using aspect ratio and limits:

sphere
set(gca, 'DataAspectRatio’,[1 1 1],...
'PlotBoxAspectRatio',[1 1 1],'ZLim',[-0.6 0.6])

Zoom in and out using the CameraviewAngle:

sphere
set(gca, 'CameraViewAngle',get(gca, 'CameraViewAngle')-5)
set(gca, 'CameraViewAngle',get(gca, 'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

Positioning the Axes
The axes Position property enables you to define the location of the axes
within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure and
returns a handle to it. Specify the location and size of the axes with a rectangle
defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from the lower
left corner of the figure to the lower left corner of the rectangle. The width and
height elements define the dimensions of the rectangle. You specify these
values in units determined by the Units property. By default, MATLAB uses
normalized units where (0,0) is the lower left corner and (1.0,1.0) is the upper
right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh (peaks(20));
axes('position',[.1 .7 .8 .2])

pcolor([1:10;1:10]);

axes

See Also

In this example, the first plot occupies the bottom two-thirds of the figure, and
the second occupies the top third.

=] Figure No. 1 B
File Edit Windows Help

axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel, zlabel,
view

“Axes Operations” for related functions
Axes Properties for more examples

See Types of Graphics Objects for information on core, group, plot, and
annotation objects.

2-141

axes

Object
Hierarchy

Uipanel

‘ Plot Objects

Core Objects Group Objects

Setting Default Properties
You can set default axes properties on the figure and root levels:

set (0, 'DefaultAxesPropertyName' ,PropertyValue,...)
set(gcf, 'DefaultAxesPropertyName' ,PropertyValue,...)

where PropertyName is the name of the axes property and PropertyValue is
the value you are specifying. Use set and get to access axes properties.

Property List The following table lists all axes properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Property Name Property Description Property Value

Controlling Style and Appearance

Box Toggles axes plot box on and off Values: on, off
Default: of f

Clipping This property has no effect; axes are
always clipped to the figure window.

GridLineStyle Line style used to draw axes grid Values: —, ——, :, - ., none
lines Default: : (dotted line)

MinorGridLineStyle Line style used to draw axes minor Values: —, ——, :, -., none
grid lines Default: : (dotted line)

2-142

axes

Property Name Property Description Property Value

Layer Draws axes above or below graphs Values: bottom, top
Default: bottom

LineStyleOrder Sequence of line styles used for Values: LineSpec

multiline plots

LineWidth Width of axis lines, in points (1/72"
per point)

SelectionHighlight Highlights axes when selected
(Selected property set to on)

TickDir Direction of axis tick marks

TickDirMode Use MATLAB or user-specified tick

mark direction

TickLength Length of tick marks normalized to
axis line length, specified as
two-element vector

Visible Make axes visible or invisible

XGrid, YGrid, ZGrid Toggle grid lines on and off in
respective axis

General Information About the Axes

ActivePositionProperty Determines whether the
OuterPosition or Position
property determines size of axes
after resize

Children Handles of the images, lights, lines,
patches, surfaces, and text objects
displayed in the axes

CcurrentPoint Location of last mouse button click
defined in the axes data units

Default: - (solid line for)

Values: number of points
Default: 0.5 points

Values: on, off
Default: on

Values: in, out
Default: in (2-D), out (3-D)

Values: auto, manual
Default: auto

Values: [2-D 3-D]
Default: [0.01 0.025}

Values: on, off
Default: on

Values: on, off
Default: off

Valules: outerposition,
position
Default: outerposition

Value: vector of handles

Value: a 2-by-3 matrix

2-143

axes

Property Name Property Description Property Value
HitTest Specifies whether axes can become Values: on, of f
the current object (see figure Default: on

CurrentObject property)

OuterPosition Position of axes including axis Value: [left bottom width
labels, title, and a margin height]
Default: [0 0 1 1] in
normalized units

Parent Handle of the figure or uipanel Values: scalar figure or
containing the axes uipanel handle

Position Location and size of axes within the = Values: [left bottom width
figure height]

Default: [0.1300 0.1100
0.7750 0.8150] in
normalized Units

TightInset Margin added to Position to Values: [left, bottom, right,
include labels and title top] Read only
Selected Indicates whether axes is in a Values: on, of f
selected state Default: on
Tag User-specified label Values: any string
Default: '' (empty string)
Type The type of graphics object (read Value: the string 'axes'
only)
Units Units used to interpret the Values: inches,
Position property centimeters, characters,

normalized, points, pixels
Default: normalized

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Selecting Fonts and Labels

2-144

axes

Property Name

Property Description

Property Value

FontAngle

FontName

FontSize

FontUnits

FontWeight

Title

XLabel, YLabel, ZLabel

XTickLabel,
YTickLabel,
ZTickLabel

XTickLabelMode,
YTickLabelMode,
ZTickLabelMode

Controlling Axis Scaling

Selects italic or normal font

Font family name (e.g., Helvetica,
Courier)

Size of the font used for title and
labels

Units used to interpret the
FontSize property

Selects bold or normal font

Handle of the title text object

Handles of the respective axis label
text objects

Specifies tick mark labels for the
respective axis

Uses MATLAB or user-specified
tick mark labels

Values: normal, italic,
oblique
Default: normal

Values: a font supported by
your system or the string
FixedWidth

Default: typically Helvetica

Value: an integer in
FontUnits
Default: 10

Values: points,
normalized, inches,
centimeters, pixels
Default: points

Values: normal, bold,
light, demi
Default: normal

Value: any valid text object
handle

Value: any valid text object
handle

Value: matrix of strings
Defaults: numeric values
selected automatically by
MATLAB

Values: auto, manual
Default: auto

2-145

axes

Property Name

Property Description

Property Value

XAxisLocation

YAxisLocation

XDir, YDir, ZDir

XLim, YLim, ZLim

XLimMode, YLimMode,
ZLimMode

XMinorGrid,YMinorGrid,

ZMinorGrid

XMinorTick,YMinorTick,
ZMinorTick

XScale, YScale, ZScale

XTick, YTick, ZTick

XTickMode, YTickMode,
ZTickMode

Specifies the location of the x-axis

Specifies the location of the y-axis

Specifies the direction of increasing
values for the respective axes

Specifies the limits to the respective
axes

Uses MATLAB or user-specified
values for the respective axis limits

Determines whether MATLAB
displays gridlines connecting minor
tick marks in the respective axis

Determines whether MATLAB
displays minor tick marks in the
respective axis

Selects linear or logarithmic scaling
of the respective axis

Specifies the location of the axis
tick marks

Uses MATLAB or user-specified
values for the respective tick mark
locations

Values: top, bottom
Default: bottom

Values: right left
Default: left

Values: normal, reverse
Default: normal

Values: [min max]
Default: min and max
determined automatically
by MATLAB

Values: auto, manual
Default: auto

Values: on, off
Default: off

Values: on, off
Default: of f

Values: linear, log
Default: 1inear (changed
by plotting commands that
create nonlinear plots)

Values: a vector of data
values locating tick marks
Default: MATLAB
automatically determines
tick mark placement

Values: auto, manual
Default: auto

2-146

axes

Property Name

Property Description

Property Value

Controlling the View

CameraPosition

CameraPositionMode

CameraTarget

CameraTargetMode

CameraUpVector

CameraUpVectorMode

CameraViewAngle

CameraViewAngleMode

Projection

Specifies the position of the point
from which you view the scene

Uses MATLAB or user-specified
camera position

Center of view pointed to by camera

Uses MATLAB or user-specified
camera target

Direction that is oriented up

Uses MATLAB or user-specified
camera up vector

Camera field of view

Uses MATLAB or user-specified
camera view angle

Selects type of projection

Controlling the Axes Aspect Ratio

Values: [x,Yy,z] axes
coordinates

Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: [x,y,z] axes
coordinates

Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: [x,y,z] axes
coordinates

Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Value: angle in degrees
between 0 and 180
Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: orthographic,
perspective
Default: orthographic

2-147

axes

Property Name

Property Description

Property Value

DataAspectRatio

DataAspectRatioMode

PlotBoxAspectRatio

PlotBoxAspectRatioMode

Relative scaling of data units

Uses MATLAB or user-specified
data aspect ratio

Relative scaling of axes plot box

Uses MATLAB or user-specified
plot box aspect ratio

Controlling Callback Routine Execution

BusyAction

ButtonDownFcn

CreateFcn

DeleteFcn

Interruptible

UIContextMenu

Specifies how to handle events that
interrupt executing callback
routines

Defines a callback routine that
executes when a button is pressed
over the axes

Defines a callback routine that
executes when an axes is created

Defines a callback routine that
executes when an axes is deleted

Controls whether an executing
callback routine can be interrupted

Associates a context menu with the
axes

Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: cancel, queue
Default: queue

Values: string or function
handle
Default: an empty string

Values: string or function
handle
Default: an empty string

Values: string or function
handle
Default: an empty string

Values: on, off
Default: on

Values: handle of a
Uicontextmenu

2-148

axes

Property Name Property Description

Property Value

Specifying the Rendering Mode

DrawMode Specifies the rendering method to

use with the Painters renderer

Targeting Axes for Graphics Display

HandleVisibility Controls access to a specific axes
handle
NextPlot Determines the eligibility of the

axes for displaying graphics

Properties that Specify Transparency
ALim Alpha axis limits

ALimMode Alpha axis limits mode

Properties that Specify Color

AmbientLightColor Color of the background light in a
scene

CLim Controls how data is mapped to
colormap

CLimMode Uses MATLAB or user-specified
values for CLim

Color Color of the axes background

Values: normal, fast
Default: normal

Values: on, callback, off
Default: on

Values: add, replace,
replacechildren
Default: replace

Values: [amin amax]

Values: auto | manual
Default: auto

Values: ColorSpec
Default: [1 1 1]

Values: [cmin cmax]
Default: automatically
determined by MATLAB

Values: auto, manual
Default: auto

Values: none, ColorSpec
Default: none

2-149

axes

Property Name

Property Description

Property Value

ColorOrder

XColor, YColor, ZColor

Line colors used for multiline plots

Colors of the axis lines and tick
marks

Value: m-by-3 matrix of
RGB values

Default: depends on color
scheme used

Values: ColorSpec
Default: depends on current
color scheme

2-150

Axes Properties

Modifying
Properties

Axes Property
Descriptions

You can set and query graphics object properties in two ways:

¢ The Property Editor is an interactive tool that enables you to see and change
object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

ActivePositionProperty {outerposition} | position

Use OuterPosition or Position property for resize. ActivePositionProperty
specifies which property MATLAB uses to determine the size of the axes when
the figure is resized (interactively or during a printing or exporting operation).

See OuterPosition and Position for more information.
ALim [amin, amax]

Alpha axis limits. A two-element vector that determines how MATLAB maps
the AlphaData values of surface, patch, and image objects to the figure's
alphamap. amin is the value of the data mapped to the first alpha value in the
alphamap, and amax is the value of the data mapped to the last alpha value in
the alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or last
alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the minimum
data value and amax the maximum data value in the graphics object's
AlphaData. This maps AlphaData elements with minimum data values to the
first alphamap entry and those with maximum data values to the last
alphamap entry. Data values in between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB sets ALim to span the
range of all objects' AlphaData (or FaceVertexAlphaData for patch objects).

ALimMode {auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim property to span
the AlphaData limits of the graphics objects displayed in the axes. If ALimMode

2-151

Axes Properties

2-152

is manual, MATLAB does not change the value of ALim when the AlphaData
limits of axes children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor ColorSpec

The background light in a scene. Ambient light is a directionless light that
shines uniformly on all objects in the axes. However, if there are no visible light
objects in the axes, MATLAB does not use AmbientLightColor. If there are
light objects in the axes, the AmbientLightColor is added to the other light
sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has
been superseded by the DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties.

BeingDeleted on | {off}

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects if the objects are going to be deleted, and therefore, can check the
object’s BeingDeleted property before acting.

Box on | {off}

Axes box mode. This property specifies whether to enclose the axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not display the box.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning

Axes Properties

the executing callback) determines how MATLAB handles the event. The
choices are

e cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is within the axes, but not over another
graphics object displayed in the axes. For 3-D views, the active area is defined
by a rectangle that encloses the axes.

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CameraPosition [x, vy, z] axes coordinates

The location of the camera. This property defines the position from which the
camera views the scene. Specify the point in axes coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene by changing
the CameraPosition, moving the camera closer to the CameraTarget to zoom in
and farther away from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if Projection is
perspective. You can also zoom by changing the CameraViewAngle; however,
this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically
calculates the CameraPosition such that the camera lies a fixed distance from
the CameraTarget along the azimuth and elevation specified by view. Setting a
value for CameraPosition sets this property to manual.

CameraTarget [x, y, z] axes coordinates

Camera aiming point. This property specifies the location in the axes that the
camera points to. The CameraTarget and the CameraPosition define the vector
(the view axis) along which the camera looks.

2-153

Axes Properties

2-154

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto,
MATLAB automatically positions the CameraTarget at the centroid of the axes
plot box. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the camera around the
viewing axis defined by the CameraTarget and the CameraPosition properties.
Specify CameraUpVector as a three-element array containing the x, y, and z
components of the vector. For example, [0 1 0] specifies the positive y-axis as
the up direction.

The default CameraUpVectoris [0 0 1], which defines the positive z-axis as the
up direction.

CameraUpVectorMode auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto,
MATLAB uses a value of [0 0 1] (positive z-direction is up) for 3-D views and
[0 1 0] (positive y-direction is up) for 2-D views. Setting a value for
CameraUpVector sets this property to manual.
CameraViewAngle scalar greater than 0 and less than or equal to

180 (angle in degrees)
The field of view. This property determines the camera field of view. Changing
this value affects the size of graphics objects displayed in the axes, but does not
affect the degree of perspective distortion. The greater the angle, the larger the
field of view, and the smaller objects appear in the scene.

CameraViewAngleMode {auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets
CameraViewAngle to the minimum angle that captures the entire scene (up to
180°).

Axes Properties

The following table summarizes MATLAB automatic camera behavior.

CameraView Camera Camera Behavior

Angle Target Position

auto auto auto CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto auto manual CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene.

auto manual auto CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto manual manual CameraViewAngle is set to capture entire scene.

manual auto auto CameraTarget is set to plot box centroid,
CameraPosition is set along the view axis.

manual auto manual CameraTarget is set to plot box centroid

manual manual auto CameraPosition is set along the view axis.

manual manual manual All camera properties are user-specified.

Children vector of graphics object handles

Children of the axes. A vector containing the handles of all graphics objects
rendered within the axes (whether visible or not). The graphics objects that can
be children of axes are images, lights, lines, patches, rectangles, surfaces, and
text. You can change the order of the handles and thereby change the stacking
of the objects on the display.

The text objects used to label the x-, y-, and z-axes are also children of axes, but
their HandleVisibility properties are set to callback. This means their
handles do not show up in the axes Children property unless you set the Root
ShowHiddenHandles property to on.

When an object’s HandleVisibility property is set to off, it is not listed in its
parent’s Children property. See HandleVisibility for more information.

2-155

Axes Properties

2-156

CLim [cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps
the CData values of surface and patch objects to the figure’s colormap. cmin is
the value of the data mapped to the first color in the colormap, and cmax is the
value of the data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data values
outside are clamped to either the first or last colormap color, whichever is
closest.

When CLimMode is auto (the default), MATLAB assigns cmin the minimum
data value and cmax the maximum data value in the graphics object’s CData.
This maps CData elements with minimum data value to the first colormap
entry and with maximum data value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim to span the
range of all objects’ CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span
the CData limits of the graphics objects displayed in the axes. If CLimMode is
manual, MATLAB does not change the value of CLim when the CData limits of
axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off
This property has no effect on axes.

Color {none} | ColorSpec

Color of the axes back planes. Setting this property to none means the axes is
transparent and the figure color shows through. A ColorSpecis a
three-element RGB vector or one of the MATLAB predefined names. Note that
while the default value is none, the matlabrc.m file may set the axes color to
a specific color.

ColoroOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix of RGB values
that define the colors used by the plot and plot3 functions to color each line
plotted. If you do not specify a line color with plot and plot3, these functions
cycle through the ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get the property
value:

Axes Properties

get(gca, 'ColorOrder')

Note that if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the ColorOrder property before
determining the colors to use. If you want MATLAB to use a ColorOrder that
is different from the default, set NextPlot to replacechildren. You can also
specify your own default ColorOrder.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an axes object. You must
define this property as a default value for axes. For example, the statement

set (0, 'DefaultAxesCreateFcn', 'set(gca,''Color'',"''b'")")

defines a default value on the Root level that sets the current axes background
color to blue whenever you (or MATLAB) create an axes. MATLAB executes
this routine after setting all properties for the axes. Setting this property on an
existing axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CurrentPoint 2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix containing the
coordinates of two points defined by the location of the pointer. These two
points lie on the line that is perpendicular to the plane of the screen and passes
through the pointer. The 3-D coordinates are the points, in the axes coordinate
system, where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, ¥, and z limits).

The returned matrix is of the form

*back Yback back

*front Yfront *front

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the axes, or even the figure

2-157

Axes Properties

window; MATLAB returns the coordinates with respect to the requested axes
regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative
scaling of data units in the x, y, and z directions. For example, setting this
property t o [1 2 1] causes the length of one unit of data in the x direction to
be the same length as two units of data in the y direction and one unit of data
in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control
how MATLAB scales the x-, y-, and z-axis. Setting the DataAspectRatio will
disable the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto. The
following table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-, DataAspect PlotBox Behavior

Z-Limits Ratio AspeciRatio

auto auto auto Limits chosen to span data range in all
dimensions.

auto auto manual Limits chosen to span data range in all
dimensions. DataAspectRatio is modified to
achieve the requested PlotBoxAspectRatio
within the limits selected by MATLAB.

auto manual auto Limits chosen to span data range in all
dimensions. PlotBoxAspectRatio is modified to
achieve the requested DataAspectRatio within
the limits selected by MATLAB.

auto manual manual Limits chosen to completely fit and center the

plot within the requested PlotBoxAspectRatio
given the requested DataAspectRatio (this may
produce empty space around 2 of the 3
dimensions).

2-158

Axes Properties

X-, Y-, DataAspect PlotBox Behavior

Z-Limits Ratio AspectRatio

manual auto auto Limits are honored. The DataAspectRatio and
PlotBoxAspectRatio are modified as necessary.

manual auto manual Limits and PlotBoxAspectRatio are honored.
The DataAspectRatio is modified as necessary.

manual manual auto Limits and DataAspectRatio are honored. The
PlotBoxAspectRatio is modified as necessary.

1 manual manual manual The 2 automatic limits are selected to honor the

2 auto specified aspect ratios and limit. See
“Examples.”

2 or 3 manual manual Limits and DataAspectRatio are honored; the

manual PlotBoxAspectRatio is ignored.

DataAspectRatioMode {auto} | manual

User or MATLAB controlled data scaling. This property controls whether the
values of the DataAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the DataAspectRatio property
automatically sets this property to manual. Changing DataAspectRatioMode to
manual disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto.

DeleteFcn

string or function handle

Delete axes callback routine. A callback routine that executes when the axes

object is deleted (e.g., when you issue a delete command). MATLAB executes
the routine before destroying the object’s properties so the callback routine can
query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Axes Properties

2-160

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render
graphics objects displayed in the axes, when the figure Renderer property is
painters.

® normal mode draws objects in back to front ordering based on the current
view in order to handle hidden surface elimination and object intersections.

¢ fast mode draws objects in the order in which you specify the drawing
commands, without considering the relationships of the objects in three
dimensions. This results in faster rendering because it requires no sorting of
objects according to location in the view, but may produce undesirable
results because it bypasses the hidden surface elimination and object
intersection handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and hidden surface
elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for axes
text. normal specifies a nonitalic font. italic and oblique specify italic font.

FontName A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use for axes
labels. To display and print properly, FontName must be a font that your system
supports. Note that the x-, y-, and z-axis labels are not displayed in a new font
until you manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or zlabel command). Tick mark
labels change immediately.

Specifying a Fixed-Width Font
If you want an axes to use a fixed-width font that looks good in any locale, you
should set FontName to the string FixedWidth:

set(axes_handle, 'FontName', 'FixedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may
not display text properly on systems that do not use ASCII character encoding
(such as in Japan where multibyte character sets are used). A properly written
MATLAB application that needs to use a fixed-width font should set FontName

Axes Properties

to Fixedwidth (note that this string is case sensitive) and rely on
FixedwidthFontName to be set correctly in the end user’s environment.

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an immediate
update of the display to use the new font.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels and titles, in
units determined by the FontUnits property. The default point size is 12. The
x-, y-, and z-axis text labels are not displayed in a new font size until you
manually reset them (by setting the XLabel, YLabel, or ZLabel properties or by
using the xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.
FontUnits {points} | normalized | inches |

centimeters | pixels
Units used to interpret the FontSize property. When set to normalized,
MATLAB interprets the value of FontSize as a fraction of the height of the
axes. For example, a normalized FontSize of 0.1 sets the text characters to a
font whose height is one tenth of the axes’ height. The default units (points),
are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for axes text. The x-, y-, and
z-axis text labels are not displayed in bold until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the xlabel,
ylabel, or z1label commands). Tick mark labels change immediately.

GridLineStyle - | =--] {:} | —. | none

Line style used to draw grid lines. The line style is a string consisting of a
character, in quotes, specifying solid lines (=), dashed lines (--), dotted lines(:),
or dash-dot lines (-.). The default grid line style is dotted. To turn on grid lines,
use the grid command.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of

2-161

Axes Properties

2-162

children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s CurrentFigure property, objects do not appear in the Root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the axes can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the axes. IfHitTest is of f, clicking the
axes selects the object below it (which is usually the figure containing it).

Axes Properties

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an axes callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Setting Interruptible to on allows any graphics object’s callback routine to
interrupt callback routines originating from an axes property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if
axis lines and tick marks are drawn on top or below axes children objects for
any 2-D view (i.e., when you are looking along the x-, y-, or z-axis). This is useful
for placing grid lines and tick marks on top of images.

LineStyleOrder LineSpec (default: a solid line '-')

Order of line styles and markers used in a plot. This property specifies which
line styles and markers to use and in what order when creating multiple-line
plots. For example,

set(gca, 'LineStyleOrder', '—-*|:|o0')

sets LineStyleOrder to solid line with asterisk marker, dotted line, and hollow
circle marker. The default is (=), which specifies a solid line for all data plotted.
Alternatively, you can create a cell array of character strings to define the line
styles:

set(gca, 'LineStyleOrder',{'=*',"':','0'})

MATLAB supports four line styles, which you can specify any number of times
in any order. MATLAB cycles through the line styles only after using all colors
defined by the ColorOrder property. For example, the first eight lines plotted
use the different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second line style
specified, and so on.

2-163

Axes Properties

2-164

You can also specify line style and color directly with the plot and plot3
functions or by altering the properties of the line or lineseries objects after
creating the graph.

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the LineStyleOrder property before
determining the line style to use. If you want MATLAB to use a
LineStyleOrder that is different from the default, set NextPlot to
replacechildren.

Specifying a Default LineStyleOrder
You can also specify your own default LineStyleOrder. For example, this
statement

set (0, 'DefaultAxesLineStyleOrder',{'-*',':"','0"'})

creates a default value for the axes LineStyleOrder that is not reset by
high-level plotting functions.

LineWidth line width in points

Width of axis lines. This property specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points (1 point = /7 inch).
MinorGridLineStyle — | ——| {:} | —. | none

Line style used to draw minor grid lines. The line style is a string consisting of
one or more characters, in quotes, specifying solid lines (-), dashed lines (),
dotted lines (:), or dash-dot lines (-.). The default minor grid line style is
dotted. To turn on minor grid lines, use the grid minor command.

NextPlot add | {replace} | replacechildren
Where to draw the next plot. This property determines how high-level plotting
functions draw into an existing axes.

¢ add — Use the existing axes to draw graphics objects.

® replace — Reset all axes properties except Position to their defaults and
delete all axes children before displaying graphics (equivalent to cla reset).

® replacechildren — Remove all child objects, but do not reset axes
properties (equivalent to cla).

Axes Properties

|

The newplot function simplifies the use of the NextPlot property and is used
by M-file functions that draw graphs using only low-level object creation
routines. See the M-file pcolor.m for an example. Note that figure graphics
objects also have a NextPlot property.

OuterPosition four-element vector

Position of axes including labels, title, and a margin. A four-element vector
specifying a rectangle that locates the outer bounds of the axes, including axis
labels, the title, and a margin. The vector is defined as follows:

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle

The following picture shows the region defined by the OuterPosition enclosed
in a yellow rectangle.

—I—I' O 5'
File Edit Wiew Insert Tools Web Deskbop Window Help
DedE h RAN® € 0EH o

Plot of a simple. The yellow rectangle
mathematical function shows the extent of

40
the OuterPosition.
a5 |
30 [
120 \
=
15 } - The green rectangle
1ol shows the extent of
. the Position.

-4 -6 -4 -2 0 2 4 &6 4
X =-2nto2n

2-165

Axes Properties

2-166

When ActivePositionProperty is set to OuterPosition (the default), none of
the text is clipped when you resize the figure. The default value of [0 0 1 1]
(normalized units) includes the interior of the figure.

All measurements are in units specified by the Units property.
See the TightInset property for related information.
See Automatic Axes Resize for more information.

Parent figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of an axes object
is the figure in which it is displayed or the uipanel object that contains it. The
utility function gcf returns the handle of the current axes Parent. You can
reparent axes to other figure or uipanel objects.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of axes plot box. A three-element vector controlling the relative
scaling of the plot box in the x, y, and z directions. The plot box is a box
enclosing the axes data region as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control the
way graphics objects are displayed in the axes. Setting the
PlotBoxAspectRatio disables stretch-to-fill behavior, if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

PlotBoxAspectRatioMode {auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the
values of the PlotBoxAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the PlotBoxAspectRatio
property automatically sets this property to manual. Changing the
PlotBoxAspectRatioMode to manual disables stretch-to-fill behavior if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

Axes Properties

Position four-element vector

Position of axes. A four-element vector specifying a rectangle that locates the
axes within the figure window. The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle. All measurements are in units specified by the
Units property.

When axes stretch-to-fill behavior is enabled (when DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto), the axes
are stretched to fill the Position rectangle. When stretch-to-fill is disabled, the
axes are made as large as possible, while obeying all other properties, without
extending outside the Position rectangle.

See the OuterPosition poperty for related information.

Projection {orthographic} | perspective

Type of projection. This property selects between two projection types:

® orthographic — This projection maintains the correct relative dimensions
of graphics objects with regard to the distance a given point is from the
viewer. Parallel lines in the data are drawn parallel on the screen.

® perspective — This projection incorporates foreshortening, which allows
you to perceive depth in 2-D representations of 3-D objects. Perspective
projection does not preserve the relative dimensions of objects; a distant line
segment is displayed smaller than a nearer line segment of the same length.
Parallel lines in the data may not appear parallel on screen.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the axes has been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four

2-167

Axes Properties

2-168

corner handles. When SelectionHighlightis off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular axes, regardless of user actions that may have changed the current
axes. To do this, identify the axes with a Tag:

axes('Tag', 'Special Axes')

Then make that axes the current axes before drawing by searching for the Tag
with findobj:

axes(findobj('Tag', 'Special Axes'))

TickDir in | out
Direction of tick marks. For 2-D views, the default is to direct tick marks

inward from the axis lines; 3-D views direct tick marks outward from the axis
line.

TickDirMode {auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks
inward for 2-D views and outward for 3-D views. When you specify a setting for
TickDir, MATLAB sets TickDirMode to manual. In manual mode, MATLAB
does not change the specified tick direction.

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of axes tick
marks. The first element is the length of tick marks used for 2-D views and the
second element is the length of tick marks used for 3-D views. Specify tick mark
lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

Axes Properties

TightInset [left bottom right top] Read only

Margins added to Position to include text labels. The values of this property are
the distances between the bounds of the Position property and the extent of
the axes text labels and title. When added to the Position width and height
values, the TightInset defines the tightest bounding box that encloses the
axes and it’s labels and title.

See Automatic Axes Resize for more information.

Title handle of text object

Axes title. The handle of the text object that is used for the axes title. You can
use this handle to change the properties of the title text or you can set Title to
the handle of an existing text object. For example, the following statement
changes the color of the current title to red:

set(get(gca, 'Title'), 'Color','r")

To create a new title, set this property to the handle of the text object you want
to use:

set(gca, 'Title',text('String', 'New Title', 'Color','r'))

However, it is generally simpler to use the title command to create or replace
an axes title:

title('New Title','Color','r') % Make text color red
title({'This title','has 2 lines'}) % Two line title

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For axes objects, Type is always set to 'axes'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the handle of a
Uicontextmenu object created in the axes’ parent figure. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the axes.
Units inches | centimeters | {normalized} |

points pixels | characters
Position units. The units used to interpret the Position property. All units are
measured from the lower left corner of the figure window.

2-169

Axes Properties

2-170

® normalized units map the lower left corner of the figure window to (0,0) and
the upper right corner to (1.0, 1.0).

® inches, centimeters, and points are absolute units (one point equals 1/72 of
an inch).

® Character units are defined by characters from the default system font; the
width of one character is the width of the letter x, and the height of one
character is the distance between the baselines of two lines of text.

UserData matrix

User-specified data. This property can be any data you want to associate with
the axes object. The axes does not use this property, but you can access it using
the set and get functions.

View Obsolete

The functionality provided by the View property is now controlled by the axes
camera properties — CameraPosition, CameraTarget, CameraUpVector, and
CameraViewAngle. See the view command.

Visible {on} | off

Visibility of axes. By default, axes are visible. Setting this property to off
prevents axis lines, tick marks, and labels from being displayed. The Visible
property does not affect children of axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where
MATLAB displays the x-axis tick marks and labels. Setting this property to top
moves the x-axis to the top of the plot from its default position at the bottom.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where
MATLAB displays the y-axis tick marks and labels. Setting this property to
right moves the y-axis to the right side of the plot from its default position on
the left side. See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis
XColor, YColor, ZColor ColorSpec

Color of axis lines. A three-element vector specifying an RGB triple, or a
predefined MATLAB color string. This property determines the color of the axis

Axes Properties

lines, tick marks, tick mark labels, and the axis grid lines of the respective x-,
y-, and z-axis. The default color axis color is black. See ColorSpec for details on
specifying colors.

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing
axis values. Axes form a right-hand coordinate system. By default,

® x-axis values increase from left to right. To reverse the direction of increasing
x values, set this property to reverse.

set(gca, 'XDir', 'reverse')
® y-axis values increase from bottom to top (2-D view) or front to back (3-D

view). To reverse the direction of increasing y values, set this property to
reverse.

set(gca, 'YDir', 'reverse')

¢ z-axis values increase pointing out of the screen (2-D view) or from bottom to
top (3-D view). To reverse the direction of increasing z values, set this
property to reverse.

set(gca, 'ZDir', 'reverse')

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws
grid lines perpendicular to the respective axis (i.e., along lines of constant x, y,
or z values). Use the grid command to set all three properties on or off at once.

set(gca, 'XGrid','on')
XLabel, YLabel, ZLabel handle of text object

Axis labels. The handle of the text object used to label the x-, y-, or z-axis,
respectively. To assign values to any of these properties, you must obtain the
handle to the text string you want to use as a label. This statement defines a
text object and assigns its handle to the XLabel property:

set(get(gca, 'XLabel'), 'String', 'axis label')

MATLAB places the string 'axis label' appropriately for an x-axis label. Any
text object whose handle you specify as an XLabel, YLabel, or ZLabel property
is moved to the appropriate location for the respective label.

2-171

Axes Properties

2-172

Alternatively, you can use the xlabel, ylabel, and zlabel functions, which
generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum
values of the respective axis.

Changing these properties affects the scale of the x-, y-, or z-dimension as well
as the placement of labels and tick marks on the axis. The default values for
these properties are [0 1].

XLimMode, YLimMode, ZLimMode {auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether
MATLAB calculates axis limits based on the data plotted (i.e., the XData,
YData, or ZData of the axes children) or uses the values explicitly set with the
XLim, YLim, or ZLim property, in which case, the respective limits mode is set to
manual.

XMinorGrid, YMinorGrid, ZMinorGrid on | {off}

Enable or disable minor gridlines. When set to on, MATLAB draws gridlines
aligned with the minor tick marks of the respective axis. Note that you do not
have to enable minor ticks to display minor grids.

XMinorTick, YMinorTick, ZMinorTick on | {off}

Enable or disable minor tick marks. When set to on, MATLAB draws tick
marks between the major tick marks of the respective axis. MATLAB
automatically determines the number of minor ticks based on the space
between the major ticks.

XScale, YScale, ZScale {linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis. See also
loglog, semilogx, and semilogy.

XTick, YTick, ZTick vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of
tick marks along the respective axis. If you do not want tick marks displayed,
set the respective property to the empty vector, []. These vectors must contain
monotonically increasing values.

Axes Properties

XTickLabel, YTickLabel, ZTickLabel string

Tick labels. A matrix of strings to use as labels for tick marks along the
respective axis. These labels replace the numeric labels generated by
MATLAB. If you do not specify enough text labels for all the tick marks,
MATLAB uses all of the labels specified, then reuses the specified labels.

For example, the statement

set(gca, 'XTickLabel',{'One';'Two'; 'Three'; 'Four'})

labels the first four tick marks on the x-axis and then reuses the labels until all
ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string
vectors separated by vertical slash characters, or as numeric vectors (where
each number is implicitly converted to the equivalent string using num2str).
All of the following are equivalent:

set(gca, 'XTickLabel',{'1';'10';'100'})

(
set(gca, 'XTickLabel','1|[10[100")
set(gca, 'XTickLabel',[1;10;100])
set(gca, 'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences (however, the
Title, XLabel, YLabel, and ZLabel properties do).

XTickMode, YTickMode, ZTickMode {auto} |
manual

MATLARB or user-controlled tick spacing. The axis tick modes determine
whether MATLAB calculates the tick mark spacing based on the range of data
for the respective axis (auto mode) or uses the values explicitly set for any of
the XTick, YTick, and ZTick properties (manual mode). Setting values for the
XTick, YTick, or ZTick properties sets the respective axis tick mode to manual.
XTickLabelMode, YTickLabelMode, ZTickLabelMode {auto} |
manual

MATLAB or user-determined tick labels. The axis tick mark labeling mode
determines whether MATLAB uses numeric tick mark labels that span the
range of the plotted data (auto mode) or uses the tick mark labels specified
with the XTickLabel, YTickLabel, or ZTickLabel property (manual mode).
Setting values for the XTickLabel, YTickLabel, or ZTickLabel property sets
the respective axis tick label mode to manual.

2-173

axis

Purpose

Syntax

Description

2-174

Axis scaling and appearance

axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
vV = axis

axis auto
axis manual
axis tight
axis fill

axis 1ij
axis xy

axis equal
axis image
axis square
axis vis3d
axis normal

axis off

axis on

axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

axis manipulates commonly used axes properties. (See Algorithm section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and
z-axis limits and the color scaling limits (see caxis) of the current axes.

v = axis returns a row vector containing scaling factors for the x-, y-, and
z-axis. v has four or six components depending on whether the current axes is
2-D or 3-D, respectively. The returned values are the current axes XLim, Y1im,
and ZLim properties.

axis

axis auto sets MATLAB to its default behavior of computing the current axes
limits automatically, based on the minimum and maximum values of x, y, and
z data. You can restrict this automatic behavior to a specific axis. For example,
axis 'auto x' computes only the x-axis limits automatically; axis 'auto yz'
computes the y- and z-axis limits automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so that
if hold is on, subsequent plots use the same limits. This sets the XLimMode,
YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that the axes fill
the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner. The i-axis
is vertical, with values increasing from top to bottom. The j-axis is horizontal
with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with the
coordinate system origin in the lower left corner. The x-axis is horizontal with
values increasing from left to right. The y-axis is vertical with values
increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same in every
direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically
according to the range of data units in the x, y, and z directions.

axis image is the same as axis equal except that the plot box fits tightly
around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so that they
have equal lengths and adjusts the increments between data units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretch-to-fill.

2-175

axis

Examples

2-176

axis normal automatically adjusts the aspect ratio of the axes and the relative
scaling of the data units so that the plot fits the figure’s shape as well as
possible.

axis off turns off all axis lines, tick marks, and labels.
axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified axes. For
example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2], 'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three strings
indicating the current setting of axes properties:

Output Argument Strings Returned
mode ‘auto' | 'manual'’
visibility ‘on' | 'off'
direction 'xy' | 'ij!

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

The statements

X = 0:.025:pi/2;
plot(x,tan(x),'-ro')

use the automatic scaling of the y-axis based on ymax = tan(1.57), which is
well over 1000:

axis

1400

1200 T*

1000 - B

600 - B

400 B

The right figure shows a more satisfactory plot after typing
axis([0 pi/2 0 5])

2-177

axis

Algorithm

2-178

15

When you specify minimum and maximum values for the x-, y-, and z-axes,
axis sets the XLim, Y1im, and ZLim properties for the current axes to the
respective minimum and maximum values in the argument list. Additionally,
the XLimMode, YLimMode, and ZLimMode properties for the current axes are set
to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode properties
to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual’.

axis

The following table shows the values of the axes properties set by axis equal,
axis normal, axis square, and axis image.

Axes Property axis equal axis normal axis square axis tightequal
DataAspectRatio [1 1 1] not set not set [1 1 1]
DataAspectRatioMode manual auto auto manual
PlotBoxAspectRatio [3 4 4] not set [1 1 1] auto
PlotBoxAspectRatioMode manual auto manual auto
Stretch-to-fill disabled active disabled disabled

See Also axes, grid, subplot, x1im, ylim, z1im

Properties of axes graphics objects

“Axes Operations” for related functions

2-179

balance

Purpose

Syntax

Description

Remarks

2-180

2balance
Diagonal scaling to improve eigenvalue accuracy

[T,B] = balance(A)
[S,P,B] = balance(A)

B = balance(A)

B = balance(A, 'noperm')

[T,B] = balance(A) returns a similarity transformation T such that

B = T\A*T, and B has, as nearly as possible, approximately equal row and
column norms. T is a permutation of a diagonal matrix whose elements are
integer powers of two to prevent the introduction of round-off error. If A is
symmetric, then B == A and T is the identity matrix.

[S,P,B] = balance(A) returns the scaling vector S and the permutation
vector P separately. The transformation T and balanced matrix B are obtained
from A, S,and Pby T(:,P) = diag(S) and B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B

balance(A, 'noperm') scales A without permuting its rows and columns.

Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The condition number of the eigenvector
matrix,

cond(V) = norm(V)*norm(inv(V))
where
[V,T] = eig(A)
relates the size of the matrix perturbation to the size of the eigenvalue

perturbation. Note that the condition number of A itself is irrelevant to the
eigenvalue problem.

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column.

balance

Examples

Note The MATLAB eigenvalue function, eig(A), automatically balances A
before computing its eigenvalues. Turn off the balancing with
eig(A, 'nobalance').

This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A =11 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *

0.0001 0.0100 1.0000

0.0000 0.0001 0.0100

0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)

T =
1.0e+03 *
2.0480 0 0
0 0.0320 0
0 0 0.0003
B =

1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A, shown
here as the columns of V.

[V,E]

V =
-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

eig(A); V

2-181

balance

Algorithm

Limitations

See Also

References

2-182

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond (V) is 8.7766e+003. Next, look at the
eigenvectors of B.

[V,E] = eig(B); V

V =
-0.8873 0.6933 0.0898
0.2839 0.4437 -0.6482
0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond (V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.

Inputs of Type Double

For inputs of type double, balance uses the linear algebra package (LAPACK)
routines DGEBAL (real) and ZGEBAL (complex). If you request the output T,
balance also uses the LAPACK routines DGEBAK (real) and ZGEBAK (complex).

Inputs of Type Single

For inputs of type single, balance uses the LAPACK routines SGEBAL (real)
and CGEBAL (complex). If you request the output T, balance also uses the
LAPACK routines SGEBAK (real) and CGEBAK (complex).

Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

eig

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

(http://www.netlib.org/lapack/lug/lapack lug.html), Third Edition,
SIAM, Philadelphia, 1999.

bar, barh

Purpose

Syntax

Description

Bar graph (vertical and horizontal)

bar(Y)

bar(x,Y)

bar(...,width)
bar(...,'style'")
bar(...,'bar_color')
bar(axes_handle,...)

h = bar(...)

hpatches = bar('vé',...)
barh(...)

h = barh(...)

hpatches = barh('ve',...)

A bar graph displays the values in a vector or matrix as horizontal or vertical
bars.

bar(Y) draws one bar for each elementin Y. IfY is a matrix, bar groups the bars
produced by the elements in each row. The x-axis scale ranges from 1 to
length(Y) when Y is a vector, and 1 to size(Y, 1), which is the number of rows,
when Y is a matrix.

bar(x,Y) draws a bar for each element in Y at locations specified in x, where x
is a monotonically increasing vector defining the x-axis intervals for the
vertical bars. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, the bars
within a group have a slight separation. If width is 1, the bars within a group
touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped' or
'stacked'. 'group' is the default mode of display.

® 'grouped' displays m groups of n vertical bars, where m is the number of
rows and n is the number of columns in Y. The group contains one bar per
column in Y.

2-183

bar, barh

Barseries
Objects

Examples

2-184

® 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multicolored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar(...,'bar_color') displays all bars using the color specified by the
single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

bar(axes_handles,...) and barh(axes_handles,...) plots into the axes
with handle axes_handle instead of the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects. bar
creates one barseries graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Backward Compatible Versions

hpatches = bar('vé',...) and hpatches = barh('v6',...) return the
handles of patch objects instead of barseries objects for compatibility with
MATLAB 6.5 and earlier. See patch object properties for a discussion of the
properties you can set to control the appearance of these bar graphs.

See Plot Objects and Backward Compatibility for more information.

Creating a bar graph of an m-by-n matrix creates m groups of n barseries
objects. Each barseries objects contains the data for corresponding x values of
each bar group (as indicated by the coloring of the bars).

Note that some barseries objects properties set on an individual barseries
object, set the values for all barseries objects in the graph. See the property
descriptions for information on specific properties.

Single Series of Data
This example plots a bell-shaped curve as a bar graph and sets the colors of the
bars to red.

X = -2.9:0.2:2.9;

bar, barh

|

bar(x,exp(-x.*x),'r")

Bar Graph Options

This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)

bar (Y, 'group')

title 'Group'

subplot(2,2,2)
bar(Y, 'stack')
title 'Stack’

subplot(2,2,3)
barh(Y, 'stack')
title 'Stack’

subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5

2-185

bar, barh

2-186

Group Stack
10

Stack Width = 1.5

Setting Properties with Multiobject Graphs

This example creates a graph that displays three groups of bars and contains
five barseries objects. Since all barseries objects in a graph share the same
baseline, you can set values using any barseries object’s BaseLine property.
This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1), 'BaseLine'), 'LineWidth',2,'LineStyle',':")

colormap summer % Change the color scheme

bar, barh

|

15 T T T

-0.5F -
b |
-15 - . .
1 2 3
See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” for related functions
“Barseries Properties” on page 2-192

Bar and Area Graphs for more examples

2-187

bar3, bar3h

Purpose

Syntax

Description

2-188

Three-dimensional bar chart

bar3(Y)

bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(. L1neSpec)
bar3(xes_handle,...)

= bar3(...)

bar3h(...)

= bar3h(...)

bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to
length(Y). When Y is a matrix, the x-axis scale ranges from 1 to size(Y,2),
which is the number of columns, and the elements in each row are grouped
together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations specified in
X, where x is a monotonic vector defining the y-axis intervals for vertical bars.
If Y is a matrix, bar3 clusters elements from the same row in Y at locations
corresponding to an element in x. Values of elements in each row are grouped
together.

bar3(...,width) sets the width of the bars and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, bars within
a group have a slight separation. If width is 1, the bars within a group touch
one another.

bar3(...,'style') specifies the style of the bars. 'style' is 'detached’,
‘grouped', or 'stacked'. 'detached' is the default mode of display.

® 'detached’' displays the elements of each row in Y as separate blocks behind
one another in the x direction.

bar3, bar3h

Examples

® 'grouped' displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
column in V.

® 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multicolored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by LineSpec.

bar3(axes_handles, ...) plotsintothe axes with handle axes_handle instead
of the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects. bar3
creates one patch object per column in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

This example creates six subplots showing the effects of different arguments
for bar3. The data Y is a seven-by-three matrix generated using the cool
colormap:

Y = c00l(7);
subplot(3,2,1)
bar3(Y, 'detached')
title('Detached')

subplot(3,2,2)
bar3(Y,0.25, 'detached")
title('Width = 0.25")

subplot(3,2,3)
bar3(Y, 'grouped')
title('Grouped')

subplot(3,2,4)
bar3(Y,0.5, 'grouped')
title('Width = 0.5")

2-189

bar3, bar3h

subplot(3,2,5)
bar3(Y, 'stacked')
title('Stacked')

subplot(3,2,6)
bar3(Y,0.3, 'stacked')
title('Width = 0.3")

colormap([1 0 0;0 1 0;0 0 1])

Purpose Three-dimensional bar chart

2-190

bar3, bar3h
|

Detached Width = 0.25

Grouped 1 Width = 0.5

See Also bar, LineSpec, patch
“Area, Bar, and Pie Plots” for related functions

Bar and Area Graphs for more examples

2-191

Barseries Properties

Modifying
Properties

Barseries
Property
Descriptions

2-192

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See Plot Objects for more information on barseries objects.

This section provides a description of properties. Curly braces { } enclose
default values.

BarLayout {grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups of n vertical
bars, where m is the number of rows and n is the number of columns in the
input argument Y. The group contains one bar per column in Y.

Stacked bars display one bar for each row in the input argument Y. The bar
height is the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative contribution
each row element makes to the total sum.

BarwWidth scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar width and
controls the separation of bars within a group. The default width is 0.8, so if
you do not specify x, the bars within a group have a slight separation. If width
is 1, the bars within a group touch one another.

BaseLine handle of baseline

Handle of the baseline object. This property contains the handle of the line
object used as the baseline. You can set the properties of this line using its
handle. For example, the following statements create a bar graph, obtain the
handle of the baseline from the barseries object, and then set line properties
that make the baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle, 'BaseLine');
set(baseline_handle, 'LineStyle','--',"'Color','red")

BaseValue double: y-axis value

Value where baseline is drawn. You can specify the value along the y-axis
(vertical bars) or x-axis (horizontal bars) at which MATLAB draws the
baseline.

Barseries Properties

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

® cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the barseries object.

This property can be
¢ A string that is a valid MATLAB expression

® The name of an M-file

e A function handle

The expression executes in the MATLAB workspace.

2-193

Barseries Properties

2-194

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the barseries object. The handle of a patch object that is the child of
the barseries object (whether visible or not).

Note that if a child object’s HandlevVisibility property is set to callback or
off, its handle does not show up in the bar Children property unless you set
the root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping {on} | off

Clipping mode. MATLAB clips bar graphs to the axes plot box by default. If you
set Clipping to off, bars may be displayed outside the axes plot box.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a barseries object. You must
specify the callback during the creation of the object. For example,

bar(y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other barseries properties.
Setting this property on an existing barseries object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
barseries object is deleted (e.g., this might happen when you issue a delete
command on the barseries object, its parent axes, or the figure containing it).
MATLAB executes the callback before destroying the object’s properties so the
callback routine can query these values.

Barseries Properties

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.
DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any barseries objects appearing in these legends.

EdgeColor {[0 0 0]} | none | ColorSpec

Color of the edge of the bars. You can set the color of the edge of the bars to a
three-element RGB vector or one of the MATLAB predefined names, including
the string none. The default edge color is black. See ColorSpec for more
information on specifying color.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase bar child objects (the patch object used to construct the bar plot).
Alternative erase modes are useful for creating animated sequences, where
control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

¢ xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if

2-195

Barseries Properties

2-196

the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR operation on
a pixel color with that of the pixel behind it) and ignore three-dimensional
sorting to obtain greater rendering speed. However, these techniques are not
applied to the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

FaceColor {flat} | none | ColorSpec
Color of filled areas. This property can be any of the following:

® ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for all filled areas. See ColorSpec for more
information on specifying color.

® none — Do not draw faces. Note that EdgeColor is drawn independently of
FaceColor.

¢ flat — The color of the filled areas is determined by the figure colormap. See
colormap for information on setting the colormap.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the barseries object.

Barseries Properties

¢ on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

e of f — SettingHandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, cl1f,
and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the barseries object can
become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the objects that

2-197

Barseries Properties

2-198

compose the bar graph. If HitTest is off, clicking the barseries object selects
the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select barseries object on bars or area of extent. This property enables you to
select barseries objects in two ways:

® Select by clicking bars (default).
¢ Select by clicking anywhere in the extent of the bar graph.

When HitTestAreais of f, you must click the bars to select the barseries object.
When HitTestArea is on, you can select the barseries object by clicking
anywhere within the extent of the bar graph (i.e., anywhere within a rectangle
that encloses all the bars).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a barseries object callback can be interrupted by callbacks invoked
subsequently.

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a bar property. Note that MATLAB does not
save the state of variables or the display (e.g., the handle returned by the gca
or gcf command) when an interruption occurs.

LineStyle {-} | -——1:1] -] none

Line style. This property specifies the line style used for the bar edges.
Available line styles are shown in the following table.

Symbol Line Style

- Solid line (default)
-—— Dashed line
Dotted line

Barseries Properties

Symbol Line Style

-. Dash-dot line

none No line

LineWidth scalar

The width of the bar edges. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Parent axes handle

Parent of barseries object. This property contains the handle of the barseries
object’s parent object. The parent of a barseries object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the barseries object is
selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is of f, MATLAB does not draw the
handles.

ShowBaselLine {on} | off

Turn baseline display on or off. This property determines whether bar plots
display a baseline from which the bars are drawn. By default, the baseline is
displayed.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need

2-199

Barseries Properties

2-200

to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create a barseries object and set the Tag property:
t = bar(Y,'Tag', 'bar1')

When you want to access the barseries object, you can use findobj to find the
barseries object’s handle. The following statement changes the FaceColor
property of the object whose Tag is bari.

set(findobj('Tag', 'bart1'), 'FaceColor', 'red"')
Type string (read only)
Type of graphics object. This property contains a string that identifies the class
of the graphics object. For barseries objects, Type is hggroup.
The following statement finds all the hggroup objects in the current axes.
t = findobj(gca, 'Type', "hggroup');
UIContextMenu handle of a uicontextmenu object

Associate a context menu with the barseries object. Assign this property the
handle of a uicontextmenu object created in the barseries object’s parent figure.
Use the uicontextmenu function to create the context menu. MATLAB displays
the context menu whenever you right-click over the area object.

UserData array

User-specified data. This property can be any data you want to associate with
the barseries object (including cell arrays and structures). The barseries object
does not set values for this property, but you can access it using the set and
get functions.

Visible {on} | off

Visibility of barseries object and its children. By default, barseries object
visibility is on. This means all children of the barseries object are visible unless
the child object’s Visible property is set to off. Setting a barseries object’s
Visible property to off also makes its children invisible.

XData array

Location of bars. The x-axis intervals for the vertical bars or y-axis intervals for
horizontal bars (as specified by the x input argument). If YData is a vector,

Barseries Properties

XData must be the same size. If YData is a matrix, the length of XData must be
equal to the number of rows in YData.
XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the x input argument), MATLAB sets this
property to manual.

If you set XDataMode to auto after having specified XData, MATLAB resets the
bar locations and x-tick labels (y-tick labels for horizontal bars) to the indices
of the YData.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

YData scalar, vector, or matrix

Bar plot data. YData contains the data plotted as bars (the Y input argument).
Each value in YData is represented by a bar in the bar graph. If YData is a
matrix, the bar function creates a “group” or a “stack” of bars for each column
in the matrix. See “Bar Graph Options” for examples of grouped and stacked
bar graphs.

The input argument Y in the bar function calling syntax assigns values to
YData.

2-201

Barseries Properties

2-202

YDataSource string (MATLAB variable)
Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

base2dec

Purpose
Syntax

Description

Examples

See Also

Base to decimal number conversion

o
1

base2dec('strn',base)

d = base2dec('strn',base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If 'strn' is a character array, each row is interpreted as a string in the
specified base.

The expression base2dec('212',3) converts 2123 to decimal, returning 23.

dec2base

2-203

beep

Purpose

Syntax

Description

2-204

Produce a beep sound

beep
beep on
beep off
S = beep

beep produces your computer’s default beep sound.
beep on turns the beep on.
beep off turns the beep off.

s = beep returns the current beep mode (on or off).

besselh

Purpose

Syntax

Definitions

Description

Bessel function of the third kind (Hankel function)

H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)

[H,ierr] = besselh(...)
The differential equation

2dy dy 2 2
— 4z + - =
d22 z 7 (z"-v)y =0

where v is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. J,(z) and J_,(z) form a fundamental set of
solutions of Bessel’s equation for noninteger v. Y, (z) is a second solution of
Bessel’s equation — linearly independent of </, (z) — defined by

B J,(z)cos(vm) -, (2)

Yy(2) sin (v)

\

The relationship between the Hankel and Bessel functions is

HV) = J,(2)+ i Y, (2)
HP @) = J,(2)- i Y,(2)

where J|,(z) is besselj, and Y, (2) is bessely.

H = besselh(nu,K,Z) computes the Hankel function H\()K)(z) , where K= 1 or
2, for each element of the complex array Z. If nu and Z are arrays of the same
size, the result is also that size. If either input is a scalar, besselh expands it
to the other input's size. If one input is a row vector and the other is a column
vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) uses K=1.

H = besselh(nu,K,Z,1) scales H\(,K)(z) by exp(-i*Z) if K= 1, and by
exp(+i*Z) if K= 2.

2-205

besselh

[H,ierr] = besselh(...) alsoreturns completion flags in an array the same

size as H.
ierr Description
0 besselh successfully computed the Hankel function for this
element.
1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Examples This example generates the contour plots of the modulus and phase of the

Hankel function H 01 (z) shown on page 359 of [1] Abramowitz and Stegun,
Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

2-206

besselh

|

1.5
1/\
0.5r
////:/ - x\\\\
s NN
0 — Ny A/ I
[/ \ N h -
| | s ~
u /
_05 “ I
A\ /)
\ /)
\>—/,
A — -
S
/////A\ T~
///// R \\
-15 I g ~
-4 -3 -2 -1 0 1 2

then adds the contour plot of the phase of the same function.

contour(X,Y, (180/pi)*angle(H),-180:10:180); hold off

15

0.5

~0.5¢

-15
4

See Also besselj, bessely, besseli, besselk

2-207

besselh

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965.

2-208

besseli

Purpose

Syntax

Definitions

Description

Modified Bessel function of the first kind

I besseli(nu,Z)
I besseli(nu,zZ,1)
[I,ierr] = besseli(...)

The differential equation

2
d d
2d Y @Y (24 y2)y =
zdz—z+zd2 (z4+v4)y =0
where v is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

I,(z) and I ,(z) form a fundamental set of solutions of the modified Bessel’s
equation for noninteger v. I, (z) is defined by

I,(z) = (g)v i (%Z)k

E=0 BRI T(W+k+1)

where '(a) is the gamma function.

K, (z) is a second solution, independent of I,(z) . It can be computed using
besselk.

I = besseli(nu,Z) computes the modified Bessel function of the first kind,
I,,(z), for each element of the array Z. The order nu need not be an integer, but
must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

I = besseli(nu,Z,1) computes besseli(nu,Z).*exp(-abs(real(z))).

2-209

besseli

[I,ierr] = besseli(...) alsoreturns completion flags in an array the same

size as I.
ierr Description
0 besseli succesfully computed the modified Bessel function for
this element.
1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Examples Example 1.

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
0
0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

Example 2. besseli(3:9,(0:.2,10)"',1) generates the entire table on
page 423 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besseli functions uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [1].

See Also airy, besselh, besselj, besselk, bessely

2-210

besseli

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDS85-1018, May, 1985.

[1] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-211

besselj

Purpose

Syntax

Definition

Description

2-212

Bessel function of the first kind

J besselj(nu,Z)
J besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

The differential equation

2
2dy dy 2 2
— gz 4 - =
Zdz2 e (z"-vi)y =0

where v is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

J,(z) and J_,(z) form a fundamental set of solutions of Bessel’s equation for
noninteger v. J, (z) is defined by

&=y (=)
S0 TR

where I'(a) is the gamma function.

Y, (z) is a second solution of Bessel’s equation that is linearly independent of
J,(z) . It can be computed using bessely.

J = besselj(nu,Z) computes the Bessel function of the first kind, J,,(z), for
each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nuand Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

J = besselj(nu,Z,1) computes besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array the
same size as J.

besselj

Remarks

Examples

ierr Description

0 besselj succesfully computed the Bessel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind,

HY@) = J,(2)+ i Y, (2)
HP) = J,(2)- i Y,(2)

where H¥)(2) is besselh, J, (z) is besselj, and Y, (z) is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation
(see besselh).

Example 1.

format long
z = (0:0.2:1)';

besselj(1,2z)

ans =
0
0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

2-213

besselj

Algorithm

See Also

References

2-214

Example 2. besselj(3:9,(0:.2:10) ') generates the entire table on page 398
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

The besselj function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

besselh, besseli, besselk, bessely

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselk

Purpose

Syntax

Definitions

Description

Modified Bessel function of the second kind

K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

The differential equation

2
d d
24y L&Y (,242)y =
Zdzz z 5 (z4+v4)y =0

where v is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

A solution K,,(z) of the second kind can be expressed as

Crmy L)L)
KV(Z)_(E) sin (v

where I,(z) and I ,(z) form a fundamental set of solutions of the modified
Bessel’s equation for noninteger v

L@ - (2) s @;)k

2 _—
k=0 Rl T(Vv+tk+1)

and '(a) is the gamma function. K|,(z) is independent of I, (2).

I,,(z) can be computed using besseli.

K = besselk(nu,Z) computes the modified Bessel function of the second kind,
K (z), for each element of the array Z. The order nu need not be an integer, but
must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

2-215

besselk

Examples

Algorithm

2-216

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) alsoreturns completion flags in an array the same
size as K.

ierr Description

0 besselk succesfully computed the modified Bessel function for
this element.

1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Example 1.

format long
z = (0:0.2:1)';

besselk(1,2z)

ans =
Inf
4.,77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

Example 2. besselk(3:9,(0:.2:10)"',1) generates part of the table on
page 424 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

The besselk function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

besselk
|

See Also airy, besselh, besseli, besselj, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDS85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-217

bessely

Purpose

Syntax

Definition

Description

2-218

Bessel functions of the second kind

Y bessely(nu,Z)
Y bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

The differential equation

2
2dy dy 2 2
— gz 4 - =
Zdz2 e (z"-vi)y =0

where v is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.
A solution Y| (2) of the second kind can be expressed as

J,(z)cos(vm) —J_,,(2)

Yy(2) = sin (VT

where J|,(z) and J_,(z) form a fundamental set of solutions of Bessel’s
equation for noninteger v

k
v 2 _Z
J,(2) = @ 3 (D
k=0 Rl T(V+k+1)
and '(a) is the gamma function. Y, (2) is linearly independent of /, (2)
J,(z) can be computed using besselj.
Y = bessely(nu,Z) computes Bessel functions of the second kind, Y, (z), for

each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z,1) computes bessely(nu,Z).*exp(-abs(imag(Z))).

bessely
|

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array the
same size as Y.

ierr Description
0 bessely succesfully computed the Bessel function for this
element.
1 Illegal arguments.
2 Overflow. Returns Inf.
3 Some loss of accuracy in argument reduction.
4 Unacceptable loss of accuracy, Z or nu too large.
5 No convergence. Returns NaN.
Remarks The Bessel functions are related to the Hankel functions, also called Bessel

functions of the third kind,
BV = J,e)+ i Y.
v (2) =dJ,(2) 1 i Y (2)
2 .
HP(2) = J,(2)- i Y, (2)
where H\(,K)(z) is besselh, J,,(z) is besselj, and Y, (z) is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation

(see besselh).

Examples Example 1.
format long
z = (0:0.2:1)';
bessely(1,2z)

ans =
-Inf
-3.32382498811185
-1.78087204427005

2-219

bessely

Algorithm

See Also

References

2-220

-1.26039134717739
-0.97814417668336
-0.78121282130029

Example 2. bessely(3:9,(0:.2:10) ') generates the entire table on page 399
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

The bessely function uses a Fortran MEX-file to call a library developed by
D. E Amos [3] [4].

besselh, besseli, besselj, besselk

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[38] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex

Argument and Nonnegative Order,” Sandia National Laboratory Report,
SANDS85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

beta

Purpose
Syntax

Definition

Description

Examples

Beta function
B = beta(zZ,W)
The beta function is

C(2)l(w)

1
B(z,w) = jo R)

where ' (z) is the gamma function.

B = beta(Z,W) computes the beta function for corresponding elements of
arrays Z and W. The arrays must be real and nonnegative. They must be the
same size, or either can be scalar.

In this example, which uses integer arguments,

beta(n,3)
= (n-1)!*21/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to recover
the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252
1/360
1/495
1/660

2-221

beta

Algoriihm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

2-222

betainc

Purpose
Syntax

Definition

Description

Examples

See Also

Incomplete beta function
I = betainc(X,Z,W)
The incomplete beta function is

I.(z,w) = B(; w)foxt21(1t)W1 dt

where B(z, w), the beta function, is defined as

1
_ _ - - FE@rw)
= 1 1 = L))
B(z, w) IO 2 l(1—¢)w-1dt o w)
and I (z) is the gamma function.

I = betainc(X,Z,W) computes the incomplete beta function for corresponding
elements of the arrays X, Z and W. The elements of X must be in the closed
interval [0,1]. The arrays Z and W must be nonnegative and real. All arrays
must be the same size, or any of them can be scalar.

format long
betainc(.5,(0:10)',3)

ans =

.00000000000000
.87500000000000
.68750000000000
.50000000000000
.34375000000000
.22656250000000
.14453125000000
.08984375000000
.05468750000000
.03271484375000
.01928710937500

[elelNelelNelNelNolNeNeo Mol

beta, betaln

2-223

betaln

Purpose
Syntax

Description

Examples

Algorithm

See Also

2-224

Logarithm of beta function

-
1l

betaln(Z,W)

L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large or very
small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or either
can be scalar.

x = 510
betaln(x,x)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x) directly
would underflow (or be denormal).

betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

beta, betainc, gammaln

bicg

Purpose

Syntax

Description

BiConjugate Gradients method

= bicg(A,b)
bng(A b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
bicg(afun,b,tol,maxit,mfun1,mfun2,x0,p1,p2,...)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

= bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x and afun(x, 'transp') returns A' *x.

If bicg converges, it displays a message to that effect. If bicg fails to converge
after the maximum number of iterations or halts for any reason, it prints a
warning message that includes the relative residual norm(b-A*x) /norm(b)
and the iteration number at which the method stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tolis [], then bicg
uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system

inv(M)*A*x = inv(M)*b for x. IfMis [] then bicg applies no preconditioner.
M can be a function mfun such that mfun(x) returns M\x and mfun(x, 'transp')
returns M' \x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0is [], then
bicg uses the default, an all-zero vector.

2-225

bicg

Examples

2-226

bicg(afun,b,tol,maxit,mi1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2, ... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,..., 'transp'), and similarly to the preconditioner functions

mifun and m2fun.

[x,flag] = bicg(A,b,...) also returns a convergence flag.
Flag Convergence
0 bicg converged to the desired tolerance tol within maxit
iterations.
1 bicg iterated maxit times but did not converge.
2 Preconditioner M was ill-conditioned.
3 bicg stagnated. (Two consecutive iterates were the same.)
4 One of the scalar quantities calculated during bicg became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x) /norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration number
at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) alsoreturns a vector of the
residual norms at each iteration including norm(b-A*x0).

Example 1.

n = 100;

on = ones(n,1);

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

tol = 1e-8;

bicg

maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 spdiags([4*on -on],0:1,n,n);

X = bicg(A,b,tol,maxit,M1,M2,[]);
displays this message

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)

if (nargin > 2) & strcmp(transp_flag, 'transp')
y =4 *x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

end

as input to bicg.
x1 = bicg(@afun,b,tol,maxit,M1,M2,[],n);
Example 2. This examples demonstrates the use of a preconditioner. Start

with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
You can accurately solve A*x = b using backslash since A is not so large.
X = A\ b;
norm(b-A*x) / norm(b)

ans =
8.3154e-017

2-227

bicg

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)
flag =
relres =

iter =
0

The value of flag indicates that bicg iterated the default 20 times without
converging. The value of iter shows that the method behaved so badly that the
initial all-zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b-A*x)/norm(b)=norm(b)/norm(b) =1.
You can confirm that the unpreconditioned method oscillates rather wildly by
plotting the relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-0")
xlabel('Iteration Number')
ylabel('Relative Residual')

Relative Residual

L
10 15 20
Iteration Number

2-228

bicg

Now, try an incomplete LU factorization with a drop tolerance of 1e-5 for the
preconditioner.

[L1,U1] = luinc(A,1e-5);

Warning: Incomplete upper triangular factor has 1 zero diagonal.
It cannot be used as a preconditioner for an iterative
method.

nnz(A), nnz(L1), nnz(U1)

ans =

1887
ans =

5562
ans =

4320

The zero on the main diagonal of the upper triangular U1 indicates that U1 is
singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =

2
relres =

1
iter =

0
resvec =

7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 using backslash. bicg is forced to return
the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

2-229

bicg

nnz(L2), nnz(U2)

ans
6231

ans
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =

0
relres =

2.8664e-016
iter =

8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation to the
original matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.

2-230

bicg

See Also

References

10°

—
ov

relative residual

i
o
iy
S
T

-15|

10

iteration number

bicgstab, cgs, gmres, 1sqr, luinc, minres, pcg, gmr, symmlq

@ (function handle), \ (backslash)

[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

2-231

bicgstab

Purpose

Syntax

Description

2-232

BiConjugate Gradients Stabilized method

X = bicgstab(A,b)

bicgstab(A,b,tol)

bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = bicgstab(A,b,...)

[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

X = bicgstab(A,b) attempts to solve the system of linear equations A*x=b for
x. The n-by-n coefficient matrix A must be square and should be large and
sparse. The column vector b must have length n. A can be a function afun such
that afun(x) returns A*x.

If bicgstab converges, a message to that effect is displayed. If bicgstab fails
to converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tolis [], then
bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If Mis [] then bicgstab applies no
preconditioner. M can be a function that returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0is [1],
then bicgstab uses the default, an all zero vector.

bicgstab

Example

bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters p1,p2, ... tofunctions afun(x,p1,p2,...),mifun(x,pl,p2,...),
and m2fun(x,p1,p2,...).

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.
Flag Convergence
0 bicgstab converged to the desired tolerance tol within

maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicgstab

became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit. iter canbean
integer + 0.5, indicating convergence half way through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns a vector
of the residual norms at each half iteration, including norm(b-A*x0).

Example 1. This example first solves Ax = b by providing A and the
preconditioner M1 directly as arguments. It then solves the same system using
functions that return A and the preconditioner.

A = gallery('wilk',21);
b sum(A,2);

2-233

bicgstab

2-234

tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

X = bicgstab(A,b,tol,maxit,M1,[]1,[]1);
displays this message

bicgstab converged at iteration 12.5 to a solution with relative
residual 2.9e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)

y = [0;
x(1:n-1)1 + [((n-1)/2:-1:0)";
(1:(n-1)/2)"1 .*x + [x(2:n);
01;

and this preconditioner backsolve function

function y = mfun(r,n)

y=r ./ [((n-1)/2:-1:1)"; 1; (1:(n-1)/2)"'];
as inputs to bicgstab

x1 = bicgstab(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept bicgstab's extra input n=21.

Example 2. This examples demonstrates the use of a preconditioner. Start
with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

bicgstab

flag1 is 2 because the upper triangular U1 has a zero on its diagonal. This
causes bicgstab to fail in the first iteration when it tries to solve a system such
as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016 (the
value of relres?2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance of
1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can
follow the progress of bicgstab by plotting the relative residuals at the halfway
point and end of each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

10

107

107

relative residual

1070

10720

10

107% I I

iteration number

2-235

bicgstab

See Also

References

2-236

bicg, cgs, gmres, 1sqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

bin2dec

Purpose
Syntax

Description

Examples

See Also

Binary to decimal number conversion
bin2dec(binarystr)
bin2dec(binarystr) interprets the binary string binarystr and returns the

equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Binary 010111 converts to decimal 23:

bin2dec('010111")
ans =
23
Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =
23

dec2bin

2-237

binary (ftp)
|

Purpose
Syntax

Description

Examples

2-238

Set FTP transfer type to binary.
binary(f)

binary(f) sets the FTP download and upload mode to binary, which does not
convert new lines, where f was created using ftp. Use this function when
downloading or uploading any nontext file, such as an executable or ZIP
archive.

Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp function
to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /
mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the disp
function to display the FTP object.

binary (tmw)

disp(tmw)

FTP Object
host: ftp.mathworks.com
user: anonymous

bitand
|

Purpose Bitwise AND

Syntax

(]
1

bitand(A, B)

Description C = bitand(A, B) returns the bitwise AND of two unsigned integer
arguments A and B.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bitwise AND on these numbers yields 01001,
or 9:

C = bitand(uint8(13), uint8(27))
C =
9

Example 2
Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);

B = uint8([0 0; 1 1]);
TT = bitand(A, B)
TT =
0 0
0 1
See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-239

bitcmp

Purpose
Syntax

Description

Example

See Also

2-240

Complement bits

C

bitcmp (A, n)

C = bitcmp(A, n) returns the bitwise complement of A as an n-bit unsigned
integer.

The value assigned to A may not have any bits set higher than n, (that is, its
value may not be greater than 2~n-1). If n is the number of bits in the unsigned
integer class of A (for example, if A is a uint32 and n is 32) then the value of A
may be between 0 and intmax(class(A)).

Example 1
With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).

C = bitcmp(uint8(99), 8)
C =
156

Example 2
find the complement of 255 (hexadecimal FF):

a = uinti16(intmax('uint8'));
bitcmp(a, 8)
ans =

0

bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitget

Purpose
Syntax

Description

Example

See Also

Get bit

(]
1

bitget (A, bit)

C = bitget(A, bit) returns the value of the bit at position bit in A. Operand
A must be an unsigned integer, and bit must be a number between 1 and the
number of bits in the unsigned integer class of A (e.g., 32 for the uint32 class).

Example 1

The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))

1101
C = bitget(uint8(13), 4:-1:1)
C =
1 1 0 1
Example 2

Prove that intmax sets all the bits to 1:

a = intmax('uint8');

if all(bitget(a, 1:8))
disp('All the bits have value 1.')
end

All the bits have value 1.

bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-241

bitmax

Purpose Maximum floating-point integer
Syntax bitmax
Description bitmax returns the maximum unsigned double-precision floating-point integer

for your computer. It is the value when all bits are set, namely the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the largest
32 bit unsigned integer:

format long e

bitmax

ans =
9.007199254740991e+015

intmax('uint32"')
ans =
4294967295

format hex

bitmax

ans =
433FFFfFffffffff

intmax('uint32"')
ans =
ffffffff

In the second bitmax statement, the last 13 hex digits of bitmax are f,
corresponding to 52 1's (all 1's) in the mantissa of the binary representation.
The first 3 hex digits correspond to the sign bit 0 and the 11 bit biased exponent
10000110011 in binary (1075 in decimal), and the actual exponent is
(1075-1023) = 52. Thus the binary value of bitmaxis 1.111...111 x 2°52 with
52 trailing 1's, or 2753-1.

2-242

bitmax

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-243

bitor

Purpose
Syntax

Description

Examples

See Also

2-244

Bitwise OR

o
1l

bitor(A, B)

C = bitor(A, B) returns the bitwise OR of two unsigned integer arguments A
and B.

Example 1
The five-bit binary representations of the integers 13 and 27 are 01101 and

11011, respectively. Performing a bitwise OR on these numbers yields 11111,
or 31.

C = bitor(uint8(13), uint8(27))
C =
31
Example 2

Create a truth table for a logical OR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TT = bitor(A, B)
T =

0 1

1 1

bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

bitset

Purpose

Syntax

Description

Examples

See Also

Set bit

(]
1

bitset (A, bit)
bitset (A, bit, v)

(]
1

C = bitset(A, bit) sets bit position bitin Ato 1 (on). Amust be an unsigned
integer and bit must be a number between 1 and the number of bits in the
unsigned integer class of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) setsthe bit at position bit tothe value v, which must
be either O or 1.

Example 1

Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25:

C = bitset(uint8(9), 5)
C =
25
Example 2

Repeatedly subtract powers of 2 from the largest uint32 value:

a = intmax('uint32"')

for k = 1:32
a = bitset(a, 32-k+1, 0)
end

bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

2-245

bitshift

Purpose

Syntax

Description

Examples

2-246

Bitwise shift

o
1l

bitshift (A, k)
bitshift(A, k, n)

o
1l

C = bitshift(A, k) returns the value of A shifted by k bits. Input argument
Ais usually an unsigned integer. Shifting by k is the same as multiplication by
27k. Negative values of k are allowed and this corresponds to shifting to the
right, or dividing by 2*ABS(k) and truncating to an integer.

If the shift causes C to overflow the number of bits in the unsigned integer class
of A, then the overflowing bits are dropped. If A is a double precision variable,
then its value must be an integer integer between 0 and BITMAX and overflow
happens after 53 bits.

C = bitshift(A, k, n) where A is double precision, causes any bits that
overflow n bits to be dropped. the value of n must be less than or equal to 53.

Instead of using bitshift(a, k, 8) or another power of 2 for n, consider using
bitshift(uint8(a), k) or the appropriate unsigned integer class for A.

Example 1
Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).

C = bitshift(12, 2)
C =
48

Example 2

Repeatedly shift the bits of an unsigned 16 bit value to the left until all the
nonzero bits overflow. Track the progress in binary:

a = intmax('uint16');

disp(sprintf(
"Initial uint16 value %5d is %16s in binary',
a, dec2bin(a)))

for k = 1:16
a = bitshift(a, 1);
disp(sprintf(

bitshift
|

'Shifted uint16 value %5d is %16s in binary',...
a, dec2bin(a)))
end

Repeat this experiment, this time using a double precision variable:

a = double(intmax('uint16'));

disp(sprintf(
"Initial double value %5d is %16s in binary',
a, dec2bin(a)))

for k = 1:16
a = bitshift(a, 1, 16);
disp(sprintf(

‘Shifted double value %5d is %16s in binary',...
a, dec2bin(a)))
end

Now notice the difference with letting the double precision variable overflow at
its default 53 bits. For brevity, shift by 3 each time:

a = double(intmax('uint16'));

disp(sprintf(
'"Initial double value %16.0f is %53s in binary',
a, dec2bin(a)))

for i = 1:18
a = bitshift(a, 3);
disp(sprintf(
'Shifted double value %16.0f is %53s in binary',...
a, dec2bin(a)))
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

2-247

bitxor

Purpose
Syntax

Description

Examples

See Also

2-248

Bitwise XOR

o
1l

bitxor (A, B)

C = bitxor(A, B) returns the bitwise XOR of the two arguments A and B.
Both A and B must be unsigned integers.

Example 1

The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bitwise XOR on these numbers yields 10110,
or 22.

C = bitxor(uint8(13), uint8(27))
C =
22

Example 2
Create a truth table for a logical XOR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);
TT = bitxor(A, B)
T =

0 1

1 0

bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

Purpose
Syntax
Description

Examples

See Also

A string of blanks
blanks(n)
blanks(n) is a string of n blanks.

blanks is useful with the display function. For example,

disp(['xxx"' blanks(20) 'yyy'l)
displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

clc, format, home

2-249

blkdiag

Purpose Construct a block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...), where a, b, c, d, ... are matrices, outputs a
block diagonal matrix of the form

a0000
06000
00c0O0
000d 0O
0000 ...

The input matrices do not have to be square, nor do they have to be of equal
size.

See Also diag, horzcat, vertcat

2-250

box

Purpose

Syntax

Description

Algorithm

See Also

Display axes border

box on

box off

box

box (axes_handle,...)

box on displays the boundary of the current axes.
box off does not display the boundary of the current axes.
box toggles the visible state of the current axes boundary.

box (axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

The box function sets the axes Box property to on or off.

axes, grid

“Axes Operations” for related functions

2-251

break

Purpose
Syntax

Description

Remarks

Examples

See Also

2-252

Terminate execution of a for loop or while loop
break

break terminates the execution of a for or while loop. Statements in the loop
that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control
passes to the statement that follows the end of that loop.

break is not defined outside a for or while loop. Use return in this context
instead.

The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.
fid = fopen('fft.m','r');
8 s
while ~feof(fid)
line = fgetl(fid);
if isempty(line), break, end
s = strvcat(s,line);
end
disp(s)

for, while, end, continue, return

brighten

Purpose

Syntax

Description

Examples

Algorithm

See Also

Brighten or darken colormap

brighten(beta)
brighten(h,beta)

newmap = brighten(beta)
newmap = brighten(cmap,beta)

brighten increases or decreases the color intensities in a colormap. The
modified colormap is brighter if 0 < beta < 1 and darkerif 1 < beta < 0.

brighten(beta) replaces the current colormap with a brighter or darker
colormap of essentially the same colors. brighten(beta), followed by
brighten(beta), where beta < 1, restores the original map.

brighten(h,beta) brightens all objects that are children of the figure having
the handle h.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version of the
colormap cmap without changing the display.

Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta .5; brighten(beta);

The values in the colormap are raised to the power of gamma, where gamma is

1-5, >0
)= 1
{m’ P=0

brighten has no effect on graphics objects defined with true color.

colormap, rgbplot
“Color Operations” for related functions

Altering Colormaps for more information

2-253

builtin

Purpose

Syntax

Description

Remarks

See Also

2-254

Execute built-in function from overloaded method

builtin(function, x1, ..., Xxn)
[yl, ..., yn] = builtin(function, x1, ..., Xxn)

builtin is used in methods that overload built-in functions to execute the
original built-in function. If function is a string containing the name of a
built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function at the
given arguments x1 throug xn. The function argument must be a string
containing a valid function name. function cannot be a function handle.

[yl, ..., yn] = builtin(function, x1, ..., xn) returns multiple
output arguments.

builtin(...) isthe same as feval(...)except thatit calls the original built-in
version of the function even if an overloaded one exists. (For this to work you

must never overload builtin.)

feval

bvp4c

Purpose

Syntax

Arguments

Solve boundary value problems (BVPs) for ordinary differential equations

sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
sol = bvp4c(odefun,bcfun,solinit,options,pi,p2...)

odefun A function that evaluates the differential equations f(x,y).Itcan
have the form

dydx = odefun(x,y)

dydx = odefun(x,y,p1,p2,...)

dydx = odefun(x,y,parameters)
(

dydx = odefun(x,y,parameters,pi,p2,...)

where x is a scalar corresponding to x, and y is a column vector
corresponding to y . parameters is a vector of unknown
parameters, and p1,p2, ... are known parameters. The output
dydx is a column vector.

bcfun A function that computes the residual in the boundary conditions.
For two-point boundary value conditions of the form
be(y(a),y(b)), bcfun can have the form

res = bcfun(ya,yb)

res = bcfun(ya,yb,pi,p2,...)
res = bcfun(ya,yb,parameters)
res = bcfun(ya,yb,parameters,pi1,p2,...)

where ya and yb are column vectors corresponding to y(a) and
y(b) . parameters is a vector of unknown parameters, and
p1,p2, ... are known parameters. The output res is a column
vector.

See “Multipoint Boundary Value Problems” on page 2-258 for a
description of befun for multipoint boundary value problems.

solinit A structure containing the initial guess for a solution. You create
solinit using the function bvpinit. solinit has the following
fields.

X Ordered nodes of the initial mesh. Boundary
conditions are imposed at ¢ = solinit.x (1) and
b =solinit.x(end).

2-255

bvpac

Description

2-256

y Initial guess for the solution such that
solinit.y(:,1i) is a guess for the solution at the
node solinit.x(1i).

parameters Optional. A vector that provides an initial guess for
unknown parameters.

The structure can have any name, but the fields must be named x,
y, and parameters. You can form solinit with the helper function
bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create using the
bvpset function. See bvpset for details.

p1,p2... Optional. Known parameters that the solver passes to odefun,
bcfun, and all the functions specified in options.

sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

y' = flx,y)

on the interval [a,b] subject to two-point boundary value conditions

be(y(a),y(0)) = 0

bvp4c can also solve multipoint boundary value problems. See “Multipoint
Boundary Value Problems” on page 2-258. You can use the function bvpinit to
specify the boundary points, which are stored in the input argument solinit.
See the reference page for bvpint for more information.

The bvp4c solver can also find unknown parameters p for problems of the form

y' = f(x,y,p)
0=bc(y(a),y(b),p)

where p corresponds to parameters. You provide bvp4c an initial guess for any
unknown parameters in solinit.parameters. The bvp4c solver returns the
final values of these unknown parameters in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first
derivative there. Use the function deval and the output sol of bvp4c to
evaluate the solution at specific points xint in the interval [a,b].

bvp4c

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c

sol.y Approximation to y(x) at the mesh points of sol.x

sol.yp Approximation to y'(x) at the mesh points of sol.x

sol.parameters Values returned by bvp4c for the unknown parameters,
if any

sol.solver 'bvp4c'

The structure sol can have any name, and bvp4c creates the fields x, vy, yp,
parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with default
integration properties replaced by the values in options, a structure created
with the bvpset function. See bvpset for details.

sol = bvp4c(odefun,bcfun,solinit,options,pi,p2...) passes constant
known parameters, p1, p2, ..., to odefun, bcfun, and all the functions the user
specifies in options. Use options = [] as a placeholder if no options are set.

at any point in [a,b]. If there are unknown parameters,

solinit = bvpinit(x, yinit, params) forms the initial guess solinit with
the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including problems
with unknown parameters p, of the form

y' = SW/x+f(x,y,p)
0 = bc(y(0),5(b),p)

The interval is required to be [0, 6] with b > 0. Often such problems arise when
computing a smooth solution of ODEs that result from partial differential
equations (PDEs) due to cylindrical or spherical symmetry. For singular
problems, you specify the (constant) matrix S as the value of the
'SingularTerm' option of bvpset, and odefun evaluates only flx, y, p). The

2-257

bvpac

2-258

boundary conditions must be consistent with the necessary condition
S 3(0) = 0 and the initial guess should satisfy this condition.

Multipoint Boundary Value Problems

bvp4c can solve multipoint boundary value problems where

a = ap<a;<ay<..<a,= b areboundary points in the interval [a, b] . The
points aq,a,...,a, ; represent interfaces that divide [a, b] into regions.
bvp4c enumerates the regions from left to right (from a to b), with indices
starting from 1. Inregion &, [a; .a;], bvp4c evaluates the derivative as

yp = odefun(x, y, k)
In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) isthe solution at the left boundary of [a; ;,a,]. Similarly,
yright(:, k) is the solution at the right boundary of region k. In particular,

yleft(:, 1) = y(a)
and
yright(:, end) = y(b)

For example, if there just one equation and the boundary points are 0 < 1 < 2,
to specify the boundary conditions

y(0) =4,y(1) = 4.5 on [0,1]
y(1) =5,y(1) = 5.5 on [1,2]
yleft and yright have the following values.

yleft = [4; 5];
yright = [4.5; 5.5];

The boundary condition function bcfun has the form

function res = bc(yleft, yright)

res = [yleft(1) - 4
yright(1) - 4.5
yleft(2) - 5

yright(2) - 5.5];

bvp4c

Examples

When you create an initial guess with
solinit = bvpinit(xinit, yinit),
use double entries in xinit for each interface point. See the reference page for

bvpinit for more information.

Ifyinit is a function, bvpinit callsy = yinit(x, k) to get an initial guess for
the solution at x in region k. In the solution structure sol returned by bpv4c,
sol.x has double entries for each interface point. The corresponding columns
of sol.y contain the left and right solution at the interface, respectively.

For an example of solving a three-point boundary value problem, enter

threebvp

Example 1. Boundary value problems can have multiple solutions and one
purpose of the initial guess is to indicate which solution you want. The second
order differential equation

y'+lyl =0

has exactly two solutions that satisfy the boundary conditions

y(0) =0
y(4) = -2

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first order ODEs

[

Y1 T Y2

o' = 1|

Here y; = y and y, = y'. This system has the required form

y' = flx,y)
be(y(a),y(b)) = 0

The function f and the boundary conditions b¢ are coded in MATLAB as
functions twoode and twobc.

2-259

bvpac

2-260

function dydx =
dydx = [y(2)
-abs(y(1))]1;

twoode (x,VY)

function res =
res = [ya(1)
yb(1) + 2];

twobc (ya,yb)

Form a guess structure consisting of an initial mesh of five equally spaced
points in [0,4] and a guess of constant values y(x) =1 and y4(x) =0 with the
command

solinit = bvpinit(linspace(0,4,5),[1 0]);
Now solve the problem with
sol = bvp4c(@twoode,@twobc,solinit);

Evaluate the numerical solution at 100 equally spaced points and plot y(x)
with

X linspace(0,4);
y deval(sol,x);
plot(x,y(1,:));

2.5

bvp4c

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]1);

25

1.5F J

0.5r J

Example 2. This boundary value problem involves an unknown parameter.
The task is to compute the fourth (¢ = 5) eigenvalue A of Mathieu's equation

y"'+(AN-2qgcos2x)y =0

Because the unknown parameter A is present, this second order differential
equation is subject to three boundary conditions

y'(0) =0
y'(m) =0
y(0) =1

It is convenient to use subfunctions to place all the functions required by bvp4c
in a single M-file.

function mat4bvp
lambda = 15;

solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@matd4bc,solinit);

2-261

bvpac

2-262

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);

Sxint = deval(sol,xint);

plot(xint,Sxint(1,:))

axis([0 pi -1 1.1])

title('Eigenfunction of Mathieu''s equation.')
xlabel('x")

ylabel('solution y')

q = 5;
dydx = [y(2)
-(lambda - 2*q*cos(2*x))*y(1) 1;
function res = mat4bc(ya,yb,lambda)
res = [ya(2)
yb(2)
ya(1)-1 1;

o°

function yinit = mat4init(x)
yinit = [co0s(4*Xx)
-4*sin(4*x) 1;

The differential equation (converted to a first order system) and the boundary
conditions are coded as subfunctions mat4ode and mat4bc, respectively.
Because unknown parameters are present, these functions must accept three
input arguments, even though some of the arguments are not used.

The guess structure solinit is formed with bvpinit. An initial guess for the
solution is supplied in the form of a function mat4init. We chose y = cos4x
because it satisfies the boundary conditions and has the correct qualitative
behavior (the correct number of sign changes). In the call to bvpinit, the third
argument (lambda = 15) provides an initial guess for the unknown parameter
A

bvp4c

Algorithms

See Also

References

After the problem is solved with bvp4c, the field sol.parameters returns the
value A = 17.097 , and the plot shows the eigenfunction associated with this
eigenvalue.

Eigenfunction of Mathieu’s equation.

solution y

bvp4c is a finite difference code that implements the three-stage Lobatto I11a
formula. This is a collocation formula and the collocation polynomial provides
a Cl-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh

selection and error control are based on the residual of the continuous solution.

@ (function_handle), bvpget, bvpinit, bvpset, deval

[1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary Value
Problems for Ordinary Differential Equations in MATLAB with bvp4c,”
available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

2-263

bvpget

Purpose

Syntax

Description

See Also

2-264

Extract properties from the options structure created with bvpset

val
val

bvpget (options, 'name')
bvpget (options, 'name',default)

val = bvpget(options, 'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = bvpget(options, 'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = bvpget(opts, 'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

bvp4c, bvpinit, bvpset, deval

bvpinit

Purpose

Syntax

Description

Form the initial guess for bvp4c

solinit = bvpinit(x,yinit)

solinit = bvpinit(x,yinit,parameters)

solinit = bvpinit(sol,[anew bnew])

solinit = bvpinit(sol,[anew bnew],parameters)

solinit = bvpinit(x,yinit) forms the initial guess for the boundary value

problem solver bvp4c.

x is a vector that specifies an initial mesh. If you want to solve the boundary
value problem (BVP) on [a, b], then specify x(1) as a and x(end) as b. The
function bvp4c adapts this mesh to the solution, so a guess like

x = linspace(a,b,10) often suffices. However, in difficult cases, you should
place mesh points where the solution changes rapidly. The entries of x must be
in

® Increasing order if a <b

® Decreasing order if a >b

For two-point boundary value problems, the entries of x must be distinct. That
is, if @ < b, the entries must satisfy x (1) < x(2) <...<x(end).If a >b, the
entries must satisfy x(1) > x(2) >... > x(end)

For multipoint boundary value problem, you can specify the points in [a, b] at
which the boundary conditions apply, other than the endpoints a and b, by
repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and 2, and the
repeated entry 1. In general, repeated entries represent boundary points
between regions in [a, b] . In the preceding example, the repeated entry 1
divides the interval [0,2] into two regions: [0,1] and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

® Vector — For each component of the solution, bvpinit replicates the
corresponding element of the vector as a constant guess across all mesh
points. That is, yinit (i) is a constant guess for the ith component
yinit(i,:) of the solution at all the mesh points in x.

2-265

bvpinit

2-266

® Function — For a given mesh point, the guess function must return a vector
whose elements are guesses for the corresponding components of the
solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as the
number of components in the solution. For example, if the guess function is
an M-file function, bvpinit calls

y(:,3) = @guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must be of the
form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function must
accept the input argument k, which is provided for flexibility in writing the
guess function. However, the function is not required to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the boundary value
problem involves unknown parameters. Use the vector parameters to provide
a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have any
name, but the fields must be named x, y, and parameters.

X Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i) a guess for
the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess for unknown
parameters.

solinit = bvpinit(x, yinit, parameters, p1, p2...) passes the
additional known parameters p1, p2,...to the guess function yinit as
yinit(x, p1, p2...) for two-point boundary value problems, or as
yinit(x, k, p1, p2) for multipoint boundary value problems. You can only
use known parameters pl, p2, ... when yinit is a function. When there are no
unknown parameters, pass in [] for parameters.

bvpinit

See Also

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on the interval
[anew bnew] from a solution sol on an interval [a, b] . The new interval must
be larger than the previous one, so either anew <= a < b <= bnew or

anew >= a > b >= bnew. The solution sol is extrapolated to the new interval.
If sol contains parameters, they are copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit as
described above, but uses parameters as a guess for unknown parameters in
solinit.

@ (function_handle), bvp4c, bvpget, bvpset, deval

2-267

bvpset

Purpose

Syntax

Description

BVP Properties

Create/alter boundary value problem (BVP) options structure

options = bvpset('namel',valuel, 'name2',value2,...)

options = bvpset(oldopts'namel’,valuel,...)

options = bvpset(oldopts,newopts)

bvpset

options = bvpset('namel',valuel, 'name2',value2,...) creates a

structure options in which the named properties have the specified values.
Any unspecified properties have default values. It is sufficient to type only the
leading characters that uniquely identify the property. Case is ignored for
property names.

options = bvpset(oldopts, 'namel',valuel,...) alters an existing options
structure oldopts.

options = bvpset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

bvpset with no input arguments displays all property names and their possible
values.

These properties are available.

Property Value Description
RelTol Positive scalar A relative tolerance that applies to all components of the
{1e-3) residual vector. The computed solution S(x) is the exact

solution of S'(x) = F(x, S(x)) +res(x) . On each
subinterval of the mesh, the residual res(x) satisfies

|| (res(i)/max(abs(F(i)),AbsTol(i)/RelTol))|| < RelTol

AbsTol Positive scalar or An absolue tolerance that applies to all components of the
vector {1e-6} residual vector. Elements of a vector of tolerances apply to

corresponding components of the residual vector.

2-268

bvpset

Property

Value

Description

Vectorized

SingularTerm

FJacobian

BCJacobian

on | {off}

Matrix

Function |
matrix | cell
array

Function |
cell array

Set on to inform bvp4c that you have coded the ODE
function F so that F([x1 x2 ...]1,[yl y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. Thatis, your ODE function
can pass to the solver a whole array of column vectors at
once. This allows the solver to reduce the number of
function evaluations, and may significantly reduce
solution time.

Singular term of singular BVPs.

Set to the constant matrix S for equations of the form
y' =S¥ +f(x,y.p)
x L L

that are posed on the interval [0, 5] where 6>0.

Analytic partial derivatives of ODEFUN.

For example, when solving y' = f(x,y), set this property
to @FJAC if DFDY = FJAC(X,Y) evaluates the Jacobian of f
with respect to y . If the problem involves unknown
parameters p, [DFDY,DFDP] = FJAC(X,Y,P) must also
return the partial derivative of f with respect to p . For
problems with constant partial derivatives, set this
property to the value of DFDY or to a cell array
{DFDY,DFDP}.

Analytic partial derivatives of BCFUN.

For example, for boundary conditions bc(ya,yb) = 0, set
this property to @CJAC if

[DBCDYA,DBCDYB] = BCJAC(YA,YB) evaluates the partial
derivatives of bc with respect to ya and to yb. If the
problem involves unknown parameters p , then
[DBCDYA,DBCDYB,DBCDP] = BCJAC(YA,YB,P) must also
return the partial derivative of b¢ with respect to p . For
problems with constant partial derivatives, set this
property to a cell array {DBCDYA,DBCDYB} or
{DBCDYA,DBCDYB,DBCDP}.

2-269

bvpset

Property Value Description
Nmax positive integer Maximum number of mesh points allowed.
{floor(1000/n)}
Stats on | {off} Display computational cost statistics.
See Also @ (function_handle), bvp4c, bvpget, bvpinit, deval

2-270

calendar

Purpose

Syntax

Description

Examples

See Also

2calendar
Calendar

calendar
calendar(d)
calendar(y,m)

calendar(...)

¢ = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

¢ = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

¢ = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.
The command
calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0
datenum

2-271

camdolly

Purpose

Syntax

Description

2-272

Move the camera position and target

camdolly
camdolly
camdolly
camdolly

dx,dy,dz)

dx,dy,dz, 'targetmode')

dx,dy,dz, 'targetmode', 'coordsys')
axes_handle,...)

—_~ o~ o~ o~

camdolly moves the camera position and the camera target by the specified
amounts.

camdolly (dx,dy,dz) moves the camera position and the camera target by the
specified amounts (see “Coordinate Systems”).

camdolly (dx,dy,dz, 'targetmode') The targetmode argument can take on
two values that determine how MATLAB moves the camera:

® movetarget (default) — Move both the camera and the target.

e fixtarget — Move only the camera.

camdolly(dx,dy,dz, 'targetmode', 'coordsys') The coordsys argumentcan
take on three values that determine how MATLAB interprets dx, dy, and dz:

Coordinate Systems

e camera (default) — Move in the camera’s coordinate system. dx moves
left/right, dy moves down/up, and dz moves along the viewing axis. The units
are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which pushes the
scene to the left edge of the box formed by the axes position rectangle. A
negative value moves the scene in the other direction. Setting dz to 0.5 moves
the camera to a position halfway between the camera position and the
camera target

® pixels — Interpret dx and dy as pixel offsets. dz is ignored.

® data — Interpret dx, dy, and dz as offsets in axes data coordinates.

camdolly (axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camdolly
operates on the current axes.

camdolly

Remarks camdolly sets the axes CameraPosition and CameraTarget properties, which
in turn causes the CameraPositionMode and CameraTargetMode properties to
be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of steps.

surf (peaks)

axis vis3d

t = 0:pi/20:2*pi;

dx = sin(t)./40;

dy = cos(t)./40;

for i = 1:1ength(t);
camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

See Defining Scenes with Camera Graphics for more information on camera
properties.

nnnnnnn

2-273

cameratoolbar

Purpose

Syntax

Description

2-274

Control camera toolbar programmatically

cameratoolbar
camreatoolbar('NoReset"')
cameratoolbar('SetMode' ,mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndScenelLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')

mode = cameratoolbar('GetMode')

paxis = cameratoolbar('GetCoordsys"')

vis = cameratoolbar('GetVisible')

h = cameratoolbar

cameratoolbar('Close')

cameratoolbar creates a new toolbar that enables interactive manipulation of
the axes camera and light when users drag the mouse on the figure window.
Several axes camera properties are set when the toolbar is initialized.

camreatoolbar('NoReset') creates the toolbar without setting any camera
properties.

cameratoolbar('SetMode' ,mode) sets the toolbar mode (depressed button).
mode can be: 'orbit', 'orbitscenelight’', 'pan', 'dollyhv', 'dollyfb’,
‘zoom', 'roll', 'nomode’.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of the
camera motion. coordsys can be: 'x', 'y', 'z', 'none"'.

cameratoolbar('Show') shows the toolbar on the current figure.
cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar

See Also

cameratoolbar('ResetCameraAndScenelLight') resets the current camera
and scenelight.

cameratoolbar('ResetCamera') resets the current camera.
cameratoolbar('ResetSceneLight') resets the current scenelight.
cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the toolbar (1 if
visible, 0 if not visible).

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

rotate3dd, zoom

2-275

camlight

Purpose

Syntax

Description

Remarks

2-276

Create or move a light object in camera coordinates

camlight headlight

camlight right

camlight left

camlight

camlight(az,el)
camlight(...'style')
camlight(light_handle,...)
light_handle = camlight(...)

camlight('headlight') creates a light at the camera position.
camlight('right') creates a light right and up from camera.
camlight('left') creates a light left and up from camera.
camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and elevation
(el) with respect to the camera position. The camera target is the center of
rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on two values:

® local (default) — The light is a point source that radiates from the location
in all directions.

e infinite — The light shines in parallel rays.
camlight(light_handle,...) uses the light specified in 1ight handle.

light _handle = camlight(...) returns the light’s handle.

camlight sets the light object Position and Style properties. A light created
with camlight will not track the camera. In order for the light to stay in a
constant position relative to the camera, you must call camlight whenever you
move the camera.

camlight

Examples This example creates a light positioned to the left of the camera and then
repositions the light each time the camera is moved:

surf (peaks)

axis vis3d

h = camlight('left');

for i = 1:20;
camorbit(10,0)
camlight(h, 'left')
drawnow;

end

See Also light, lightangle
“Lighting” for related functions

Lighting as a Visualization Tool for more information on using lights

2-277

camlookat

Purpose

Syntax

Description

Remarks

Examples

2-278

Position the camera to view an object or group of objects

camlookat(object_handles)
camlookat(axes_handle)
camlookat

camlookat (object handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat (axes_handle) views the objects that are children of the axes
identified by axes_handle.

camlookat views the objects that are in the current axes.

camlookat moves the camera position and camera target while preserving the
relative view direction and camera view angle. The object (or objects) being
viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object around
which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on

s2 = surf(x+3,y,z+3);

s3 = surf(x,y,z+6);

daspect([1 1 11)

view(30,10)

camproj perspective

camlookat(gca) % Compose the scene around the current axes
pause(2)

camlookat(s1) 9% Compose the scene around sphere s1
pause(2)

camlookat(s2) 9% Compose the scene around sphere s2
pause(2)

camlookat(s3) % Compose the scene around sphere s3
pause(2)

camlookat(gca)

camlookat

See Also campos, camtarget
“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-279

camorbit

Purpose

Syntax

Description

Examples

2-280

Rotate the camera position around the camera target

camorbit(dtheta,dphi)

camorbit(dtheta,dphi, ‘coordsys"')
camorbit(dtheta,dphi, 'coordsys', 'direction')
camorbit(axes_handle,...)

camorbit (dtheta,dphi) rotates the camera position around the camera target
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi, 'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

¢ data (default) — Rotate the camera around an axis defined by the camera
target and the direction (default is the positive z direction).

e camera — Rotate the camera about the point defined by the camera target.

camorbit(dtheta,dphi, 'coordsys', 'direction') Thedirectionargument,
in conjunction with the camera target, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
X, y, and z components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0],or [0 O 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camorbit
operates on the current axes.

Compare rotation in the two coordinate systems with these for loops. The first
rotates the camera horizontally about a line defined by the camera target point
and a direction that is parallel to the y-axis. Visualize this rotation as a cone
formed with the camera target at the apex and the camera position forming the
base:

surf (peaks)

axis vis3d

for i=1:36
camorbit (10,0, 'data',[0 1 0])
drawnow

camorbit

See Also

end

Rotation in the camera coordinate system orbits the camera around the axes
along a circle while keeping the center of a circle at the camera target.

surf (peaks)

axis vis3d

for i=1:36
camorbit (10,0, 'camera')
drawnow

end

axes, axis('vis3d'), camdolly, campan, camzoom, camroll
“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-281

campan

Purpose

Syntax

Description

See Also

2-282

Rotate the camera target around the camera position

campan(dtheta,dphi)

campan(dtheta,dphi, 'coordsys')
campan(dtheta,dphi, 'coordsys', 'direction')
campan(axes_handle,...)

campan(dtheta,dphi) rotates the camera target around the camera position
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi, 'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

¢ data (default) — Rotate the camera target around an axis defined by the
camera position and the direction (default is the positive z direction)

e camera — Rotate the camera about the point defined by the camera target.

campan(dtheta,dphi, 'coordsys', 'direction') The direction argument,
in conjunction with the camera position, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
X, y, and z components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0],or [0 O 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, campan
operates on the current axes.

axes, camdolly, camorbit, camtarget, camzoom, camroll

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

campos

Purpose

Syntax

Description

Remarks

Examples

Set or query the camera position

campos
campos([camera_position])
campos ('mode')
campos('auto'’

campos ('manual')

campos (axes_handle,...)

campos with no arguments returns the camera position in the current axes.

campos ([camera_position]) sets the position of the camera in the current
axes to the specified value. Specify the position as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the data units
of the axes.

campos ('mode ') returns the value of the camera position mode, which can be
either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.
campos ('manual') sets the camera position mode to manual.

campos (axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
campos operates on the current axes.

campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

This example moves the camera along the x-axis in a series of steps:

surf (peaks)

axis vis3d off

for x = —200:5:200
campos([x,5,10])
drawnow

end

2-283

campos

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-284

camproj

Purpose

Syntax

Description

Remarks

See Also

Set or query the projection type

camproj
camproj (projection_type)
camproj (axes_handle,...)

The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the current
axes.

camproj ('projection_type') sets the projection type in the current axes to
the specified value. Possible values for projection type are orthographic
and perspective.

camproj (axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camproj operates on the current axes.

camproj sets or queries values of the axes object Projection property.

campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-285

camroll

Purpose Rotate the camera about the view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis by the
amounts specified in dtheta (in degrees). The viewing axis is defined by the
line passing through the camera position and the camera target.

camroll(axes_handle,dtheta) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camroll
operates on the current axes.

Remarks camroll sets the axes CameraUpVector property and thereby also sets the
CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan
“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-286

camtarget

Purpose

Syntax

Description

Remarks

Examples

Set or query the location of the camera target

camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

The camera target is the location in the axes that the camera points to. The
camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target in the
current axes.

camtarget([camera_target]) sets the camera target in the current axes to
the specified value. Specify the target as a three-element vector containing the
x-, y-, and z-coordinates of the desired location in the data units of the axes.

camtarget('mode') returns the value of the camera target mode, which can be
either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.
camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. When you do not specify an axes handle,
camtarget operates on the current axes.

camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera target
at the center of the axes plot box.

This example moves the camera position and the camera target along the
x-axis in a series of steps:

surf (peaks) ;

2-287

camtarget

axis vis3d

xp = linspace(-150,40,50);

xt = linspace(25,50,50);

for i=1:50
campos ([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-288

camup

Purpose

Syntax

Description

Remarks

Set or query the camera up vector

camup
camup([up_vector])
camup ('mode ')
camup('auto')

camup('manual')

camup (axes_handle,...)

The camera up vector specifies the direction that is oriented up in the scene.

camup with no arguments returns the camera up vector setting in the current
axes.

camup ([up_vector]) sets the up vector in the current axes to the specified
value. Specify the up vector as x, y, and z components. See Remarks.

camup ('mode ') returns the current value of the camera up vector mode, which
can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This means
the z-axis points up.

camup ('manual') sets the camera up vector mode to manual. In manual mode,
MATLAB does not change the value of the camera up vector.

camup (axes_handle, ...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camup operates on the current axes.

camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point in the
axes coordinate system that forms the directed line segment PQ, where P is the
point (0,0,0) and Q is the specified x-, y-, and z-coordinates. This line always
points up. The length of the line PQ has no effect on the orientation of the
scene. This means a value of [0 0 1] produces the same results as [0 0 25].

2-289

camup

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-290

camva

Purpose

Syntax

Description

Remarks

Set or query the camera view angle

camva
camva(view_angle)
camva('mode')
camva('auto')

camva('manual')
camva(axes_handle,...)

The camera view angle determines the field of view of the camera. Larger
angles produce a smaller view of the scene. You can implement zooming by
changing the camera view angle.

camva with no arguments returns the camera view angle setting in the current
axes.

camva(view_angle) sets the view angle in the current axes to the specified
value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle mode,
which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.
camva('manual') sets the camera view angle mode to manual. See Remarks.

camva(axes_handle, ...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camva operates on the current axes.

camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the camera view
angle so that the scene fills the available space in the window. If you move the
camera to a different position, MATLAB changes the camera view angle to
maintain a view of the scene that fills the available area in the window.

2-291

camva

Examples

See Also

2-292

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the
window). This means setting the camera view angle to its current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section of the
axes reference page for more information.

This example creates two pushbuttons, one that zooms in and another that
zooms out.

uicontrol('Style', 'pushbutton’,...

‘String', 'Zoom In',...

'Position',[20 20 60 20],...

‘Callback','if camva <= 1;return;else;camva(camva-1);end');
uicontrol('Style', 'pushbutton’',...

‘String', 'Zoom Out',...

'Position',[100 20 60 20],...

‘Callback','if camva >= 179;return;else;camva(camva+i);end');

Now create a graph to zoom in and out on:

surf(peaks);
Note the range checking in the callback statements. This keeps the values for
the camera view angle in the range greater than zero and less than 180.
axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camzoom

Purpose

Syntax

Description

Remarks

See Also

Zoom in and out on a scene

camzoom(zoom_factor)
camzoom(axes_handle,...)

camzoom(zoom_factor) zooms in or out on the scene depending on the value
specified by zoom_factor. If zoom_factor is greater than 1, the scene appears
larger; if zoom_factor is greater than zero and less than 1, the scene appears
smaller.

camzoom(axes_handle, ...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camzoom
operates on the current axes.

camzoom sets the axes CameraViewAngle property, which in turn causes the
CameraViewAngleMode property to be set to manual. Note that setting the
CameraViewAngle property disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This may result in a change to the
aspect ratio of your graph. See the axes function for more information on this
behavior.

axes, camdolly, camorbit, campan, camroll, camva
“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

2-293

cart2pol

Purpose

Syntax

Description

Algorithm

See Also

2-294

Transform Cartesian coordinates to polar or cylindrical

[THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

[THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is

Y
A
P
z
S
> theta
» X
X
Two-Dimensional Mapping Three-Dimensional Mapping
theta = atan2(y,x) theta = atan2(y,x)
rho = sqrt(x.”2 + y."2) rho = sqrt(x.”2 + y."2)
z =1z

cart2sph, pol2cart, sph2cart

cart2sph

Purpose
Syntax

Description

Algorithm

See Also

Transform Cartesian coordinates to spherical

[THETA,PHI,R] = cart2sph(X,Y,Z)

[THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

theta = atan2(y,x)
phi = atan2(z, sqrt(x.”2 + y."2))
= sqrt(x."2+y."2+z.72)

cart2pol, pol2cart, sph2cart

2-295

case

Purpose

Description

Examples

See Also

2-296

Case switch
case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself followed by a case
expression and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).
The general form of the switch statement is

switch switch_expr
case case_expr

statement,...,statement
case {case_expri,case_expr2,case_expr3,...}
statement,...,statement
otherwise
statement,...,statement
end
switch

cast

Purpose
Syntax

Description

Example

See Also

Cast a variable to a different data type or class.

B

cast(A, newclass)

B = cast(A, newclass) casts A to class newclass. A must be convertible to
class newclass. newclass must be the name of one of the built in data types.

a = int8(5);
b cast(a, 'uint8');
class(b)

ans =

uint8

class

2-297

cat

Purpose

Syntax

Description

Remarks

Examples

See Also

2-298

Concatenate arrays

C
C

cat(dim,A,B)
cat(dim,A1,A2,A3,A4...)

C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4,...) concatenates all the input arrays (A1, A2, A3,
A4, and so on) along dim.

cat(2,A,B) is the same as [A,B], and cat(1,A,B) is the same as [A;B].
When used with comma-separated list syntax, cat(dim,C{:}) or

cat(dim,C.field) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Given

A = B =
1 2 5
3 4 7 8

(o]

concatenating along different dimensions produces
The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

num2cell

The special character []

catch

Purpose

Description

See Also

Begin catch block

The general form of a try statement is

try,
statement,
")
statement,
catch,
statement,
")
statement,
end

Normally, only the statements between the try and catch are executed.

However, if an error occurs during execution of any of the statements, the error
is captured into lasterr, and the statements between the catch and end are

executed. If an error occurs within the catch statements, execution stops

unless caught by another try...catch block. The error string produced by a

failed try block can be obtained with lasterr.

try, end, lasterr, eval, evalin

2-299

caxis

Purpose

Syntax

Description

Remarks

2-300

Color axis scaling

caxis([cmin cmax])
caxis auto

caxis manual
caxis(caxis)

vV = caxis
caxis(axes_handle,...)

caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping set to
scaled. It does not affect surfaces, patches, or images with true color CData or
with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and maximum
values. Data values less than cmin or greater than cmax map to cmin and cmax,
respectively. Values between cmin and cmax linearly map to the current
colormap.

caxis auto lets MATLAB compute the color limits automatically using the
minimum and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to —Inf map to the
minimum color. Faces or edges with color values set to NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the current
limits. This enables subsequent plots to use the same limits when hold is on.

v = caxis returns a two-element row vector containing the [cmin cmax]
currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle instead of
the current axes.

caxis changes the CLim and CLimMode properties of axes graphics objects.

How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure colormap
each time they render. CData values equal to or less than cmin map to the first

caxis

Examples

color value in the colormap, and CData values equal to or greater than cmax
map to the last color value in the colormap. MATLAB performs the following
linear transformation on the intermediate values (referred to as C below) to
map them to an entry in the colormap (whose length is m, and whose row index
is referred to as index below).

index = fix((C cmin)/(cmax cmin)n)+1

Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [-1 1]. Values of C near —1 are assigned the lowest
values in the colormap; values of C near 1 are assigned the highest values in
the colormap.

To map the top half of the surface to the highest value in the color table, use
caxis([—-1 01])

To use only the bottom half of the color table, enter
caxis([—-1 3])

which maps the lowest CData values to the bottom of the colormap, and the
highest values to the middle of the colormap (by specifying a cmax whose value
is equal to cmin plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to autoranging and you see all the colors in the surface.
In this case, entering

caxis

returns

[11]

2-301

caxis

2-302

Adjusting the color axis can be useful when using images with scaled color
data. For example, load the image data and colormap for Cape Cod,
Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map into the
workspace. Now display the image with CDataMapping set to scaled and install
the image’s colormap.

image (X, 'CDataMapping', 'scaled')
colormap(map)

MATLAB sets the color limits to span the range of the image data, which is 1
to 192:

caxis
ans =
1 192

The blue color of the ocean is the first color in the colormap and is mapped to
the lowest data value (1). You can effectively move sea level by changing the
lower color limit value. For example,

caxis

See Also

Caxis = [1 192] Caxis = [3192]

100 200 300 100 200 300

100 200 300 100 200 300

axes, axis, colormap, get, mesh, pcolor, set, surf
The CLim and CLimMode properties of axes graphics objects
The Colormap property of figure graphics objects

“Color Operations” for related functions

Axes Color Limits for more examples

2-303

cd

Purpose Change working directory
Graphical As an alternative to the cd function, use the current directory field in the
Interface MATLAB desktop toolbar.
Syntax cd
w = cd
cd('directory')
cd('..")

cd directoryorcd ..

Description cd displays the current working directory.
w = cd assigns the current working directory to w.

cd('directory') setsthe current working directory to directory. Use the full
pathname for directory. On UNIX platforms, the character ~ is interpreted as
the user’s root directory.

cd('.."') changes the current working directory to the directory above it.
cd directoryor cd .. is the unquoted form of the syntax.

Examples On UNIX
cd('/usr/local/matlab/toolbox/demos")

changes the current working directory to demos.
On Windows
cd('c:/toolbox/matlab/demos"')

changes the current working directory to demos. Then typing

cd ..

changes the current working directory to matlab.

See Also dir, fileparts, mfilename, path, pwd, what

2-304

cd (ftp)

Purpose

Syntax

Description

Examples

Change current directory on FTP server

cd(f)
cd(f, 'dirname')
cd(f,'..")

cd(f) Displays the current directory on the FTP server f, where f was created
using ftp.

cd(f,'dirname') Changes the current directory on the FTP server f to
dirname, where f was created using ftp. After running cd, the object f
remembers the current directory on the FTP server. You can then perform file
operations functions relative to f using the methods delete, dir, mget, mkdir,
mput, rename, and rmdir.

cd(f,"'..") changes the current directory on the FTP server f to the directory
above the current one.

Connect to the MathWorks FTP server.
tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

. incoming pickup
README matlab pub
README.incoming outgoing pubs

Change the current directory to pub.
cd(tmw, 'pub');

2-305

cd (ftp)

See Also

2-306

View the contents of pub.

dir(tmw)

INDEX
NEWFILES
admin
beta

dir (ftp), ftp

bin

books
compiler
conference

digest
doc
france
ftphelp

connections 1s-1R

contrib

mathworks

matweb.exe
ops
outgoing
patch
pentium
pressroom

proceedings

product-info

tech-support
temp
utilities

cdf2rdf

Purpose
Syntax

Description

Examples

Convert complex diagonal form to real block diagonal form

[V,D] = cdf2rdf(V,D)

If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex
pairs originally there. The eigenvectors are transformed so that

X = V*D/V

continues to hold. The individual columns of V are no longer eigenvectors, but
each pair of vectors associated with a 2-by-2 block in D spans the corresponding

invariant vectors.

The matrix
X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =
1.0000 -0.0191 - 0.4002i
0 0 - 0.64791
0 0.6479
D =
1.0000 0
0 4.0000 + 5.00001
0 0

-0.0191 + 0.4002i
0 + 0.6479i
0.6479

0
0
4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

2-307

cdf2rdf

V =
1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0
D =
1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000
Algorithm The real diagonal form for the eigenvalues is obtained from the complex form

using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-308

cdfepoch

Purpose
Syntax

Description

See Also

Construct a cdfepoch object for Common Data Format (CDF) export

E cdfepoch(date)

E = cdfepoch(date) constructs a cdfepoch object, where date is a valid string
(datestr), a number (datenum) representing a date, or a cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB cdfepoch
object simulates the CDFEPOCH data type in CDF files.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000. MATLAB
datenums are the number of days since 0-Jan-0000.

cdfinfo, cdfread, cdfwrite, datenum

2-309

cdfinfo

Purpose Return information about a CDF file
Syntax info = cdfinfo(file)
Descripl'ion info = cdfinfo(file) returns information about the Common Data Format
(CDF) file specified in the string file.
Note Because cdfinfo creates temporary files, the current working directory
must be writeable.
The return value, info, is a structure that contains the fields listed
alphabetically in the following table.
Field Description
FileModDate Text string indicating the date the file was last modified
Filename Text string specifying the name of the file
FileSettings Structure array containing library settings used to create the file
FileSize Double scalar specifying the size of the file, in bytes
Format Text string specifying the file format
FormatVersion Text string specifying the version of the CDF library used to create the
file
GlobalAttributes Structure array that contains one field for each global attribute. The
name of each field corresponds to the name of an attribute. The data in
each field, contained in a cell array, represents the entry values for
that attribute.
Subfiles Filenames containing the CDF file’s data, if it is a multifile CDF

2-310

cdfinfo

Field

Description

VariableAttributes

Variables

Structure array that contains one field for each variable attribute. The
name of each field corresponds to the name of an attribute. The data in
each field is contained in a n-by-2 cell array, where n is the number of
variables. The first column of this cell array contains the variable
names associated with the entries. The second column contains the
entry values.

N-by-6 cell array, where N is the number of variables, containing
information about the variables in the file. The columns present the
following information:

Column 1 Text string specifying name of variable

Column 2 Double array specifying the dimensions of the
variable, as returned by the size function

Column 3 Double scalar specifying the number of records
assigned for the variable

Column 4 Text sring specifying the data type of the variable,
as stored in the CDF file

Column 5 Text string specifying the record and dimension
variance settings for the variable. The single T or F
to the left of the slash designates whether values
vary by record. The zero or more T or F letters to the
right of the slash designate whether values vary at
each dimension. Here are some examples.

T/ (scalar variable
F/T (one-dimensional variable)
T/TFF (three-dimensional variable)

Column 6 Text string specifying the sparsity of the variable’s
records, with these possible values:

'"Full'
'Sparse (padded)'
'Sparse (nearest)'

2-311

cdfinfo

Note Attribute names returned by cdfinfo might not match the names of
the attributes in the CDF file exactly. Attribute names can contain characters
that are illegal in MATLAB field names. cdfinfo removes illegal characters
that appear at the beginning of attributes and replaces other illegal
characters with underscores ('_'). When cdfinfo modifies an attribute name,
it appends the attribute’s internal number to the end of the field name. For
example, the attribute name Variable%Attribute becomes

Variable_ Attribute_ 013.

Examples info
info

cdfinfo('example.cdf')

Filename: 'example.cdf'
FileModDate: '29-Jun-1995 05:51:58'
FileSize: 230513
Format: 'CDF'
FormatVersion: '2.4.8'
FileSettings: [1x1 struct]
Subfiles: {}
Variables: {7x6 cell}
GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

info.Variables

ans =
'L_gse' [1x2 double] [1] ‘char' '"F/T' 'Full'
'Status%sC1’ [1x2 double] [7493] 'uint8' 'T/T' 'Full'
'B_gse%C1'’ [1x2 double] [7493] 'single' 'T/T' 'Full'
'B_nsigma%C1' [1x2 double] [7493] ‘single' 'T/' '"Full’
See Also cdfread

2-312

cdfread

Purpose

Syntax

Description

Read data from a CDF file

data = cdfread(file)

data = cdfread(file, 'records', recnums, ...)

data = cdfread(file, 'variables', varnames, ...)
data = cdfread(file, 'slices', dimensionvalues, ...)
[data, info] = cdfread(file, ...)

data = cdfread(file) reads all the variables from each record of the
Common Data Format (CDF) file specified in the string file. The return value
datais a cell array in which each row contains a record and each column
represents a variable. See the Examples section for an illustration.

Note Because cdfread creates temporary files, the current working directory
must be writeable.

data = cdfread(file, 'records', recnums, ...) reads only those records
specified in the vector recnums. The record numbers are zero based. The return
value data is a cell array having length(recnums) number of rows and as
many columns as there are variables.

data = cdfread(file, 'variables', varnames, ...) reads only those
variables specified in the 1-by-N or N-by-1 cell array of strings varnames. The
return value datais returned in a cell array having length(varnames) number
of columns and a row for each record requested.

data = cdfread(file, 'slices', dimensionvalues, ...) reads specific
values from the records of one variable in the CDF file. The N-by-3 matrix
dimensionvalues indicates which records are to be read by specifying start,
interval, and count parameters for each of the N dimensions of the variable.
The start parameter is zero based.

The number of rows in dimensionvalues must be less than or equal to the
number of dimensions of the variable. Unspecified rows default to [0 1 N],
where N is the total number of values in a record. This causes cdfread to read
every value from those dimensions.

2-313

cdfread

Examples

See Also

2-314

Because you can read just one variable at a time, you must also include a
'variables' parameter with this syntax.

[data, info] = cdfread(file, ...) alsoreturns details about the CDF file
in the info structure.
Read all the data from the file.

data = cdfread('example.cdf');

Read just the data from variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in the second
dimension, the first and third values in the third dimension, and all values in
the remaining dimension of the variable 'multidimensional".

data = cdfread('example.cdf', 'Variable',
{'multidimensional'}, 'Slices', [0 1 1; 1 1 1; 02 2]);

This is similar to reading the whole variable into 'data' and then using the
MATLAB command

data{1}(1, 2, [1 31, :)

cdfinfo, cdfwrite, cdfepoch

cdfwrite

Purpose

Syntax

Description

Write data to a CDF file

cdfwrite(file, variablelist)

cdfwrite(..., 'PadValues', padvals)
cdfwrite(..., 'GlobalAttributes', gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(..., 'WriteMode', mode)
cdfwrite(..., 'Format', format)

cdfwrite(file,variablelist) writes out a Common Data Format (CDF) file,
specified in the string file. The variablelist argument is a cell array of
ordered pairs, each of which comprises a CDF variable name (a string) and the
corresponding CDF variable value. To write out multiple records for a variable,
put the values in a cell array where each element in the cell array represents
a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be writeable.

cdfwrite(..., 'PadvValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value. Pad
values are the default values associated with the variable when an
out-of-bounds record is accessed. Variable names that appear in padvals must
appear in variablelist.

cdfwrite(..., 'GlobalAttributes',gattrib) writes the structure gattrib
as global metadata for the CDF file. Each field of the structure is the name of
a global attribute. The value of each field contains the value of the attribute.
To write out multiple values for an attribute, put the values in a cell array
where each element in the cell array represents a record.

Note To specify a global attribute name that is illegal in MATLAB, create a
field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered

2-315

cdfwrite

Examples

2-316

pair consists of the name of the original attribute, as listed in the
GlobalAttributes structure, and the corresponding name of the attribute to
be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the structure
vattrib as variable metadata for the CDF. Each field of the struct is the name
of a variable attribute. The value of each field should be an M-by-2 cell array
where M is the number of variables with attributes. The first element in the
cell array should be the name of the variable and the second element should be
the value of the attribute for that variable.

Note To specify a variable attribute name that is illegal in MATLAB, create a
field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered
pair consists of the name of the original attribute, as listed in the
VariableAttributes struct, and the corresponding name of the attribute to be
written to the CDF file. If you are specifying a variable attribute of a CDF
variable that you are renaming, the name of the variable in the
VariableAttributes structure must be the same as the renamed variable.

cdfwrite(..., 'WriteMode',mode), where mode is either 'overwrite' or
‘append', indicates whether or not the specified variables should be appended
to the CDF file if the file already exists. By default, cdfwrite overwrites
existing variables and attributes.

cdfwrite(..., 'Format',format), where format is either 'multifile' or
‘singlefile’', indicates whether or not the data is written out as a multifile
CDF. In a multifile CDF, each variable is stored in a separate file with the
name *.vN, where N is the number of the variable that is written out to the
CDF. By default, cdfwrite writes out a single file CDF. When 'WriteMode' is
set to 'Append’', the 'Format' option is ignored, and the format of the
preexisting CDF is used.

Write out a file 'example.cdf' containing a variable 'Longitude’' with the
value [0:360].

cdfwrite

See Also

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for all
out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20},...
'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude' with the
value [0:360], and with a variable attribute of 'validmin' with the value 10.

varAttribStruct.validmin = {'longitude' [10]};
cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct',...
varAttribStruct);

cdfread, cdfinfo, cdfepoch

2-317

ceil

Purpose Round toward infinity

Syntax B = ceil(A)

Descripl'ion B = ceil(A) rounds the elements of A to the nearest integers greater than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a=1[-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.61i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.60001
ceil(a)
ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000
Columns 5 through 6
7.0000 3.0000 + 4.00001
See Also fix, floor, round

2-318

cell

Purpose

Syntax

Description

Examples

Create cell array

= cell(n)
= cell(m,n) or ¢ = cell([m n])
cell(m,n,p,...) or ¢ = cell([mnp ...])
= cell(size(A))
(

= cell(javaobj)

O O 0O o o
1

¢ = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

¢ = cell(m,n) orc = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

¢ = cell(m,n,p,...)orc = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,. .. must be scalars.

c = cell(size(A)) creates acell array the same size as A containing all empty
matrices.

¢ = cell(javaobj) converts a Java array or Java object javaobj into a
MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

This example creates a cell array that is the same size as another array, A

A = ones(2,2)
A =
1 1
1 1
c = cell(size(A))
C -

[1 []
[1 []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

2-319

cell

strArray = java_array('java.lang.String',3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) java.lang.String('three');

cellArray = cell(strArray)
cellArray
‘one’
"two'
"three'

See Also num2cell, ones, rand, randn, zeros

2-320

cell2mat

Purpose
Syntax

Description

Remarks

Examples

Convert cell array of matrices into single matrix

3
1

cell2mat(c)

m = cell2mat(c) converts a multidimensional cell array ¢ with contents of the
same data type into a single matrix, m. The contents of ¢ must be able to
concatenate into a hyperrectangle. Moreover, for each pair of neighboring cells,
the dimensions of the cells’ contents must match, excluding the dimension in
which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into a single
60-by-50 matrix:

cell2mat(c)
The dimensionality (or number of dimensions) of m will match the highest
dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or objects.

Combine the matrices in four cells of cell array C into the single matrix, M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}
C =
[1]
[2x1 double]

[1x3 double]
[2x3 double]

2-321

cell2mat

c{1,1} c{1,2}
ans = ans =
1 2 3
c{2,1} c{2,2}
ans = ans =
5 6 7
9 10 11
M = cell2mat(C)
M =
1 2 3 4
5 6 7 8

See Also mat2cell, num2cell

2-322

cell2struct

Purpose
Syntax

Description

Examples

Convert cell array to structure array

[72]
1

cell2struct(c,fields,dim)

s = cell2struct(c,fields,dim) creates a structure array s from the
information contained within cell array c.

The fields argument specifies field names for the structure array. fields can
be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used in creating
the structure array. The length of ¢ along the specified dimension must match
the number of fields named in fields. In other words, the following must be
true.

size(c,dim) == length(fields) % if fields is a cell array
size(c,dim) == size(fields,1) % if fields is a char array

The cell array c in this example contains information on trees. The three
columns of the array indicate the common name, genus, and average height of
a tree.

¢ = {'birch', 'betula',65; 'maple', 'acer',50}
c

'"birch' "betula’ [65]
'maple’ "acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3 cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =
name: 'birch'’ name: 'maple’
genus: 'betula’ genus: ‘'acer'
height: 65 height: 50

2-323

cell2struct

See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic field
names

2-324

celldisp
|

Purpose Display cell array contents.

Syntax celldisp(C)
celldisp(C,name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).
Example Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1}
1 2

C{2,1}
1 2
3 4

c{1,2}
Tony

C{2,2}
-5

C{1,3} =
3.0000+ 4.0000i

€c{2,3} =
abc

See Also cellplot

2-325

cellfun

Purpose

Syntax

Description

Limitations

Example

2-326

Apply a function to each element in a cell array

D = cellfun('fname',C)
D = cellfun('size',C,k)
D = cellfun('isclass',C,classname)

D = cellfun('fname',C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element
islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element
prodofsize Number of elements in the cell element

D = cellfun('size',C,k) returns the size along the kth dimension of each
element of C.

D = cellfun('isclass',C, 'classname') returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

If the cell array contains objects, cell1fun does not call overloaded versions of
the function fname.

Consider this 2-by-3 cell array:

C{1,1} = [1 2; 4 5];
c{1,2} ‘Name';

cellfun

C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;

C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun('isreal',C)
D =
1 1 1
0 1 1
len = cellfun('length',C)
len =
2 4 1
1 1 3
isdbl = cellfun('isclass',C, 'double')
isdbl =
1 0 1
1 1 1
See Also isempty, islogical, isreal, length, ndims, size

2-327

cellplot

Purpose

Syntax

Description

Limitations

Examples

2-328

Graphically display the structure of cell arrays

cellplot(c)
cellplot(c, 'legend')
handles = cellplot(...)

cellplot(c) displays afigure window that graphically represents the contents
of c. Filled rectangles represent elements of vectors and arrays, while scalars
and short text strings are displayed as text.

cellplot(c, 'legend') also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

The cellplot function can display only two-dimensional cell arrays.

Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = '2-by-2';

c{1,2} ‘eigenvalues of eye(2)';
c{2,1} eye(2);

c{2,2} = eig(eye(2));

The command cellplot(c) produces

cellstr

Purpose Create cell array of strings from character array
Syntax c = cellstr(S)
Description ¢ = cellstr(S) places each row of the character array S into separate cells of

c. Use the char function to convert back to a string matrix.

Examples Given the string matrix

S=['abc ';'defg';'hi ']

S =
abc
defg
hi
whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)
C =
‘abc’
"defg'’
Ihil
whos ¢
Name Size Bytes Class
c 3x1 294 cell array
See Also iscellstr, strings

2-329

cgs

Purpose

Syntax

Description

2-330

Conjugate Gradients Squared method

X = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)

cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
cgs(afun,b,tol,maxit,m1fun,m2fun,x0,pl1,p2,...)
[x,flag] = cgs(A,b,...)

[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

(

(
cgs(A,b,tol,maxit,M)

(

(

X = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x.

If cgs converges, a message to that effect is displayed. If cgs fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x) /norm(b) and
the iteration number at which the method stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tolis [], then cgs
uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations, maxit. If
maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system

inv(M)*A*x = inv(M)*b for x. If Mis [] then cgs applies no preconditioner. M
can be a function that returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is [], then
cgs uses the default, an all-zero vector.

cgs

cgs(afun,b,tol,maxit,mi1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2, ... to functions afun(x,p1,p2,...), mifun(x,p1,p2,...),and
m2fun(x,pl,p2,...)

[x,flag] = cgs(A,b,...) returns a solution x and a flag that describes the
convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during cgs became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x) /norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) alsoreturns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) alsoreturns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);

b = sum(A,2);

tol = 1e-12; maxit = 15;

M1 = diag([10:-1:1 1 1:10]);

X = cgs(A,b,tol,maxit,M1,[1,[]);

2-331

cgs

2-332

Alternatively, use this matrix-vector product function

function y = afun(x,n)
= [O'
X(1:n-1)1]
(1:(n-1)/2
01;

+ [((n-1)/2:-1:0) "3
)'] rxo+ [x(2:in)

and this preconditioner backsolve function

function y = mfun(r,n)
y=r ./ [((n-1)/2:-1:1)"; 1; (1:(n-1)/2)"]

as inputs to cgs.

x1 = cgs(@afun,b,tol,maxit,@mfun,[]1,[]1,21);

Note that both afun and mfun must accept cgs’s extra input n=21.
Example 2

load west0479

A = west0479

b = sum(A,2)
[x,flag] = cgs(A,b)

flagis 1 because cgs does not converge to the default tolerance 1e -6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flagl] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and cgs
fails in the first iteration when it tries to solve a system such as U1*y = r for
y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the value of
relres?2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of 1e-6.

resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2). You can follow the

cgs

progress of cgs by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0) with

semilogy(0O:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

10

10° - b

107 + b

107 - b

relative residual

1070 g

12

10 - b

1074E]

107% I I I I I I I

L
0 0.5 1 15 2 25 3 35 4 4.5 5
iteration number

See Also bicg, bicgstab, gmres, 1sqr, luinc, minres, pcg, qmr, symmlq
@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

2-333

char

Purpose

Syntax

Description

Remarks

Examples

2-334

Create character array (string)

S = char(X)
char(C)
S = char(t1,t2,t3...)

w
1l

S = char(X) converts the array X that contains positive integers representing
character codes into a MATLAB character array (the first 127 codes are
ASCII). The actual characters displayed depend on the character set encoding
for a given font. The result for any elements of X outside the range from 0 to
65535 is not defined (and can vary from platform to platform). Use double to
convert a character array into its numeric codes.

S = char(C), when Cis a cell array of strings, places each element of C into the
rows of the character array s. Use cellstr to convert back.

S = char(t1,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter, Ti, can itself be a character array.
This allows the creation of arbitrarily large character arrays. Empty strings
are significant.

Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix (rem(A,256)).

To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127,32,3)"')

ascii =

! #$%&' ()O+, -./0123456789:;<=>7
@ABCDEFGHIJKLMNOPQRSTUVWXYZT[\] " _
"abcdefghijklmnopgrstuvwxyz (]|}~

char

See Also cellstr, double, get, set, strings, strvcat, text

2-335

checkin

Purpose

Graphical
Interface

Syntax

Description

2-336

Check file into source control system

As an alternative to the checkin function, use Source Control Check In in the
Editor, Simulink, or Stateflow File menu.

checkin('filename', 'comments', 'string')

checkin({'filenamei','filename2','filename3d', ...}, 'comments',
'string')
checkin('filename', 'option', 'value', ...)

checkin('filename', 'comments', 'string') checks in the file named
filename to the source control system. Use the full pathname for the filename.
You must save the file before checking it in. The file can be open or closed when
you use checkin. The string argument is a MATLAB string containing
check-in comments for the source control system. You must supply the
comments argument and 'string’.

checkin({'filenamel1','filename2','filename3', ...}, 'comments’',
'string') checks in the files named filename1 through filenamen to the

source control system. Use the full pathnames for the files. Additional
arguments apply to all files checked in.

checkin('filename', 'option','value', ...) provides additional checkin
options. The option and value arguments are shown in the table below.

option Purpose value Argument
Argument
‘force' When set to on, filename is checked in ‘on'

even if the file has not changed since it ~ 'off' (default)
was checked out. The default value for
force is off.

‘lock' When set to on, filename remains ‘on'
checked out. Comments are submitted. 'off' (default)
The default value for lock is off.

You can check in a file that you checked out in a previous MATLAB session or
that you checked out directly from your source control system.

checkin

Examples

See Also

Check in a File with Comments

Typing
checkin('/matlab/mymfiles/clock.m', 'comments', 'Adjustment for
Y2K')

checks in the file /matlab/mymfiles/clock.m to the source control system with
the comment Adjustment for Y2K.

Check in Multiple Files with Comments
Typing

checkin({'/matlab/mymfiles/clock.m',
‘/matlab/mymfiles/calendar.m'}, 'comments', 'Adjustment for Y2K')

checks two files into the source control system using the same comment for
each.

Check a File in and Keep It Checked out
Typing

checkin('/matlab/mymfiles/clock.m', 'comments','Adjustment for
Y2K', 'lock','on")

checks the file /matlab/mymfiles/clock.m into the source control system and
keeps the file checked out.

checkout, cmopts, undocheckout

2-337

checkout

Purpose

Graphical
Interface

Syntax

Description

2-338

Check file out of source control system

As an alternative to the checkout function, use Source Control Check Out in
the Editor, Simulink, or Stateflow File menu.

checkout('filename')
checkout({'filenamet','filename2', ' 'filename3', ...})
checkout('filename', 'option', 'value', ...)

checkout('filename') checks out the file named filename from the source
control system. filename must be the full pathname for the file. The file can be
open or closed when you use checkout.

checkout({'filenamel', 'filename2','filename3', ...}) checks out the
files named filename1 through filenamen from the source control system. Use
the full pathnames for the files. Additional arguments apply to all files checked
out.

checkout('filename', 'option','value', ...) provides additional
checkout options. The option and value arguments are shown in the following
table.

checkout

Examples

option Purpose value
Argument Argument
'force' When set to on, the checkout is forced, ‘on'

even if you already have the file checked
out. This is effectively an undocheckout
followed by a checkout. When force is
set to of f, you can’t check out the file if
you already have it checked out.

'lock' When set to on, the checkout gets the file,
allows you to write to it, and locks the file
so that access to the file for others is read
only. When set to of f, the checkout gets a
read-only version of the file, allowing
another user to check out the file for
updating. With lock set to off, you don’t
have to check in a file after checking it
out.

'‘revision’ Checks out the specified revision of the
file.

‘off' (default)

‘on' (default)
'off!

‘version_num'

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or directly from your

source control system.

Check out a File
Typing
checkout('/matlab/mymfiles/clock.m')

checks out the file /matlab/mymfiles/clock.m from the source control system.

2-339

checkout

See Also

2-340

Check out Multiple Files
Typing

checkout({'/matlab/mymfiles/clock.m',...
'/matlab/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Force a Checkout, Even If File Is Already Checked out
Typing

checkout('/matlab/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.meven if clock.mis already checked out
to you.

Check out Specified Revision of File
Typing

checkout('/matlab/mymfiles/clock.m', 'revision','1.1")

checks out revision 1.1 of clock.m.

checkin, cmopts, undocheckout

chol

Purpose Cholesky factorization

Syntax R = chol(X)
[R,p] = chol(X)

Description The chol function uses only the diagonal and upper triangle of X. The lower

triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol(X), where X is positive definite produces an upper triangular R so
that R'*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order g = p-1sothatR'*R = X(1:q,1:q).

Examples The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n = 5;

X = pascal(n)

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R = chol(X)

R =
1 1 1 1 1
0o 1 2 3 4
0 0 1 3 6
o o o0 1 4
o o o0 0 1

2-341

chol

Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm Inputs of Type Double

For inputs of type double, chol uses the the LAPACK subroutines DPOTRF
(real) and ZPOTRF (complex).

Inputs of Type Single

For inputs of type single, chol uses the the LAPACK subroutines SPOTRF
(real) and CPOTRF (complex).

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

See Also cholinc, cholupdate

2-342

cholinc

Purpose

Syntax

Description

Sparse incomplete Cholesky and Cholesky-Infinity factorizations

R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0")

[R,p] = cholinc(X,'0")
R = cholinc(X, 'inf"')

cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization
michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entriesU(1i, j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i, j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,1).

Setting droptol = 0 produces the complete Cholesky factorization, which is
the default.

2-343

cholinc

Remarks

2-344

michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiagis either O or 1. Ifitis 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc (X, '0") produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R' *R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0"') with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size gq-by-n where q = p-1. In this latter case,
the sparsity pattern of R is that of the g-by-n upper triangle of X. R'*R agrees
with X over the sparsity pattern of its first q rows and first q columns.

R = cholinc (X, 'inf"') produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive semi-definite
so even negative pivots are replaced with a value of Inf.

The incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only

cholinc

Examples

gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Example 1.
Start with a symmetric positive definite matrix, S.
S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid('C',15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
oflevel 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);

RO = cholinc(S,'0");
S2 = §; S2(101,101) = O;

[R,p] = cholinc(S2,'0");

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1
D2

(RO'*R0O) . *spones(S) -S;
(R'*R) .*spones(S2)-S2;

D1 has elements of the order of eps, showing that RO' *R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100,:) and D2(:,1:100).

2-345

cholinc

s C=chol(S)
0 \ 0
20 \ 20

N

40 \\\\ 40
60 N 60
80 80
100 100
120 120
140 140

0 50 100 0 50 100

nz = 643 nz = 1557

RO=cholinc(S,0’) Partial factor [R,p]=cholinc(S2,'0")

0 \ 0
20
3\ \
20
40 \\ \\
60 40 \\
80 60
100
80
120
140 100
o 50 100 0 50 2= 290 100
nz =391 B
Example 2.

The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.
Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

cholinc(S,0) cholinc(S,1e-3)

20
40
60
80
100
120
0 50 100 1400 50 100
nz = 1557 nz=1211

cholinc(S,1e-2) cholinc(S,1e-1)

20 20
40 40
60 - 60
80 . 80
100 : 100
120 120

0 50 100 0 50 100
nz =671 nz =391

2-346

cholinc

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R'*R-S,1) /norm(S, 1) in the next figure.

Drop tolerance vs nnz(cholinc(S,droptol))
1500 T T

1000+

500

‘ ‘
10° 107 *

,
10°

Drop tolerance vs norm(R*R-S)/norm(S)
T T

Example 3.

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000
R3 = chol(H3)
R3 =
1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:
H20 = sparse(hilb(20));
[R,p] = chol(H20);

p:
14

2-347

cholinc

Limitations

Algorithm

2-348

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20, 'inf"');
In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
Inf

O OO OoOOoOo
O OO OO +HhOo
- O O O O O o

In

cholinc works on square sparse matrices only. For cholinc(X,'0') and
cholinc(X, 'inf'), X must be real.

R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the milu option takes the value of
the michol option.

R = cholinc(X, '0"') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc (X, 'inf") is based on the algorithm in Zhang [2].

cholinc

See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996. Chapter 10, “Preconditioning Techniques.”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics and
Statistics, University of Maryland Baltimore County, Technical Report
TR96-01

2-349

cholupdate

Purpose

Syntax

Description

Remarks

Example

2-350

Rank 1 update to Cholesky factorization

R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+")
R1 = cholupdate(R,x,"'-")

[R1,p] = cholupdate(R,x,"'-")

R1 = cholupdate(R,x) whereR = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x',
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1

cholupdate(R,x, '+"') is the same as R1 = cholupdate(R,Xx).

R1 cholupdate(R,x,"'-"') returns the Cholesky factor of A - x*x'. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,'-"') will notreturn an error message. If p is 0,
R1 is the Cholesky factor of A - x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

cholupdate works only for full matrices.

A = pascal(4)

A =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)

cholupdate

R =
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1
X =[0001]";

This is called a rank one update to A since rank (x*x') is 1:

A + x*x'

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can
use cholupdate:

R1
R1

cholupdate(R,Xx)

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:

A - x*x'

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 19

2-351

cholupdate

Algorithm

See Also

References

2-352

Compare chol with cholupdate:

R1 = chol(A-x*x")
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,"'-")
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

Xx = [0 0 0 1/sqrt(2)]"';
R1 = cholupdate(R,x,"'-")
R1 =
1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071

cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an O(N3) algorithm, while simply updating the existing factor in
this way is an O(N2) algorithm.

chol, qrupdate

[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, STAM, Philadelphia, 1979.

circshift

Purpose Shift array circularly

circshift (A,shiftsize)

Syntax B

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A, by
shiftsize elements. shiftsize is a vector of integer scalars where the n-th
element specifies the shift amount for the n-th dimension of array A. If an
element in shiftsize is positive, the values of A are shifted down (or to the
right). If it is negative, the values of A are shifted up (or to the left). If it is 0,
the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.
A=1[123;456; 78 9]
A =
1 2 3
4 5 6
7 8 9

B = circshift(A,1)

B =
7 8 9
1 2 3
4 5 6

Circularly shift first dimension values down by 1 and second dimension values
to the left by 1.

B = circshift(A,[1 -11);

B =
8 9 7
2 3 1
5 6 4
See Also fftshift, shiftdim

2-353

cla

Purpose

Syntax

Description

Remarks

See Also

2-354

Clear current axes

cla
cla reset

cla deletes from the current axes all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless of the
setting of their HandleVisibility property and resets all axes properties,
except Position and Units, to their default values.

The cla command behaves the same way when issued on the command line as
it does in callback routines — it does not recognize the HandlevVisibility
setting of callback. This means that when issued from within a callback
routine, cla deletes only those objects whose HandleVisibility property is set
to on.

clf, hold, newplot, reset

“Axes Operations” for related functions

clabel

Purpose

Syntax

Description

Contour plot elevation labels

clabel(C,h)
clabel(C,h,v)
clabel(C,h, 'manual')

clabel(C)
clabel(C,v)
clabel(C, 'manual’)

text_handles = clabel(...)
clabel(...,'PropertyName' ,propertyvalue,...)
clabel(...'LabelSpacing',points)

The clabel function adds height labels to a two-dimensional contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines. The
function inserts only those labels that fit within the contour, depending on the
size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in vector v,
then rotates the labels and inserts them in the contour lines.

clabel(C,h, 'manual') places contour labels at locations you select with a
mouse. Press the left mouse button (the mouse button on a single-button
mouse) or the space bar to label a contour at the closest location beneath the
center of the cursor. Press the Return key while the cursor is within the figure
window to terminate labeling. The labels are rotated and inserted in the
contour lines.

clabel(C) adds labels to the current contour plot using the contour array C
output from contour. The function labels all contours displayed and randomly
selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C, 'manual') places contour labels at locations you select with a
mouse.

2-355

clabel

Remarks

Examples

2-356

text _handles = clabel(...) returns the handles of text objects created by
clabel. The UserData properties of the text objects contain the contour values
displayed. If you call clabel without the h argument, text_handles also
contains the handles of line objects used to create the '+' symbols.

clabel(...,'PropertyName',propertyvalue,...) enables you to specify text
object property/value pairs for the label strings. (See text properties.)

clabel(...'LabelSpacing',points) specifies the spacing between labels on
the same contour line, in units of points (72 points equal one inch).

When the syntax includes the argument h, this function rotates the labels and
inserts them in the contour lines (see Examples). Otherwise, the labels are
displayed upright and a '+' indicates which contour line the label is
annotating.

Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(-2:.2:2);
z = x."exp(-x."2-y."2);
[C,h] = contour(x,y,z);
clabel(C,h);

clabel

0.5

-2

Label a contour plot with label spacing set to 72 points (one inch).

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h, 'LabelSpacing',72)

2-357

clabel

3
2 2
4
2 b 6 B
0 R P T
5 {
0 ~_ 6 ™

L 4 i

. 2 2

y ~2 . o °
/) 0 ~
or » g o _
. P N
Q
v 0 2
-1 9 2 o 2 — . 0 -
) AR
0 v/—(;\l
gdée
Q A8 K 0
-2 4 i B
o
,3 1 o 1 1 1 1

-3 -2 -1 0 1 2 3

Label a contour plot with 15 point red text.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h, 'FontSize',15, 'Color','r', 'Rotation',0)

2-358

clabel

|

2
2F 0 4 6 N
2 9 < 8
6 4
i 0 2)
_2 N\ 2
; f 0
or -2 i
T 2
2
0
= 2 0. —]
‘4\ -2 0
-4
-2k 5 4
. o
,3 1 1 1 Il Il
-3 -2 -1 0 1 2 3

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

2-359

clabel

2+ S J
e N
{ P £
A
1r- N
/ 9 ¢
{2
o . |
2
-1F — “ N
A 72 i
0 N -
,3 Il Il Il Il Il
-3 -2 -1 0 1 2 3
See Also contour, contourc, contourf

“Annotating Plots” for related functions

Drawing Text in a Box for an example that illustrates the use of contour labels

2-360

class

Purpose

Syntax

Description

Create object or return class of object

str = class
obj = class
obj = class
obj = class

Pty

object)

s, 'class_name')

s, 'class_name',parenti,parent2...)
struct([]), 'class_name',parenti,parent2...)

str = class(object) returns a string specifying the class of object.

The following table lists the object class names that can be returned. All except
the last one are MATLAB classes.

logical
char
int8
uint8
int16
uinti16
int32
uint32
int64
uint64
single
double
cell
struct
function handle

‘class_name'

Logical array of true and false values
Character array

8-bit signed integer array

8-bit unsigned integer array

16-bit signed integer array

16-bit unsigned integer array

32-bit signed integer array

32-bit unsigned integer array

64-bit signed integer array

64-bit unsigned integer array
Single-precision floating-point number array
Double-precision floating-point number array
Cell array

Structure array

Array of values for calling functions indirectly

Custom MATLAB object class or Java class

obj = class(s, 'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only in a

2-361

class

Examples

See Also

2-362

function named class_name.min a directory named @class_name (where
'‘class_name' is the same as the string passed in to class).

obj = class(s, 'class_name',parenti,parent2,...) creates an object of
MATLAB class 'class_name' that inherits the methods and fields of the
parent objects parent1, parent2, and so on. Structure s is used as a template
for the object.

obj = class(struct([]),'class_name',parenti,parent2,...) creates an
object of MATLAB class 'class_name' that inherits the methods and fields of
the parent objects parent1, parent2, and so on. Specifying the empty structure
struct([]) as the first argument ensures that the object created contains no
fields other than those that are inherited from the parent objects.

To return in nameStr the name of the class of Java object j,

nameStr = class(j)

To create a user-defined MATLAB object of class polynom,
p = class(p, 'polynom')

inferiorto, isa, superiorto

The “MATLAB Classes and Objects” and the “Calling Java from MATLAB”
chapters in MATLAB Programming and Data Types documentation.

clc

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

Clear Command Window

As an alternative to the clc function, use Clear Command Window in the
MATLAB desktop Edit menu.

clc

clc clears all input and output from the Command Window display, giving you
a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of functions, but

you still can use the up arrow to recall statements from the command history.

Use clc in an M-file to always display output in the same starting position on
the screen.

clear, clf, close, home

2-363

clear

Purpose

Graphical
Interface

Syntax

Description

2-364

Remove items from workspace, freeing up system memory

As an alternative to the clear function, use Clear Workspace in the MATLAB
desktop Edit menu.

clear

clear name

clear name1 name2 name3 ...

clear global name

clear -regexp expri expr2 ...

clear global -regexp expri expr2 ...
clear keyword

clear('namei', 'name2','name3',...)

clear removes all variables from the workspace. This frees up system memory.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. You can use wildcards (*) to remove items selectively. For
example, clear my* removes any variables whose names begin with the string
my. It removes debugging breakpoints in M-files and reinitializes persistent
variables, since the breakpoints for a function and persistent variables are
cleared whenever the M-file is changed or cleared. If name is global, it is
removed from the current workspace, but left accessible to any functions
declaring it global. If name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded versions of a
function. For example, clear polynom/display clears only the display
method for polynom objects, leaving any other implementations in memory.

clear namei name2 name3 ... removes namel, name2, and name3 from the
workspace.

clear global name removes the global variable name. If name is global, clear
name removes name from the current workspace, but leaves it accessible to any
functions declaring it global. Use clear global name to completely remove a
global variable.

clear -regexp expri expr2 ... clears all variables that match any of the
regular expressions expri, expr2, etc. This option only clears variables.

clear

clear global -regexp expri expr2 ... clears all global variables that
match any of the regular expressions expri, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword

Items Cleared

all

classes

functions

global

import

Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty. Using clear all
removes debugging breakpoints in M-files and
reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever
the M-file is changed or cleared. When issued from the
Command Window prompt, also removes the Java
packages import list.

The same as clear all, but also clears MATLAB class
definitions. If any objects exist outside the workspace (for
example, in user data or persistent variables in a locked
M-file), a warning is issued and the class definition is not
cleared. Issue a clear classes function if the number or
names of fields in a class are changed.

Clears all the currently compiled M-functions and
MEX-functions from memory. Using clear function
removes debugging breakpoints in the function M-file and
reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever
the M-file is changed or cleared.

Clears all global variables from the workspace.

Removes the Java packages import list. It can only be
issued from the Command Window prompt. It cannot be
used in a function.

2-365

clear

Remarks

Limitations

Examples

2-366

java The same as clear all, but also clears the definitions of
all Java classes defined by files on the Java dynamic class
path (see “The Java Class Path” in the External Interfaces
documentation) . If any java objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued and the
Java class definition is not cleared. Issue a clear java
command after modifying any files on the Java dynamic

class path.
variables Clears all variables from the workspace.
clear('namei', 'name2', 'name3',...) isthe function form of the syntax. Use

this form when the variable name or function name is stored in a string.

When you use clear in a function, it has the following effect on items in your
function and base workspaces:

® clear name—If name is the name of a function, the function is cleared in both
the function workspace and in your base workspace.

® clear functions—All functions are cleared in both the function workspace
and in your base workspace.

e clear global—All global variables are cleared in both the function
workspace and in your base workspace.

e clear all—All functions, global variables, and classes are cleared in both
the function workspace and in your base workspace.

clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

The clear function does not clear Simulink models. Use close instead.

Given a workspace containing the following variables

Name Size Bytes Class

c 3x4 1200 cell array

frame 1x1 java.awt.Frame

gbl1 1x1 8 double array (global)

clear

gbl2 1x1 8 double array (global)
xint 1x1 1 int8 array

you can clear a single variable, xint, by typing
clear xint

To clear all global variables, type
clear global

whos
Name Size Bytes Class
C 3x4 1200 cell array
frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin with
Mon, Tue, or Wed:

clear('-regexp', '“Mon|"Tue|"Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to clear one
M-file function from memory, testfun, because the function is locked.

clear functions % Attempt to clear all functions.
inmem
ans =

"testfun' % One M-file function remains in memory.

mislocked testfun
ans =
1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.
munlock testfun
clear functions

inmem
ans =
Empty cell array: 0-by-1

2-367

clear

See Also clc, close, import, inmem, load, mlock, munlock, pack, persistent, save, who,
whos, workspace

2-368

clf

Purpose

Syntax

Description

Remarks

See Also

Clear current figure window

clf
clf('reset')
figure_handle = clf(...)

clf deletes from the current figure all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects regardless of
the setting of their HandleVisibility property and resets all figure properties
except Position, Units, PaperPosition, and PaperUnits to their default
values.

figure_handle = clf(...) return the handle of the figure. This is useful
when the figure IntegerHandle property is off since the noninteger handle
becomes invalid when the reset option is used (i.e., IntegerHandle is reset to
on, which is the default).

The c1f command behaves the same way when issued on the command line as
it does in callback routines — it does not recognize the HandlevVisibility
setting of callback. This means that when issued from within a callback
routine, c1f deletes only those objects whose HandleVisibility property is set
to on.

cla, clc, hold, reset

“Figure Windows” for related functions

2-369

clipboard

Purpose

Syntax

Description

See Also

2-370

Copy and paste strings to and from the system clipboard

Graphical Interface

As an alternative to clipboard, use the Import Wizard. To use the Import
Wizard to copy data from the clipboard, select Paste Special from the Edit
menu.

clipboard('copy',data)
str = clipboard('paste’)
data = clipboard('pastespecial’)

clipboard('copy', data) sets the clipboard contents to data. If datais not a
character array, the clipboard uses mat2str to convert it to a string.

str = clipboard('paste') returns the current contents of the clipboard as a
string or as an empty string (' '), if the current clipboard contents cannot be
converted to a string.

data = clipboard('pastespecial') returns the current contents of the
clipboard as an array using uiimport.

Note Requires an active X display on UNIX, and Java elsewhere.

load, uiimport

clock

Purpose
Syntax

Description

See Also

Current time as a date vector

clock

o
1

¢ = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

cputime, datenum, datevec, etime, tic, toc

2-371

close

Purpose

Syntax

Description

Remarks

2-372

Delete specified figure

close

close(h)

close name

close all

close all hidden
status = close(...)

close deletes the current figure or the specified figure(s). It optionally returns
the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix, close
deletes all figures identified by h.

close name deletes the figure with the specified name.
close all deletes all figures whose handles are not hidden.
close all hidden deletes all figures including those with hidden handles.

status = close(...) returns 1 if the specified windows have been deleted
and 0 otherwise.

The close function works by evaluating the specified figure’s CloseRequestFcn
property with the statement

eval(get(h, 'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure using
delete(get (0, 'CurrentFigure')). If you specify multiple figure handles,
close executes each figure’s CloseRequestFcn in turn. If MATLAB encounters
an error that terminates the execution of a CloseRequestFcn, the figure is not
deleted. Note that using your computer’s window manager (i.e., the Close
menu item) also calls the figure’s CloseRequestFcn.

Ifa figure’s handle is hidden (i.e., the figure’s HandleVisibility property is set
to callback or off and the root ShowHiddenHandles property is set on), you

close

See Also

must specify the hidden option when trying to access a figure using the all
option.

To delete all figures unconditionally, use the statements

set (0, 'ShowHiddenHandles', 'on')
delete(get(0, 'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it simply
deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the closing of a
figure once the close function has been issued. For example, you can display a
dialog box to see if the user really wants to delete the figure or save and clean
up before closing.

delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” for related functions

2-373

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Descripl'ion aviobj = close(aviobj) finishes writing and closes the AVI file associated
with aviobj, which is an AVI file object created using the avifile function.

See Also avifile, addframe, movie2avi

2-374

close (ftp)

Purpose
Syntax

Description

Examples

See Also

Close connection with FTP server
close(T)

close(f) closes the connection with the FTP server, represented by object f,
which was created using ftp. Be sure to use close after completing work on
the server. If you do not run close, the connection will be terminated
automatically either because of the server’s time-out feature or when you exit

MATLAB.
Connect to The MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)

ans =

disconnected

ftp

2-375

closereq

Purpose
Syntax
Description

See Also

2-376

Default figure close request function
closereq
closereq deletes the current figure.

The figure CloseRequestFcn property

“Figure Windows” for related functions

cmopts

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

Get name of source control system

As an alternative to cmopts, use preferences. Select File -> Preferences in the
MATLAB desktop, and then select General -> Source Control.

cmopts

cmopts returns the name of the source control system you selected using
preferences, which is one of the following:

clearcase
customverctrl
pvcs

rcs
sourcesafe

If you have not selected a source control system, cmopts returns

none

Specifying a Source Control System
To specify the source control system:

1 From the MATLAB Editor window or from a Simulink or Stateflow model
window, select File -> Preferences.
The Preferences dialog box opens.

2 In the left pane, click the + for General, and then select Source Control.
The currently selected system is shown.

3 Select the system you want to use from the Source control system list.

4 Click OK.

For more information, see source control preferences.

Type cmopts and MATLAB returns rcs, meaning the source control system
specified in preferences is RCS.

checkin, checkout, customverctrl

2-377

colamd

Purpose

Syntax

Description

2-378

Column approximate minimum degree permutation

colamd(S)
colamd (S, knobs)

= colamd(S)
colamd (S, knobs)

p

p
[p,stats]

[p,stats]

p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix S,
S(:,p) tends to have sparser LU factors than S. The Cholesky factorization of
S(:,p)' * S(:,p) also tends to be sparser than that of S' *S.

knobs is a two-element vector. If S is m-by-n, then rows with more than
(knobs (1)) *n entries are ignored. Columns with more than (knobs(2))*m
entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then

knobs (1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the
validity of the matrix S.

stats (1) Number of dense or empty rows ignored by colamd
stats(2) Number of dense or empty columns ignored by colamd
stats(3) Number of garbage collections performed on the internal data

structure used by colamd (roughly of size
2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column
index given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices

Although, MATLAB built-in functions generate valid sparse matrices, a user
may construct an invalid sparse matrix using the MATLAB C or Fortran APIs
and pass it to colamd. For this reason, colamd verifies that S is valid:

colamd

¢ Ifarow index appears two or more times in the same column, colamd ignores
the duplicate entries, continues processing, and provides information about
the duplicate entries in stats(4:7).

e If row indices in a column are out of order, colamd sorts each column of its
internal copy of the matrix S (but does not repair the input matrix S),
continues processing, and provides information about the out-of-order
entries in stats(4:7).

¢ If Sis invalid in any other way, colamd cannot continue. It prints an error
message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a better

ordering.
See Also colmmd, colperm, spparms, symamd, symmmd, symrcm
References [1] The authors of the code for colamd are Stefan I. Larimore and Timothy A.

Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng,
Oak Ridge National Laboratory. Sparse Matrix Algorithms Research at the
University of Florida: http://www.cise.ufl.edu/research/sparse/

2-379

colmmd

Purpose
Syntax

Description

Algorithm

Examples

2-380

Sparse column minimum degree permutation

colmmd(S)

e
1l

p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and / for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, the MATLAB
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A'*A, but does not actually form A' *A.

Each stage of the algorithm chooses a vertex in the graph of A' *A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

The Harwell-Boeing collection of sparse matrices and the MATLAB demos
directory include a test matrix WEST0479. It is a matrix of order 479 resulting
from a model due to Westerberg of an eight-stage chemical distillation column.
The spy plot shows evidence of the eight stages. The colmmd ordering
scrambles this structure.

load west0479
A = west0479;
p = colmmd(A);
spy (A)

spy (A(:,p))

colmmd

A(p)
0 0
S L A
S R
100 7% L 1007 L
R N e T 2]
LS N L , i
200} : = \ 200 : i
RN Rk ‘
- [oo -2 e FR |
"X B . - R
- e . . e
300} = e ' 300} sKIER .
= W . Ay
s = L , z R
400t Tt N 400} g - 1
- = Wl s k
0 100 200 300 400 0 100 200 300 400
nz = 1887 nz = 1887

Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and

storage requirements by better than a factor of 2.8. The nonzero counts are
16777 and 5904, respectively.

spy (1u(A))
spy (Lu(A(:,p)))

lu(A) lu(A(:,p))
O , , , O
- __' Ly .,-\' 3 , :5 3
100f " 100f Ny
200} 200 S
r—— .o 8 , i
300¢ 300 b
4001 400
. . ".:J:"“".'-'- --",E-‘ .}-(7::: &
. .. oo .o = ee -
0 100 200 300 400 0 100 200 300 400
nz = 16777 nz = 5904

2-381

colmmd

See Also

References

2-382

colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

[1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

colorbar

Purpose

Syntax

Description

Display colorbar showing the color scale

colorbar

colorbar(..., 'peer',axes_handle)
colorbar(axes_handle)

colorbar('location')

colorbar(..., 'PropertyName' ,propertyvalue)

cbar_axes = colorbar(...)

The colorbar function displays the current colormap in the current figure and
resizes the current axes to accommodate the colorbar.

colorbar updates the most recently created colorbar or, when the current axes
does not have a colorbar, colorbar adds a new vertical colorbar.

colorbar(...,'peer',axes_handle) creates a colorbar associated with the
axes axes_handle instead of the current axes.

colorbar(axes_handle) adds the colorbar to the axes axes_handle in the
default (right) orientation.

colorbar(...,'location') adds a colorbar in the specified orientation with
respect to the axes. Possible values for location are

® North — inside plot box near top

® South — inside bottom

® Fast — inside right

® West — inside left

® NorthOutside — outside plotbox near top
® SouthOutside — outside bottom

® FastOutside — outside right

® WestOutside — outside left

colorbar(...,'PropertyName' ,propertyvalue) specifies property names

and values for the axes object used to create the colorbar. See axes properties
for a description of the properties you can set.

2-383

colorbar

cbar_axes = colorbar(...) returns a handle to the colorbar, which is an
axes graphics object that contains one additional property, Location.

Remarks You can use colorbar with 2-D and 3-D plots.
Examples Display a colorbar beside the axes and use descriptive text strings as y-tick
labels.

surf(peaks(30))
colorbar('YTickLabel',...
{'Freezing', 'Cold', 'Cool', 'Neutral', 'Warm', 'Hot', 'Burning'})

Burning

Hat

Warrm

Meutral

Coal

Cold

Freezing

See Also colormap

“Color Operations” for related functions

2-384

colordef

Purpose

Syntax

Description

Remarks

See Also

Set default property values to display different color schemes

colordef white

colordef black

colordef none
colordef(fig,color_option)

h = colordef('new',color_option)

colordef enables you to select either a white or black background for graphics
display. It sets axis lines and labels to show up against the background color.

colordef white sets the axis background color to white, the axis lines and
labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines and
labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB Version 4
(essentially a black background).

colordef (fig,color_option) sets the color scheme of the figure identified by
the handle fig to the color option 'white', 'black', or 'none"'.

h = colordef('new',color_option) returns the handle to a new figure
created with the specified color options (i.e., 'white', 'black', or 'none').

colordef affects only subsequently drawn figures, not those currently on the
display. This is because colordef works by setting default property values (on
the root or figure level). You can list the currently set default values on the root
level with the statement

get(0, 'defaults')
You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

whitebg

2-385

colordef

“Color Operations” for related functions

2-386

colormap

Purpose Set and get the current colormap

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row
is an RGB vector that defines one color. The £ row of the colormap defines the
kth color, where map (k,:) = [r(k) g(k) b(k)]) specifies the intensity of red,
green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are
outside the interval [0 1], MATLAB returns the error Colormap must have
values in [0,1].

colormap('default') sets the current colormap to the default colormap.

cmap = colormap; retrieves the current colormap. The values returned are in
the interval [0 1].

Specifying Colormaps
M-files in the color directory generate a number of colormaps. Each M-file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB
creates a colormap the same size as the current colormap.

Supported Colormaps
MATLAB supports a number of colormaps.

® autumn varies smoothly from red, through orange, to yellow.

® bone is a grayscale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to grayscale images.

® colorcube contains as many regularly spaced colors in RGB colorspace as
possible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

2-387

colormap

Examples

2-388

® cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

® copper varies smoothly from black to bright copper.

® flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

® gray returns a linear grayscale colormap.

® hot varies smoothly from black through shades of red, orange, and yellow, to
white.

® hsv varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta, and
return to red. The colormap is particularly appropriate for displaying
periodic functions. hsv(m) is the same as hsv2rgb([h ones(m,2)]) where h
is the linear ramp, h = (0:m 1)'/m.

® jet ranges from blue to red, and passes through the colors cyan, yellow, and
orange. It is a variation of the hsv colormap. The jet colormap is associated
with an astrophysical fluid jet simulation from the National Center for
Supercomputer Applications. See the “Examples” section.

¢ lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

® pink contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

® prism repeats the six colors red, orange, yellow, green, blue, and violet.

® spring consists of colors that are shades of magenta and yellow.

® summer consists of colors that are shades of green and yellow.

¢ white is an all white monochrome colormap.

® winter consists of colors that are shades of blue and green.

The images and colormaps demo, imagedemo, provides an introduction to
colormaps. Select Color Spiral from the menu. This uses the pcolor function
to display a 16-by-16 matrix whose elements vary from 0 to 255 in a rectilinear
spiral. The hsv colormap starts with red in the center, then passes through
yellow, green, cyan, blue, and magenta before returning to red at the outside
end of the spiral. Selecting Colormap Menu gives access to a number of other
colormaps.

colormap

The rgbplot function plots colormap values. Try rgbplot (hsv),
rgbplot(gray), and rgbplot (hot).

The following commands display the flujet data using the jet colormap.

load flujet
image (X)
colormap(jet)

]
100
150
200
250

300

250

400

The demos directory contains a CAT scan image of a human spine. To view the
image, type the following commands:

load spine
image (X)
colormap bone

2-389

colormap

Algorithm

See Also

2-390

a0

100

150

200

2490

300

350

a0 100 150 2000 250 300 350 400 450

Each figure has its own Colormap property. colormap is an M-file that sets and
gets this property.

brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb, pcolor,
rgb2hsv, rgbhplot

The Colormap property of figure graphics objects

“Color Operations” for related functions

Coloring Mesh and Surface Plots for more information about colormaps and
other coloring methods

colormapeditor

Purpose
Syntax

Description

Start colormap editor
colormapeditor

colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells below
the colormap strip that indicate points in the colormap where the rate of the
variation of R, G, and B values changes. You can also work in the HSV
colorspace by setting the Interpolating Colorspace selector to HSV.

You can also start the colormap editor by selecting Colormap from the Edit
menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in the
colormap. The color of a node pointer remains constant as you move it, but the
colormap changes by linearly interpolating the RGB values between nodes.

Change the color at a node by double-clicking the node pointer. MATLAB
displays a color picker from which you can select a new color. After you select
a new color at a node, MATLAB reinterpolates the colors in between nodes.

Operation How to Perform

Add a node Click below the corresponding cell in the colormap
strip.

Select a node Left-click the node.

Select multiple Adjacent: left-click first node, Shift+click the last

nodes node.

Nonadjacent: left-click first node, Ctrl+click
subsequent nodes.

Move a node Select and drag with the mouse or select and use
the left and right arrow keys.

2-391

colormapeditor

2-392

Operation How to Perform
Move multiple Select multiple nodes and use the left and right
nodes arrow keys to move nodes as a group. Movement

stops when one of the selected nodes hits an
unselected node or an end node.

Delete a node Select the node and then press the Delete key, or
select Delete from the Edit menu, or type Ctrl+x.

Delete multiple Select the nodes and then press the Delete key, or

nodes select Delete from the Edit menu, or type Ctrl+x.

Display color picker = Double-click the node pointer.
for a node

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap editor
displays the following information about that colormap element:

¢ The element’s index in the colormap

¢ The value from the graphics object color data that is mapped to the node’s
color (i.e., data from the CData property of any image, patch, or surface
objects in the figure)

® The color’'s RGB and HSV color value

colormapeditor

Colormap index f
color cell

/CData: 2.5570
Object’s CData for

color cell

RGB and HSV
values of selecte

|

<) Colormap Editor =10l x|

File Edit Toolz Help

i 1 0 'L
J b |

Current Color Info
OI\muex: 24

< 3
Color Data Min:|:2.4832
Interpolating Cnlnrspace:lRGEl vl ——e

Color Data Max[11.5417

d
colormap element 7| Immediate Apply Apply | Ok | Cancel | Help |

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors of cells
between nodes. For example, in the RGB colorspace, internode colors are
calculated by linearly interpolating the red, green, and blue intensity values
from one node to the next. Switching to the HSV colorspace causes the
colormap editor to recalculate the colors between nodes using the hue,
saturation, and value components of the color definition.

Note that when you switch from one colorspace to another, the color editor
preserves the number, color, and location of the node pointers, which can cause
the colormap to change.

Interpolating in HSV: Since hue is conceptually mapped about a color circle,
the interpolation between hue values can be ambiguous. To minimize this
ambiguity, the interpolation uses the shortest distance around the circle. For
example, interpolating between two nodes, one with hue of 2 (slightly orange
red) and another with a hue of 356 (slightly magenta red), does not result in
hues 3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).

2-393

colormapeditor

Examples

2-394

Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to specify
values for the axes CLim property. These values change the mapping of object
color data (the CData property of images, patches, and surfaces) to the
colormap. See Axes Color Limits — the Clim Property for discussion and
examples of how to use this property.

This example modifies a default MATLAB colormap so that ranges of data
values are displayed in specific ranges of color. The graph is a slice plane
illustrating a cross section of fluid flow through a jet nozzle. See the slice
reference page for more information on this type of graph.

Example Objectives
The objectives are as follows:

¢ Regions of flow from left to right (positive data) are mapped to colors from
yellow through orange to dark red. Yellow is slowest and dark red is the
fastest moving fluid.

® Regions that have a speed close to zero are colored green.
® Regions where the fluid is actually moving right to left (negative data) are
shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The colorbar
shows the data to color mapping.

colormapeditor

|

Running the Example

Note If you are viewing this documentation in the MATLAB help browser,
you can display the graph used in this example by running this M-file from
the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated in the
following picture. Note that this example uses a colormap that is 48 elements
to display wider bands of color (the default is 64 elements).

2-395

colormapeditor

1 Start the colormap editor using the colormapeditor command. The color
map editor displays the current figure’ s colormap, as shown in the following
picture.

2-396

colormapeditor

|

<} Colormap Editor =0l x|

File Edit Toolz Help

Current colar infa

Index: 18 R: 0 H: 1749

CData: 2.48349 32484 5100
B: 254 Wo100

Calar data min: F2.4832
Interpalating colorspace:lRGEl 'I ———

Color data rmax [11.8417

v Immediate apply [o]54 | Cancel | Apply | Help |

2 Since we want the regions of left-to-right flow (positive speed) to range from
yellow to dark red, we can delete the cyan node pointer. To do this, first
select it by clicking with the left mouse button and press Delete. The
colormap now looks like this.

2-397

colormapeditor

<} Colormap Editor =10l x|
File Edit Toolz Help

Current Color Info

Index; 10 R: 42 H: 238

CData: 0.1464 G 42 5. 80
B: 212 W 84

Color Data Min:|:2.4832
Interpolating Cnlnrspace:lRGEl vl ——e

Color Data Max[11.5417

¥ Immediate Apply Apply | Ok | Cancel | Help |

The Immediate Apply box is checked, so the graph displays the results of
the changes made to the colormap.

2-398

colormapeditor

We want the fluid speed values around zero to stand out, so we need to find
the color cell where the negative-to-positive transition occurs. Dragging the
cursor over the color strip enables you to read the data values in the
Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that cell and
create a node pointer. Double-clicking the node pointer displays the color
picker. Set the color of this node to green.

2-399

|

colormapeditor

<} Colormap Editor =lo =]
Fie Edit Tools Helg

II% 0 (I |

Current Caolar Info

Index: 10 R: 0 H: 119

CData: 01464 2484 5100
B: 0O Wo100

Color Data Min:F2.4832
Interpalating Cnlnrspace:lRGEl 'I S —

Color Data Max[11.5417

v Immediate Apply Apply | [o]54 | Cancel | Help |

The graph continues to update to the modified colormap.

2-400

colormapeditor

|

4 In the current state, the colormap colors are interpolated from the green
node to the yellowish node about 20 cells away. We actually want only the
single cell that is centered around zero to be colored green. To limit the color
green to one cell, move the blue and yellow node pointers next to the green

pointer.

<)} Colormap Editor

File Edit Toolz Help

=0l]

Current Calar Infa

Index: 10
CData: 0.1464

R0
G2
B0

45

H: 118
5. 100
Y 100

Interpalating Colorspace:lRGEl 'I

[V Immediate Apply Apply |

Calar Data Min:

Color Data Max 115417

oK

| Cancel |

F2.4832

Help |

5 Before making further adjustments to the colormap, we need to move the
green cell so that it is centered around zero. Use the colorbar to locate the

green cell.

2-401

colormapeditor

2-402

Note that green cell is not
centered around zero.

To recenter the green cell around zero, select the blue, green, and yellow
node pointers (left-click blue, Shift+click yellow) and move them as a group
using the left arrow key. Watch the colorbar in the figure window to see
when the green color is centered around zero.

colormapeditor

|

<)} Colormap Editor =0l x|

File Edit Tools Help

Current Colar Info

Index: 9 R: 0O H: 1149

CData: -0.1458 2484 5100
B: 0O w100

Colar Data Min:F2.4832

Color Data Max 115417

Interpalating Colorspace:lRGEl 'I

v Immediate Apply Apply | [o]34 | Cancel | Help |

The slice plane now has the desired range of colors for negative, zero, and
positive data.

2-403

colormapeditor

Green cell is now centered
around zero.

6 Increase the orange-red coloring in the slice by moving the red node pointer
toward the yellow node.

2-404

colormapeditor

|

<} Colormap Editor =]
File Edit Tools Help

- —

Current Color Info

Index: 28 R: 255 H: 0

CData: 5.4058 G0 g 100
B: 0 Y. 100

Color Data Min:FE.dBSE
Interpolating CDIDrspace:IRGEI 'I —_—

Colar Data Masx:|11.5417

v Immediate Apply Apply | Ok | cancel | Help |

7 Darken the endpoints to bring out more detail in the extremes of the data.
Double-click the end nodes to display the color picker. Set the red endpoint
to the RGB value [50 0 0] and set the blue endpoint to the RGB value [0 0

50].
The slice plane coloring now matches the example objectives.

2-405

colormapeditor

2-406

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the figure
Colormap property.

After you have applied your changes, save the current figure colormap in a
variable:

mycmap = get(fig, 'Colormap'); % fig is figure handle or use gcf

To use this colormap in another figure, set that figure’s Colormap property:
set(new_fig, 'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to save
the mycmap workspace variable:

save('MyColormaps', "mycmap')

To use your saved colormap in another MATLAB session, 1load the variable
into the workspace and assign the colormap to the figure:

load('MyColormaps', "mycmap')
set(fig, 'Colormap',mycmap)

colormapeditor

See Also colormap, get, load, save, set
Color Operations for related functions

See Colormaps for more information on using MATLAB colormaps.

2-407

ColorSpec

Purpose

Description

Remarks

Examples

2-408

Color specification

ColorSpec is not a command; it refers to the three ways in which you specify
color in MATLAB:

¢ RGB triple

e Short name

® Long name

The short names and long names are MATLAB strings that specify one of eight
predefined colors. The RGB triple is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the
color; the intensities must be in the range [0 1]. The following table lists the
predefined colors and their RGB equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow
[1 0 1] m magenta
[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green
[0 0 1] b blue

[1 1 1] w white
[0 0 0] k black

The eight predefined colors and any colors you specify as RGB values are not
part of a figure’s colormap, nor are they affected by changes to the figure’s
colormap. They are referred to as fixed colors, as opposed to colormap colors.

To change the background color of a figure to green, specify the color with a
short name, a long name, or an RGB triple. These statements generate
equivalent results:

whitebg('g")

ColorSpec
|

whitebg('green')
whitebg ([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For example, this
statement changes the figure background color to pink:

set(gcf, 'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” for related functions

2-409

colperm

Purpose
Syntax

Description

Algorithm

Examples

See Also

2-410

Sparse column permutation based on nonzero count

colperm(S)

[
1l

j colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
lu(s(:,3))-

If Sis symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j,j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol(S(j,j)).

The algorithm involves a sort on the counts of nonzeros in each column.

The n-by-n arrowhead matrix
A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, 1u(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1].SoA(j,j) sends the full row and column to the bottom
and the rear, and 1u(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example,
B = bucky

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

chol, colamd, colmmd, 1u, spparms, symamd, symmmd, symrcm

comet

Purpose

Syntax

Description

Remarks

Examples

See Also

Two-dimensional comet plot

comet(y)

comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

A comet graph is an animated graph in which a circle (the comet head) traces
the data points on the screen. The comet body is a trailing segment that follows
the head. The tail is a solid line that traces the entire function.

comet(y) displays a comet graph of the vector y.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

comet (axes_handle, .. .) plotsintothe axes with handle axes_handle instead
of the current axes (gca).

Note that the trace left by comet is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Create a simple comet graph:

t

0:.01:2*pi;

X cos(20t).*(cos(t)."2);
y sin(20Ct).*(sin(t)."2);
comet(x,Vy);

comet3

“Direction and Velocity Plots” for related functions

2-411

comet3

Purpose

Syntax

Description

Remarks

Examples

See Also

2-412

Three-dimensional comet plot

comet3
comet3
comet3
comet3

z)

X!y!z)

X!y!Z!p)
axes_handle,...)

—_~ o~ o~ o~

A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet3(z) displays a three-dimensional comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(1i),y(1),z(1)].

comet3(x,y,z,p) specifies a comet body of length p[llength(y).

comet3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

Note that the trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).
Create a three-dimensional comet graph.
t = -10*pi:pi/250:10*pi;
comet3((cos(2*t)."2).*sin(t),(sin(2*t)."2).*cos(t),t);
comet

“Direction and Velocity Plots” for related functions

commandhistory

Purpose

Graphical
Interface

Syntax

Description

See Also

|

Open the Command History, or select it if already open

As an alternative to commandhistory, select Desktop -> Command History to
open it, or Window -> Command History to select it.

commandhistory
commandhistory opens the MATLAB Command History when it is closed, and
selects the Command History when it is open. The Command History presents

a log of the statements most recently run in the Command Window.

Timestamp marks the start of each session. Select it to
select all entries in the history for that session.

<) Command History
Click - to hide history File Edit [Debug Deskiop ‘Window Help

for that session————{ == —— noyz4/03 10:30 AN —-3 =
Click + to expand. which collatz

collatzi(2)

collatzplot (3
Select one or more =R 3
K . . dlcuit
lines and right-click EH%-- 09/25/03 09:11 LM ——-% | |
to copy, evaluate, or—— lomd thetm
create a shortcut or (17) =]
an M-file from the

. 4

selection.

diary, startup -logfile option
“Recalling Previous Lines”

“Command History” in the MATLAB Desktop Tools documentation

2-413

commandwindow

Purpose

Graphical
Interface

Syntax

Description

Remarks

See Also

2-414

Open the Command Window, or select it if already open

As an alternative to commandwindow, select Desktop -> Command Window to
open it, or Window -> Command Window to select it.

commandwindow

commandwindow opens the MATLAB Command Window when it is closed, and
selects the Command Window when it is open.

To determine the number of columns and rows that will display in the
Command Window, given its current size, use

get (0, 'CommandWindowSize ')

The number of columns is based on the width of the Command Window. With
With the matrix display width preference set to 80 columns, the number of
columns is always 80.

MATLAB Desktop Tools and Development Environment documentation
“Opening and Arranging Tools”
“Running Functions—Command Window and History”

“Preferences for the Command Window”

compan

Purpose Companion matrix
Syntax A = compan(u)
Descripl'ion A = compan(u) returns the corresponding companion matrix whose first row is

-u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

Examples The polynomial (x —1)(x —2)(x +3) = x3—7x + 6 has a companion matrix
given by

u=1J[1 0 -7 6]

A = compan(u)

A =
0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:
eig(compan(u))
ans =
-3.0000

2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

2-415

compass

Purpose

Syntax

Description

Examples

2-416

Plot arrows emanating from the origin

compass(U,V)

compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)

h = compass(...)

A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and plotted
on a circular grid.

compass (U, V) displays a compass graph having n arrows, where n is the
number of elements in U or V. The location of the base of each arrow is the
origin. The location of the tip of each arrow is a point relative to the base and
determined by [U(i),V(i)].

compass (Z) displays a compass graph having n arrows, where n is the number
of elements in Z. The location of the base of each arrow is the origin. The
location of the tip of each arrow is relative to the base as determined by the real
and imaginary components of Z. This syntax is equivalent to
compass(real(z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type, marker
symbol, and color specified by LineSpec.

compass (axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = compass(...) returns handles to line objects.

Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

compass

See Also

Purpose

Syntax

Description

270

feather, LineSpec, quiver, rose
“Direction and Velocity Plots” for related functions
Compass Plots for another example

complex
Construct complex data from real and imaginary components

complex(a,b)
complex(a)

o
1

complex(a,b) creates a complex output, c, from the two real inputs.
c =a+bi

The output is the same size as the inputs, which must be scalars or equally
sized vectors, matrices, or multi-dimensional arrays.

2-417

compass

Example

See Also

2-418

Note Ifbis all zeros, ¢ is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a strictly
real result.

The following describes when a and b can have different data types, and the
resulting data type of the output c:

e If either of a or b has type single, ¢ has type single.

o If either of a or b has an integer data type, the other must have the same
integer data type or type scalar double, and c has the same integer data
type.

¢ = complex(a) for real a returns the complex result ¢ with real part a and 0
as the value of all imaginary components. Even though the value of all
imaginary components is 0, ¢ is complex and isreal(c) returns false.

The complex function provides a useful substitute for expressions such as
a+ i*b or a+ j*b

“a»

in cases when the names “i” and may be used for other variables (and do
not equal ~1), when a and b are not single or double, or when b is all zero.

(¥R
]

Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])

b = uint8([2;2;7;7])

c = complex(a,b)

C:
1.0000 + 2.00001
2.0000 + 2.0000i1
3.0000 + 7.00001
4.0000 + 7.00001

abs, angle, conj, i, imag, isreal, j, real

computer

Purpose

Syntax

Description

See Also

Identify information about computer on which MATLAB is running

str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer

str = computer returns the string str with the computer type on which
MATLAB is running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

[str,maxsize,endian] = computer also returns either 'L' for little endian
byte ordering or 'B' for big endian byte ordering.

The list of supported computers changes as new computers are added and
others become obsolete. A typical list follows.

str Computer

GLNX86 Linux on PC

GLNXI64 Linux on Intel Itanium2

HPUX HP PA-RISC (HP-UX 11.00)

MAC Macintosh OS X

PCWIN Microsoft Windows

SoL2 Sun Solaris 2 SPARC workstation

ispc, isunix

2-419

cond

Purpose Condition number with respect to inversion
Syntax = cond(X)
= cond(X,p)
Description The condition number of a matrix measures the sensitivity of the solution of a

system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond (X) and cond(X,p) near 1 indicate a well-conditioned matrix.

¢ = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

¢ = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If p is... Then cond (X, p) returns the...
1 1-norm condition number
2 2-norm condition number
‘fro' Frobenius norm condition number
inf Infinity norm condition number
Algorithm The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.
See Also condeig, condest, norm, normest, rank, rcond, svd
References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

(http://www.netlib.org/lapack/lug/lapack lug.html), Third Edition,
SIAM, Philadelphia, 1999.

2-420

condeig

Purpose Condition number with respect to eigenvalues

Syntax ¢ = condeig(A)
[V,D,s] = condeig(A)

Description ¢ = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

2-421

condest

Purpose

Syntax

Description

See Also

Reference

2-422

1-norm condition number estimate

c = condest(A)
[c,v] = condest(A)

¢ = condest(A) computes a lower bound C for the 1-norm condition number of
a square matrix A.

¢ = condest(A,t) changes t, a positive integer parameter equal to the
number of columns in an underlying iteration matrix. Increasing the number
of columns usually gives a better condition estimate but increases the cost. The
default is t = 2, which almost always gives an estimate correct to within a
factor 2.

[c,v] = condest(A) also computes a vector v which is an approximate null
vector if ¢ is large. v satisfies norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then invoke
rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

condest uses block 1-norm power method of Higham and Tisseur [].
cond, norm, normest
Higham, N. J. and F. Tisseur, “A Block Algorithm for Matrix 1-Norm

Estimation, with an Application to 1-Norm Pseudospectra,” SIAM Journal
Matrix Anal. Appl., Vol. 21, No. 4, 2000, pp.1185-1201.

coneplot

Purpose

Syntax

Description

Plot velocity vectors as cones in a 3-D vector field

coneplot(X,Y,zZ,U,v,W,Cx,Cy,Cz)
coneplot(U,v,w,Cx,Cy,Cz)
coneplot(. S)
coneplot(. color)
coneplot(..., 'quiver')
coneplot(. ‘method")
coneplot(X Y Z,U,V,W, 'nointerp"')
comeplot(axes_handle,...)

h = coneplot(...)

coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones pointing in
the direction of the velocity vector and having a length proportional to the
magnitude of the velocity vector.

® X, Y, Z define the coordinates for the vector field.

® U, V, Wdefine the vector field. These arrays must be the same size, monotonic,
and 3-D plaid (such as the data produced by meshgrid).

® Cx, Cy, Cz define the location of the cones in the vector field. The section
Starting Points for Stream Plots in Visualization Techniques provides more
information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments) assumes
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p]= size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value for s,
MATLAB uses a value of 1. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector field and
then colors the cones according to the interpolated values. The size of the color
array must be the same size as the U, V, W arrays. This option works only with
cones (i.e., not with the quiver option).

coneplot(..., 'quiver') draws arrows instead of cones (see quiver3 for an
illustration of a quiver plot).

2-423

coneplot

Remarks

Examples

2-424

coneplot(..., 'method') specifies the interpolation method to use. method
can be linear, cubic, or nearest. linear is the default (see interp3 for a
discussion of these interpolation methods).

coneplot(X,Y,Z,U,V,W, 'nointerp') does not interpolate the positions of the
cones into the volume. The cones are drawn at positions defined by X, Y, Z and
are oriented according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.

coneplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to draw the
cones. You can use the set command to change the properties of the cones.

coneplot automatically scales the cones to fit the graph, while keeping them
in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling coneplot.
You can set the ratio using the daspect command,

daspect([1,1,1])

This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space. The final
graph employs a number of enhancements to visualize the data more
effectively. These include

¢ Cone plots indicate the magnitude and direction of the wind velocity.

® Slice planes placed at the limits of the data range provide a visual context for
the cone plots within the volume.

® Directional lighting provides visual cues to the orientation of the cones.

® View adjustments compose the scene to best reveal the information content
of the data by selecting the view point, projection type, and magnification.

1. Load and Inspect Data

The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinates specified in x, y, and z. The coordinates
define a lattice grid structure where the data is sampled within the volume.

coneplot

It is useful to establish the range of the data to place the slice planes and to
specify where you want the cone plots (min, max).

load
xmin
xmax
ymin
ymax
zmin

wind

1))
1))
1))
1))
1))

H

H

2. Create the Cone Plot

¢ Decide where in data space you want to plot cones. This example selects the
full range of x and y in eight steps and the range 3 to 15 in four steps in z
(linspace, meshgrid).

¢ Use daspect to set the data aspect ratio of the axes before calling coneplot
so MATLAB can determine the proper size of the cones.

® Draw the cones, setting the scale factor to 5 to make the cones larger than
the default size.

¢ Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])

xrange = linspace(xmin,xmax,8);

yrange = linspace(ymin,ymax,8);

zrange = 3:4:15;

[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,CcX,Cy,Ccz,5);
set(hcones, 'FaceColor', 'red', 'EdgeColor', 'none')

2-425

coneplot

2-426

3. Add the Slice Planes

¢ Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command.

® Create slice planes along the x-axis at xmin and xmax, along the y-axis at
ymax, and along the z-axis at zmin.

¢ Specify interpolated face color so the slice coloring indicates wind speed and
do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on

wind_speed = sqgrt(u.”2 + v."2 + w."2);

hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces, 'FaceColor', 'interp', 'EdgeColor', 'none')
hold off

4. Define the View

e Use the axis command to set the axis limits equal to the range of the data.

¢ Orient the view to azimuth = 30 and elevation = 40 (rotate3d is a useful
command for selecting the best view).

® Select perspective projection to provide a more realistic looking volume
(camproj).

e Zoom in on the scene a little to make the plot as large as possible (camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone plots
(patches). However, you can set the lighting characteristics of each
independently.

® Add a light source to the right of the camera and use Phong lighting to give
the cones and slice planes a smooth, three-dimensional appearance
(camlight, lighting).

¢ Increase the value of the AmbientStrength property for each slice plane to
improve the visibility of the dark blue colors. (Note that you can also specify
a different colormap to change the coloring of the slice planes.)

coneplot

|

¢ Increase the value of the DiffuseStrength property of the cones to brighten
particularly those cones not showing specular reflections.

camlight right; lighting phong
set (hsurfaces, 'AmbientStrength',.6)
set(hcones, 'DiffuseStrength',.8)

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2, stream3,
subvolume

“Volume Visualization” for related functions

2-427

conj

Purpose Complex conjugate
Syntax ZC = conj(Z)
Descripl'ion ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

2-428

continue

Purpose
Syntax

Description

Examples

See Also

Pass control to the next iteration of for or while loop
continue

continue passes control to the next iteration of the for or while loop in which
it appears, skipping any remaining statements in the body of the loop.

In nested loops, continue passes control to the next iteration of the for or
while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
line = fgetl(fid);
if isempty(line) | strncmp(line,'%s',1)
continue
end
count = count + 1;
end
disp(sprintf('sd lines',count));

for, while, end, break, return

2-429

contour

Purpose

Syntax

Description

2-430

Contour graph of a matrix

contour(Z2)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
[C,h] = contour(...)

[C,h] = contour('ve',...)

A contour graph displays isolines of matrix Z. Label the contour lines using
clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as heights
with respect to the x-y plane. Z must be at least a 2-by-2 matrix. The number
of contour levels and the values of the contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x- and
y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the data
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw contour
plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices,
they must be the same size as Z, in which case they specify a surface, as defined
by the surf function.

If X or Y is irregularly spaced, contour calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

contour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. contour ignores marker symbols.

contour

Remarks

[C,h] = contour(...) returns the contour matrix C (see contourc) and a
handle to a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup object properties.)

Backward Compatible Version

[C,h] = contour('v6',...) returns the contour matrix C (see contourc) and
a vector of handles to graphics objects. clabel uses the contour matrix C to
create the labels. contour creates patch graphics objects unless you specify a
LineSpec, in which case contour creates line graphics objects.

See Plot Objects and Backward Compatibility for more information.
If you do not specify the LineSpec argument, the figure colormap (colormap)

and the color limits (caxis) control the color of the contour lines. In this case
the contour function creates patch objects to implement the contour plot.

When you specify the LineSpec argument, the contour function creates line
object to implement the contour plot. In this case, contour lines are not mapped
to colors in the figure colormap, but are colored using the colors defined in the
axes ColorOrder property.

Use contourgroup object properties to control the contour plot appearance.

The following diagram illustrates the parent-child relationship in contour
plots.

2-431

contour

Examples

2-432

Axes

Contourgroup

-

Patch

Text

Patch

Text

Contour Plot of a Function
To view a contour plot of the function

z = xe(**-¥%)

over the range -2 <x <2, -2 < y < 3, create matrix Z using the statements

[X,Y]

Then, generate a contour plot of Z.

¢ Display contour labels by setting the ShowText property to on.

¢ Label every other contour line by setting the TextStep property to twice the
contour interval (i.e., two times the LevelStep property).

¢ Use a smoothly varying colormap.

[C,h]

= meshgrid(-2:.2:2,-2:.2:3);
Z = X.[exp(-X."2-Y."2);

contour(X,Y,Z);
set(h, 'ShowText', 'on', 'TextStep',get(h, 'LevelStep')*2)

colormap cool

contour

o

251 b
oL i
151 b
1k i

02— .

N
09 o R ~ \
05r N e <\ \ b
7/ / \\ \

\ [b e
or o (N)) 4

> \ / /[

\ — /
\\ // /
o5l ~___— / / |
-0.2 %2 - /
1k . i
o
15k i
-2 1 1 1 1 1 1

-2 -15 -1 -0.5 0 0.5 1 15 2

Smoothing Contour Data

You can use interp?2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = peaks;

[C,h] = contour(interp2(Z,4));

text_handle = clabel(C,h);

set(text_handle, 'BackgroundColor',[1 1 .6],...
'"Edgecolor',[.7 .7 .71])

2-433

contour

700 - 2 i
6

|- b 4

600 0 S & w

) ® v
500 B > 2 E
] o)
~ o
400 - { 1
NG~
2
300 - 2 g
e 2o NN
200 - i
(N LY
X g
100+ S ' /
o o
| o | | | | |
100 200 300 400 500 600 700

Setting the Axis Limits on Contour Plots
Suppose, for example, your data represents a region that is 1000 meters in the
x dimension and 3000 meters in the y dimension. You could use the following
statements to set the axis limits correctly:

z rand(24,36); % assume data is a 24-by-36 matrix
X = linspace(0,1000,size(Z,2));

Y linspace(0,3000,size(Z,1));

[c,h] = contour(X,Y,Z);

axis equal tight % set the axes aspect ratio

See Also contour3, contourc, contourf, contourslice

See “Contourgroup Properties” for poperty descriptions

2-434

contour3

Purpose

Syntax

Description

Three-dimensional contour plot

contour3(2)

contour3(Z,n)
contour3(Z,v)

contour3(X Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(axes_handle,...)
contour3(...,LineSpec)
[C,h] = contour3(...)

contour3 creates a three-dimensional contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a 2-by-2
matrix. The number of contour levels and the values of contour levels are
chosen automatically. The ranges of the x- and y-axis are [1:n] and [1:m],
where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in a
three-dimensional view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at the
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(z,[i i]).

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X and Y
to define the x- and y-axis limits. If X is a matrix, X(1,:) deﬁnes the x-axis. If
Y is a matrix, Y(:,1) defines the y-axis. When X and Y are matrices, they must
be the same size as Z, in which case they specify a surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and color
specified by LineSpec.

contour3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

2-435

contour3

[C,h] = contour3(...) returns the contour matrix C as described in the
function contourc and a column vector containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec, in which
case contour3 creates line graphics objects.

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Plot the three-dimensional contour of a function and superimpose a surface
plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);

Z = X.*exp(-X."2-Y."2);

contour3(X,Y,Z,30)

surface(X,Y,Z, 'EdgeColor',[.8 .8 .8],'FaceColor', 'none')
grid off

view(-15,25)

colormap cool

0.5

2-436

contour3

See Also contour, contourc, meshc, meshgrid, surfc
“Contour Plots” category for related functions

Contour Plots section for more examples

2-437

confourc

Purpose

Syntax

Description

Remarks

2-438

Low-level contour plot computation

C = contourc(2)

C = contourc(Z,n)

C = contourc(Z,v)

C = contourc(x,y,Z)

C = contourc(x,y,Z,n)
C = contourc(x,y,Z,Vv)

contourc calculates the contour matrix C used by contour, contour3, and
contourf. The values in Z determine the heights of the contour lines with
respect to a plane. The contour calculations use a regularly spaced grid
determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z, where Z
must be at least a 2-by-2 matrix. The contours are isolines in the units of Z. The
number of contour lines and the corresponding values of the contour lines are
chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the
values specified in vector v. The length of v determines the number of contour
levels. To compute a single contour of level i, use contourc(Z,[i i]).

C = contourc(x,y,Z),C = contourc(x,y,Z,n),andC = contourc(x,y,Z,Vv)
compute contours of Z using vectors x and y to determine the x- and y-axis
limits. x and y must be monotonically increasing.

Cis a two-row matrix specifying all the contour lines. Each contour line defined
in matrix C begins with a column that contains the value of the contour
(specified by v and used by clabel), and the number of (x,y) vertices in the
contour line. The remaining columns contain the data for the (x,y)pairs.

C = [valuel xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dimi ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as contouring
irregularly spaced data. If x or y is irregularly spaced, contourc calculates

conftourc

contours using a regularly spaced contour grid, then transforms the data to x
ory.

See Also clabel, contour, contour3, contourf
“Contour Plots” for related functions

The Contouring Algorithm for more information

2-439

contourf

Purpose

Syntax

Description

Remarks

2-440

Filled two-dimensional contour plot

contourf(2)
contourf(Z,n)
contourf(Z,v)
contourf(X Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(axes_handle,...)

[C,h,CF] = contourf(...)

A filled contour plot displays isolines calculated from matrix Z and fills the
areas between the isolines using constant colors. The color of the filled areas
depends on the current figure’s colormap.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number
of contour lines and the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

contourf(Z,v) draws a contour plot of matrix Z with contour levels at the
values specified in vector v.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) produce
contour plots of Z using X and Y to determine the x- and y-axis limits. When X
and Y are matrices, they must be the same size as Z, in which case they specify
a surface as surf does.

contourf (axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

[C,h,CF] = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel, a vector of handles h to patch graphics
objects, and a contour matrix CF for the filled areas.

If X or Y is irregularly spaced, contourf calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

contourf

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);
colormap autumn

()

2 4 6 8 10 12 14 16 18 20

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” for related functions

2-441

Contourgroup Properties

Modifying
Properties

Contourgroup
Property
Descriptions

2-442

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See Plot Objects for more information on contourgroup objects.

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is of f, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

¢ cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Contourgroup Properties

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the contourgroup object, but not over
another graphics object. See the HitTestArea property for information about
selecting contourgroup objects.

This property can be

® A string that is a valid MATLAB expression
® The name of an M-file

® A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the contourgroup object. An array containing the handles of all line
objects parented to the contourgroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the contour Children property unless you
set the Root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on')

Clipping {on} | off
Clipping mode. MATLAB clips contour plots to the axes plot box by default. If
you set Clipping to off, lines might be displayed outside the axes plot box.

ContourMatrix 2-by-n matrix

A two-row matrix specifying all the contour lines. Each contour line defined in
the ContourMatrix begins with a column that contains the value of the contour
(specified by the LevellList property and is used by clabel), and the number
of (x,y) vertices in the contour line. The remaining columns contain the data
for the (x,y)pairs:

C = [valuel xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

2-443

Contourgroup Properties

2-444

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a contourgroup object. You must
specify the callback during the creation of the object. For example,

contour(Z, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other contourgroup properties.
Setting this property on an existing contourgroup object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
contourgroup object is deleted (e.g., this might happen when you issue a delete
command on the contourgroup object, its parent axes, or the figure containing
it). MATLAB executes the callback before destroying the object’s properties so
the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.
DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any contourgroup objects appearing in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase contour child objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

Contourgroup Properties

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

¢ xor — Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when over the axes background color (or the figure background color if the
axes Color property is set to none). That is, it isn’t erased correctly if there
are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., performing an XOR on a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

2-445

Contourgroup Properties

2-446

Fill {off} | on

Color spaces between contour lines. By default, contour draws only the contour
lines of the surface. If you set Fill to on, contour colors the regions in between
the contour lines according to the Z-value of the region and changes the contour
lines to black.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the contourgroup object.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

® of f — Setting HandleVisibility to of f makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Contourgroup Properties

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings. (This does not affect the
values of the HandleVisibility properties.) See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the contourgroup object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the line objects that
compose the contour plot. If HitTest is of f, clicking the contour selects the
object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select contourgroup object on contour lines or area of extent. This property
enables you to select contourgroup objects in two ways:

¢ Select by clicking contour lines (default).

® Select by clicking anywhere in the extent of the contour plot.

When HitTestArea is off, you must click the contour lines (excluding the
baseline) to select the contourgroup object. When HitTestArea is on, you can
select the contourgroup object by clicking anywhere within the extent of the
contour plot (i.e., anywhere within a rectangle that encloses all the contour
lines).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a contourgroup object callback can be interrupted by callbacks
invoked subsequently. Only callbacks defined for the ButtonDownFcn property
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property for related
information.

2-447

Contourgroup Properties

2-448

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a contour property. Note that MATLAB does
not save the state of variables or the display (e.g., the handle returned by the
gca or gcf command) when an interruption occurs.

LabelSpacing distance in points (default = 144)

Spacing between labels on each contour line. When you display contour line
labels using either the ShowText property or the clabel command, the labels
are spaced 144 points (2 inches) apart on each line. You can specify the spacing
by setting the LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB displays only
one contour label on that line.

LevellList vector of ZData-values

Values at which contour lines are drawn. When the LevellListMode property is
auto, the contour function automatically chooses contour values that span the
range of values in ZData (the input argument Z). You can set this property to
the values at which you want contour lines drawn.

To specify the contour interval (space between contour lines) use the LevelStep
property.

LevelListMode {auto} | manual

User-specified or autogenerated LevellList values. By default, the contour
function automatically generates the values at which contours are drawn. If
you set this property to manual, contour does not change the values in
LevellList as you change the values of ZData.

LevelStep scalar

Spacing of contour lines. The contour function draws contour lines at regular
intervals determined by the value of LevelStep. When the LevelStepMode
property is set to auto, contour determines the contour interval automatically
based on the zZData.

LevelStepMode {auto} | manual

User-specified or autogenerated LevelStep values. By default, the contour
function automatically determines a value for the LevelStep property. If you
set this property to manual, contour does not change the value of LevelStep as
you change the values of ZData.

Contourgroup Properties

LineColor {auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB colors the
contour lines.

¢ auto— Each contour line is a single color determined by its contour value,
the figure colormap, and the color axis (caxis).

® ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for edges. The default edge color is black. See
ColorSpec for more information on specifying color.

® none — No contour lines are drawn.
LineStyle {-} | -——] 1] —-. | none

Line style. This property specifies the line style used for the contour lines.
Available line styles are shown in the table.

Symbol Line Style
- Solid line (default)

-— Dashed line
Dotted line
-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line.

LineWidth scalar

The width of the contour lines. Specify this value in points (1 point = /4 inch).
The default LineWidth is 0.5 points.

Parent object handle

Parent of contourgroup object. This property contains the handle of the
contourgroup object’s parent object. The parent of a contourgroup object is the
axes, hggroup, or hgtransform object that contains it.

2-449

Contourgroup Properties

2-450

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the contourgroup object has
been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

ShowText on | {off}

Display labels on contour lines. When you set this property to on, MATLAB
displays text labels on each contour line indicating the contour value. See also
LevelList, clabel, and the example “Contour Plot of a Function”.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create a contourgroup object and set the Tag property:

t = contour('Tag', 'contourt’')

When you want to access the contourgroup object, you can use findobj to find
the contourgroup object’s handle. The following statement changes the
MarkerFaceColor property of the object whose Tag is contourt.

set(findobj('Tag', 'contouri'), '‘MarkerFaceColor', 'red"')

TextList vector of contour values

Contour values to label. This property contains the contour values where text
labels are placed. By default, these values are the same as those contained in

Contourgroup Properties

the Levellist property, which define where the contour lines are drawn. Note
that there must be an equivalent contour line to display a text label.

For example, the following statements create and label a contour graph:

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevellList property to see the contour line values:
get(h, 'LevellList"')

Suppose you want to view the contour value 4.375 instead of the value of 4 that
the contour function used. To do this, you need to set both the LevelList and
TextList properties:

set(h, 'LevellList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

See the example “Contour Plot of a Function” for additional information.

TextListMode {auto} | manual

User-specified or auto TextList values. When this property is set to auto,
MATLAB sets the TextList property equal to the values of the LevellList
property (i.e., a text label for each contour line). When this property is set to
manual, MATLAB does not set the values of the TextList property. Note that
specifying values for the TextList property causes the TextListMode property
to be set to manual.

TextStep scalar

Determines which contour line have numeric labels. The contour function
labels contour lines at regular intervals which are determined by the value of
the TextStep property. When the TextStepMode property is set to auto,
contour labels every contour line when the ShowText property is on. See
“Contour Plot of a Function” for an example that uses the TextStep property.

TextStepMode {auto} | manual

User-specified or autogenerated TextStep values. By default, the contour
function automatically determines a value for the TextStep property. If you set
this property to manual, contour does not change the value of TextStep as you
change the values of ZData.

2-451

Contourgroup Properties

2-452

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For contourgroup objects, Type is 'hggroup'. This statement
finds all the hggroup objects in the current axes.

t = findobj(gca, 'Type', "hggroup');
UIContextMenu handle of a uicontextmenu object

Associate a context menu with the contourgroup object. Assign this property the
handle of a uicontextmenu object created in the contourgroup object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the extent of the
contourgroup object.

UserData array

User-specified data. This property can be any data you want to associate with
the contourgroup object (including cell arrays and structures). The
contourgroup object does not set values for this property, but you can access it
using the set and get functions.

Visible {on} | off

Visibility of contourgroup object and its children. By default, contourgroup
object visibility is on. This means all children of the contour are visible unless
the child object’s Visible property is set to of f. Setting a contourgroup object’s
Visible property to off also makes its children invisible.

XData vector or matrix

X-axis limits. This property determines the x-axis limits used in the contour
plot. If you do not specify an X argument, the contour function calculates x-axis
limits based on the size of the input argument z.

XData can be either a matrix equal in size to ZData or a vector equal in length
to the number of rows in ZData.

Use XData to define meaningful coordinates for the underlying surface whose
topography is being mapped. See “Setting the Axis Limits on Contour Plots” for
more information.

Contourgroup Properties

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. In auto mode (the default) the
contour function automatically determines the x-axis limits. If you set this
property to manual, specify a value for XData, or specify an X argument, then
contour sets this property to manual and does not change the axis limits.

XDataSource string (MATLAB variable)
Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

YData scalar, vector, or matrix

Y-axis limits. This property determines the y-axis limits used in the contour
plot. If you do not specify a Y argument, the contour function calculates y-axis
limits based on the size of the input argument z.

YData can be either a matrix equal in size to ZData or a vector equal in length
to the number of columns in ZData.

Use YData to define meaningful coordinates for the underlying surface whose
topography is being mapped. See “Setting the Axis Limits on Contour Plots” for
more information.

YDataMode {auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the default) the
contour function automatically determines the y-axis limits. If you set this

2-453

Contourgroup Properties

2-454

property to manual, specify a value for YData, or specify a Y argument, then
contour sets this property to manual and does not change the axis limits.

YDataSource string (MATLAB variable)
Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

ZData matrix

Contour data. This property contains the data from which the contour lines are
generated (specified as the input argument Z). ZData must be at least a 2-by-2
matrix. The number of contour levels and the values of the contour levels are
chosen automatically based on the minimum and maximum values of ZData.
The limits of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(ZData).

ZDataSource string (MATLAB variable)
Link ZData to MATLAB variable. Set this property to a MATLAB variable that

is evaluated in the base workspace to generate the ZData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change ZData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

Contourgroup Properties

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

2-455

contourslice

Purpose

Syntax

Description

2-456

Draw contours in volume slice planes

contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz), contourslice(V,Xi,Yi,Zi)
contourslice(...,n)

contourslice(...,cvals)

contourslice(...,[cv cVv])

contourslice(. 'method")
contourslice(axes_handle,...)

h = contourslice(...)

contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and z-axis
aligned planes at the points in the vectors Sx, Sy, Sz. The arrays X, Y, and Z
define the coordinates for the volume V and must be monotonic and 3-D plaid
(such as the data produced by meshgrid) The color at each contour is
determined by the volume V, which must be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume V
along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface should lie
within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi) (omitting the X,
Y, and Z arguments) assume [X,Y,Z] = meshgrid(1:n,1:m,1:p) where
[myn,p]= size(v).

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per plane at the
values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at the level
cv.
contourslice(..., 'method"') specifies the interpolation method to use.

method can be linear, cubic, or nearest. nearest is the default except when
the contours are being drawn along the surface defined by Xi, Yi, Zi, in which
case linear is the default (see interp3 for a discussion of these interpolation
methods).

contourslice

Examples

contourslice(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects that are
used to implement the contour lines.

This example uses the flow data set to illustrate the use of contoured slice
planes (type doc flow for more information on this data set). Notice that this
example

® Specifies a vector of 1ength = 9 for Sx, an empty vector for the Sy, and a
scalar value (0) for Sz. This creates nine contour plots along the x direction
in the y-z plane, and one in the x-y plane at z = 0.

¢ Uses linspace to define a ten-element vector of linearly spaced values from
-8 to 2. This vector specifies that ten contour lines be drawn, one at each
element of the vector.

¢ Defines the view and projection type (camva, camproj, campos).
® Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[]1,[0],1linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;
campos([-3,-15,5])
set(gcf, 'Color',[.5,.5,.5], 'Renderer', 'zbuffer')
set(gca, 'Color', 'black', 'XColor', 'white',
'YColor', 'white', 'ZColor', 'white')
box on

2-457

contourslice

This example draws contour slices along a spherical surface within the volume.

meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);

[x,y,z] =
V = X.*exp(-x."2-y."2-z.72); % Create volume data
[xi,yi,zi] = sphere; % Plane to contour

contourslice(x,y,z,v,xi,yi,zi)
view(3)

See Also isosurface, slice, smooth3, subvolume, reducevolume

“Volume Visualization” for related functions

2-458

contrast

Purpose

Syntax

Description

Examples

See Also

Grayscale colormap for contrast enhancement

cmap
cmap

contrast(X)
contrast(X,m)

The contrast function enhances the contrast of an image. It creates a new gray
colormap, cmap, that has an approximately equal intensity distribution. All
three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length as the
current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Add contrast to the clown image defined by X.

load clown;

cmap = contrast(X);

image (X);

colormap(cmap);
brighten, colormap, image

“Colormaps” for related functions

2-459

conv

Purpose
Syntax

Description

Definition

Algorithm

See Also

2-460

Convolution and polynomial multiplication

w conv(u,v)

w = conv(u,Vv) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Letm = length(u) and n = length(v). Then wis the vector of length m+n-1
whose kth element is

w(k) = > u@)o(e+1-))
J
The sum is over all the values of j which lead to legal subscripts for u(j) and

v(k+1-7), specifically j = max(1,k+1-n): min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)

w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)

w(2*n-1) = u(n)*v(n)
The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it

is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = fft([x zeros(1,length(y)-1)1)
and
Y = fft([y zeros(1,length(x)-1)1)

then conv(x,y) = ifft(X.*Y)

conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

conv2

Purpose

Syntax

Description

Algorithm

Two-dimensional convolution

C = conv2(A,B)
= conv2(hcol,hrow,A)
C = conv2(..., 'shape")

(@]

C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional finite impulse response
(FIR) filter, the other matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of Ais [ma,na]
and the size of Bis [mb,nb], then the size of C is [ma+mb-1,na+nb-1].

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along the rows
and then with the vector hrow along the columns. If hcol is a column vector and
hrow is a row vector, this case is the same as C = conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

full Returns the full two-dimensional convolution (default).
same Returns the central part of the convolution of the same size as A.

valid Returns only those parts of the convolution that are computed
without the zero-padded edges. Using this option, C has size
[ma-mb+1,na-nb+1] when all(size(A) >=size(B)). Otherwise
conv2 returns [].

conv2 uses a straightforward formal implementation of the two-dimensional
convolution equation in spatial form. If ¢ and b are functions of two discrete
variables, n; and n,, then the formula for the two-dimensional convolution of
a and b is

c(nyny) = Z z a(ky ky) b(ny—ky,nyg—ky)

ky=-0ky,=—0

In practice however, conv2 computes the convolution for finite intervals.

2-461

conv?2

Note that matrix indices in MATLAB always start at 1 rather than 0.
Therefore, matrix elements A(1,1),B(1,1),and C(1,1) correspond to
mathematical quantities a(0,0), 5(0,0), and ¢(0,0).

Examples Example 1. For the 'same' case, conv2 returns the central part of the
convolution. If there are an odd number of rows or columns, the "center" leaves
one more at the beginning than the end.

This example first computes the convolution of A using the default (' full')
shape, then computes the convolution using the 'same' shape. Note that the
array returned using 'same' corresponds to the underlined elements of the
array returned using the default shape.

A = rand(3);

B = rand(4);

C = conv2(A,B) % C is 6-by-6

C =
0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
0.5627 1.5150 2.3576 3.1553 2.5373 1.0602
0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
0.3089 1.1419 1.822 2.1561 1.6364 0.6841
0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B, 'same') % Cs is the same size as A: 3-by-3

Cs

.3576 3.1553 2.5373
.4302 3.5128 2.4489
.8229 2.1561 1.6364

- W NI

Example 2. In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s=[121;000; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A
A(
H
mesh (

zeros(10);
17,3:7) = ones(5);
conv2(A,s);

H)

In w1

2-462

conv2

-4
15

10 15

10

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

-4
15

10 15

10

2-463

conv?2

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H."2 + V."*2))

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

2-464

convhull

Purpose

Syntax

Description

Visualization

Examples

Convex hull

K convhull(x,y)
K convhull(x,y,options)
[K,a] = convhull(...)

K = convhull(x,y) returns indices into the x and y vectors of the points on the
convex hull.

convhull uses Qhull.

K = convhull(x,y,options) specifies a cell array of strings options to be used
in Qhull via convhulln. The default optionis {'Qt'}.

Ifoptionsis [], the default options are used. If optionsis {' '}, no options will
be used, not even the default. For more information on Qhull and its options,
see http://www.qghull.org.

[K,a] = convhull(...) also returns the area of the convex hull.
Use plot to plot the output of convhull.

xX = -1:.05:1; yy = abs(sqrt(xx));

[x,y] = pol2cart(xx,yy);

k = convhull(x,y);
plOt(X(k)ay(k)s ‘r- 1 Xy Y, Ib+|)

2-465

convhull

Algorithm

See Also

Reference

2-466

0.4f N

0.2+ . :

+

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

convhull is based on Qhull [2]. For information about Qhull, see
http://www.ghull.org/. For copyright information, see
http://www.qhull.org/COPYING. txt.

convhulln, delaunay, plot, polyarea, voronoi

[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.uiuc.edu/pub/software/gqhull-96.ps.Z.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

convhulln

Purpose

Syntax

Description

Visualization

Algorithm

N-dimensional convex hull

K = convhulln(X)
K = convulln(X, options)
[K,v] = convhulln(...)

K = convhulln(X) returns the indices K of the points in X that comprise the
facets of the convex hull of X. X is an m-by-n array representing m points in
N-dimensional space. If the convex hull has p facets then K is p-by-n.

convhulln uses Qhull.

K = convulln(X, options) specifies a cell array of strings options to be used
as options in Qhull. The default options are:

e {'Qt'} for 2-, 3-. and 4-dimensional input
e {'Qt', 'Qx'} for 5-dimensional input and higher.
Ifoptionsis [], the default options are used. If optionsis {''}, no options are

used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex hull.

Plotting the output of convhulln depends on the value of n:

e Forn = 2, use plot as you would for convhull.

¢ For n = 3, you can use trisurf to plot the output. The calling sequence is
K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

® You cannot plot convhulln output for n > 3.
convhulln is based on Qhull [2]. For information about Qhull, see

http://www.qghull.org/. For copyright information, see
http://www.qghull.org/COPYING. txt.

2-467

convhulln

See Also

Reference

2-468

convhull, delaunayn, dsearchn, tsearchn, voronoin

[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/ghull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

convn

Purpose N-dimensional convolution
Syntax C = convn(A,B)
C = convn(A,B, 'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size (A)+size(B)-1.

C = convn(A,B, 'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full N-dimensional convolution (default).

'same' Returns the central part of the result that is the same size as A.

'valid' Returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the
result is

max(size(A)-size(B) + 1, 0)

See Also conv, conv2

2-469

copyfile

Purpose

Graphical
Interface

Syntax

Description

Examples

2-470

Copy file or directory

As an alternative to the copyfile function, use the Current Directory browser.
Select the files and then select copy and paste commands from the Edit menu.

copyfile('source', 'destination')
copyfile('source', 'destination','f")
[status,message,messageid] = copyfile('source', 'destination’','f")

copyfile('source', 'destination') copies the file or directory, source (and
all its contents) to the file or directory, destination, where source and
destination are the absolute or relative pathnames for the directory or file. If
source is a directory, destination cannot be a file. If source is a directory,
copyfile copies the contents of source, not the directory itself. To rename a
file or directory when copying it, make destination a different name than
source. If destination already exists, copyfile replaces it without warning.
Use the wildcard * at the end of source to copy all matching files. Note that the
read-only and archive attributes of source are not preserved in destination.

copyfile('source', 'destination','f') copies source to destination,
regardless of the read-only attribute of destination.

[status,message,messageid] = copyfile('source', 'destination','f"')
copies source to destination, returning the status, a message, and the
MATLAB error message ID (see error and lasterr). Here, status is 1 for
success and 0 for error. Only one output argument is required and the f input
argument is optional.

The * wildcard in a path string is supported. Current behavior of copyfile
differs between UNIX and Windows when using the wildcard * or copying
directories.

Copy File in Current Directory, Assigning a New Name to It

To make a copy of a file myfun.min the current directory, assigning it the name
myfun2.m, type

copyfile('myfun.m', 'myfun2.m")

copyfile

See Also

Copy File to Another Directory
To copy myfun.mto the directory d: /work/myfiles, keeping the same filename,
type

copyfile('myfun.m','d:/work/myfiles")

Copy All Matching Files by Using a Wildcard

To copy all files in the directory myfiles whose names begin with my to the
directory newprojects, where newprojects is at the same level as the current
directory, type

copyfile('myfiles/my*',"'../newprojects')

Copy Directory and Return Status

In this example, all files and subdirectories in the current directory’s myfiles
directory are copied to the directory d:/work/myfiles. Note that before
running the copyfile function, d: /work does not contain the directory
myfiles. It is created because myfiles is appended to destination in the
copyfile function:

[s,mess,messid]=copyfile('myfiles', 'd:/work/myfiles')
S -
1

mess =

messid =

The message returned indicates that copyfile was successful.

Copy File to Read-Only Directory

Copy myfile.m from the current directory to d: /work/restricted, where
restricted is a read-only directory:

copyfile('myfile.m', 'd:/work/restricted','f")

After the copy, myfile.m exists in d: /work/restricted.

cd, delete, dir, fileattrib, filebrowser, fileparts, mkdir, movefile, rmdir

2-471

copyobj

Purpose
Syntax

Description

Remarks

Examples

2-472

Copy graphics objects and their descendants
new_handle = copyobj(h,p)

copyobj creates copies of graphics objects. The copies are identical to the
original objects except the copies have different values for their Parent
property and a new handle. The new parent must be appropriate for the copied
object (e.g., you can copy a line object only to another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects identified by
h and returns the handle of the new object or a vector of handles to new objects.
The new graphics objects are children of the graphics objects specified by p.

h and p can be scalars or vectors. When both are vectors, they must be the same
length, and the output argument, new_handle, is a vector of the same length.
In this case, new_handle (i) is a copy of h(i) with its Parent property set to
p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p.
Each new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle (i) is a copy of h(i) with
its Parent property set to p. The length of new_handle equals length(h).

Graphics objects are arranged as a hierarchy. See Handle Graphics Objects for
more information.

Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure

axes % Create an axes object in the figure
new_handle = copyobj(h,gca);

colormap hot

view(3)

grid on

Note that while the surface is copied, the colormap (figure property), view, and
grid (axes properties) are not copies.

copyobj
|

See Also findobj, gcf, gca, gco, get, set
Parent property for all graphics objects
“Finding and Identifying Graphics Objects” for related functions

2-473

corrcoef

Purpose

Syntax

Description

2-474

Correlation coefficients

R corrcoef (X)

R corrcoef(x,y)

[R,P]=corrcoef(...)

[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'parami',valt, 'param2',val2,...)

R = corrcoef (X) returns a matrix R of correlation coefficients calculated from
an input matrix X whose rows are observations and whose columns are
variables. The matrix R = corrcoef (X) is related to the covariance

matrix C = cov(X) by

.. C(i,j
R(i.j) = ——d)
NC(i,3)C(,J)
corrcoef (X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov (x, 'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x v]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the
hypothesis of no correlation. Each p-value is the probability of getting a
correlation as large as the observed value by random chance, when the true
correlation is zero. IfP(i,j) is small, say less than 0.05, then the correlation
R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) alsoreturns matrices RLO and RUP, of the same
size as R, containing lower and upper bounds for a 95% confidence interval for
each coefficient.

[...]=corrcoef(..., " 'parami',vali,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the following.

corrcoef

Examples

‘alpha’ A number between 0 and 1 to specify a confidence level of
100%(1 - alpha)%. Default is 0.05 for 95% confidence intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to use rows
with no NaN values, or 'pairwise' to compute R(i,j) using
rows with no NaN values in either column i or j.

The p-value is computed by transforming the correlation to create a t statistic
having n-2 degrees of freedom, where n is the number of rows of X. The
confidence bounds are based on an asymptotic normal distribution of
0.5*1log((1+R)/(1-R)), with an approximate variance equal to 1/(n-3).
These bounds are accurate for large samples when X has a multivariate normal
distribution. The 'pairwise' option can produce an R matrix that is not

positive definite.

Generate random data having correlation between column 4 and the other

columns.

X = randn(30,4);
X(:,4) = sum(x,2);
[r,p] = corrcoef(x)
[i,j]1 = find(p<0.05);
[1,7]

r =
1.0000 -0.3566
-0.3566 1.0000
0.1929 -0.1429
0.3457 0.4461
p:
1.0000 0.0531
0.0531 1.0000
0.3072 0.4511
0.0613 0.0135
ans =
4 2
4 3
2 4

[
“©

o°

[
“©

o°

Uncorrelated data

Introduce correlation.

Compute sample correlation and p-values.
% Find significant correlations.
Display their (row,col) indices.

0.1929 0.3457
-0.1429 0.4461
1.0000 0.5183
0.5183 1.0000
0.3072 0.0613
0.4511 0.0135
1.0000 0.0033
0.0033 1.0000

2-475

corrcoef

3 4

See Also cov, mean, std

xcorr, xcov in the Signal Processing Toolbox

2-476

COS

Purpose
Syntax

Description

Examples

Definition

Cosine of an argument in radians
Y = cos(X)

The cos function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.
Graph the cosine function over the domain —-Tt<x < T1.

X = -pi:0.01:pi;
plot(x,cos(x)), grid on

0.8

0.6

0.4F

0.2

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of .

The cosine can be defined as

cos(x +iy) = cos(x)cosh(y)—isin(x)sinh(y)

2-477

COS

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acos, acosh, cosd, cosh

2-478

cosd

Purpose Cosine of an argument in degrees
Syntax Y = cosd(X)
Descripl'ion Y = cosd(X) is the cosine of the elements of X, expressed in degrees. For odd

integers n, cosd (n*90) is exactly zero, whereas cos(n*pi/2) reflects the
accuracy of the floating point value of pi.

See Also acosd, cos

2-479

cosh

Purpose Hyperbolic cosine
Syntax Y = cosh(X)
Description The cosh function operates element-wise on arrays. The function’s domains

and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain -5<x<5.

X = -5:0.01:5;
plot(x,cosh(x)), grid on

80

Definition The hyperbolic cosine can be defined as
4 -z
e +te
cosh(z) = 5
Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.

business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-480

cosh

See Also acos, acosh, cos

2-481

cot

Purpose
Syntax

Description

Examples

Definition

Algorithm

2-482

Cotangent of an argument in radians
Y = cot(X)

The cot function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Graph the cotangent the domains -T1<x <0 and 0 <x <TL

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

80

60

40+

20

—-60F

-80F

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
=4

The cotangent can be defined as

1

cot(2) = tan(z)

cot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

cof

See Also acot, acoth, cotd, coth

2-483

cotd

Purpose Cotangent of an argument in degrees
Syntax Y = cotd(X)
Description Y = cotd(X) is the cotangent of the elements of X, expressed in degrees. For

integers n, cotd(n*180) is infinite, whereas cot(n*pi) is large but finite,
reflecting the accuracy of the floating point value of pi.

See Also acotd, cot

2-484

coth

Purpose
Syntax

Description

Examples

Definition

Algorithm

Hyperbolic cotangent
Y = coth(X)

The coth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Graph the hyperbolic cotangent over the domains —1t<x <0 and 0 <x <TL

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

50f ~ 1

-50F 4

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
=4

The hyperbolic cotangent can be defined as

_ 1
coth(z) = tanh (z)

cothuses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-485

coth

See Also acot, acoth, cot

2-486

cov

Purpose

Syntax

Description

Remarks

Examples

See Also

Covariance matrix

(]
1

cov (X)
CoVv(X,Y)

(]
1

C = cov(x) where x is a vector returns the variance of the vector elements. For
matrices where each row is an observation and each column a variable, cov (x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each
column, and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(Xx,y), where x and y are column vectors of equal length, is equivalent
tocov([x vy]).
cov removes the mean from each column before calculating the result.

The covariance function is defined as
cov(xq,x9) = Ef(xq —Hq)(xg— M)l
where E is the mathematical expectation and y; = Ex;.
Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3].To obtain a vector of variances for

each column of A:

v = diag(cov(A))'
V =
10.3333 2.3333 1.0000
Compare vector v with covariance matrix C:

C:
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns of A.
The off-diagonal elements C (1, j) represent the covariances of columns i and j.

corrcoef, mean, std

xcorr, xcov in the Signal Processing Toolbox

2-487

cplxpair

Purpose

Syntax

Description

Diagnostics

2-488

Sort complex numbers into complex conjugate pairs

= cplxpair
= cplxpair
cplxpair
= cplxpair

A)

A,tol)
A,[]1,dim)
A,tol,dim)

W W o W
1l

B = cplxpair(A) sorts the elements along different dimensions of a complex
array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100*eps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If Ais a vector, cplxpair (A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If A is a multidimensional array, cplxpair (A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.
B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.
B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides

the default tolerance.

If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message

Complex numbers can't be paired.

cputime

Purpose
Syntax

Description

Examples

See Also

Elapsed CPU time

cputime

cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and

wrap around.

The following code returns the CPU time used to run surf (peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

0.4667

clock, etime, tic, toc

2-489

createClassFromWsd|

Purpose
Syntax

Description

Remarks

Example

2-490

Creates MATLAB classes from Web Services Description Language (WSDL)
createClassFromWsdl('source')

createClassFromWsdl('source') creates MATLAB classes based on a WSDL
application programming interface (API). The source argument specifies a
URL or file path to a WSDL API, which defines web service methods,
arguments, and transactions.

Based on the WSDL API, the createClassFromWSDL function creates a new
folder in the current directory. The folder contains an M-file for each web
service method. In addition, two default M-files are created that display
method results (display.m) and that initialize the web service MATLAB object
(servicename.m).

For example, if myWebService offers two methods (method1 and method2), the
createClassFromWSDL function creates:

® @myWebService folder in the current directory

® method1.m — M-file for method1

® method2.m — M-file for method2

e display.m — Default M-file for display method

* myWebService.m — Default M-file for the myWebService MATLAB object

For more information about WSDL and web services, see the following
resources:

¢ World Wide Web Consortium (W3C) WSDL specification
® W3C SOAP specification
XMethods.net

The following example calls a web service that returns the book price for an
International Standard Bibliographic Number (ISBN).

% The createClassFromWSDL function takes the WSDL URL as an

% argument.
createClassFromWsdl('http://www.xmethods.net/sd/2001/BNQuoteServ
ice.wsdl');

bg = bnquoteservice;

createClassFromWsdl

% getQuote is the web service method. The first argument,
bg, is an instance of the bnquoteservice class. The

% second argument, 0735712719, is an ISBN number.
getprice(bg, '0735712719');

o°

2-491

Cross

Purpose

Syntax

Description

Remarks

Examples

See Also

2-492

Vector cross product

C = cross(A,B)

C = cross(A,B,dim)

C = cross(A,B) returns the cross product of the vectors A and B. That is,

C = A x B. Aand B must be 3-element vectors. If A and B are multidimensional

arrays, cross returns the cross product of A and B along the first dimension of
length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays, returns the
cross product of A and B in dimension dim . A and B must have the same size,
and both size(A,dim) and size(B,dim) must be 3.

To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

The cross and dot products of two vectors are calculated as shown:

a=1[12 3];
b=10456];
c = cross(a,b)
C -
-3 6 -3
d = dot(a,b)
d =
32
dot

CsC

Purpose
Syntax

Description

Examples

Definition

Algorithm

Cosecant of an argument in radians
Y = csc(x)

The csc function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Graph the cosecant over the domains —Tt<x <0 and 0 <x <TI.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

-50F 4

-1001 b

_150 ‘ ‘ ‘ ‘ ‘ ‘ ‘
=4

The cosecant can be defined as

1
sin(z)

csc(z) =

csc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2-493

CSC

See Also acsc, acsch, cscd, csch

2-494

cscd

Purpose Cosecant of an argument in degrees
Syntax Y = cscd(X)
Description Y = cscd(X) is the cosecant of the elements of X, expressed in degrees. For

integers n, cscd(n*180) is infinite, whereas csc (n*pi) is large but finite,
reflecting the accuracy of the floating point value of pi.

See Also acscd, csc

2-495

csch

Purpose
Syntax

Description

Examples

Definition

Algorithm

2-496

Hyperbolic cosecant
Y = csch(x)

The csch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Graph the hyperbolic cosecant over the domains -t<x <0 and 0 <x <Tt.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

60

401

20

—-60F 4

-80F 4

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
=4

The hyperbolic cosecant can be defined as

_ 1
csch(z) = sinh (z)
cschuses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

csch

See Also acsc, acsch, csc

2-497

csvread

Purpose

Syntax

Description

Remarks

Examples

2-498

Read a comma-separated value file

M = csvread('filename')
M = csvread('filename', row, col)
M = csvread('filename', row, col, range)

M = csvread('filename') reads a comma-separated value formatted file,
filename. The result is returned in M. The file can only contain numeric values.

M = csvread('filename', row, col) reads data from the comma-separated
value formatted file starting at the specified row and column. The row and
column arguments are zero based, so that row=0 and co1=0 specify the first
value in the file.

M = csvread('filename', row, col, range) reads only the range specified.
Specify range using the notation [R1 C1 R2 C2] where (R1,C1) is the upper left
corner of the data to be read and (R2,C2) is the lower right corner. You can also
specify the range using spreadsheet notation, as in range = 'A1..B7"'.

csvread fills empty delimited fields with zero. Data files having lines that end
with a nonspace delimiter, such as a semicolon, produce a result that has an
additional last column of zeros.

csvread imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type. Valid
forms for a complex number are

Form Example
—<real>—<imag>i|j 5.7-3.11
—<imag>i|j -73

Embedded white-space in a complex number is invalid and is regarded as a
field delimiter.

Given the file csvlist.dat that contains the comma-separated values

02, 04, 06, 08, 10, 12
03, 06, 09, 12, 15, 18

csvread

05, 10, 15, 20, 25, 30
07, 14, 21, 28, 35, 42
11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')
ans =

4 6 8
6 9 12
10 15 20
14 21 28
22 33 44

- N wN

1

10
15
25
35
55

12
18
30
42
66

To read the matrix starting with zero-based row 2, column 0, and assign it to

the variable m,

m

5 10 15 20
7 14 21 28
11 22 33 44

csvread('csvlist.dat', 2, 0)

25
35
55

30
42
66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])
m =
5 10 15 20
7 14 21 28
See Also csvwrite, dlmread, textscan, wkiread, file formats, importdata, uiimport

2-499

csvwrite

Purpose Write a comma-separated value file

Syntax csvwrite('filename',M)
csvwrite('filename',M,row,col)

Description csvwrite('filename',M) writes matrix M into filename as comma-separated
values.

csvwrite('filename' ,M,row,col) writes matrix M into filename starting at
the specified row and column offset. The row and column arguments are zero
based, so that row=0 and C=0 specify the first value in the file.

Examples The following example creates a comma-separated value file from the matrix m.

m=1[369 12 15; 5 10 15 20 25; 7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

y13,6,9,12,15
y,5,10,15,20,25
y,7,14,21,28,35
y,11,22,33,44,55

See Also csvread, dlmwrite, textread, wkiwrite, file formats, importdata, uiimport

2-500

cumprod

Purpose

Syntax

Description

Examples

See Also

Cumulative product

B
B

cumprod(A)
cumprod(A,dim)

B = cumprod(A) returns the cumulative product along different dimensions of
an array.

If Ais a vector, cumprod (A) returns a vector containing the cumulative product
of the elements of A.

If Ais a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod (A, 1) increments
the first (row) index, thus working along the rows of A.

cumprod(1:5)
ans =
1 2 6 24 120

A=1[123; 4586];

cumprod(A)

ans =
1 2 3
4 10 18

cumprod(A,2)

ans =
1 2 6
4 20 120

cumsum, prod, sum

2-501

cumsum

Purpose

Syntax

Description

Examples

See Also

2-502

Cumulative sum

us]
1l

cumsum(A)
cumsum(A,dim)

us]
1l

B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If Ais a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum (A, 1) works across
the first dimension (the rows).

cumsum(1:5)
ans =

[T 83 6 10 15]

A=[123;4586];

cumsum(A)
ans =
1 2 3
5 7 9
cumsum(A,2)
ans =
1 3 6
4 9 15

cumprod, prod, sum

cumirapz

Purpose

Syntax

Description

Example

Cumulative trapezoidal numerical integration

Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(... dim)

Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y
via the trapezoidal method with unit spacing. To compute the integral with
other than unit spacing, multiply Z by the spacing increment.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the cumulative
integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array whose first nonsingleton dimension is
length(X). cumtrapz operates across this dimension.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,DIM) integrates across the
dimension of Y specified by scalar dim. The length of X must be the same as
size(Y,dim).

Y=1[012;345];

cumtrapz(Y,1)
ans =
0 0 0
1.5000 2.5000 3.5000

cumtrapz(Y,2)

ans =
0 0.5000 2.0000
0 3.5000 8.0000

2-503

cumtrapz

See Also cumsum, trapz

2-504

curl

Purpose

Syntax

Description

Examples

Computes the curl and angular velocity of a vector field

[curlx,curly,curlz,cav]
[curlx,curly,curlz,cav]
[curlz,cav]= curl(X,Y,U,V)

[curlz,cav]= curl(U,V)

[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
cav = curl(...)

curl(X,Y,z,u,v,w)
curl(U,Vv,w)

[curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl and
angular velocity perpendicular to the flow (in radians per time unit) of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must
be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic
and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the expression
[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...) returns
only the curl.

cav = curl(...) returns only the curl angular velocity.

This example uses colored slice planes to display the curl angular velocity at
specified locations in the vector field.

2-505

curl

2-506

load wind

cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]1);
shading interp

daspect([1 1 1]); axis tight
colormap hot(16)

camlight

80

20

This example views the curl angular velocity in one plane of the volume and
plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
X = x(1,1,K); y =y(:,5,K); u=u(:,1,k); v =v(i,1,K);

cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;

quiver(x,y,u,v,'y")

hold off

colormap copper

curl

v
/it

e RIS]S g s
AR ARSI s s
FPAAAAAAATAS S b r s

A mm m m
PP S
R NN

r oy s
rr s
Pt

Pr s o MR L L A

v
'
1
A
3
N
N
N
N
1
f
\
.
'
’
t
M
i
t
!
7

N

90 100 110 120 130

80

streamribbon, divergence

See Also

“Volume Visualization” for related functions

Displaying Curl with Stream Ribbons for another example

2-507

customvercirl

Purpose
Syntax

Description

See Also

2-508

Allow custom source control system
customverctrl(filename, arguments)

This function is supplied for customers who want to integrate a version control
system that is not supported with MATLAB. This function must conform to the
structure of one of the supported version control systems, for example RCS. See
the files clearcase.m, pvcs.m, rcs.m, and sourcesafe.min
$matlabroot\toolbox\matlab\verctrl as examples.

checkin, checkout, cmopts, undocheckout

cylinder

Purpose

Syntax

Description

Remarks

Examples

Generate cylinder

[X,Y,Z] cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can draw
the cylindrical object using surf or mesh, or draw it immediately by not
providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder with a
radius equal to 1. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a cylinder
using r to define a profile curve. cylinder treats each element in r as a radius
at equally spaced heights along the unit height of the cylinder. The cylinder has
20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a cylinder
based on the profile curve defined by vector r. The cylinder has n equally spaced
points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using surf.

cylinder treats its first argument as a profile curve. The resulting surface
graphics object is generated by rotating the curve about the x-axis, and then
aligning it with the z-axis.

Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type', 'surface');

2-509

cylinder

set(h, 'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)

axis square

2-510

daspect

Purpose

Syntax

Description

Remarks

Set or query the axes data aspect ratio

daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

The data aspect ratio determines the relative scaling of the data units along the
x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current axes to the
specified value. Specify the aspect ratio as three relative values representing
the ratio of the x-, y-, and z-axis scaling (e.g., [1 1 3] means one unit in x is
equal in length to one unit in y and three units in z).

daspect('mode') returns the current value of the data aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.
daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
daspect operates on the current axes.

daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data aspect
ratio so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the data
aspect ratioto [1 1 1] to produce the correct proportions.

Setting a value for data aspect ratio or setting the data aspect ratio mode to
manual disables the MATLAB stretch-to-fill feature (stretching of the axes to

2-511

daspect

fit the window). This means setting the data aspect ratio to a value, including
its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section of the
axes description for more information.

Exumples The following surface plot of the function z = xe(**~7%) is useful to illustrate
the data aspect ratio. First plot the function over the range 2<x<2,-2<y<2,

[x,y] = meshgrid([-2:.2:2]);
Z = X.*exp(-x."2 - y."2);
surf(x,y,z)

0.5

03,3%7‘7/”,' PN
N
/ J/ ;’ftg‘gﬁu‘;‘:{:

/) =
V| SISO
) tess

Querying the data aspect ratio shows how MATLAB has drawn the surface.

daspect
ans =
4 4 A1

Setting the data aspect ratioto [1 1 1] produces a surface plot with equal
scaling along each axis.

daspect([1 1 1])

2-512

daspect

axis, pbaspect, x1im, ylim, z1im

See Also

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” for related functions

Axes Aspect Ratio for more information

2-513

datacursormode

Purpose

Syntax

Description

Data Cursor
Mode Object

2-514

Enable/disable interactive data cursor mode

datacursormode on

datacursormode off

datacursormode
datacursormode(figure_handle,...)
dcm_obj = datacursormode(figure_handle)

datacursormode on enables data cursor mode on the current figure.
datacursormode off disables data cursor mode on the current figure.
datacursormode toggles data cursor mode on the current figure.

datacursormode(figure_handle,...) enables or disables data cursor mode
on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the figure’s data cursor
mode object, which enables you to customize the data cursor. See “Data Cursor
Mode Object”.

The data cursor mode object has properties that enable you to controls certain
aspects of the data cursor. You can use the set and get commands and the
returned object (dcm_obj in the above syntax) to set and query property values.

Data Cursor Mode Properties
Enabled on | off
Specifies whether this mode is currently enabled on the figure.
SnapToDataVertex on | off

Specifies whether the data cursor snaps to the nearest data value or is located
at the actual pointer position.

DisplayStyle datatip | window
Determines how the data is displayed.

¢ datatip displays cursor information in a yellow text box next to a marker
indicating the actual data point being displayed.

datacursormode

® window displays cursor information in a floating window within the figure.

Updatefcn function handle

This property references a function that customizes the text appearing in the
data cursor. The function handle must reference a function that has two
implicit arguments (these arguments are automatically pass to the function by
MATLAB when the function executes). For example, the following function
definition line uses the required arguments:

function output_txt = myfunction(obj,event_obj)

% obj Currently not used (empty)

% event_obj Handle to event object

% output_txt Data cursor text string (string or cell array of
% strings).

event_obj is an object having the following read-only properties.

® Target — Handle of the object the data cursor is referencing (the object on
which the user clicked).

® Position — An array specifying the x, y, (and z for 3-D graphs) coordinates
of the cursor.

You can query these properties within your function. For example,
pos = get(event_obj, 'Position');
returns the coordinates of the cursor.
See Function Handles for more information on creating a function handle.
See “Change Data Cursor Text” for an example.

Data Cursor Method

You can use the getCursorInfo function with the data cursor mode object
(dem_obj in the above syntax) to obtain information about the data cursor. For
example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph. Each
structure has the following fields:

¢ Target — The handle of the graphics object containing the data point.

2-515

datacursormode

Examples

2-516

® Position — An array specifying the x, y, (and z) coordinates of the cursor.
Line and lineseries objects have an additional field:

® DataIndex — A scalar index into the data arrays that correspond to the
nearest data point. The value is the same for each array.

This example creates a plot and enables data cursor mode from the command
line.

surf (peaks)
datacursormode on
% Click mouse on surface to display data cursor

Setting Data Cursor Mode Options
This example enables data cursor mode on the current figure and sets data
cursor mode options. The following statements
¢ Create a graph
® Toggle data cursor mode to on
¢ Save the data cursor mode object to specify options and get the handle of the
line to which the datatip is attached.
fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj, 'DisplayStyle', 'datatip’, 'SnapToDataVertex', 'off')

% Click on line to place datatip

c_info = getCursorInfo(dcm_obj);
set(c_info.Target, 'LineWidth',2) % Make selected line wider

datacursormode

|

X=32
=2.243

Change Data Cursor Text

This example shows you how to customize the text that is displayed by the data
cursor. Supose you want to replace the text displayed in the datatip and data
window with "Time:" and "Ampltude:".

function doc_datacursormode

fig = figure;

a=-16; t = 0:60;

plot(t,sin(a*t))

dcm_obj = datacursormode(fig);
set(dcm_obj, 'UpdateFcn',@myupdatefcn)

% Click on line to select data point
function txt = myupdatefcn(empt,event_obj)
pos = get(event_obj,'Position');

txt = {['Time: ',num2str(pos(1))],...
['Amplitude: ',num2str(pos(2))]};

2-517

datatipinfo

Purpose Produce short description of input variable
Syntax datatipinfo(var)
Description datatipinfo(var) displays a short description of a variable, similar to what is

displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:
A = rand(5);
datatipinfo(A)
A: 5x5 double
0.4445 .3567 0.7458 0.0767 0.4400

0.5641 .9808 0.0265 0.4838 0.6722
0.9099 .9653 0.2508 0.4859 0.4054
0.2857 0.5198 0.7383 0.9301 0.9604

0.3

0.7962 0.6575 0.3918 0.8289 0.9746
0.9
0

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);
datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size and
data type:

A = rand(5);
A, 15,2) = A(:,0,1);5

datatipinfo(A)
A: 5x5x2 double

See Also debug

2-518

date

Purpose Current date string
Syntax str = date
Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

2-519

datenum

Purpose

Syntax

Description

2-520

Convert to serial date number

N = datenum(DT)

N = datenum(DT, P)

N = datenum(DT, F)

N = datenum(DT, F, P)

N = datenum(Y, M, D)

N = datenum(Y, M, D, H, MI, S)

The datenum function converts date strings and date vectors (defined by
datevec) into serial date numbers. Date numbers are serial days elapsed from
some reference date. By default, the serial day 1 corresponds to 1-Jan-0000.

Date strings and date vectors can contain multiple dates in either a cell array
of strings or an M-by-N vector, respectively. In either case, the resulting output
is a column vector of date numbers.

N = datenum(DT) converts the date string or date vector DT into a serial date
number. Date strings with two-character years, e.g., 12- june-12, are assumed
to lie within the 100-year period centered about the current year.

Note If DT is a string, it must be in one of the date formats 0, 1, 2, 6, 13, 14,
15, 16, or 23 as defined by datestr.

N = datenum(DT, P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

N = datenum(DT, F) uses the specified date form F to interpret the date string
DT during conversion to date number N. The date form must be composed of
date format symbols according to Table , Free-Form Date Format Specifiers, in
the datestr function reference page.

N = datenum(DT, F, P) uses the specified date form F to interpret the date
string DT and pivot year P to interpret the year when expressed in two digits.

datenum

Examples

N = datenum(Y, M, D) returns the serial date numbers for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically carried to the next unit.

N = datenum(Y, M, D, H, MI, S) returns the serial date numbers for
corresponding elements of the Y, M, D, H, MI, and S (year, month, day, hour,
minute, and second) array values. Y, M, D, H, MI, and S must be arrays of the
same size (or any can be a scalar). Values outside the normal range of each
array are automatically carried to the next unit (for example, month values
greater than 12 are carried to years). Month values less than 1 are set to be 1.
All other units can wrap and have valid negative values.

Convert a date string to a serial date number:

n datenum('19-May-2001")

730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

731204

Convert a date vector to a serial date number:

format bank
n = datenum([2001 5 19 18 0 0])

n =
730990.75

Convert a date string to a serial date number using the default pivot year:

n = datenum('12-june-12")

735032

2-521

datenum

See Also

2-522

Convert the same date string to a serial date number using 1900 as the pivot
year:

n datenum('12-june-12', 1900)

698507

Specify format 'dd.mm.yyyy"' to be used in interpreting a nonstandard date
string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

730625.75

datestr, datevec, date, clock, now, datetick

datestr

Purpose

Syntax

Description

Date string format

str = datestr(DT)

str = datestr (DT, dateform)

str = datestr (DT, dateform, P)

str = datestr(..., 'local')

str = datestr(DT) converts a serial date number (defined by datenum) or date

vector (defined by datevec) to a date string. You can also convert an array of N
serial date numbers or date vectors to an N-by-M array of date strings.

Date strings with two-character years, e.g., 12-june-12, are assumed to lie
within the 100-year period centered about the current year.

str = datestr (DT, dateform) converts a serial date number, date vector, or
date string DT to a date string having format dateform. The dateform
argument can be either a number or a string. See Table , Dateform Format
Numbers and Strings, on page 2-524, for valid dateform values.

By default, the value of dateformis 1, 16, or 0, depending on whether DT
contains a date, time, or both. If DT is a string, dateform must be one of 0, 1, 2,
6,13, 14,15, 16, or 23.

Table , Free-Form Date Format Specifiers, on page 2-526, shows the symbols
you can use to specify a free-form date format in the dateform argument. These
symbols control how MATLAB displays the returned string.

str = datestr(DT, dateform, P) uses the specified pivot year as the
starting year of the 100-year range in which a two-character year resides. The
default pivot year is the current year minus 50 years.

str = datestr(..., 'local') returns the string in a localized format. The
default is US English (‘'en_uUS"). This argument must come last in the argument
sequence.

2-523

datestr

Dateform Format Numbers and Strings

dateform dateform (string) Example
(number)

0 "dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17
1 ‘dd-mmm-yyyy' 01-Mar-2000
2 ‘'mm/dd/yy' 03/01/00

3 "mmm' Mar

4 'm' M

5 ‘mm' 03

6 ‘mm/dd’ 03/01

7 'dd’ 01

8 'ddd’ Wed

9 d' W

10 "yyyy' 2000

11 'yy! 00

12 ‘mmmyy ' Maro00

13 "HH:MM:SS' 15:45:17
14 '"HH:MM:SS PM' 3:45:17 PM
15 "HH: MM 15:45

16 "HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 ‘aQ’ Q1

19 ‘dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

2-524

datestr

Dateform Format Numbers and Strings

dateform dateform (string) Example
(number)

21 ‘mmm.dd.yyyy HH:MM:SS' Mar.01,2000 15:45:17
22 ‘'mmm.dd.yyyy' Mar.01.2000

23 ‘mm/dd/yyyy' 03/01/2000

24 ‘dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd’ 00/03/01

26 'yyyy/mm/dd’ 2000/03/01

27 "QA-YYYY' Q1-2001

28 "mmmyyyy' Mar2000

29 (ISO 8601) 'yyyy-mm-dd" 2000-03-01

30 (ISO 8601) 'yyyymmdd THHMMSS ' 20000301T154517

31

'yyyy-mm-dd HH:MM:SS'

2000-03-01 15:45:17

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a string
suitable for input to datenum or datevec. Other date string formats do not
work with these functions unless you specify a date form in the function call.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part of the
input array DT. If you do not specify dateform, or if you specify dateformas -1,

the date string format defaults to the following:

1 If DT contains date information only, e.g., 01-Mar-1995

16 If DT contains time information only, e.g., 03:45 PM

0 If DT is a date vector, or a string that contains both date and time
information, e.g., 01-Mar-1995 03:45

2-525

datestr

The following table shows the string symbols to use in specifying a free-form
format for the output date string. MATLAB interprets these symbols according
to your computer’s language setting and the current MATLAB language

setting.

Free-Form Date Format Specifiers

Symbol Interpretation Example
yyyy Show year in full. 1990, 2002
YY Show year in two digits. 90, 02
mmmm Show month using full name. March, December
mmm Show month using first three letters. Mar, Dec
mm Show month in two digits. 03, 12
m Show month using capitalized first M, D
letter.
dddd Show day using full name. Monday, Tuesday
ddd Show day using first three letters. Mon, Tue
dd Show day in two digits. 05, 20
d Show day using capitalized first letter. M, T
HH Show hour in two digits (no leading 05, 5 AM
zeros when free-form specifier AM or PM
is used (see last entry in this table)).
MM Show minute in two digits. 12, 02
SS Show second in two digits. 07, 59
AM or PM Append AM or PM to date string (see 3:45:02 PM

note below).

Note Free-form specifiers AM and PM from the table above are identical. They
do not influence which characters are displayed following the time (AM versus

2-526

datestr

Examples

See Also

PM), but only whether or not they are displayed. MATLAB selects AM or PM
based on the time entered.

Return the current date and time in a string using the default format, 0:
datestr(now)

ans =
28-Jan-2003 13:41:27

Format the same showing only the date and in the mm/dd/yy format. Note that
you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
01/28/03

Display the returned date string using your own format made up of symbols
shown in the Free-Form Date Format Specifiers table above.

datestr(now, 'dd.mm.yyyy')

ans =
28.01.2003

Convert a nonstandard date form into a standard MATLAB date form by first
converting to a date number and then to a string:

datestr(datenum('24.01.2003', 'dd.mm.yyyy'), 2)

ans =
01/24/03

datenum, datevec, date, clock, now, datetick

2-527

datetick

Purpose Label tick lines using dates

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)
datetick(..., ' 'keeplimits"')
datetick(..., 'keepticks')
datetick(axes_handle,...)

Description datetick(tickaxis) labels the tick lines of an axis using dates, replacing the
default numeric labels. tickaxis is the string 'x', 'y"', or 'z'. The default is
'x'. datetick selects a label format based on the minimum and maximum
limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the integer
dateform (see table). To produce correct results, the data for the specified axis
must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 "dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 ‘dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 "mmm' Mar

4 'm' M

5 ‘mm' 03

6 ‘mm/dd’ 03/01

7 'dd’ 01

8 'ddd’ Wed

9 'd' W

10 "yyyy' 2000

11 'yy! 00

2-528

datetick

dateform (number) dateform (string) Example

12 "mmmyy Maro00

13 "HH:MM:SS' 15:45:17

14 "HH:MM:SS PM' 3:45:17 PM

15 "HH:MM' 15:45

16 "HH:MM PM' 3:45 PM

17 "QQ-YY! Q1 01

18 gelel Q1

19 ‘dd/mm' 01/03

20 ‘dd/mm/yy" 01/03/00

21 ‘mmm.dd.yyyy HH:MM:SS' Mar.01,2000

15:45:17

22 ‘mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 ‘dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd’ 00/03/01

26 'yyyy/mm/dd" 2000/03/01

27 "QA-YYYY' Q1-2001

28 ‘mmmyyyy ' Mar2000
datetick(..., 'keeplimits') changes the tick labels to date-based labels
while preserving the axis limits.
datetick(..., 'keepticks') changes the tick labels to date-based labels

without changing their locations.

You can use both keeplimits and keepticks in the same call to datetick.

datetick(axes_handle,...

of the current axes.

) uses the axes specified by the handle ax instead

2-529

datetick

Remarks

Example

See Also

2-530

datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes property
(i.e., XTick, YTick, or ZTick) before calling datetick.

Consider graphing population data based on the 1990 U.S. census:

t
p

(1900:10:1990) '; % Time interval

[75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633]'; % Population
plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on

datetick('x',11) % Replace x-axis ticks with 2-digit year
labels

260

240~ 4

220~ ml

200~ ml

160 - .

120 .

100 - .

60 I I I
00 20 40 60 80 00

The axes properties XTick, YTick, and ZTick
datenum, datestr

“Annotating Plots” for related functions

datevec

Purpose

Description

Date components

V = datevec(DT)

V = datevec (DT, P)
V = datevec (DT, F)

V = datevec (DT, F, P)

[Y, M, D, H, MI, S] = datevec(DT)

V = datevec(DT) converts a serial date number (defined by datenum) or date
string (defined by datestr) to a date vector V having elements [year, month,
day, hour, minute, second]. The first five vector elements are integers. You can
also convert an array of N serial date numbers or date strings to an N-by-6 array
of date vectors.

Date strings with two-character years, e.g., 12-june-12, are assumed to lie
within the 100-year period centered about the current year.

V = datevec (DT, P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

V = datevec (DT, F) uses the specified date form F to interpret the date string
DT during conversion to date vector V. The date form must be composed of date
format symbols according to the Free-Form Date Format Specifiers table in the
datestr function reference page.

V = datevec (DT, F, P) uses the specified date form F to interpret the date
string DT, and pivot year P to interpret the year when expressed in two digits.

[Y, M, D, H, MI, S] = datevec(DT) returns the components of the date
vector as individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

2-531

datevec

Examples Obtain a date vector using a string as input:
datevec('12/24/1984 12:45")

ans =
1984 12 24 12 45

Obtain a date vector using a serial date number as input:

t = datenum('12/24/1984 12:45")
‘t =
725000.53
datevec(t)
ans =
1984 12 24 12 45

Assign elements of the returned date vector:

[y, m, d, h, mi, s] = datevec('12/24/1984 12:45");

sprintf('Date: %d/%d/%d Time: %d:%d\n', m, d, y, h, mi)

ans =
Date: 12/24/1984 Time: 12:45

Use free-form date format 'dd.mm.yyyy' to indicate how you want a

nonstandard date string interpreted:

datevec('19.05.2003', 'dd.mm.yyyy")

ans =
2003 19 5 12 45

See Also datenum, datestr, date, clock, now, datetick

2-532

dbclear

Purpose

Graphical
Interface

Syntax

Description

Clear breakpoints

As an alternative to the dbclear function, there are various ways to clear
breakpoints using the Editor/Debugger.

dbclear all

dbclear in mfile

dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if caught error
dbclear if caught error identifier
dbclear if error

dbclear if error identifier
dbclear if warning

dbclear if warning identifier
dbclear if naninf

dbclear if infnan

dbclear all removes all breakpoints in all M-files, as well as breakpoints set
for errors, caught errors, caught error identifiers, warnings, warning
identifiers, and naninf/infnan.

dbclear in mfile removes all breakpoints in mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if caught error removes the breakpoints set using dbstop if
caught error and dbstop if caught error identifier statements.

dbclear if caught error identifier removes the breakpoints set usingthe
dbstop if caught error identifier statement for the specified identifier. It
is an error to clear this setting on a specific identifier if dostop if caught
error or dbstop if caught error allis set.

2-533

dbclear

Remarks

See Also

2-534

dbclear if error removes the breakpoints set using dbstop if error and
dbstop if error identifier statements.

dbclear if error identifier removes the breakpoint set using dbstop if
error identifier for the specified identifier. It is an error to clear this
setting on a specific identifier if dostop if error or dbstop if error all is
set.

dbclear if warning removes the breakpoints set using the dbstop if
warning and dbstop if warning identifier statements.

dbclear if warning identifier removes the breakpoint set using dbstop
if warning identifier for the specified identifier.Itis an error to clear this
setting on a specific identifier if dbstop if warningor dbstop if warning all
is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf.
dbclear if infnan also removes the breakpoint set by dbstop if naninf.

The at, and in keywords are optional.

dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup,
partialpath

dbcont

Purpose
Graphical
Interface
Syntax

Description

See Also

Resume execution

As an alternative to the dbcont function, you can select Continue from the
Debug menu in the Editor/Debugger or click the Continue button in the
Editor/Debugger toolbar.

dbcont

dbcont resumes execution of an M-file from a breakpoint. Execution continues
until another breakpoint is encountered, a pause condition is met, an error

occurs, or MATLAB returns to the base workspace prompt.

dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

2-535

dbdown

Purpose

Graphical
Interface

Syntax

Description

See Also

2-536

Change local workspace context when in debug mode

As an alternative to the dbdown function, you can select a different workspace
from the Stack field in the Editor/Debugger toolbar.

dbdown

dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
function at least once before you issue this function. dbdown is the opposite of
dbup.

Multiple dbdown functions change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dblquad

Purpose

Syntax

Description

Example

Numerically evaluate double integral

g = dblquad(fun,xmin,xmax,ymin,ymax)

g = dblquad(fun,xmin,xmax,ymin,ymax,tol)

g = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

g = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to evaluate

the double integral fun(x,y) over the rectangle xmin <= x <= xmax,

ymin <= y <= ymax. funis a function handle for either an M-file function or an
anonymous function. fun(x,y) must accept a vector x and a scalar y and return
a vector of values of the integrand.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

g = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol instead of
the default, which is 1.0e-6.

g = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the quadrature
function specified as method, instead of the default quad. Valid values for
method are @quadl or the function handle of a user-defined quadrature method
that has the same calling sequence as quad and quadl.
Pass M-file function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);
where the M-file integrnd.mis

function z = integrnd(x, vy)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F
Q

@(Xx,y)y*sin(x)+x*cos(y);
dblquad(F,pi,2*pi,0,pi);

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated
with a vector x and a scalar vy .

2-537

dblquad

See Also

2-538

Nonsquare regions can be handled by setting the integrand to zero outside of
the region. For example, the volume of a hemisphere is

dblquad(@(x,y)sqrt(max(1-(x."2+y."2),0)), -1, 1, -1, 1)
or

dblquad(@(x,y)sqrt(1-(x."2+y."2)).*(x."2+y."2<=1), -1, 1, -1, 1)

quad, quadl, triplequad, @ (function handle), anonymous functions

dbmex

Purpose

Syntax

Description

Remarks

See Also

Enable MEX-file debugging

dbmex on
dbmex off
dbmex stop
dbmex print

dbmex on enables MEX-file debugging for UNIX platforms. It is not supported
on the Sun Solaris platform. To use this option, first start MATLAB from
within a debugger by typing matlab -Ddebugger, where debugger is the name
of the debugger.

dbmex off disables MEX-file debugging.
dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

On Sun Solaris platforms, dbmex is not supported. See the Technical Support
solution 23388 at
http://www.mathworks.com/support/solutions/data/23388.shtml for an
alternative method of debugging.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-539

dbquit

Purpose

Graphical
Interface

Syntax

Description

See Also

2-540

Quit debug mode

As an alternative to the dbquit function, you can select Exit Debug Mode from
the Debug menu in the Editor/Debugger.

dbquit
dbquit immediately terminates the debugger and returns control to the base

workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbstack

Purpose

Graphical
Interface

Syntax

Description

Display function call stack

As an alternative to the dbstack function, you can view the Stack field in the
Editor/Debugger toolbar.

dbstack
[ST,I] = dbstack

dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
The line number of the most recently executed function call (at which the
current breakpoint occurred) is listed first, followed by its calling function,
which is followed by its calling function, and so on, until the topmost M-file
function is reached.

dbstack(n) omits from the display the first n frames. This is useful when
issuing a dbstack from within, say, an error handler.

dbstack('-completenames') outputs the “complete name” (the absolute file
name and the entire sequence of functions that nests the function in the stack
frame) of each function in the stack.

Either none, one, or both of the n and ' -completenames' may appear. If both

appear, the order is irrelevant.

[ST,I] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields

file The file in which the function
appears. This field will be the empty
string if there is no file.

name Function name within the file.

line Function line number.

The current workspace index is returned in I.

If you step past the end of an M-file, then dbstack returns a negative line
number value to identify that special case. For example, if the last line to be

2-541

dbstack

executed is line 15, then the dbstack line number is 15 before you execute that
line and - 15 afterwards.

Examples dbstack
In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2

In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup,
mfilename

2-542

dbstatus

Purpose
Graphical

Interface

Syntax

Description

List all breakpoints

Part of the information shown by dbstatus (namely, the breakpoint line
numbers) is displayed graphically by the breakpoint icons when a file is viewed
in the Editor/Debugger.

dbstatus
dbstatus mfile
s = dbstatus(...)

dbstatus by itself lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus mfile displays a list of the line numbers for which breakpoints are
set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields

name Function name.
line Vector of breakpoint line numbers.
cond Cell vector of breakpoint conditional

expression strings corresponding to
lines in the line field.

cond Condition string ('error', 'caught
error', 'warning', or 'naninf').

identifier When condisoneof 'error', 'caught
error', or 'warning', a cell vector of
MATLAB Message Identifier strings
for which the particular cond state is
set.

Use dbstatus class/function, dbstatus private/function or

dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

2-543

dbstatus

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

2-544

dbstep

Purpose

Graphical
Interface

Syntax

Description

See Also

Execute one or more lines from current breakpoint

As an alternative to the dbstep function, you can select Step or Step In from
the Debug menu in the Editor/Debugger, or click on the Step or Step In
buttons of the Editor/Debugger toolbar.

dbstep

dbstep nlines
dbstep in
dbstep out

This function allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep function steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file function, execution will step to the first executable line of the
called M-file function. If there is no call to an M-file on that line, dbstep inis
the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving the
function.

For all forms, MATLAB also stops execution at any breakpoint it encounters.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup

2-545

dbstop

Purpose

Graphical
Interface

Syntax

Description

2-546

Set breakpoints

Some of the dbstop functionality can be accessed through the Debug menu or
the toolbar buttons of the Editor/Debugger.

dbstop in mfile

dbstop in mfile at lineno

dbstop in mfile at lineno@

dbstop in mfile at lineno@n

dbstop in mfile at subfun

dbstop in mfile at lineno if expression
dbstop in mfile at lineno@ if expression
dbstop in mfile at lineno@n if expression
dbstop in mfile at subfun if expression
dbstop in mfile if expression

dbstop if error

dbstop if error identifier

dbstop if caught error

dbstop if caught error identifier

dbstop if warning

dbstop if warning identifier

dbstop if naninf

dbstop if infnan

dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. mfile must be in a
directory that is on the search path or in the current directory. If you have
graphical debugging enabled, the MATLAB Debugger opens with a breakpoint
at the first executable line of mfile. You can then use the debugging utilities,
review the workspace, or issue any valid MATLAB function. Use dbcont or
dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is 1ineno, putting
MATLAB in debug mode. mfile must be in a directory that is on the search
path or in the current directory. If you have graphical debugging enabled, the
MATLAB Debugger opens mfile with a breakpoint at line 1ineno. If that line

dbstop

is not executable, execution stops and the breakpoint is set at the next
executable line following 1ineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at lineno@ Stops just after any call to the first anonymous
function in the specified line number in mfile.

dbstop in mfile at lineno@n Stops just after any call to the nth
anonymous function in the specified line number in mfile.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. mfile must be in a directory that is on the search path or in the
current directory. If you have graphical debugging enabled, the MATLAB
Debugger opens mfile with a breakpoint at the subfunction specified by
subfun. You can then use the debugging utilities, review the workspace, or
issue any valid MATLAB function. Use dbcont or dbstep to resume execution
of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno if expression temporarily stops execution of
mfile when you run it, just prior to execution of the line whose number is
lineno, putting MATLAB in debug mode. Execution will stop only if
expression evaluates to true. The expression, expression, is evaluated (as if
by eval), in mfile’s workspace when the breakpoint is encountered, and must
evaluate to a scalar logical value (true or false). nfile must be in a directory
that is on the search path or in the current directory. If you have graphical
debugging enabled, the MATLAB Debugger opens mfile with a breakpoint at
line lineno. If that line is not executable, execution stops and the breakpoint
is set at the next executable line following 1ineno. When execution stops, you
can use the debugging utilities, review the workspace, or issue any valid
MATLAB function. Use dbcont or dbstep to resume execution of mfile. Use
dbquit to exit from the Debugger.

dbstop in mfile at lineno@ if expression Stops just after any call to the
first anonymous function in the specified line number in mfile if expression
evaluates to true.

2-547

dbstop

2-548

dbstop in mfile at lineno@n if expression Stopsjust after any call tothe
nth anonymous function in the specified line number in mfile if expression
evaluates to true.

dbstop in mfile at subfun if expression temporarily stops execution of
mfile when you run it, just prior to execution of the subfunction subfun,
putting MATLAB in debug mode. Execution will stop only if expression
evaluates to true. The expression, expression, is evaluated (as if by eval), in
mfile’s workspace when the breakpoint is encountered, and must evaluate to
a scalar logical value (true or false). mfile must be in a directory that is on
the search path or in the current directory. If you have graphical debugging
enabled, the MATLAB Debugger opens mfile with a breakpoint at the
subfunction specified by subfun. You can then use the debugging utilities,
review the workspace, or issue any valid MATLAB function. Use dbcont or
dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile if expression temporarily stops execution of mfile when
you run it, at the first executable line, putting MATLAB in debug mode.
Execution will stop only if expression evaluates to true. The expression,
expression, is evaluated (as if by eval), in mfile’s workspace when the
breakpoint is encountered, and must evaluate to a scalar logical value (true or
false). mfile must be in a directory that is on the search path or in the current
directory. If you have graphical debugging enabled, the MATLAB Debugger
opens with a breakpoint at the first executable line of mfile. You can then use
the debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line
that generated the error. The M-file must be in a directory that is on the search
path or in the current directory. The errors that stop execution do not include
run-time errors that are detected within a try...catch block. You cannot
resume execution after an uncaught run-time error. Use dbquit to exit from
the Debugger.

dbstop if error identifier stops execution when any M-file you
subsequently run produces a run-time error whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that

dbstop

generated the error. The M-file must be in a directory that is on the search path
or in the current directory. The errors that stop execution do not include
run-time errors that are detected within a try...catch block. You cannot
resume execution after an uncaught run-time error. Use dbquit to exit from
the Debugger.

dbstop if caught error stops execution when any M-file you subsequently
run produces a run-time error, putting MATLAB in debug mode, paused at the
line that generated the error. The M-file must be in a directory that is on the
search path or in the current directory. The errors that stop execution will only
be those that are detected within a try...catch block. You cannot resume
execution after an uncaught run-time error. Use dbquit to exit from the
Debugger.

dbstop if caught error identifier stops execution when any M-file you
subsequently run produces a run-time error whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that
generated the error. The M-file must be in a directory that is on the search path
or in the current directory. The errors that stop execution will only be those
that are detected within a try. . .catch block. You cannot resume execution
after an uncaught run-time error. Use dbquit to exit from the Debugger.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. The M-file must be in a directory that is on
the search path or in the current directory. Use dbcont or dbstep to resume
execution.

dbstop if warning identifier stops execution when any M-file you
subsequently run produces a run-time warning whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that
generated the warning. The M-file must be in a directory that is on the search
path or in the current directory. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any M-file you
subsequently run encounters an infinite value (Inf) or a value that is not a
number (NaN), putting MATLAB in debug mode, paused at the line where Inf
or NaN was encountered. For convenience, you can use either naninf or
infnan—they perform in exactly the same manner. The M-file must be in a

2-549

dbstop

directory that is on the search path or in the current directory. Use dbcont or
dbstep to resume execution. Use dbquit to exit from the Debugger.

Remarks The at, and in keywords are optional.

2-550

dbstop

Examples

The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n length(x);
z (1:n)./x;

Stop at First Executable Line
The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy
n = length(x);
The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy (magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m

On line 3 ==> z = (1:n)./x;
K>>

and put MATLAB in debug mode.

2-551

dbstop

Stop if InfNaN

In buggy, if any of the elements of the input x is zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K>>

and put MATLAB in debug mode.

See Also break, dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype,
dbup, keyboard, partialpath, return

2-552

dbtype

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

List M-file with line numbers

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor/Debugger.

dbtype mfile
dbtype mfile start:end

The dbtype command is used to list an M-file function with line numbers to aid
the user in setting breakpoints.

dbtype mfile displays the contents of the specified M-file function with line
numbers preceding each line. mfile must be full path name of an M-file
function or a MATLAB path relative partial pathname.

dbtype mfile start:end displays the portion of the file specified by a range of
line numbers from start to end.

You cannot use dbtype for built-in functions.

To see only the input and output arguments for a function, that is, the first line
of the M-file, type

dbtype mfile 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath

2-553

dbup

Purpose

Graphical
Interface

Syntax

Description

See Also

2-554

Change local workspace context

As an alternative to the dbup function, you can select a different workspace
from the Stack field in the toolbar of the Editor/Debugger.

dbup

This function allows you to examine the calling M-file to determine what led to
the arguments’ being passed to the called function.

dbup changes the current workspace context, while the user is in the debug
mode, to the workspace of the calling M-file.

Multiple dbup functions change the workspace context to each previous calling
M-file on the stack until the base workspace context is reached. (It is not
necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype

dde23

Purpose

Syntax

Arguments

Description

Solve delay differential equations (DDEs) with constant delays

sol
sol

ddefun

lags

history

tspan

options

pi1,p2,...

dde23(ddefun,lags,history,tspan)
dde23 (ddefun,lags,history,tspan,options)

Function that evaluates the right side of the differential
equations y'(t) = f(¢,y(¢),y(t —14),...,y(t — 1)) . The function
must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current ¢,y is a column vector that
approximates y(t), and Z(:,j) approximates y(t — Tj) for
delay T ; =1lags(j). The output is a column vector
corresponding to f(¢,y(¢),y(t —19),....y(t-T3)).

Vector of constant, positive delays 14, ..., T;,.

Specify history in one of three ways:

® A function of ¢ such thaty = history(t) returns the
solution y(t) for ¢ <t0 as a column vector

® A constant column vector, if y(¢) is constant

® The solution sol from a previous integration, if this call
continues that integration

Interval of integration as a vector [t0,tf] with t0 < tf.

Optional integration argument. A structure you create using
the ddeset function. See ddeset for details.

Optional parameters that dde23 passes to ddefun, ifit is a
function, and any functions you specify in options.

sol = dde23(ddefun,lags,history,tspan) integrates the system of DDEs

() = ft,y(@),y(t-19),....0(t—T4))

on the interval [¢,, td, where 1, ..., T;, are constant, positive delays and

to <tp.

2-555

dde23

2-556

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary function deval
and the output sol to evaluate the solution at specific points tint in the
interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23
sol.y Approximation to y(x) at the mesh points in sol.x.
sol.yp Approximation to y'(x) at the mesh points in sol.x

sol.solver Solver name, 'dde23'

sol = dde23(ddefun,lags,history,tspan,options) solves as above with
default integration properties replaced by values in options, an argument
created with ddeset. See ddeset and “Initial Value Problems for DDEs” in the
MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by
default) and vector of absolute error tolerances 'AbsTol' (all components are
1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in the history or
solution. Set this option to a vector that contains the locations of discontinuities
in the solution prior to t0 (the history) or in coefficients of the equations at
known values of ¢ after tO0.

Use the 'Events' option to specify a function that dde23 calls to find where
functions g(¢,y(¢),y(t —14),...,y(t — 1)) vanish. This function must be of the
form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth event
function in events:

® value (k) is the value of the kth event function.

dde23

Examples

e isterminal(k) = 1if you want the integration to terminate at a zero of this
event function and 0 otherwise.

e direction(k) = 0if you want dde23 to compute all zeros of this event
function, +1 if only zeros where the event function increases, and -1 if only
zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

sol.xe Row vector of locations of all events, i.e., times when an event
function vanished

sol.ye Matrix whose columns are the solution values corresponding to
times in sol.xe

sol.ie Vector containing indices that specify which event occurred at
the corresponding time in sol.xe

This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The
function ddex1de computes the delay differential equations, and ddex1hist
computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To see the
code in an editor, click the example name, or type edit ddex1 at the command
line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval
[0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using subfunctions. For more
examples see ddex2.

2-557

dde23

Algorithm

See Also

References

2-558

dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3)
pair and interpolant of ode23. It uses iteration to take steps longer than the
lags.

ddeget, ddeset, deval, @ (function_handle)

L.F. Shampine and S. Thompson, “Solving DDEs in MATLAB,” Applied
Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

ddeget

Purpose

Syntax

Description

See Also

Extract properties from options structure created with ddeset

val
val

ddeget (options, 'name')
ddeget (options, 'name',default)

val = ddeget(options, 'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. Itis sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = ddeget(options, 'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = ddeget(opts, 'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

dde23, ddeset

2-559

ddeset

Purpose

Syntax

Description

DDE Properties

Create/alter delay differential equations (DDE) options structure

options = ddeset('namel',valuel, 'name2',value2,...)

options = ddeset(oldopts, 'namel',valuel,...)

options = ddeset(oldopts,newopts)

ddeset

options = ddeset('namel',valuel, 'name2',value2,...) creates an

integrator options structure options in which the named properties have the
specified values. Any unspecified properties have default values. It is sufficient
to type only the leading characters that uniquely identify the property. Case is
ignored for property names.

options = ddeset(oldopts, 'namel',valuel,...) alters an existing options
structure oldopts.

options = ddeset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

ddeset with no input arguments displays all property names and their possible
values.

These properties are available:

Property Value Description
RelTol Positive scalar Relative error tolerance that applies to all components
{1e-3} of the solution vector. The estimated error in each
integration step satisfies
|e(i)| <= max(RelTol*abs(y(i)),AbsTol(1i)).
AbsTol Positive scalar or Absolute error tolerance that applies to all components
vector {1e-6} of the solution vector. Elements of a vector of tolerances

apply to corresponding components of the solution
vector.

2-560

ddeset

Property

Value

Description

NormControl

Stats

Events

MaxStep

InitialStep

OutputFcn

OutputSel

on | {off}

on | {off}

Function
Positive scalar

{0.1*tspan}

Positive scalar

Function

Vector of integers

Control error relative to norm of solution. Set this
property on to request that dde23 control the error in
each integration step with

norm(e) <= max(RelTol*norm(y),AbsTol). By default
dde23 uses a more stringent component-wise error
control.

Display computational cost statistics.

The solver uses the specified function to locate where
functions of t, y, Z vanish. See dde23 for details.

Upper bound on the magnitude of the step size. The
default is one-tenth of the tspan interval.

Suggested initial step size. The solver tries this first. By
default the solver determines an initial step size
automatically.

Installable output function. This output function is
called by the solver after each time step. When a solver
is called with no output arguments, OutputFcn defaults
to the function odeplot. Otherwise, OutputFcn defaults
to[].

To create or modify an output function, see ODE Solver
Output Properties in the “Differential Equations”
section of the MATLAB documentation.

Output selection indices. Specifies the components of
the solution vector that dde23 passes to the OutputFcn.
The default is all components.

2-561

ddeset

Property Value Description

Jumps Vector Location of discontinuities in solution. Points ¢ where
the history or solution may have a jump discontinuity in
a low-order derivative. See dde23 for details.

InitialY Vector Initial value of solution. By default the initial value of
the solution is the value returned by history at the
initial point. A different initial value can be supplied as
the value of the InitialY property.

See Also dde23, ddeget, @ (function_handle)

2-562

deadl

Purpose

Syntax

Description

Remarks

Examples

Deal inputs to outputs

[Y1,Y2,Y3,...] = deal(X)

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...)

[Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. It is the same as Y1 = X, Y2 = X,Y3 = X, ...

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...) is the same as Y1 = X1;Y2 = X2;
Y3 = X3; ...

deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to the
cell array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...

Use deal to copy the contents of a 4-element cell array into four separate
output variables.

C {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
b =

2-563

deadl

2-564

Cc =
1 0o o
0 1 0
0O o 1
d =
0
0
0

Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[namel1,name2] = deal(A(:).name)

name1

Pat

name2

Tony

Note In many instances, you can access the data in cell arrays and structure
fields without using the deal function.

These two commands perform the same operation as those used in the previous
two examples, except that these commands do not require deal.

[a,b,c,d] = C{:}
[namel1,name2] = A(:).name

deadl

See Also cell, iscell, celldisp, struct, isstruct, fieldnames, isfield,
orderfields, rmfield, cell2struct, struct2cell

2-565

deblank

Purpose

Syntax

Description

Examples

2-566

Strip trailing blanks from the end of a string

str = deblank(str)
c = deblank(c)

str = deblank(str) removes the trailing blanks from the end of a character
string str.

¢ = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

The deblank function is useful for cleaning up the rows of a character array.

A{1,1} '"MATLAB s

A{1,2} = 'SIMULINK '
A{2,1} 'Toolboxes "
A{2,2} 'The MathWorks 3

A =
'"MATLAB ' 'SIMULINK '
'Toolboxes ' 'The MathWorks '

deblank(A)

ans =

'"MATLAB' "SIMULINK'
'Toolboxes' 'The MathWorks'

debug

Purpose

Graphical
Interface

Description

See Also

M-file debugging functions

As an alternative to the debugging functions, you can use debugging features
in the Debug menu and toolbar buttons of the Editor/Debugger.

Use debugging functions (listed in the See Also section) to help you identify
problems in your M-files.
Set breakpoints using dbstop.

When a breakpoint is hit during execution, MATLAB goes into debug mode, the
debugger window becomes active, and the prompt changes to a K>>. Any
MATLAB command is allowed at the prompt.

To resume execution, use dbcont or dbstep. To exit from the debugger use
dbquit.

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

Debugging M- Files in the MATLAB documentation details the
Editor/Debugger as well as the use of debugging functions.

2-567

dec2base

Purpose

Syntax

Description

Examples

See Also

2-568

Decimal number to base conversion

str
str

dec2base(d,base)
dec2base(d,base,n)

str = dec2base(d,base) converts the nonnegative integer d to the specified
base. d must be a nonnegative integer smaller than 2”252, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

The expression dec2base (23,2) converts 23, to base 2, returning the string
"10111°.

base2dec

dec2bin

Purpose

Syntax

Description

Examples

See Also

Decimal to binary number conversion

str
str

dec2bin(d)
dec2bin(d,n)

str = dec2bin(d) returns the binary representation of d as a string. d must
be a nonnegative integer smaller than 2”52.

str = dec2bin(d,n) produces a binary representation with at least n bits.

ans =
10111

bin2dec, dec2hex

2-569

dec2hex

Purpose

Syntax

Description

Examples

See Also

2-570

Decimal to hexadecimal number conversion

str
str

dec2hex(d)
dec2hex(d,n)

str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative integer
smaller than 2/52.

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
3FF

dec2bin, format, hex2dec, hex2num

decic

Purpose

Syntax

Decription

Compute consistent initial conditions for ode15i

[yOmod,ypOmod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_ypO0)
[yOmod,ypOmod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_ypO,options)
[yOmod,ypOmod] =

decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0O,options,pl1,p2...)
[yOmod,ypOmod,resnrm] = decic(...)

[yOmod,ypOmod] = decic(odefun,t0,y0,fixed y0,yp0,fixed_yp0) usesthe
inputs y0 and ypO0 as initial guesses for an iteration to find output values that
satisfy the requirement f{t0, y0Omod, ypOmod) = 0 ,i.e., yOmod and ypOmod are
consistent initial conditions. The function decic changes as few components of
the guesses as possible. You can specify that decic holds certain components
fixed by setting fixed y0(i) = 1 ifno change is permitted in the guess for
y0(i) and 0 otherwise. decic interprets fixed _y0 = [] as allowing changes in
all entries. fixed_ypO is handled similarly.

You cannot fix more than 1ength(y0) components. Depending on the problem,
it may not be possible to fix this many. It also may not be possible to fix certain
components of y0 or yp0. It is recommended that you fix no more components
than necessary.

[yOmod,ypOmod] =

decic(odefun,t0,y0,fixed_y0,yp0,fixed _yp0,options) computes as above
with default tolerances for consistent initial conditions, AbsTol and RelTol,
replaced by the values in options, a structure you create with the odeset
function.

[yOmod,ypOmod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options,pl1,p2...) passes
the additional parameters p1,p2, ... to the ODE function as
odefun(t,y,yp,p1,p2...), and to all functions specified in options. Use
options = [] as a place holder if no options are set.

[yOmod,ypOmod,resnrm] =

decic(odefun,t0,y0,fixed y0,yp0,fixed ypO...) returns the norm of
odefun(t0,y0Omod,ypOmod) as resnrm. If the norm seems unduly large, use
options to decrease RelTol (1e-3 by default).

2-571

decic

Examples These demos provide examples of the use of decic in solving implicit ODEs:
ihbidae, iburgersode.

See Also ode15i, odeget, odeset

2-572

deconv

Purpose
Syntax

Description

Examples

Algorithm

See Also

Deconvolution and polynomial division

[g,r] = deconv(v,u)

[q,r] deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector q and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient g and remainder r.

If

u-= 11 2 3 4]
[10 20 30]

the convolution is

Cc
C=
10 40 100 160 170 120

conv(u,v)

Use deconvolution to recover u:

[g,r] = deconv(c,u)
q =
10 20 30

0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.
deconv uses the filter primitive.

conv, residue

2-573

del2

Purpose

Syntax

Definition

Description

2-574

Discrete Laplacian

del2
del2
del2
del2

u)

u,h)

U, hx,hy)
U,hx,hy,hz,...)

| i Y N
I
—_~ o~~~

If the matrix U is regarded as a function u(x,y) evaluated at the point on a
square grid, then 4*del2(U) is a finite difference approximation of Laplace’s
differential operator applied to u , that is:

li; = Z(ui+1,j o1 T e Y)Y

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables u(x,y,z,...), del2(U) is an approximation,
dx” dy~ dz

where N is the number of variables in « .

L = del2(U) where U is a rectangular array is a discrete approximation of

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

del2

Examples

-L = del2(U) when Uis an multidimensional array, returns an
approximation of

D2u

2N
where N is ndims(u).

L = del2(U,h) where His a scalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u,1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

The function
u(x,y) = 22 +y2
has
D2u = 4
For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = X.*Xty.*y

U=
25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

2-575

del2

= 4*del2 (V)

> >

diff, gradient

See Also

2-576

delaunay

Purpose

Syntax

Definition

Description

Remarks

Delaunay triangulation

TRI
TRI

delaunay(x,y)
delaunay(x,y,options)

Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi polygon.

—— Delaunay triangle
Voronoi polygon

TRI = delaunay(x,y) for the data points defined by vectors x and y, returns a
set of triangles such that no data points are contained in any triangle's
circumscribed circle. Each row of the m-by-3 matrix TRI defines one such
triangle and contains indices into x and y. If the original data points are
collinear or x is empty, the triangles cannot be computed and delaunay returns
an empty matrix.

delaunay uses Qhull.

TRI = delaunay(x,y,options) specifies a cell array of strings options to be
used in Qhull via delaunayn. The default options are {'Qt', 'Qbb','Qc'}.

Ifoptionsis [], the default options are used. If optionsis {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

The Delaunay triangulation is used by: griddata (to interpolate scattered

data), voronoi (to compute the voronoi diagram), and is useful by itself to
create a triangular grid for scattered data points.

2-577

delaunay

The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix TRI. See
Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix TRI as a
surface in 3-D space. To see a 2-D surface, you can supply a
vector of some constant value for the third dimension. For
example

trisurf(TRI,Xx,y,zeros(size(x)))

See Example 2.

trimesh Displays each triangle defined in the m-by-3 matrix TRI as a
mesh in 3-D space. To see a 2-D surface, you can supply a vector
of some constant value for the third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except in 3-D
space. See Example 2.

Examples Example 1. Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);

X = rand(1,10);

y = rand(1,10);

TRI = delaunay(x,y);
subplot(1,2,1),...
triplot(TRI,X,Y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');

hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y, 'r+',vx,vy,'b-"),...

2-578

delaunay

axis([0 1 0 1])

1 T 1
N
0.9F 09f" >~
0.8} 0.8t +
.
0.7+ 0.7, - .
Delaunay ~g—— Voronoi
triangulation osf o6t +1 diagram
0.5 051
0.4F 0.4+ +|+
03t 03l
0.2 021
.
011 B 01l
0 L 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Example 2. Create a 2-D grid then use trisurf to plot its Delaunay
triangulation in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);
trisurf(tri,x,y,zeros(size(x)))

2-579

delaunay

15

10

10

Next, generate peaks data as a 15-by-15 matrix, and use that data with the

Delaunay triangulation to produce a surface in 3-D space.

peaks(15);
trisurf(tri,x,y,z)

4

10

-10

15

15

10

10

2-580

delaunay

Algorithm

See Also

References

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

10

S

-10
15

15
10

delaunay is based on Qhull. For information about Qhull, see
http://www.ghull.org/. For copyright information, see
http://www.qhull.org/COPYING. txt.

delaunay3, delaunayn, dsearch, griddata, plot, triplot, trimesh, trisurf,
tsearch, voronoi

[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

2-581

delaunay3

Purpose

Syntax

Description

Visualization

Example

2-582

3-dimensional Delaunay tessellation

T
T

delaunay3(x,y,z)
delaunay3(x,y,z,options)

T = delaunay3(x,y,z) returns an array T, each row of which contains the
indices of the points in (x,y,z) that make up a tetrahedron in the tessellation
of (x,y,z). Tis a numtes-by-4 array where numtes is the number of facets in
the tessellation. x, y, and z are vectors of equal length. If the original data
points are collinear or x, y, and z define an insufficient number of points, the
triangles cannot be computed and delaunay3 returns an empty matrix.

delaunay3 uses Qhull.

T = delaunay3(x,y,z,options) specifies a cell array of strings options to be
used in Qhull via delaunay3. The default options are {'Qt', 'Qbb','Qc"'}.

Ifoptionsis [], the default options are used. If optionsis {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

Use tetramesh to plot delaunay3 output. tetramesh displays the tetrahedrons
defined in T as mesh. tetramesh uses the default tranparency parameter value
'FaceAlpha' = 0.9.

This example generates a 3-dimensional Delaunay tessellation, then uses
tetramesh to plot the tetrahedrons that form the corresponding simplex.
camorbit rotates the camera position to provide a meaningful view of the
figure.

d=1[-11];
[x,y,z] = meshgrid(d,d,d); % A cube

x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

o°

[x,y,z] are corners of a cube plus the center.
Tes = delaunay3(Xx,y,z)

Tes

delaunay3

W 00 oo ~N~NMNDMNDNDWO
N WOMNMNNNWOWWOo o=
WO oOOOwOou oo-—=-=20
O DPhOOOOGO -~ O OO

X = [x(:) y(:) z(:)];
tetramesh(Tes,X) ;camorbit (20,0)

Algorithm delaunay3 is based on Qhull [2]. For information about Qhull, see
http://www.ghull.org/. For copyright information, see
http://www.qhull.org/COPYING. txt.

2-583

delaunay3

See Also

Reference

2-584

delaunay, delaunayn

[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/ghull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

delaunayn

Purpose

Syntax

Description

Visualization

Example

N-dimensional Delaunay tessellation

T
T

delaunayn(X)
delaunayn(X, options)

T = delaunayn(X) computes a set of simplices such that no data points of X are
contained in any circumspheres of the simplices. The set of simplices forms the
Delaunay tessellation. X is an m-by-n array representing m points in
n-dimensional space. T is a numt-by-(n+1) array where each row contains the
indices into X of the vertices of the corresponding simplex.

delaunayn uses Qhull.

T = delaunayn(X, options) specifies a cell array of strings options to be used
as options in Qhull. The default options are:

e {'Qt','Qbb', 'Qc'} for 2- and 3-dimensional input
e {'Qt','Qbb','Qc', 'Qx"'} for 4 and higher-dimensional input

If options is [], the default options used. If optionsis {' '}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

Plotting the output of delaunayn depends of the value of n:

® Forn = 2, use triplot, trisurf, or trimesh as you would for delaunay.

® For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

® You cannot plot delaunayn output for n > 3.

This example generates an n-dimensional Delaunay tessellation, where n = 3.

d=1[-11];

[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];

y = [y(:);0];

z = [z(:);0];

% [x,y,z] are corners of a cube plus the center.

2-585

delaunayn

X = [x(:) y(:) z(:)]1;
Tes = delaunayn(X)

Tes

0 00 oo ~N~NMNDMNDNDWO
N WOMNMNNDNNWOWWOo o=
WO OOOwOouoo-—=-=0
O~ POOODOGOOO O OO

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide a
meaningful view of the figure.

tetramesh(Tes,X) ;camorbit (20,0)

2-586

delaunayn

Algorithm

See Also

Reference

delaunayn is based on Qhull [2]. For information about Qhull, see
http://www.qghull.org/. For copyright information, see
http://www.qhull.org/COPYING. txt

convhulln, delaunayn, delaunay3, tetramesh, voronoin

[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

2-587

delete

Purpose

Graphical
Interface

Syntax

Description

Remarks

2-588

Delete files or graphics objects

As an alternative to the delete function, you can delete files using the Current
Directory browser.

delete filename
delete(h)
delete('filename')

delete filename deletes the named file from the disk. The filename may
include an absolute pathname or a pathname relative to the current directory.
The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

delete('filename') is the function form of delete. Use this form when the
filename is stored in a string.

Note MATLAB does not ask for confirmation when you enter the delete
command. To avoid accidentally losing files or graphics objects that you need,
make sure that you have accurately specified the items you want deleted.

The action that the delete function takes on deleted files depends upon the
setting of the MATLAB recycle state. If you set the recycle state to on,
MATLAB moves deleted files to your recycle bin or temporary directory. With
the recycle state set to of f (the default), deleted files are permanently removed
from the system.

To set the recycle state for all MATLAB sessions, use the Preferences dialog
box. Open the Preferences dialog and select General. To enable or disable
recycling, click Move files to the recycle bin or Delete files permanently. See
“General Preferences for MATLAB” in the Desktop Tools and Development
Environment documentation for more information.

The delete function deletes files and handles to graphics objects only. Use the
rmdir function to delete directories.

delete

Examples To delete all files with a .mat extension in the ../mytests/ directory, type
delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also recycle, dir, edit, fileparts, mkdir, rmdir, type

2-589

delete (fip)

Purpose Delete file on FTP server
Syntax delete(f,'filename')
Descripl'ion delete(f, 'filename') removes the file filename from the current directory of

the FTP server f, where f was created using ftp.

Examples Connect to server testsite.

test=ftp('ftp.testsite.com')

Change the current directory to testdir and view the contents.

cd(test, 'testdir');
dir(test)

See Also ftp

2-590

delete (timer)

Purpose
Syntax

Description

See Also

Remove a timer object from memory
delete(obj)
delete(obj) removes the timer object, obj, from memory. If obj is an array of

timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be reused. Use
the clear command to remove invalid timer objects from the workspace.

If multiple references to a timer object exist in the workspace, deleting the
timer object invalidates the remaining references. Use the clear command to
remove the remaining references to the object from the workspace.

clear, isvalid, timer

2-591

demo

Purpose

Graphical
Interface

Syntax

Description

2-592

Access product demos via Help browser

As an alternative to the demo function, you can select Help -> Demos from the
MATLAB desktop, or click the Demos tab when the Help browser is open.

demo

demo subtopic

demo subtopic category

demo('subtopic', 'category')

demo opens the Demos panel in the Help browser. In the left pane, expand the
listing for a product area (for example, MATLAB). Within that product area,
expand the listing for a product or product category (for example, MATLAB
Graphics). Select a specific demo from the list (for example, Visualizing Sound).
In the right pane, view instructions for using the demo. For more information,
see Demos in the Help Browser. To run a demo from the command line, type
the demo name. For published M-file demos, that is those demos in which the
H1 line begins with two comment symbols (%%), type playshow followed by the
demo name to run it.

demo subtopic opens the Demos panel in the Help browser with the specified
subtopic expanded. Subtopics are matlab, toolbox, simulink, and blockset.

demo subtopic product opens the Demos panel in the Help browser to the
specified product or category within the subtopic. The demo function uses the
full name displayed in the Demo panel for product.

demo('subtopic', 'category') is the function form of the syntax. Use this
form when category is more than one word.

demo

Access demos for

all installed

products using the

Demos tab.

I Help

File Edit “iew Go Fg

orites

Desktop ‘Window Help

The code for the demo is in the

specified file. Click this link to

view the M-file code in the Editor.

Click this link to
run the demo.

[=] B3

Help Nawvigator X

Expand
the listing
fora
product
and
category
to see its
demos.

Corrtentsl Indexl Search Del

DSl

H;_; Getting Started with Demos |~

Select a
demo to

MATLAS

[Mathematics

1 Graphics

3 3-D Visualization

1 Programming
1 Manipulating Multidirn
i Structures
i Function Functions

see
details
about it.

i9d\\|cted Function Exar
i3 Anonyrnous Function
i3 Reading Text Files

1 Desktop Tools and Develo
(1 Creating Graphical User Ir
(1 External Interfaces

1 Gallery

1 Other Demos

[Mew Features in Version

I MATLAB Report Generatc
. I _'I_I

-0 & M”

Title: IMATLAB Detni: nesteddemo

[

View code for nesteddemo

Run this demo

-

Mested Function Examples

This gives examples of how nested functions can he
used for easy data sharing, as well as providing a
new way to create customized functions.

Contents

+ Example 1: Sharing data

+ Examnple 2 Creating customized functions

+ Example 3: Creating custornized functions with sts

Example 1: Sharing data

Let's first take a look at taxDemo . m, which containg a ne

type taxDemo.m

B

Examples

Accessing Toolbox Demos
To find the demos relating to the Communications Toolbox, type

demo toolbox communications

The Help browser opens to the Demos panel with the Toolbox subtopic
expanded and with the Communications product highlighted and expanded to
show the available demos.

2-593

demo

Accessing Simulink Demos
To accesses the demos within Simulink, type

demo simulink automotive

The Demos panel opens with the Simulink subtopic and Automotive category
expanded.

Function Form of demo
To access the Simulink Report Generator demos, run

demo('simulink', 'simulink report generator')

which displays

E Help =] E3

File Edit “iew Go Fawvorites Deskiop MWindow Help
Help Navigator X | gm o 2 | = | &

C-:-nterrtsl Indexl Search Demos | Title: I Sitnulink Report Generator Demos LI
-Q Getting Started with Demos 2
A MATLAS Simulink Report Generator Demos
- Toolboxes
=1 Simulink The Simulink Repart Generator provides a set of flexible,
(3 New in Version 6.0 custamizable components which dacument Simulink and
(1 Block Diagramming Featu Stateflow prajects.
1 Autormotive Applications
1 Aerospace Applications Report Sirmulink
1 General Applications ﬁ Generatar m Default
B2 Embedded Target for Infin Block ﬁ
& Sirulink Parameter Estir_| Library
Simulink Report Generato —
ig- Report Generator Bloc Sirmulink Sirnulink
& Simulink Default Repo H Framewark] Sumnmary
15 Sirmulink Framewark F Report Report (req
i Sirnulink Summary Rew ETWY)

q | 3 | |1 I

2-594

demo

See Also

Running a Demo from the Command Line
Type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running a Published M-File Demo from the Command Line
Type

quake

to run an earthquake data demo. Not much appears to happen. This is because
quake is a published M-file demo. Verify this by viewing the M-file, quake.m,
for example, by typing

edit quake

The first line, that is, the H1 line for quake is

%% Loma Prieta Earthquake

The %% indicates that quake is a published M-file demo. So to run it, type
playshow quake

and the earthquake demo runs.

help, helpbrowser, helpwin, lookfor, playshow

2-595

depdir

Purpose

Syntax

Description

Example

See Also

2-596

List the dependent directories of an M-file or P-file

list = depdir('file_name');
[1list,prob_files,prob_sym,prob_strings] = depdir('file_name');
[...] = depdir('file_namel1','file name2',...);

The depdir function lists the directories of all the functions that a specified
M-file or P-file needs to operate. This function is useful for finding all the
directories that need to be included with a run-time application and for
determining the run-time path.

list = depdir('file name') creates a cell array of strings containing the
directories of all the M-files and P-files that file name.mor file name.p uses.
This includes the second-level files that are called directly by file name, as
well as the third-level files that are called by the second-level files, and so on.

[list,prob_files,prob_sym,prob_strings] = depdir('file_name')
creates three additional cell arrays containing information about any problems
with the depdir search. prob_files contains filenames that depdir was
unable to parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to parse.

[...] = depdir('file _namel','file name2',...) performs the same
operation for multiple files. The dependent directories of all files are listed
together in the output cell arrays.

list = depdir('mesh')

depfun

depfun

Purpose

Syntax

Description

List the dependent functions of an M-file or P-file

list = depfun('file_name');

[list,builtins,classes] = depfun('file_name');

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called_from,java_classes] = depfun('file_name');

[...] = depfun('file_namel1','file_name2',...);
[...] = depfun('fig_file_name');
[...] = depfun(...,"'-toponly");

The depfun function lists all the functions and scripts, as well as built-in
functions, that a specified M-file needs to operate. This is useful for finding all
of the M-files that you need to compile for a MATLAB run-time application.

list = depfun('file _name') creates a cell array of strings containing the
paths of all the files that file name.muses. This includes the second-level files
that are called directly by file name.m, as well as the third-level files that are
called by the second-level files, and so on.

Note If depfun reports that “These files could not be parsed:” or if the
prob_files output below is nonempty, then the rest of the output of depfun
might be incomplete. You should correct the problematic files and invoke
depfun again.

[list,builtins,classes] = depfun('file _name') creates three cell arrays
containing information about dependent functions. 1ist contains the paths of
all the files that file _name and its subordinates use. builtins contains the
built-in functions that file name and its subordinates use. classes contains
the MATLAB classes that file name and its subordinates use.

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called from,java_classes] = depfun('file name') creates additional cell
arrays or structure arrays containing information about any problems with the
depfun search and about where the functions in 1ist are invoked. The
additional outputs are

2-597

depfun

® prob_files, which indicates which files depfun was unable to parse, find, or
access. Parsing problems can arise from MATLAB syntax errors. prob_files
is a structure array whose fields are

= name, which gives the names of the files
= listindex, which tells where the files appeared in 1ist
= errmsg, which describes the problems

® prob_sym, which indicates which symbols depfun was unable to resolve as
functions or variables. It is a structure array whose fields are
= fcn_id, which tells where the files appeared in 1ist
= name, which gives the names of the problematic symbols

® eval_strings, which indicates usage of these evaluation functions: eval,
evalc, evalin, feval. When preparing a run-time application, you should
examine this output to determine whether an evaluation function invokes a
function that does not appear in 1ist. The output eval stringsisa
structure array whose fields are
= fcn_name, which give the names of the files that use evaluation functions
= lineno, which gives the line numbers in the files where the evaluation

functions appear

® called from, a cell array of the same length as 1ist. This cell array is

arranged so that
list(called_from{i})

returns all functions in file name that invoke the function 1ist{i}.

® java_classes, a cell array of Java class names that file name and its
subordinates use

[...] = depfun('file namel','file name2',...) performs the same
operation for multiple files. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun('fig_file name') looks for dependent functions among the
callback strings of the GUI elements that are defined in the .fig or .mat file
named fig file name.

[...] = depfun(...,"'-toponly"') differs from the other syntaxes of depfun
in that it examines only the files listed explicitly as input arguments. It does

2-598

depfun

not examine the files on which they depend. In this syntax, the flag ' -toponly'
must be the last input argument.

Notes

2

If depfun does not find a file called hginfo.mat on the path, then it creates
one. This file contains information about Handle Graphics callbacks.

If your application uses toolbar items from the MATLAB default figure
window, then you must include 'FigureToolBar.fig' in your input to
depfun.

If your application uses menu items from the MATLAB default figure
window, then you must include 'FigureMenuBar.fig' in your input to
depfun.

Because many built-in Handle Graphics functions invoke newplot, the list
produced by depfun always includes the functions on which newplot is
dependent:

= 'matlabroot\toolbox\matlab\graphics\newplot.m'

= 'matlabroot\toolbox\matlab\graphics\closereq.m'

= 'matlabroot\toolbox\matlab\graphics\gcf.m'

= 'matlabroot\toolbox\matlab\graphics\gca.m'

= 'matlabroot\toolbox\matlab\graphics\private\clo.m'

= 'matlabroot\toolbox\matlab\general\@char\delete.m'

= 'matlabroot\toolbox\matlab\lang\nargchk.m'

= 'matlabroot\toolbox\matlab\uitools\allchild.m'

= 'matlabroot\toolbox\matlab\ops\setdiff.m'

= 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'

= 'matlabroot\toolbox\matlab\iofun\filesep.m'

= 'matlabroot\toolbox\matlab\ops\unique.m'

= 'matlabroot\toolbox\matlab\elmat\repmat.m'

= 'matlabroot\toolbox\matlab\datafun\sortrows.m'

= 'matlabroot\toolbox\matlab\strfun\deblank.m'

= 'matlabroot\toolbox\matlab\ops\@cell\unique.m'

= 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'

= 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'

= 'matlabroot\toolbox\matlab\strfun\cellstr.m'

= 'matlabroot\toolbox\matlab\datatypes\iscell.m'

= 'matlabroot\toolbox\matlab\strfun\iscellstr.m'

2-599

depfun

= 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh',’'-toponly') % Files mesh.m depends on
directly

[list,builtins,classes] = depfun('gca');

See Also depdir, profile

2-600

det

Purpose
Syntax

Description

Remarks

Algorithm

Examples

See Also

Matrix determinant

o
1

det (X)

d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Using det (X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond (X) can check for singular and nearly
singular matrices.

The determinant is computed from the triangular factors obtained by Gaussian
elimination

[L,U] = 1u(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

The statement A = [1 2 3; 4 5 6; 7 8 9]

produces
A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, sod = det(A) producesd = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) producesd = 27.

cond, condest, inv, 1lu, rref

The arithmetic operators \, /

2-601

detrend

Purpose

Syntax

Description

Example

2-602

Remove linear trends.

y = detrend(x)
y = detrend(x, 'constant')
y = detrend(x, 'linear',bp)

detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x, 'constant') removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(x, 'linear',bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

breakpoints

detrend(x, 'linear'), with no breakpoint vector specified, is the same as
detrend(x).

o°

signal with no linear trend
two-segment linear trend
signal with added trend
breakpoint at 5th element

sig=[01-2101 -2 1 0];
trend = [01 234321 0];
X = sig+trend;

y = detrend(x, 'linear',5)

o of

o°

detrend

Algorithm

See Also

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

' '
O - N-=-0-=DN=0

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from

the data. To obtain the equation of the straight-line fit, use polyfit.

polyfit

2-603

deval

Purpose

Syntax

Description

Example

2-604

Evaluate the solution of a differential equation

sxint = deval(sol,xint)
sxint deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate the
solution of a differential equation problem. sol is a structure returned by one
of these solvers:

¢ An initial value problem solver (ode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb, ode15i)

¢ The delay differential equations solver (dde23),

¢ The boundary value problem solver (bvp4c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),so0l.x(end)]. For each i,
sxint(:,1i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx) evaluate
as above but return only the solution components with indices listed in the
vector idx.

[sxint, spxint] = deval(...) alsoreturns spxint, the value of the first
derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained by
bvp4c might be discontinuous at the interfaces. For an interface point xc,
deval returns the average of the limits from the left and right of xc. To get the
limit values, set the xint argument of deval to be slightly smaller or slightly
larger than xc.

This example solves the system y' = vdpl(¢,y) using ode45, and evaluates
and plots the first component of the solution at 100 points in the interval
[0,20].

deval

sol = ode45(@vdp1,[0 20],[2 0]);

x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

25

_25 1 I 1
0 5 10 15 20

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, ode15i

DDE solver: dde23
BVP solver: bvp4c

2-605

diag

Purpose

Syntax

Description

Examples

2-606

Diagonal matrices and diagonals of a matrix

X = diag(v,k)

X = diag(v)

v = diag(X,Kk)

v = diag(X)

X = diag(v,k) when v is a vector of n components, returns a square matrix X

of order n+abs (k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

k=0 k>0
k<0‘ .OOE

RN

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

diag(diag (X)) is a diagonal matrix.

sum(diag (X)) is the trace of X.

The statement
diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

diag

See Also spdiags, tril, triu

2-607

dialog

Purpose
Syntax

Description

See Also

2-608

Create and display dialog box

=
1l

dialog('PropertyName',PropertyValue,...)

h = dialog('PropertyName',PropertyValue,...) returns a handle to a
dialog box. This function creates a figure graphics object and sets the figure
properties recommended for dialog boxes. You can specify any valid figure
property value.

errordlg, figure, helpdlg, inputdlg, pagesetupdlg, printdlg, questdlg,
uiwait, uiresume, warndlg

“Predefined Dialog Boxes” for related functions

diary

Purpose

Syntax

Description

Remarks

Save session to a file

diary
diary('filename')
diary off

diary on

diary filename

The diary function creates a log of keyboard input and the resulting text
output, with some exceptions (see “Remarks” for details). The output of diary
is an ASCII file, suitable for searching in, printing, inclusion in most reports
and other documents. If you do not specify filename, MATLAB creates a file
named diary in the current directory.

diary toggles diary mode on and off. To see the status of diary, type
get (0, 'Diary'). MATLAB returns either on or of f indicating the diary
status.

diary('filename') writes a copy of all subsequent keyboard input and the
resulting output (except it does not include graphics) to the named file, where
filename is the full pathname or filename is in the current MATLAB
directory. If the file already exists, output is appended to the end of the file. You
cannot use a filename called off or on. To see the name of the diary file, use
get(0, 'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Because the output of diary is plain text, the file does not exactly mirror input
and output from the Command Window:

® OQutput does not include graphics (figure windows).

¢ Syntax highlighting and font preferences are not preserved.

2-609

diary

¢ Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For example, if
you enter the following statement

disp('Generate magic square")

MATLAB displays

Generate magic soquare

However, the diary file, when viewed in a text editor, shows

disp('Generate magic square")
Generate magic square

If you view the output of diary in the Command Window, the Command
Window interprets the <a href ...>statement and displays it as a
hyperlink.

® Viewing the output of diary in a console window might produce different
results compared to viewing diary output in the desktop Command Window.
One example is using the \r option for the fprintf function; using the \n
option might alleviate that problem.

See Also Command History in MATLAB Desktop Tools documentation

2-610

diff

Purpose

Syntax

Description

Remarks

Examples

Differences and approximate derivatives

Y = diff(X)

Y = diff(X,n)

Y = diff(X,n,dim)

Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff (X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]
If X is a matrix, then diff (X) returns a matrix of row differences:
[X(2:m,:)-X(1:m-1,:)]

In general, diff (X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff (X,2) is the same as diff (diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.

The quantity diff(y)./diff(x) is an approximate derivative.
X =[12345];
y = diff(x)
y =

1 1 1 1

z = diff(x,2)

2-611

diff

Given,
A = rand(1,3,2,4);
diff (A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

2-612

Purpose

Graphical
Interface

Syntax

Description

Examples

Display directory listing

As an alternative to the dir function, use the Current Directory browser.

dir
dir name
files = dir('name')

dir lists the files in the current working directory. Results are not sorted, but
presented in the order returned by the operating system.

dir name lists the specified files. The name argument can be a pathname,
filename, or can include both. You can use absolute and relative pathnames
and wildcards (*).

files = dir('directory') returns the list of files in the specified directory
(or the current directory, if dirname is not specified) to an m-by-1 structure with
the fields

name Filename

date Modification date

bytes Number of bytes allocated to the file
isdir 1 if name is a directory; 0 if not

List Directory Contents
To view the contents of the matlab/audio directory, type

dir $matlabroot/toolbox/matlab/audio

Using Wildcard and File Extension

To view the MAT files in your current working directory that include the term
java, type

dir *java*.mat
MATLAB returns

java_array.mat javafrmobj.mat testjava.mat

2-613

Using Relative Pathname
To view the M-files in the MATLAB audio directory, type

dir(fullfile(matlabroot, 'toolbox/matlab/audio/*.m"))

MATLAB returns
Contents.m auread.m soundsc.m
audiodevinfo.m auwrite.m wavplay.m
audioplayer.m lin2mu.m wavread.m
audioplayerreg.m mu2lin.m wavrecord.m
audiorecorder.m prefspanel.m wavwrite.m

audiouniquename.m sound.m

Returning File List to Structure
To return the list of files to the variable audio_files, type

audio_files=dir(fullfile(matlabroot, 'toolbox/matlab/audio/*.m'))

MATLAB returns the information in a structure array.

audio_files =
19x1 struct array with fields:
name
date
bytes
isdir

Index into the structure to access a particular item. For example,

audio_files(3).name
ans =
audioplayer.m

See Also cd, copyfile, delete, fileattrib, filebrowser, fileparts, isdir, 1s,
matlabroot, mkdir, mfilename, movefile, rmdir, type, what

2-614

dir (ftp)

Purpose List contents of directory on FTP server
Syntax dir(f,'dirname')
d=dir(...)
Description dir(f, 'dirname') lists the files in the specified directory, dirname, on the

FTP server f, where f was created using ftp. If dirname is unspecified, dir
lists the files in the current directory of f.

d=dir(...) returns the results in an m-by-1 structure with the following

fields for each file:

name Filename

date Date last modified

bytes Size of the file

isdir 1 if name is a directory and 0 if not

Examples Connect to the MathWorks FTP server and view the contents.

tmw=ftp('ftp.mathworks.com');
dir(tmw)
. incoming pickup
README matlab pub
README.incoming outgoing pubs

Change to the directory pub/pentium.
cd(tmw, 'pub/pentium')

2-615

dir (ftp)

View the contents of that directory.

dir(tmw)

Intel_resp.txt NYT_2.txt
. Intel_support.txt NYT_Dec14.uu
Andy_Grove.txt Intel white.ps New_York_Times.txt
Associated Press.txt MathWorks_press.txt Nicely 1.txt
CNN.html Mathisen.txt Nicely 2.txt
Coe.txt Moler 1.txt Nicely 3.txt
Cygnus.txt Moler 2.txt Pratt.txt
EE_Times.txt Moler_3.txt README. txt
FAQ. txt Moler_4.txt SPSS. txt
IBM_study.txt Moler 5.txt Smith.txt
Intel FAX.txt Moler_6.ps p87test.txt
Intel_ fix.txt Moler_7.txt p87test.zip
Intel_replace.txt Myths.txt test

Or return the results to the structure m.

m=dir (tmw)
m:

37x1 struct array with fields:
name
date
bytes
isdir

View element 17.
m(17)

ans =

name: 'Moler_1.txt'
date: '1995 Mar 27
bytes: 3427
isdir: O

See Also ftp, mkdir (ftp), rmdir (ftp)

2-616

disp

Purpose
Syntax

Description

Examples

See Also

Display text or array
disp(X)
disp(X) displays an array, without printing the array name. If X contains a

text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading X =, which is not always desirable.

Note that disp does not display empty arrays.

One use of disp in an M-file is to display a matrix with column labels:

disp(" Corn Oats Hay ')
disp(rand(5,3))

which results in

corn Oats Hay

0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

format, int2str, num2str, rats, sprintf

2-617

disp (timer)

Purpose Display information about timer object
Syntax obj
disp(obj)
Description obj or disp(obj) displays summary information for the timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary information
about the timer objects in the array.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when

¢ Creating a timer object, using the timer function

® Configuring property values using the dot notation

Examples The following commands display summary information for timer object t.

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot
Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: []
ErrorfFcn: []
StartFcn: []
StopFcn: []

This example shows the format of summary information displayed for an array
of timer objects.

t2 = timer;
disp(timerfind)

Timer Object Array

2-618

disp (timer)

Timer Object Array

Index: ExecutionMode:

1 singleShot
2 singleShot

See Also timer, get

Period:
1
1

TimerFcn:

Name:
timer-1
timer-2

2-619

display

Purpose Overloaded method to display an object
Syntax display (X)
Description display(X) prints the value of a variable or expression, X. MATLAB calls

display(X) when it interprets a variable or expression, X, that is not
terminated by a semicolon. For example, sin(A) calls display, while sin(A);
does not.

If X is an instance of a MATLAB class, then MATLAB calls the display method
of that class, if such a method exists. If the class has no display method or if X
is not an instance of a MATLAB class, then the MATLAB built-in display
function is called.

Examples A typical implementation of display calls disp to do most of the work and looks
like this.

function display(X)
if isequal(get(0, 'FormatSpacing'), 'compact')
disp([inputname(1) ' =']);
disp(X)
else
disp(' ')
disp([inputname(1) ' =']);
disp(' ');
disp (X)
end

The expression magic (3), with no terminating semicolon, calls this function as
display(magic(3)).

magic(3)

ans =
8 1 6
3 5 7
4 9 2

As an example of a class display method, the function below implements the
display method for objects of the MATLAB class polynom.

2-620

display

See Also

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom

disp(' ');
disp([inputname(1),' = '1)
disp(' ');

disp([' ' char(p)])
disp(' ');

The statement
p = polynom([1 O -2 -5])

creates a polynom object. Since the statement is not terminated with a
semicolon, the MATLAB interpreter calls display(p), resulting in the output

p:

X*8 - 2*x - 5

disp, ans, sprintf, special characters

2-621

divergence

Purpose

Syntax

Description

Examples

2-622

Computes the divergence of a vector field

div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)

div = divergence(X,Y,U,V)
div = divergence(U,V)

div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D vector
field U, v, W. The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression
[XY Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector field U,
V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D
plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the expression
[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

This example displays the divergence of vector volume data as slice planes
using color to indicate divergence.

load wind

div = divergence(X,y,z,u,v,w);
slice(X,y,z,div,[90 134],[59]1,[01);
shading interp

daspect([1 1 1])

camlight

divergence

See Also streamtube, curl, isosurface
“Volume Visualization” for related functions

Displaying Divergence with Stream Tubes for another example

2-623

dimread

Purpose

Graphical
Interface

Syntax

Description

2-624

Read an ASCII-delimited file into a matrix

As an alternative to dlmread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

M = dlmread('filename')

M = dlmread('filename', delimiter)

M = dlmread('filename', delimiter, R, C)

M = dlmread('filename', delimiter, range)

M = dlmread('filename') reads numeric data from the ASCII-delimited file

filename, using a delimiter inferred from the formatting of the file. Comma (,)
is the default delimiter.

M = dlmread('filename', delimiter) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. Use \t to specify
a tab delimiter.

Note When a delimiter is inferred from the formatting of the file, consecutive
whitespaces are treated as a single delimiter. By contrast, if a delimiter is
specified by the delimiter input, any repeated delimiter character is treated
as a separate delimiter.

M = dlmread('filename', delimiter, R, C) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. The values R and
C specify the row and column where the upper left corner of the data lies in the
file. R and C are zero based, so that R=0, C=0 specifies the first value in the file,
which is the upper left corner.

M = dlmread('filename', delimiter, range) reads the range specified by
range = [R1 C1 R2 C2] where (R1,C1) is the upper left corner of the data to
be read and (R2,C2) is the lower right corner. You can also specify the range
using spreadsheet notation, as in range = 'A1..B7'.

dimread

Remarks

See Also

dlmread fills empty delimited fields with zero. Data files having lines that end
with a nonspace delimiter, such as a semicolon, produce a result that has an
additional last column of zeros.

dlmread imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type. Valid
forms for a complex number are

Form Example
—<real>—<imag>i|j 5.7-3.11
—<imag>1i|j -7]

Embedded white-space in a complex number is invalid and is regarded as a
field delimiter.

dlmwrite, textscan, csvread, csvwrite, wkiread, wkiwrite

2-625

dimwrite

Purpose

Syntax

Description

2-626

Write a matrix to an ASCII-delimited file

dlmwrite('filename', M)

dlmwrite('filename', M, 'D")

dlmwrite('filename', M, 'D', R, C)

dlmwrite('filename', M, attributel, valuel, attribute2, value2, ...)
dlmwrite('filename', M, '-append')

dlmwrite('filename', M, '-append', attribute-value list)

dlmwrite('filename', M) writes matrix Minto an ASCII format file using the
default delimiter (,) to separate matrix elements. The data is written starting
at the first column of the first row in the destination file, filename.

dlmwrite('filename', M, 'D') writes matrix M into an ASCII format file,
using delimiter D to separate matrix elements. The data is written starting at
the first column of the first row in the destination file, filename. A comma (,)
is the default delimiter. Use \t to produce tab-delimited files.

dlmwrite('filename', M, 'D', R, C) writes matrix A into an ASCII format
file, using delimiter D to separate matrix elements. The data is written starting
at row R and column C in the destination file, filename. R and C are zero based,
so that R=0, C=0 specifies the first value in the file, which is the upper left
corner.

dlmwrite('filename', M, 'attribi1', valuel, 'attrib2', value2, ...)
is an alternate syntax to those shown above, in which you specify any number
of attribute-value pairs in any order in the argument list. Each attribute must
be immediately followed by a corresponding value (see the table below).

Atribute Value

delimiter Delimiter string to be used in separating matrix elements
newline Character(s) to use in terminating each line (see table below)

roffset Offset, in rows, from the top of the destination file to where
matrix data is to be written. Offset is zero based.

dimwrite

Remarks

Examples

Atiribute Value

coffset Offset, in columns, from the left side of the destination file to
where matrix data is to be written. Offset is zero based.

precision Numeric precision to use in writing data to the file. Specify
the number of significant digits or a C-style format string
starting in %, such as '%10.5f".

This table shows which values you can use when setting the newline attribute.

Line Terminator Description

'pc' PC terminator (implies carriage
return/line feed (CR/LF))

‘unix' UNIX terminator (implies line feed (LF))

dlmwrite('filename', M, '-append') appends the matrix to the file. If you
do not specify ' -append’', dlmwrite overwrites any existing data in the file.

dlmwrite('filename', M, '-append', attribute-value list) isthe same
as the syntax shown above, but accepts a list of attribute-value pairs. You
can place the ' -append' flag in the argument list anywhere between
attribute-value pairs, but not in between an attribute and its value.

The resulting file is readable by spreadsheet programs.

Export matrix M to a file delimited by the tab character and using a precision
of six significant digits:

dlmwrite('myfile.txt', M, 'delimiter', '\t', 'precision', 6)
type myfile.txt

0.893898 0.284409 0.582792 0.432907
0.199138 0.469224 0.423496 0.22595

0.298723 0.0647811 0.515512 0.579807
0.661443 0.988335 0.333951 0.760365

2-627

dimwrite

Export matrix M to a file using a precision of six decimal places and the
conventional line terminator for the PC platform:

dlmwrite('myfile.txt', m, 'precision', '%.6f', 'newline', 'pc')
type myfile.txt

16.000000,2.000000,3.000000,13.000000
5.000000,11.000000,10.000000,8.000000
9.000000,7.000000,6.000000,12.000000

4.000000,14.000000,15.000000,1.000000

Export matrix M to a file, and then append an additional matrix to the file that
is offset one row below the first:

M = magic(4);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), 'append', 'on',
‘roffset', 1, 'delimiter';, ' ')

type myfile.txt

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4

20 70 75 5 0.8 2.8 3 0.2
0.99008 0.49831 0.32004
0.78886 0.21396 0.9601

0.43866 0.64349 0.72663

See Also dlmread, csvwrite, csvread, wkiwrite, wk1read

2-628

dmperm

Purpose

Syntax

Description

Remarks

See Also

References

Dulmage-Mendelsohn decomposition

p = dmperm(A)
[p,q,r,s] = dmperm(A)

p = dmperm(A) if Ais square and has full rank, returns a row permutation p so
that A(p, :) has nonzero diagonal elements. This permutation is also called a
perfect matching. If A is not square or not full rank, p is a vector that identifies
a matching of maximum size: for each column j of A, either p(j)=0 or
A(p(j),]) is nonzero.

[p,q,r,s] = dmperm(A), where A need not be square or full rank, finds
permutations p and q and index vectors r and s so that A(p,q) is block upper
triangular. The kth block has indices (r(k):r(k+1)-1, s(k):s(k+1)-1).
When A is square and has full rank, r = s.

If A is not square or not full rank, the first block may have more columns and
the last block may have more rows. All other blocks are square and irreducible.
dmperm permutes nonzeros to the diagonals of square blocks, but does not do
this for non-square blocks.

IfAis a reducible matrix, the linear system Ax = b can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the
diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to the strong
Hall components of that graph. The output of dmperm can also be used to find
the connected or strongly connected components of an undirected or directed
graph. For more information see Pothen and Fan [].

sprank
Pothen, Alex and Chin-Ju Fan, "Computing the Block Triangular Form of a

Sparse Matrix," ACM Transactions on Mathematical Software, Vol. 16, No. 4,
Dec. 1990, pp. 303-324.

2-629

doc

Purpose

Graphical
Interface

Syntax

Description

Examples

2-630

Display online documentation in MATLAB Help browser

As an alternative to the doc function, use the Help browser Search tab. Type
the function name and click Go.

doc

doc functionname

doc toolboxname/

doc toolboxname/functionname

doc opens the Help browser, if it is not already running, or brings the window
on top when it is already open.

doc functionname displays the reference page for the MATLAB function
functionname in the Help browser (for example, you are looking at the
reference page for the doc function). If functionname is overloaded, that is, if
functionname appears in multiple directories on the MATLAB search path,
doc displays the reference page for the first functionname on the search path
and displays a hyperlinked list of the other functions and their directories in
the MATLAB Command Window. If a reference page for functionname does
not exist, doc displays its M-file help in the Help browser.

doc toolboxname displays the Roadmap page for toolboxname in the Help
browser, which provides a summary of the most pertinent documentation for
that product.

doc toolboxname/functionname displays the reference page for functionname
that belongs to the specified toolboxname, in the Help browser. This is useful
for overloaded functions.

Type doc abs to display the reference page for the abs function. If Simulink
and the Signal Processing Toolbox are installed and on the search path, the
Command Window lists hyperlinks for the abs function in those products

doc signal/abs
doc simulink/abs

Type doc signal/abs to display the reference page for the abs function in the
Signal Processing Toolbox.

doc

See Also

Type doc signal to display the Roadmap page for the Signal Processing
Toolbox.

Note If there is a function called name as well as a toolbox called name, the
Roadmap page for the toolbox called name displays. To see the reference page
for the function called name, use doc toolboxname/name, where toolboxname
is the name of the toolbox in which the function name resides. For example, doc
matlab displays the roadmap page for matlab, while doc matlab/matlab
displays the reference page for the matlab UNIX startup function.

docopt, docsearch, help, helpbrowser, lookfor, type, web

2-631

docopt

Purpose
Syntax

Description

See Also

2-632

Web browser for UNIX platforms
docopt

docopt displays the Web browser used with MATLAB on non-Macintosh UNIX
platforms, with the default being netscape (for Netscape). For non-Macintosh
UNIX platforms, you can modify the docopt.m file to specify the Web browser
MATLAB uses. The Web browser is used with the web function and its

-browser option. It is also used for links to external Web sites from the Help.

doccmd = docopt returns a string containing the command that web -browser
uses to invoke a Web browser.

To change the browser, edit the docopt.m file and change line 51. For example,

50 elseif isunix % UNIX
51 % doccmd = '';

Remove the comment symbol. In the quote, enter the command that launches
your Web browser, and save the file. For example

51 doccmd = 'mozilla’;

specifies Mozilla as the Web browser MATLAB uses.

doc, edit, helpbrowser, web

docsearch

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

Open Help browser Search pane and run search for specified term

As an alternative to the docsearch function, select Desktop -> Help and click
the Search tab.

docsearch

docsearch word

docsearch ('word1 word2 ...")
docsearch('word1 word2 BOOLEANOP word3')

docsearch opens the Help browser to the Search pane, or if the Help browser
is already opens, brings it to the top.

docsearch word1 executes a Help browser full-text search for word1,
displaying results in the Help browser Search pane.

docsearch ('word1 word2 ...') executes a Help browser full-text search for
pages containing word1 and word2 and any other specified words, displaying
results in the Help browser Search pane.

docsearch('wordi word2 BOOLEANOP word3') executes a a Help browser
full-text search for the term word1 word2 BOOLEANOP word3, where BOOLEANOP
is a Boolean operator (AND, NOT, OR) used to limit the search. Results display in
the Help browser Search pane.

docsearch print finds all pages that contain the word print.

docsearch('print figure') finds all pages that contain the words print and
figure.

docsearch('print OR printing AND figure NOT exporting') finds all
pages that contain the words print and figure, or printing and figure, but
only if the pages do not contain the word exporting.

doc, helpbrowser

Search Documentation with the Help Browser

2-633

dos

Purpose

Syntax

Description

Examples

2-634

Execute a DOS command and return result

dos command

status = dos('command')

[status,result] dos('command"')
[status,result] dos('command','-echo')

dos command calls upon the shell to execute the given command for Windows
systems.

status = dos('command') returns completion status to the status variable.

[status,result] = dos('command') inaddition to completion status, returns
the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed, but the
syntax causes different results based on the type of programs. Console
programs have stdout and their output is returned to the result variable. They
are always run in an iconified DOS or Command Prompt Window except as
noted below. Console programs never execute in the background. Also,
MATLAB will always wait for the stdout pipe to close before continuing
execution. Windows programs may be executed in the background as they have
no stdout.

The ampersand, &, character has special meaning. For console programs this
causes the console to open. Omitting this character will cause console programs
to run iconically. For Windows programs, appending this character will cause
the application to run in the background. MATLAB will continue processing.

The following example performs a directory listing, returning a zero (success)
in s and the string containing the listing in w.

[s, w] = dos('dir');
To open the DOS 5.0 editor in a DOS window

dos('edit &')

dos

See Also

To open the notepad editor and return control immediately to MATLAB
dos('notepad file.m &')

The next example returns a one in s and an error message in w because foo is
not a valid shell command.

[s, w] = dos('foo"')

This example echoes the results of the dir command to the Command Window
as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

! (exclamation point), perl, system, unix, winopen

2-635

dot

Purpose

Syntax

Description

Examples

See Also

2-636

Vector dot product
C = dot(A,B)
C = dot(A,B,dim)

C = dot(A,B) returns the scalar product of the vectors A and B. A and B must
be vectors of the same length. When A and B are both column vectors, dot (A, B)
is the same as A' *B.

For multidimensional arrays A and B, dot returns the scalar product along the
first non-singleton dimension of A and B. A and B must have the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the dimension dim.

The dot product of two vectors is calculated as shown:

a=1[123]; b=1[456];
c = dot(a,b)
C:
32
cross

double

Purpose Convert to double precision
Syntax double (X)
Description double(x) returns the double-precision value for X. If X is already a

double-precision array, double has no effect.
Remarks double is called for the expressions in for, if, and while loops if the expression

isn't already double-precision. double should be overloaded for any object when
it makes sense to convert it to a double-precision value.

2-637

dragrect

Purpose

Syntax

Description

Remarks

Example

See Also

2-638

Drag rectangles with mouse

[finalrect]
[finalrect]

dragrect(initialrect)
dragrect(initialrect,stepsize)

[finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the final
position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the rectangles in
increments of stepsize. The lower left corner of the first rectangle is
constrained to a grid of size equal to stepsize starting at the lower left corner
of the figure, and all other rectangles maintain their original offset from the
first rectangle.

[finalrect] = dragrect(...) returns the final positions of the rectangles
when the mouse button is released. The default step size is 1.

dragrect returns immediately if a mouse button is not currently pressed. Use
dragrect in a ButtonDownFcn, or from the command line in conjunction with
waitforbuttonpress, to ensure that the mouse button is down when dragrect
is called. dragrect returns when you release the mouse button.

If the drag ends over a figure window, the positions of the rectangles are
returned in that figure’s coordinate system. If the drag ends over a part of the
screen not contained within a figure window, the rectangles are returned in the
coordinate system of the figure over which the drag began.

Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress

point1 = get(gcf, 'CurrentPoint') % button down detected
rect [point1(1,1) point1(1,2) 50 100]

[r2] = dragrect(rect)

rbbox, waitforbuttonpress

“Selecting Region of Interest” for related functions

drawnow

Purpose
Syntax
Description

Remarks

Examples

See Also

Complete pending drawing events
drawnow
drawnow flushes the event queue and updates the figure window.

Other events that cause MATLAB to flush the event queue and draw the figure
windows include

® Returning to the MATLAB prompt

® A pause statement

* A waitforbuttonpress statement

* A waitfor statement

® A getframe statement

e A figure statement

Executing the statements

X = -pi:pi/20:pi;
plot(x,cos(x))

drawnow

title('A Short Title')
grid on

as an M-file updates the current figure after executing the drawnow function
and after executing the final statement.

waitfor, pause, waitforbuttonpress

“Figure Windows” for related functions

2-639

dsearch

Purpose

Syntax

Description

See Also

2-640

Search for nearest point

K
K

dsearch(x,y,TRI,xi,yi)
dsearch(x,y,TRI,xi,yi,S)

K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the nearest
point to the point (xi,yi). dsearch requires a triangulation TRI of the points x,y
obtained using delaunay. If xi and yi are vectors, Kis a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 22 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

delaunay, tsearch, voronoi

dsearchn

Purpose

Syntax

Description

See Also

N-dimensional nearest point search

k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)

[k,d] = dsearchn(X,...)

k = dsearchn(X,T,XI) returns the indices k of the closest points in X for each
point in XI. X is an m-by-n matrix representing m points in n-dimensional space.
XI is a p-by-n matrix, representing p points in n-dimensional space. T is a
numt-by-n+1 matrix, a tessellation of the data X generated by delaunayn. The
output k is a column vector of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest points in X
for each point in XI, unless a point is outside the convex hull. If XI(J,:) is
outside the convex hull, then K(J) is assigned outval, a scalar double. Inf is
often used for outval. If outval is [], then k is the same as in the case

k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation. With
large X and small XI, this approach is faster and uses much less memory.

[k,d] = dsearchn(X,...) alsoreturns the distances d to the closest points. d
is a column vector of length p.

tsearch, dsearch, tsearchn, griddatan, delaunayn

2-641

echo

Purpose

Syntax

Description

2-642

2echo

Echo M-files during execution

echo on

echo off

echo

echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files are not displayed on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected.

echo on Turns on the echoing of commands in all script files
echo off Turns off the echoing of commands in all script files
echo Toggles the echo state

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

echo fcnname on Turns on echoing of the named function file

echo fcnname off Turns off echoing of the named function file

echo fcnname Toggles the echo state of the named function file
echo on all Sets echoing on for all function files
echo off all Sets echoing off for all function files

echo

See Also function

2-643

edit

Purpose

Graphical
Interface

Syntax

Description

Remarks

2-644

Edit or create M-file

As an alternative to the edit function, select New or Open from the File menu
in the MATLAB desktop or any desktop tool.

edit

edit fun.m

edit file.ext

edit funi fun2 fun3 ...
edit class/fun

edit private/fun

edit class/private/fun

edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. Note that fun.m can
be a MATLAB partialpath or a complete path. If fun.m does not exist, a
prompt appears asking if you want to create a new file titled fun.m. After you
click Yes, the Editor/Debugger creates a blank file titled fun.m. If you do not
want the prompt to appear in this situation, select that check box in the
prompt. Then when you type edit fun.m, where fun.m did not previously exist,
a new file called fun.mis automatically opened in the Editor. To make the
prompt appear, specify it in preferences for Prompt.

edit file.ext opens the specified file.

edit funi fun2 fun3 ... opens funi.m, fun2.m, fun3.m, and so on, in the
default editor.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

To specify the default editor for MATLAB, select Preferences from the File
menu. On the Editor/Debugger panel, select MATLAB editor or specify
another.

edit

See Also

UNIX Users

If you run MATLAB with the -nodisplay startup option, or run without the
DISPLAY environment variable set, edit uses the External Editor command.
It does not use the MATLAB Editor/Debugger, but instead uses the default
editor defined for your system in $matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor options
by adding the following line to your own.Xdefaults file, located in ~home

matlab*externalEditorCommand: $EDITOR -option $FILE
where

® $EDITOR is the name of your default editor, for example, emacs; leaving it as
$EDITOR means your default system editor will be used.

® -option is a valid option flag you can include for the specified editor.
® $FILE means the filename you type with the edit command will open in the
specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs editor.

After adding the line to your.Xdefaults file, you must run the following before
starting MATLAB:

xrdb -merge ~home/.Xdefaults

open, type

2-645

eig

Purpose

Syntax

Description

2-646

Find eigenvalues and eigenvectors

d
d

eig(A)

eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A, 'nobalance')
(
(

[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns avector containing the generalized eigenvalues, if Aand
B are square matrices.

Note IfSis sparse and symmetric, you can use d = eig(S) to returns the
eigenvalues of S. To request eigenvectors, and in all other cases, use eigs to
find the eigenvalues or eigenvectors of sparse matrices.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that A*V = V*D. Matrix D is the canonical form of A—a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

IfWis a matrix such that W' *A = D*W', the columns of W are the left eigenvectors
of A.Use [W,D] = eig(A."'); W = conj (W) to compute the left eigenvectors.

[V,D] = eig(A, 'nobalance') finds eigenvalues and eigenvectors without a

preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
A*V = B*V*D,

eig

Remarks

[V,D] = eig(A,B,flag) specifies the algorithm used to compute eigenvalues
and eigenvectors. flag can be:

‘chol’ Computes the generalized eigenvalues of A and B using the
Cholesky factorization of B. This is the default for symmetric
(Hermitian) A and symmetric (Hermitian) positive definite B.

qz Ignores the symmetry, if any, and uses the QZ algorithm as it

would for nonsymmetric (non-Hermitian) A and B.

Note For eig(A), the eigenvectors are scaled so that the norm of each is 1.0.
For eig(A,B), eig(A, 'nobalance'), and eig(A,B,flag), the eigenvectors are
not normalized.

The eigenvalue problem is to determine the nontrivial solutions of the equation
Ax = A\x

where A is an n-by-n matrix, x is a length n column vector, and A is a scalar.
The n values of A that satisfy the equation are the eigenvalues, and the
corresponding values of x are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues A, and optionally the eigenvectors x .

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

Ax = ABx

where both A and B are n-by-n matrices and A is a scalar. The values of A that
satisfy the equation are the generalized eigenvalues and the corresponding
values of x are the generalized right eigenvectors.

If B is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

B 1lAx = \x

Because B can be singular, an alternative algorithm, called the QZ method, is
necessary.

2-647

eig

Examples

Algorithm

2-648

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix V diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies A*X = X*D.

The matrix
B=13 -2 -.9 2*eps
-2 4 1 -eps
-eps/4 eps/2 -1 0
-.5 -.5 A 1 1

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[VB,DB] = eig(B)

B*VB - VB*DB
[VN,DN] = eig(B, 'nobalance')
B*VN - VN*DN

Inputs of Type Double

For inputs of type double, MATLAB uses the following LAPACK routines to
compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

e With preliminary balance step DGEEV (with SCLFAC = 2 instead
of 8 in DGEBAL)

e d = eig(A, 'nobalance') DGEHRD, DHSEQR

e [V,D] = eig(A, 'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

eig

Case Routine

Non-Hermitian A:

¢ With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)
e d = eig(A, 'nobalance') ZGEHRD, ZHSEQR
e [V,D] = eig(A, 'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC
Real symmetric A, DSYGV

symmetric positive definite B.
Special case:

eig(A,B, 'qz"') for real A, B DGGEV
(same as real nonsymmetric A, real
general B)
Real nonsymmetric A, real general B DGGEV
Complex Hermitian A, ZHEGV

Hermitian positive definite B.
Special case:
eig(A,B, 'qz"') for complex A or B ZGGEV
(same as complex non-Hermitian A,
complex B)

Complex non-Hermitian A, complex B~ ZGGEV

Inputs of Type Single

For inputs of type single, MATLAB uses the following LAPACK routines to
compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A SSYEV
Real nonsymmetric A:
e With preliminary balance step SGEEV

®d = eig(A, 'nobalance') SGEHRD, SHSEQR

2-649

eig

Case Routine
e [V,D] = eig(A, 'nobalance') SGEHRD, SORGHR, SHSEQR, STREVC
Hermitian A CHEEV

Non-Hermitian A:

¢ With preliminary balance step CGEEV

e d = eig(A, 'nobalance') CGEHRD, CHSEQR

® [V,D] = eig(A, 'nobalance') CGEHRD, CUNGHR, CHSEQR, CTREVC
Real symmetric A, CSYGV

symmetric positive definite B.
Special case:

eig(A,B, 'qz"') for real A, B SGGEV
(same as real nonsymmetric A, real
general B)
Real nonsymmetric A, real general B SGGEV
Complex Hermitian A, CHEGV

Hermitian positive definite B.
Special case:
eig(A,B, 'qz"') for complex A or B CGGEV
(same as complex non-Hermitian A,
complex B)

Complex non-Hermitian A, complex B CGGEV

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

(http://www.netlib.org/lapack/lug/lapack lug.html), Third Edition,
SIAM, Philadelphia, 1999.

2-650

eigs

Purpose

Syntax

Description

Find a few eigenvalues and eigenvectors of a square large sparse matrix

= eigs(A)

= eigs(A,B)
= eigs(A,k)
= eigs(A,B,k)
= eigs(A,k,sigma)

= eigs(A,B,k,sigma)

= eigs(A,k,sigma,options)

= eigs(A,B,k,sigma,options)
eigs(Afun,n)

= eigs(Afun,n,B)

= eigs(Afun,n,k)

= eigs(Afun,n,B,k)

= eigs(Afun,n,k,sigma)

= eigs(Afun,n,B,k,sigma)

= eigs(Afun,n,k,sigma,options)

= eigs(Afun,n,B,k,sigma,options)

= eigs(Afun,n,k,sigma,options,pl,p2...)
eigs(Afun,n,B,k,sigma,options,p1,p2...)
[V,D] = eigs(A,...)

[V,D] = eigs(Afun,n,...)

[V,D,flag] = eigs(A,...)

[v,D,flag] = eigs(Afun,n,...)

O 0O 0O 0O O 0O 0O OO0 0 0 O 90O O 0 O O
1

o
I

d = eigs(A) returns a vector of A's six largest magnitude eigenvalues.

[V,D] = eigs(A) returns a diagonal matrix D of A's six largest magnitude
eigenvalues and a matrix V whose columns are the corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0 then all
the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B must
be symmetric (or Hermitian) positive definite and the same size as A.
eigs(A,[],...) indicates the standard eigenvalue problem A*vV == V*D.

eigs(A,k) and eigs (A, B, k) return the k largest magnitude eigenvalues.

2-651

eigs

2-652

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma, which can take any of the following values:

scalar The eigenvalues closest to sigma. If A is a function, Afun

(real or complex, must returnyY = (A-sigma*B)\x (i.e.,Y = A\x when

including 0) sigma = 0). Note, B need only be symmetric (Hermitian)
positive semi-definite.

‘1m' Largest magnitude (default).

‘sm' Smallest magnitude. Same as sigma = 0. If Ais a function,

Afun must return Y = A\x. Note, B need only be symmetric
(Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

'la’ Largest algebraic (' 1r' in MATLAB 5)

'sa' Smallest algebraic (' sr' in MATLAB 5)

'be Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also options:
‘1r! Largest real part

‘sr' Smallest real part

'1i! Largest imaginary part

'si' Smallest imaginary part

Note The MATLAB 5 value sigma = 'be' is obsolete for nonsymmetric and
complex problems.

eigs

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an options
structure. Default values are shown in brackets ({}).

Parameter Description Values
options.issym 1 if A or A-sigma*B represented [{0} | 1]
by Afun is symmetric, 0
otherwise.
options.isreal 1 if A or A-sigma*B represented [0 | {1}]
by Afun is real, 0 otherwise.
options.tol Convergence: Ritz estimate [scalar | {eps}]
residual <= tol*norm(A).
options.maxit Maximum number of iterations. [integer | {300}]
options.p Number of basis vectors. p >= 2k [integer | 2*k]
(p >= 2k+1 real nonsymmetric)
advised. Note: p must satisfy
k < p <= n for real symmetric,
k+1 < p <= n otherwise.
options.vO0 Starting vector. Randomly
generated by
ARPACK
options.disp Diagnostic information display [0 | {1} | 2]
level.
options.cholB 1 if B is really its Cholesky factor ~ [{0} | 1]
chol(B), 0 otherwise.
options.permB Permutation vector permB if [permB | {1:n}]

sparse B is really
chol(B(permB,permB)).

Note MATLAB 5 options stagtol and cheb are no longer allowed.

2-653

eigs

Remarks

Algorithm

Examples

2-654

eigs(Afun,n,...) accepts the function Afun instead of the matrix A.
y = Afun(x) should return:

A*X if sigma is not specified, or is a string other than 'sm'
A\x if sigmais 0 or 'sm'
(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue

problem). I is an identity matrix of the same size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized eigenvalue
problem)

n is the size of A. The matrix A, A-sigma*I or A-sigma*B represented by Afun is
assumed to be real and nonsymmetric unless specified otherwise by
opts.isreal and opts.issym. In all the eigs syntaxes, eigs(A,...) can be
replaced by eigs (Afun,n,...).

eigs (Afun,n,k,sigma,opts,pl,p2,...) and

eigs(Afun,n,B,k,sigma,opts,pl,p2,...) provide for additional arguments
which are passed to Afun(x,p1,p2,...).

d = eigs(A,k) is not a substitute for

d = eig(full(A))
d sort(d)
d d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full(A)).

eigs provides the reverse communication required by the Fortran library
ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD, ZNAUPD, and
ZNEUPD.

Example 1: This example shows the use of function handles.

A = delsq(numgrid('C',15));
d1i = eigs(A,5,'sm');

Equivalently, if dnRk is the following one-line function:

function y = dnRk(x,R,k)

eigs

y = (delsq(numgrid(R,k))) \ x;
then pass dnRk's additional arguments, 'C' and 15, to eigs.

n = size(A,1);
opts.issym = 1;
d2 = eigs(@dnRk,n,5, " 'sm',opts,'C',15);

Example 2: west0479 is a real 479-by-479 sparse matrix with both real and
pairs of complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as computed
by eig and eigs.

load west0479

d = eig(full(west0479))

dlm = eigs(west0479,8)

[dum,ind] = sort(abs(d));

plot(dlm, 'k+"')

hold on

plot(d(ind(end-7:end)), 'ks"')

hold off
legend('eigs(west0479,8) ', 'eig(full(west0479))"')

2-655

eigs

2-656

2000

+ eigs(west0479,8)
E O eig(full(west0479))
1500 - 4
1000 - -
500 - -
of 2 ? @ g
izl & ®
=500 -
-1000 - -
-1500 - q
H
-2000 1 1 1 1
=150 -100 =50 0 50 100 150

Example 3: A = delsq(numgrid('C',30)) is a symmetric positive definite
matrix of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes all 632
eigenvalues. It computes and plots the six largest and smallest magnitude
eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d eig(full(A));

[dum,ind] = sort(abs(d));
dlm = eigs(A);

dsm eigs(A,6,'sm');

subplot(2,1,1)

plot(dlm, 'k+')

hold on
plot(d(ind(end:-1:end-5)), 'ks")
hold off
legend('eigs(A) ', 'eig(full(A))',3)
set(gca, 'XLim',[0.5 6.5])

eigs

subplot(2,1,2)

plot(dsm, 'k+"')

hold on

plot(d(ind(1:6)), 'ks")

hold off
legend('eigs(A,6,"''sm'") "', 'eig(full(A))',2)
set(gca, 'XLim',[0.5 6.5])

79r- b

7.851 -
+ eigs(A)
O eig(full(A))

78 I I I I I
1 2 3 4 5 6

0.2

T T
+ eigs(A,6,'SM’)
O eig(full(A)) @
0.151 -

0.1r- N

0.05 b

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A - 4.0*I. This involves divisions of the form

1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A. As
lambda gets closer to 4.0, eigs fails. We must use sigma near but not equal to
4 to find those 18 eigenvalues.

4 - 1e-6
eigs(A,18,sigma)

sigma
[Vv,D]

2-657

eigs

See Also

References

2-658

The plot shows the 20 eigenvalues closest to 4 that were computed by eig,
along with the 18 eigenvalues closest to 4 - 1e-6 that were computed by eigs.

18 repeated eigenvalues of delsq(numgrid('C’,30)) at 4

4.03 T T T T T T T T 4
+ + eigs(A,18,sigma)
o o eig(A)
4.021 b
4.01+- 4
4+ | 8B @8 B @8 B 8 ® # @ ® # #H #® # ® # # -

3.99r- 7

3.98 - q

3.97 I I I I I I I I I I

arpackc, eig, svds

[1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an Implicitly
Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and Applications, Vol.
17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users' Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a k-Step
Arnoldi Method,” SIAM J. Matrix Analysis and Applications, Vol. 13, 1992,
pp. 357-385.

ellipj

Purpose

Syntax

Definition

Description

Algorithm

Jacobi elliptic functions

[SN,CN,DN]
[SN,CN,DN]

ellipj(U,M)
ellipj(U,M,tol)

The Jacobi elliptic functions are defined in terms of the integral:

_(® do
u = e
0 . 93

(1-msin20)2

Then

1
sn(u) = sin@, cn(u) = cos@ dn(u)=(1-msin29)2, am(u) = @
Some definitions of the elliptic functions use the modulus % instead of the
parameter m . They are related by

k2 = m = sinZ2a

The Jacobi elliptic functions obey many mathematical identities; for a good
sample, see [1].

[SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to
accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:
1

1
2 2
ag=1,by=(1-m)", ¢y =(m)

2-659

ellipj

Limitations

See Also

References

2-660

ellipj computes successive iterates with
1
a; = 5(a; 1+b; 1)
1
b, = (a;_1b; 1)?

1
¢ = Q(aifrbifl)
Next, it calculates the amplitudes in radians using:

. cn .
sin(29, _{-9,) = ;—sm((pn)
n

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:
sn(u) = sing@,

cn(u) = cos@,

dn(u) = (1-m Dsn(u)2)%

The ellipj function is limited to the input domain 0 <m < 1. Map other values
of M into this range using the transformations described in [1], equations 16.10
and 16.11. U is limited to real values.

ellipke

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

ellipke

Purpose

Syntax

Definition

Description

Complete elliptic integrals of the first and second kind

K = ellipke(M)
[K,E] = ellipke (M)
[K,E] = ellipke(M,tol)

The complete elliptic integral of the first kind [1] is
K(m) = F(1V2|m)

where F, the elliptic integral of the first kind, is

-1 x -1
K(m) = J;[(1t2)(1mt2)] 2 4t = IZ(lfmsin26)2 do

The complete elliptic integral of the second kind
E(m) = E(K(m)) = E{TV/2|m)
is
1 1 1 5 1
E(m) = j (1-2)2(1-me2)2dt = j (1-msin26)2d0
0 0
Some definitions of K and E use the modulus % instead of the parameter m .
They are related by
k2 = m = sinZa

K = ellipke (M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the complete elliptic integral to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

2-661

ellipke

Algorithm

Limitations
See Also

References

2-662

ellipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the
triplet of numbers

1 1
ag=1,b5=(1-m)% cq = (m)?

ellipke computes successive iterations of a;, b;, and c; with

1

i =50 176 1)
1

b; = (a; _1b; 1)*

1
¢; = 5(@; 1-b; 1)

stopping at iteration n when cn = 0, within the tolerance specified by eps. The
complete elliptic integral of the first kind is then

K(m) = %

n
ellipke is limited to the input domain 0 <m <1.
ellipj

[1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

ellipsoid

Purpose

Syntax

Description

Algorithm

See Also

Generate ellipsoid

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,2] ellipsoid(xc,yc,zC,Xxr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates three n+1-by-n+1
matrices so that surf(x,y,z) produces an ellipsoid with center (xc,yc,zc)
and radii (xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zC,xr,yr,zr) usesn = 20.

ellipsoid(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

ellipsoid(...) with no output arguments graphs the ellipsoid as a surface.

ellipsoid generates the data using the following equation:

2 2 2
(x-xc)” (y—ye)” | (z-2c)
2 2 2
xr yr zr

cylinder, sphere, surf
“Polygons and Surfaces” for related functions

Y = sin(X);
E = std(Y)*ones(size(X));

2-663

else

Purpose

Syntax

Description

Examples

See Also

2-664

Conditionally execute statements

if expression
statements1
else
statements2
end

else is used to delineate an alternate block of statements. If expression
evaluates as false, MATLAB executes the one or more commands denoted
here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, “if (matrix A is less than matrix B)”), true means
that every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&, | ,~) into
compound expressions such as (count < limit) & ((height - offset) >=
0).

See if for more information.

In this example, if both of the conditions are not satisfied, then the student fails
the course.

if ((attendance >= 0.90) & (grade_average >= 60))

pass = 1;
else

fail = 1;
end;

if,elseif, end, for,while, switch, break, return, relational operators, logical
operators (elementwise and short-circuit)

elseif

Purpose

Syntax

Description

Remarks

Conditionally execute statements

if expressioni
statementsi
elseif expression2
statements2
end

If expressioni evaluates as false and expression2 as true, MATLAB
executes the one or more commands denoted here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, is matrix A less then matrix B), true means that
every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&, | ,~) into
compound expressions such as (count < limit) & ((height - offset) >= 0).

See if for more information.

else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only

one terminating end.

The two segments shown below produce identical results. Exactly one of the
four assignments to x is executed, depending upon the values of the three

logical expressions, A, B, and C.
if A
X = a
else
if B
X =Db
else
if C
X =¢
else

end

if A
X = a
elseif B
X =Db
elseif C
X =¢
else
x =d
end

2-665

elseif

end
end
Examples Here is an example showing if, else, and elseif.
for m = 1:k
for n = 1:k
if m==n
a(m,n) = 2;
elseif abs(m-n) == 2
a(m,n) = 1;
else
a(m,n) = 0;
end
end
end

For k=5 you get the matrix

a -
2 0 1 0 0
0 2 0 1 0
1 0 2 0 1
0 1 0 2 0
0 0 1 0 2
See Also if, else, end, for, while, switch, break, return, relational operators, logical

operators (elementwise and short-circuit)

2-666

end

Purpose

Syntax

Description

Examples

Terminate for, while, switch, try, and if statements or indicate last index

while expression % (or if, for, or try)
statements

end

B = A(index:end,index)

end is used to terminate for, while, switch, try, and if statements. Without
an end statement, for, while, switch, try, and if wait for further input. Each
end is paired with the closest previous unpaired for, while, switch, try, or if
and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index. Examples
of this use are X(3:end) and X(1,1:2:end-1). When using end to grow an
array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end method
for the object. The end method should have the calling sequence end(obj,k,n),
where obj is the user object, k is the index in the expression where the end
syntax is used, and n is the total number of indices in the expression. For
example, consider the expression

A(end-1,:)
MATLAB will call the end method defined for A using the syntax
end(A,1,2)

This example shows end used with the for and if statements.

for kK = 1:n
if a(k) == 0
a(k) = a(k) + 2;
end
end

In this example, end is used in an indexing expression.

A

magic(5)

A =

2-667

end

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

18 25 2 9

See Also break, for, if, return, switch, try, while

2-668

eomday

Purpose End of month

Syntax E = eomday(Y,M)

Description E = eomday(Y,M) returns the last day of the year and month given by
corresponding elements of arrays Y and M.
Examples Because 1996 is a leap year, the statement eomday (1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2[bnes(length(y),1)"');
y(find(E==29))"

ans =
Columns 1 through 6
1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

2-669

eps

Purpose

Syntax

Description

Examples

2-670

Floating-point relative accuracy

eps
d = eps(X)

eps('double')
eps('single')

eps returns the distance from 1.0 to the next largest double-precision number,
that is eps = 2~ (-52).

d = eps(X) is the positive distance from abs (X) to the next larger in magnitude
floating point number of the same precision as X. X may be either double
precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X)
eps('double') is the same as eps or eps(1.0).
eps('single') is the same as eps(single(1.0)) or single(2~-23).
Except for denormals, if 2"E <= abs(X) < 2~ (E+1), then

eps(X) = 27 (E-23) if isa(X, 'single')
eps(X) = 2~ (E-52) if isa(X, 'double')

Replace expressions of the form
if Y < eps * ABS(X)
with

if Y < eps(X)

double precision
eps(1/2) = 2~ (-53)

eps(1) = 27 (-52)

eps(2) = 27 (-51)

eps(realmax) = 27971

eps(0) = 2~(-1074)

if(abs(x)) <= realmin, eps(x) = 2" (-1074)
eps(Inf) = NaN

eps(NaN) = NaN
single precision

eps

eps(single(1/2)) = 2~ (-24)
eps(single(1)) = 2" (-23)
eps(single(2)) = 2" (-22)
eps(realmax('single')) = 27104
eps(single(0)) = 2" (-149)

if(abs(x)) <= realmin('single'), eps(x) = 27(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax, realmin

2-671

erf, erfc, erfcx, erfinv, erfcinv

Purpose Error functions
Syntax Y = erf(X) Error function

Y = erfc(X) Complementary error function

Y = erfcx(X) Scaled complementary error function

X = erfinv(Y) Inverse error function

X = erfcinv(Y) Inverse complementary error function
Definition The error function erf (X) is twice the integral of the Gaussian distribution

with 0 mean and variance of 1/2 .

erf(x) = %TJ/;e_tzdt

The complementary error function erfc(X) is defined as
erfc(x) = 2 Jwe_tzdt = 1—erf(x)
Jmy

The scaled complementary error function erfcx(X) is defined as

erfex(x) = e*” erfe(x)
1

For large X, erfcx(X) is approximately (i);
T

=

Description Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.

Y

erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. Elements of Y must be in the interval [-1 1]. The function erfinv
satisfies y = erf(x) for -1<y<1 and —~-©w<x <.

X = erfcinv(Y) returns the value of the inverse of the complementary error
function for each element of Y. Elements of Y must be in the interval [0 2]. The
function erfcinv satisfies y = erfc(x) for 22y =0 and ~00<x <.

2-672

erf, erfc, erfcx, erfinv, erfcinv

Remarks

Examples

Algorithms

References

The relationship between the complementary error function erfc and the
standard normal probability distribution returned by the Statistics Toolbox
function normcdf is

normedf(x) = 0.5 * erfe(—x/ +/2)

The relationship between the inverse complementary error function erfcinv
and the inverse standard normal probability distribution returned by the
Statistics Toolbox function norminv is

norminv(p) = —/2 * erfcinv(2p)

erfinv(1) is Inf
erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

For the error functions, the MATLAB code is a translation of a Fortran
program by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN,
March 19, 1990. The main computation evaluates near-minimax rational
approximations from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step of Halley’s
method.

[1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969

2-673

error

Purpose

Syntax

Description

Examples

2-674

Display error messages

error('message’)

error('message',al,a2, ...)
error('message_id', 'message’)
error('message_id', 'message',al,a2,...)

error('message’') displays an error message and returns control to the
keyboard. The error message contains the input string message.

The error command has no effect if message is a null string.

error('message',al,a2,...) displays a message string that contains
formatting conversion characters, such as those used with the MATLAB
sprintf function. Each conversion character in message is converted to one of
the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument with
error. See Example 3 below.

error('message_id', 'message') attaches a unique message identifier, or
message_id, to the error message. The identifier enables you to better identify
the source of an error. See “Message Identifiers” and “Using Message
Identifiers with lasterr” in the MATLAB documentation for more information
on the message id argument and how to use it.

error('message_id', 'message',al,a2, ...) includes formatting
conversion characters in message, and the character translations a1, a2,

Example 1
The error function provides an error return from M-files:

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

error

See Also

The returned error message looks like this:

foo(pi)

??? Error using ==> foo
Wrong number of input arguments

Example 2

Specify a message identifier and error message string with error:

error('MyToolbox:angleToolLarge',
'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterr to determine the message identifier
and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =

The angle specified must be less than 90 degrees.
msgid =

MyToolbox:angleToolLarge

Example 3

MATLAB converts special characters (like \n and %d) in the error message
string only when you specify more than one input argument with error. In the
single argument case shown below, \n is taken to mean backslash-n. It is not
converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert special
characters. This holds true regardless of whether the additional argument
supplies conversion values or is a message identifier:

error('ErrorTests:convertTest',

"In this case, the newline \n is converted.')
??? In this case, the newline
is converted.

lasterr, lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop,
disp, sprintf

2-675

errorbar

Purpose

Syntax

Description

2-676

Plot error bars along a curve

errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

errorbar('ve',...)

Error bars show the confidence level of data or the deviation along a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The error
bar is a distance of E(i) above and below the curve so that each bar is
symmetric and 2*E (i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E (i) long. X, Y,
E must be the same size. When they are vectors, each error bar is a distance of
E(i) above and below the point defined by (X(1),Y(i)). When they are
matrices, each error bar is a distance of E(i,j) above and below the point
defined by (X(i,3),Y(1,7)).

errorbar(X,Y,L,U) plots X versus Y with error bars L (i)+U (i) long specifying
the lower and upper error bars. X, Y, L, and U must be the same size. When they
are vectors, each error bar is a distance of L (1) below and U(i) above the point
defined by (X(i),Y(i)). When they are matrices, each error bar is a distance
of L(i,j) below and U(i,j) above the point defined by (X(i,j),Y(i,j)).

errorbar(...,LineSpec) draws the error bars using the line type, marker
symbol, and color specified by LineSpec.

h = errorbar(...) returns handles to the errorbarseries objects created.
errorbar creates one object for vector input arguments and one object per
column for matrix input arguments. See errorbarseries properties for more
information.

errorbar

Remarks

Examples

See Also

Backward Compatible Version
hlines = errorbar('v6',...) returns the handles of line objects instead of

errorbarseries objects for compatibility with MATLAB 6.5 and earlier.

See Plot Objects and Backward Compatibility for more information.

When the arguments are all matrices, errorbar draws one line per matrix
column. If X and Y are vectors, they specify one curve.

Draw symmetric error bars that are two standard deviation units in length.

X = 0:pi/10:pi;

Y sin(X);

E std(Y)*ones(size(X));
errorbar(X,Y,E)

1.4+

12

0.8

0.4

0.2

—0.2F

0.4 T I I I I I [|
-0.5 0 0.5 1 15 2 25 3 35

LineSpec, plot, std
“Basic Plots and Graphs” for related functions

Error Bounds for related information

2-677

errorbar

See “Errorbarseries Properties” for property descriptions

2-678

Errorbarseries Properties

Modifying
Properties

Errorbarseries
Property
Descriptions

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries objects.
See Plot Objects for more information on errorbarseries objects.

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine whether objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when the object’s
delete function callback is called (see the DeleteFcn property). It remains set
to on while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects that are going to be deleted, and therefore can check the
object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

e cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

2-679

Errorbarseries Properties

2-680

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the errorbarseries object.

This property can be
® A string that is a valid MATLAB expression

® The name of an M-file

e A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the errorbarseries object. An array containing the handles of all line
objects parented to the errorbarseries object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the errorbar Children property unless you
set the Root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on')
Clipping {on} | off

Clipping mode. MATLAB clips errorbar plots to the axes plot box by default. If
you set Clipping to off, lines might be displayed outside the axes plot box.

Color ColorSpec

Color of errorbar lines. A three-element RGB vector or one of the MATLAB
predefined names, specifying the curve and error bar color. See the ColorSpec
reference page for more information on specifying color.

For example, the following statement would produce an errorbar graph with
both the curve and error bars colored red.

h = errorbar(Y,randn(10,1), 'Color','r');
CreateFcn string or function handle

Not available on errorbarseries objects.

Errorbarseries Properties

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
errorbarseries object is deleted (e.g., this might happen when you issue a
delete command on the errorbarseries object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying the object’s
properties so the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser use this text for
labels for any errorbarseries objects appearing in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase errorbar child objects (the lines used to construct the errorbar graph).
Alternative erase modes are useful for creating animated sequences, where
control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

¢ xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if

2-681

Errorbarseries Properties

2-682

the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., perform an XOR on a pixel color
with that of the pixel behind it) and ignore three-dimensional sorting to obtain
greater rendering speed. However, these techniques are not applied to the
printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the errorbarseries object.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

e of f — SettingHandleVisibility to of f makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Errorbarseries Properties

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, cl1f,
and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.
HitTest {on} | off

Selectable by mouse click. HitTest determines if the errorbarseries object can
become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the curve and error
bars that compose the errorbar graph. If HitTest is of f, clicking the
errorbarseries object selects the object below it (which is usually the axes
containing it).

HitTestArea on | {off}

Select errorbarseries object on lines or area of graph. This property enables you
to select errorbarseries objects in two ways:

¢ Select by clicking curve and error bars (default).

¢ Select by clicking anywhere in the extent of the errorbar graph.

2-683

Errorbarseries Properties

2-684

When HitTestArea is off, you must click the curve or error bars to select the
errorbarseries object. When HitTestArea is on, you can select the
errorbarseries object by clicking anywhere within the extent of the errorbar
graph (i.e., anywhere within a rectangle that encloses all the lines).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an errorbarseries object callback can be interrupted by callbacks
invoked subsequently.

Only callbacks defined for the ButtonDownFcn are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from an errorbar property. Note that MATLAB
does not save the state of variables or the display (e.g., the handle returned by
the gca or gcf command) when an interruption occurs.

LData array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses this data to
determine the length of the errorbar below each data point. Specify these
values in data units. See also UData.

LDataSource string (MATLAB variable)
Link LData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the LData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change LData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Errorbarseries Properties

LineStyle {-} | -——] 1] -. | none

Line style. This property specifies the line style used for the curve and error
bars. Available line styles are shown in the following table.

Symbol Line Style
- Solid line (default)

-— Dashed line
Dotted line
-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the curve and error bar lines. Specify this value in points (1 point
= 1/79 inch). The default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies the type of markers that are
displayed at the data points defining the curve. You can set values for the
Marker property independently from the LineStyle property. Supported
markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

) Circle

* Asterisk
Point

X Cross

2-685

Errorbarseries Properties

2-686

Marker Specifier Description
s Square
d Diamond

~

Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the Color property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or to the figure color if the axes Color property is set to none (which is
the factory default for axes objects).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker in points. The default
value for MarkerSize is 6 points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

Errorbarseries Properties

Parent object handle

Parent of errorbarseries object. This property contains the handle of the
errorbarseries object’s parent. The parent of an errorbarseries object is the
axes, hggroup, or hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
handles at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the errorbarseries object has
been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing selection handles on the
curve and error bars. When SelectionHighlight is off, MATLAB does not
draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an errorbarseries object and set the Tag
property:

t = errorbar(Y,E, 'Tag', 'errorbart')

When you want to access the errorbarseries object, you can use findobj to find
the errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property of the object
whose Tag is errorbari.

set(findobj('Tag', 'errorbari'), '‘MarkerFaceColor', 'red"')

2-687

Errorbarseries Properties

2-688

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For errorbarseries objects, Type is 'hggroup'. The
following statement finds all the hggroup objects in the current axes.

t = findobj(gca, 'Type', "hggroup');

UData array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses this data to
determine the length of the errorbar above each data point. Specify these
values in data units.

UDataSource string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the UData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change UData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the errorbarseries object. Assign this property the
handle of a uicontextmenu object created in the errorbarseries object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the errorbarseries
object.

UserData array

User-specified data. This property can be any data you want to associate with
the errorbarseries object (including cell arrays and structures). The
errorbarseries object does not set values for this property, but you can access it
using the set and get functions.

Visible {on} | off

Visibility of errorbarseries object and its children. By default, errorbarseries
object visibility is on. This means all children of the errorbarseries object are
visible unless the child object’s Visible property is set to of f. Setting an

Errorbarseries Properties

errorbarseries object’s Visible property to of f also makes its children
invisible.

XData array

X-coordinates of the curve. The errorbar function plots a curve using the x-axis
coordinates in the XData array. XData must be the same size as YData.

If you do not specify XData (i.e., the input argument x), the errorbar function
uses the indices of YData to create the curve. See the XDataMode property for
related information.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the input argument x), the errorbar function
sets this property to manual.

If you set XDataMode to auto after having specified XData, the errorbar
function resets the x tick-mark labels to the indices of the YData.

XDataSource string (MATLAB variable)
Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

2-689

Errorbarseries Properties

2-690

YData scalar, vector, or matrix

Data defining curve. YData contains the data defining the curve. If YData is a
matrix, the errorbar function displays a curve with error bars for each column
in the matrix.

The input argument Y in the errorbar function calling syntax assigns values
to YData.

YDataSource string (MATLAB variable)
Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

errordlg

Purpose

Syntax

Description

Remarks

Examples

Create and display an error dialog box

errordlg

errordlg('errorstring')
errordlg('errorstring', 'dlgname')
errordlg('errorstring', 'dlgname','on')
h = errordlg(...)

errordlg creates an error dialog box, or if the named dialog exists, errordlg
pops the named dialog in front of other windows.

errordlg displays a dialog box named 'Error Dialog' that contains the string
'This is the default error string.'

errordlg('errorstring') displays a dialog box named 'Error Dialog' that
contains the string 'errorstring’.

errordlg('errorstring', 'dlgname') displays a dialog box named 'dlgname'
that contains the string 'errorstring'.

errordlg('errorstring', 'dlgname', 'on') specifies whether to replace an
existing dialog box having the same name. 'on' brings an existing error dialog
having the same name to the foreground. In this case, errordlg does not create
a new dialog.

h = errordlg(...) returns the handle of the dialog box.

MATLAB sizes the dialog box to fit the string 'errorstring'. The error dialog
box has an OK pushbutton and remains on the screen until you press the OK
button or the Return key. After pressing the button, the error dialog box
disappears.

The appearance of the dialog box depends on the windowing system you use.

The function

errordlg('File not found','File Error');

2-691

errordig

displays this dialog box:

) File Error =0

6 File: nat found

|

See Also dialog, helpdlg, msgbox, questdlg, warndlg

“Predefined Dialog Boxes” for related functions

2-692

etime

Purpose
Syntax

Description

Examples

Limitations

See Also

Elapsed time

(0]
1

etime(t2,t1)

e = etime(t2,t1) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Calculate how long a 2048-point real FFT takes.

X = rand(2048,1);
t = clock; fft(x); etime(clock,t)
ans =

0.4167

As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across

these boundaries if needed.

clock, cputime, tic, toc

2-693

efree

Purpose

Syntax

Description

See Also

2-694

Elimination tree

etree(A)

etree(A,'col')
etree(A, 'sym')
p,q] = etree(...)

— T T T
1}

p = etree(A) returns an elimination tree for the square symmetric matrix
whose upper triangle is that of A. p(j) is the parent of column j in the tree, or
0 if j is a root.

p = etree(A, 'col') returns the elimination tree of A' *A.

p etree(A, 'sym') isthe sameasp = etree(A).
[p,q] = etree(...) alsoreturns a postorder permutation g of the tree.

treelayout, treeplot, etreeplot

etreeplot

Purpose Plot elimination tree

Syntax etreeplot(A)
etreeplot (A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot (A,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use ' ' to omit
one or both.

See Also etree, treeplot, treelayout

2-695

eval

Purpose

Syntax

Description

Remarks

Examples

2-696

Execute a string containing a MATLAB expression

eval(expression)
[a1,a2,a3,...] = eval(function(b1,b2,b3,...))

eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]
[al1,a2,a3,...] = eval(function(b1,b2,b3,...)) executes function with
arguments b1,b2,b3, ..., and returns the results in the specified output
variables.

Using the eval output argument list is recommended over including the output
arguments in the expression string. The first syntax below avoids strict
checking by the MATLAB parser and can produce untrapped errors and other
unexpected behavior.

eval('[al,a2,a3,...] = function(var)') % not recommended
[a1,a2,a3,...] = eval('function(var)"') % recommended syntax

This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

magic_str = ['M',int2str(n),' = magic(n)'];
eval(magic_str)

end

The next example executes the size function on a 3-dimensional array,
returning the array dimensions in output variables d1, d2, and d3.

A = magic(4);
A(:,1,2) = A';
[d1,d2,d3] = eval('size(A)")

eval

di =
4
d2 =
4
a3 =
2
See Also assignin, catch, evalin, feval, lasterr, try

2-697

evalc

Purpose

Syntax

Description

Remark

See Also

2-698

Evaluate MATLAB expression with capture

T = evalc(9S)
T = evalc(s1,s2)
[T,X,Y,Z,...] = evalc(S)

T = evalc(S) is the same as eval(S) except that anything that would
normally be written to the command window is captured and returned in the
character array T (lines in T are separated by \n characters).

T = evalc(s1,s2) is the same as eval(s1,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) is the same as [X,Y,Z,...] = eval(S) except
that any output is captured into T.

When you are using evalc, diary, more, and input are disabled.

diary, eval, evalin, input, more

evalin

Purpose

Syntax

Description

Remarks

Examples

Execute a string containing a MATLAB expression in a workspace

evalin(ws,expression)
[a1,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

evalin(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base' or 'caller' todenote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [stringl1,int2str(var),string2,...]

[a1,a2,a83,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws, '[al,a2,a83,...] = function(var)"')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch _expr) executes expression and, if an error is
detected, executes the catch expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin('base','var');

2-699

evalin

Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin('caller','evalin('‘'caller'',''x"'")")
doesn’t work.

See Also assignin, catch, eval, feval, lasterr, try

2-700

exist

Purpose

Graphical
Interface

Syntax

Description

Check if variables or functions are defined

As an alternative to the exist function, use the Workspace browser or the
Current Directory Browser.

exist item
exist item kind
a = exist('item', 'kind"')

exist('item') returns the status of item:

0 If item does not exist.
1 If itemis a variable in the workspace.

2 If itemis an M-file on your MATLAB search path. It also returns 2
when item is the full pathname to a file or when item is the name of
an ordinary file on your MATLAB search path.

If item is a MEX- or DLL-file on your MATLAB search path.
If item is an MDL-file on your MATLAB search path.

If item is a built-in MATLAB function.

If item is a P-file on your MATLAB search path.

If itemis a directory.

o N o O »~ W

If itemis a Java class.

If item specifies a filename, that filename may include an extension to
preclude conflicting with other similar filenames. For example,
exist('file.ext').

If item specifies a filename, MATLAB attempts to locate the file, examines the
filename extension, and determines the value to return based on the extension
alone. MATLAB does not examine the contents or internal structure of the file.

MEX, MDL, and P-files must be on the MATLAB search path for exist to
return the values shown above. If item is found, but is not on the MATLAB
search path, exist('item') returns 2, because it considers item to be an
unknown file type.

2-701

exist

Any other file type or directory specified by item is not required to be on the
MATLAB search path to be recognized by exist. If the file or directory is not
on the search path, then item must specify either a full pathname, a partial
pathname relative to MATLABPATH, or a partial pathname relative to your
current directory.

If itemis a Java class, then exist('item') returns an 8. However, if itemis a
Java class file, then exist('item') returns a 2.

exist item kind returns the status of item for the specified kind. If item of
type kind does not exist, it returns 0. The kind argument may be one of the
following:

builtin Checks only for built-in functions.

class Checks only for Java classes.

dir Checks only for directories.

file Checks only for files or directories.
var Checks only for variables.

a = exist('item','kind') is the function form of the syntax.

Remarks To check for the existence of more than one variable, use the ismember function.
For example,

a = 5.83;

C "teststring';
ismember({'a','b','c'},who)

ans =

Examples This example uses exist to check whether a MATLAB function is a built-in
function or a file:
type = exist('plot')
type

2-702

exist

This indicates that plot is a built-in function.

In the following example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class.

exist Welcome
ans =
8

exist javaclasses/Welcome.class
ans =
2

indicates there is a Java class Welcome and a Java class file Welcome.class.

The following example indicates that testresults is both a variable in the
workspace and a directory on the search path:

exist('testresults', 'var')
ans =
1

exist('testresults', 'dir')
ans =
7

See Also assignin, computer, dir, evalin, help, inmem, isempty, lookfor, mfilename,
partialpath, what, which, who

2-703

exit

Purpose Terminate MATLAB (same as quit)

Graphical As an alternative to the exit function, select Exit MATLAB from the File
Interface menu or click the close box in the MATLAB desktop.

Syntax exit

Description exit ends the current MATLAB session. It is the same as quit. and takes the

same termination options, such as force. For more information, see quit.

See Also finish, quit

2-704

exp

Purpose
Syntax

Description

Remark

See Also

Exponential
Y = exp(X)

The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
z = x +i*y, it returns the complex exponential e? = e*(cos(y) +isin(y)).

Use expm for matrix exponentials.

expm, log, 1og10, expint

2-705

expint

Purpose
Syntax

Definitions

Description

References

2-706

Exponential integral
Y = expint(X)

The exponential integral computed by this function is defined as

© Lt
E(x)=| &dt
=] 5
Another common definition of the exponential integral function is the Cauchy
principal value integral

x ot
Ei(x) = L e?dt

which, for real positive x, is related to expint as
E, (-x) = —Ei(x)—im

Y = expint(X) evaluates the exponential integral for each element of X.

[1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

expm

Purpose
Syntax

Description

Algorithm

Examples

Matrix exponential

Y

expm(X)

Y = expm(X) raises the constant e to the matrix power X. The expm function
produces complex results if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

expm is a built-in function that uses the Padé approximation with scaling and
squaring. You can see the coding of this algorithm in the expm1 demo.

Note The expmdemo1, expmdemo2, and expmdemo3 demos illustrate the use of
Padé approximation, Taylor series approximation, and eigenvalues and
eigenvectors, respectively, to compute the matrix exponential.

References [1] and [2] describe and compare many algorithms for computing a
matrix exponential. The built-in method, expm, is essentially method 3 of [2].

This example computes and compares the matrix exponential of A and the
exponential of A.

A= 1 1 0
0 0 2
0 0 -1];
expm(A)
ans =
2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679
exp(A)
ans =
2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

2-707

expm

See Also

References

2-708

Notice that the diagonal elements of the two results are equal. This would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

exp, funm, logm, sqrtm

[1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

expml

Purpose Compute exp(x) -1 accurately for small values of x
Syntax y = expim(x)
Description y = expmi(x) computes exp(x) -1, compensating for the roundoff in exp(x).

For small x, expm1 (x) is approximately x, whereas exp(x) -1 can be zero.

See Also exp, log1p, expmdemo1

2-709

eye

Purpose

Syntax

Description

Example:

Limitations

See Also

2-710

Identity matrix

Y = -eye(n)

Y = -eye(m,n)

Y = -eye(size(A))

eye(m, n, classname)

eye([m,n],classname)

Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n)oreye([m n]) returns an m-by-n matrix with 1’s on the

diagonal and 0’s elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n matrix with 1's
of class classname on the diagonal and zeros of class classname elsewhere.
classname is a string specifying the data type of the output. classname can
have the following values: 'double', 'single', 'int8', 'uint8', 'int16"',
‘uint16', 'int32', or 'uint32'.

X = eye(2,3,'int8"');

The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

ones, rand, randn, zeros

ezcontour

Purpose

Syntax

Description

Easy to use contour plotter

ezcontour(f)

ezcontour (f,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

ezcontour (f) plots the contour lines of f(x,y), where f is a mathematical
function of two variables, such as x and y. ezcontour calls the contour
function.

The function fis plotted over the default domain: -21t< x < 2T, -2TT<y < 2TL
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain

endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,

ezcontour('u*2 - v*3',[0,1],[3,6]) plots the contour lines for u? - v over

O<u<1l,3<v<b6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontour(axes_handle, . ..) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezcontour(...) returns the handles to patch objects in h.

ezcontour automatically adds a title and axis labels.

2-711

ezconftour

Remarks

Examples

2-712

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontour. For example, the MATLAB syntax for a
contour plot of the expression

sqrt(x.”2 + y."2)
is written as
ezcontour('sqrt(x"2 + y*2)"')

That is, x*2 is interpreted as x. "2 in the string you pass to ezcontour.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.”2 + y."2);
ezcontour(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezcontour does
not alter the syntax, as in the case with string inputs.

The following mathematical expression defines a function of two variables, x
and y.

fla.y) = B(1-x)% =0 D' 10(E—aB yBJe w2t e (e 1P

ezcontour requires a function handle argument that expresses this function
using MATLAB syntax. This example uses an anonymous function, which you
can define in the command window without creating an M-File.

f=@(x,y) 3*(1-x)."%2.*exp(-(x."2) - (y+1)."2)
- 10*(x/5 - x."3 - y."5).*exp(-x."2-y."2)
- 1/3%exp(-(x+1).72 - y."2);

For convenience, this function is written on three lines. See the peaks

Pass the function handle f to ezcontour along with a domain ranging from -3
to 3 in both x and y and specify a computational grid of 49-by-49:

ezcontour

See Also

ezcontour(f,[-3,3],49)

3 (1-%)% exp(-(x) = (y+1)°)~ ~== x*-y*)- 1/3 exp(-(x+1)* - y°)
3 T T T T T
Ve ~
(<)
N
i |
> 0 B
i — |
-2+ @ / E
-3 1 1 1 1 1
-3 -2 -1 0 1 2 3

In this particular case, the title is too long to fit at the top of the graph, so
MATLAB abbreviates the string.

contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

2-713

ezcontourf

Purpose

Syntax

Description

2-714

Easy to use filled contour plotter

ezcontourf (f)

ezcontourf (f,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

ezcontourf (f) plots the contour lines of f{x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.
ezcontourf calls the contourf function.

The function fis plotted over the default domain: -21t< x < 2T, -2TT<y < 2TL
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezcontourf (f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf('u*2 - v*3',[0,1],[3,6]) plots the contour lines for u? - v3 over

O<u<1l,3<v<6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontourf (axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezcontourf(...) returns the handles to patch objects in h.

ezcontourf automatically adds a title and axis labels.

ezcontourf

Remarks

Examples

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontourf. For example, the MATLAB syntax for a
filled contour plot of the expression

sqrt(x.”2 + y."2);
is written as
ezcontourf('sqrt(x"2 + y"2)")

That is, x*2 is interpreted as x. "2 in the string you pass to ezcontourf.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.”2 + y."2);
ezcontourf (fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezcontourf
does not alter the syntax, as in the case with string inputs.

The following mathematical expression defines a function of two variables, x
and y.

fla,y) = 3(1—x)2e** -+ 1) 10(356 —x8 —3/5)e*962*y2 - %e* (x+1)2-y2

ezcontourf requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string

f = ['3*(1-x)"2*exp(—(x"2)—(y+1)"2)',...
'— 10*(x/5 — x"3 — y"5)*exp(-x"2-y"2)',...
- 1/3%exp(—(x+1)"2 — y*2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

2-715

ezcontourf

Pass the string variable f to ezcontourf along with a domain ranging from -3
to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,31,49)

3 (1% exp(-(x®) - (y+1))~ ~~~ x*-y?)- 13 exp(-(x+1)* - y°)

In this particular case, the title is too long to fit at the top of the graph, so
MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

2-716

ezmesh

Purpose

Syntax

Description

Easy to use 3-D mesh plotter

ezmesh (f)

ezmesh (f,domain)

ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max])
ezmesh(...,n)

ezmesh(...,'circ')

ezmesh(axes_handle,...)

h = ezmesh(...)

ezmesh (f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezmesh calls the mesh
function.

The function fis plotted over the default domain: -21< x < 2T, -2TT<y < 2TL
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezmesh (f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where
min < x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmesh('u*2 - v*3',[0,11,[3,6]) plots u?-v3 over 0 <u<1,3<v<86.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2T1< s < 2T, -2TI< ¢ < 2T1.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezmesh(...,n) plots fover the default domain using an n-by-n grid. The
default value for n is 60.

2-717

ezmesh

Remarks

Examples

2-718

ezmesh(...,'circ') plots fover a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezmesh(...) returns the handles to a surface object in h.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a mesh
plot of the expression

sqrt(x.”2 + y."2);
is written as
ezmesh('sqrt(x"2 + y~2)"')

That is, x*2 is interpreted as x. "2 in the string you pass to ezmesh.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.”2 + y."2);
ezmesh(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezmesh does not
alter the syntax, as in the case with string inputs.

This example visualizes the function
22
flax,y) = xe * 7
with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform
blue color by setting the colormap to a single color:
fh = @(x,y) X.*exp(-x."2-y."2);
ezmesh(fh,40)
colormap ([0 O 1])

ezmesh

See Also

X exp(-x% - y?)

05
'7// Illi"}\
= /IIII "‘(733
24 ’ll/jilli IIII;"':‘:}:\\\\\\\«:
’ SN
*Wc III[[,,,,',',';:,o.

ezmeshc, mesh

“Function Plots” for related functions

2-719

|

ezmeshc

Purpose

Syntax

Description

2-720

Easy to use combination mesh/contour plotter

ezmeshc(f)

ezmeshc (f,domain)

ezmeshc(x,y,z)
ezmeshc(X,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])

ezmeshc(...,n)
ezmeshc(...,'circ')
ezmeshc(axes_handle,...)

h = ezmeshc(...)

ezmeshc () creates a graph of f(x,y), where fis a string that represents a
mathematical function of two variables, such as x and y. ezmeshc calls the
meshc function.

The function fis plotted over the default domain -2m< x < 2T, -2TT< y < 27U
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezmeshc (f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
<x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmeshc('u*2 - v~3',[0,1],[3,6]) plotsu?-v3overO<u<1,3<v<6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2T1< s < 2T, -2TI< ¢ < 2T1.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezmeshc(...,n) plots fover the default domain using an n-by-n grid. The
default value for n is 60.

ezmeshc

Remarks

Examples

ezmeshc(...,'circ') plots fover a disk centered on the domain.

ezmesh (axes_handle, ...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezmeshc(...) returns the handles to a surface object in h.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmeshc. For example, the MATLAB syntax for a
mesh/contour plot of the expression

sqrt(x.”2 + y."2);
is written as
ezmeshc('sqrt(x"2 + y~2)"')

That is, x*2 is interpreted as x.*2 in the string you pass to ezmeshc.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.”2 + y."2);
ezmeshc(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./) since ezmeshc does
not alter the syntax, as in the case with string inputs.

Create a mesh/contour graph of the expression

feey) = —3—
1+x"+y
over the domain -5 <x < 5, -2%pi <y < 2*pi:

ezmeshc('y/(1 + x*2 + y*2)',[-5,5,-2*pi,2*pi])

2-721

ezmeshc

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26)

yi@L+x° +y?)

See Also ezmesh, ezsurfc, meshc

“Function Plots” for related functions

2-722

ezplot

Purpose

Syntax

Description

Easy to use function plotter

ezplot
ezplot
ezplot
ezplot
ezplot(x,y,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)

h = ezplot(...)

)

f,[min,max])
f,[xmin,xmax,ymin,ymax])
X;Y)

PRy

ezplot (f) plots the expression f = f{x) over the default domain -21< x < 27U

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezplot(f,[min,max]) plots f = f(x) over the domain: min < x < max.

For implicitly defined functions, f = f(x,y):
ezplot (f) plots flx,y) = 0 over the default domain -21t< x < 211, -2TT< y < 2T1.

ezplot(f,[xmin,xmax,ymin,ymax]) plots fix,y) = 0 over xmin < x < xmax and
ymin <y < ymax.

ezplot(f,[min,max]) plots f(x,y) = 0 over min < x < max and min <y < max.

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezplot('u*2 - v*2 - 1',[-3,2,-2,3]) plotsu?-v2-1=0over-3<u<2,-2
<v<3.

ezplot(x,y) plots the parametrically defined planar curve x = x(¢) and y = y(¢)
over the default domain 0 < ¢ < 21C

ezplot(x,y,[tmin,tmax]) plots x = x(¢) and y = y(¢) over tmin < ¢ < tmax.

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

2-723

ezplot

Remarks

Examples

2-724

ezplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezplot(...) returns the handles to a line objects in h.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot. For example, the MATLAB syntax for a plot of
the expression

X."2 - y."2
which represents an implicitly defined function, is written as
ezplot('x*2 - y~2'")

That is, x*2 is interpreted as x. "2 in the string you pass to ezplot.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezplot.

fh = @(x,y) sqrt(x.”2 + y."2);
ezplot(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezplot does not
alter the syntax, as in the case with string inputs.

This example plots the implicitly defined function
x2-yt=0
over the domain [-21, 211:

ezplot('x~2-y~4")

ezplot

x

See Also ezplot3, ezpolar, plot

“Function Plots” for related functions

2-725

ezplot3

Purpose

Syntax

Description

Remarks

2-726

Easy to use 3-D parametric curve plotter

ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(..., 'animate')
ezplot3(axes_handle,...)

h = ezplot3(...)

ezplot3(x,y,z) plots the spatial curve x = x(¢), y = y(¢), and z = z(¢) over the
default domain 0 < ¢ < 27U

X, ¥, and z can be function handles for M-file functions or an anonymous
functions (see Function Handles and Anonymous Functions) or strings (see the
Remarks section).

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(¢),y =y(¢), and z = z(¢) over
the domain tmin < t < tmax.

ezplot3(..., 'animate') produces an animated trace of the spatial curve.

ezplot3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezplot3(...) returns the handle to a line object in h.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot3. For example, the MATLAB syntax for a plot of
the expression

X =8./2, y =2.*s, z = 5."2;
which represents a parametric function, is written as
ezplot3('s/2','2*s','s"2")

That is, s/2 is interpreted as s. /2 in the string you pass to ezplot3.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezplot3.

ezplot3
|

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s."2;
ezplot3(fht,fh2,fh3)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezplot does not
alter the syntax, as in the case with string inputs.

Examples This example plots the parametric curve
x = sint, y = cost, z=t
over the domain [0,671:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

X =sin(t),y = cos(t), z=t

20

15

~ 10

See Also ezplot, ezpolar, plot3

“Function Plots” for related functions

2-727

ezpolar

Purpose

Syntax

Description

Remarks

2-728

Easy to use polar coordinate plotter

ezpolar(f)
ezpolar(f,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

ezpolar(f) plots the polar curve rho = f(theta) over the default domain 0 <
theta < 210

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezpolar(f,[a,b]) plots f for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezpolar(...) returns the handles to a line object in h.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezpolar. For example, the MATLAB syntax for a plot of
the expression

t.%2.*cos(t)
which represents an implicitly defined function, is written as
ezpolar('t~2*cos(t)"')

That is, t*2 is interpreted as t. "2 in the string you pass to ezpolar.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezpolar.

fh = @(t) t.”2.*cos(t);
ezpolar(fh)

ezpolar

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezpolar does
not alter the syntax, as in the case with string inputs.
Examples This example creates a polar plot of the function
1 + cos(t)
over the domain [0, 2m]:

ezpolar('1+cos(t)"')

180

270
r = 1+cos(t)

See Also ezplot, ezplot3, plot, plot3, polar

“Function Plots” for related functions

2-729

ezsurf

Purpose

Syntax

Description

2-730

Easy to use 3-D colored surface plotter

ezsurf(f)

ezsurf (f,domain)

ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max])
ezsurf(...,n)

ezsurf(...,'circ')

ezsurf (axes_handle,...)

h = ezsurf(...)

ezsurf (f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezsurf calls the surf
function.

The function [is plotted over the default domain: -2 < x < 2T, -2TT<y < 2TL
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezsurf(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
<x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurf('u*2 - v*3',[0,11,[3,6]) plots u?-v3 over 0<u<1,3<v <86.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2T1< s < 2T, -2TI< ¢ < 2T1.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurf

Remarks

Examples

ezsurf(...,'circ') plots fover a disk centered on the domain.

ezsurf (axes_handle, ...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezsurf(...) returns the handles to a surface object in h.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a surface
plot of the expression

sqrt(x.”2 + y."2);
is written as
ezsurf('sqrt(x"2 + y~2)"')

That is, x*2 is interpreted as x. "2 in the string you pass to ezsurf.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.”2 + y."2);
ezsurf (fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezsurf does not
alter the syntax, as in the case with string inputs.

ezsurf does not graph points where the mathematical function is not defined
(these data points are set to NaNs, which MATLAB does not plot). This example
illustrates this filtering of singularities/discontinuous points by graphing the
function

flx,y)= real(atan(x +iy))
over the default domain -21< x < 21, -2TI< y < 2TC

ezsurf('real(atan(x+i*y))"')

2-731

ezsurf

real(atan(x+iy))

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));
surf(x,y,z)

2-732

ezsurf

See Also

Note also that ezsurf creates graphs that have axis labels, a title, and extend
to the axis limits.

ezmesh, ezsurfc, surf

“Function Plots” for related functions

2-733

ezsurfc

Purpose

Syntax

Description

2-734

Easy to use combination surface/contour plotter

ezsurfc(f)

ezsurfc(f,domain)

ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])

ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)

h = ezsurfc(...)

ezsurfc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezsurfc calls the
surfc function.

The function [is plotted over the default domain: -2 < x < 2T, -2TT<y < 2TL
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function fis not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezsurfc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
<x < max, min <y < max).

If fis a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurfc('u*2 - v*3',[0,1],[3,6]) plotsu?-v3overO<u<1,3<v<6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2T1< s < 2T, -2TI< ¢ < 2T1.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezsurfc(...,n) plots fover the default domain using an n-by-n grid. The
default value for n is 60.

ezsurfc

Remarks

Examples

ezsurfc(...,'circ') plots fover a disk centered on the domain.

ezsurfc(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezsurfc(...) returns the handles to a surface object in h.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurfc. For example, the MATLAB syntax for a
surface/contour plot of the expression

sqrt(x.”2 + y."2);
is written as
ezsurfc('sqrt(x"2 + y~2)"')

That is, x*2 is interpreted as x. "2 in the string you pass to ezsurfc.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.”2 + y."2);
ezsurf (fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.~, .*, ./)since ezsurfc does
not alter the syntax, as in the case with string inputs.

Create a surface/contour plot of the expression
feey) = —3—
1+x"+y

over the domain -5 < x < 5, -2%pi <y < 2*pi, with a computational grid of size
35-by-35:

ezsurfc('y/(1 + x*2 + y*2)',[-5,5,-2*pi,2*pi],35)

2-735

ezsurfc

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26).

yiL+x° +y?)

See Also ezmesh, ezmeshc, ezsurf, surfc

“Function Plots” for related functions

2-736

Symbols
12-17

- 2:2

% 2-17

& 2-13, 2-15
&& 2-15
'2-2, 217
()2-17

% 9.9

+2-2

, 217

217

. 217
/2-2

<211
=217
==2-11
>2-11

\ 22

A 2-2

0 2-17

| 2-13, 2-15
|| 2-15
~2-13,2-15
~=2-11

A
abs 2-23
absolute value 2-23
accumarray 2-24
accuracy
of linear equation solution 2-420

of matrix inversion 2-420
acos 2-28
acosd 2-29
acosh 2-30
acot 2-31
acotd 2-32
acoth 2-33
acsc 2-34
acscd 2-35
acsch 2-36
addition (arithmetic operator) 2-2
addpath 2-39
addressing selected array elements 2-21
addtodate 2-41, 2-252
adjacency graph 2-629
airy 2-42
Airy functions
relationship to modified Bessel functions 2-42
ALim, Axes property 2-151
all 2-45
AmbientLightColor, Axes property 2-152
and (M-file function equivalent for &) 2-14
AND, logical
bit-wise 2-239
angle 2-55
ans 2-81
any 2-82
arccosecant 2-34
arccosine 2-28
arccotangent 2-31
arcsecant 2-101
arcsine 2-106
arctangent 2-113
four-quadrant 2-114, 2-115
arithmetic operations, matrix and array
distinguished 2-2

Index-1

Index

arithmetic operators
reference 2-2
array
addressing selected elements of 2-21
displaying 2-617
left division (arithmetic operator) 2-3
multiplication (arithmetic operator) 2-2
power (arithmetic operator) 2-3
right division (arithmetic operator) 2-3
shift circularly 2-353
transpose (arithmetic operator) 2-4
arrays
maximum size of 2-419
arrowhead matrix 2-410
ASCII
delimited files
writing 2-626
ASCII data
printable characters (list of) 2-334
reading 2-624
asec 2-101
asecd 2-103
asech 2-104
asin 2-106
asind 2-108
asinh 2-109
aspect ratio of axes 2-511
assignin 2-111
atan 2-113
atan2 2-114, 2-115
atand 2-117
atanh 2-118
.au files
reading 2-130
writing 2-131
audio
saving in AVI format 2-132

Index-2

audioplayer 2-120
audiorecorder 2-124
aufinfo 2-129
auread 2-130
auwrite 2-131
avi 2-132
avifile 2-132
aviinfo 2-135
aviread 2-137
Axes
creating 2-138
defining default properties 2-142
fixed-width font 2-160
property descriptions 2-151
axes
setting and querying data aspect ratio 2-511
axis 2-174

B
BackgroundColor

annotation textbox property 2-76
balance 2-180
bar3 2-188
bar3h 2-188
BarLayout

barseries property 2-192
BarWidth

barseries property 2-192
base to decimal conversion 2-203
base two operations

conversion from decimal to binary 2-569
BaselLine

barseries property 2-192
BaseValue

area property 2-90

barseries property 2-192

Index

beep 2-204
BeingDeleted
areaseries property 2-90
barseries property 2-193
contour property 2-442
errorbar property 2-679
Bessel functions
first kind 2-212
modified, first kind 2-209
modified, second kind 2-215
second kind 2-218
Bessel functions, modified
relationship to Airy functions 2-42
Bessel’s equation
(defined) 2-212
modified (defined) 2-209
besseli 2-209
besselj 2-212
besselk 2-215
bessely 2-218
beta 2-221
beta function
(defined) 2-221
incomplete (defined) 2-223
natural logarithm 2-224
betainc 2-223
betaln 2-224
bicg 2-225
bicgstab 2-232
BiConjugate Gradients method 2-225
BiConjugate Gradients Stabilized method 2-232
bin2dec 2-237
binary to decimal conversion 2-237
bitand 2-239
bitcmp 2-240
bitget 2-241
bitmax 2-242

bitor 2-244
bitset 2-245
bitshift 2-246
bit-wise operations
AND 2-239
get 2-241
OR 2-244
set bit 2-245
shift 2-246
XOR 2-248
bitxor 2-248
blanks
removing trailing 2-566
blanks 2-249
blkdiag 2-250
box 2-251
Box, Axes property 2-152
braces, curly (special characters) 2-17
brackets (special characters) 2-17
break 2-252
breakpoints
listing 2-543
removing 2-533
resuming execution from 2-535
setting in M-files 2-546, 2-548
brighten 2-253
builtin 2-254
BusyAction
areaseries property 2-90
Axes property 2-152
barseries property 2-193
contour property 2-442
errorbar property 2-679
ButtonDownFcn
area series property 2-91
Axes property 2-153
barseries property 2-193

Index-3

Index

contour property 2-443
errorbar property 2-680
bvp4c 2-255
bvpget 2-264
bvpinit 2-265
bvpset 2-268

C

calendar 2-271
camdolly 2-272
camera
dollying position 2-272
moving camera and target postions 2-272
placing a light at 2-276
positioning to view objects 2-278

rotating around camera target 2-280, 2-282

rotating around viewing axis 2-286
setting and querying position 2-283

setting and querying projection type 2-285

setting and querying target 2-287
setting and querying up vector 2-289
setting and querying view angle 2-291
CameraPosition, Axes property 2-153
CameraPositionMode, Axes property 2-153
CameraTarget, Axes property 2-153
CameraTargetMode, Axes property 2-154
CameraUpVector, Axes property 2-154
CameraUpVectorMode, Axes property 2-154
CameraViewAngle, Axes property 2-154
CameraViewAngleMode, Axes property 2-154
camlight 2-276
camlookat 2-278
camorbit 2-280
campan 2-282
campos 2-283
camproj 2-285

Index-4

camroll 2-286
camtarget 2-287
camup 2-289
camva 2-291
camzoom 2-293
cart2pol 2-294
cart2sph 2-295

Cartesian coordinates 2-294, 2-295

case 2-296

cast 2-297

cat 2-298

catch 2-299

caxis 2-299

cd 2-304

cd (ftp) 2-305

cdf2rdf 2-307

cdfepoch 2-309

cdfinfo 2-310

cdfread 2-313

cdfwrite 2-315

ceil 2-318

cell 2-319

cell array
creating 2-319
structure of, displaying 2-328

cell2mat 2-321

cell2struct 2-323

celldisp 2-325

cellfun 2-326

cellplot 2-328

cgs 2-330

char 2-334

checkin 2-336
examples 2-337
options 2-336

checkout 2-338
examples 2-339

Index

options 2-338
Children
areaseries property 2-91
Axes property 2-155
barseries property 2-194
contour property 2-443
errorbar property 2-680
chol 2-341
Cholesky factorization 2-341
preordering for 2-410
cholinc 2-343
cholupdate 2-350
circshift 2-353
cla 2-354
clabel 2-355
class 2-361
clc 2-363, 2-369
clear 2-364
clearing
Command Window 2-363
items from workspace 2-364
Java import list 2-365
clf 2-369
CLim, Axes property 2-156
CLimMode, Axes property 2-156
clipboard 2-370
Clipping
areaseries property 2-91
Axes property 2-156
barseries property 2-194
contour property 2-443
errrobar property 2-680
clock 2-371
close 2-372
AVI files 2-374
closest point search 2-641
cmapeditor 2-391

cmopts 2-377
colamd 2-378
colmmd 2-380
colon operator 2-21
Color
annotation arrow property 2-59
annotation doublearrow property 2-62
annotation line property 2-67
annotation textarrow property 2-71
annotation textbox property 2-76
Axes property 2-156
errorbar property 2-680
colorbar 2-377
colormap
editor 2-391
colormap 2-387
ColorOrder, Axes property 2-156
ColorSpec 2-408
colperm 2-410
comet 2-411
comet3 2-413
comma (special characters) 2-19
Command Window
clearing 2-363
get width 2-414
commandhistory 2-413
commandwindow 2-414
compan 2-415
companion matrix 2-415
compass 2-416
complementary error function
(defined) 2-672
scaled (defined) 2-672
complete elliptic integral
(defined) 2-661
modulus of 2-659, 2-661
complex

Index-5

Index

exponential (defined) 2-705 conv 2-460
phase angle 2-55 conv2 2-461
complex 2-417 conversion

base to decimal 2-203

binary to decimal 2-237

Cartesian to cylindrical 2-294

Cartesian to polar 2-294

complex diagonal to real block diagonal 2-307

decimal number to base 2-563, 2-568

computer MATLAB is running on 2-419 decimal to binary 2-569

concatenating arrays 2-298 decimal to hexadecimal 2-570

cond 2-420 string matrix to cell array 2-329

condeig 2-421 vector to character string 2-334

condest 2-422 convex hulls

condition number of matrix 2-420 multidimensional vizualization 2-467
improving 2-180 two-dimensional vizualization 2-465

complex conjugate 2-428
sorting pairs of 2-488
complex data
creating 2-417
complex numbers, magnitude 2-23
computer 2-419

coneplot 2-419
conj 2-428
conjugate, complex 2-428
sorting pairs of 2-488
continuation (.. ., special characters) 2-19
continue 2-429
contour
and mesh plot 2-720
filled plot 2-714
functions 2-711
of mathematical expression 2-712
with surface plot 2-734
contour3d 2-435
contourc 2-438
contourf 2-440
ContourMatrix
contour property 2-443
contours
in slice planes 2-456
contourslice 2-456
contrast 2-459

Index-6

convhull 2-465
convhulln 2-467
convn 2-469
convolution 2-460
inverse See deconvolution
two-dimensional 2-461
coordinates
Cartesian 2-294, 2-295
cylindrical 2-294, 2-295
polar 2-294, 2-295
coordinates.See also conversion
copyfile 2-470
copyobj 2-472
corrcoef 2-474
cos 2-477
cosd 2-479
cosecant
hyperbolic 2-496
inverse 2-34
inverse hyperbolic 2-36
cosh 2-480

Index

cosine 2-477
hyperbolic 2-480
inverse 2-28
inverse hyperbolic 2-30
cot 2-482
cotangent 2-482
hyperbolic 2-485
inverse 2-31
inverse hyperbolic 2-33
cotd 2-484
coth 2-485
cov 2-487
cplxpair 2-488
cputime 2-489
CreateFcn
areaseries property 2-91
Axes property 2-157
barseries property 2-194
contour property 2-444
errorbar property 2-680
cross 2-492
cross product 2-492
csc 2-493
cscd 2-495
csch 2-496
csvread 2-498
csvwrite 2-500
ctranspose (M-file function equivalent for ') 2-6
cumprod 2-501
cumsum 2-502
cumtrapz 2-503
cumulative
product 2-501
sum 2-502
curl 2-505
curly braces (special characters) 2-17
current directory

changing 2-304
CurrentPoint
Axes property 2-157
customverctrl 2-508
cylinder 2-508
cylindrical coordinates 2-294, 2-295

D
daspect 2-511

data aspect ratio of axes 2-511
data types
complex 2-417
DataAspectRatio, Axes property 2-158
DataAspectRatioMode, Axes property 2-159
datatipinfo 2-518
date 2-519
date and time functions 2-669
date string
format of 2-523
date vector 2-531
datenum 2-520
datestr 2-523
datevec 2-531
dbclear 2-533
dbcont 2-535
dbdown 2-536
dblquad 2-537
dbmex 2-539
dbquit 2-540
dbstack 2-541
dbstatus 2-543
dbstep 2-545
dbstop 2-546
dbtype 2-553
dbup 2-554
dde23 2-555

Index-7

Index

ddeget 2-559 delete 2-588
ddeset 2-560 delete
deal 2-563 timer object 2-591
deblank 2-566 delete (ftp) 2-590
debugging DeleteFcn
changing workspace context 2-536 areaseries property 2-92
changing workspace to calling M-file 2-554 Axes property 2-159
displaying function call stack 2-541 barseries property 2-194
MEX-files on UNIX 2-539 contour property 2-444
quitting debug mode 2-540 errorbar property 2-681
removing breakpoints 2-533 deleting
resuming execution from breakpoint 2-545 files 2-588
setting breakpoints in 2-546, 2-548 items from workspace 2-364
stepping through lines 2-545 delimiters in ASCII files 2-624, 2-626
dec2base 2-563, 2-568 demo 2-592
dec2bin 2-569 depdir 2-596
dec2hex 2-570 depfun 2-597
decic function 2-571 derivative
decimal number to base conversion 2-563, 2-568 approximate 2-611
decimal point (.) det 2-601
(special characters) 2-18 determinant of a matrix 2-601
to distinguish matrix and array operations detrend 2-602
2-2 deval 2-604
decomposition diag 2-606
Dulmage-Mendelsohn 2-629 diagonal 2-606
deconv 2-573 main 2-606
deconvolution 2-573 dialog box
del operator 2-574 error 2-691
del2 2-574 diff 2-611
delaunay 2-577 differences
Delaunay tessellation between adjacent array elements 2-611
3-dimensional vizualization 2-582 differential equation solvers
multidimensional vizualization 2-585 ODE boundary value problems 2-255
Delaunay triangulation adjusting parameters 2-268
vizualization 2-577 extracting properties 2-264
delaunay3 2-582 extracting properties of 2-694, 2-695
delaunayn 2-585 forming initial guess 2-265

Index-8

Index

dir 2-613
dir (ftp) 2-615
directories
adding to search path 2-39
checking existence of 2-701
copying 2-470
listing contents of 2-613
See also directory, search path
directory
changing on FTP server 2-305
listing for FTP server 2-615
See also directories
directory, changing 2-304
disconnect 2-375
discontinuities, plotting functions with 2-731
disp 2-617
disp
timer object 2-618
display 2-620
DisplayName
areaseries property 2-92
barseries property 2-195
contour property 2-444
errorbar property 2-681
distribution
Gaussian 2-672
division
array, left (arithmetic operator) 2-3
array, right (arithmetic operator) 2-3
matrix, left (arithmetic operator) 2-3
matrix, right (arithmetic operator) 2-3
of polynomials 2-573
dlmread 2-624
dlmwrite 2-626
dmperm 2-629
dolly camera 2-272
dos 2-634

dot 2-636
dot product 2-492, 2-636
double 2-637
double integral

numerical evaluation 2-537
dragrect 2-638
DrawMode, Axes property 2-160
drawnow 2-639
dsearch 2-640
dsearchn 2-641
Dulmage-Mendelsohn decomposition 2-629

E
echo 2-642

edge finding, Sobel technique 2-462

EdgeColor
annotation ellipse property 2-65
annotation rectangle property 2-69
annotation textbox property 2-76
areaseries property 2-92
barseries property 2-195

editing
M-files 2-644

eig 2-646

eigensystem
transforming 2-307

eigenvalue
accuracy of 2-646
complex 2-307
of companion matrix 2-415
problem 2-647
problem, generalized 2-647
repeated 2-648

eigenvalues
effect of roundoff error 2-180
improving accuracy 2-180

Index-9

Index

eigenvector
left 2-647
right 2-647
eigs 2-651
ellipj 2-659
ellipke 2-661
ellipsoid 2-663
elliptic functions, Jacobian
(defined) 2-659
elliptic integral
complete (defined) 2-661
modulus of 2-659, 2-661
else 2-664
elseif 2-665
end 2-667
end of line, indicating 2-19
eomday 2-669
eps 2-670
equal sign (special characters) 2-18
equations, linear
accuracy of solution 2-420
EraseMode
areaseries property 2-92
barseries property 2-195
contour property 2-444
errorbar property 2-681
erf 2-672
erfc 2-672
erfcinv 2-672
erfcx 2-672
erfinv 2-672
error 2-674
error function
(defined) 2-672
complementary 2-672
scaled complementary 2-672
error message

Index-10

displaying 2-674
errorbars 2-676
errordlg 2-691
etime 2-693
etree 2-694
etreeplot 2-695
eval 2-696
evalc 2-698
evalin 2-699
examples
contouring mathematical expressions 2-712
mesh plot of mathematical function 2-718
mesh/contour plot 2-721
plotting filled contours 2-715
plotting function of two variables 2-724
plotting parametric curves 2-727
polar plot of function 2-729
surface plot of mathematical function 2-731
surface/contour plot 2-735
exclamation point (special characters) 2-19
execution
resuming from breakpoint 2-535
exist 2-693
exit 2-704
exp 2-705
expint 2-706
expm 2-707
expmi 2-709
exponential 2-705
complex (defined) 2-705
integral 2-706
matrix 2-707
exponentiation
array (arithmetic operator) 2-3
matrix (arithmetic operator) 2-3
eye 2-710
ezcontour 2-711

Index

ezcontourf 2-714
ezmesh 2-717
ezmeshc 2-720
ezplot 2-723
ezplot3 2-726
ezpolar 2-728
ezsurf 2-730
ezsurfc 2-734

F

FaceAlpha
annotation textbox property 2-76
FaceColor
annotation ellipse property 2-65
annotation rectangle property 2-69
areaseries property 2-93
barseries property 2-196
factorization, Cholesky 2-341
preordering for 2-410
Figures
updating from M-file 2-639
files
ASCII delimited
reading 2-624
writing 2-626
checking existence of 2-701
copying 2-470
deleting 2-588
deleting on FTP server 2-590
listing
names in a directory 2-613
size, determining 2-614
sound
reading 2-130
writing 2-131, 2-132
Fill

contour property 2-446
filter
two-dimensional 2-461
fixed-width font
axes 2-160
floating-point
integer, maximum 2-242
flow control
break 2-252
case 2-296
end 2-667
error 2-674
font
fixed-width, axes 2-160
FontAngle
annotation textbox property 2-78
Axes property 2-160
FontName
annotation textarrow property 2-71
annotation textbox property 2-78
Axes property 2-160
fonts
bold 2-72, 2-78
FontSize
annotation textarrow property 2-71
annotation textbox property 2-78
Axes property 2-161
FontUnits
Axes property 2-161
FontWeight
annotation textarrow property 2-72
annotation textbox property 2-78
Axes property 2-161
Fourier transform
convolution theorem and 2-460
functions
call stack for 2-541

Index-11

Index

checking existence of 2-701 HeadLength
clearing from workspace 2-364 annotation arrow property 2-59
annotation textarrow property 2-72
HeadStyle
G annotation arrow property 2-59
Gaussian distribution function 2-672 annotation textarrow property 2-72
generalized eigenvalue problem 2-647 HeadWidth
generating a sequence of matrix names (M1 annotation arrow property 2-60
through M12) 2-696 Height
global variables, clearing from workspace 2-364 annotation ellipse property 2-65
graph annotation rectangle property 2-69
adjacency 2-629 Help browser
graphics objects accessing from doc 2-630
Axes 2-138 HitTest
graphics objects, deleting 2-588 areaseries property 2-95
GridLineStyle, Axes property 2-161 Axes property 2-162

barseries property 2-197
contour property 2-447

H errorbar property 2-683
HandleVisibility HitTestArea

areaseries property 2-94 areaseries property 2-95
Axes p'roperty 2-161 barseries property 2-198
barseries property 2-196 contour property 2-447

contour property 2-446 errorbar property 2-683
errorbar property 2-682 HorizontalAlignment

Head1lLength textarrow property 2-73
annotation doublearrow property 2-62 textbox property 2-78
Head1Style horzcat (M-file function equivalent for [, 1) 2-19
annotation doublearrow property 2-62 hyperbolic
Head1Width cosecant 2-496
annotation doublearrow property 2-63 cosecant. inverse 2-36
Head2Length cosine 2-480
annotation doublearrow property 2-62 cosine. inverse 2-30
Head2Style cotangent 2-485
annotation doublearrow property 2-62

cotangent, inverse 2-33

Head2width secant, inverse 2-104

annotation doublearrow property 2-63 sine. inverse 2-109

Index-12

Index

tangent, inverse 2-118

I
identity matrix 2-710

incomplete beta function

(defined) 2-223
inheritance, of objects 2-362
integer

floating-point, maximum 2-242
Interpreter

textarrow property 2-73

textbox property 2-79
Interruptible

areaseries property 2-95

Axes property 2-163

barseries property 2-198, 2-199

contour property 2-447

errorbar property 2-684
inverse

cosecant 2-34

cosine 2-28

cotangent 2-31

hyperbolic cosecant 2-36

hyperbolic cosine 2-30

hyperbolic cotangent 2-33

hyperbolic secant 2-104

hyperbolic sine 2-109

hyperbolic tangent 2-118

secant 2-101

sine 2-106

tangent 2-113

tangent, four-quadrant 2-114, 2-115

inversion, matrix
accuracy of 2-420

J

Jacobian elliptic functions
(defined) 2-659
Java
class names 2-365
Java import list
clearing 2-365
joining arrays See concatenating arrays

L
labeling

matrix columns 2-617
LabelSpacing

contour property 2-448
Laplacian 2-574
Layer, Axes property 2-163
LData

errorbar property 2-684
LDataSource

errorbar property 2-684
ldivide (M-file function equivalent for .\) 2-6
LevellList

contour property 2-448
LevellListMode

contour property 2-448
LevelStep

contour property 2-448
LevelStepMode

contour property 2-448
Light

positioning in camera coordinates 2-276
line numbers in M-files 2-553
linear equation systems

accuracy of solution 2-420
LineColor

contour property 2-449

Index-13

Index

LineStyle

annotation arrow property 2-60
annotation doublearrow property 2-64
annotation ellipse property 2-65
annotation line property 2-67
annotation rectangle property 2-69
annotation textarrow property 2-73
annotation textbox property 2-79
areaseries property 2-96

barseries property 2-198

contour property 2-449

errorbar property 2-685

LineStyleOrder

Axes property 2-163

LineWidth

annotation arrow property 2-60
annotation doublearrow property 2-64
annotation ellipse property 2-66
annotation line property 2-67
annotation rectangle property 2-70
annotation textarrow property 2-73
annotation textbox property 2-79
areaseries property 2-96

Axes property 2-164

barseries property 2-199

contour property 2-449

errorbar property 2-685

Lobatto IIIa ODE solver 2-263
log

saving session to file 2-609

logarithm

of beta function (natural) 2-224

logical operations

AND, bit-wise 2-239
OR, bit-wise 2-244
XOR, bit-wise 2-248

logical operators 2-13, 2-15

Index-14

logical tests
all 2-45
any 2-82

M
Margin

annotation textbox property 2-79
Marker

marker property 2-685
MarkeredgeColor

errorbar property 2-686
MarkerFaceColor

errorbar property 2-686
MarkerSize

errorbar property 2-686
matrix

addressing selected rows and columns of 2-21

arrowhead 2-410

companion 2-415

condition number of 2-420
condition number, improving 2-180
converting to vector 2-21

defective (defined) 2-648
determinant of 2-601

diagonal of 2-606

Dulmage-Mendelsohn decomposition 2-629

exponential 2-707

identity 2-710

inversion, accuracy of 2-420
left division (arithmetic operator) 2-3
maximum size of 2-419

modal 2-646

multiplication (defined) 2-2
power (arithmetic operator) 2-3
reading files into 2-624

right division (arithmetic operator) 2-3

Index

singularity, test for 2-601
trace of 2-606
transpose (arithmetic operator) 2-4
transposing 2-18
writing to ASCII delimited file 2-626
See also array
matrix names, (M1 through M12) generating a
sequence of 2-696
matrix power See matrix, exponential
maximum matching 2-629
MDL-files
checking existence of 2-701
memory
clearing 2-364
methods
inheritance of 2-362
MEX-files
clearing from workspace 2-364
debugging on UNIX 2-539
M-file
displaying during execution 2-642
function file, echoing 2-642
script file, echoing 2-642
M-files
checking existence of 2-701
clearing from workspace 2-364
deleting 2-588
editing 2-644
line numbers, listing 2-553
setting breakpoints 2-546, 2-548
MinorGridLineStyle, Axes property 2-164
minus (M-file function equivalent for -) 2-6
mldivide (M-file function equivalent for \) 2-6
modal matrix 2-646
modified Bessel functions
relationship to Airy functions 2-42
modifying for PVCS 2-377

movies

exporting in AVI format 2-132
mpower (M-file function equivalent for *) 2-6
mrdivide (M-file function equivalent for /) 2-6
mtimes (M-file function equivalent for *) 2-6
multidimensional arrays

concatenating 2-298
multiplication

array (arithmetic operator) 2-2

matrix (defined) 2-2

of polynomials 2-460

N

NextPlot

Axes property 2-164
not (M-file function equivalent for ~) 2-14
numerical evaluation

double integral 2-537

o)
object
inheritance 2-362
object classes, list of predefined 2-361
operating system command, issuing 2-19
operators
arithmetic 2-2
logical 2-13, 2-15
overloading arithmetic 2-7
overloading relational 2-11
relational 2-11
special characters 2-17
logical OR
bit-wise 2-244
or (M-file function equivalent for |) 2-14

Index-15

Index

orthographic projection, setting and querying
2-285
OuterPosition
Axes property 2-165
overloading
arithmetic operators 2-7
relational operators 2-11
special characters 2-20

P
parametric curve, plotting 2-726
Parent
areaseries property 2-96
Axes property 2-166
barseries property 2-199
contour property 2-449
errorbar property 2-687
parentheses (special characters) 2-18
path
adding directories to 2-39
pauses, removing 2-533
percent sign (special characters) 2-19
perfect matching 2-629
period (.), to distinguish matrix and array
operations 2-2
period (special characters) 2-18
perspective projection, setting and querying
2-285
P-files
checking existence of 2-701
phase angle, complex 2-55
platform MATLAB is running on 2-419
PlotBoxAspectRatio, Axes property 2-166
PlotBoxAspectRatioMode, Axes property 2-166
plotting
contours (a 2-711

Index-16

contours (ez function) 2-711
ez-function mesh plot 2-717
filled contours 2-714
functions with discontinuities 2-731
in polar coordinates 2-728
mathematical function 2-723
mesh contour plot 2-720
parametric curve 2-726
surfaces 2-730
velocity vectors 2-423
plus (M-file function equivalent for +) 2-6
polar coordinates
computing the angle 2-55
converting from Cartesian 2-294
plotting in 2-728
polynomial
division 2-573
multiplication 2-460
poorly conditioned eigenvalues 2-180
Position
annotation textbox property 2-79
Axes property 2-167
position of camera
dollying 2-272
position of camera, setting and querying 2-283
power
matrix See matrix exponential
power (M-file function equivalent for . ") 2-6
printing, suppressing 2-19
product
cumulative 2-501
of vectors (cross) 2-492
scalar (dot) 2-492
projection type, setting and querying 2-285
ProjectionType, Axes property 2-167

Index

R

rdivide (M-file function equivalent for ./) 2-6
rearranging arrays
converting to vector 2-21
rearranging matrices
converting to vector 2-21
transposing 2-18
reference page
accessing from doc 2-630
regularly spaced vectors, creating 2-21
relational operators 2-11
rolling camera 2-286
rotating camera 2-280
rotating camera target 2-282
round
towards infinity 2-318
roundoff error
convolution theorem and 2-460
effect on eigenvalues 2-180

S
saving
session to a file 2-609
scalar product (of vectors) 2-492
scaled complementary error function (defined)
2-672
search path
adding directories to 2-39
secant
inverse 2-101
inverse hyperbolic 2-104
Selected
areaseries property 2-96
Axes property 2-167
barseries property 2-199
contour property 2-450

errorbar property 2-687
SelectionHighlight

areaseries property 2-97

Axes property 2-167

barseries property 2-199

contour property 2-450

errorbar property 2-687
semicolon (special characters) 2-19
sequence of matrix names (M1 through M12)

generating 2-696
session

saving 2-609
shifting array

circular 2-353
ShowText

contour property 2-450
sine

inverse 2-106

inverse hyperbolic 2-109
single quote (special characters) 2-18
slice planes, contouring 2-456
sorting

complex conjugate pairs 2-488
sound

files

reading 2-130
writing 2-131

source control systems

checking in files 2-336

checking out files 2-338

viewing current system 2-377
sparse matrix

minimum degree ordering of 2-380

permuting columns of 2-410
special characters

overloading 2-20
spreadsheets

Index-17

Index

reading into a matrix 2-624
writing matrices into 2-626
stack, displaying 2-541
str2cell 2-329
stretch-to-fill 2-139
String
textarrow property 2-73
textbox property 2-80
string
converting from vector to 2-334
string matrix to cell array conversion 2-329
subsref (M-file function equivalent for
A(i,j,k...))2-19
subtraction (arithmetic operator) 2-2
sum
cumulative 2-502
Surface
and contour plotter 2-734
plotting mathematical functions 2-730

T
Tag
areaseries property 2-97
Axes property 2-168
barseries property 2-199
contour property 2-450
errorbar property 2-687
tangent
four-quadrant, inverse 2-114, 2-115
inverse 2-113
inverse hyperbolic 2-118
target, of camera 2-287
test, logical See logical tests and detecting
TextBackgroundColor
annotation textbarrow property 2-74
TextColor

Index-18

annotation textbarrow property 2-74
TextEdgeColor

annotation textbarrow property 2-74
TextLineWidth

annotation textarrow property 2-74
TextList

contour property 2-450
TextListMode

contour property 2-451
TextMargin

annotation textbarrow property 2-74
TextRotation, textarrow property 2-74
TextStep

contour property 2-451
TextStepMode

contour property 2-451
TickDir, Axes property 2-168
TickDirMode, Axes property 2-168
TickLength, Axes property 2-168
time

CPU 2-489

required to execute commands 2-693
time and date functions 2-669
times (M-file function equivalent for . *) 2-6
Title, Axes property 2-169
trace of a matrix 2-606
trailing blanks

removing 2-566
transformation

See also conversion
transpose

array (arithmetic operator) 2-4

matrix (arithmetic operator) 2-4

transpose (M-file function equivalent for . ') 2-6

truth tables (for logical operations) 2-13

Type
areaseries property 2-97

Index

Axes property 2-169
barseries property 2-200
contour property 2-452
errorbar property 2-688

U

UData
errorbar property 2-688
UDataSource
errorbar property 2-688
UIContextMenu
areaseries property 2-97
Axes property 2-169
barseries property 2-200
contour property 2-452
errorbar property 2-688
uminus (M-file function equivalent for unary)

2-6
Units
Axes property 2-169
UNIX

Web browser 2-632
up vector, of camera 2-289
updating figure during M-file execution 2-639
uplus (M-file function equivalent for unary +) 2-6
UserData

areaseries property 2-97

Axes property 2-170

barseries property 2-200

contour property 2-452

errorbar property 2-688

\'

variables
checking existence of 2-701

clearing from workspace 2-364
vector

dot product 2-636

product (cross) 2-492
vector field, plotting 2-423
vectorizing ODE function (BVP) 2-269
vectors, creating

regularly spaced 2-21
velocity vectors, plotting 2-423
vertcat (M-file function equivalent for [;1) 2-19
VerticalAlignment, textarrow property 2-74
VerticalAlignment, textbox property 2-80
video

saving in AVI format 2-132
view 2-278
view angle, of camera 2-291
View, Axes property (obsolete) 2-170
viewing

a group of object 2-278

a specific object in a scene 2-278
Visible

areaseries property 2-98

Axes property 2-170

barseries property 2-200

contour property 2-452

errorbar property 2-688
visualizing

cell array structure 2-328
volumes

contouring slice planes 2-456

w

Web browser

specifying for UNIX 2-632
Width

annotation ellipse property 2-66

Index-19

Index

annotation rectangle property 2-70
workspace
changing context while debugging 2-536,
2-554
clearing items from 2-364

>

annotation arrow property 2-60, 2-64
annotation ellipse property 2-66
annotation line property 2-67
annotation rectangle property 2-70
annotation textarrow property 2-75
XAxislLocation, Axes property 2-170
XColor, Axes property 2-170
XData
areaseries property 2-98
barseries property 2-200
contour property 2-452
errorbar property 2-689
XDataMode
areaseries property 2-98
barseries property 2-201
contour property 2-453
errorbar property 2-689
XDataSource
areaseries property 2-98
barseries property 2-201
contour property 2-453
errorbar property 2-689
XDir, Axes property 2-171
XGrid, Axes property 2-171
XLabel, Axes property 2-171
XLim, Axes property 2-172
XLimMode, Axes property 2-172
XMinorGrid, Axes property 2-172

Index-20

logical XOR

bit-wise 2-248
XOR, printing 2-93, 2-196, 2-445, 2-682
XScale, Axes property 2-172
XTick, Axes property 2-172
XTickLabel, Axes property 2-173
XTickLabelMode, Axes property 2-173
XTickMode, Axes property 2-173

Y
Y

annotation arrow property 2-61, 2-64, 2-68

annotation ellipse property 2-66
annotation rectangle property 2-70
annotation textarrow property 2-75
YAxisLocation, Axes property 2-170
YColor, Axes property 2-170
YData
areaseries property 2-99
barseries property 2-201
contour property 2-453
errorbar property 2-690
YDataMode
contour property 2-453
YDataSource
areaseries property 2-99
barseries property 2-202
contour property 2-454
errorbar property 2-690
YDir, Axes property 2-171
YGrid, Axes property 2-171
YLabel, Axes property 2-171
YLim, Axes property 2-172
YLimMode, Axes property 2-172
YMinorGrid, Axes property 2-172
YScale, Axes property 2-172

Index

YTick, Axes property 2-172
YTickLabel, Axes property 2-173
YTickLabelMode, Axes property 2-173
YTickMode, Axes property 2-173

yA
ZColor, Axes property 2-170
ZData

contour property 2-454
ZDataSource

contour property 2-454
ZDir, Axes property 2-171
ZGrid, Axes property 2-171
ZLim, Axes property 2-172
ZLimMode, Axes property 2-172
ZMinorGrid, Axes property 2-172
ZScale, Axes property 2-172
ZTick, Axes property 2-172
ZTickLabel, Axes property 2-173
ZTickLabelMode, Axes property 2-173
ZTickMode, Axes property 2-173

Index-21

	Functions — Categorical List
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Editing and Debugging
	Performance Improvement and Tuning Tools and Techniques
	Source Control
	Publishing

	System

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion
	Determine Data Type

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange

	Graphics
	Basic Plots and Graphs
	Plotting Tools

	Annotating Plots
	Annotation Object Properties

	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding Objects from Callbacks

	Functions — Alphabetical List
	2 Arithmetic Operators + - * / \ ^ '
	Relational Operators <��>�<=�� >=�== ~=
	Logical Operators: Elementwise & | ~
	Logical Operators: Short-circuit && ||
	Special Characters [] () {} = ' , ; : % ! @
	colon (:)
	abs
	accumarray
	acos
	acosd
	acosh
	acot
	acotd
	acoth
	acsc
	acscd
	acsch
	addframe
	addpath
	addtodate
	airy
	alim
	all
	allchild
	alpha
	alphamap
	ancestor
	angle
	annotation
	Annotation Arrow Properties
	Annotation Doublearrow Properties
	Annotation Ellipse Properties
	Annotation Line Properties
	Annotation Rectangle Properties
	Annotation Textarrow Properties
	Annotation Textbox Properties
	ans
	any
	area
	Areaseries Properties
	ascii (ftp)
	asec
	asecd
	asech
	asin
	asind
	asinh
	assignin
	atan
	atan2
	atand
	atanh
	audioplayer
	audiorecorder
	aufinfo
	auread
	auwrite
	avifile
	aviinfo
	aviread
	axes
	Axes Properties
	axis
	2 balance
	bar, barh
	bar3, bar3h
	Barseries Properties
	base2dec
	beep
	besselh
	besseli
	besselj
	besselk
	bessely
	beta
	betainc
	betaln
	bicg
	bicgstab
	bin2dec
	binary (ftp)
	bitand
	bitcmp
	bitget
	bitmax
	bitor
	bitset
	bitshift
	bitxor
	blanks
	blkdiag
	box
	break
	brighten
	builtin
	bvp4c
	bvpget
	bvpinit
	bvpset
	2 calendar
	camdolly
	cameratoolbar
	camlight
	camlookat
	camorbit
	campan
	campos
	camproj
	camroll
	camtarget
	camup
	camva
	camzoom
	cart2pol
	cart2sph
	case
	cast
	cat
	catch
	caxis
	cd
	cd (ftp)
	cdf2rdf
	cdfepoch
	cdfinfo
	cdfread
	cdfwrite
	ceil
	cell
	cell2mat
	cell2struct
	celldisp
	cellfun
	cellplot
	cellstr
	cgs
	char
	checkin
	checkout
	chol
	cholinc
	cholupdate
	circshift
	cla
	clabel
	class
	clc
	clear
	clf
	clipboard
	clock
	close
	close (avifile)
	close (ftp)
	closereq
	cmopts
	colamd
	colmmd
	colorbar
	colordef
	colormap
	colormapeditor
	ColorSpec
	colperm
	comet
	comet3
	commandhistory
	commandwindow
	compan
	compass
	computer
	cond
	condeig
	condest
	coneplot
	conj
	continue
	contour
	contour3
	contourc
	contourf
	Contourgroup Properties
	contourslice
	contrast
	conv
	conv2
	convhull
	convhulln
	convn
	copyfile
	copyobj
	corrcoef
	cos
	cosd
	cosh
	cot
	cotd
	coth
	cov
	cplxpair
	cputime
	createClassFromWsdl
	cross
	csc
	cscd
	csch
	csvread
	csvwrite
	cumprod
	cumsum
	cumtrapz
	curl
	customverctrl
	cylinder
	daspect
	datacursormode
	datatipinfo
	date
	datenum
	datestr
	datetick
	datevec
	dbclear
	dbcont
	dbdown
	dblquad
	dbmex
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	dde23
	ddeget
	ddeset
	deal
	deblank
	debug
	dec2base
	dec2bin
	dec2hex
	decic
	deconv
	del2
	delaunay
	delaunay3
	delaunayn
	delete
	delete (ftp)
	delete (timer)
	demo
	depdir
	depfun
	det
	detrend
	deval
	diag
	dialog
	diary
	diff
	dir
	dir (ftp)
	disp
	disp (timer)
	display
	divergence
	dlmread
	dlmwrite
	dmperm
	doc
	docopt
	docsearch
	dos
	dot
	double
	dragrect
	drawnow
	dsearch
	dsearchn
	2 echo
	edit
	eig
	eigs
	ellipj
	ellipke
	ellipsoid
	else
	elseif
	end
	eomday
	eps
	erf, erfc, erfcx, erfinv, erfcinv
	error
	errorbar
	Errorbarseries Properties
	errordlg
	etime
	etree
	etreeplot
	eval
	evalc
	evalin
	exist
	exit
	exp
	expint
	expm
	expm1
	eye
	ezcontour
	ezcontourf
	ezmesh
	ezmeshc
	ezplot
	ezplot3
	ezpolar
	ezsurf
	ezsurfc

	Index

