
Function Reference
Volume 1: A - E
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 1: A - E
 COPYRIGHT 1984 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)

i

Contents

1
Functions — Categorical List

Desktop Tools and Development Environment 1-2
Startup and Shutdown . 1-2
Command Window and History . 1-3
Help for Using MATLAB . 1-3
Workspace, Search Path, and File Operations 1-3

Workspace . 1-4
Search Path . 1-4
File Operations . 1-4

Programming Tools . 1-5
Editing and Debugging . 1-5
Performance Improvement and
Tuning Tools and Techniques . 1-5
Source Control . 1-6
Publishing . 1-6

System . 1-6

Mathematics . 1-7
Arrays and Matrices . 1-8

Basic Information . 1-8
Operators . 1-8
Operations and Manipulation . 1-9
Elementary Matrices and Arrays . 1-10
Specialized Matrices . 1-10

Linear Algebra . 1-10
Matrix Analysis . 1-11
Linear Equations . 1-11
Eigenvalues and Singular Values . 1-11
Matrix Logarithms and Exponentials 1-12
Factorization . 1-12

Elementary Math . 1-12
Trigonometric . 1-13
Exponential . 1-14
Complex . 1-14
Rounding and Remainder . 1-14

ii Contents

Discrete Math (e.g., Prime Factors) 1-15
Data Analysis and Fourier Transforms 1-15

Basic Operations . 1-15
Finite Differences . 1-15
Correlation . 1-16
Filtering and Convolution . 1-16
Fourier Transforms . 1-16

Polynomials . 1-16
Interpolation and Computational Geometry 1-17

Interpolation . 1-17
Delaunay Triangulation and Tessellation 1-17
Convex Hull . 1-18
Voronoi Diagrams . 1-18
Domain Generation . 1-18

Coordinate System Conversion . 1-18
Cartesian . 1-18

Nonlinear Numerical Methods . 1-18
Ordinary Differential Equations (IVP) 1-19
Delay Differential Equations . 1-19
Boundary Value Problems . 1-19
Partial Differential Equations . 1-19
Optimization . 1-19
Numerical Integration (Quadrature) 1-20

Specialized Math . 1-20
Sparse Matrices . 1-20

Elementary Sparse Matrices . 1-21
Full to Sparse Conversion . 1-21
Working with Sparse Matrices . 1-21
Reordering Algorithms . 1-21
Linear Algebra . 1-21
Linear Equations (Iterative Methods) 1-22
Tree Operations . 1-22

Math Constants . 1-22

Programming and Data Types . 1-23
Data Types . 1-23

Numeric . 1-24
Characters and Strings . 1-24
Structures . 1-26
Cell Arrays . 1-26

iii

Data Type Conversion . 1-27
Determine Data Type . 1-28

Arrays . 1-28
Array Operations . 1-28
Basic Array Information . 1-29
Array Manipulation . 1-29
Elementary Arrays . 1-30

Operators and Operations . 1-30
Special Characters . 1-30
Arithmetic Operations . 1-31
Bit-wise Operations . 1-31
Relational Operations . 1-31
Logical Operations . 1-32
Set Operations . 1-32
Date and Time Operations . 1-32

Programming in MATLAB . 1-33
M-File Functions and Scripts . 1-33
Evaluation of Expressions and Functions 1-34
Timer Functions . 1-34
Variables and Functions in Memory 1-34
Control Flow . 1-35
Function Handles . 1-35
Object-Oriented Programming . 1-35
Error Handling . 1-36
MEX Programming . 1-37

File I/O . 1-38
Filename Construction . 1-38
Opening, Loading, Saving Files . 1-39
Low-Level File I/O . 1-39
Text Files . 1-39
XML Documents . 1-39
Spreadsheets . 1-40

Microsoft Excel Functions . 1-40
Lotus123 Functions . 1-40

Scientific Data . 1-40
Common Data Format (CDF) . 1-40
Flexible Image Transport System . 1-40
Hierarchical Data Format (HDF) . 1-40
Band-Interleaved Data . 1-40

iv Contents

Audio and Audio/Video . 1-41
General . 1-41
SPARCstation-Specific Sound Functions 1-41
Microsoft WAVE Sound Functions . 1-41
Audio/Video Interleaved (AVI) Functions 1-41

Images . 1-41
Internet Exchange . 1-42

Graphics . 1-43
Basic Plots and Graphs . 1-43

Plotting Tools . 1-43
Annotating Plots . 1-44

Annotation Object Properties . 1-44
Specialized Plotting . 1-44

Area, Bar, and Pie Plots . 1-45
Contour Plots . 1-45
Direction and Velocity Plots . 1-45
Discrete Data Plots . 1-45
Function Plots . 1-45
Histograms . 1-46
Polygons and Surfaces . 1-46
Scatter/Bubble Plots . 1-46
Animation . 1-46

Bit-Mapped Images . 1-47
Printing . 1-47
Handle Graphics . 1-47

Finding and Identifying Graphics Objects 1-48
Object Creation Functions . 1-48
Plot Objects . 1-48
Figure Windows . 1-49
Axes Operations . 1-49
Operating on Object Properties . 1-49

3-D Visualization . 1-50
Surface and Mesh Plots . 1-50

Creating Surfaces and Meshes . 1-50
Domain Generation . 1-50
Color Operations . 1-51
Colormaps . 1-51

View Control . 1-51

v

Controlling the Camera Viewpoint . 1-52
Setting the Aspect Ratio and Axis Limits 1-52
Object Manipulation . 1-52
Selecting Region of Interest . 1-52

Lighting . 1-53
Transparency . 1-53
Volume Visualization . 1-53

Creating Graphical User Interfaces . 1-54
Predefined Dialog Boxes . 1-54
Deploying User Interfaces . 1-55
Developing User Interfaces . 1-55

Working with Application Data . 1-55
Interactive User Input . 1-55

User Interface Objects . 1-55
Finding Objects from Callbacks . 1-55

2
Functions — Alphabetical List

Stretch-to-Fill . 2-139
Positioning the Axes . 2-140
Setting Default Properties . 2-142
Properties That Control the X-, Y-, or Z-Axis 2-170
Specifying Colormaps . 2-387
Supported Colormaps . 2-387

vi Contents

1
Functions — Categorical
List

The MATLAB® Function Reference contains descriptions of all MATLAB
commands and functions.

Select a category from the following table to see a list of related functions.

See Simulink®, Stateflow®, Real-Time Workshop®, and the individual
toolboxes for lists of their functions

Desktop Tools and
Development Environment

Startup, Command Window, help, editing and
debugging, tuning, other general functions

Mathematics Arrays and matrices, linear algebra, data
analysis, other areas of mathematics

Programming and Data
Types

Function/expression evaluation, program
control, function handles, object oriented
programming, error handling, operators, data
types, dates and times, timers

File I/O General and low-level file I/O, plus specific
file formats, like audio, spreadsheet, HDF,
images

Graphics Line plots, annotating graphs, specialized
plots, images, printing, Handle Graphics®

3-D Visualization Surface and mesh plots, view control, lighting
and transparency, volume visualization.

Creating Graphical User
Interface

GUIDE, programming graphical user
interfaces.

External Interfaces Java, COM, Serial Port functions.

1 Functions — Categorical List

1-2

Desktop Tools and Development Environment
General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

Startup and Shutdown
exit Terminate MATLAB (same as quit)
finish MATLAB termination M-file
genpath Generate a path string
matlab Start MATLAB (UNIX systems)
matlab Start MATLAB (Windows systems)
matlabrc MATLAB startup M-file for single user systems or administrators
prefdir Return directory containing preferences, history, and layout files
preferences Display Preferences dialog box for MATLAB and related products
quit Terminate MATLAB
startup MATLAB startup M-file for user-defined options

“Startup and Shutdown” Startup and shutdown options

“Command Window and
History”

Controlling Command Window and History

“Help for Using
MATLAB”

Finding information

“Workspace, Search
Path, and File
Operations”

File, search path, variable management

“Programming Tools” Editing and debugging, source control, Notebook

“System” Identifying current computer, license, product
version, and more

Desktop Tools and Development Environment

1-3

Command Window and History
clc Clear Command Window
commandhistoryOpen the Command History, or select it if already open
commandwindowOpen the Command Window, or select it if already open
diary Save session to file
dos Execute DOS command and return result
format Control display format for output
home Move cursor to upper left corner of Command Window
matlab: Run specified function via hyperlink (matlabcolon)
more Control paged output for Command Window
perl Call Perl script using appropriate operating system executable
system Execute operating system command and return result
unix Execute UNIX command and return result

Help for Using MATLAB
doc Display online documentation in MATLAB Help browser
demo Access product demos via Help browser
docopt Web browser for UNIX platforms
docsearch Open Help browser Search pane and run search for specified term
help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to full online documentation and demos
helpwin Provide access to and display M-file help for all functions
info Display Release Notes for MathWorks products
lookfor Search for specified keyword in all help entries
playshow Run published M-file demo
support Open MathWorks Technical Support Web page
web Open Web site or file in Web browser or Help browser
whatsnew Display Release Notes for MathWorks products

Workspace, Search Path, and File Operations
• “Workspace”

• “Search Path”

• “File Operations”

1 Functions — Categorical List

1-4

Workspace
assignin Assign value to workspace variable
clear Remove items from workspace, freeing up system memory
evalin Execute string containing MATLAB expression in a workspace
exist Check if variables or functions are defined
openvar Open workspace variable in Array Editor for graphical editing
pack Consolidate workspace memory
uiimport Open Import Wizard, the graphical user interface to import data
which Locate functions and files
who, whos List variables in the workspace
workspace Display Workspace browser, a tool for managing the workspace

Search Path
addpath Add directories to MATLAB search path
genpath Generate path string
partialpath Partial pathname
path View or change the MATLAB directory search path
path2rc Replaced by savepath
pathdef List of directories in the MATLAB search path
pathsep Return path separator for current platform
pathtool Open Set Path dialog box to view and change MATLAB path
restoredefaultpathRestore the default search path
rmpath Remove directories from MATLAB search path
savepath Save current MATLAB search path to pathdef.m file

File Operations
cd Change working directory
copyfile Copy file or directory
delete Delete files or graphics objects
dir Display directory listing
exist Check if variables or functions are defined
fileattrib Set or get attributes of file or directory
filebrowser Display Current Directory browser, a tool for viewing files
lookfor Search for specified keyword in all help entries
ls List directory on UNIX
matlabroot Return root directory of MATLAB installation
mkdir Make new directory
movefile Move file or directory
pwd Display current directory
recycle Set option to move deleted files to recycle folder
rehash Refresh function and file system path caches
rmdir Remove directory

Desktop Tools and Development Environment

1-5

type List file
web Open Web site or file in Web browser or Help browser
what List MATLAB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Programming Tools
• “Editing and Debugging”

• “Performance Improvement and Tuning Tools and Techniques”

• “Source Control”

• “Publishing”

Editing and Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints
dbtype List M-file with line numbers
dbup Change local workspace context
debug M-file debugging functions
edit Edit or create M-file
keyboard Invoke the keyboard in an M-file

Performance Improvement and Tuning Tools and Techniques
memory Help for memory limitations
mlint Check M-files for possible problems, and report results
mlintrpt Run mlint for file or directory, reporting results in Web browser
pack Consolidate workspace memory
profile Profile the execution time for a function
profsave Save profile report in HTML format
rehash Refresh function and file system path caches
sparse Create sparse matrix
zeros Create array of all zeros

1 Functions — Categorical List

1-6

Source Control
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system
customverctrlAllow custom source control system
undocheckout Undo previous checkout from source control system
verctrl Version control operations on PC platforms

Publishing
notebook Open M-book in Microsoft Word (Windows only)
publish Run M-file containing cells, and save results to file of specified type

System
computer Identify information about computer on which MATLAB is running
javachk Generate error message based on Java feature support
license Show license number for MATLAB
prefdir Return directory containing preferences, history, and layout files
usejava Determine if a Java feature is supported in MATLAB
ver Display version information for MathWorks products
version Get MATLAB version number

Mathematics

1-7

Mathematics
Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices” Basic array operators and operations, creation of
elementary and specialized arrays and matrices

“Linear Algebra” Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

“Elementary Math” Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

“Data Analysis and
Fourier Transforms”

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

“Polynomials” Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

“Interpolation and
Computational
Geometry”

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

“Coordinate System
Conversion”

Conversions between Cartesian and polar or
spherical coordinates

“Nonlinear Numerical
Methods”

Differential equations, optimization, integration

“Specialized Math” Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

“Sparse Matrices” Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

“Math Constants” Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

1 Functions — Categorical List

1-8

Arrays and Matrices
• “Basic Information”

• “Operators”

• “Operations and Manipulation”

• “Elementary Matrices and Arrays”

• “Specialized Matrices”

Basic Information
disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
isfloat True for floating-point arrays
isinteger True for integer arrays
islogical True for logical array
isnumeric True for numeric arrays
isscalar True for scalars
issparse True for sparse matrix
isvector True for vectors
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix

Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
.' Nonconjugated transpose
.* Array multiplication (element-wise)
.^ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)

Mathematics

1-9

Operations and Manipulation
: (colon) Index into array, rearrange array
accumarray Construct an array with accumulation
blkdiag Block diagonal concatenation
cat Concatenate arrays
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Last index
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum value of array
min Minimum value of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

1 Functions — Categorical List

1-10

Elementary Matrices and Arrays
: (colon) Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra
• “Matrix Analysis”

• “Linear Equations”

• “Eigenvalues and Singular Values”

• “Matrix Logarithms and Exponentials”

• “Factorization”

Mathematics

1-11

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
linsolve Solve linear systems of equations
lscov Least squares solution in presence of known covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
condeig Condition number with respect to eigenvalues
eig Eigenvalues and eigenvectors
eigs Eigenvalues and eigenvectors of sparse matrix
gsvd Generalized singular value decomposition
hess Hessenberg form of matrix
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues

1 Functions — Categorical List

1-12

rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular decomposition
qrdelete Delete column or row from QR factorization
qrinsert Insert column or row into QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math
• “Trigonometric”

• “Exponential”

• “Complex”

• “Rounding and Remainder”

• “Discrete Math (e.g., Prime Factors)”

Mathematics

1-13

Trigonometric
acos Inverse cosine
acosd Inverse cosine, degrees
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acotd Inverse cotangent, degrees
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acscd Inverse cosecant, degrees
acsch Inverse hyperbolic cosecant
asec Inverse secant
asecd Inverse secant, degrees
asech Inverse hyperbolic secant
asin Inverse sine
asind Inverse sine, degrees
asinh Inverse hyperbolic sine
atan Inverse tangent
atand Inverse tangent, degrees
atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine
cosd Cosine, degrees
cosh Hyperbolic cosine
cot Cotangent
cotd Cotangent, degrees
coth Hyperbolic cotangent
csc Cosecant
cscd Cosecant, degrees
csch Hyperbolic cosecant
sec Secant
secd Secant, degrees
sech Hyperbolic secant
sin Sine
sind Sine, degrees
sinh Hyperbolic sine
tan Tangent
tand Tangent, degrees
tanh Hyperbolic tangent

1 Functions — Categorical List

1-14

Exponential
exp Exponential
expm1 Exponential of x minus 1
log Natural logarithm
log1p Logarithm of 1+x
log2 Base 2 logarithm and dissect floating-point numbers into exponent and

mantissa
log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
reallog Natural logarithm for nonnegative real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real arrays
sqrt Square root
nthroot Real nth root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal True for real array
j Imaginary unit
real Complex real part
sign Signum
unwrap Unwrap phase angle

Rounding and Remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division
rem Remainder after division

Mathematics

1-15

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime True for prime numbers
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms
• “Basic Operations”

• “Finite Differences”

• “Correlation”

• “Filtering and Convolution”

• “Fourier Transforms”

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
prod Product of array elements
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1 Functions — Categorical List

1-16

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between two subspaces

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal
filter Filter data with infinite impulse response (IIR) or finite impulse response

(FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
fft One-dimensional discrete Fourier transform
fft2 Two-dimensional discrete Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of discrete Fourier transform to center of spectrum
fftw Interface to the FFTW library run-time algorithm for tuning FFTs
ifft Inverse one-dimensional discrete Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
ifftn Inverse multidimensional discrete Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Mathematics

1-17

Interpolation and Computational Geometry
• “Interpolation”

• “Delaunay Triangulation and Tessellation”

• “Convex Hull”

• “Voronoi Diagrams”

• “Domain Generation”

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using fast Fourier transform method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

1 Functions — Categorical List

1-18

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation

Coordinate System Conversion

Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods
• “Ordinary Differential Equations (IVP)”

• “Delay Differential Equations”

• “Boundary Value Problems”

• “Partial Differential Equations”

• “Optimization”

• “Numerical Integration (Quadrature)”

Mathematics

1-19

Ordinary Differential Equations (IVP)
ode113 Solve non-stiff differential equations, variable order method
ode15i Solve fully implicit differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method
ode23s Solve stiff differential equations, low order method
ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule
ode23tb Solve stiff differential equations, low order method
ode45 Solve non-stiff differential equations, medium order method
odextend Extend the solution of an initial value problem
odeget Get ODE options parameters
odeset Create/alter ODE options structure
decic Compute consistent initial conditions for ode15i
deval Evaluate solution of differential equation problem

Delay Differential Equations
dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure
deval Evaluate solution of differential equation problem

Boundary Value Problems
bvp4c Solve boundary value problems for ODEs
bvpget Get BVP options parameters
bvpset Create/alter BVP options structure
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary value problems for parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear minimization, by

Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

1 Functions — Categorical List

1-20

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson quadrature (low order)
quadl Numerically evaluate integral, adaptive Lobatto quadrature (high order)
quadv Vectorized quadrature
dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
psi Psi (polygamma) function

Sparse Matrices
• “Elementary Sparse Matrices”

• “Full to Sparse Conversion”

• “Working with Sparse Matrices”

• “Reordering Algorithms”

• “Linear Algebra”

• “Linear Equations (Iterative Methods)”

• “Tree Operations”

Mathematics

1-21

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

Working with Sparse Matrices
issparse True for sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation

Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
sprank Structural rank
svds Singular values and vectors of sparse matrix

1 Functions — Categorical List

1-22

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on Normal Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
spaugment Form least squares augmented system
symmlq Symmetric LQ method

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, ∞
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number

Programming and Data Types

1-23

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB
programs.

Data Types
• “Numeric”

• “Characters and Strings”

• “Structures”

• “Cell Arrays”

• “Data Type Conversion”

• “Determine Data Type”

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1 Functions — Categorical List

1-24

Numeric
[] Array constructor
cat Concatenate arrays
class Return object’s class name (e.g., numeric)
find Find indices and values of nonzero array elements
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
intwarning Enable or disable integer warnings
ipermute Inverse permute dimensions of multidimensional array
isa Determine if item is object of given class (e.g., numeric)
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
isnumeric Determine if item is numeric array
isreal Determine if all array elements are real numbers
isscalar True for scalars (1-by-1 matrices)
isvector True for vectors (1-by-N or N-by-1 matrices)
permute Rearrange dimensions of multidimensional array
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

blanks Create string of blanks
char Create character array (string)
cellstr Create cell array of strings from character array
datestr Convert to date string format
deblank Strip trailing blanks from the end of string
lower Convert string to lower case
sprintf Write formatted data to string
sscanf Read string under format control
strcat String concatenation

Programming and Data Types

1-25

strjust Justify character array
strread Read formatted data from string
strrep String search and replace
strtrim Remove leading and trailing whitespace from string
strvcat Vertical concatenation of strings
upper Convert string to upper case

Comparing and Searching Strings

class Return object’s class name (e.g., char)
findstr Find string within another, longer string
isa Determine if item is object of given class (e.g., char)
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isletter Detect array elements that are letters of the alphabet
isscalar True for scalars (1-by-1 matrices)
isspace Detect elements that are ASCII white spaces
isstrprop Determine content of each element of string
isvector True for vectors (1-by-N or N-by-1 matrices)
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings
strncmpi Compare first n characters of strings, ignoring case
strtok First token in string

Evaluating String Expressions

eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute string containing MATLAB expression in workspace

1 Functions — Categorical List

1-26

Structures
cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs
fieldnames Field names of structure
isa Determine if item is object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isscalar True for scalars (1-by-1 matrices)
isstruct Determine if item is structure array
isvector True for vectors (1-by-N or N-by-1 matrices)
orderfields Order fields of a structure array
rmfield Remove structure fields
struct Create structure array
struct2cell Structure to cell array conversion

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)
deal Deal inputs to outputs
isa Determine if item is object of given class (e.g., cell)
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
isscalar True for scalars (1-by-1 matrices)
isvector True for vectors (1-by-N or N-by-1 matrices)
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array
struct2cell Structure to cell array conversion

Programming and Data Types

1-27

Data Type Conversion

Numeric

double Convert to double-precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String

char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert a matrix to string
num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array
datestr Convert serial date number to string
func2str Convert function handle to function name string
logical Convert numeric to logical array
mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array
str2func Convert function name string to function handle
struct2cell Convert structure to cell array

1 Functions — Categorical List

1-28

Determine Data Type
is* Detect state
isa Determine if item is object of given class
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isfield Determine if item is character array
isfloat True for floating-point arrays
isinteger True for integer arrays
isjava Determine if item is Java object
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isobject Determine if item is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if item is MATLAB structure array

Arrays
• “Array Operations”

• “Basic Array Information”

• “Array Manipulation”

• “Elementary Arrays”

Array Operations
[] Array constructor
, Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
.* Array multiplication
./ Array right division
.\ Array left division
.^ Array power
.' Array (nonconjugated) transpose

Programming and Data Types

1-29

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isscalar Determine if item is a scalar
isvector Determine if item is a vector
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays
circshift Shift array circularly
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Horizontal concatenation
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Horizontal concatenation

1 Functions — Categorical List

1-30

Elementary Arrays
: Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Operators and Operations
• “Special Characters”

• “Arithmetic Operations”

• “Bit-wise Operations”

• “Relational Operations”

• “Logical Operations”

• “Set Operations”

• “Date and Time Operations”

Special Characters
: Specify range of array elements
() Pass function arguments, or prioritize operations
[] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
... Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Command to operating system
= Assignment

Programming and Data Types

1-31

Arithmetic Operations
+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power
' Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.' Array transpose

Bit-wise Operations
bitand Bit-wise AND
bitcmp Bit-wise complement
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit at specified position
bitshift Bit-wise shift
bitget Get bit at specified position
bitxor Bit-wise XOR

Relational Operations
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

1 Functions — Categorical List

1-32

Logical Operations
&& Logical AND
|| Logical OR
& Logical AND for arrays
| Logical OR for arrays
~ Logical NOT
all Test to determine if all elements are nonzero
any Test for any nonzero elements
false False array
find Find indices and values of nonzero elements
is* Detect state
isa Determine if item is object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
true True array
xor Logical EXCLUSIVE OR

Set Operations
intersect Set intersection of two vectors
ismember Detect members of set
setdiff Return set difference of two vectors
issorted Determine if set elements are in sorted order
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of vector

Date and Time Operations
addtodate Modify particular field of date number
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Convert serial date number to string
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Programming and Data Types

1-33

Programming in MATLAB

• “M-File Functions and Scripts”

• “Evaluation of Expressions and Functions”

• “Timer Functions”

• “Variables and Functions in Memory”

• “Control Flow”

• “Function Handles”

• “Object-Oriented Programming”

• “Error Handling”

• “MEX Programming”

M-File Functions and Scripts
() Pass function arguments
% Insert comment line into code
... Continue statement to next line
depfun List dependent functions of M-file or P-file
depdir List dependent directories of M-file or P-file
echo Echo M-files during execution
function Function M-files
input Request user input
inputname Input argument name
mfilename Name of currently running M-file
namelengthmaxReturn maximum identifier length
nargin Number of function input arguments
nargout Number of function output arguments
nargchk Check number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Describes script M-file
varargin Accept variable number of arguments
varargout Return variable number of arguments

1 Functions — Categorical List

1-34

Evaluation of Expressions and Functions
builtin Execute built-in function from overloaded method
cellfun Apply function to each element in cell array
echo Echo M-files during execution
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Evaluate function
iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Describes script M-file
symvar Determine symbolic variables in expression
tic, toc Stopwatch timer

Timer Functions
delete Delete timer object from memory
disp Display information about timer object
get Retrieve information about timer object properties
isvalid Determine if timer object is valid
set Display or set timer object properties
start Start a timer
startat Start a timer at a specific timer
stop Stop a timer
timer Create a timer object
timerfind Return an array of all visible timer objects in memory
timerfindall Return an array of all timer objects in memory
wait Block command line until timer completes

Variables and Functions in Memory
assignin Assign value to workspace variable
genvarname Construct valid variable name from string
global Define global variables
inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared
mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmaxReturn maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system caches

Programming and Data Types

1-35

Control Flow
break Terminate execution of for loop or while loop
case Case switch
catch Begin catch block
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional statements, or indicate last index
error Display error messages
for Repeat statements specific number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases based on expression
try Begin try block
while Repeat statements indefinite number of times

Function Handles
class Return object’s class name (e.g. function_handle)
feval Evaluate function
function_handle

Describes function handle data type
functions Return information about function handle
func2str Constructs function name string from function handle
isa Determine if item is object of given class (e.g. function_handle)
isequal Determine if function handles are equal
str2func Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object
fieldnames List public fields belonging to object,
inferiorto Establish inferior class relationship
isa Determine if item is object of given class
isobject Determine if item is MATLAB OOPs object
loadobj User-defined extension of load function for user objects
methods Display information on class methods
methodsview Display information on class methods in separate window
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B

1 Functions — Categorical List

1-36

subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects

cell Convert Java array object to cell array
class Return class name of Java object
clear Clear Java import list or Java class definitions
depfun List Java classes used by M-file
exist Determine if item is Java class
fieldnames List public fields belonging to object
im2java Convert image to instance of Java image object
import Add package or class to current Java import list
inmem List names of Java classes loaded into memory
isa Determine if item is object of given class
isjava Determine if item is Java object
javaaddpath Add entries to dynamic Java class path
javaArray Construct Java array
javachk Generate error message based on Java feature support
javaclasspathSet and get dynamic Java class path
javaMethod Invoke Java method
javaObject Construct Java object
javarmpath Remove entries from dynamic Java class path
methods Display information on class methods
methodsview Display information on class methods in separate window
usejava Determine if a Java feature is supported in MATLAB
which Display package and class name for method

Error Handling
catch Begin catch block of try/catch statement
error Display error message
ferror Query MATLAB about errors in file input or output
intwarning Enable or disable integer warnings
lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error
try Begin try block of try/catch statement
warning Display warning message

Programming and Data Types

1-37

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of currently loaded MEX-files
mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1 Functions — Categorical List

1-38

File I/O
Functions to read and write data to files of different format types.

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction
fileparts Return parts of filename
filesep Return directory separator for this platform
fullfile Build full filename from parts
tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/O” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,
WAVE, AVI files

“Images” Graphics files

“Internet Exchange” URL, zip, and e-mail

File I/O

1-39

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load all or specific data from MAT or ASCII file
open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file
uiimport Open Import Wizard, the graphical user interface to import data
winopen Open file in appropriate application (Windows only)

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file, using comma delimiter
csvwrite Write numeric data to text file, using comma delimiter
dlmread Read numeric data from text file, specifying your own delimiter
dlmwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, write to multiple outputs
textscan Read data from text file, convert and write to cell array

XML Documents
xmlread Parse XML document
xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine

1 Functions — Categorical List

1-40

Spreadsheets

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet
xlsread Read Microsoft Excel spreadsheet file (.xls)
xlswrite Write Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)
cdfepoch Convert MATLAB date number or date string into CDF epoch
cdfinfo Return information about CDF file
cdfread Read CDF file
cdfwrite Write CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF4 files
hdfinfo Return information about HDF4 or HDF-EOS file
hdfread Read HDF4 file
hdftool Start HDF4 Import Tool
hdf5 Describes HDF5 data type objects
hdf5info Return information about HDF5 file
hdf5read Read HDF5 file
hdf5write Write data to file in HDF5 format

Band-Interleaved Data
multibandreadRead band-interleaved data from file
multibandwriteWrite band-interleaved data to file

File I/O

1-41

Audio and Audio/Video

General
audioplayer Create audio player object
audiorecorderPerform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mmfileinfo Information about a multimedia file
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

Audio/Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
im2java Convert image to instance of Java image object
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

1 Functions — Categorical List

1-42

Internet Exchange
ftp Connect to FTP server, creating an FTP object
sendmail Send e-mail message (attachments optional) to list of addresses
unzip Extract contents of zip file
urlread Read contents at URL
urlwrite Save contents of URL to file
zip Create compressed version of files in zip format

Graphics

1-43

Graphics
2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs
box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars
hold Hold current graph
LineSpec Line specification syntax
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Plotting Tools
figurepaletteDisplay figure palette on figure
pan Turn panning on or off.
plotbrowser Display plot browser on figure
plottools Start plotting tools
propertyeditorDisplay property editor on figure
zoom Turn zooming on or off

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

1 Functions — Categorical List

1-44

Annotating Plots

annotation Create annotation objects
clabel Add contour labels to contour plot
datetick Date formatted tick labels
gtext Place text on 2-D graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Annotation Object Properties

arrow Properties for annotation arrows
doublearrow Properties for double-headed annotation arrows
ellipse Properties for annotation ellipses
line Properties for annotation lines
rectangle Properties for annotation rectangles
textarrow Properties for annotation textbox

Specialized Plotting
• “Area, Bar, and Pie Plots”

• “Contour Plots”

• “Direction and Velocity Plots”

• “Discrete Data Plots”

• “Function Plots”

• “Histograms”

• “Polygons and Surfaces”

• “Scatter/Bubble Plots”

• “Animation”

Graphics

1-45

Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char
pie Pie plot
pie3 3-D pie plot

Contour Plots
contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 3-D comet plot
compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

1 Functions — Categorical List

1-46

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled 2-D polygons
fill3 Draw filled 3-D polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter/Bubble Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Animation
frame2im Convert movie frame to indexed image
getframe Capture movie frame
im2frame Convert image to movie frame
movie Play recorded movie frames
noanimate Change EraseMode of all objects to normal

Graphics

1-47

Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage file format registry
im2frame Convert image to movie frame
im2java Convert image to instance of Java image object
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation
pagesetupdlg Page setup dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

Handle Graphics
• Finding and Identifying Graphics Objects

• Object Creation Functions

• Figure Windows

• Axes Operations

1 Functions — Categorical List

1-48

Finding and Identifying Graphics Objects
allchild Find all children of specified objects
ancestor Find ancestor of graphics object
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen
findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
hggroup Create a group object
hgtransform Create a group to transform
image Create image (2-D matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Plot Objects
areaseries Property list
barseries Property list
contourgroup Property list
errorbarseriesProperty list
lineseries Property list
quivergroup Property list
scattergroup Property list
stairseries Property list
stemseries Property list
surfaceplot Property list

Graphics

1-49

Figure Windows
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
figflag Test if figure is on screen
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
box Display axes border
cla Clear Axes
gca Get current Axes handle
grid Grid lines for 2-D and 3-D plots
ishold Get the current hold state
makehgtform Create a transform matrix

Operating on Object Properties
get Get object properties
linkaxes Synchronize limits of specified axes
linkprop Maintain same value for corresponding properties
set Set object properties

1 Functions — Categorical List

1-50

3-D Visualization
Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots
• Creating Surfaces and Meshes

• Domain Generation

• Color Operations

• Colormaps

Creating Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

3-D Visualization

1-51

Color Operations
brighten Brighten or darken colormap
caxis Pseudocolor axis scaling
colormapeditorStart colormap editor
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot colormap
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow colormap
bone Gray-scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap
flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap
hot Black-red-yellow-white colormap
hsv Hue-saturation-value (HSV) colormap
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow colormap
summer Shades of green and yellow colormap
winter Shades of blue and green colormap

View Control
• Controlling the Camera Viewpoint

• Setting the Aspect Ratio and Axis Limits

• Object Manipulation

• Selecting Region of Interest

1 Functions — Categorical List

1-52

Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
cameratoolbarControl camera toolbar programmatically
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
makehgtform Create a transform matrix

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
pan Turns panning on or off
reset Reset axis or figure
rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

3-D Visualization

1-53

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and vector)

1 Functions — Categorical List

1-54

Creating Graphical User Interfaces
Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes
dialog Create dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagesetupdlg Page setup dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetdir Display dialog box to retrieve name of directory
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Set ColorSpec using dialog box
uisetfont Set font using dialog box
waitbar Display wait bar
warndlg Create warning dialog box

Predefined Dialog Boxes Dialog boxes for error, user input, waiting, etc.

Deploying User
Interfaces

Launching GUIs, creating the handles structure

Developing User
Interfaces

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from
Callbacks

Finding object handles from within callbacks
functions

GUI Utility Functions Moving objects, text wrapping

Controlling Program
Execution

Wait and resume based on user input

Creating Graphical User Interfaces

1-55

Deploying User Interfaces
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces
guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects
menu Generate menu of choices for user input
uibuttongroupCreate component to exclusively manage radiobuttons and togglebuttons
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu
uipanel Create panel container object
uipushtool Create toolbar push button
uitoggletool Create toolbar toggle button
uitoolbar Create toolbar

Finding Objects from Callbacks
findall Find all graphics objects
findfigs Display off-screen visible figure windows
findobj Find specific graphics object
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

1 Functions — Categorical List

1-56

2
Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ '

2-2

2Arithmetic Operators + - ∗ / \ ^ '
Purpose Matrix and array arithmetic

Syntax A+B
A-B
A∗ B A.∗ B
A/B A./B
A\B A.\B
A^B A.^B
A' A.'

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic
operations are carried out element by element, and can be used with
multidimensional arrays. The period character (.) distinguishes the array
operations from the matrix operations. However, since the matrix and array
operations are the same for addition and subtraction, the character pairs .+
and .- are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

∗ Matrix multiplication. C = A∗ B is the linear algebraic product of the
matrices A and B. More precisely,

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

.∗ Array multiplication. A.∗ B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

C i j,() A i k,()B k j,()

k 1=

n

∑=

Arithmetic Operators + - * / \ ^ '

2-3

/ Slash or matrix right division. B/A is roughly the same as B∗ inv(A).
More precisely, B/A = (A'\B')'. Seethe reference page for mrdivide for
more information.

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv(A)∗ B, except it is computed in a different way. If A is an
n-by-n matrix and B is a column vector with n components, or a matrix
with several such columns, then X = A\B is the solution to the equation
AX = B computed by Gaussian elimination. A warning message is
displayed if A is badly scaled or nearly singular. See the reference page
for mldivide for more information.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A is determined
from the QR decomposition with pivoting (see “Algorithm” on
page 2-701 for details). A solution X is computed that has at most k
nonzero components per column. If k < n, this is usually not the same
solution as pinv(A)∗ B, which is the least squares solution with the
smallest norm .

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated squaring. If the integer is negative,
X is inverted first. For other values of p, the calculation involves
eigenvalues and eigenvectors, such that if [V,D] = eig(X), then
X^p = V∗ D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P
using eigenvalues and eigenvectors. X^P, where X and P are both
matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)
power. A and B must have the same size, unless one of them is a scalar.

X

Arithmetic Operators + - * / \ ^ '

2-4

Nondouble
Data Type
Support

This section describes the arithmetic operators’ support for data types other
than double.

Data Type single
You can apply any of the arithmetic operators to arrays of type single and
MATLAB returns an answer of type single. You can also combine an array of
type double with an array of type single, and the result has type single.

Integer Data Types
You can apply most of the arithmetic operators to real arrays of the following
integer data types:

• int8 and uint8

• int16 and uint16

• int32 and uint32

All operands must have the same integer data type and MATLAB returns an
answer of that type.

Note The arithmetic operators do not support operations on the data types
int64 or uint64. Except for the unary operators +A and A.', the arithmetic
operators do not support operations on complex arrays of any integer data
type.

For example,

x = int8(3) + int8(4);
class(x)

ans =

' Matrix transpose. A' is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices,
this does not involve conjugation.

Arithmetic Operators + - * / \ ^ '

2-5

int8

The following table lists the binary arithmetic operators that you can apply to
arrays of the same integer data type. In the table, A and B are arrays of the
same integer data type and c is a scalar of type double or the same type as A
and B.

Combining Integer Data Types with Type Double
For the operations that support integer data types, you can combine a scalar or
array of an integer data type with a scalar, but not an array, of type double and
the result has the same integer data type as the input of integer type. For
example,

y = 5 + int32(7);

Operation Support when A and B Have Same Integer
Type

+A, -A Yes

A+B, A+c, c+B Yes

A-B, A-c, c-B Yes

A.*B Yes

A*c, c*B Yes

A*B No

A/c, c/B Yes

A.\B, A./B Yes

A\B, A/B No

A.^B Yes, if B has nonnegative integer values.

c^k Yes, for a scalar c and a nonnegative scalar
integer k, which have the same integer data
type or one of which has type double

A.', A' Yes

Arithmetic Operators + - * / \ ^ '

2-6

class(y)

ans =

int32

However, you cannot combine an array of an integer data type with either of
the following:

• A scalar or array of a different integer data type

• A scalar or array of type single

Nondouble Data Types, in the online MATLAB documentation, provides more
information about operations on nondouble data types.

Remarks The arithmetic operators have M-file function equivalents, as shown:

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Matrix multiplication A∗ B mtimes(A,B)

Arraywise multiplication A.∗ B times(A,B)

Matrix right division A/B mrdivide(A,B)

Arraywise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Arraywise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

Arraywise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Arithmetic Operators + - * / \ ^ '

2-7

Note For some toolboxes, the arithmetic operators are overloaded, that is,
they perform differently in the context of that toolbox. To see the toolboxes
that overload a given operator, type help followed by the operator name. For
example, type help plus. The toolboxes that overload plus (+) are listed. For
information about using the operator in that toolbox, see the documentation
for the toolbox.

Examples Here are two vectors, and the results of various matrix and array operations on
them, printed with format rat.

Matrix Operations Array Operations

x 1
2
3

y 4
5
6

x' 1 2 3 y' 4 5 6

x+y 5
7
9

x-y -3
-3
-3

x + 2 3
4
5

x-2 -1
0
1

x ∗ y Error x.∗ y 4
10
18

x'∗ y 32 x'.∗ y Error

x∗ y' 4 5 6
8 10 12
12 15 18

x.∗ y' Error

x∗ 2 2
4
6

x.∗ 2 2
4
6

Arithmetic Operators + - * / \ ^ '

2-8

Diagnostics • From matrix division, if a square A is singular,
Warning: Matrix is singular to working precision.

• From elementwise division, if the divisor has zero elements,
Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs where
appropriate.

x\y 16/7 x.\y 4
5/2
2

2\x 1/2
1
3/2

2./x 2
1
2/3

x/y 0 0 1/6
0 0 1/3
0 0 1/2

x./y 1/4
2/5
1/2

x/2 1/2
1
3/2

x./2 1/2
1
3/2

x^y Error x.^y 1
32
729

x^2 Error x.^2 1
4
9

2^x Error 2.^x 2
4
8

(x+i∗ y)' 1 - 4i 2 - 5i 3 - 6i

(x+i∗ y).' 1 + 4i 2 + 5i 3 + 6i

Matrix Operations Array Operations

Arithmetic Operators + - * / \ ^ '

2-9

• If the inverse was found, but is not reliable,
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient,
Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr, rref

Arithmetic Operators + - * / \ ^ '

2-10

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.0 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf),
Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2002.

Relational Operators < > <= >= == ~=

2-11

2Relational Operators < > <= >= == ~=Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational operators
perform element-by-element comparisons between two arrays. They return a
logical array of the same size, with elements set to true (1) where the relation
is true, and elements set to false (0) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for the
comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded, that is,
they perform differently in the context of that toolbox. To see the toolboxes
that overload a given operator, type help followed by the operator name. For
example, type help lt. The toolboxes that overload lt (<) are listed. For
information about using the operator in that toolbox, see the documentation
for the toolbox.

Examples If one of the operands is a scalar and the other a matrix, the scalar expands to
the size of the matrix. For example, the two pairs of statements

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5∗ ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

1 1 1

Relational Operators < > <= >= == ~=

2-12

1 1 0
0 0 0

See Also all, any, find, strcmp

Elementwise Logical Operators, &, |, Short-Circuit Logical Operators, &&, ||, ~

Logical Operators: Elementwise & | ~

2-13

2Logical Operators: Elementwise & | ~Purpose Elementwise logical operations on arrays

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical array operators AND, OR, and NOT. They
work element by element on arrays, with 0 representing logical false, and
anything nonzero representing logical true. The logical operators return a
logical array with elements set to true (1) or false (0), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and ~A
complements the elements of A. The function xor(A,B) implements the
exclusive OR operation. The truth table for these operators and functions is
shown below.

The precedence for the logical operators with respect to each other is

 Inputs and or not xor
A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

Operator Operation Priority

~ NOT Highest

& Elementwise AND

| Elementwise OR

&& Short-circuit AND

|| Short-circuit OR Lowest

Logical Operators: Elementwise & | ~

2-14

Remarks MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression
a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses to explicitly
specify the intended precedence of statements containing combinations of &
and |.

These logical operators have M-file function equivalents, as shown.

Examples This example shows the logical OR of the elements in the vector u with the
corresponding elements in the vector v:

u = [0 0 1 1 0 1];
v = [0 1 1 0 0 1];
u | v

ans =
 0 1 1 1 0 1

See Also all, any, find, logical, xor, true, false

Logical operators, short-circuit, &&, ||

Relational operators <, <=, >, >=, ==, ~=

Logical Operation Equivalent Function

A & B and(A,B)

A | B or(A,B)

~A not(A)

Logical Operators: Short-circuit && ||

2-15

2Logical Operators: Short-circuit && ||Purpose Logical operations, with short-circuiting capability

Syntax A && B
A || B

Description The symbols && and || are the logical AND and OR operators used to evaluate
logical expressions. Use && and || in the evaluation of compound expressions
of the form

expression_1 && expression_2

where expression_1 and expression_2 each evaluate to a scalar logical result.

The && and || operators support short-circuiting. This means that the second
operand is evaluated only when the result is not fully determined by the first
operand. See “Short-Circuit Operators” in the MATLAB documentation for a
discussion on short-circuiting with && and ||.

Note Always use the && and || operators when short-circuiting is required.
Using the elementwise operators (& and |) for short-circuiting can yield
unexpected results.

Examples In the following statement, it doesn’t make sense to evaluate the relation on the
right if the divisor, b, is zero. The test on the left is put in to avoid generating
a warning under these circumstances:

x = (b ~= 0) && (a/b > 18.5)

By definition, if any operands of an AND expression are false, the entire
expression must be false. So, if (b ~= 0) evaluates to false, MATLAB
assumes the entire expression to be false and terminates its evaluation of the
expression early. This avoids the warning that would be generated if MATLAB
were to evaluate the operand on the right.

Logical Operators: Short-circuit && ||

2-16

See Also all, any, find, logical, xor, true, false

Logical operators, elementwise, &, |, ~

Relational operators <, <=, >, >=, ==, ~=

Special Characters [] () {} = ' , ; : % ! @

2-17

2Special Characters [] () {} = ' , ; : % ! @Purpose Special characters

Syntax [] () {} = ' , ; : % ! @

Description
[] Brackets are used to form vectors and matrices. [6.9 9.64 sqrt(-1)]

is a vector with three elements separated by blanks. [6.9, 9.64, i]
is the same thing. [1+j 2-j 3] and [1 +j 2 -j 3] are not the same.
The first has three elements, the second has five.
[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the
first row.
Vectors and matrices can be used inside [] brackets. [A B;C] is
allowed if the number of rows of A equals the number of rows of B and
the number of columns of A plus the number of columns of B equals the
number of columns of C. This rule generalizes in a hopefully obvious
way to allow fairly complicated constructions.
A = [] stores an empty matrix in A. A(m,:) = [] deletes row m of A.
A(:,n) = [] deletes column n of A. A(n) = [] reshapes A into a
column vector and deletes the third element.
[A1,A2,A3...] = function assigns function output to multiple
variables.
For the use of [and] on the left of an “=” in multiple assignment
statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str'). See
help paren for more information about { }.

Special Characters [] () {} = ' , ; : % ! @

2-18

() Parentheses are used to indicate precedence in arithmetic expressions
in the usual way. They are used to enclose arguments of functions in
the usual way. They are also used to enclose subscripts of vectors and
matrices in a manner somewhat more general than usual. If X and V
are vectors, then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An error
occurs if any such subscript is less than 1 or greater than the size of X.
Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same indirect
subscripting works in matrices. If V has m components and W has n
components, then A(V,W) is the m-by-n matrix formed from the
elements of A whose subscripts are the elements of V and W. For
example, A([1,5],:) = A([5,1],:) interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A in B.
== is the relational equals operator. See the Relational Operators
page.

' Matrix transpose. X' is the complex conjugate transpose of X. X.' is the
nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are the
ASCII codes for the characters. A quotation mark within the text is
indicated by two quotation marks.

. Decimal point. 314/100, 3.14, and .314e1 are all the same.
Element-by-element operations. These are obtained using .∗ , .^, ./,
or .\. See the Arithmetic Operators page.

. Field access. A.(field) and A(i).field, when A is a structure, access
the contents of field.

.. Parent directory. See cd.

Special Characters [] () {} = ' , ; : % ! @

2-19

Remarks Some uses of special characters have M-file function equivalents, as shown:

... Continuation. Three or more periods at the end of a line continue the
current function on the next line. Three or more periods before the end
of a line cause MATLAB to ignore the remaining text on the current
line and continue the function on the next line. This effectively makes
a comment out of anything on the current line that follows the three
periods. See Entering Long Statements for more information.

, Comma. Used to separate matrix subscripts and function arguments.
Used to separate statements in multistatement lines. For
multistatement lines, the comma can be replaced by a semicolon to
suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an expression
or statement to suppress printing or to separate statements.

: Colon. Create vectors, array subscripting, and for loop iterations. See
colon (:) for details.

% Percent. The percent symbol denotes a comment; it indicates a logical
end of line. Any following text is ignored. MATLAB displays the first
contiguous comment lines in a M-file in response to a help command.

! Exclamation point. Indicates that the rest of the input line is issued as
a command to the operating system. See “Running External
Programs” for more information.

@ Function handle. MATLAB data type that is a handle to a function.
See function_handle (@) for details.

Horizontal concatenation [A,B,C...] horzcat(A,B,C...)

Vertical concatenation [A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...) subsref(A,S). See help
subsref.

Subscript assignment A(i,j,k...)= B subsasgn(A,S,B). See help
subsasgn.

Special Characters [] () {} = ' , ; : % ! @

2-20

Note For some toolboxes, the special characters are overloaded, that is, they
perform differently in the context of that toolbox. To see the toolboxes that
overload a given character, type help followed by the character name. For
example, type help transpose. The toolboxes that overload transpose (.')
are listed. For information about using the character in that toolbox, see the
documentation for the toolbox.

See Also Arithmetic operators +, , ∗ , /, \, ^, '

Relational operators <, <=, >, >=, ==, ~=

Elementwise Logical Operators, &, |, Short-Circuit Logical Operators, &&, ||,

~

colon (:)

2-21

2colon (:)Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional
arrays:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i > 0 and j > k or if i < 0 and j < k

A(:,j) is the jth column of A

A(i,:) is the ith row of A

A(:,:) is the equivalent two-dimensional array. For matrices this is
the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.

colon (:)

2-22

Examples Using the colon with integers,

D = 1:4

results in

D =
 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E = 0:.1:.5

results in

E =
 0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,2) =
 1 1 1
 1 2 3
 1 3 6

See Also for, linspace, logspace, reshape

abs

2-23

2absPurpose Absolute value and complex magnitude

Syntax Y = abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute value of
the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude), which is the
same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)

ans =
 5

abs(3+4i)

ans =
 5

See Also angle, sign, unwrap

accumarray

2-24

2accumarrayPurpose Construct an array with accumulation

Syntax A = accumarray(ind, val)
A = accumarray(ind, val, sz)
A = accumarray(ind, val, sz, fun)
A = accumarray(ind, val, sz, fun, fillvalue)

Description A = accumarray(ind, val) creates an array A from the elements of the vector
val, using the corresponding rows of ind as subscripts into A. val must have
the same length as the number of rows in ind, unless val is a scalar whose
value is repeated for all the rows of ind. If ind is a nonempty column vector,
then A is a column vector of length max(ind). If ind is a nonempty matrix with
k columns, then A is a k-dimensional array of size max(ind,[],1). If ind is
zeros(0,k) with k>1, then A is the k-dimensional empty array of size
0-by-0-by-...-by-0. accumarray accumulates by adding together elements of val
at repeated subscripts of A. accumarray fills in A at unspecified subscripts with
the value 0.

Note val may be full or sparse and A has the same sparsity as val. If val is
sparse and ind is a column vector, then A is the same as sparse(ind,1,val).
If val is sparse and ind is a matrix with two columns, then A is the same as
sparse(ind(:,1),ind(:,2),val).

A = accumarray(ind, val, sz) creates an array of size sz, where sz is a row
vector of nonnegative integer values. If ind is a nonempty column vector, then
sz must be [n 1] where n>=max(ind). If ind is a nonempty matrix with k
columns, then sz must be of length k with all(sz>=max(ind,[],1)). If ind is
zeros(0,k) with k>1, then sz must be of length k with all(sz>=0). Nonzero sz
resizes A to a nonempty all-zero array.

A = accumarray(ind, val, sz, fun) accumulates values at repeated
subscripts of A by applying the function fun, which you specify by a function
handle. fun must accept a vector and return a scalar. For example, setting
fun=@sum produces the default behavior of accumarray when you do not specify
fun.

accumarray

2-25

A = accumarray(ind, val, sz, fun, fillvalue) where val is full, fills in
the values of A at unspecified indices with the value fillvalue. If ind is empty,
but sz resizes A to nonempty, then all the values of A are fillvalue.

Examples The following command creates a vector, accumulating at the repeated index 2.

A = accumarray([1; 2; 2; 4; 5],11:15)

A =

 11
 25
 0
 14
 15

The following commands create a 3-dimensional array, accumulating at
repeated subscript (2,3,4).

ind = [1 1 1; 2 1 2; 2 3 4; 2 3 4];
A = accumarray(ind,11:14)
A(:,:,1) =

 11 0 0
 0 0 0

A(:,:,2) =

 0 0 0
 12 0 0

A(:,:,3) =

 0 0 0
 0 0 0

A(:,:,4) =

 0 0 0

accumarray

2-26

 0 0 27

The following command repeats the scalar val = pi for all the rows in ind.

A = accumarray(ind,pi)

A(:,:,1) =

 3.1416 0 0
 0 0 0

A(:,:,2) =

 0 0 0
 3.1416 0 0

A(:,:,3) =

 0 0 0
 0 0 0

A(:,:,4) =

 0 0 0
 0 0 6.2832

Set

ind = [1 2; 3 2; 5 5; 5 5]
val = [10.1; 10.2; 10.3; 10.4]

The following command does the default summation accumulation at the
repeated subscript (5,5).

A = accumarray(ind, val);

The following command increases the size of A beyond max(ind,[],1).

A = accumarray(ind, val,[6 6]);

accumarray

2-27

The following command uses prod instead of sum as the accumulation function:

A = accumarray(ind, val, [6,6], @prod);

The following command uses max as the accumulation function and fills the
values at unspecified subscripts with -Inf.

A = accumarray(ind, val, [6,6], @max, -Inf);

See Also full, sparse, sum.

acos

2-28

2acosPurpose Inverse cosine, result in radians

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain , acos(X) is real and in the range . For real
elements of X outside the domain , acos(X) is complex.

The acos function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

Definition The inverse cosine can be defined as

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acosd, acosh, cos

acosd

2-29

2acosdPurpose Inverse cosine, result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cosine, expressed in degrees, of the elements of X.

See Also cosd, acos

acosh

2-30

2acoshPurpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

The acosh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acos, cosh

acot

2-31

2acotPurpose Inverse cotangent, result in radians

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.

The acot function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains and .

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

Definition The inverse cotangent can be defined as

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also cot, acotd, acoth

acotd

2-32

2acotdPurpose Inverse cotangent, result in degrees

Syntax Y = acotd(X)

Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the elements
of X.

See Also cotd, acot

acoth

2-33

2acothPurpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

The acoth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

Definition The hyperbolic inverse cotangent can be defined as

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acot, coth

acsc

2-34

2acscPurpose Inverse cosecant, result in radians

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.

The acsc function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosecant over the domains and .

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

Definition The inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also csc, acscd, acsch

acscd

2-35

2acscdPurpose Inverse cosecant, result in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the elements
of X.

See Also cscd, acsc

acsch

2-36

2acschPurpose Inverse cosecant and inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

The acsch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

Definition The hyperbolic inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acsc, csch

addframe

2-37

2addframePurpose Add a frame to an Audio/Video Interleaved (AVI) file

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to the AVI file
identified by aviobj, which was created by a previous call to avifile. frame
can be either an indexed image (m-by-n) or a truecolor image (m-by-n-by-3) of
double or uint8 precision. If frame is not the first frame added to the AVI file,
it must be consistent with the dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For example,
addframe updates the TotalFrames property of the AVI file object each time it
adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds multiple
frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store frames
as indexed images use the colormap in the first frame as the colormap for the
AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or axis
handle h and appends this frame to the AVI file. addframe renders the figure
into an offscreen array before appending it to the AVI file. This ensures that
the figure is written correctly to the AVI file even if the figure is obscured on
the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to capture
the graphics into a frame of a MATLAB movie. You can then add the frame to
an AVI movie using the addframe syntax aviobj = addframe(aviobj,mov).
See the example for an illustration.

Example This example calls addframe to add frames to the AVI file object aviobj.

addframe

2-38

fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...

'nextplot','replace','Visible','off')

aviobj = avifile('example.avi')

x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)

h = patch(sin(x)*radius(i),cos(x)*radius(i),...
[abs(cos(x(i))) 0 0]);

set(h,'EraseMode','xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

aviobj = close(aviobj);

 See Also avifile, close, movie2avi

addpath

2-39

2addpathPurpose Add directories to MATLAB search path

Graphical
Interface

As an alternative to the addpath function, use the Set Path dialog box. To open
it, select Set Path from the File menu in the MATLAB desktop.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') prepends the specified directory to the current
MATLAB search path, that is, adds them to the top of the path. Use the full
pathname for directory.

addpath('dir','dir2','dir3' ...) prepends all the specified directories to
the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') either prepends or appends the
specified directories to the path depending on the value of flag.

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the syntax.

Remarks To recursively add subdirectories of your directory in addition to the directory
itself, run

addpath(genpath('directory'))

Use addpath statements in your startup.m file to use the modified path in
future sessions. For details, see “Modifying the Path in a startup.m File”.

flag Argument Result

0 or begin Prepend specified directories

1 or end Append specified directories (add to bottom/end)

addpath

2-40

Examples For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by typing

addpath('c:/matlab/mymfiles')

Verify that the files were added to the path by typing

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add subdirectories to
the path from the command line. For example, to add /control and its
subdirectories to the path, use

addpath(genpath('$matlabroot/toolbox/control'))

See Also genpath, path, pathdef, pathsep, pathtool, rehash, restoredefaultpath,
rmpath, savepath, startup

“Search Path” in the MATLAB User Guide

addtodate

2-41

2addtodate Purpose Modify date number by field

Syntax R = addtodate(D, N, F)

Description R = addtodate(D, Q, F) adds quantity Q to the indicated date field F of a
serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and can be
either positive or negative. The date field F must be a 1-by-N character array
equal to one of the following: 'year', 'month', or 'day'.

If the addition to the date field causes the field to roll over, MATLAB adjusts
the next more significant fields accordingly. Adding a negative quantity to the
indicated date field rolls back the calender on the indicated field. If the addition
causes the field to roll back, MATLAB adjusts the next less significant fields
accordingly.

Examples Adding 20 days to the given date in late December causes the calendar to roll
over to January of the next year:

R = addtodate(datenum('12/24/1984 12:45'), 20, 'day');

datestr(R)
ans =
 13-Jan-1999 12:45

See Also date, datenum, datestr, datevec

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

airy

2-42

2airyPurpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to

The relationship between the Airy and modified Bessel functions is

where

Description W = airy(Z) returns the Airy function, , for each element of the complex
array Z.

W = airy(k,Z) returns different results depending on the value of k.

Z2

2

d

d W ZW– 0=

Ai Z() 1
π
--- Z 3⁄ K1 3⁄ ζ()=

Bi Z() Z 3⁄ I 1 3⁄– ζ() I1 3⁄ ζ()+[]=

ζ 2
3
---Z3 2⁄=

k Returns

0 The same result as airy(Z)

1 The derivative,

2 The Airy function of the second kind,

3 The derivative,

Ai Z()

Ai ′ Z()

Bi Z()

Bi ′ Z()

airy

2-43

[W,ierr] = airy(k,Z) also returns completion flags in an array the same size
as W.

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

ierr Description

0 airy succesfully computed the Airy function for this element.

1 Illegal arguments

2 Overflow. Returns Inf

3 Some loss of accuracy in argument reduction

4 Unacceptable loss of accuracy, Z too large

5 No convergence. Returns NaN

alim

2-44

2alimPurpose Set or query the axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property) of the
current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin is the
value of the data mapped to the first alpha value in the alphamap, and amax is
the value of the data mapped to the last alpha value in the alphamap. Data
values in between are linearly interpolated across the alphamap, while data
values outside are clamped to either the first or last alphamap value,
whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes ALimMode
property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes. alim_mode
can be

• auto — MATLAB automatically sets the alpha limits based on the alpha data
of the objects in the axes.

• manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties

Transparency for related functions

Transparency in 3-D Visualization for examples

all

2-45

2allPurpose Test to determine if all elements are nonzero

Syntax B = all(A)
B = all(A,dim)

Description B = all(A) tests whether all the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all the elements are nonzero
and returns logical false (0) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a row
vector of 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the first
nonsingleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

This makes all particularly useful in if statements:

if all(A < 0.5)
do something

end

1 1 1
1 1 0

A

1 1 0

all(A,1)

1
0

all(A,2)

all

2-46

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always reduces
it to a scalar condition.

all(all(eye(3)))
ans =
 0

See Also any, logical operators (elementwise and short-circuit), relational operators,
colon

Other functions that collapse an array’s dimensions include max, mean, median,
min, prod, std, sum, and trapz.

allchild

2-47

2allchildPurpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all children
(including ones with hidden handles) for each handle. If handle_list is a
single element, allchild returns the output in a vector. Otherwise, the output is
a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj

alpha

2-48

2alphaPurpose Set transparency properties for objects in current axes

Syntax alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,...)

Description alpha sets one of three transparency properties, depending on what arguments
you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch, and
surface objects in the current axes. You can set face_alpha to

• A scalar — Set the FaceAlpha property to the specified value (for images, set
the AlphaData property to the specified value).

• 'flat' — Set the FaceAlpha property to flat.

• 'interp' — Set the FaceAlpha property to interp.

• 'texture' — Set the FaceAlpha property to texture.

• 'opaque' — Set the FaceAlpha property to 1.

• 'clear' — Set the FaceAlpha property to 0.

See Specifying a Single Transparency Value for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects in the
current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to the
specified values.

• 'x' — Set the AlphaData property to be the same as XData.

• 'y' — Set the AlphaData property to be the same as YData.

• 'z' — Set the AlphaData property to be the same as ZData.

• 'color' — Set the AlphaData property to be the same as CData.

alpha

2-49

• 'rand' — Set the AlphaData property to a matrix of random values equal in
size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in the
current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to the
specified value.

• 'x' — Ignored.

• 'y' — Ignored.

• 'z' — Ignored.

• 'color' — Set the AlphaData property to be the same as CData.

• 'rand' — Set the AlphaData property to a matrix of random values equal in
size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all patch
objects in the current axes. You can set alpha_data to

• A matrix the same size as FaceVertexCData — Set the
FaceVertexAlphaData property to the specified value.

• 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

• 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

• 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

• 'color' — Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.

• 'rand' — Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

alpha

2-50

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of all
image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

• 'scaled' — Set the AlphaDataMapping property to scaled.

• 'direct' — Set the AlphaDataMapping property to direct.

• 'none' — Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on the
object identified by object_handle.

See Also alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

alphamap

2-51

2alphamapPurpose Specify the figure alphamap (transparency)

Syntax alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap('parameter')

Description alphamap enables you to set or modify a figure’s Alphamap property. Unless you
specify a figure handle as the first argument, alphamap operates on the current
figure.

alphamap(alpha_map) sets the AlphaMap of the current figure to the specified
m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the current
alphamap. You can specify the following parameters:

• default — Set the AlphaMap property to the figure’s default alphamap.

• rampup — Create a linear alphamap with increasing opacity (default length
equals the current alphamap length).

• rampdown — Create a linear alphamap with decreasing opacity (default
length equals the current alphamap length).

• vup — Create an alphamap that is opaque in the center and becomes more
transparent linearly towards the beginning and end (default length equals
the current alphamap length).

• vdown — Create an alphamap that is transparent in the center and becomes
more opaque linearly towards the beginning and end (default length equals
the current alphamap length).

• increase — Modify the alphamap making it more opaque (default delta is
.1, which is added to the current values).

• decrease — Modify the alphamap making it more transparent (default
delta is .1, which is subtracted from the current values).

alphamap

2-52

• spin — Rotate the current alphamap (default delta is 1; note that delta
must be an integer).

alphamap('parameter',length) creates a new alphamap with the length
specified by length (used with parameters rampup, rampdown, vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap using the
value specified by delta (used with parameters increase, decrease, spin).

alphamap(figure_handle,...) performs the operation on the alphamap of the
figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current alphamap from
the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified by the
parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, AlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

3, 2, 7;
1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')

ancestor

2-53

2ancestorPurpose Get ancestor of graphics object

Syntax p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description p = ancestor(h,type) returns the handle of the closest ancestor of h, if the
ancestor is one of the types of graphics objects specified by type. type can be:

• a string that is the name of a single type of object. For example, 'figure'

• a cell array containing the names of multiple objects. For example,
{'hgtransform','hggroup','axes'}

If MATLAB cannot find an ancestor of h that is one of the specified types, then
ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h is not
the handle of a Handle Graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor of h, if
this type appears in the type argument.

Examples Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl = line(randn(5),randn(5),'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure','axes','hggroup'});
get(p,'Type')
ans =

hggroup

Now get the top-level ancestor

p=ancestor(hgg,{'figure','axes','hggroup'},'toplevel');
get(p,'type')
ans =

figure

ancestor

2-54

See Also findobj

angle

2-55

2anglePurpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
 1 + 2i 2 - 2i 3 + 2i 4 - 2i
 1 - 3i 2 + 3i 3 - 3i 4 + 3i
 1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
 -0.7854 0.4636 -0.3218 0.2450
 1.1071 -0.7854 0.5880 -0.4636
 -1.2490 0.9828 -0.7854 0.6435
 1.3258 -1.1071 0.9273 -0.7854

Algorithm The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs, atan2, unwrap

π±

annotation

2-56

2annotationPurpose Create annotation objects

Syntax annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle',[x y w h])
annotation(figure_handle,...)
annotation(...,'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

Description annotation(annotation_type) creates the specified annotation type using
default values for all properties. annotation_type can be one of the following
strings:

line, arrow, doublearrow (two-headed arrow), textarrow (arrow with
attached text box), textbox, ellipse, or rectangle.

annotation('line',x,y) creates a line annotation object that extends from
the point defined by x(1),y(1) to the point defined by x(2),y(2), specified in
normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2), specified
in normalized figure units.

annotation('doublearrow',x,y) creates a two-headed annotation object that
extends from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object that
extends from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units. The tail end of the arrow is attached to an
editable textbox.

annotation

2-57

annotation('textbox',[x y w h]) creates an editable textbox annotation
with its lower-left corner at the point x,y, a width w, and a height h, specified in
normalized figure units. Specify x, y, w, and h in a single vector.

To type into the textbox, enable plot edit mode (plotedit) and double click
within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with the
lower-left corner of the bounding rectangle at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in a single
vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation with the
lower-left corner of the rectangle at the point x,y, a width w, and a height h,
specified in normalized figure units. Specify x, y, w, and h in a single vector.

annotation(figure_handle,...) creates the annotation in the specified
figure.

annotation(...,'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

anno_obj_handle = annotation(...) returns the handle to the annotation
object that is created.

Annotation
Layer

All annotation objects are displayed in an overlay axes that covers the figure.
This layer is designed to display only annotation objects. You should not parent
objects to this axes or set any properties of this axes. See the See Also section
for information on the properties of annotation objects that you can set.

Objects in the Plotting Axes
You can create lines, text, rectangles, and ellipses in data coordinates in the
axes of a graph using the line, text, and rectangle functions. These objects
are not placed in the annotation axes and must be located inside their parent
axes.

Normalized Coordinates
Annotation objects use normalize coordinates to specify locations within the
figure. In normalized coordinates, the point 0,0 is always the lower-left corner

annotation

2-58

and the point 1,1 is always the upper-right corner of the figure window
regardless of the figure size.

See Also Properties for the annotation objects: arrow, doublearrow, ellipse, line,
rectangle, textarrow, textbox

See Annotating Graphs and Annotation Objects for more information.

Annotation Arrow Properties

2-59

2Annotation Arrow PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Arrow
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

Color ColorSpec Default: [0 0 0]

Color of the arrow. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

HeadLength scalar value in points

Length of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadWidth.

HeadStyle select string from list

Style of the arrow head. Specify this property as one of the strings from the
following table.

Head Style String Head Head Style String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2 (Default) hypocycloid

Annotation Arrow Properties

2-60

HeadWidth scalar value in points

Width of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadLength.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the arrow stem. Available
line styles are shown in the following table.

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

X vector [Xbegin Xend]

X-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of x-axis (horizontal) values that specify the beginning and
ending points of the arrow, units normalized to the figure.

vback3 astroid

cback1 deltoid

cback2

cback3

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Head Style String Head Head Style String Head

Annotation Arrow Properties

2-61

Y vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the arrow, units normalized to the figure.

Annotation Doublearrow Properties

2-62

2Annotation Doublearrow PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Doublearrow
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation doublearrow
object.

Color ColorSpec Default: [0 0 0]

Color of the doublearrow. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

Head1Length scalar value in points

Length of the first arrow head. Specify this property in points (1 point = 1/72
inch). See also Head1Width.

The first arrow head is located at the end defined by the point x(1), y(1). See
also the X and Y properties.

Head2Length scalar value in points

Length of the second arrow head. Specify this property in points (1 point = 1/72
inch). See also Head1Width.

The first arrow head is located at the end defined by the point x(end), y(end).
See also the X and Y properties.

Head1Style select string from list

Style of the first arrow head. Specify this property as one of the strings from the
following table

Head2Style select string from list

Style of the second arrow head. Specify this property as one of the strings from
the following table.

Annotation Doublearrow Properties

2-63

Head1Width scalar value in points

Width of the first arrow head. Specify this property in points (1 point = 1/72
inch). See also Head1Length.

Head2Width scalar value in points

Width of the second arrow head. Specify this property in points (1 point = 1/72
inch). See also Head2Length.

Head Style String Head Head Style String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2 (Default) hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

Annotation Doublearrow Properties

2-64

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the doublearrow stem.
Available line styles are shown in the following table.

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

X vector [Xbegin Xend]

X-coordinates of the beginning and ending points for doublearrow. Specify this
property as a vector of x-axis (horizontal) values that specify the beginning and
ending points of the doublearrow, units normalized to the figure.

Y vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for doublearrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the doublearrow, units normalized to the figure.

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Ellipse Properties

2-65

2Annotation Ellipse PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Ellipse
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

EdgeColor ColorSpec Default: [0 0 0]

Color of the ellipse edge. A three-element RGB vector or one of the MATLAB
predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceColor ColorSpec Default: [0 0 0]

Color of the ellipse interior. A three-element RGB vector or one of the MATLAB
predefined names, specifying the color of the interior of the ellipse.

See the ColorSpec reference page for more information on specifying color.

Height vertical dimension in normalized units

Vertical dimension of the ellipse. This property specifies height of the ellipse in
units normalized to the figure.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the ellipse edge. Available
line styles are shown in the following table.

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Ellipse Properties

2-66

LineWidth scalar

The width of the ellipse edge. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Width horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies width of the ellipse
in units normalized to the figure.

Note that, if Width and Height are equal, the ellipse becomes a circle when the
figure width and height (last two elements in the figure Position property
vector) are also equal.

X horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the horizontal
location of the center of the ellipse, in units normalized to the figure.

Y vertical dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the vertical location
of the center of the ellipse, in units normalized to the figure.

Annotation Line Properties

2-67

2Annotation Line PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Line Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

Color ColorSpec Default: [0 0 0]

Color of the line. A three-element RGB vector or one of the MATLAB predefined
names, specifying the line color.

See the ColorSpec reference page for more information on specifying color.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style. Available line styles are shown
in the following table.

LineWidth scalar

The width of the line. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

X vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify this property
as a vector of x-axis (horizontal) values that specify the beginning and ending
points of the line, units normalized to the figure.

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Line Properties

2-68

Y vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for arrow. Specify this
property as a vector of y-axis (vertical) values that specify the beginning and
ending points of the line, units normalized to the figure.

Annotation Rectangle Properties

2-69

2Annotation Rectangle PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Rectangle
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

EdgeColor ColorSpec Default: [0 0 0]

Color of the rectangle edge. A three-element RGB vector or one of the MATLAB
predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceColor ColorSpec Default: [0 0 0]

Color of the rectangle interior. A three-element RGB vector or one of the
MATLAB predefined names, specifying the color of the interior of the
rectangle.

See the ColorSpec reference page for more information on specifying color.

Height vertical dimension in normalized units

Vertical dimension of the rectangle. This property specifies height of the
rectangle in units normalized to the figure.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the rectangle edge. Available
line styles are shown in the following table.

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Rectangle Properties

2-70

LineWidth scalar

The width of the rectangle edge. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Width horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies width of the ellipse
in units normalized to the figure.

Note that, if Width and Height are equal, the ellipse becomes a circle when the
figure width and height (last two elements in the figure Position property
vector) are also equal.

X horizontal dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the horizontal
location of the center of the ellipse, in units normalized to the figure.

Y vertical dimension in normalized units

Horizontal dimension of the ellipse. This property specifies the vertical location
of the center of the ellipse, in units normalized to the figure.

Annotation Textarrow Properties

2-71

2Annotation Textarrow PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Textarrow
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

Color ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB vector or one of
the MATLAB predefined names, specifying the color of the arrow, the color of
the text (TextColor property), and the rectangle enclosing the text
(TextEdgeColor property).

Setting the Color property also sets the TextColor and TextEdgeColor
properties to the same color. However, if the value of the TextEdgeColor is
none, it remains none and the text box is not displayed. You can set TextColor
or TextEdgeColor independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow and black text
in a black box, you must:

1 Set the Color property to red — set(h,'Color','r')

2 Set the TextColor to black — set(h,'TextColor','k')

3 Set the TextEdgeColor to black.— set(h,'TextEdgeColor','k')

If you do not want display the text box, set the TextEdgeColor to none.

See the ColorSpec reference page for more information on specifying color.

FontName A name, such as Helvetica

Font family. A string specifying the name of the font to use for the text. To
display and print properly, this font must be supported on your system. The
default font is Helvetica.

FontSize size in points

Approximate size of text characters. A value specifying the font size to use in
points. The default size is 10 (1 point = 1/72 inch).

Annotation Textarrow Properties

2-72

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your system. Generally, setting this property to bold or demi
causes MATLAB to use a bold font.

HeadLength scalar value in points

Length of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadWidth.

HeadStyle select string from list

Style of the arrow head. Specify this property as one of the strings from the
following table.

Head Style String Head Head Style String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2 (Default) hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

Annotation Textarrow Properties

2-73

HeadWidth scalar value in points

Width of the arrow head. Specify this property in points (1 point = 1/72 inch).
See also HeadLength.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal alignment
of the text with respect to the arrow.

Interpreter {tex} | latex | none

Interpret TEX instructions. This property controls whether MATLAB
interprets certain characters in the String property as TEX instructions
(default) or displays all characters literally. See the text object String property
for a list of supported TEX instructions.

To enable a complete TEX interpreter for text objects, set the Interpreter
property to latex.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style of the arrow stem. Available
line styles are shown in the following table.

LineWidth scalar

The width of the arrow stem. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

String string

The text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings for multiline strings. MATLAB displays this string

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Textarrow Properties

2-74

in the text box with the specified HorizontalAlignment and
VerticalAlignment. See the Interpreter property for information on using
TEX characters.

TextBackgroundColorColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or one of the
MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

TextColor ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB predefined
names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.
Setting the Color property also sets this property.

TextEdgeColor ColorSpec or none Default: none

Color of edge of text rectangle. A three-element RGB vector or one of the
MATLAB predefined names, specifying the color of the rectangle that encloses
the text.

See the ColorSpec reference page for more information on specifying color.
Setting the Color property also sets this property.

TextLineWidth width in points

The width of the text rectangle edge. Specify this value in points (1 point = 1/72
inch). The default LineWidth is 0.5 points.

TextMargin dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space around the
text string, but within the TextEgdeColor rectangle.

TextRotation rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the text string.
Specify values of rotation in degrees (positive angles cause counterclockwise
rotation). Angles do not acculate; a rotation of 0 degrees is alway horizontal.

VerticalAlignment top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical alignment of the
text with respect to the arrow. The possible values mean

Annotation Textarrow Properties

2-75

• top — Place the top of the string at the specified y-position.

• cap — Place the string so that the top of a capital letter is at the y-position.

• middle — Place the middle of the string at the y-position.

• baseline — Place font baseline at the y-position.

• bottom — Place the bottom of the string at the y-position.

X vector [Xbegin Xend]

Beginning and ending points for arrow. Specify this property as a vector of
x-axis (horizontal) values that specify the beginning and ending points of the
arrow, units normalized to the figure.

Y vector [Ybegin Yend]

Beginning and ending points for arrow. Specify this property as a vector of
y-axis (vertical) values that specify the beginning and ending points of the
arrow, units normalized to the figure.

Annotation Textbox Properties

2-76

2Annotation Textbox PropertiesModifying
Properties

You can set and query annotation object properties using the set and get
functions and the Property Editor (displayed with the propertyeditor
command).

Use the annotation function to create annotation objects and obtain their
handles.

Annotation
Textbox
Property
Descriptions

Properties You Can Modify
This section lists the properties you can modify on an annotation ellipse object.

BackgroundColor ColorSpec Default: [0 0 0]

Color of textbox background. A three-element RGB vector or one of the
MATLAB predefined names, specifying the background color of the textbox. A
value of none makes the textbox transparent, enabling objects behind the
textbox to be visible.

Color ColorSpec Default: [0 0 0]

Color of the text. A three-element RGB vector or one of the MATLAB predefined
names, specifying the arrow color.

See the ColorSpec reference page for more information on specifying color.

EdgeColor ColorSpec Default: [0 0 0]

Color of the textbox edge. A three-element RGB vector or one of the MATLAB
predefined names, specifying the edge color.

See the ColorSpec reference page for more information on specifying color.

FaceAlpha Scalar alpha value in range [0 1]

Transparency of textbox background. This property defines the degree to which
the textbox background color is transparent. A value of 1 (the default) makes
to color opaque, a value of 0 makes the background completely transparent
(i.e., invisible). The default FaceAlpha is 1.

FitHeightToText on | {off}

Automatically adjust textbox height to fit text. MATLAB automatically wraps
text strings to fit the width of the textbox. However, if the text string is long
enough, it extends beyond the bottom of the textbox.

Annotation Textbox Properties

2-77

When you set this mode to on, MATLAB automatically adjusts the height of the
textbox to accommodate the string.

The fit-height-to-text behavior continues to apply if you resize the textbox from
the two side handles.

Annotation Textbox Properties

2-78

However, if you resize the textbox from any other handles, the position you set
is honored without regard to how the text fits the box.

FontAngle {normal} | italic| oblique

Character slant. MATLAB uses this property to select a font from those
available on your particular system. Generally, setting this property to italic
or oblique selects a slanted font.

FontName A name, such as Helvetica

Font family. A string specifying the name of the font to use for the textbox
object. To display and print properly, this font must be supported on your
system. The default font is Helvetica.

FontSize size in points

Approximate size of text characters. A value specifying the font size to use in
points. The default size is 10 (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a font from
those available on your system. Generally, setting this property to bold or demi
causes MATLAB to use a bold font.

HorizontalAlignment{left} | center | right

Horizontal alignment of text. This property specifies the horizontal justification
of the textbox string. It determines where MATLAB places the string with
respect to the value of the Position property’s x value (the first element in the
position vector).

Annotation Textbox Properties

2-79

Interpreter {tex} | latex | none

Interpret TEX instructions. This property controls whether MATLAB
interprets certain characters in the String property as TEX instructions
(default) or displays all characters literally. See the text object String property
for a list of supported TEX instructions.

To enable a complete TEX interpreter for text objects, set the Interpreter
property to latex.

LineStyle {−} | −− | : | −. | none

Line style of edge. This property specifies the line style of the textbox edge.
Available line styles are shown in the following table.

LineWidth scalar

The width of the textbox edge. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Margin scalar pixel value

Space around text. Specify a value in pixels that defines the space around the
text string, but within the textbox.

Position four-element vector [x, y, width, height]

Size and location of textbox. Specify the lower-left corner of the textbox with the
first two elements of the vector defining the point x, y. The third and fourth
elements specify the width and height respectively.

Specifier String Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Annotation Textbox Properties

2-80

String string

The text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings for multiline strings. MATLAB displays this string
at the specified Position. See the Interpreter property for more information
on using TEX characters.

VerticalAlignment top | cap | {middle} | baseline |
bottom

Vertical alignment of text within textbox. This property specifies the vertical
alignment of the text in the textbox. It determines where MATLAB places the
string with respect to the value of the Position property’s y value (the second
element in the position vector). The possible values mean

• top — Place the top of the string at the specified y-position.

• cap — Place the string so that the top of a capital letter is at the y-position.

• middle — Place the middle of the string at the y-position.

• baseline — Place font baseline at the y-position.

• bottom — Place the bottom of the string at the y-position.

ans

2-81

2ansPurpose The most recent answer

Syntax ans

Description MATLAB creates the ans variable automatically when you specify no output
argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

any

2-82

2anyPurpose Test for any nonzeros

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, any(A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a row
vector of 1’s and 0’s.

If A is a multidimensional array, any(A) treats the values along the first
nonsingleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements:

if any(A < 0.5)
do something

end

1 0 1
0 0 0

A

1 0 1

any(A,1)

1
0

any(A,2)

any

2-83

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
 1

See Also all, logical operators (elementwise and short-circuit), relational operators,
colon

Other functions that collapse an array’s dimensions include max, mean, median,
min, prod, std, sum, and trapz.

area

2-84

2areaPurpose Filled area 2-D plot

Syntax area(Y)
area(X,Y)
area(...,basevalue)
area(...,'PropertyName',PropertyValue,...)
area(axes_handle,...)
h = area(...)
area('v6',...)

Description An area graph displays elements in Y as one or more curves and fills the area
beneath each curve. When Y is a matrix, the curves are stacked showing the
relative contribution of each row element to the total height of the curve at each
x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis
automatically scales to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y) except that
the area between 0 and Y is filled. When Y is a matrix, area(X,Y) plots the
columns of Y as filled areas. For each X, the net result is the sum of
corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y) and X must be monotonic. If
X is a matrix, size(X) must equal size(Y) and each column of X must be
monotonic. To make a vector or matrix monotonic, use sort.

area(...,basevalue) specifies the base value for the area fill. The default
basevalue is 0. See the BaseValue property for more information.

area(...,'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the patch graphics object created by area.

area(axes_handles,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

area

2-85

Backward Compatible Version

hpatches = area('v6',...) returns the handles of patch objects instead of
areaseries objects for compatibility with MATLAB 6.5 and earlier. See patch
object properties for a discussion of the properties you can set to control the
appearance of these area graphs.

See Plot Objects and Backward Compatibility for more information.

Areaseries
Objects

Creating an area graph of an m-by-n matrix creates n areaseries objects (i.e.,
one per column), whereas a 1-by-n vector creates one area object.

Note that some areaseries object properties that you set on an individual
areaseries object set the value for all areaseries objects in the graph. See the
property descriptions for information on specific properties.

Examples Stacked Area Graph
This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. Note that the
figure colormap controls the coloring of the individual areas. You can explicitly
set the color of an area using the EdgeColor and FaceColor properties.

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

area

2-86

Adjusting the Base Value
The area function uses a y-axis value of 0 as the base of the filled areas. You
can change this value by setting the area BaseValue property. For example,
negate one of the values of Y from the previous example and replot the data.

Y(3,1) = -1; % Was 1
h = area(Y);
set(gca,'Layer','top')
grid on
colormap summer

The area graph now looks like this:

Stacked Area Plot

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

area

2-87

Adjusting the BaseValue property improves the appearance of the graph:

set(h,'BaseValue',-2)

Note that setting the BaseValue property on one areaseries object sets the
values of all objects.

1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12

area

2-88

Specifying Colors and Line Styles
You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument
set(h(1),'FaceColor',[.5 0 0])
set(h(2),'FaceColor',[.7 0 0])
set(h(3),'FaceColor',[1 0 0])
set(h,'LineStyle',':','LineWidth',2) % Set all to same value

1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12

area

2-89

See Also bar, plot, sort

“Area, Bar, and Pie Plots” for related functions

Area Graphs for more examples

“Areaseries Properties” for property descriptions

1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12

Areaseries Properties

2-90

2Areaseries PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on areaseries objects.

Areaseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BaseValue double: y-axis value

Location of filled area base. You can specify the y-axis value where MATLAB
draws the base of the filled area.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

Areaseries Properties

2-91

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the areaseries object.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the bar object. The handle of a patch object that is the child of the
areaseries object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the areaseries Children property unless
you set the Root ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Clipping {on} | off

Clipping mode. MATLAB clips area graphs to the axes plot box by default. If
you set Clipping to off, areas can be displayed outside the axes plot box.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates an areaseries object. You must
specify the callback during the creation of the object. For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

Areaseries Properties

2-92

MATLAB executes this routine after setting all other areaseries properties.
Setting this property on an existing areaseries object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
areaseries object is deleted (e.g., this might happen when you issue a delete
command on the areaseries object, its parent axes, or the figure containing it).
MATLAB executes the callback before destroying the object’s properties so the
callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any areaseries objects appearing in these legends.

EdgeColor {[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of the edge of the
filled areas to a three-element RGB vector or one of the MATLAB predefined
names, including the string none. The default edge color is black. See
ColorSpec for more information on specifying color.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase areaseries child objects (the patch object used to construct the area
graph). Alternative erase modes are useful for creating animated sequences,
where control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

Areaseries Properties

2-93

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor — Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR on a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

FaceColor {flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

Areaseries Properties

2-94

• ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for all filled areas. See ColorSpec for more
information on specifying color.

• none — Do not draw faces. Note that EdgeColor is drawn independently of
FaceColor.

• flat — The color of the filled areas is determined by the figure colormap. See
colormap for information on setting the colormap.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the areaseries object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Areaseries Properties

2-95

Overriding Handle Visibility
You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the areaseries object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the objects that
compose the area graph. If HitTest is off, clicking the areaseries object selects
the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select areaseries object on filled area or extent of graph. This property enables
you to select areaseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the bar object.
When HitTestArea is on, you can select the bar object by clicking anywhere
within the extent of the bar graph (i.e., anywhere within a rectangle that
encloses all the bars).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an areaseries object callback can be interrupted by callbacks invoked
subsequently.

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a bar property. Note that MATLAB does not

Areaseries Properties

2-96

save the state of variables or the display (e.g., the handle returned by the gca
or gcf command) when an interruption occurs.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style used for the lines that separate
filled areas. The following table shows available line styles.

LineWidth scalar

The width of the line separating filled areas. Specify this value in points
(1 point = 1/72 inch). The default LineWidth is 0.5 points.

Parent axes handle

Parent of areaseries object. This property contains the handle of the areaseries
object’s parent. The parent of an areaseries object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the areaseries object is
selected.

Symbol Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Areaseries Properties

2-97

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an areaseries object and set the Tag property.

t = area(Y,'Tag','area1')

When you want to access the areaseries object, you can use findobj to find the
areaseries object’s handle. The following statement changes the FaceColor
property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For areaseries objects, Type is 'hggroup'.

The following statement finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the areaseries object. Assign this property the
handle of a uicontextmenu object created in the areaseries object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the areaseries object.

UserData array

User-specified data. This property can be any data you want to associate with
the areaseries object (including cell arrays and structures). The areaseries

Areaseries Properties

2-98

object does not set values for this property, but you can access it using the set
and get functions.

Visible {on} | off

Visibility of bar object and its children. By default, areaseries object visibility
is on. This means all children of the areaseries object are visible unless the
child object’s Visible property is set to off. Setting an areaseries object’s
Visible property to off also makes its children invisible.

XData vector or matrix

The x-axis values for area graphs. The x-axis values for area graphs are
specified by the X input argument. If XData is a vector, length(XData) must
equal length(YData) and must be monotonic. If XData is a matrix,
size(XData) must equal size(YData) and each column must be monotonic.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the x input argument), MATLAB sets this
property to manual and uses the specified values to label the x-axis.

If you set XDataMode to auto after having specified XData, MATLAB resets the
x-axis ticks to 1:size(YData,1).

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

Areaseries Properties

2-99

and not render the graph until you have changed all data source properties to
appropriate values.

YData vector or matrix

Area plot data. YData contains the data plotted as filled areas (the Y input
argument). If YData is a vector, area creates a single filled area whose upper
boundary is defined by the elements of YData. If YData is a matrix, area creates
one filled area per column, stacking each on the previous plot.

The input argument Y in the area function calling syntax assigns values to
YData.

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

ascii (ftp)

2-100

2ascii (ftp)Purpose Set FTP transfer type to ASCII.

Syntax ascii(f)

Description ascii(f) sets the download and upload FTP mode to ASCII, which converts
new lines, where f was created using ftp. Use this function for text files only,
including HTML pages and Rich Text Format (RTF) files.

Examples Connect to The MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
 host: ftp.mathworks.com
 user: anonymous
 dir: /
 mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp function
to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
 host: ftp.mathworks.com
 user: anonymous
 dir: /
 mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary (ftp)

asec

2-101

2asecPurpose Inverse secant, result in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element of X.

The asec function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

Definition The inverse secant can be defined as

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

1 x 5≤ ≤ 5– x 1–≤ ≤

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

z()sec 1– 1
z
--- 

 cos 1–=

asec

2-102

See Also asecd, asech, sec

asecd

2-103

2asecdPurpose Inverse secant, result in degrees

Syntax Y = asecd(X)

Description Y = asecd(X) is the inverse secant, expressed in degrees, of the elements of X.

See Also secd, asec

asech

2-104

2asechPurpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element of X.

The asech function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

0.01 x 1≤ ≤

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

z()sech 1– 1
z
--- 

 cosh 1–=

asech

2-105

See Also asec, sech

asin

2-106

2asinPurpose Inverse sine, result in radians

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain , asin(X) is in the range . For
real elements of x outside the range , asin(X) is complex.

The asin function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

Definition The inverse sine can be defined as

1 1,–[] π– 2⁄ π 2⁄,[]
1 1,–[]

1– x 1≤ ≤

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sin 1– z() i– log iz 1 z2–()

1
2

+=

asin

2-107

Algorithm asin uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also sin, asind, asinh

asind

2-108

2asindPurpose Inverse sine, result in degrees

Syntax Y = asind(X)

Description Y = asind(X) is the inverse sine, expressed in degrees, of the elements of X.

See Also sind, asin

asinh

2-109

2asinhPurpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

5– x 5≤ ≤

−5 0 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

sinh 1– z() log z z2 1+()

1
2

+=

asinh

2-110

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also asin, sinh

assignin

2-111

2assigninPurpose Assign a value to a workspace variable

Syntax assignin(ws,'var',val)

Description assignin(ws,'var',val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of 'base' or
'caller' to denote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note that the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user-entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});

assignin

2-112

See Also evalin

atan

2-113

2atanPurpose Inverse tangent, result in radians

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element of X.
For real elements of X, atan(X) is in the range .

The atan function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

Definition The inverse tangent can be defined as

π– 2⁄ π 2⁄,[]

20– x 20≤ ≤

−20 −15 −10 −5 0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z()tan 1– i
2
---- i z+

i z–
----------- 

 log=

atan

2-114

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also atan2, tan, atand, atanh

atan2

2-115

2atan2Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the MATLAB
floating-point representation of . atan uses sign(Y) and sign(X) to
determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the interval
, or the right side of this diagram.

Examples Any complex number is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z),real(z))

r =
 5

theta =

 0.6435

π

π/2

π
–π 0

x

y

–π/2

π– 2⁄ π 2⁄,[]

z x iy+=

atan2

2-116

This is a common operation, so MATLAB provides a function, angle(z), that
computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
z =

 4.0000 + 3.0000i

Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also angle, atan, atanh

atand

2-117

2atandPurpose Inverse tangent, result in degrees

Syntax Y = atand(X)

Description Y = atand(X) is the inverse tangent, expressed in degrees, of the elements of X.

See Also tand, atan

atanh

2-118

2atanhPurpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse hyperbolic tangent function over the domain .

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

1– x 1< <

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

z()tanh 1– 1
2
---= 1 z+

1 z–
------------ 

 log

atanh

2-119

See Also atan2, atan, tanh

audioplayer

2-120

2audioplayerPurpose Create an audio player object

Syntax y = audioplayer(x,Fs)
y = audioplayer(x,Fs,nbits)
y = audioplayer(r)
y = audioplayer(r,id)

Description Note To use all of the features of the audio player object, your system needs a
properly installed and configured sound card with 8- and 16-bit I/O, two
channels, and support for sampling rates of up to 48 kHz.

y = audioplayer(x,Fs) returns a handle to an audio player object y using
input audio signal x. The audio player object supports methods and properties
that you can use to play audio data.

The input signal x can be a vector or two-dimensional array containing single,
double, int8, uint8, or int16 MATLAB data types. The input sample value
range depends on the MATLAB data type.

Fs is the sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most sound
cards are 8000, 11025, 22050, and 44100 Hz.

y = audioplayer(x,Fs,nbits) returns a handle to an audio player object
where nbits is the bit quantization to use for single or double data types. This
is an optional parameter with a default value of 16. Valid values for nbits are
8 and 16 (and 24, if a 24-bit device is installed). You do not need to specify nbits

Data Type Input Sample Value Range

int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

single -1 to 1

double -1 to 1

audioplayer

2-121

for int8, uint8, or int16 data because the quantization is set automatically to
8 or 16, respectively.

y = audioplayer(r) returns a handle to an audio player object from an
audiorecorder object r.

y = audioplayer(r,id) returns a handle to an audio player object from an
audiorecorder object r, using the audio device specified by id for output. This
option is only available on systems running Windows

Example Load a sample audio file, create an audio player object, and play the audio at a
higher sampling rate. x contains the audio samples and Fs is the sampling rate.
You can use any of the audioplayer functions listed above on the player.

load handel;
player=audioplayer(y,Fs);
play(player,[1 (get(player,'SampleRate')*3)]);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

Methods After you create an audio player object, you can use the methods listed below
on that object. y represents the name of the returned audio player.

Method Description

play(y)
play(y,start)
play(y,[start stop])
play(y,range)

Starts playback from the beginning
and plays to the end, or from start
sample to the end, or from start
sample to stop sample. The values of
start and stop can be specified in a
two-element vector range.

playblocking(y)
playblocking(y,start)
playblocking(y,[start stop])
playblocking(y,range)

Same as play, but does not return
control until playback completes.

stop(y) Stops playback.

audioplayer

2-122

Properties Audio player objects have the properties listed below. To set a user-settable
property, use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property,

get(y,'property') % Displays 'property' setting.

pause(y) Pauses playback.

resume(y) Restarts playback from where
playback was paused.

isplaying(y) Indicates whether playback is in
progress. If 0, playback is not in
progress. If 1, playback is in progress.

display(y)
disp(y)
get(y)

Displays all property information
about audio player y.

Method Description

Property Description Type

Type Name of the object’s class Read-only

SampleRate Sampling frequency in Hz User-settable

BitsPerSample Number of bits per sample Read-only

NumberOfChannels Number of channels Read-only

TotalSamples Total length, in samples, of the
audio data

Read-only

Running Status of the audio player ('on'
or 'off')

Read-only

audioplayer

2-123

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

CurrentSample Current sample being played by
the audio output device (if it is
not playing, currentsample is the
next sample to be played with
play or resume)

Read-only

UserData User data of any type User-settable

Tag User-specified object label string User-settable

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([]).

TimerFcn Name of or handle to
user-specified function to be
called during playback

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks

User-settable

StartFcn Name of or handle to the function
to be called once when playback
starts

User-settable

StopFcn Name of or handle to the function
to be called once when playback
stops

User-settable

Property Description Type

audiorecorder

2-124

2audiorecorderPurpose Create an audio recorder object

Syntax y = audiorecorder
y = audiorecorder(Fs,nbits,channels)
y = audiorecorder(Fs,nbits,channels,id)

Description Note To use all of the features of the audio recorder object, your system must
have a properly installed and configured sound card with 8- and 16-bit I/O and
support for sampling rates of up to 48 kHz.

y = audiorecorder returns a handle to an 8-kHz, 8-bit, mono audio recorder
object. The audio recorder object supports methods and properties that you can
use to record audio data.

y = audiorecorder(Fs,nbits,channels) returns a handle to an audio
recorder object using the sampling rate Fs (in Hz), the sample size of nbits,
and the number of channels. Fs can be any sampling rate supported by the
audio hardware. Common sampling rates are 8000, 11025, 22050, and 44000.
The value of nbits must be 8 or 16 (or 24, if a 24-bit device is installed). For
mono or stereo, channels must be 1 or 2, respectively.

y = audiorecorder(Fs,nbits,channels,id) returns a handle to an audio
recorder object using the audio device specified by its id for input.

Examples Example 1
Using a microphone, record 3.5 seconds of 44.1-kHz, 16-bit, stereo data, and
then return the data to the MATLAB workspace as a double array.

recorder = audiorecorder(44100,16,2);
recordblocking(recorder,3.5);
audioarray = getaudiodata(recorder);

Example 2
Using a microphone, record 8-bit, 22-kHz mono data, play it back, record again,
and return the data to the MATLAB workspace as a uint8 array.

micrecorder = audiorecorder(22050,8,1);
record(micrecorder);

audiorecorder

2-125

% Now, speak into microphone

stop(micrecorder);
speechplayer = play(micrecorder);
% Now, listen to the recording

stop(speechplayer);
speechdata = getaudiodata(micrecorder, 'uint8');

Remarks The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage and
does not use disk buffering. When large recordings are attempted, MATLAB
performance may degrade.

Methods After you create an audio recorder object, you can use the methods listed below
on that object. y represents the name of the returned audio recorder.

Method Description

record(y)
record(y,length)

Starts recording.
Records for length number of seconds.

recordblocking(y,length) Same as record, but does not return
control until recording completes.

stop(y) Stops recording.

pause(y) Pauses recording.

resume(y) Restarts recording from where
recording was paused.

isrecording(y) Indicates the status of recording. If 0,
recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

audiorecorder

2-126

Properties Audio recorder objects have the properties listed below. To set a user-settable
property, use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property,

get(y,'property') %displays 'property' setting.

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)
getaudiodata(y,'type')

Returns the recorded audio data to the
MATLAB workspace. type is a string
containing the desired data type.
Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'. For
double and single, the array contains
values between -1 and 1. For int8,
values are between -128 to 127. For
uint8, values are from 0 to 255. For
int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

display(y)
disp(y)
get(y)

Displays all property information
about audio recorder y.

Method Description

Property Description Type

Type Name of the object’s class Read-only

SampleRate Sampling frequency in Hz Read-only

audiorecorder

2-127

BitsPerSample Number of bits per recorded
sample

Read-only

NumberOfChannels Number of channels of recorded
audio

Read-only

TotalSamples Total length, in samples, of the
recording

Read-only

Running Status of the audio recorder ('on'
or 'off')

Read-only

CurrentSample Current sample being recorded
by the audio output device (if it is
not recording, currentsample is
the next sample to be recorded
with record or resume)

Read-only

UserData User data of any type User-settable

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([]).

TimerFcn Name of or handle to
user-specified function to be
called during recording

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks

User-settable

StartFcn Name of or handle to the function
to be called a single time when
recording starts

User-settable

StopFcn Name of or handle to the function
to be called a single time when
recording stops

User-settable

Property Description Type

audiorecorder

2-128

See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

NumberOfBuffers Number of buffers used for
recording (you should adjust this
only if you have skips, dropouts,
etc., in your recording)

User-settable

BufferLength Length in seconds of buffer (you
should adjust this only if you
have skips, dropouts, etc., in your
recording)

User-settable

Tag User-specified object label string User-settable

Property Description Type

aufinfo

2-129

2aufinfoPurpose Return information about the NeXT/SUN (.au) sound file

Syntax [m d] = aufinfo(aufile)

Description [m d] = aufinfo(aufile) returns information about the contents of the AU
sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file. Otherwise, it
contains an empty string ('').

d is a string that reports the number of samples in the file and the number of
channels of audio data. If filename is not an AU file, it contains the string 'Not
an AU file'.

See Also auread

auread

2-130

2aureadPurpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1,N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string aufile,
returning the sampled data in y. The .au extension is appended if no extension
is given. Amplitude values are in the range [-1,+1]. auread supports
multichannel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[...] = auread('aufile',N) returns only the first N samples from each
channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector
siz = [samples channels].

See Also auwrite, wavread

auwrite

2-131

2auwritePurpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [-1,+1] are clipped prior to writing. auwrite supports
multichannel data for 8-bit mu-law and 8- and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must be 8-bit.
By default, method = 'mu'.

See Also auread, wavwrite

avifile

2-132

2avifilePurpose Create a new Audio/Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj =

avifile(filename,'PropertyName',value,'PropertyName',value,...)

Description aviobj = avifile(filename) creates an AVI file, giving it the name specified
in filename, using default values for all AVI file object properties. If filename
does not include an extension, avifile appends .avi to the filename. AVI is a
file format for storing audio and video data.

avifile returns a handle to an AVI file object aviobj. You use this object to
refer to the AVI file in other functions. An AVI file object supports properties
and methods that control aspects of the AVI file created.

aviobj = avifile(filename,'Param',Value,'Param',Value,...) creates
an AVI file with the specified parameter settings. This table lists available
parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies, where
m must be no greater than 256 (236 if
using Indeo compression). You must set
this parameter before calling addframe,
unless you are using addframe with the
MATLAB movie syntax.

There is no
default
colormap.

'compression' A text string specifying the compression
codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'None'

On UNIX:
'None'

'Indeo5'
on
Windows.
'None' on
UNIX.

avifile

2-133

You can also use structure syntax to set AVI file object properties. For
example, to set the quality property to 100, use the following syntax:

aviobj = avifile('myavifile');
aviobj.Quality = 100;

Example This example shows how to use the avifile function to create the AVI file
example.avi.

fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...

 'NextPlot','replace','Visible','off')

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included in
the codec documentation). The addframe
function reports an error if it cannot find
the specified custom compressor.

'fps' A scalar value specifying the speed of the
AVI movie in frames per second (fps).

15 fps

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'quality' A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

75

'videoname' A descriptive name for the video stream.
This parameter must be no greater than
64 characters long.

The default
is the
filename.

Parameter Value Default

avifile

2-134

mov = avifile('example.avi')
x = -pi:.1:pi;
radius = 0:length(x);
for k=1:length(x)

h = patch(sin(x)*radius(k),cos(x)*radius(k),...
[abs(cos(x(k))) 0 0]);

set(h,'EraseMode','xor');
F = getframe(gca);
mov = addframe(mov,F);

end
mov = close(mov);

See Also addframe, close, movie2avi

aviinfo

2-135

2aviinfoPurpose Return information about an Audio/Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields contain
information about the AVI file specified in the string filename. If filename
does not include an extension, then .avi is used. The file must be in the current
working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format used to
store the audio data, if audio data is present

AudioRate Integer indicating the sample rate in Hertz of the
audio stream, if audio data is present

Filename String specifying the name of the file

FileModDate String containing the modification date of the file

FileSize Integer indicating the size of the file in bytes

FramesPerSecond Integer indicating the desired frames per second

Height Integer indicating the height of the AVI movie in
pixels

ImageType String indicating the type of image. Either
'truecolor' for a truecolor (RGB) image, or
'indexed' for an indexed image.

NumAudioChannels Integer indicating the number of channels in the
audio stream, if audio data is present

NumFrames Integer indicating the total number of frames in
the movie

NumColormapEntries Integer specifying the number of colormap entries.
For a truecolor image, this value is 0 (zero).

aviinfo

2-136

See also avifile, aviread

Quality Number between 0 and 100 indicating the video
quality in the AVI file. Higher quality numbers
indicate higher video quality; lower quality
numbers indicate lower video quality. This value
is not always set in AVI files and therefore can be
inaccurate.

VideoCompression String containing the compressor used to
compress the AVI file. If the compressor is not
Microsoft Video 1, Run Length Encoding (RLE),
Cinepak, or Intel Indeo, aviinfo returns the
four-character code that identifies the compressor.

Width Integer indicating the width of the AVI movie in
pixels

Field Name Description

aviread

2-137

2avireadPurpose Read an Audio/Video Interleaved (AVI) file

Syntax mov = aviread(filename)
mov = aviread(filename,index)

Description mov = aviread(filename) reads the AVI movie filename into the MATLAB
movie structure mov. If filename does not include an extension, then .avi is
used. Use the movie function to view the movie mov. On UNIX, filename must
be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields varies
depending on the type of image.

The supported frame types are 8-bit, for indexed or grayscale images, 16-bit,
for grayscale images, or 24-bit, for truecolor.

mov = aviread(filename,index) reads only the frames specified by index.
index can be a single index or an array of indices into the video stream. In AVI
files, the first frame has the index value 1, the second frame has the index value
2, and so on.

See also aviinfo, avifile, movie

Image Type cdata Field colormap Field

Truecolor Height-by-width-by-3 array Empty

Indexed Height-by-width array m-by-3 array

axes

2-138

2axesPurpose Create axes graphics object

Syntax axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',PropertyValue,...) creates an axes object having the
specified property values. MATLAB uses default values for any properties that
you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes. It also makes h the first axes
listed in the figure’s Children property and sets the figure’s CurrentAxes
property to h. The current axes is the target for functions that draw image, line,
patch, surface, and text graphics objects.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist, when
you issue a command that creates a graph.

The axes function accepts property name/property value pairs, structure
arrays, and cell arrays as input arguments (see the set and get commands for
examples of how to specify these data types). These properties, which control
various aspects of the axes object, are described in the “Axes Properties”
section.

Use the set function to modify the properties of an existing axes or the get
function to query the current values of axes properties. Use the gca command
to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly used
properties that control the scaling and appearance of axes.

axes

2-139

While the basic purpose of an axes object is to provide a coordinate system for
plotted data, axes properties provide considerable control over the way
MATLAB displays data.

Stretch-to-Fill
By default, MATLAB stretches the axes to fill the axes position rectangle (the
rectangle defined by the last two elements in the Position property). This
results in graphs that use the available space in the rectangle. However, some
3-D graphs (such as a sphere) appear distorted because of this stretching, and
are better viewed with a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the
default). However, stretch-to-fill is turned off when the DataAspectRatio,
PlotBoxAspectRatio, or CameraViewAngle is user-specified, or when one or
more of the corresponding modes is set to manual (which happens
automatically when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the
stretch-to-fill. The dotted lines show the axes rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be as large
as possible within the constraints imposed by the Position rectangle without

Stretch-to-fill active

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

8

6

4

2

0

2

4

6

8

1

Stretch-to-fill disabled

axes

2-140

introducing distortion. In the picture above, the height of the rectangle
constrains the axes size.

Examples Zooming
Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[−0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')−5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

Positioning the Axes
The axes Position property enables you to define the location of the axes
within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure and
returns a handle to it. Specify the location and size of the axes with a rectangle
defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from the lower
left corner of the figure to the lower left corner of the rectangle. The width and
height elements define the dimensions of the rectangle. You specify these
values in units determined by the Units property. By default, MATLAB uses
normalized units where (0,0) is the lower left corner and (1.0,1.0) is the upper
right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);

axes

2-141

In this example, the first plot occupies the bottom two-thirds of the figure, and
the second occupies the top third.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel, zlabel,
view

“Axes Operations” for related functions

Axes Properties for more examples

See Types of Graphics Objects for information on core, group, plot, and
annotation objects.

0
5

10
15

20

0
5

10
15

20
−10

−5

0

5

10

1 2 3 4 5 6 7 8 9 10
1

1.5

2

axes

2-142

Object
Hierarchy

Setting Default Properties
You can set default axes properties on the figure and root levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and PropertyValue is
the value you are specifying. Use set and get to access axes properties.

Property List The following table lists all axes properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Axes

Core Objects

Figure

Group Objects Plot Objects

Axes

Uipanel

Property Name Property Description Property Value

Controlling Style and Appearance

Box Toggles axes plot box on and off Values: on, off
Default: off

Clipping This property has no effect; axes are
always clipped to the figure window.

GridLineStyle Line style used to draw axes grid
lines

Values: −, −−, :, -., none
Default: : (dotted line)

MinorGridLineStyle Line style used to draw axes minor
grid lines

Values: −, −−, :, -., none
Default: : (dotted line)

axes

2-143

Layer Draws axes above or below graphs Values: bottom, top
Default: bottom

LineStyleOrder Sequence of line styles used for
multiline plots

Values: LineSpec
Default: − (solid line for)

LineWidth Width of axis lines, in points (1/72"
per point)

Values: number of points
Default: 0.5 points

SelectionHighlight Highlights axes when selected
(Selected property set to on)

Values: on, off
Default: on

TickDir Direction of axis tick marks Values: in, out
Default: in (2-D), out (3-D)

TickDirMode Use MATLAB or user-specified tick
mark direction

Values: auto, manual
Default: auto

TickLength Length of tick marks normalized to
axis line length, specified as
two-element vector

Values: [2-D 3-D]
Default: [0.01 0.025}

Visible Make axes visible or invisible Values: on, off
Default: on

XGrid, YGrid, ZGrid Toggle grid lines on and off in
respective axis

Values: on, off
Default: off

General Information About the Axes

ActivePositionProperty Determines whether the
OuterPosition or Position
property determines size of axes
after resize

Valules: outerposition,
position
Default: outerposition

Children Handles of the images, lights, lines,
patches, surfaces, and text objects
displayed in the axes

Value: vector of handles

CurrentPoint Location of last mouse button click
defined in the axes data units

Value: a 2-by-3 matrix

Property Name Property Description Property Value

axes

2-144

HitTest Specifies whether axes can become
the current object (see figure
CurrentObject property)

Values: on, off
Default: on

OuterPosition Position of axes including axis
labels, title, and a margin

Value: [left bottom width
height]
Default: [0 0 1 1] in
normalized units

Parent Handle of the figure or uipanel
containing the axes

Values: scalar figure or
uipanel handle

Position Location and size of axes within the
figure

Values: [left bottom width
height]
Default: [0.1300 0.1100
0.7750 0.8150] in
normalized Units

TightInset Margin added to Position to
include labels and title

Values: [left, bottom, right,
top] Read only

Selected Indicates whether axes is in a
selected state

Values: on, off
Default: on

Tag User-specified label Values: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'axes'

Units Units used to interpret the
Position property

Values: inches,
centimeters, characters,
normalized, points, pixels
Default: normalized

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Selecting Fonts and Labels

Property Name Property Description Property Value

axes

2-145

FontAngle Selects italic or normal font Values: normal, italic,
oblique
Default: normal

FontName Font family name (e.g., Helvetica,
Courier)

Values: a font supported by
your system or the string
FixedWidth
Default: typically Helvetica

FontSize Size of the font used for title and
labels

Value: an integer in
FontUnits
Default: 10

FontUnits Units used to interpret the
FontSize property

Values: points,
normalized, inches,
centimeters, pixels
Default: points

FontWeight Selects bold or normal font Values: normal, bold,
light, demi
Default: normal

Title Handle of the title text object Value: any valid text object
handle

XLabel, YLabel, ZLabel Handles of the respective axis label
text objects

Value: any valid text object
handle

XTickLabel,
YTickLabel,
ZTickLabel

Specifies tick mark labels for the
respective axis

Value: matrix of strings
Defaults: numeric values
selected automatically by
MATLAB

XTickLabelMode,
YTickLabelMode,
ZTickLabelMode

Uses MATLAB or user-specified
tick mark labels

Values: auto, manual
Default: auto

Controlling Axis Scaling

Property Name Property Description Property Value

axes

2-146

XAxisLocation Specifies the location of the x-axis Values: top, bottom
Default: bottom

YAxisLocation Specifies the location of the y-axis Values: right left
Default: left

XDir, YDir, ZDir Specifies the direction of increasing
values for the respective axes

Values: normal, reverse
Default: normal

XLim, YLim, ZLim Specifies the limits to the respective
axes

Values: [min max]
Default: min and max
determined automatically
by MATLAB

XLimMode, YLimMode,
ZLimMode

Uses MATLAB or user-specified
values for the respective axis limits

Values: auto, manual
Default: auto

XMinorGrid,YMinorGrid,
ZMinorGrid

Determines whether MATLAB
displays gridlines connecting minor
tick marks in the respective axis

Values: on, off
Default: off

XMinorTick,YMinorTick,
ZMinorTick

Determines whether MATLAB
displays minor tick marks in the
respective axis

Values: on, off
Default: off

XScale, YScale, ZScale Selects linear or logarithmic scaling
of the respective axis

Values: linear, log
Default: linear (changed
by plotting commands that
create nonlinear plots)

XTick, YTick, ZTick Specifies the location of the axis
tick marks

Values: a vector of data
values locating tick marks
Default: MATLAB
automatically determines
tick mark placement

XTickMode, YTickMode,
ZTickMode

Uses MATLAB or user-specified
values for the respective tick mark
locations

Values: auto, manual
Default: auto

Property Name Property Description Property Value

axes

2-147

Controlling the View

CameraPosition Specifies the position of the point
from which you view the scene

Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraPositionMode Uses MATLAB or user-specified
camera position

Values: auto, manual
Default: auto

CameraTarget Center of view pointed to by camera Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraTargetMode Uses MATLAB or user-specified
camera target

Values: auto, manual
Default: auto

CameraUpVector Direction that is oriented up Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraUpVectorMode Uses MATLAB or user-specified
camera up vector

Values: auto, manual
Default: auto

CameraViewAngle Camera field of view Value: angle in degrees
between 0 and 180
Default: automatically
determined by MATLAB

CameraViewAngleMode Uses MATLAB or user-specified
camera view angle

Values: auto, manual
Default: auto

Projection Selects type of projection Values: orthographic,
perspective
Default: orthographic

Controlling the Axes Aspect Ratio

Property Name Property Description Property Value

axes

2-148

DataAspectRatio Relative scaling of data units Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

DataAspectRatioMode Uses MATLAB or user-specified
data aspect ratio

Values: auto, manual
Default: auto

PlotBoxAspectRatio Relative scaling of axes plot box Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

PlotBoxAspectRatioMode Uses MATLAB or user-specified
plot box aspect ratio

Values: auto, manual
Default: auto

Controlling Callback Routine Execution

BusyAction Specifies how to handle events that
interrupt executing callback
routines

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback routine that
executes when a button is pressed
over the axes

Values: string or function
handle
Default: an empty string

CreateFcn Defines a callback routine that
executes when an axes is created

Values: string or function
handle
Default: an empty string

DeleteFcn Defines a callback routine that
executes when an axes is deleted

Values: string or function
handle
Default: an empty string

Interruptible Controls whether an executing
callback routine can be interrupted

Values: on, off
Default: on

UIContextMenu Associates a context menu with the
axes

Values: handle of a
Uicontextmenu

Property Name Property Description Property Value

axes

2-149

Specifying the Rendering Mode

DrawMode Specifies the rendering method to
use with the Painters renderer

Values: normal, fast
Default: normal

Targeting Axes for Graphics Display

HandleVisibility Controls access to a specific axes
handle

Values: on, callback, off
Default: on

NextPlot Determines the eligibility of the
axes for displaying graphics

Values: add, replace,
replacechildren
Default: replace

Properties that Specify Transparency

ALim Alpha axis limits Values: [amin amax]

ALimMode Alpha axis limits mode Values: auto | manual
Default: auto

Properties that Specify Color

AmbientLightColor Color of the background light in a
scene

Values: ColorSpec
Default: [1 1 1]

CLim Controls how data is mapped to
colormap

Values: [cmin cmax]
Default: automatically
determined by MATLAB

CLimMode Uses MATLAB or user-specified
values for CLim

Values: auto, manual
Default: auto

Color Color of the axes background Values: none, ColorSpec
Default: none

Property Name Property Description Property Value

axes

2-150

ColorOrder Line colors used for multiline plots Value: m-by-3 matrix of
RGB values
Default: depends on color
scheme used

XColor, YColor, ZColor Colors of the axis lines and tick
marks

Values: ColorSpec
Default: depends on current
color scheme

Property Name Property Description Property Value

Axes Properties

2-151

2Axes PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

Axes Property
Descriptions

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

ActivePositionProperty {outerposition} | position

Use OuterPosition or Position property for resize. ActivePositionProperty
specifies which property MATLAB uses to determine the size of the axes when
the figure is resized (interactively or during a printing or exporting operation).

See OuterPosition and Position for more information.

ALim [amin, amax]

Alpha axis limits. A two-element vector that determines how MATLAB maps
the AlphaData values of surface, patch, and image objects to the figure's
alphamap. amin is the value of the data mapped to the first alpha value in the
alphamap, and amax is the value of the data mapped to the last alpha value in
the alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or last
alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the minimum
data value and amax the maximum data value in the graphics object's
AlphaData. This maps AlphaData elements with minimum data values to the
first alphamap entry and those with maximum data values to the last
alphamap entry. Data values in between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB sets ALim to span the
range of all objects' AlphaData (or FaceVertexAlphaData for patch objects).

ALimMode {auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim property to span
the AlphaData limits of the graphics objects displayed in the axes. If ALimMode

Axes Properties

2-152

is manual, MATLAB does not change the value of ALim when the AlphaData
limits of axes children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor ColorSpec

The background light in a scene. Ambient light is a directionless light that
shines uniformly on all objects in the axes. However, if there are no visible light
objects in the axes, MATLAB does not use AmbientLightColor. If there are
light objects in the axes, the AmbientLightColor is added to the other light
sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has
been superseded by the DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties.

BeingDeleted on | {off}

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects if the objects are going to be deleted, and therefore, can check the
object’s BeingDeleted property before acting.

Box on | {off}

Axes box mode. This property specifies whether to enclose the axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not display the box.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning

Axes Properties

2-153

the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is within the axes, but not over another
graphics object displayed in the axes. For 3-D views, the active area is defined
by a rectangle that encloses the axes.

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CameraPosition [x, y, z] axes coordinates

The location of the camera. This property defines the position from which the
camera views the scene. Specify the point in axes coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene by changing
the CameraPosition, moving the camera closer to the CameraTarget to zoom in
and farther away from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if Projection is
perspective. You can also zoom by changing the CameraViewAngle; however,
this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically
calculates the CameraPosition such that the camera lies a fixed distance from
the CameraTarget along the azimuth and elevation specified by view. Setting a
value for CameraPosition sets this property to manual.

CameraTarget [x, y, z] axes coordinates

Camera aiming point. This property specifies the location in the axes that the
camera points to. The CameraTarget and the CameraPosition define the vector
(the view axis) along which the camera looks.

Axes Properties

2-154

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto,
MATLAB automatically positions the CameraTarget at the centroid of the axes
plot box. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the camera around the
viewing axis defined by the CameraTarget and the CameraPosition properties.
Specify CameraUpVector as a three-element array containing the x, y, and z
components of the vector. For example, [0 1 0] specifies the positive y-axis as
the up direction.

The default CameraUpVector is [0 0 1], which defines the positive z-axis as the
up direction.

CameraUpVectorMode auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto,
MATLAB uses a value of [0 0 1] (positive z-direction is up) for 3-D views and
[0 1 0] (positive y-direction is up) for 2-D views. Setting a value for
CameraUpVector sets this property to manual.

CameraViewAngle scalar greater than 0 and less than or equal to
180 (angle in degrees)

The field of view. This property determines the camera field of view. Changing
this value affects the size of graphics objects displayed in the axes, but does not
affect the degree of perspective distortion. The greater the angle, the larger the
field of view, and the smaller objects appear in the scene.

CameraViewAngleMode {auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets
CameraViewAngle to the minimum angle that captures the entire scene (up to
180°).

Axes Properties

2-155

The following table summarizes MATLAB automatic camera behavior.

Children vector of graphics object handles

Children of the axes. A vector containing the handles of all graphics objects
rendered within the axes (whether visible or not). The graphics objects that can
be children of axes are images, lights, lines, patches, rectangles, surfaces, and
text. You can change the order of the handles and thereby change the stacking
of the objects on the display.

The text objects used to label the x-, y-, and z-axes are also children of axes, but
their HandleVisibility properties are set to callback. This means their
handles do not show up in the axes Children property unless you set the Root
ShowHiddenHandles property to on.

When an object’s HandleVisibility property is set to off, it is not listed in its
parent’s Children property. See HandleVisibility for more information.

CameraView
Angle

Camera
Target

Camera
Position

Behavior

auto auto auto CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto auto manual CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene.

auto manual auto CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto manual manual CameraViewAngle is set to capture entire scene.

manual auto auto CameraTarget is set to plot box centroid,
CameraPosition is set along the view axis.

manual auto manual CameraTarget is set to plot box centroid

manual manual auto CameraPosition is set along the view axis.

manual manual manual All camera properties are user-specified.

Axes Properties

2-156

CLim [cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps
the CData values of surface and patch objects to the figure’s colormap. cmin is
the value of the data mapped to the first color in the colormap, and cmax is the
value of the data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data values
outside are clamped to either the first or last colormap color, whichever is
closest.

When CLimMode is auto (the default), MATLAB assigns cmin the minimum
data value and cmax the maximum data value in the graphics object’s CData.
This maps CData elements with minimum data value to the first colormap
entry and with maximum data value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim to span the
range of all objects’ CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span
the CData limits of the graphics objects displayed in the axes. If CLimMode is
manual, MATLAB does not change the value of CLim when the CData limits of
axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off

This property has no effect on axes.

Color {none} | ColorSpec

Color of the axes back planes. Setting this property to none means the axes is
transparent and the figure color shows through. A ColorSpec is a
three-element RGB vector or one of the MATLAB predefined names. Note that
while the default value is none, the matlabrc.m file may set the axes color to
a specific color.

ColorOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix of RGB values
that define the colors used by the plot and plot3 functions to color each line
plotted. If you do not specify a line color with plot and plot3, these functions
cycle through the ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get the property
value:

Axes Properties

2-157

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the ColorOrder property before
determining the colors to use. If you want MATLAB to use a ColorOrder that
is different from the default, set NextPlot to replacechildren. You can also
specify your own default ColorOrder.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an axes object. You must
define this property as a default value for axes. For example, the statement

set(0,'DefaultAxesCreateFcn','set(gca,''Color'',''b'')')

defines a default value on the Root level that sets the current axes background
color to blue whenever you (or MATLAB) create an axes. MATLAB executes
this routine after setting all properties for the axes. Setting this property on an
existing axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CurrentPoint 2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix containing the
coordinates of two points defined by the location of the pointer. These two
points lie on the line that is perpendicular to the plane of the screen and passes
through the pointer. The 3-D coordinates are the points, in the axes coordinate
system, where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the axes, or even the figure

xback yback zback
xfront yfront zfront

Axes Properties

2-158

window; MATLAB returns the coordinates with respect to the requested axes
regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative
scaling of data units in the x, y, and z directions. For example, setting this
property t o [1 2 1] causes the length of one unit of data in the x direction to
be the same length as two units of data in the y direction and one unit of data
in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control
how MATLAB scales the x-, y-, and z-axis. Setting the DataAspectRatio will
disable the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto. The
following table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-,
Z-Limits

DataAspect
Ratio

PlotBox
AspectRatio

Behavior

auto auto auto Limits chosen to span data range in all
dimensions.

auto auto manual Limits chosen to span data range in all
dimensions. DataAspectRatio is modified to
achieve the requested PlotBoxAspectRatio
within the limits selected by MATLAB.

auto manual auto Limits chosen to span data range in all
dimensions. PlotBoxAspectRatio is modified to
achieve the requested DataAspectRatio within
the limits selected by MATLAB.

auto manual manual Limits chosen to completely fit and center the
plot within the requested PlotBoxAspectRatio
given the requested DataAspectRatio (this may
produce empty space around 2 of the 3
dimensions).

Axes Properties

2-159

DataAspectRatioMode {auto} | manual

User or MATLAB controlled data scaling. This property controls whether the
values of the DataAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the DataAspectRatio property
automatically sets this property to manual. Changing DataAspectRatioMode to
manual disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto.

DeleteFcn string or function handle

Delete axes callback routine. A callback routine that executes when the axes
object is deleted (e.g., when you issue a delete command). MATLAB executes
the routine before destroying the object’s properties so the callback routine can
query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

manual auto auto Limits are honored. The DataAspectRatio and
PlotBoxAspectRatio are modified as necessary.

manual auto manual Limits and PlotBoxAspectRatio are honored.
The DataAspectRatio is modified as necessary.

manual manual auto Limits and DataAspectRatio are honored. The
PlotBoxAspectRatio is modified as necessary.

1 manual
2 auto

manual manual The 2 automatic limits are selected to honor the
specified aspect ratios and limit. See
“Examples.”

2 or 3
manual

manual manual Limits and DataAspectRatio are honored; the
PlotBoxAspectRatio is ignored.

X-, Y-,
Z-Limits

DataAspect
Ratio

PlotBox
AspectRatio

Behavior

Axes Properties

2-160

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render
graphics objects displayed in the axes, when the figure Renderer property is
painters.

• normal mode draws objects in back to front ordering based on the current
view in order to handle hidden surface elimination and object intersections.

• fast mode draws objects in the order in which you specify the drawing
commands, without considering the relationships of the objects in three
dimensions. This results in faster rendering because it requires no sorting of
objects according to location in the view, but may produce undesirable
results because it bypasses the hidden surface elimination and object
intersection handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and hidden surface
elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for axes
text. normal specifies a nonitalic font. italic and oblique specify italic font.

FontName A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use for axes
labels. To display and print properly, FontName must be a font that your system
supports. Note that the x-, y-, and z-axis labels are not displayed in a new font
until you manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or zlabel command). Tick mark
labels change immediately.

Specifying a Fixed-Width Font
If you want an axes to use a fixed-width font that looks good in any locale, you
should set FontName to the string FixedWidth:

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may
not display text properly on systems that do not use ASCII character encoding
(such as in Japan where multibyte character sets are used). A properly written
MATLAB application that needs to use a fixed-width font should set FontName

Axes Properties

2-161

to FixedWidth (note that this string is case sensitive) and rely on
FixedWidthFontName to be set correctly in the end user’s environment.

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an immediate
update of the display to use the new font.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels and titles, in
units determined by the FontUnits property. The default point size is 12. The
x-, y-, and z-axis text labels are not displayed in a new font size until you
manually reset them (by setting the XLabel, YLabel, or ZLabel properties or by
using the xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontUnits {points} | normalized | inches |
centimeters | pixels

Units used to interpret the FontSize property. When set to normalized,
MATLAB interprets the value of FontSize as a fraction of the height of the
axes. For example, a normalized FontSize of 0.1 sets the text characters to a
font whose height is one tenth of the axes’ height. The default units (points),
are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for axes text. The x-, y-, and
z-axis text labels are not displayed in bold until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the xlabel,
ylabel, or zlabel commands). Tick mark labels change immediately.

GridLineStyle − | − −| {:} | −. | none

Line style used to draw grid lines. The line style is a string consisting of a
character, in quotes, specifying solid lines (−), dashed lines (−−), dotted lines(:),
or dash-dot lines (−.). The default grid line style is dotted. To turn on grid lines,
use the grid command.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of

Axes Properties

2-162

children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s CurrentFigure property, objects do not appear in the Root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the axes can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the axes. If HitTest is off, clicking the
axes selects the object below it (which is usually the figure containing it).

Axes Properties

2-163

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an axes callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Setting Interruptible to on allows any graphics object’s callback routine to
interrupt callback routines originating from an axes property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if
axis lines and tick marks are drawn on top or below axes children objects for
any 2-D view (i.e., when you are looking along the x-, y-, or z-axis). This is useful
for placing grid lines and tick marks on top of images.

LineStyleOrder LineSpec (default: a solid line '-')

Order of line styles and markers used in a plot. This property specifies which
line styles and markers to use and in what order when creating multiple-line
plots. For example,

set(gca,'LineStyleOrder', '−*|:|o')

sets LineStyleOrder to solid line with asterisk marker, dotted line, and hollow
circle marker. The default is (−), which specifies a solid line for all data plotted.
Alternatively, you can create a cell array of character strings to define the line
styles:

set(gca,'LineStyleOrder',{'−*',':','o'})

MATLAB supports four line styles, which you can specify any number of times
in any order. MATLAB cycles through the line styles only after using all colors
defined by the ColorOrder property. For example, the first eight lines plotted
use the different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second line style
specified, and so on.

Axes Properties

2-164

You can also specify line style and color directly with the plot and plot3
functions or by altering the properties of the line or lineseries objects after
creating the graph.

High-Level Functions and LineStyleOrder
Note that, if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the LineStyleOrder property before
determining the line style to use. If you want MATLAB to use a
LineStyleOrder that is different from the default, set NextPlot to
replacechildren.

Specifying a Default LineStyleOrder
You can also specify your own default LineStyleOrder. For example, this
statement

set(0,'DefaultAxesLineStyleOrder',{'−*',':','o'})

creates a default value for the axes LineStyleOrder that is not reset by
high-level plotting functions.

LineWidth line width in points

Width of axis lines. This property specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points (1 point = 1/72 inch).

MinorGridLineStyle − | − −| {:} | −. | none

Line style used to draw minor grid lines. The line style is a string consisting of
one or more characters, in quotes, specifying solid lines (−), dashed lines (−−),
dotted lines (:), or dash-dot lines (−.). The default minor grid line style is
dotted. To turn on minor grid lines, use the grid minor command.

NextPlot add | {replace} | replacechildren

Where to draw the next plot. This property determines how high-level plotting
functions draw into an existing axes.

• add — Use the existing axes to draw graphics objects.

• replace — Reset all axes properties except Position to their defaults and
delete all axes children before displaying graphics (equivalent to cla reset).

• replacechildren — Remove all child objects, but do not reset axes
properties (equivalent to cla).

Axes Properties

2-165

The newplot function simplifies the use of the NextPlot property and is used
by M-file functions that draw graphs using only low-level object creation
routines. See the M-file pcolor.m for an example. Note that figure graphics
objects also have a NextPlot property.

OuterPosition four-element vector

Position of axes including labels, title, and a margin. A four-element vector
specifying a rectangle that locates the outer bounds of the axes, including axis
labels, the title, and a margin. The vector is defined as follows:

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle

The following picture shows the region defined by the OuterPosition enclosed
in a yellow rectangle.

The yellow rectangle
shows the extent of
the OuterPosition.

The green rectangle
shows the extent of
the Position.

Axes Properties

2-166

When ActivePositionProperty is set to OuterPosition (the default), none of
the text is clipped when you resize the figure. The default value of [0 0 1 1]
(normalized units) includes the interior of the figure.

All measurements are in units specified by the Units property.

See the TightInset property for related information.

See Automatic Axes Resize for more information.

Parent figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of an axes object
is the figure in which it is displayed or the uipanel object that contains it. The
utility function gcf returns the handle of the current axes Parent. You can
reparent axes to other figure or uipanel objects.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of axes plot box. A three-element vector controlling the relative
scaling of the plot box in the x, y, and z directions. The plot box is a box
enclosing the axes data region as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control the
way graphics objects are displayed in the axes. Setting the
PlotBoxAspectRatio disables stretch-to-fill behavior, if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

PlotBoxAspectRatioMode {auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the
values of the PlotBoxAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the PlotBoxAspectRatio
property automatically sets this property to manual. Changing the
PlotBoxAspectRatioMode to manual disables stretch-to-fill behavior if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

Axes Properties

2-167

Position four-element vector

Position of axes. A four-element vector specifying a rectangle that locates the
axes within the figure window. The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle. All measurements are in units specified by the
Units property.

When axes stretch-to-fill behavior is enabled (when DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto), the axes
are stretched to fill the Position rectangle. When stretch-to-fill is disabled, the
axes are made as large as possible, while obeying all other properties, without
extending outside the Position rectangle.

See the OuterPosition poperty for related information.

Projection {orthographic} | perspective

Type of projection. This property selects between two projection types:

• orthographic — This projection maintains the correct relative dimensions
of graphics objects with regard to the distance a given point is from the
viewer. Parallel lines in the data are drawn parallel on the screen.

• perspective — This projection incorporates foreshortening, which allows
you to perceive depth in 2-D representations of 3-D objects. Perspective
projection does not preserve the relative dimensions of objects; a distant line
segment is displayed smaller than a nearer line segment of the same length.
Parallel lines in the data may not appear parallel on screen.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the axes has been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four

Axes Properties

2-168

corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular axes, regardless of user actions that may have changed the current
axes. To do this, identify the axes with a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching for the Tag
with findobj:

axes(findobj('Tag','Special Axes'))

TickDir in | out

Direction of tick marks. For 2-D views, the default is to direct tick marks
inward from the axis lines; 3-D views direct tick marks outward from the axis
line.

TickDirMode {auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks
inward for 2-D views and outward for 3-D views. When you specify a setting for
TickDir, MATLAB sets TickDirMode to manual. In manual mode, MATLAB
does not change the specified tick direction.

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of axes tick
marks. The first element is the length of tick marks used for 2-D views and the
second element is the length of tick marks used for 3-D views. Specify tick mark
lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

Axes Properties

2-169

TightInset [left bottom right top] Read only

Margins added to Position to include text labels. The values of this property are
the distances between the bounds of the Position property and the extent of
the axes text labels and title. When added to the Position width and height
values, the TightInset defines the tightest bounding box that encloses the
axes and it’s labels and title.

See Automatic Axes Resize for more information.

Title handle of text object

Axes title. The handle of the text object that is used for the axes title. You can
use this handle to change the properties of the title text or you can set Title to
the handle of an existing text object. For example, the following statement
changes the color of the current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text object you want
to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to create or replace
an axes title:

title('New Title','Color','r') % Make text color red
title({'This title','has 2 lines'}) % Two line title

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For axes objects, Type is always set to 'axes'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the handle of a
Uicontextmenu object created in the axes’ parent figure. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the axes.

Units inches | centimeters | {normalized} |
points | pixels | characters

Position units. The units used to interpret the Position property. All units are
measured from the lower left corner of the figure window.

Axes Properties

2-170

• normalized units map the lower left corner of the figure window to (0,0) and
the upper right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72 of
an inch).

• Character units are defined by characters from the default system font; the
width of one character is the width of the letter x, and the height of one
character is the distance between the baselines of two lines of text.

UserData matrix

User-specified data. This property can be any data you want to associate with
the axes object. The axes does not use this property, but you can access it using
the set and get functions.

View Obsolete

The functionality provided by the View property is now controlled by the axes
camera properties — CameraPosition, CameraTarget, CameraUpVector, and
CameraViewAngle. See the view command.

Visible {on} | off

Visibility of axes. By default, axes are visible. Setting this property to off
prevents axis lines, tick marks, and labels from being displayed. The Visible
property does not affect children of axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where
MATLAB displays the x-axis tick marks and labels. Setting this property to top
moves the x-axis to the top of the plot from its default position at the bottom.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where
MATLAB displays the y-axis tick marks and labels. Setting this property to
right moves the y-axis to the right side of the plot from its default position on
the left side. See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis
XColor, YColor, ZColor ColorSpec

Color of axis lines. A three-element vector specifying an RGB triple, or a
predefined MATLAB color string. This property determines the color of the axis

Axes Properties

2-171

lines, tick marks, tick mark labels, and the axis grid lines of the respective x-,
y-, and z-axis. The default color axis color is black. See ColorSpec for details on
specifying colors.

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing
axis values. Axes form a right-hand coordinate system. By default,

• x-axis values increase from left to right. To reverse the direction of increasing
x values, set this property to reverse.
set(gca,'XDir','reverse')

• y-axis values increase from bottom to top (2-D view) or front to back (3-D
view). To reverse the direction of increasing y values, set this property to
reverse.
set(gca,'YDir','reverse')

• z-axis values increase pointing out of the screen (2-D view) or from bottom to
top (3-D view). To reverse the direction of increasing z values, set this
property to reverse.

set(gca,'ZDir','reverse')

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws
grid lines perpendicular to the respective axis (i.e., along lines of constant x, y,
or z values). Use the grid command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel, YLabel, ZLabel handle of text object

Axis labels. The handle of the text object used to label the x-, y-, or z-axis,
respectively. To assign values to any of these properties, you must obtain the
handle to the text string you want to use as a label. This statement defines a
text object and assigns its handle to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

MATLAB places the string 'axis label' appropriately for an x-axis label. Any
text object whose handle you specify as an XLabel, YLabel, or ZLabel property
is moved to the appropriate location for the respective label.

Axes Properties

2-172

Alternatively, you can use the xlabel, ylabel, and zlabel functions, which
generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum
values of the respective axis.

Changing these properties affects the scale of the x-, y-, or z-dimension as well
as the placement of labels and tick marks on the axis. The default values for
these properties are [0 1].

XLimMode, YLimMode, ZLimMode {auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether
MATLAB calculates axis limits based on the data plotted (i.e., the XData,
YData, or ZData of the axes children) or uses the values explicitly set with the
XLim, YLim, or ZLim property, in which case, the respective limits mode is set to
manual.

XMinorGrid, YMinorGrid, ZMinorGrid on | {off}

Enable or disable minor gridlines. When set to on, MATLAB draws gridlines
aligned with the minor tick marks of the respective axis. Note that you do not
have to enable minor ticks to display minor grids.

XMinorTick, YMinorTick, ZMinorTick on | {off}

Enable or disable minor tick marks. When set to on, MATLAB draws tick
marks between the major tick marks of the respective axis. MATLAB
automatically determines the number of minor ticks based on the space
between the major ticks.

XScale, YScale, ZScale {linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis. See also
loglog, semilogx, and semilogy.

XTick, YTick, ZTick vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of
tick marks along the respective axis. If you do not want tick marks displayed,
set the respective property to the empty vector, []. These vectors must contain
monotonically increasing values.

Axes Properties

2-173

XTickLabel, YTickLabel, ZTickLabel string

Tick labels. A matrix of strings to use as labels for tick marks along the
respective axis. These labels replace the numeric labels generated by
MATLAB. If you do not specify enough text labels for all the tick marks,
MATLAB uses all of the labels specified, then reuses the specified labels.

For example, the statement

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the labels until all
ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string
vectors separated by vertical slash characters, or as numeric vectors (where
each number is implicitly converted to the equivalent string using num2str).
All of the following are equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences (however, the
Title, XLabel, YLabel, and ZLabel properties do).

XTickMode, YTickMode, ZTickMode {auto} |
manual

MATLAB or user-controlled tick spacing. The axis tick modes determine
whether MATLAB calculates the tick mark spacing based on the range of data
for the respective axis (auto mode) or uses the values explicitly set for any of
the XTick, YTick, and ZTick properties (manual mode). Setting values for the
XTick, YTick, or ZTick properties sets the respective axis tick mode to manual.

XTickLabelMode, YTickLabelMode, ZTickLabelMode {auto} |
manual

MATLAB or user-determined tick labels. The axis tick mark labeling mode
determines whether MATLAB uses numeric tick mark labels that span the
range of the plotted data (auto mode) or uses the tick mark labels specified
with the XTickLabel, YTickLabel, or ZTickLabel property (manual mode).
Setting values for the XTickLabel, YTickLabel, or ZTickLabel property sets
the respective axis tick label mode to manual.

axis

2-174

2axisPurpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis

axis auto
axis manual
axis tight
axis fill

axis ij
axis xy

axis equal
axis image
axis square
axis vis3d
axis normal

axis off
axis on
axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and
z-axis limits and the color scaling limits (see caxis) of the current axes.

v = axis returns a row vector containing scaling factors for the x-, y-, and
z-axis. v has four or six components depending on whether the current axes is
2-D or 3-D, respectively. The returned values are the current axes XLim, Ylim,
and ZLim properties.

axis

2-175

axis auto sets MATLAB to its default behavior of computing the current axes
limits automatically, based on the minimum and maximum values of x, y, and
z data. You can restrict this automatic behavior to a specific axis. For example,
axis 'auto x' computes only the x-axis limits automatically; axis 'auto yz'
computes the y- and z-axis limits automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so that
if hold is on, subsequent plots use the same limits. This sets the XLimMode,
YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that the axes fill
the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner. The i-axis
is vertical, with values increasing from top to bottom. The j-axis is horizontal
with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with the
coordinate system origin in the lower left corner. The x-axis is horizontal with
values increasing from left to right. The y-axis is vertical with values
increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same in every
direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically
according to the range of data units in the x, y, and z directions.

axis image is the same as axis equal except that the plot box fits tightly
around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so that they
have equal lengths and adjusts the increments between data units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretch-to-fill.

axis

2-176

axis normal automatically adjusts the aspect ratio of the axes and the relative
scaling of the data units so that the plot fits the figure’s shape as well as
possible.

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified axes. For
example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three strings
indicating the current setting of axes properties:

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

use the automatic scaling of the y-axis based on ymax = tan(1.57), which is
well over 1000:

Output Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

axis

2-177

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

200

400

600

800

1000

1200

1400

axis

2-178

Algorithm When you specify minimum and maximum values for the x-, y-, and z-axes,
axis sets the XLim, Ylim, and ZLim properties for the current axes to the
respective minimum and maximum values in the argument list. Additionally,
the XLimMode, YLimMode, and ZLimMode properties for the current axes are set
to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode properties
to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

axis

2-179

The following table shows the values of the axes properties set by axis equal,
axis normal, axis square, and axis image.

See Also axes, grid, subplot, xlim, ylim, zlim

Properties of axes graphics objects

“Axes Operations” for related functions

Axes Property axis equal axis normal axis square axis tightequal

DataAspectRatio [1 1 1] not set not set [1 1 1]

DataAspectRatioMode manual auto auto manual

PlotBoxAspectRatio [3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode manual auto manual auto

Stretch-to-fill disabled active disabled disabled

balance

2-180

2balance
Purpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row and
column norms. T is a permutation of a diagonal matrix whose elements are
integer powers of two to prevent the introduction of round-off error. If A is
symmetric, then B == A and T is the identity matrix.

[S,P,B] = balance(A) returns the scaling vector S and the permutation
vector P separately. The transformation T and balanced matrix B are obtained
from A, S, and P by T(:,P) = diag(S) and B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and columns.

 Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The condition number of the eigenvector
matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue
perturbation. Note that the condition number of A itself is irrelevant to the
eigenvalue problem.

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column.

balance

2-181

Note The MATLAB eigenvalue function, eig(A), automatically balances A
before computing its eigenvalues. Turn off the balancing with
eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A, shown
here as the columns of V.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

balance

2-182

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond(V) is 8.7766e+003. Next, look at the
eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
 0.2839 0.4437 -0.6482
 0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.

Algorithm Inputs of Type Double
For inputs of type double, balance uses the linear algebra package (LAPACK)
routines DGEBAL (real) and ZGEBAL (complex). If you request the output T,
balance also uses the LAPACK routines DGEBAK (real) and ZGEBAK (complex).

Inputs of Type Single
For inputs of type single, balance uses the LAPACK routines SGEBAL (real)
and CGEBAL (complex). If you request the output T, balance also uses the
LAPACK routines SGEBAK (real) and CGEBAK (complex).

Limitations Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

See Also eig

References Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

bar, barh

2-183

2bar, barhPurpose Bar graph (vertical and horizontal)

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,'bar_color')
bar(axes_handle,...)
h = bar(...)
hpatches = bar('v6',...)

barh(...)
h = barh(...)
hpatches = barh('v6',...)

Description A bar graph displays the values in a vector or matrix as horizontal or vertical
bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups the bars
produced by the elements in each row. The x-axis scale ranges from 1 to
length(Y) when Y is a vector, and 1 to size(Y,1), which is the number of rows,
when Y is a matrix.

bar(x,Y) draws a bar for each element in Y at locations specified in x, where x
is a monotonically increasing vector defining the x-axis intervals for the
vertical bars. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, the bars
within a group have a slight separation. If width is 1, the bars within a group
touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped' or
'stacked'. 'group' is the default mode of display.

• 'grouped' displays m groups of n vertical bars, where m is the number of
rows and n is the number of columns in Y. The group contains one bar per
column in Y.

bar, barh

2-184

• 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multicolored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar(...,'bar_color') displays all bars using the color specified by the
single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

bar(axes_handles,...) and barh(axes_handles,...) plots into the axes
with handle axes_handle instead of the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects. bar
creates one barseries graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Backward Compatible Versions

hpatches = bar('v6',...) and hpatches = barh('v6',...) return the
handles of patch objects instead of barseries objects for compatibility with
MATLAB 6.5 and earlier. See patch object properties for a discussion of the
properties you can set to control the appearance of these bar graphs.

See Plot Objects and Backward Compatibility for more information.

Barseries
Objects

Creating a bar graph of an m-by-n matrix creates m groups of n barseries
objects. Each barseries objects contains the data for corresponding x values of
each bar group (as indicated by the coloring of the bars).

Note that some barseries objects properties set on an individual barseries
object, set the values for all barseries objects in the graph. See the property
descriptions for information on specific properties.

Examples Single Series of Data
This example plots a bell-shaped curve as a bar graph and sets the colors of the
bars to red.

x = -2.9:0.2:2.9;

bar, barh

2-185

bar(x,exp(-x.*x),'r')

Bar Graph Options
This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'

subplot(2,2,2)
bar(Y,'stack')
title 'Stack'

subplot(2,2,3)
barh(Y,'stack')
title 'Stack'

subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bar, barh

2-186

Setting Properties with Multiobject Graphs
This example creates a graph that displays three groups of bars and contains
five barseries objects. Since all barseries objects in a graph share the same
baseline, you can set values using any barseries object’s BaseLine property.
This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1),'BaseLine'),'LineWidth',2,'LineStyle',':')
colormap summer % Change the color scheme

1 2 3 4 5
0

2

4

6

8

10
Group

1 2 3 4 5
0

5

10

15

20

25
Stack

0 5 10 15 20 25

1

2

3

4

5

Stack

1 2 3 4 5
0

2

4

6

8

10
Width = 1.5

bar, barh

2-187

See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” for related functions

“Barseries Properties” on page 2-192

Bar and Area Graphs for more examples

1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

bar3, bar3h

2-188

2bar3, bar3hPurpose Three-dimensional bar chart

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)

bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to
length(Y). When Y is a matrix, the x-axis scale ranges from 1 to size(Y,2),
which is the number of columns, and the elements in each row are grouped
together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations specified in
x, where x is a monotonic vector defining the y-axis intervals for vertical bars.
If Y is a matrix, bar3 clusters elements from the same row in Y at locations
corresponding to an element in x. Values of elements in each row are grouped
together.

bar3(...,width) sets the width of the bars and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, bars within
a group have a slight separation. If width is 1, the bars within a group touch
one another.

bar3(...,'style') specifies the style of the bars. 'style' is 'detached',
'grouped', or 'stacked'. 'detached' is the default mode of display.

• 'detached' displays the elements of each row in Y as separate blocks behind
one another in the x direction.

bar3, bar3h

2-189

• 'grouped' displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multicolored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by LineSpec.

bar3(axes_handles,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects. bar3
creates one patch object per column in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Examples This example creates six subplots showing the effects of different arguments
for bar3. The data Y is a seven-by-three matrix generated using the cool
colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,'detached')
title('Detached')

subplot(3,2,2)
bar3(Y,0.25,'detached')
title('Width = 0.25')

subplot(3,2,3)
bar3(Y,'grouped')
title('Grouped')

subplot(3,2,4)
bar3(Y,0.5,'grouped')
title('Width = 0.5')

bar3, bar3h

2-190

subplot(3,2,5)
bar3(Y,'stacked')
title('Stacked')

subplot(3,2,6)
bar3(Y,0.3,'stacked')
title('Width = 0.3')

colormap([1 0 0;0 1 0;0 0 1])

Purpose Three-dimensional bar chart

bar3, bar3h

2-191

See Also bar, LineSpec, patch

“Area, Bar, and Pie Plots” for related functions

Bar and Area Graphs for more examples

1
2

3
4

5
6

7

0

0.5

1

Detached

1
2

3
4

5
6

7

0

0.5

1

Width = 0.25

1
2

3
4

5
6

7

0

0.5

1
Grouped

1
2

3
4

5
6

7

0

0.5

1
Width = 0.5

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Stacked

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Width = 0.3

Barseries Properties

2-192

2Barseries PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See Plot Objects for more information on barseries objects.

Barseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BarLayout {grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups of n vertical
bars, where m is the number of rows and n is the number of columns in the
input argument Y. The group contains one bar per column in Y.

Stacked bars display one bar for each row in the input argument Y. The bar
height is the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative contribution
each row element makes to the total sum.

BarWidth scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar width and
controls the separation of bars within a group. The default width is 0.8, so if
you do not specify x, the bars within a group have a slight separation. If width
is 1, the bars within a group touch one another.

BaseLine handle of baseline

Handle of the baseline object. This property contains the handle of the line
object used as the baseline. You can set the properties of this line using its
handle. For example, the following statements create a bar graph, obtain the
handle of the baseline from the barseries object, and then set line properties
that make the baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue double: y-axis value

Value where baseline is drawn. You can specify the value along the y-axis
(vertical bars) or x-axis (horizontal bars) at which MATLAB draws the
baseline.

Barseries Properties

2-193

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the barseries object.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

Barseries Properties

2-194

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the barseries object. The handle of a patch object that is the child of
the barseries object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the bar Children property unless you set
the root ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Clipping {on} | off

Clipping mode. MATLAB clips bar graphs to the axes plot box by default. If you
set Clipping to off, bars may be displayed outside the axes plot box.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a barseries object. You must
specify the callback during the creation of the object. For example,

bar(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other barseries properties.
Setting this property on an existing barseries object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
barseries object is deleted (e.g., this might happen when you issue a delete
command on the barseries object, its parent axes, or the figure containing it).
MATLAB executes the callback before destroying the object’s properties so the
callback routine can query these values.

Barseries Properties

2-195

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any barseries objects appearing in these legends.

EdgeColor {[0 0 0]} | none | ColorSpec

Color of the edge of the bars. You can set the color of the edge of the bars to a
three-element RGB vector or one of the MATLAB predefined names, including
the string none. The default edge color is black. See ColorSpec for more
information on specifying color.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase bar child objects (the patch object used to construct the bar plot).
Alternative erase modes are useful for creating animated sequences, where
control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if

Barseries Properties

2-196

the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR operation on
a pixel color with that of the pixel behind it) and ignore three-dimensional
sorting to obtain greater rendering speed. However, these techniques are not
applied to the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

FaceColor {flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for all filled areas. See ColorSpec for more
information on specifying color.

• none — Do not draw faces. Note that EdgeColor is drawn independently of
FaceColor.

• flat — The color of the filled areas is determined by the figure colormap. See
colormap for information on setting the colormap.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the barseries object.

Barseries Properties

2-197

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility
You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the barseries object can
become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the objects that

Barseries Properties

2-198

compose the bar graph. If HitTest is off, clicking the barseries object selects
the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select barseries object on bars or area of extent. This property enables you to
select barseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the bar graph.

When HitTestArea is off, you must click the bars to select the barseries object.
When HitTestArea is on, you can select the barseries object by clicking
anywhere within the extent of the bar graph (i.e., anywhere within a rectangle
that encloses all the bars).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a barseries object callback can be interrupted by callbacks invoked
subsequently.

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a bar property. Note that MATLAB does not
save the state of variables or the display (e.g., the handle returned by the gca
or gcf command) when an interruption occurs.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style used for the bar edges.
Available line styles are shown in the following table.

Symbol Line Style

− Solid line (default)

−− Dashed line

: Dotted line

Barseries Properties

2-199

LineWidth scalar

The width of the bar edges. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Parent axes handle

Parent of barseries object. This property contains the handle of the barseries
object’s parent object. The parent of a barseries object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the barseries object is
selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

ShowBaseLine {on} | off

Turn baseline display on or off. This property determines whether bar plots
display a baseline from which the bars are drawn. By default, the baseline is
displayed.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need

−. Dash-dot line

none No line

Symbol Line Style

Barseries Properties

2-200

to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create a barseries object and set the Tag property:

t = bar(Y,'Tag','bar1')

When you want to access the barseries object, you can use findobj to find the
barseries object’s handle. The following statement changes the FaceColor
property of the object whose Tag is bar1.

set(findobj('Tag','bar1'),'FaceColor','red')

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For barseries objects, Type is hggroup.

The following statement finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the barseries object. Assign this property the
handle of a uicontextmenu object created in the barseries object’s parent figure.
Use the uicontextmenu function to create the context menu. MATLAB displays
the context menu whenever you right-click over the area object.

UserData array

User-specified data. This property can be any data you want to associate with
the barseries object (including cell arrays and structures). The barseries object
does not set values for this property, but you can access it using the set and
get functions.

Visible {on} | off

Visibility of barseries object and its children. By default, barseries object
visibility is on. This means all children of the barseries object are visible unless
the child object’s Visible property is set to off. Setting a barseries object’s
Visible property to off also makes its children invisible.

XData array

Location of bars. The x-axis intervals for the vertical bars or y-axis intervals for
horizontal bars (as specified by the x input argument). If YData is a vector,

Barseries Properties

2-201

XData must be the same size. If YData is a matrix, the length of XData must be
equal to the number of rows in YData.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the x input argument), MATLAB sets this
property to manual.

If you set XDataMode to auto after having specified XData, MATLAB resets the
bar locations and x-tick labels (y-tick labels for horizontal bars) to the indices
of the YData.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

YData scalar, vector, or matrix

Bar plot data. YData contains the data plotted as bars (the Y input argument).
Each value in YData is represented by a bar in the bar graph. If YData is a
matrix, the bar function creates a “group” or a “stack” of bars for each column
in the matrix. See “Bar Graph Options” for examples of grouped and stacked
bar graphs.

The input argument Y in the bar function calling syntax assigns values to
YData.

Barseries Properties

2-202

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

base2dec

2-203

2base2decPurpose Base to decimal number conversion

Syntax d = base2dec('strn',base)

Description d = base2dec('strn',base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If 'strn' is a character array, each row is interpreted as a string in the
specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning 23.

See Also dec2base

beep

2-204

2beepPurpose Produce a beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces your computer’s default beep sound.

beep on turns the beep on.

beep off turns the beep off.

s = beep returns the current beep mode (on or off).

besselh

2-205

2besselhPurpose Bessel function of the third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. and form a fundamental set of
solutions of Bessel’s equation for noninteger . is a second solution of
Bessel’s equation – linearly independent of – defined by

The relationship between the Hankel and Bessel functions is

where is besselj, and is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function , where K = 1 or
2, for each element of the complex array Z. If nu and Z are arrays of the same
size, the result is also that size. If either input is a scalar, besselh expands it
to the other input's size. If one input is a row vector and the other is a column
vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

z2

z2

2

d

d y z dy
dz
------- z2 ν2–()y+ + 0=

ν
Jν z() J ν– z()

ν Yν z()
Jν z()

Yν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
--=

Hν
1() z() Jν z() i Yν z()+=

Hν
2() z() Jν z() i Yν z()–=

Jν z() Yν z()

Hν
K()

z()

Hν
K() z()

besselh

2-206

[H,ierr] = besselh(...) also returns completion flags in an array the same
size as H.

Examples This example generates the contour plots of the modulus and phase of the
Hankel function shown on page 359 of [1] Abramowitz and Stegun,
Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

ierr Description

0 besselh successfully computed the Hankel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

H0
1() z()

besselh

2-207

then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

See Also besselj, bessely, besseli, besselk

−4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

−4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

besselh

2-208

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965.

besseli

2-209

2besseliPurpose Modified Bessel function of the first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)
[I,ierr] = besseli(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

 and form a fundamental set of solutions of the modified Bessel’s
equation for noninteger . is defined by

where is the gamma function.

 is a second solution, independent of . It can be computed using
besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first kind,
, for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

I = besseli(nu,Z,1) computes besseli(nu,Z).*exp(-abs(real(Z))).

z2
z2

2

d
d y z dy

dz
------- z2 ν2+()y–+ 0=

ν

Iν z() I ν– z()
ν Iν z()

Iν z() z
2
--- 

  ν z2

4
----- 

 
k

k! Γ ν k 1+ +()
--

k 0=

∞

∑=

Γ a()

Kν z() Iν z()

Iν z()

besseli

2-210

[I,ierr] = besseli(...) also returns completion flags in an array the same
size as I.

Examples Example 1.

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
 0
 0.10050083402813
 0.20402675573357
 0.31370402560492
 0.43286480262064
 0.56515910399249

Example 2. besseli(3:9,(0:.2,10)',1) generates the entire table on
page 423 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besseli functions uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [1].

See Also airy, besselh, besselj, besselk, bessely

ierr Description

0 besseli succesfully computed the modified Bessel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

besseli

2-211

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[1] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselj

2-212

2besseljPurpose Bessel function of the first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

 and form a fundamental set of solutions of Bessel’s equation for
noninteger . is defined by

where is the gamma function.

is a second solution of Bessel’s equation that is linearly independent of
. It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind, , for
each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

J = besselj(nu,Z,1) computes besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array the
same size as J.

z2

z2

2

d

d y z dy
dz
------- z2 ν2–()y+ + 0=

ν

Jν z() J ν– z()
ν Jν z()

Jν z() z
2
--- 
  ν z2

4
-----– 

 
k

k! Γ ν k 1+ +()
--

k 0=

∞

∑=

Γ a()

Yν z()
Jν z()

Jν z()

besselj

2-213

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind,

where is besselh, is besselj, and is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation
(see besselh).

Examples Example 1.

format long
z = (0:0.2:1)';

besselj(1,z)

ans =
 0
 0.09950083263924
 0.19602657795532
 0.28670098806392
 0.36884204609417
 0.44005058574493

ierr Description

0 besselj succesfully computed the Bessel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Hν
1() z() Jν z() i Yν z()+=

Hν
2() z() Jν z() i Yν z()–=

Hν
K() z() Jν z() Yν z()

besselj

2-214

Example 2. besselj(3:9,(0:.2:10)') generates the entire table on page 398
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

See Also besselh, besseli, besselk, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselk

2-215

2besselkPurpose Modified Bessel function of the second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of the modified
Bessel’s equation for noninteger

and is the gamma function. is independent of .

 can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the second kind,
, for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

z2
z2

2

d
d y z dy

dz
------- z2 ν2+()y–+ 0=

ν

Kν z()

Kν z() π
2
--- 

  I ν– z() Iν z()–
νπ()sin

----------------------------------=

Iν z() I ν– z()
ν

Iν z() z
2
--- 

  ν z2

4
----- 

 
k

k! Γ ν k 1+ +()
--

k 0=

∞

∑=

Γ a() Kν z() Iν z()

Iν z()

Kν z()

besselk

2-216

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) also returns completion flags in an array the same
size as K.

Examples Example 1.

format long
z = (0:0.2:1)';

besselk(1,z)

ans =
 Inf
 4.77597254322047
 2.18435442473269
 1.30283493976350
 0.86178163447218
 0.60190723019723

Example 2. besselk(3:9,(0:.2:10)',1) generates part of the table on
page 424 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselk function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

ierr Description

0 besselk succesfully computed the modified Bessel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

besselk

2-217

See Also airy, besselh, besseli, besselj, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

bessely

2-218

2besselyPurpose Bessel functions of the second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of Bessel’s
equation for noninteger

and is the gamma function. is linearly independent of

 can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind, , for
each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z,1) computes bessely(nu,Z).*exp(-abs(imag(Z))).

z2

z2

2

d

d y z dy
dz
------- z2 ν2–()y+ + 0=

ν

Yν z()

Yν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
--=

Jν z() J ν– z()
ν

Jν z() z
2
--- 
  ν z2

4
-----– 

 
k

k! Γ ν k 1+ +()
--

k 0=

∞

∑=

Γ a() Yν z() Jν z()

Jν z()

Yν z()

bessely

2-219

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array the
same size as Y.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind,

where is besselh, is besselj, and is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation
(see besselh).

Examples Example 1.

format long
z = (0:0.2:1)';

bessely(1,z)

ans =
 -Inf
 -3.32382498811185
 -1.78087204427005

ierr Description

0 bessely succesfully computed the Bessel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Hν
1() z() Jν z() i Yν z()+=

Hν
2() z() Jν z() i Yν z()–=

Hν
K() z() Jν z() Yν z()

bessely

2-220

 -1.26039134717739
 -0.97814417668336
 -0.78121282130029

Example 2. bessely(3:9,(0:.2:10)') generates the entire table on page 399
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The bessely function uses a Fortran MEX-file to call a library developed by
D. E Amos [3] [4].

See Also besselh, besseli, besselj, besselk

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

beta

2-221

2betaPurpose Beta function

Syntax B = beta(Z,W)

Definition The beta function is

where is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements of
arrays Z and W. The arrays must be real and nonnegative. They must be the
same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
 = (n-1)!*2!/(n+2)!
 = 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to recover
the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252
1/360
1/495
1/660

B z w,() tz 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

beta

2-222

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

betainc

2-223

2betaincPurpose Incomplete beta function

Syntax I = betainc(X,Z,W)

Definition The incomplete beta function is

where , the beta function, is defined as

and is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for corresponding
elements of the arrays X, Z and W. The elements of X must be in the closed
interval . The arrays Z and W must be nonnegative and real. All arrays
must be the same size, or any of them can be scalar.

Examples format long
betainc(.5,(0:10)',3)

ans =
 1.00000000000000
 0.87500000000000
 0.68750000000000
 0.50000000000000
 0.34375000000000
 0.22656250000000
 0.14453125000000
 0.08984375000000
 0.05468750000000
 0.03271484375000
 0.01928710937500

See Also beta, betaln

Ix z w,() 1
B z w,()
-------------------- tz 1– 1 t–()w 1– td

0

x

∫=

B z w,()

B z w,() tz 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

0 1[,]

betaln

2-224

2betalnPurpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large or very
small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or either
can be scalar.

Examples x = 510
betaln(x,x)

ans =
 -708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x) directly
would underflow (or be denormal).

Algorithm betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta, betainc, gammaln

bicg

2-225

2bicgPurpose BiConjugate Gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
bicg(afun,b,tol,maxit,mfun1,mfun2,x0,p1,p2,...)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x and afun(x,'transp') returns A'*x.

If bicg converges, it displays a message to that effect. If bicg fails to converge
after the maximum number of iterations or halts for any reason, it prints a
warning message that includes the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then bicg
uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies no preconditioner.
M can be a function mfun such that mfun(x) returns M\x and mfun(x,'transp')
returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
bicg uses the default, an all-zero vector.

bicg

2-226

bicg(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp'), and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration number
at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a vector of the
residual norms at each iteration including norm(b-A*x0).

Examples Example 1.

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;

Flag Convergence

0 bicg converged to the desired tolerance tol within maxit
iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during bicg became
too small or too large to continue computing.

bicg

2-227

maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2,[]);

displays this message

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to bicg.

 x1 = bicg(@afun,b,tol,maxit,M1,M2,[],n);

Example 2. This examples demonstrates the use of a preconditioner. Start
with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
 8.3154e-017

bicg

2-228

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)

flag =
 1
relres =
 1
iter =
 0

The value of flag indicates that bicg iterated the default 20 times without
converging. The value of iter shows that the method behaved so badly that the
initial all-zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1.
You can confirm that the unpreconditioned method oscillates rather wildly by
plotting the relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('Iteration Number')
ylabel('Relative Residual')

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

Iteration Number

R
el

at
iv

e
R

es
id

ua
l

bicg

2-229

Now, try an incomplete LU factorization with a drop tolerance of 1e-5 for the
preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.
 It cannot be used as a preconditioner for an iterative
 method.

nnz(A), nnz(L1), nnz(U1)

ans =
 1887
ans =
 5562
ans =
 4320

The zero on the main diagonal of the upper triangular U1 indicates that U1 is
singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
 2
relres =
 1
iter =
 0
resvec =
 7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 using backslash. bicg is forced to return
the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

bicg

2-230

nnz(L2), nnz(U2)

ans =
 6231
ans =
 4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
 0
relres =
 2.8664e-016
iter =
 8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation to the
original matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.

bicg

2-231

See Also bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6 7 8

10
−15

10
−10

10
−5

10
0

1e−61e−8
1e−10

1e−12

1e−14

iteration number

re
la

tiv
e

re
si

du
al

bicgstab

2-232

2bicgstabPurpose BiConjugate Gradients Stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations A*x=b for
x. The n-by-n coefficient matrix A must be square and should be large and
sparse. The column vector b must have length n. A can be a function afun such
that afun(x) returns A*x.

If bicgstab converges, a message to that effect is displayed. If bicgstab fails
to converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function that returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicgstab uses the default, an all zero vector.

bicgstab

2-233

bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...),
and m2fun(x,p1,p2,...).

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit. iter can be an
integer + 0.5, indicating convergence half way through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns a vector
of the residual norms at each half iteration, including norm(b-A*x0).

Example Example 1. This example first solves Ax = b by providing A and the
preconditioner M1 directly as arguments. It then solves the same system using
functions that return A and the preconditioner.

A = gallery('wilk',21);
b = sum(A,2);

Flag Convergence

0 bicgstab converged to the desired tolerance tol within
maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicgstab
became too small or too large to continue computing.

bicgstab

2-234

tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1,[],[]);

displays this message

bicgstab converged at iteration 12.5 to a solution with relative
residual 2.9e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to bicgstab

x1 = bicgstab(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept bicgstab's extra input n=21.

Example 2. This examples demonstrates the use of a preconditioner. Start
with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

bicgstab

2-235

flag1 is 2 because the upper triangular U1 has a zero on its diagonal. This
causes bicgstab to fail in the first iteration when it tries to solve a system such
as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016 (the
value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance of
1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can
follow the progress of bicgstab by plotting the relative residuals at the halfway
point and end of each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al

bicgstab

2-236

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

bin2dec

2-237

2bin2decPurpose Binary to decimal number conversion

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and returns the
equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Examples Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =
 23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =
 23

See Also dec2bin

binary (ftp)

2-238

2binary (ftp)Purpose Set FTP transfer type to binary.

Syntax binary(f)

Description binary(f) sets the FTP download and upload mode to binary, which does not
convert new lines, where f was created using ftp. Use this function when
downloading or uploading any nontext file, such as an executable or ZIP
archive.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object
 host: ftp.mathworks.com
 user: anonymous
 dir: /
 mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp function
to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object
 host: ftp.mathworks.com
 user: anonymous
 dir: /
 mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the disp
function to display the FTP object.

binary(tmw)
disp(tmw)
FTP Object
 host: ftp.mathworks.com
 user: anonymous

bitand

2-239

2bitandPurpose Bitwise AND

Syntax C = bitand(A, B)

Description C = bitand(A, B) returns the bitwise AND of two unsigned integer
arguments A and B.

Examples Example 1
The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bitwise AND on these numbers yields 01001,
or 9:

C = bitand(uint8(13), uint8(27))
C =
 9

Example 2
Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitand(A, B)
TT =
 0 0
 0 1

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitcmp

2-240

2bitcmpPurpose Complement bits

Syntax C = bitcmp(A, n)

Description C = bitcmp(A, n) returns the bitwise complement of A as an n-bit unsigned
integer.

The value assigned to A may not have any bits set higher than n, (that is, its
value may not be greater than 2^n-1). If n is the number of bits in the unsigned
integer class of A (for example, if A is a uint32 and n is 32) then the value of A
may be between 0 and intmax(class(A)).

Example Example 1
With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).

C = bitcmp(uint8(99), 8)
C =
 156

Example 2
find the complement of 255 (hexadecimal FF):

a = uint16(intmax('uint8'));
bitcmp(a, 8)
ans =
 0

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitget

2-241

2bitgetPurpose Get bit

Syntax C = bitget(A, bit)

Description C = bitget(A, bit) returns the value of the bit at position bit in A. Operand
A must be an unsigned integer, and bit must be a number between 1 and the
number of bits in the unsigned integer class of A (e.g., 32 for the uint32 class).

Example Example 1
The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101

C = bitget(uint8(13), 4:-1:1)
C =
 1 1 0 1

Example 2
Prove that intmax sets all the bits to 1:

a = intmax('uint8');
if all(bitget(a, 1:8))
 disp('All the bits have value 1.')
 end

All the bits have value 1.

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

bitmax

2-242

2bitmaxPurpose Maximum floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned double-precision floating-point integer
for your computer. It is the value when all bits are set, namely the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the largest
32 bit unsigned integer:

format long e
bitmax
ans =
 9.007199254740991e+015

intmax('uint32')
ans =
 4294967295

format hex
bitmax
ans =
 433fffffffffffff

intmax('uint32')
ans =
 ffffffff

In the second bitmax statement, the last 13 hex digits of bitmax are f,
corresponding to 52 1's (all 1's) in the mantissa of the binary representation.
The first 3 hex digits correspond to the sign bit 0 and the 11 bit biased exponent
10000110011 in binary (1075 in decimal), and the actual exponent is
(1075-1023) = 52. Thus the binary value of bitmax is 1.111...111 x 2^52 with
52 trailing 1's, or 2^53-1.

bitmax

2-243

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

bitor

2-244

2bitorPurpose Bitwise OR

Syntax C = bitor(A, B)

Description C = bitor(A, B) returns the bitwise OR of two unsigned integer arguments A
and B.

Examples Example 1
The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bitwise OR on these numbers yields 11111,
or 31.

C = bitor(uint8(13), uint8(27))
C =
 31

Example 2
Create a truth table for a logical OR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitor(A, B)
TT =
 0 1
 1 1

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

bitset

2-245

2bitsetPurpose Set bit

Syntax C = bitset(A, bit)
C = bitset(A, bit, v)

Description C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be an unsigned
integer and bit must be a number between 1 and the number of bits in the
unsigned integer class of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) sets the bit at position bit to the value v, which must
be either 0 or 1.

Examples Example 1
Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25:

C = bitset(uint8(9), 5)
C =
 25

Example 2
Repeatedly subtract powers of 2 from the largest uint32 value:

a = intmax('uint32')
for k = 1:32
 a = bitset(a, 32-k+1, 0)
 end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

bitshift

2-246

2bitshiftPurpose Bitwise shift

Syntax C = bitshift(A, k)
C = bitshift(A, k, n)

Description C = bitshift(A, k) returns the value of A shifted by k bits. Input argument
A is usually an unsigned integer. Shifting by k is the same as multiplication by
2^k. Negative values of k are allowed and this corresponds to shifting to the
right, or dividing by 2^ABS(k) and truncating to an integer.

If the shift causes C to overflow the number of bits in the unsigned integer class
of A, then the overflowing bits are dropped. If A is a double precision variable,
then its value must be an integer integer between 0 and BITMAX and overflow
happens after 53 bits.

C = bitshift(A, k, n) where A is double precision, causes any bits that
overflow n bits to be dropped. the value of n must be less than or equal to 53.

Instead of using bitshift(a, k, 8) or another power of 2 for n, consider using
bitshift(uint8(a), k) or the appropriate unsigned integer class for A.

Examples Example 1
Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).

C = bitshift(12, 2)
C =
 48

Example 2
Repeatedly shift the bits of an unsigned 16 bit value to the left until all the
nonzero bits overflow. Track the progress in binary:

a = intmax('uint16');
disp(sprintf(...
 'Initial uint16 value %5d is %16s in binary', ...
 a, dec2bin(a)))

for k = 1:16
 a = bitshift(a, 1);
 disp(sprintf(...

bitshift

2-247

 'Shifted uint16 value %5d is %16s in binary',...
 a, dec2bin(a)))
 end

Repeat this experiment, this time using a double precision variable:

a = double(intmax('uint16'));
disp(sprintf(...
 'Initial double value %5d is %16s in binary', ...
 a, dec2bin(a)))

for k = 1:16
 a = bitshift(a, 1, 16);
 disp(sprintf(...
 'Shifted double value %5d is %16s in binary',...
 a, dec2bin(a)))
 end

Now notice the difference with letting the double precision variable overflow at
its default 53 bits. For brevity, shift by 3 each time:

a = double(intmax('uint16'));
disp(sprintf(...
 'Initial double value %16.0f is %53s in binary', ...
 a, dec2bin(a)))

for i = 1:18
 a = bitshift(a, 3);
 disp(sprintf(...
 'Shifted double value %16.0f is %53s in binary',...
 a, dec2bin(a)))
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

bitxor

2-248

2bitxorPurpose Bitwise XOR

Syntax C = bitxor(A, B)

Description C = bitxor(A, B) returns the bitwise XOR of the two arguments A and B.
Both A and B must be unsigned integers.

Examples Example 1
The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bitwise XOR on these numbers yields 10110,
or 22.

C = bitxor(uint8(13), uint8(27))
C =
 22

Example 2
Create a truth table for a logical XOR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitxor(A, B)
TT =
 0 1
 1 0

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

2-249

2blanksPurpose A string of blanks

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home

blkdiag

2-250

2blkdiagPurpose Construct a block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...) , where a, b, c, d, ... are matrices, outputs a
block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of equal
size.

See Also diag, horzcat, vertcat

a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 …

box

2-251

2boxPurpose Display axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid

“Axes Operations” for related functions

break

2-252

2breakPurpose Terminate execution of a for loop or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in the loop
that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control
passes to the statement that follows the end of that loop.

Remarks break is not defined outside a for or while loop. Use return in this context
instead.

Examples The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line), break, end
 s = strvcat(s,line);
end
disp(s)

See Also for, while, end, continue, return

brighten

2-253

2brightenPurpose Brighten or darken colormap

 Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap. The
modified colormap is brighter if 0 < beta < 1 and darker if 1 < beta < 0.

brighten(beta) replaces the current colormap with a brighter or darker
colormap of essentially the same colors. brighten(beta), followed by
brighten(beta), where beta < 1, restores the original map.

brighten(h,beta) brightens all objects that are children of the figure having
the handle h.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version of the
colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = .5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where gamma is

brighten has no effect on graphics objects defined with true color.

See Also colormap, rgbplot

“Color Operations” for related functions

Altering Colormaps for more information

γ
1 β, β 0>–

1
1 β+
-------------, β 0≤




=

builtin

2-254

2builtinPurpose Execute built-in function from overloaded method

Syntax builtin(function, x1, ..., xn)
[y1, ..., yn] = builtin(function, x1, ..., xn)

Description builtin is used in methods that overload built-in functions to execute the
original built-in function. If function is a string containing the name of a
built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function at the
given arguments x1 throug xn. The function argument must be a string
containing a valid function name. function cannot be a function handle.

[y1, ..., yn] = builtin(function, x1, ..., xn) returns multiple
output arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original built-in
version of the function even if an overloaded one exists. (For this to work you
must never overload builtin.)

See Also feval

bvp4c

2-255

2bvp4cPurpose Solve boundary value problems (BVPs) for ordinary differential equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)

Arguments odefun A function that evaluates the differential equations . It can
have the form

dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

where x is a scalar corresponding to , and y is a column vector
corresponding to . parameters is a vector of unknown
parameters, and p1,p2,... are known parameters. The output
dydx is a column vector.

bcfun A function that computes the residual in the boundary conditions.
For two-point boundary value conditions of the form

, bcfun can have the form
res = bcfun(ya,yb)
res = bcfun(ya,yb,p1,p2,...)
res = bcfun(ya,yb,parameters)
res = bcfun(ya,yb,parameters,p1,p2,...)

where ya and yb are column vectors corresponding to and
. parameters is a vector of unknown parameters, and

p1,p2,... are known parameters. The output res is a column
vector.

See “Multipoint Boundary Value Problems” on page 2-258 for a
description of bcfun for multipoint boundary value problems.

solinit A structure containing the initial guess for a solution. You create
solinit using the function bvpinit. solinit has the following
fields.

x Ordered nodes of the initial mesh. Boundary
conditions are imposed at = solinit.x(1) and

= solinit.x(end).

f x y,()

x
y

bc y a() y b(),()

y a()
y b()

a
b

bvp4c

2-256

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

bvp4c can also solve multipoint boundary value problems. See “Multipoint
Boundary Value Problems” on page 2-258. You can use the function bvpinit to
specify the boundary points, which are stored in the input argument solinit.
See the reference page for bvpint for more information.

The bvp4c solver can also find unknown parameters for problems of the form

where corresponds to parameters. You provide bvp4c an initial guess for any
unknown parameters in solinit.parameters. The bvp4c solver returns the
final values of these unknown parameters in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first
derivative there. Use the function deval and the output sol of bvp4c to
evaluate the solution at specific points xint in the interval [a,b].

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the solution at the
node solinit.x(i).

parameters Optional. A vector that provides an initial guess for
unknown parameters.

The structure can have any name, but the fields must be named x,
y, and parameters. You can form solinit with the helper function
bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create using the
bvpset function. See bvpset for details.

p1,p2... Optional. Known parameters that the solver passes to odefun,
bcfun, and all the functions specified in options.

y ′ f x y,()=

bc y a() y b(),() 0=

p

y ′ f x y p, ,()=
0 b= c y a() y b() p, ,()

p

bvp4c

2-257

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

The structure sol can have any name, and bvp4c creates the fields x, y, yp,
parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with default
integration properties replaced by the values in options, a structure created
with the bvpset function. See bvpset for details.

sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...) passes constant
known parameters, p1, p2, ..., to odefun, bcfun, and all the functions the user
specifies in options. Use options = [] as a placeholder if no options are set.

 at any point in [a,b]. If there are unknown parameters,

solinit = bvpinit(x, yinit, params) forms the initial guess solinit with
the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems
bvp4c solves a class of singular boundary value problems, including problems
with unknown parameters p, of the form

The interval is required to be [0, b] with b > 0. Often such problems arise when
computing a smooth solution of ODEs that result from partial differential
equations (PDEs) due to cylindrical or spherical symmetry. For singular
problems, you specify the (constant) matrix S as the value of the
'SingularTerm' option of bvpset, and odefun evaluates only f(x, y, p). The

sol.x Mesh selected by bvp4c

sol.y Approximation to at the mesh points of sol.x

sol.yp Approximation to at the mesh points of sol.x

sol.parameters Values returned by bvp4c for the unknown parameters,
if any

sol.solver 'bvp4c'

y x()

y ′ x()

y ′ S y x⁄⋅ f+ x y p, ,()=
0 bc y 0() y b() p, ,()=

bvp4c

2-258

boundary conditions must be consistent with the necessary condition
 and the initial guess should satisfy this condition.

Multipoint Boundary Value Problems
bvp4c can solve multipoint boundary value problems where

 are boundary points in the interval . The
points represent interfaces that divide into regions.
bvp4c enumerates the regions from left to right (from a to b), with indices
starting from 1. In region k, , bvp4c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of . Similarly,
yright(:, k) is the solution at the right boundary of region k. In particular,

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

For example, if there just one equation and the boundary points are 0 < 1 < 2,
to specify the boundary conditions

yleft and yright have the following values.

yleft = [4; 5];
yright = [4.5; 5.5];

The boundary condition function bcfun has the form

function res = bc(yleft, yright)
res = [yleft(1) - 4
 yright(1) - 4.5
 yleft(2) - 5
 yright(2) - 5.5];

S y 0()⋅ 0=

a a0 a1 a2 … an b=< < < <= a b,[]
a1 a2 … an 1–, , , a b,[]

ak 1– ak[,]

ak 1– ak[,]

y 0() 4= y 1() 4.5 on 0 1[,]=,

y 1() 5= y 1() 5.5 on 1 2[,]=,

bvp4c

2-259

When you create an initial guess with

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference page for
bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial guess for
the solution at x in region k. In the solution structure sol returned by bpv4c,
sol.x has double entries for each interface point. The corresponding columns
of sol.y contain the left and right solution at the interface, respectively.

For an example of solving a three-point boundary value problem, enter

threebvp

 Examples Example 1. Boundary value problems can have multiple solutions and one
purpose of the initial guess is to indicate which solution you want. The second
order differential equation

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first order ODEs

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB as
functions twoode and twobc.

y ′ ′ y+ 0=

y 0() 0=
y 4() 2–=

y1 ′ y2=

y2 ′ y1–=

y1 y= y2 y ′=

y ′ f x y,()=
bc y a() y b(),() 0=

f bc

bvp4c

2-260

function dydx = twoode(x,y)
 dydx = [y(2)
 -abs(y(1))];

function res = twobc(ya,yb)
 res = [ya(1)
 yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally spaced
points in [0,4] and a guess of constant values and with the
command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

Evaluate the numerical solution at 100 equally spaced points and plot
with

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

y1 x() 1≡ y2 x() 0≡

y x()

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

bvp4c

2-261

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

Example 2. This boundary value problem involves an unknown parameter.
The task is to compute the fourth () eigenvalue of Mathieu's equation

Because the unknown parameter is present, this second order differential
equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required by bvp4c
in a single M-file.

function mat4bvp

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

q 5= λ

y ′ ′ λ 2– q 2xcos() y+ 0=

λ

y ′ 0() 0=
y ′ π() 0=
y 0() 1=

bvp4c

2-262

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
 sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)
 -(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)
 yb(2)
 ya(1)-1];
% --
function yinit = mat4init(x)
yinit = [cos(4*x)
 -4*sin(4*x)];

The differential equation (converted to a first order system) and the boundary
conditions are coded as subfunctions mat4ode and mat4bc, respectively.
Because unknown parameters are present, these functions must accept three
input arguments, even though some of the arguments are not used.

The guess structure solinit is formed with bvpinit. An initial guess for the
solution is supplied in the form of a function mat4init. We chose
because it satisfies the boundary conditions and has the correct qualitative
behavior (the correct number of sign changes). In the call to bvpinit, the third
argument (lambda = 15) provides an initial guess for the unknown parameter

.

y 4xcos=

λ

bvp4c

2-263

After the problem is solved with bvp4c, the field sol.parameters returns the
value , and the plot shows the eigenfunction associated with this
eigenvalue.

Algorithms bvp4c is a finite difference code that implements the three-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh
selection and error control are based on the residual of the continuous solution.

See Also @ (function_handle), bvpget, bvpinit, bvpset, deval

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary Value
Problems for Ordinary Differential Equations in MATLAB with bvp4c,”
available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

λ 17.097=

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenfunction of Mathieu’s equation.

x

so
lu

tio
n

y

bvpget

2-264

2bvpgetPurpose Extract properties from the options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = bvpget(options,'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvpinit, bvpset, deval

bvpinit

2-265

2bvpinitPurpose Form the initial guess for bvp4c

Syntax solinit = bvpinit(x,yinit)
solinit = bvpinit(x,yinit,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,yinit) forms the initial guess for the boundary value
problem solver bvp4c.

x is a vector that specifies an initial mesh. If you want to solve the boundary
value problem (BVP) on , then specify x(1) as and x(end) as . The
function bvp4c adapts this mesh to the solution, so a guess like
x = linspace(a,b,10) often suffices. However, in difficult cases, you should
place mesh points where the solution changes rapidly. The entries of x must be
in

• Increasing order if

• Decreasing order if

For two-point boundary value problems, the entries of x must be distinct. That
is, if , the entries must satisfy x(1) < x(2) < ... < x(end). If , the
entries must satisfy x(1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in at
which the boundary conditions apply, other than the endpoints a and b, by
repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and 2, and the
repeated entry 1. In general, repeated entries represent boundary points
between regions in . In the preceding example, the repeated entry 1
divides the interval [0,2] into two regions: [0,1] and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

• Vector – For each component of the solution, bvpinit replicates the
corresponding element of the vector as a constant guess across all mesh
points. That is, yinit(i) is a constant guess for the ith component
yinit(i,:) of the solution at all the mesh points in x.

a b,[] a b

a b<
a b>

a b< a b>

a b,[]

a b,[]

bvpinit

2-266

• Function – For a given mesh point, the guess function must return a vector
whose elements are guesses for the corresponding components of the
solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as the
number of components in the solution. For example, if the guess function is
an M-file function, bvpinit calls
y(:,j) = @guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must be of the
form
y = guess(x, k)

where y an initial guess for the solution at x in region k. The function must
accept the input argument k, which is provided for flexibility in writing the
guess function. However, the function is not required to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the boundary value
problem involves unknown parameters. Use the vector parameters to provide
a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have any
name, but the fields must be named x, y, and parameters.

solinit = bvpinit(x, yinit, parameters, p1, p2...) passes the
additional known parameters p1, p2,... to the guess function yinit as
yinit(x, p1, p2...) for two-point boundary value problems, or as
yinit(x, k, p1, p2) for multipoint boundary value problems. You can only
use known parameters p1, p2, ... when yinit is a function. When there are no
unknown parameters, pass in [] for parameters.

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i) a guess for
the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess for unknown
parameters.

bvpinit

2-267

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on the interval
[anew bnew] from a solution sol on an interval . The new interval must
be larger than the previous one, so either anew <= a < b <= bnew or
anew >= a > b >= bnew. The solution sol is extrapolated to the new interval.
If sol contains parameters, they are copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit as
described above, but uses parameters as a guess for unknown parameters in
solinit.

See Also @ (function_handle), bvp4c, bvpget, bvpset, deval

a b,[]

bvpset

2-268

2bvpsetPurpose Create/alter boundary value problem (BVP) options structure

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options in which the named properties have the specified values.
Any unspecified properties have default values. It is sufficient to type only the
leading characters that uniquely identify the property. Case is ignored for
property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = bvpset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

bvpset with no input arguments displays all property names and their possible
values.

BVP Properties These properties are available.

Property Value Description

RelTol Positive scalar
{1e-3}

A relative tolerance that applies to all components of the
residual vector. The computed solution is the exact
solution of . On each
subinterval of the mesh, the residual satisfies

AbsTol Positive scalar or
vector {1e-6}

An absolue tolerance that applies to all components of the
residual vector. Elements of a vector of tolerances apply to
corresponding components of the residual vector.

S x()
S ′ x() F x S x(),() res x()+=

res x()

(res(i)/max(abs(F(i)),AbsTol(i)/RelTol)) RelTol≤

bvpset

2-269

Vectorized on | {off} Set on to inform bvp4c that you have coded the ODE
function F so that F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That is, your ODE function
can pass to the solver a whole array of column vectors at
once. This allows the solver to reduce the number of
function evaluations, and may significantly reduce
solution time.

SingularTerm Matrix Singular term of singular BVPs.

Set to the constant matrix S for equations of the form

that are posed on the interval where .

FJacobian Function |
matrix | cell
array

Analytic partial derivatives of ODEFUN.

For example, when solving , set this property
to @FJAC if DFDY = FJAC(X,Y) evaluates the Jacobian of
with respect to . If the problem involves unknown
parameters , [DFDY,DFDP] = FJAC(X,Y,P) must also
return the partial derivative of with respect to . For
problems with constant partial derivatives, set this
property to the value of DFDY or to a cell array
{DFDY,DFDP}.

BCJacobian Function |
cell array

Analytic partial derivatives of BCFUN.

For example, for boundary conditions , set
this property to @BCJAC if
[DBCDYA,DBCDYB] = BCJAC(YA,YB) evaluates the partial
derivatives of with respect to and to . If the
problem involves unknown parameters , then
[DBCDYA,DBCDYB,DBCDP] = BCJAC(YA,YB,P) must also
return the partial derivative of with respect to . For
problems with constant partial derivatives, set this
property to a cell array {DBCDYA,DBCDYB} or
{DBCDYA,DBCDYB,DBCDP}.

Property Value Description

y ′ S y
x
--- f x y p, ,()+=

0 b,[] b 0>

y ′ f x y,()=
f

y
p

f p

bc ya yb,() 0=

bc ya yb
p

bc p

bvpset

2-270

See Also @ (function_handle), bvp4c, bvpget, bvpinit, deval

Nmax positive integer
{floor(1000/n)}

Maximum number of mesh points allowed.

Stats on | {off} Display computational cost statistics.

Property Value Description

calendar

2-271

2calendar
Purpose Calendar

Syntax c = calendar
c = calendar(d)
c = calendar(y,m)

calendar(...)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

c = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.

Examples The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

 Oct 1957
 S M Tu W Th F S
 0 0 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31 0 0
 0 0 0 0 0 0 0

See Also datenum

camdolly

2-272

2camdollyPurpose Move the camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the specified
amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target by the
specified amounts (see “Coordinate Systems”).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can take on
two values that determine how MATLAB moves the camera:

• movetarget (default) — Move both the camera and the target.

• fixtarget — Move only the camera.

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys argument can
take on three values that determine how MATLAB interprets dx, dy, and dz:

Coordinate Systems

• camera (default) — Move in the camera’s coordinate system. dx moves
left/right, dy moves down/up, and dz moves along the viewing axis. The units
are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which pushes the
scene to the left edge of the box formed by the axes position rectangle. A
negative value moves the scene in the other direction. Setting dz to 0.5 moves
the camera to a position halfway between the camera position and the
camera target

• pixels — Interpret dx and dy as pixel offsets. dz is ignored.

• data — Interpret dx, dy, and dz as offsets in axes data coordinates.

camdolly(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camdolly
operates on the current axes.

camdolly

2-273

Remarks camdolly sets the axes CameraPosition and CameraTarget properties, which
in turn causes the CameraPositionMode and CameraTargetMode properties to
be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

See Defining Scenes with Camera Graphics for more information on camera
properties.

nnnnnnn

cameratoolbar

2-274

2cameratoolbarPurpose Control camera toolbar programmatically

Syntax cameratoolbar
camreatoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
h = cameratoolbar
cameratoolbar('Close')

Description cameratoolbar creates a new toolbar that enables interactive manipulation of
the axes camera and light when users drag the mouse on the figure window.
Several axes camera properties are set when the toolbar is initialized.

camreatoolbar('NoReset') creates the toolbar without setting any camera
properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed button).
mode can be: 'orbit', 'orbitscenelight', 'pan', 'dollyhv', 'dollyfb',
'zoom', 'roll', 'nomode'.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of the
camera motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

cameratoolbar

2-275

cameratoolbar('ResetCameraAndSceneLight') resets the current camera
and scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the toolbar (1 if
visible, 0 if not visible).

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

See Also rotate3d, zoom

camlight

2-276

2camlightPurpose Create or move a light object in camera coordinates

Syntax camlight headlight
camlight right
camlight left
camlight
camlight(az,el)
camlight(...'style')
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and elevation
(el) with respect to the camera position. The camera target is the center of
rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on two values:

• local (default) — The light is a point source that radiates from the location
in all directions.

• infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light created
with camlight will not track the camera. In order for the light to stay in a
constant position relative to the camera, you must call camlight whenever you
move the camera.

camlight

2-277

Examples This example creates a light positioned to the left of the camera and then
repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;

camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also light, lightangle

“Lighting” for related functions

Lighting as a Visualization Tool for more information on using lights

camlookat

2-278

2camlookatPurpose Position the camera to view an object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the axes
identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while preserving the
relative view direction and camera view angle. The object (or objects) being
viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object around
which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)
camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

camlookat

2-279

See Also campos, camtarget

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camorbit

2-280

2camorbitPurpose Rotate the camera position around the camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera target
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) — Rotate the camera around an axis defined by the camera
target and the direction (default is the positive z direction).

• camera — Rotate the camera about the point defined by the camera target.

camorbit(dtheta,dphi,'coordsys','direction') The direction argument,
in conjunction with the camera target, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
x, y, and z components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camorbit
operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops. The first
rotates the camera horizontally about a line defined by the camera target point
and a direction that is parallel to the y-axis. Visualize this rotation as a cone
formed with the camera target at the apex and the camera position forming the
base:

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'data',[0 1 0])
drawnow

camorbit

2-281

end

Rotation in the camera coordinate system orbits the camera around the axes
along a circle while keeping the center of a circle at the camera target.

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'camera')
drawnow

end

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

campan

2-282

2campanPurpose Rotate the camera target around the camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera position
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) — Rotate the camera target around an axis defined by the
camera position and the direction (default is the positive z direction)

• camera — Rotate the camera about the point defined by the camera target.

campan(dtheta,dphi,'coordsys','direction') The direction argument,
in conjunction with the camera position, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
x, y, and z components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, campan
operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

campos

2-283

2camposPurpose Set or query the camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto'
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current axes.

campos([camera_position]) sets the position of the camera in the current
axes to the specified value. Specify the position as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the data units
of the axes.

campos('mode') returns the value of the camera position mode, which can be
either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = −200:5:200

campos([x,5,10])
drawnow

end

campos

2-284

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camproj

2-285

2camprojPurpose Set or query the projection type

Syntax camproj
camproj(projection_type)
camproj(axes_handle,...)

Description The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the current
axes.

camproj('projection_type') sets the projection type in the current axes to
the specified value. Possible values for projection_type are orthographic
and perspective.

camproj(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camroll

2-286

2camrollPurpose Rotate the camera about the view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis by the
amounts specified in dtheta (in degrees). The viewing axis is defined by the
line passing through the camera position and the camera target.

camroll(axes_handle,dtheta) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camroll
operates on the current axes.

Remarks camroll sets the axes CameraUpVector property and thereby also sets the
CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camtarget

2-287

2camtargetPurpose Set or query the location of the camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points to. The
camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target in the
current axes.

camtarget([camera_target]) sets the camera target in the current axes to
the specified value. Specify the target as a three-element vector containing the
x-, y-, and z-coordinates of the desired location in the data units of the axes.

camtarget('mode') returns the value of the camera target mode, which can be
either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. When you do not specify an axes handle,
camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera target
at the center of the axes plot box.

Examples This example moves the camera position and the camera target along the
x-axis in a series of steps:

surf(peaks);

camtarget

2-288

axis vis3d
xp = linspace(−150,40,50);
xt = linspace(25,50,50);
for i=1:50
 campos([xp(i),25,5]);
 camtarget([xt(i),30,0])
 drawnow
end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camup

2-289

2camupPurpose Set or query the camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the scene.

camup with no arguments returns the camera up vector setting in the current
axes.

camup([up_vector]) sets the up vector in the current axes to the specified
value. Specify the up vector as x, y, and z components. See Remarks.

camup('mode') returns the current value of the camera up vector mode, which
can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This means
the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual mode,
MATLAB does not change the value of the camera up vector.

camup(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point in the
axes coordinate system that forms the directed line segment PQ, where P is the
point (0,0,0) and Q is the specified x-, y-, and z-coordinates. This line always
points up. The length of the line PQ has no effect on the orientation of the
scene. This means a value of [0 0 1] produces the same results as [0 0 25].

camup

2-290

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camva

2-291

2camvaPurpose Set or query the camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera. Larger
angles produce a smaller view of the scene. You can implement zooming by
changing the camera view angle.

camva with no arguments returns the camera view angle setting in the current
axes.

camva(view_angle) sets the view angle in the current axes to the specified
value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle mode,
which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See Remarks.

camva(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the camera view
angle so that the scene fills the available space in the window. If you move the
camera to a different position, MATLAB changes the camera view angle to
maintain a view of the scene that fills the available area in the window.

camva

2-292

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the
window). This means setting the camera view angle to its current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section of the
axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another that
zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the values for
the camera view angle in the range greater than zero and less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camzoom

2-293

2camzoomPurpose Zoom in and out on a scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the value
specified by zoom_factor. If zoom_factor is greater than 1, the scene appears
larger; if zoom_factor is greater than zero and less than 1, the scene appears
smaller.

camzoom(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camzoom
operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn causes the
CameraViewAngleMode property to be set to manual. Note that setting the
CameraViewAngle property disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This may result in a change to the
aspect ratio of your graph. See the axes function for more information on this
behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

cart2pol

2-294

2cart2polPurpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is

See Also cart2sph, pol2cart, sph2cart

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Three-Dimensional Mapping

Z

Y

X

rho
theta

P

z

Two-Dimensional Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z

cart2sph

2-295

2cart2sphPurpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

See Also cart2pol, pol2cart, sph2cart

Z

Y

X

theta

P

theta = atan2(y,x)
phi = atan2(z, sqrt(x.^2 + y.^2))
r = sqrt(x.^2+y.^2+z.^2)

phi

r

case

2-296

2casePurpose Case switch

Description case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself followed by a case
expression and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).

Examples The general form of the switch statement is

switch switch_expr
case case_expr
statement,...,statement

case {case_expr1,case_expr2,case_expr3,...}
statement,...,statement

...
otherwise
statement,...,statement

end

See Also switch

cast

2-297

2castPurpose Cast a variable to a different data type or class.

Syntax B = cast(A, newclass)

Description B = cast(A, newclass) casts A to class newclass. A must be convertible to
class newclass. newclass must be the name of one of the built in data types.

Example a = int8(5);
b = cast(a,'uint8');
class(b)

ans =

uint8

See Also class

cat

2-298

2catPurpose Concatenate arrays

Syntax C = cat(dim,A,B)
C = cat(dim,A1,A2,A3,A4...)

Description C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4,...) concatenates all the input arrays (A1, A2, A3,
A4, and so on) along dim.

cat(2,A,B) is the same as [A,B], and cat(1,A,B) is the same as [A;B].

Remarks When used with comma-separated list syntax, cat(dim,C{:}) or
cat(dim,C.field) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Examples Given

A = B =
 1 2 5 6
 3 4 7 8

concatenating along different dimensions produces

The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

catch

2-299

2catchPurpose Begin catch block

Description The general form of a try statement is

try,
statement,
...,
statement,

catch,
statement,
...,
statement,

end

Normally, only the statements between the try and catch are executed.
However, if an error occurs during execution of any of the statements, the error
is captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also try, end, lasterr, eval, evalin

caxis

2-300

2caxisPurpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis)
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping set to
scaled. It does not affect surfaces, patches, or images with true color CData or
with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and maximum
values. Data values less than cmin or greater than cmax map to cmin and cmax,
respectively. Values between cmin and cmax linearly map to the current
colormap.

caxis auto lets MATLAB compute the color limits automatically using the
minimum and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to −Inf map to the
minimum color. Faces or edges with color values set to NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the current
limits. This enables subsequent plots to use the same limits when hold is on.

v = caxis returns a two-element row vector containing the [cmin cmax]
currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle instead of
the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics objects.

How Color Axis Scaling Works
Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure colormap
each time they render. CData values equal to or less than cmin map to the first

caxis

2-301

color value in the colormap, and CData values equal to or greater than cmax
map to the last color value in the colormap. MATLAB performs the following
linear transformation on the intermediate values (referred to as C below) to
map them to an entry in the colormap (whose length is m, and whose row index
is referred to as index below).

index = fix((C cmin)/(cmax cmin)∗ m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [−1 1]. Values of C near −1 are assigned the lowest
values in the colormap; values of C near 1 are assigned the highest values in
the colormap.

To map the top half of the surface to the highest value in the color table, use

caxis([−1 0])

To use only the bottom half of the color table, enter

caxis([−1 3])

which maps the lowest CData values to the bottom of the colormap, and the
highest values to the middle of the colormap (by specifying a cmax whose value
is equal to cmin plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to autoranging and you see all the colors in the surface.
In this case, entering

caxis

returns

[1 1]

caxis

2-302

Adjusting the color axis can be useful when using images with scaled color
data. For example, load the image data and colormap for Cape Cod,
Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map into the
workspace. Now display the image with CDataMapping set to scaled and install
the image’s colormap.

image(X,'CDataMapping','scaled')
colormap(map)

MATLAB sets the color limits to span the range of the image data, which is 1
to 192:

caxis
ans =

1 192

The blue color of the ocean is the first color in the colormap and is mapped to
the lowest data value (1). You can effectively move sea level by changing the
lower color limit value. For example,

caxis

2-303

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects

The Colormap property of figure graphics objects

“Color Operations” for related functions

Axes Color Limits for more examples

Caxis = [1 192]

100 200 300

50

100

150

200

250

300

Caxis = [3 192]

100 200 300

50

100

150

200

250

300

Caxis = [5 192]

100 200 300

50

100

150

200

250

300

Caxis = [6 192]

100 200 300

50

100

150

200

250

300

cd

2-304

2cdPurpose Change working directory

Graphical
Interface

As an alternative to the cd function, use the current directory field in the
MATLAB desktop toolbar.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory or cd ..

Description cd displays the current working directory.

w = cd assigns the current working directory to w.

cd('directory') sets the current working directory to directory. Use the full
pathname for directory. On UNIX platforms, the character ~ is interpreted as
the user’s root directory.

cd('..') changes the current working directory to the directory above it.

cd directory or cd .. is the unquoted form of the syntax.

Examples On UNIX

cd('/usr/local/matlab/toolbox/demos')

changes the current working directory to demos.

On Windows

cd('c:/toolbox/matlab/demos')

changes the current working directory to demos. Then typing

cd ..

changes the current working directory to matlab.

See Also dir, fileparts, mfilename, path, pwd, what

cd (ftp)

2-305

2cd (ftp)Purpose Change current directory on FTP server

Syntax cd(f)
cd(f,'dirname')
cd(f,'..')

Description cd(f) Displays the current directory on the FTP server f, where f was created
using ftp.

cd(f,'dirname') Changes the current directory on the FTP server f to
dirname, where f was created using ftp. After running cd, the object f
remembers the current directory on the FTP server. You can then perform file
operations functions relative to f using the methods delete, dir, mget, mkdir,
mput, rename, and rmdir.

cd(f,'..') changes the current directory on the FTP server f to the directory
above the current one.

Examples Connect to the MathWorks FTP server.

tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

. incoming pickup
README matlab pub
README.incoming outgoing pubs

Change the current directory to pub.

cd(tmw,'pub');

cd (ftp)

2-306

View the contents of pub.

dir(tmw)

. bin digest matweb.exe proceedings

.. books doc ops product-info
INDEX compiler france outgoing tech-support
NEWFILES conference ftphelp patch temp
admin connections ls-lR pentium utilities
beta contrib mathworks pressroom

See Also dir (ftp), ftp

cdf2rdf

2-307

2cdf2rdfPurpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex
pairs originally there. The eigenvectors are transformed so that

X = V*D/V

continues to hold. The individual columns of V are no longer eigenvectors, but
each pair of vectors associated with a 2-by-2 block in D spans the corresponding
invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

 1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
 0 0 - 0.6479i 0 + 0.6479i
 0 0.6479 0.6479

D =

1.0000 0 0
0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

cdf2rdf

2-308

V =

 1.0000 -0.0191 -0.4002
 0 0 -0.6479
 0 0.6479 0

D =

 1.0000 0 0
 0 4.0000 5.0000
 0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex form
using a specially constructed similarity transformation.

See Also eig, rsf2csf

cdfepoch

2-309

2cdfepochPurpose Construct a cdfepoch object for Common Data Format (CDF) export

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) constructs a cdfepoch object, where date is a valid string
(datestr), a number (datenum) representing a date, or a cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB cdfepoch
object simulates the CDFEPOCH data type in CDF files.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000. MATLAB
datenums are the number of days since 0-Jan-0000.

See Also cdfinfo, cdfread, cdfwrite, datenum

cdfinfo

2-310

2cdfinfoPurpose Return information about a CDF file

Syntax info = cdfinfo(file)

Description info = cdfinfo(file) returns information about the Common Data Format
(CDF) file specified in the string file.

Note Because cdfinfo creates temporary files, the current working directory
must be writeable.

The return value, info, is a structure that contains the fields listed
alphabetically in the following table.

Field Description

FileModDate Text string indicating the date the file was last modified

Filename Text string specifying the name of the file

FileSettings Structure array containing library settings used to create the file

FileSize Double scalar specifying the size of the file, in bytes

Format Text string specifying the file format

FormatVersion Text string specifying the version of the CDF library used to create the
file

GlobalAttributes Structure array that contains one field for each global attribute. The
name of each field corresponds to the name of an attribute. The data in
each field, contained in a cell array, represents the entry values for
that attribute.

Subfiles Filenames containing the CDF file’s data, if it is a multifile CDF

cdfinfo

2-311

VariableAttributes Structure array that contains one field for each variable attribute. The
name of each field corresponds to the name of an attribute. The data in
each field is contained in a n-by-2 cell array, where n is the number of
variables. The first column of this cell array contains the variable
names associated with the entries. The second column contains the
entry values.

Variables N-by-6 cell array, where N is the number of variables, containing
information about the variables in the file. The columns present the
following information:

Column 1 Text string specifying name of variable

Column 2 Double array specifying the dimensions of the
variable, as returned by the size function

Column 3 Double scalar specifying the number of records
assigned for the variable

Column 4 Text sring specifying the data type of the variable,
as stored in the CDF file

Column 5 Text string specifying the record and dimension
variance settings for the variable. The single T or F
to the left of the slash designates whether values
vary by record. The zero or more T or F letters to the
right of the slash designate whether values vary at
each dimension. Here are some examples.

T/ (scalar variable
F/T (one-dimensional variable)
T/TFF (three-dimensional variable)

Column 6 Text string specifying the sparsity of the variable’s
records, with these possible values:

'Full'
'Sparse (padded)'
'Sparse (nearest)'

Field Description

cdfinfo

2-312

Note Attribute names returned by cdfinfo might not match the names of
the attributes in the CDF file exactly. Attribute names can contain characters
that are illegal in MATLAB field names. cdfinfo removes illegal characters
that appear at the beginning of attributes and replaces other illegal
characters with underscores ('_'). When cdfinfo modifies an attribute name,
it appends the attribute’s internal number to the end of the field name. For
example, the attribute name Variable%Attribute becomes
Variable_Attribute_013.

Examples info = cdfinfo('example.cdf')
info =
 Filename: 'example.cdf'
 FileModDate: '29-Jun-1995 05:51:58'
 FileSize: 230513
 Format: 'CDF'
 FormatVersion: '2.4.8'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {7x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

info.Variables
ans =
 'L_gse' [1x2 double] [1] 'char' 'F/T' 'Full'
 'Status%C1' [1x2 double] [7493] 'uint8' 'T/T' 'Full'
 'B_gse%C1' [1x2 double] [7493] 'single' 'T/T' 'Full'
 'B_nsigma%C1' [1x2 double] [7493] 'single' 'T/' 'Full'

See Also cdfread

cdfread

2-313

2cdfreadPurpose Read data from a CDF file

Syntax data = cdfread(file)
data = cdfread(file, 'records', recnums, ...)
data = cdfread(file, 'variables', varnames, ...)
data = cdfread(file, 'slices', dimensionvalues, ...)
[data, info] = cdfread(file, ...)

Description data = cdfread(file) reads all the variables from each record of the
Common Data Format (CDF) file specified in the string file. The return value
data is a cell array in which each row contains a record and each column
represents a variable. See the Examples section for an illustration.

Note Because cdfread creates temporary files, the current working directory
must be writeable.

data = cdfread(file, 'records', recnums, ...) reads only those records
specified in the vector recnums. The record numbers are zero based. The return
value data is a cell array having length(recnums) number of rows and as
many columns as there are variables.

data = cdfread(file, 'variables', varnames, ...) reads only those
variables specified in the 1-by-N or N-by-1 cell array of strings varnames. The
return value data is returned in a cell array having length(varnames) number
of columns and a row for each record requested.

data = cdfread(file, 'slices', dimensionvalues, ...) reads specific
values from the records of one variable in the CDF file. The N-by-3 matrix
dimensionvalues indicates which records are to be read by specifying start,
interval, and count parameters for each of the N dimensions of the variable.
The start parameter is zero based.

The number of rows in dimensionvalues must be less than or equal to the
number of dimensions of the variable. Unspecified rows default to [0 1 N],
where N is the total number of values in a record. This causes cdfread to read
every value from those dimensions.

cdfread

2-314

Because you can read just one variable at a time, you must also include a
'variables' parameter with this syntax.

[data, info] = cdfread(file, ...) also returns details about the CDF file
in the info structure.

Examples Read all the data from the file.

data = cdfread('example.cdf');

Read just the data from variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in the second
dimension, the first and third values in the third dimension, and all values in
the remaining dimension of the variable 'multidimensional'.

data = cdfread('example.cdf', 'Variable', ...
{'multidimensional'}, 'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into 'data' and then using the
MATLAB command

data{1}(1, 2, [1 3], :)

See Also cdfinfo, cdfwrite, cdfepoch

cdfwrite

2-315

2cdfwritePurpose Write data to a CDF file

Syntax cdfwrite(file, variablelist)
cdfwrite(..., 'PadValues', padvals)
cdfwrite(..., 'GlobalAttributes', gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(..., 'WriteMode', mode)
cdfwrite(..., 'Format', format)

Description cdfwrite(file,variablelist) writes out a Common Data Format (CDF) file,
specified in the string file. The variablelist argument is a cell array of
ordered pairs, each of which comprises a CDF variable name (a string) and the
corresponding CDF variable value. To write out multiple records for a variable,
put the values in a cell array where each element in the cell array represents
a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value. Pad
values are the default values associated with the variable when an
out-of-bounds record is accessed. Variable names that appear in padvals must
appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure gattrib
as global metadata for the CDF file. Each field of the structure is the name of
a global attribute. The value of each field contains the value of the attribute.
To write out multiple values for an attribute, put the values in a cell array
where each element in the cell array represents a record.

Note To specify a global attribute name that is illegal in MATLAB, create a
field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered

cdfwrite

2-316

pair consists of the name of the original attribute, as listed in the
GlobalAttributes structure, and the corresponding name of the attribute to
be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the structure
vattrib as variable metadata for the CDF. Each field of the struct is the name
of a variable attribute. The value of each field should be an M-by-2 cell array
where M is the number of variables with attributes. The first element in the
cell array should be the name of the variable and the second element should be
the value of the attribute for that variable.

Note To specify a variable attribute name that is illegal in MATLAB, create a
field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered
pair consists of the name of the original attribute, as listed in the
VariableAttributes struct, and the corresponding name of the attribute to be
written to the CDF file. If you are specifying a variable attribute of a CDF
variable that you are renaming, the name of the variable in the
VariableAttributes structure must be the same as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite' or
'append', indicates whether or not the specified variables should be appended
to the CDF file if the file already exists. By default, cdfwrite overwrites
existing variables and attributes.

cdfwrite(...,'Format',format), where format is either 'multifile' or
'singlefile', indicates whether or not the data is written out as a multifile
CDF. In a multifile CDF, each variable is stored in a separate file with the
name *.vN, where N is the number of the variable that is written out to the
CDF. By default, cdfwrite writes out a single file CDF. When 'WriteMode' is
set to 'Append', the 'Format' option is ignored, and the format of the
preexisting CDF is used.

 Examples Write out a file 'example.cdf' containing a variable 'Longitude' with the
value [0:360].

cdfwrite

2-317

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for all
out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20},...
 'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude' with the
value [0:360], and with a variable attribute of 'validmin' with the value 10.

varAttribStruct.validmin = {'longitude' [10]};
cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct',...
 varAttribStruct);

See Also cdfread, cdfinfo, cdfepoch

ceil

2-318

2ceilPurpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
 Columns 1 through 4
 -1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

ceil(a)

ans =
 Columns 1 through 4
 -1.0000 0 4.0000 6.0000

 Columns 5 through 6
 7.0000 3.0000 + 4.0000i

See Also fix, floor, round

cell

2-319

2cellPurpose Create cell array

Syntax c = cell(n)
c = cell(m,n) or c = cell([m n])
c = cell(m,n,p,...) or c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

c = cell(m,n) or c = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

c = cell(m,n,p,...) or c = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,... must be scalars.

c = cell(size(A)) creates a cell array the same size as A containing all empty
matrices.

c = cell(javaobj) converts a Java array or Java object javaobj into a
MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Examples This example creates a cell array that is the same size as another array, A.

A = ones(2,2)

A =
 1 1
 1 1

c = cell(size(A))

c =
 [] []
 [] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

cell

2-320

strArray = java_array('java.lang.String',3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =
 'one'
 'two'
 'three'

See Also num2cell, ones, rand, randn, zeros

cell2mat

2-321

2cell2matPurpose Convert cell array of matrices into single matrix

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array c with contents of the
same data type into a single matrix, m. The contents of c must be able to
concatenate into a hyperrectangle. Moreover, for each pair of neighboring cells,
the dimensions of the cells’ contents must match, excluding the dimension in
which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into a single
60-by-50 matrix:

cell2mat(c)

Remarks The dimensionality (or number of dimensions) of m will match the highest
dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or objects.

Examples Combine the matrices in four cells of cell array C into the single matrix, M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}
C =
 [1] [1x3 double]
 [2x1 double] [2x3 double]

cell2mat

2-322

C{1,1} C{1,2}
ans = ans =
 1 2 3 4

C{2,1} C{2,2}
ans = ans =
 5 6 7 8
 9 10 11 12

M = cell2mat(C)
M =
 1 2 3 4
 5 6 7 8
 9 10 11 12

See Also mat2cell, num2cell

cell2struct

2-323

2cell2structPurpose Convert cell array to structure array

Syntax s = cell2struct(c,fields,dim)

Description s = cell2struct(c,fields,dim) creates a structure array s from the
information contained within cell array c.

The fields argument specifies field names for the structure array. fields can
be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used in creating
the structure array. The length of c along the specified dimension must match
the number of fields named in fields. In other words, the following must be
true.

size(c,dim) == length(fields) % if fields is a cell array
size(c,dim) == size(fields,1) % if fields is a char array

Examples The cell array c in this example contains information on trees. The three
columns of the array indicate the common name, genus, and average height of
a tree.

c = {'birch','betula',65; 'maple','acer',50}
c =
 'birch' 'betula' [65]
 'maple' 'acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3 cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =
 name: 'birch' name: 'maple'
 genus: 'betula' genus: 'acer'
 height: 65 height: 50

cell2struct

2-324

See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic field
names

celldisp

2-325

2celldispPurpose Display cell array contents.

Syntax celldisp(C)
celldisp(C,name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).

Example Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
 1 2

C{2,1} =
 1 2
 3 4

C{1,2} =
Tony

C{2,2} =
 -5

C{1,3} =
 3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

cellfun

2-326

2cellfunPurpose Apply a function to each element in a cell array

Syntax D = cellfun('fname',C)
D = cellfun('size',C,k)
D = cellfun('isclass',C,classname)

Description D = cellfun('fname',C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

D = cellfun('size',C,k) returns the size along the kth dimension of each
element of C.

D = cellfun('isclass',C,'classname') returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

Limitations If the cell array contains objects, cellfun does not call overloaded versions of
the function fname.

Example Consider this 2-by-3 cell array:

C{1,1} = [1 2; 4 5];
C{1,2} = 'Name';

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element

cellfun

2-327

C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun('isreal',C)

D =
 1 1 1
 0 1 1

len = cellfun('length',C)

len =
 2 4 1
 1 1 3

isdbl = cellfun('isclass',C,'double')

isdbl =
 1 0 1
 1 1 1

See Also isempty, islogical, isreal, length, ndims, size

cellplot

2-328

2cellplotPurpose Graphically display the structure of cell arrays

Syntax cellplot(c)
cellplot(c,'legend')
handles = cellplot(...)

Description cellplot(c) displays a figure window that graphically represents the contents
of c. Filled rectangles represent elements of vectors and arrays, while scalars
and short text strings are displayed as text.

cellplot(c,'legend') also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

 The command cellplot(c) produces

cellstr

2-329

2cellstrPurpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate cells of
c. Use the char function to convert back to a string matrix.

Examples Given the string matrix

S=['abc ';'defg';'hi ']

S =
 abc
 defg
 hi

whos S
 Name Size Bytes Class
 S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
 'abc'
 'defg'
 'hi'

whos c
 Name Size Bytes Class
 c 3x1 294 cell array

See Also iscellstr, strings

cgs

2-330

2cgsPurpose Conjugate Gradients Squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x.

If cgs converges, a message to that effect is displayed. If cgs fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [], then cgs
uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations, maxit. If
maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no preconditioner. M
can be a function that returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is [], then
cgs uses the default, an all-zero vector.

cgs

2-331

cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...)

[x,flag] = cgs(A,b,...) returns a solution x and a flag that describes the
convergence of cgs.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1,[],[]);

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during cgs became
too small or too large to continue computing.

cgs

2-332

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;

x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'] .*x + [x(2:n);
0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to cgs.

x1 = cgs(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept cgs’s extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and cgs
fails in the first iteration when it tries to solve a system such as U1*y = r for
y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the value of
relres2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of 1e-6.
resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2). You can follow the

cgs

2-333

progress of cgs by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al

char

2-334

2charPurpose Create character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1,t2,t3...)

Description S = char(X) converts the array X that contains positive integers representing
character codes into a MATLAB character array (the first 127 codes are
ASCII). The actual characters displayed depend on the character set encoding
for a given font. The result for any elements of X outside the range from 0 to
65535 is not defined (and can vary from platform to platform). Use double to
convert a character array into its numeric codes.

S = char(C), when C is a cell array of strings, places each element of C into the
rows of the character array s. Use cellstr to convert back.

S = char(t1,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter, Ti, can itself be a character array.
This allows the creation of arbitrarily large character arrays. Empty strings
are significant.

Remarks Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix(rem(A,256)).

Examples To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127,32,3)')
ascii =
! # $ % & ' () ∗ + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
' a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

char

2-335

See Also cellstr, double, get, set, strings, strvcat, text

checkin

2-336

2checkinPurpose Check file into source control system

Graphical
Interface

As an alternative to the checkin function, use Source Control Check In in the
Editor, Simulink, or Stateflow File menu.

Syntax checkin('filename','comments','string')
checkin({'filename1','filename2','filename3', ...},'comments',

'string')
checkin('filename','option','value', ...)

Description checkin('filename','comments','string') checks in the file named
filename to the source control system. Use the full pathname for the filename.
You must save the file before checking it in. The file can be open or closed when
you use checkin. The string argument is a MATLAB string containing
check-in comments for the source control system. You must supply the
comments argument and 'string'.

checkin({'filename1','filename2','filename3', ...},'comments',
'string') checks in the files named filename1 through filenamen to the
source control system. Use the full pathnames for the files. Additional
arguments apply to all files checked in.

checkin('filename','option','value', ...) provides additional checkin
options. The option and value arguments are shown in the table below.

You can check in a file that you checked out in a previous MATLAB session or
that you checked out directly from your source control system.

option
Argument

Purpose value Argument

'force' When set to on, filename is checked in
even if the file has not changed since it
was checked out. The default value for
force is off.

'on'
'off' (default)

'lock' When set to on, filename remains
checked out. Comments are submitted.
The default value for lock is off.

'on'
'off' (default)

checkin

2-337

Examples Check in a File with Comments
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K')

checks in the file /matlab/mymfiles/clock.m to the source control system with
the comment Adjustment for Y2K.

Check in Multiple Files with Comments
Typing

checkin({'/matlab/mymfiles/clock.m', ...
'/matlab/mymfiles/calendar.m'},'comments','Adjustment for Y2K')

checks two files into the source control system using the same comment for
each.

Check a File in and Keep It Checked out
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K','lock','on')

checks the file /matlab/mymfiles/clock.m into the source control system and
keeps the file checked out.

See Also checkout, cmopts, undocheckout

checkout

2-338

2checkoutPurpose Check file out of source control system

Graphical
Interface

As an alternative to the checkout function, use Source Control Check Out in
the Editor, Simulink, or Stateflow File menu.

Syntax checkout('filename')
checkout({'filename1','filename2','filename3', ...})
checkout('filename','option','value', ...)

Description checkout('filename') checks out the file named filename from the source
control system. filename must be the full pathname for the file. The file can be
open or closed when you use checkout.

checkout({'filename1','filename2','filename3', ...}) checks out the
files named filename1 through filenamen from the source control system. Use
the full pathnames for the files. Additional arguments apply to all files checked
out.

checkout('filename','option','value', ...) provides additional
checkout options. The option and value arguments are shown in the following
table.

checkout

2-339

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or directly from your
source control system.

Examples Check out a File
Typing

checkout('/matlab/mymfiles/clock.m')

checks out the file /matlab/mymfiles/clock.m from the source control system.

option
Argument

Purpose value
Argument

'force' When set to on, the checkout is forced,
even if you already have the file checked
out. This is effectively an undocheckout
followed by a checkout. When force is
set to off, you can’t check out the file if
you already have it checked out.

'on'
'off' (default)

'lock' When set to on, the checkout gets the file,
allows you to write to it, and locks the file
so that access to the file for others is read
only. When set to off, the checkout gets a
read-only version of the file, allowing
another user to check out the file for
updating. With lock set to off, you don’t
have to check in a file after checking it
out.

'on' (default)
'off'

'revision' Checks out the specified revision of the
file.

'version_num'

checkout

2-340

Check out Multiple Files
Typing

checkout({'/matlab/mymfiles/clock.m',...
'/matlab/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Force a Checkout, Even If File Is Already Checked out
Typing

checkout('/matlab/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already checked out
to you.

Check out Specified Revision of File
Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m.

See Also checkin, cmopts, undocheckout

chol

2-341

2cholPurpose Cholesky factorization

Syntax R = chol(X)
[R,p] = chol(X)

Description The chol function uses only the diagonal and upper triangle of X. The lower
triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol(X), where X is positive definite produces an upper triangular R so
that R'*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order q = p-1 so that R'*R = X(1:q,1:q).

Examples The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

chol

2-342

Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm Inputs of Type Double
For inputs of type double, chol uses the the LAPACK subroutines DPOTRF
(real) and ZPOTRF (complex).

Inputs of Type Single
For inputs of type single, chol uses the the LAPACK subroutines SPOTRF
(real) and CPOTRF (complex).

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

See Also cholinc, cholupdate

cholinc

2-343

2cholincPurpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entries U(i,j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i,j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,i).

Setting droptol = 0 produces the complete Cholesky factorization, which is
the default.

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R

cholinc

2-344

michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size q-by-n where q = p-1. In this latter case,
the sparsity pattern of R is that of the q-by-n upper triangle of X. R'*R agrees
with X over the sparsity pattern of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive semi-definite
so even negative pivots are replaced with a value of Inf.

Remarks The incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only

cholinc

2-345

gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Examples Example 1.

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid('C',15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;

D1 has elements of the order of eps, showing that R0'*R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100,:) and D2(:,1:100).

cholinc

2-346

Example 2.

The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.
Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

0 50 100

0

20

40

60

80

100

120

140

nz = 643

S

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

C= chol(S)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

R0=cholinc(S,’0’)

0 50 100

0

20

40

60

80

100

nz = 290

Partial factor [R,p]=cholinc(S2,’0’)

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

cholinc(S,0)

0 50 100

0

20

40

60

80

100

120

140

nz = 1211

cholinc(S,1e−3)

0 50 100

0

20

40

60

80

100

120

140

nz = 671

cholinc(S,1e−2)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

cholinc(S,1e−1)

cholinc

2-347

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in the next figure.

Example 3.

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =
 1.0000 0.5000 0.3333
 0 0.2887 0.2887
 0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));
[R,p] = chol(H20);
p =
 14

10
−4

10
−3

10
−2

10
−1

10
0

0

500

1000

1500
Drop tolerance vs nnz(cholinc(S,droptol))

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Drop tolerance vs norm(R’*R−S)/norm(S)

cholinc

2-348

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
 Inf 0 0 0 0 0 0
 0 Inf 0 0 0 0 0
 0 0 Inf 0 0 0 0
 0 0 0 Inf 0 0 0
 0 0 0 0 Inf 0 0
 0 0 0 0 0 Inf 0
 0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0') and
cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the milu option takes the value of
the michol option.

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang [2].

cholinc

2-349

See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996. Chapter 10, “Preconditioning Techniques.”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics and
Statistics, University of Maryland Baltimore County, Technical Report
TR96-01

cholupdate

2-350

2cholupdatePurpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x',
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p is 0,
R1 is the Cholesky factor of A - x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

R = chol(A)

cholupdate

2-351

R =

 1 1 1 1
 0 1 2 3
 0 0 1 3
 0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can
use cholupdate:

R1 = cholupdate(R,x)
R1 =

 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:

A - x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 19

cholupdate

2-352

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =
 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an algorithm, while simply updating the existing factor in
this way is an algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

O N3()
O N2()

circshift

2-353

2circshiftPurpose Shift array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A, by
shiftsize elements. shiftsize is a vector of integer scalars where the n-th
element specifies the shift amount for the n-th dimension of array A. If an
element in shiftsize is positive, the values of A are shifted down (or to the
right). If it is negative, the values of A are shifted up (or to the left). If it is 0,
the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.

A = [1 2 3;4 5 6; 7 8 9]
A =
 1 2 3
 4 5 6
 7 8 9

B = circshift(A,1)
B =
 7 8 9
 1 2 3
 4 5 6

Circularly shift first dimension values down by 1 and second dimension values
to the left by 1.

B = circshift(A,[1 -1]);
B =
 8 9 7
 2 3 1
 5 6 4

See Also fftshift, shiftdim

cla

2-354

2claPurpose Clear current axes

Syntax cla
cla reset

Description cla deletes from the current axes all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless of the
setting of their HandleVisibility property and resets all axes properties,
except Position and Units, to their default values.

Remarks The cla command behaves the same way when issued on the command line as
it does in callback routines — it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, cla deletes only those objects whose HandleVisibility property is set
to on.

See Also clf, hold, newplot, reset

“Axes Operations” for related functions

clabel

2-355

2clabelPurpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')

clabel(C)
clabel(C,v)
clabel(C,'manual')

text_handles = clabel(...)
clabel(...,'PropertyName',propertyvalue,...)
clabel(...'LabelSpacing',points)

Description The clabel function adds height labels to a two-dimensional contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines. The
function inserts only those labels that fit within the contour, depending on the
size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in vector v,
then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select with a
mouse. Press the left mouse button (the mouse button on a single-button
mouse) or the space bar to label a contour at the closest location beneath the
center of the cursor. Press the Return key while the cursor is within the figure
window to terminate labeling. The labels are rotated and inserted in the
contour lines.

clabel(C) adds labels to the current contour plot using the contour array C
output from contour. The function labels all contours displayed and randomly
selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with a
mouse.

clabel

2-356

text_handles = clabel(...) returns the handles of text objects created by
clabel. The UserData properties of the text objects contain the contour values
displayed. If you call clabel without the h argument, text_handles also
contains the handles of line objects used to create the '+' symbols.

clabel(...,'PropertyName',propertyvalue,...) enables you to specify text
object property/value pairs for the label strings. (See text properties.)

clabel(...'LabelSpacing',points) specifies the spacing between labels on
the same contour line, in units of points (72 points equal one inch).

Remarks When the syntax includes the argument h, this function rotates the labels and
inserts them in the contour lines (see Examples). Otherwise, the labels are
displayed upright and a '+' indicates which contour line the label is
annotating.

Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(-2:.2:2);
z = x.^exp(-x.^2-y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

clabel

2-357

Label a contour plot with label spacing set to 72 points (one inch).

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'LabelSpacing',72)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.4

−0.2

−0.2

−9.8686e−017

−
9.

86
86

e−
01

7
0.

2

0.
2

0.2
0.2

0.2

0.
2

0.
4

0.
4

0.4
0.4

0.4

0.
4

0.
6

0.
6

0.6

0.6

0.6

0.
6

0.
8

0.
8

0.8

0.8

0.
8

0.
8

1

1

1

1
1

1

clabel

2-358

Label a contour plot with 15 point red text.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','r','Rotation',0)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6 −
6

−4
−4

−4

−2

−2

−2

−2−2

−
2

−2

−2

0

0

0

0

0

0

0

0

0

0

0

0

0 2

2

2

22

2

2 2

2

2

2

2

2

4
4

4

4

4

6

6

6 8

clabel

2-359

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6

−4

−4

−2

−2

−2
−2

−2

0

0
0

0

0

0

0

2

2

2

2

2

2

2

4

4
4

6

6
8

clabel

2-360

See Also contour, contourc, contourf

“Annotating Plots” for related functions

Drawing Text in a Box for an example that illustrates the use of contour labels

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6

−4

−2

−2

0

0

0
2

2

4
6

8

class

2-361

2classPurpose Create object or return class of object

Syntax str = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2...)
obj = class(struct([]),'class_name',parent1,parent2...)

Description str = class(object) returns a string specifying the class of object.

The following table lists the object class names that can be returned. All except
the last one are MATLAB classes.

obj = class(s,'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only in a

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating-point number array

double Double-precision floating-point number array

cell Cell array

struct Structure array

function handle Array of values for calling functions indirectly

'class_name' Custom MATLAB object class or Java class

class

2-362

function named class_name.m in a directory named @class_name (where
'class_name' is the same as the string passed in to class).

obj = class(s,'class_name',parent1,parent2,...) creates an object of
MATLAB class 'class_name' that inherits the methods and fields of the
parent objects parent1, parent2, and so on. Structure s is used as a template
for the object.

obj = class(struct([]),'class_name',parent1,parent2,...) creates an
object of MATLAB class 'class_name' that inherits the methods and fields of
the parent objects parent1, parent2, and so on. Specifying the empty structure
struct([]) as the first argument ensures that the object created contains no
fields other than those that are inherited from the parent objects.

Examples To return in nameStr the name of the class of Java object j,

nameStr = class(j)

To create a user-defined MATLAB object of class polynom,

p = class(p,'polynom')

See Also inferiorto, isa, superiorto

The “MATLAB Classes and Objects” and the “Calling Java from MATLAB”
chapters in MATLAB Programming and Data Types documentation.

clc

2-363

2clcPurpose Clear Command Window

Graphical
Interface

As an alternative to the clc function, use Clear Command Window in the
MATLAB desktop Edit menu.

Syntax clc

Description clc clears all input and output from the Command Window display, giving you
a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of functions, but
you still can use the up arrow to recall statements from the command history.

Examples Use clc in an M-file to always display output in the same starting position on
the screen.

See Also clear, clf, close, home

clear

2-364

2clearPurpose Remove items from workspace, freeing up system memory

Graphical
Interface

As an alternative to the clear function, use Clear Workspace in the MATLAB
desktop Edit menu.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear -regexp expr1 expr2 ...
clear global -regexp expr1 expr2 ...
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace. This frees up system memory.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. You can use wildcards (*) to remove items selectively. For
example, clear my* removes any variables whose names begin with the string
my. It removes debugging breakpoints in M-files and reinitializes persistent
variables, since the breakpoints for a function and persistent variables are
cleared whenever the M-file is changed or cleared. If name is global, it is
removed from the current workspace, but left accessible to any functions
declaring it global. If name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded versions of a
function. For example, clear polynom/display clears only the display
method for polynom objects, leaving any other implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3 from the
workspace.

clear global name removes the global variable name. If name is global, clear
name removes name from the current workspace, but leaves it accessible to any
functions declaring it global. Use clear global name to completely remove a
global variable.

clear -regexp expr1 expr2 ... clears all variables that match any of the
regular expressions expr1, expr2, etc. This option only clears variables.

clear

2-365

clear global -regexp expr1 expr2 ... clears all global variables that
match any of the regular expressions expr1, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty. Using clear all
removes debugging breakpoints in M-files and
reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever
the M-file is changed or cleared. When issued from the
Command Window prompt, also removes the Java
packages import list.

classes The same as clear all, but also clears MATLAB class
definitions. If any objects exist outside the workspace (for
example, in user data or persistent variables in a locked
M-file), a warning is issued and the class definition is not
cleared. Issue a clear classes function if the number or
names of fields in a class are changed.

functions Clears all the currently compiled M-functions and
MEX-functions from memory. Using clear function
removes debugging breakpoints in the function M-file and
reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever
the M-file is changed or cleared.

global Clears all global variables from the workspace.

import Removes the Java packages import list. It can only be
issued from the Command Window prompt. It cannot be
used in a function.

clear

2-366

clear('name1','name2','name3',...) is the function form of the syntax. Use
this form when the variable name or function name is stored in a string.

Remarks When you use clear in a function, it has the following effect on items in your
function and base workspaces:

• clear name—If name is the name of a function, the function is cleared in both
the function workspace and in your base workspace.

• clear functions—All functions are cleared in both the function workspace
and in your base workspace.

• clear global—All global variables are cleared in both the function
workspace and in your base workspace.

• clear all—All functions, global variables, and classes are cleared in both
the function workspace and in your base workspace.

Limitations clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

The clear function does not clear Simulink models. Use close instead.

Examples Given a workspace containing the following variables

 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame
 gbl1 1x1 8 double array (global)

java The same as clear all, but also clears the definitions of
all Java classes defined by files on the Java dynamic class
path (see “The Java Class Path” in the External Interfaces
documentation) . If any java objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued and the
Java class definition is not cleared. Issue a clear java
command after modifying any files on the Java dynamic
class path.

variables Clears all variables from the workspace.

clear

2-367

 gbl2 1x1 8 double array (global)
 xint 1x1 1 int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos
 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin with
Mon, Tue, or Wed:

clear('-regexp', '^Mon|^Tue|^Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to clear one
M-file function from memory, testfun, because the function is locked.

clear functions % Attempt to clear all functions.

inmem
ans =
 'testfun' % One M-file function remains in memory.

mislocked testfun
ans =
 1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =
 Empty cell array: 0-by-1

clear

2-368

See Also clc, close, import, inmem, load, mlock, munlock, pack, persistent, save, who,
whos, workspace

clf

2-369

2clfPurpose Clear current figure window

Syntax clf
clf('reset')
figure_handle = clf(...)

Description clf deletes from the current figure all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects regardless of
the setting of their HandleVisibility property and resets all figure properties
except Position, Units, PaperPosition, and PaperUnits to their default
values.

figure_handle = clf(...) return the handle of the figure. This is useful
when the figure IntegerHandle property is off since the noninteger handle
becomes invalid when the reset option is used (i.e., IntegerHandle is reset to
on, which is the default).

Remarks The clf command behaves the same way when issued on the command line as
it does in callback routines — it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, clf deletes only those objects whose HandleVisibility property is set
to on.

See Also cla, clc, hold, reset

“Figure Windows” for related functions

clipboard

2-370

2clipboardPurpose Copy and paste strings to and from the system clipboard
Graphical Interface

As an alternative to clipboard, use the Import Wizard. To use the Import
Wizard to copy data from the clipboard, select Paste Special from the Edit
menu.

Syntax clipboard('copy',data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data is not a
character array, the clipboard uses mat2str to convert it to a string.

str = clipboard('paste') returns the current contents of the clipboard as a
string or as an empty string (' '), if the current clipboard contents cannot be
converted to a string.

data = clipboard('pastespecial') returns the current contents of the
clipboard as an array using uiimport.

Note Requires an active X display on UNIX, and Java elsewhere.

See Also load, uiimport

clock

2-371

2clock Purpose Current time as a date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

See Also cputime, datenum, datevec, etime, tic, toc

close

2-372

2closePurpose Delete specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally returns
the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix, close
deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden handles.

status = close(...) returns 1 if the specified windows have been deleted
and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s CloseRequestFcn
property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure using
delete(get(0,'CurrentFigure')). If you specify multiple figure handles,
close executes each figure’s CloseRequestFcn in turn. If MATLAB encounters
an error that terminates the execution of a CloseRequestFcn, the figure is not
deleted. Note that using your computer’s window manager (i.e., the Close
menu item) also calls the figure’s CloseRequestFcn.

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility property is set
to callback or off and the root ShowHiddenHandles property is set on), you

close

2-373

must specify the hidden option when trying to access a figure using the all
option.

To delete all figures unconditionally, use the statements

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it simply
deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the closing of a
figure once the close function has been issued. For example, you can display a
dialog box to see if the user really wants to delete the figure or save and clean
up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” for related functions

close (avifile)

2-374

2close (avifile)Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file associated
with aviobj, which is an AVI file object created using the avifile function.

See Also avifile, addframe, movie2avi

close (ftp)

2-375

2close (ftp)Purpose Close connection with FTP server

Syntax close(f)

Description close(f) closes the connection with the FTP server, represented by object f,
which was created using ftp. Be sure to use close after completing work on
the server. If you do not run close, the connection will be terminated
automatically either because of the server’s time-out feature or when you exit
MATLAB.

Examples Connect to The MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)
ans =
disconnected

See Also ftp

closereq

2-376

2closereqPurpose Default figure close request function

Syntax closereq

Description closereq deletes the current figure.

See Also The figure CloseRequestFcn property

“Figure Windows” for related functions

cmopts

2-377

2cmoptsPurpose Get name of source control system

Graphical
Interface

As an alternative to cmopts, use preferences. Select File -> Preferences in the
MATLAB desktop, and then select General -> Source Control.

Syntax cmopts

Description cmopts returns the name of the source control system you selected using
preferences, which is one of the following:

clearcase
customverctrl
pvcs
rcs
sourcesafe

If you have not selected a source control system, cmopts returns

none

Specifying a Source Control System
To specify the source control system:

1 From the MATLAB Editor window or from a Simulink or Stateflow model
window, select File -> Preferences.

The Preferences dialog box opens.

2 In the left pane, click the + for General, and then select Source Control.

The currently selected system is shown.

3 Select the system you want to use from the Source control system list.

4 Click OK.

For more information, see source control preferences.

Examples Type cmopts and MATLAB returns rcs, meaning the source control system
specified in preferences is RCS.

See Also checkin, checkout, customverctrl

colamd

2-378

2colamdPurpose Column approximate minimum degree permutation

Syntax p = colamd(S)
p = colamd(S,knobs)
[p,stats] = colamd(S)
[p,stats] = colamd(S,knobs)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix S,
S(:,p) tends to have sparser LU factors than S. The Cholesky factorization of
S(:,p)' * S(:,p) also tends to be sparser than that of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more than
(knobs(1))*n entries are ignored. Columns with more than (knobs(2))*m
entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the
validity of the matrix S.

Although, MATLAB built-in functions generate valid sparse matrices, a user
may construct an invalid sparse matrix using the MATLAB C or Fortran APIs
and pass it to colamd. For this reason, colamd verifies that S is valid:

stats(1) Number of dense or empty rows ignored by colamd

stats(2) Number of dense or empty columns ignored by colamd

stats(3) Number of garbage collections performed on the internal data
structure used by colamd (roughly of size
2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column
index given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices

colamd

2-379

• If a row index appears two or more times in the same column, colamd ignores
the duplicate entries, continues processing, and provides information about
the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column of its
internal copy of the matrix S (but does not repair the input matrix S),
continues processing, and provides information about the out-of-order
entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an error
message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a better
ordering.

See Also colmmd, colperm, spparms, symamd, symmmd, symrcm

References [1] The authors of the code for colamd are Stefan I. Larimore and Timothy A.
Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng,
Oak Ridge National Laboratory. Sparse Matrix Algorithms Research at the
University of Florida: http://www.cise.ufl.edu/research/sparse/

colmmd

2-380

2colmmdPurpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Description p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and / for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, the MATLAB
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A'*A, but does not actually form A'*A.

Each stage of the algorithm chooses a vertex in the graph of A'*A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB demos
directory include a test matrix WEST0479. It is a matrix of order 479 resulting
from a model due to Westerberg of an eight-stage chemical distillation column.
The spy plot shows evidence of the eight stages. The colmmd ordering
scrambles this structure.

load west0479
A = west0479;
p = colmmd(A);
spy(A)
spy(A(:,p))

colmmd

2-381

Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and
storage requirements by better than a factor of 2.8. The nonzero counts are
16777 and 5904, respectively.

spy(lu(A))
spy(lu(A(:,p)))

0 100 200 300 400

0

100

200

300

400

nz = 1887

A

0 100 200 300 400

0

100

200

300

400

nz = 1887

A(:,p)

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(A)

0 100 200 300 400

0

100

200

300

400

nz = 5904

lu(A(:,p))

colmmd

2-382

See Also colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

colorbar

2-383

2colorbarPurpose Display colorbar showing the color scale

Syntax colorbar
colorbar(...,'peer',axes_handle)
colorbar(axes_handle)
colorbar('location')
colorbar(...,'PropertyName',propertyvalue)
cbar_axes = colorbar(...)

Description The colorbar function displays the current colormap in the current figure and
resizes the current axes to accommodate the colorbar.

colorbar updates the most recently created colorbar or, when the current axes
does not have a colorbar, colorbar adds a new vertical colorbar.

colorbar(...,'peer',axes_handle) creates a colorbar associated with the
axes axes_handle instead of the current axes.

colorbar(axes_handle) adds the colorbar to the axes axes_handle in the
default (right) orientation.

colorbar(...,'location') adds a colorbar in the specified orientation with
respect to the axes. Possible values for location are

• North — inside plot box near top

• South — inside bottom

• East — inside right

• West — inside left

• NorthOutside — outside plotbox near top

• SouthOutside — outside bottom

• EastOutside — outside right

• WestOutside — outside left

colorbar(...,'PropertyName',propertyvalue) specifies property names
and values for the axes object used to create the colorbar. See axes properties
for a description of the properties you can set.

colorbar

2-384

cbar_axes = colorbar(...) returns a handle to the colorbar, which is an
axes graphics object that contains one additional property, Location.

Remarks You can use colorbar with 2-D and 3-D plots.

Examples Display a colorbar beside the axes and use descriptive text strings as y-tick
labels.

surf(peaks(30))
colorbar('YTickLabel',...

{'Freezing','Cold','Cool','Neutral','Warm','Hot','Burning'})

See Also colormap

“Color Operations” for related functions

colordef

2-385

2colordefPurpose Set default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for graphics
display. It sets axis lines and labels to show up against the background color.

colordef white sets the axis background color to white, the axis lines and
labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines and
labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB Version 4
(essentially a black background).

colordef(fig,color_option) sets the color scheme of the figure identified by
the handle fig to the color option 'white', 'black', or 'none'.

h = colordef('new',color_option) returns the handle to a new figure
created with the specified color options (i.e., 'white', 'black', or 'none').

Remarks colordef affects only subsequently drawn figures, not those currently on the
display. This is because colordef works by setting default property values (on
the root or figure level). You can list the currently set default values on the root
level with the statement

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg

colordef

2-386

“Color Operations” for related functions

colormap

2-387

2colormapPurpose Set and get the current colormap

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row
is an RGB vector that defines one color. The kth row of the colormap defines the
kth color, where map(k,:) = [r(k) g(k) b(k)]) specifies the intensity of red,
green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are
outside the interval [0 1], MATLAB returns the error Colormap must have
values in [0,1].

colormap('default') sets the current colormap to the default colormap.

cmap = colormap; retrieves the current colormap. The values returned are in
the interval [0 1].

Specifying Colormaps
M-files in the color directory generate a number of colormaps. Each M-file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB
creates a colormap the same size as the current colormap.

Supported Colormaps
MATLAB supports a number of colormaps.

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to grayscale images.

• colorcube contains as many regularly spaced colors in RGB colorspace as
possible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

colormap

2-388

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black through shades of red, orange, and yellow, to
white.

• hsv varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta, and
return to red. The colormap is particularly appropriate for displaying
periodic functions. hsv(m) is the same as hsv2rgb([h ones(m,2)]) where h
is the linear ramp, h = (0:m 1)'/m.

• jet ranges from blue to red, and passes through the colors cyan, yellow, and
orange. It is a variation of the hsv colormap. The jet colormap is associated
with an astrophysical fluid jet simulation from the National Center for
Supercomputer Applications. See the “Examples” section.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction to
colormaps. Select Color Spiral from the menu. This uses the pcolor function
to display a 16-by-16 matrix whose elements vary from 0 to 255 in a rectilinear
spiral. The hsv colormap starts with red in the center, then passes through
yellow, green, cyan, blue, and magenta before returning to red at the outside
end of the spiral. Selecting Colormap Menu gives access to a number of other
colormaps.

colormap

2-389

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet colormap.

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To view the
image, type the following commands:

load spine
image(X)
colormap bone

colormap

2-390

Algorithm Each figure has its own Colormap property. colormap is an M-file that sets and
gets this property.

See Also brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb, pcolor,
rgb2hsv, rgbplot

The Colormap property of figure graphics objects

“Color Operations” for related functions

Coloring Mesh and Surface Plots for more information about colormaps and
other coloring methods

colormapeditor

2-391

2colormapeditorPurpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells below
the colormap strip that indicate points in the colormap where the rate of the
variation of R, G, and B values changes. You can also work in the HSV
colorspace by setting the Interpolating Colorspace selector to HSV.

You can also start the colormap editor by selecting Colormap from the Edit
menu.

Node Pointer Operations
You can select and move node pointers to change a range of colors in the
colormap. The color of a node pointer remains constant as you move it, but the
colormap changes by linearly interpolating the RGB values between nodes.

Change the color at a node by double-clicking the node pointer. MATLAB
displays a color picker from which you can select a new color. After you select
a new color at a node, MATLAB reinterpolates the colors in between nodes.

Operation How to Perform

Add a node Click below the corresponding cell in the colormap
strip.

Select a node Left-click the node.

Select multiple
nodes

Adjacent: left-click first node, Shift+click the last
node.
Nonadjacent: left-click first node, Ctrl+click
subsequent nodes.

Move a node Select and drag with the mouse or select and use
the left and right arrow keys.

colormapeditor

2-392

Current Color Info
When you put the mouse over a color cell or node pointer, the colormap editor
displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the node’s
color (i.e., data from the CData property of any image, patch, or surface
objects in the figure)

• The color’s RGB and HSV color value

Move multiple
nodes

Select multiple nodes and use the left and right
arrow keys to move nodes as a group. Movement
stops when one of the selected nodes hits an
unselected node or an end node.

Delete a node Select the node and then press the Delete key, or
select Delete from the Edit menu, or type Ctrl+x.

Delete multiple
nodes

Select the nodes and then press the Delete key, or
select Delete from the Edit menu, or type Ctrl+x.

Display color picker
for a node

Double-click the node pointer.

Operation How to Perform

colormapeditor

2-393

Interpolating Colorspace
The colorspace determines what values are used to calculate the colors of cells
between nodes. For example, in the RGB colorspace, internode colors are
calculated by linearly interpolating the red, green, and blue intensity values
from one node to the next. Switching to the HSV colorspace causes the
colormap editor to recalculate the colors between nodes using the hue,
saturation, and value components of the color definition.

Note that when you switch from one colorspace to another, the color editor
preserves the number, color, and location of the node pointers, which can cause
the colormap to change.

Interpolating in HSV: Since hue is conceptually mapped about a color circle,
the interpolation between hue values can be ambiguous. To minimize this
ambiguity, the interpolation uses the shortest distance around the circle. For
example, interpolating between two nodes, one with hue of 2 (slightly orange
red) and another with a hue of 356 (slightly magenta red), does not result in
hues 3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).

Colormap index for
color cell

Object’s CData for
color cell

RGB and HSV
values of selected
colormap element

colormapeditor

2-394

Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max
The Color Data Min and Color Data Max text fields enable you to specify
values for the axes CLim property. These values change the mapping of object
color data (the CData property of images, patches, and surfaces) to the
colormap. See Axes Color Limits — the Clim Property for discussion and
examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of data
values are displayed in specific ranges of color. The graph is a slice plane
illustrating a cross section of fluid flow through a jet nozzle. See the slice
reference page for more information on this type of graph.

Example Objectives
The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors from
yellow through orange to dark red. Yellow is slowest and dark red is the
fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative data) are
shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The colorbar
shows the data to color mapping.

colormapeditor

2-395

Running the Example

Note If you are viewing this documentation in the MATLAB help browser,
you can display the graph used in this example by running this M-file from
the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated in the
following picture. Note that this example uses a colormap that is 48 elements
to display wider bands of color (the default is 64 elements).

colormapeditor

2-396

1 Start the colormap editor using the colormapeditor command. The color
map editor displays the current figure’ s colormap, as shown in the following
picture.

colormapeditor

2-397

2 Since we want the regions of left-to-right flow (positive speed) to range from
yellow to dark red, we can delete the cyan node pointer. To do this, first
select it by clicking with the left mouse button and press Delete. The
colormap now looks like this.

colormapeditor

2-398

The Immediate Apply box is checked, so the graph displays the results of
the changes made to the colormap.

colormapeditor

2-399

3 We want the fluid speed values around zero to stand out, so we need to find
the color cell where the negative-to-positive transition occurs. Dragging the
cursor over the color strip enables you to read the data values in the
Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that cell and
create a node pointer. Double-clicking the node pointer displays the color
picker. Set the color of this node to green.

colormapeditor

2-400

The graph continues to update to the modified colormap.

colormapeditor

2-401

4 In the current state, the colormap colors are interpolated from the green
node to the yellowish node about 20 cells away. We actually want only the
single cell that is centered around zero to be colored green. To limit the color
green to one cell, move the blue and yellow node pointers next to the green
pointer.

5 Before making further adjustments to the colormap, we need to move the
green cell so that it is centered around zero. Use the colorbar to locate the
green cell.

colormapeditor

2-402

To recenter the green cell around zero, select the blue, green, and yellow
node pointers (left-click blue, Shift+click yellow) and move them as a group
using the left arrow key. Watch the colorbar in the figure window to see
when the green color is centered around zero.

Note that green cell is not
centered around zero.

colormapeditor

2-403

The slice plane now has the desired range of colors for negative, zero, and
positive data.

colormapeditor

2-404

6 Increase the orange-red coloring in the slice by moving the red node pointer
toward the yellow node.

Green cell is now centered
around zero.

colormapeditor

2-405

7 Darken the endpoints to bring out more detail in the extremes of the data.
Double-click the end nodes to display the color picker. Set the red endpoint
to the RGB value [50 0 0] and set the blue endpoint to the RGB value [0 0
50].

The slice plane coloring now matches the example objectives.

colormapeditor

2-406

Saving the Modified Colormap
You can save the modified colormap using the colormap function or the figure
Colormap property.

After you have applied your changes, save the current figure colormap in a
variable:

mycmap = get(fig,'Colormap'); % fig is figure handle or use gcf

To use this colormap in another figure, set that figure’s Colormap property:

set(new_fig,'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to save
the mycmap workspace variable:

save('MyColormaps',"mycmap')

To use your saved colormap in another MATLAB session, load the variable
into the workspace and assign the colormap to the figure:

load('MyColormaps',"mycmap')
set(fig,'Colormap',mycmap)

colormapeditor

2-407

See Also colormap, get, load, save, set

Color Operations for related functions

See Colormaps for more information on using MATLAB colormaps.

ColorSpec

2-408

2ColorSpecPurpose Color specification

Description ColorSpec is not a command; it refers to the three ways in which you specify
color in MATLAB:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify one of eight
predefined colors. The RGB triple is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the
color; the intensities must be in the range [0 1]. The following table lists the
predefined colors and their RGB equivalents.

Remarks The eight predefined colors and any colors you specify as RGB values are not
part of a figure’s colormap, nor are they affected by changes to the figure’s
colormap. They are referred to as fixed colors, as opposed to colormap colors.

Examples To change the background color of a figure to green, specify the color with a
short name, a long name, or an RGB triple. These statements generate
equivalent results:

whitebg('g')

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

ColorSpec

2-409

whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For example, this
statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” for related functions

colperm

2-410

2colpermPurpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j,j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the bottom
and the rear, and lu(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

See Also chol, colamd, colmmd, lu, spparms, symamd, symmmd, symrcm

comet

2-411

2cometPurpose Two-dimensional comet plot

Syntax comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

Description A comet graph is an animated graph in which a circle (the comet head) traces
the data points on the screen. The comet body is a trailing segment that follows
the head. The tail is a solid line that traces the entire function.

comet(y) displays a comet graph of the vector y.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

comet(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

Remarks Note that the trace left by comet is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a simple comet graph:

t = 0:.01:2*pi;
x = cos(2∗ t).*(cos(t).^2);
y = sin(2∗ t).*(sin(t).^2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” for related functions

comet3

2-412

2comet3Purpose Three-dimensional comet plot

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet3(z) displays a three-dimensional comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p∗ length(y).

comet3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

Remarks Note that the trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a three-dimensional comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” for related functions

commandhistory

2-413

2commandhistoryPurpose Open the Command History, or select it if already open

Graphical
Interface

As an alternative to commandhistory, select Desktop -> Command History to
open it, or Window -> Command History to select it.

Syntax commandhistory

Description commandhistory opens the MATLAB Command History when it is closed, and
selects the Command History when it is open. The Command History presents
a log of the statements most recently run in the Command Window.

See Also diary, startup -logfile option

“Recalling Previous Lines”

“Command History” in the MATLAB Desktop Tools documentation

Timestamp marks the start of each session. Select it to
select all entries in the history for that session.

Select one or more
lines and right-click
to copy, evaluate, or
create a shortcut or
an M-file from the
selection.

Click - to hide history
for that session.
Click + to expand.

commandwindow

2-414

2commandwindowPurpose Open the Command Window, or select it if already open

Graphical
Interface

As an alternative to commandwindow, select Desktop -> Command Window to
open it, or Window -> Command Window to select it.

Syntax commandwindow

Description commandwindow opens the MATLAB Command Window when it is closed, and
selects the Command Window when it is open.

Remarks To determine the number of columns and rows that will display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

The number of columns is based on the width of the Command Window. With
With the matrix display width preference set to 80 columns, the number of
columns is always 80.

See Also MATLAB Desktop Tools and Development Environment documentation

“Opening and Arranging Tools”

“Running Functions—Command Window and History”

“Preferences for the Command Window”

compan

2-415

2companPurpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose first row is
-u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

Examples The polynomial has a companion matrix
given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

x 1–() x 2–() x 3+() x3 7x– 6+=

compass

2-416

2compass Purpose Plot arrows emanating from the origin

Syntax compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and plotted
on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is the
number of elements in U or V. The location of the base of each arrow is the
origin. The location of the tip of each arrow is a point relative to the base and
determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the number
of elements in Z. The location of the base of each arrow is the origin. The
location of the tip of each arrow is relative to the base as determined by the real
and imaginary components of Z. This syntax is equivalent to
compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type, marker
symbol, and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = compass(...) returns handles to line objects.

Examples Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

compass

2-417

See Also feather, LineSpec, quiver, rose

“Direction and Velocity Plots” for related functions

Compass Plots for another example

complex
Purpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)
c = complex(a)

Description c = complex(a,b) creates a complex output, c, from the two real inputs.

c = a + bi

The output is the same size as the inputs, which must be scalars or equally
sized vectors, matrices, or multi-dimensional arrays.

 1.0538

 2.1076

 3.1613

 4.2151

 5.2689

30

210

60

240

90

270

120

300

150

330

180 0

compass

2-418

Note If b is all zeros, c is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a strictly
real result.

The following describes when a and b can have different data types, and the
resulting data type of the output c:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the same
integer data type or type scalar double, and c has the same integer data
type.

c = complex(a) for real a returns the complex result c with real part a and 0
as the value of all imaginary components. Even though the value of all
imaginary components is 0, c is complex and isreal(c) returns false.

The complex function provides a useful substitute for expressions such as

a + i*b or a + j*b

in cases when the names “i” and “j” may be used for other variables (and do
not equal), when a and b are not single or double, or when b is all zero.

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])

c = complex(a,b)

c =
 1.0000 + 2.0000i
 2.0000 + 2.0000i
 3.0000 + 7.0000i
 4.0000 + 7.0000i

See Also abs, angle, conj, i, imag, isreal, j, real

1–

computer

2-419

2computerPurpose Identify information about computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description str = computer returns the string str with the computer type on which
MATLAB is running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

[str,maxsize,endian] = computer also returns either 'L' for little endian
byte ordering or 'B' for big endian byte ordering.

The list of supported computers changes as new computers are added and
others become obsolete. A typical list follows.

See Also ispc, isunix

str Computer

GLNX86 Linux on PC

GLNXI64 Linux on Intel Itanium2

HPUX HP PA-RISC (HP-UX 11.00)

MAC Macintosh OS X

PCWIN Microsoft Windows

SOL2 Sun Solaris 2 SPARC workstation

cond

2-420

2condPurpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond(X) and cond(X,p) near 1 indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

Algorithm The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

'fro' Frobenius norm condition number

inf Infinity norm condition number

condeig

2-421

2condeigPurpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

condest

2-422

2condestPurpose 1-norm condition number estimate

Syntax c = condest(A)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition number of
a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to the
number of columns in an underlying iteration matrix. Increasing the number
of columns usually gives a better condition estimate but increases the cost. The
default is t = 2, which almost always gives an estimate correct to within a
factor 2.

[c,v] = condest(A) also computes a vector v which is an approximate null
vector if c is large. v satisfies norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then invoke
rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

condest uses block 1-norm power method of Higham and Tisseur [].

See Also cond, norm, normest

Reference Higham, N. J. and F. Tisseur, “A Block Algorithm for Matrix 1-Norm
Estimation, with an Application to 1-Norm Pseudospectra,” SIAM Journal
Matrix Anal. Appl., Vol. 21, No. 4, 2000, pp.1185-1201.

coneplot

2-423

2coneplotPurpose Plot velocity vectors as cones in a 3-D vector field

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
comeplot(axes_handle,...)
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones pointing in
the direction of the velocity vector and having a length proportional to the
magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size, monotonic,
and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in the vector field. The section
Starting Points for Stream Plots in Visualization Techniques provides more
information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments) assumes
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p]= size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value for s,
MATLAB uses a value of 1. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector field and
then colors the cones according to the interpolated values. The size of the color
array must be the same size as the U, V, W arrays. This option works only with
cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3 for an
illustration of a quiver plot).

coneplot

2-424

coneplot(...,'method') specifies the interpolation method to use. method
can be linear, cubic, or nearest. linear is the default (see interp3 for a
discussion of these interpolation methods).

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions of the
cones into the volume. The cones are drawn at positions defined by X, Y, Z and
are oriented according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.

coneplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to draw the
cones. You can use the set command to change the properties of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping them
in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling coneplot.
You can set the ratio using the daspect command,

daspect([1,1,1])

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space. The final
graph employs a number of enhancements to visualize the data more
effectively. These include

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual context for
the cone plots within the volume.

• Directional lighting provides visual cues to the orientation of the cones.

• View adjustments compose the scene to best reveal the information content
of the data by selecting the view point, projection type, and magnification.

1. Load and Inspect Data
The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinates specified in x, y, and z. The coordinates
define a lattice grid structure where the data is sampled within the volume.

coneplot

2-425

It is useful to establish the range of the data to place the slice planes and to
specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example selects the
full range of x and y in eight steps and the range 3 to 15 in four steps in z
(linspace, meshgrid).

• Use daspect to set the data aspect ratio of the axes before calling coneplot
so MATLAB can determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger than
the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')

coneplot

2-426

3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the y-axis at
ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind speed and
do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of the data.

• Orient the view to azimuth = 30 and elevation = 40 (rotate3d is a useful
command for selecting the best view).

• Select perspective projection to provide a more realistic looking volume
(camproj).

• Zoom in on the scene a little to make the plot as large as possible (camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene
The light source affects both the slice planes (surfaces) and the cone plots
(patches). However, you can set the lighting characteristics of each
independently.

• Add a light source to the right of the camera and use Phong lighting to give
the cones and slice planes a smooth, three-dimensional appearance
(camlight, lighting).

• Increase the value of the AmbientStrength property for each slice plane to
improve the visibility of the dark blue colors. (Note that you can also specify
a different colormap to change the coloring of the slice planes.)

coneplot

2-427

• Increase the value of the DiffuseStrength property of the cones to brighten
particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2, stream3,
subvolume

“Volume Visualization” for related functions

conj

2-428

2conjPurpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

continue

2-429

2continuePurpose Pass control to the next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop in which
it appears, skipping any remaining statements in the body of the loop.

In nested loops, continue passes control to the next iteration of the for or
while loop enclosing it.

Examples The example below shows a continue loop that counts the lines of code in the
file magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

See Also for, while, end, break, return

contour

2-430

2contourPurpose Contour graph of a matrix

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
[C,h] = contour(...)

[C,h] = contour('v6',...)

Description A contour graph displays isolines of matrix Z. Label the contour lines using
clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as heights
with respect to the x-y plane. Z must be at least a 2-by-2 matrix. The number
of contour levels and the values of the contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x- and
y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the data
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw contour
plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices,
they must be the same size as Z, in which case they specify a surface, as defined
by the surf function.

If X or Y is irregularly spaced, contour calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

contour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. contour ignores marker symbols.

contour

2-431

[C,h] = contour(...) returns the contour matrix C (see contourc) and a
handle to a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup object properties.)

Backward Compatible Version

[C,h] = contour('v6',...) returns the contour matrix C (see contourc) and
a vector of handles to graphics objects. clabel uses the contour matrix C to
create the labels. contour creates patch graphics objects unless you specify a
LineSpec, in which case contour creates line graphics objects.

See Plot Objects and Backward Compatibility for more information.

Remarks If you do not specify the LineSpec argument, the figure colormap (colormap)
and the color limits (caxis) control the color of the contour lines. In this case
the contour function creates patch objects to implement the contour plot.

When you specify the LineSpec argument, the contour function creates line
object to implement the contour plot. In this case, contour lines are not mapped
to colors in the figure colormap, but are colored using the colors defined in the
axes ColorOrder property.

Use contourgroup object properties to control the contour plot appearance.

The following diagram illustrates the parent-child relationship in contour
plots.

contour

2-432

Examples Contour Plot of a Function
To view a contour plot of the function

over the range -2 ≤ x ≤ 2, -2 ≤ y ≤ 3, create matrix Z using the statements

[X,Y] = meshgrid(-2:.2:2,-2:.2:3);
Z = X.∗ exp(-X.^2-Y.^2);

Then, generate a contour plot of Z.

• Display contour labels by setting the ShowText property to on.

• Label every other contour line by setting the TextStep property to twice the
contour interval (i.e., two times the LevelStep property).

• Use a smoothly varying colormap.

[C,h] = contour(X,Y,Z);
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool

Patch

Contourgroup

Text

Axes

TextPatch

z xe x2 y2––()=

contour

2-433

Smoothing Contour Data
You can use interp2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = peaks;
[C,h] = contour(interp2(Z,4));
text_handle = clabel(C,h);
set(text_handle,'BackgroundColor',[1 1 .6],...
 'Edgecolor',[.7 .7 .7])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0.20.4

0.2

0.2
0

0
0

−0.2

−0.2

−
0.4

−0
.2

contour

2-434

Setting the Axis Limits on Contour Plots
Suppose, for example, your data represents a region that is 1000 meters in the
x dimension and 3000 meters in the y dimension. You could use the following
statements to set the axis limits correctly:

Z = rand(24,36); % assume data is a 24-by-36 matrix
X = linspace(0,1000,size(Z,2));
Y = linspace(0,3000,size(Z,1));
[c,h] = contour(X,Y,Z);
axis equal tight % set the axes aspect ratio

See Also contour3, contourc, contourf, contourslice

See “Contourgroup Properties” for poperty descriptions

100 200 300 400 500 600 700

100

200

300

400

500

600

700

0

2

2

0

−2

4

4
−2

2

−4

6

2

−4

0

6

8
−6

0

−2
0

2
2

4

2

0

−2

−2

0

0

contour3

2-435

2contour3 Purpose Three-dimensional contour plot

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(axes_handle,...)
contour3(...,LineSpec)
[C,h] = contour3(...)

Description contour3 creates a three-dimensional contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a 2-by-2
matrix. The number of contour levels and the values of contour levels are
chosen automatically. The ranges of the x- and y-axis are [1:n] and [1:m],
where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in a
three-dimensional view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at the
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X and Y
to define the x- and y-axis limits. If X is a matrix, X(1,:) defines the x-axis. If
Y is a matrix, Y(:,1) defines the y-axis. When X and Y are matrices, they must
be the same size as Z, in which case they specify a surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and color
specified by LineSpec.

contour3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

contour3

2-436

[C,h] = contour3(...) returns the contour matrix C as described in the
function contourc and a column vector containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec, in which
case contour3 creates line graphics objects.

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Plot the three-dimensional contour of a function and superimpose a surface
plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor','none')
grid off
view(-15,25)
colormap cool

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

−0.5

0

0.5

contour3

2-437

See Also contour, contourc, meshc, meshgrid, surfc

“Contour Plots” category for related functions

Contour Plots section for more examples

contourc

2-438

2contourcPurpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3, and
contourf. The values in Z determine the heights of the contour lines with
respect to a plane. The contour calculations use a regularly spaced grid
determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z, where Z
must be at least a 2-by-2 matrix. The contours are isolines in the units of Z. The
number of contour lines and the corresponding values of the contour lines are
chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the
values specified in vector v. The length of v determines the number of contour
levels. To compute a single contour of level i, use contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C = contourc(x,y,Z,v)
compute contours of Z using vectors x and y to determine the x- and y-axis
limits. x and y must be monotonically increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour line defined
in matrix C begins with a column that contains the value of the contour
(specified by v and used by clabel), and the number of (x,y) vertices in the
contour line. The remaining columns contain the data for the (x,y)pairs.

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as contouring
irregularly spaced data. If x or y is irregularly spaced, contourc calculates

contourc

2-439

contours using a regularly spaced contour grid, then transforms the data to x
or y.

See Also clabel, contour, contour3, contourf

“Contour Plots” for related functions

The Contouring Algorithm for more information

contourf

2-440

2contourfPurpose Filled two-dimensional contour plot

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(axes_handle,...)
[C,h,CF] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and fills the
areas between the isolines using constant colors. The color of the filled areas
depends on the current figure’s colormap.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number
of contour lines and the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

contourf(Z,v) draws a contour plot of matrix Z with contour levels at the
values specified in vector v.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) produce
contour plots of Z using X and Y to determine the x- and y-axis limits. When X
and Y are matrices, they must be the same size as Z, in which case they specify
a surface as surf does.

contourf(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

[C,h,CF] = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel, a vector of handles h to patch graphics
objects, and a contour matrix CF for the filled areas.

Remarks If X or Y is irregularly spaced, contourf calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

contourf

2-441

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);
colormap autumn

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” for related functions

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Contourgroup Properties

2-442

2Contourgroup PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See Plot Objects for more information on contourgroup objects.

Contourgroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore, can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Contourgroup Properties

2-443

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the contourgroup object, but not over
another graphics object. See the HitTestArea property for information about
selecting contourgroup objects.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the contourgroup object. An array containing the handles of all line
objects parented to the contourgroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the contour Children property unless you
set the Root ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Clipping {on} | off

Clipping mode. MATLAB clips contour plots to the axes plot box by default. If
you set Clipping to off, lines might be displayed outside the axes plot box.

ContourMatrix 2-by-n matrix

A two-row matrix specifying all the contour lines. Each contour line defined in
the ContourMatrix begins with a column that contains the value of the contour
(specified by the LevelList property and is used by clabel), and the number
of (x,y) vertices in the contour line. The remaining columns contain the data
for the (x,y)pairs:

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

Contourgroup Properties

2-444

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a contourgroup object. You must
specify the callback during the creation of the object. For example,

contour(Z,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other contourgroup properties.
Setting this property on an existing contourgroup object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
contourgroup object is deleted (e.g., this might happen when you issue a delete
command on the contourgroup object, its parent axes, or the figure containing
it). MATLAB executes the callback before destroying the object’s properties so
the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser uses this text for
labels for any contourgroup objects appearing in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase contour child objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

Contourgroup Properties

2-445

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor — Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when over the axes background color (or the figure background color if the
axes Color property is set to none). That is, it isn’t erased correctly if there
are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., performing an XOR on a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

Contourgroup Properties

2-446

Fill {off} | on

Color spaces between contour lines. By default, contour draws only the contour
lines of the surface. If you set Fill to on, contour colors the regions in between
the contour lines according to the Z-value of the region and changes the contour
lines to black.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the contourgroup object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Contourgroup Properties

2-447

Overriding Handle Visibility
You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings. (This does not affect the
values of the HandleVisibility properties.) See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the contourgroup object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the line objects that
compose the contour plot. If HitTest is off, clicking the contour selects the
object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select contourgroup object on contour lines or area of extent. This property
enables you to select contourgroup objects in two ways:

• Select by clicking contour lines (default).

• Select by clicking anywhere in the extent of the contour plot.

When HitTestArea is off, you must click the contour lines (excluding the
baseline) to select the contourgroup object. When HitTestArea is on, you can
select the contourgroup object by clicking anywhere within the extent of the
contour plot (i.e., anywhere within a rectangle that encloses all the contour
lines).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a contourgroup object callback can be interrupted by callbacks
invoked subsequently. Only callbacks defined for the ButtonDownFcn property
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property for related
information.

Contourgroup Properties

2-448

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a contour property. Note that MATLAB does
not save the state of variables or the display (e.g., the handle returned by the
gca or gcf command) when an interruption occurs.

LabelSpacing distance in points (default = 144)

Spacing between labels on each contour line. When you display contour line
labels using either the ShowText property or the clabel command, the labels
are spaced 144 points (2 inches) apart on each line. You can specify the spacing
by setting the LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB displays only
one contour label on that line.

LevelList vector of ZData-values

Values at which contour lines are drawn. When the LevelListMode property is
auto, the contour function automatically chooses contour values that span the
range of values in ZData (the input argument Z). You can set this property to
the values at which you want contour lines drawn.

To specify the contour interval (space between contour lines) use the LevelStep
property.

LevelListMode {auto} | manual

User-specified or autogenerated LevelList values. By default, the contour
function automatically generates the values at which contours are drawn. If
you set this property to manual, contour does not change the values in
LevelList as you change the values of ZData.

LevelStep scalar

Spacing of contour lines. The contour function draws contour lines at regular
intervals determined by the value of LevelStep. When the LevelStepMode
property is set to auto, contour determines the contour interval automatically
based on the ZData.

LevelStepMode {auto} | manual

User-specified or autogenerated LevelStep values. By default, the contour
function automatically determines a value for the LevelStep property. If you
set this property to manual, contour does not change the value of LevelStep as
you change the values of ZData.

Contourgroup Properties

2-449

LineColor {auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB colors the
contour lines.

• auto— Each contour line is a single color determined by its contour value,
the figure colormap, and the color axis (caxis).

• ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for edges. The default edge color is black. See
ColorSpec for more information on specifying color.

• none — No contour lines are drawn.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style used for the contour lines.
Available line styles are shown in the table.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line.

LineWidth scalar

The width of the contour lines. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Parent object handle

Parent of contourgroup object. This property contains the handle of the
contourgroup object’s parent object. The parent of a contourgroup object is the
axes, hggroup, or hgtransform object that contains it.

Symbol Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Contourgroup Properties

2-450

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the contourgroup object has
been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

ShowText on | {off}

Display labels on contour lines. When you set this property to on, MATLAB
displays text labels on each contour line indicating the contour value. See also
LevelList, clabel, and the example “Contour Plot of a Function”.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create a contourgroup object and set the Tag property:

t = contour('Tag','contour1')

When you want to access the contourgroup object, you can use findobj to find
the contourgroup object’s handle. The following statement changes the
MarkerFaceColor property of the object whose Tag is contour1.

set(findobj('Tag','contour1'),'MarkerFaceColor','red')

TextList vector of contour values

Contour values to label. This property contains the contour values where text
labels are placed. By default, these values are the same as those contained in

Contourgroup Properties

2-451

the LevelList property, which define where the contour lines are drawn. Note
that there must be an equivalent contour line to display a text label.

For example, the following statements create and label a contour graph:

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevelList property to see the contour line values:

get(h,'LevelList')

Suppose you want to view the contour value 4.375 instead of the value of 4 that
the contour function used. To do this, you need to set both the LevelList and
TextList properties:

set(h,'LevelList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

See the example “Contour Plot of a Function” for additional information.

TextListMode {auto} | manual

User-specified or auto TextList values. When this property is set to auto,
MATLAB sets the TextList property equal to the values of the LevelList
property (i.e., a text label for each contour line). When this property is set to
manual, MATLAB does not set the values of the TextList property. Note that
specifying values for the TextList property causes the TextListMode property
to be set to manual.

TextStep scalar

Determines which contour line have numeric labels. The contour function
labels contour lines at regular intervals which are determined by the value of
the TextStep property. When the TextStepMode property is set to auto,
contour labels every contour line when the ShowText property is on. See
“Contour Plot of a Function” for an example that uses the TextStep property.

TextStepMode {auto} | manual

User-specified or autogenerated TextStep values. By default, the contour
function automatically determines a value for the TextStep property. If you set
this property to manual, contour does not change the value of TextStep as you
change the values of ZData.

Contourgroup Properties

2-452

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For contourgroup objects, Type is 'hggroup'. This statement
finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the contourgroup object. Assign this property the
handle of a uicontextmenu object created in the contourgroup object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the extent of the
contourgroup object.

UserData array

User-specified data. This property can be any data you want to associate with
the contourgroup object (including cell arrays and structures). The
contourgroup object does not set values for this property, but you can access it
using the set and get functions.

Visible {on} | off

Visibility of contourgroup object and its children. By default, contourgroup
object visibility is on. This means all children of the contour are visible unless
the child object’s Visible property is set to off. Setting a contourgroup object’s
Visible property to off also makes its children invisible.

XData vector or matrix

X-axis limits. This property determines the x-axis limits used in the contour
plot. If you do not specify an X argument, the contour function calculates x-axis
limits based on the size of the input argument Z.

XData can be either a matrix equal in size to ZData or a vector equal in length
to the number of rows in ZData.

Use XData to define meaningful coordinates for the underlying surface whose
topography is being mapped. See “Setting the Axis Limits on Contour Plots” for
more information.

Contourgroup Properties

2-453

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. In auto mode (the default) the
contour function automatically determines the x-axis limits. If you set this
property to manual, specify a value for XData, or specify an X argument, then
contour sets this property to manual and does not change the axis limits.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

YData scalar, vector, or matrix

Y-axis limits. This property determines the y-axis limits used in the contour
plot. If you do not specify a Y argument, the contour function calculates y-axis
limits based on the size of the input argument Z.

YData can be either a matrix equal in size to ZData or a vector equal in length
to the number of columns in ZData.

Use YData to define meaningful coordinates for the underlying surface whose
topography is being mapped. See “Setting the Axis Limits on Contour Plots” for
more information.

YDataMode {auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the default) the
contour function automatically determines the y-axis limits. If you set this

Contourgroup Properties

2-454

property to manual, specify a value for YData, or specify a Y argument, then
contour sets this property to manual and does not change the axis limits.

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

ZData matrix

Contour data. This property contains the data from which the contour lines are
generated (specified as the input argument Z). ZData must be at least a 2-by-2
matrix. The number of contour levels and the values of the contour levels are
chosen automatically based on the minimum and maximum values of ZData.
The limits of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(ZData).

ZDataSource string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the ZData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change ZData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

Contourgroup Properties

2-455

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

contourslice

2-456

2contourslicePurpose Draw contours in volume slice planes

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz), contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
contourslice(axes_handle,...)
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and z-axis
aligned planes at the points in the vectors Sx, Sy, Sz. The arrays X, Y, and Z
define the coordinates for the volume V and must be monotonic and 3-D plaid
(such as the data produced by meshgrid) The color at each contour is
determined by the volume V, which must be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume V
along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface should lie
within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi) (omitting the X,
Y, and Z arguments) assume [X,Y,Z] = meshgrid(1:n,1:m,1:p) where
[m,n,p]= size(v).

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per plane at the
values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at the level
cv.

contourslice(...,'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. nearest is the default except when
the contours are being drawn along the surface defined by Xi, Yi, Zi, in which
case linear is the default (see interp3 for a discussion of these interpolation
methods).

contourslice

2-457

contourslice(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects that are
used to implement the contour lines.

Examples This example uses the flow data set to illustrate the use of contoured slice
planes (type doc flow for more information on this data set). Notice that this
example

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy, and a
scalar value (0) for Sz. This creates nine contour plots along the x direction
in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a ten-element vector of linearly spaced values from
-8 to 2. This vector specifies that ten contour lines be drawn, one at each
element of the vector.

• Defines the view and projection type (camva, camproj, campos).

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;
campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...

'YColor','white','ZColor','white')
box on

contourslice

2-458

This example draws contour slices along a spherical surface within the volume.

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2); % Create volume data
[xi,yi,zi] = sphere; % Plane to contour
contourslice(x,y,z,v,xi,yi,zi)
view(3)

See Also isosurface, slice, smooth3, subvolume, reducevolume

“Volume Visualization” for related functions

1
2

3
4

5
6

7
8

9
10

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

contrast

2-459

2contrastPurpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates a new gray
colormap, cmap, that has an approximately equal intensity distribution. All
three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length as the
current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image

“Colormaps” for related functions

conv

2-460

2convPurpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Definition Let m = length(u) and n = length(v). Then w is the vector of length m+n-1
whose kth element is

The sum is over all the values of j which lead to legal subscripts for u(j) and
v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it
is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = fft([x zeros(1,length(y)-1)])

and

Y = fft([y zeros(1,length(x)-1)])

then conv(x,y) = ifft(X.*Y)

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

w k() u j()v k 1 j–+()
j
∑=

conv2

2-461

2conv2Purpose Two-dimensional convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional finite impulse response
(FIR) filter, the other matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of A is [ma,na]
and the size of B is [mb,nb], then the size of C is [ma+mb-1,na+nb-1].

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along the rows
and then with the vector hrow along the columns. If hcol is a column vector and
hrow is a row vector, this case is the same as C = conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

Algorithm conv2 uses a straightforward formal implementation of the two-dimensional
convolution equation in spatial form. If and are functions of two discrete
variables, and , then the formula for the two-dimensional convolution of

 and is

In practice however, conv2 computes the convolution for finite intervals.

full Returns the full two-dimensional convolution (default).

same Returns the central part of the convolution of the same size as A.

valid Returns only those parts of the convolution that are computed
without the zero-padded edges. Using this option, C has size
[ma-mb+1,na-nb+1] when all(size(A) >= size(B)). Otherwise
conv2 returns [].

a b
n1 n2

a b

c n1 n2,() a k1 k2,() b n1 k1– n2 k2–,()
k2 ∞–=

∞

∑
k1 ∞–=

∞

∑=

conv2

2-462

Note that matrix indices in MATLAB always start at 1 rather than 0.
Therefore, matrix elements A(1,1), B(1,1), and C(1,1) correspond to
mathematical quantities a(0,0), b(0,0), and c(0,0).

Examples Example 1. For the 'same' case, conv2 returns the central part of the
convolution. If there are an odd number of rows or columns, the "center" leaves
one more at the beginning than the end.

This example first computes the convolution of A using the default ('full')
shape, then computes the convolution using the 'same' shape. Note that the
array returned using 'same' corresponds to the underlined elements of the
array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
 0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
 0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
 0.5627 1.5150 2.3576 3.1553 2.5373 1.0602
 0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
 0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
 0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =
 2.3576 3.1553 2.5373
 3.4302 3.5128 2.4489
 1.8229 2.1561 1.6364

Example 2. In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

conv2

2-463

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

0

5

10

15

0

5

10

15
−4

−2

0

2

4

0

5

10

15

0

5

10

15
−4

−2

0

2

4

conv2

2-464

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

0

5

10

15

0

5

10

15
0

1

2

3

4

5

convhull

2-465

2convhullPurpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,options)
[K,a] = convhull(...)

Description K = convhull(x,y) returns indices into the x and y vectors of the points on the
convex hull.

convhull uses Qhull.

K = convhull(x,y,options) specifies a cell array of strings options to be used
in Qhull via convhulln. The default option is {'Qt'}.

If options is [], the default options are used. If options is {''}, no options will
be used, not even the default. For more information on Qhull and its options,
see http://www.qhull.org.

[K,a] = convhull(...) also returns the area of the convex hull.

Visualization Use plot to plot the output of convhull.

Examples xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

convhull

2-466

Algorithm convhull is based on Qhull [2]. For information about Qhull, see
http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunay, plot, polyarea, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.uiuc.edu/pub/software/qhull-96.ps.Z.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

convhulln

2-467

2convhullnPurpose N-dimensional convex hull

Syntax K = convhulln(X)
K = convulln(X, options)
[K,v] = convhulln(...)

Description K = convhulln(X) returns the indices K of the points in X that comprise the
facets of the convex hull of X. X is an m-by-n array representing m points in
N-dimensional space. If the convex hull has p facets then K is p-by-n.

convhulln uses Qhull.

K = convulln(X, options) specifies a cell array of strings options to be used
as options in Qhull. The default options are:

• {'Qt'} for 2-, 3-. and 4-dimensional input

• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. If options is {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling sequence is
K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

• You cannot plot convhulln output for n > 3.

Algorithm convhulln is based on Qhull [2]. For information about Qhull, see
http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

convhulln

2-468

See Also convhull, delaunayn, dsearchn, tsearchn, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

convn

2-469

2convnPurpose N-dimensional convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

See Also conv, conv2

'full' Returns the full N-dimensional convolution (default).

'same' Returns the central part of the result that is the same size as A.

'valid' Returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the
result is

max(size(A)-size(B) + 1, 0)

copyfile

2-470

2copyfilePurpose Copy file or directory

Graphical
Interface

As an alternative to the copyfile function, use the Current Directory browser.
Select the files and then select copy and paste commands from the Edit menu.

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status,message,messageid] = copyfile('source','destination','f')

Description copyfile('source','destination') copies the file or directory, source (and
all its contents) to the file or directory, destination, where source and
destination are the absolute or relative pathnames for the directory or file. If
source is a directory, destination cannot be a file. If source is a directory,
copyfile copies the contents of source, not the directory itself. To rename a
file or directory when copying it, make destination a different name than
source. If destination already exists, copyfile replaces it without warning.
Use the wildcard * at the end of source to copy all matching files. Note that the
read-only and archive attributes of source are not preserved in destination.

copyfile('source','destination','f') copies source to destination,
regardless of the read-only attribute of destination.

[status,message,messageid] = copyfile('source','destination','f')
copies source to destination, returning the status, a message, and the
MATLAB error message ID (see error and lasterr). Here, status is 1 for
success and 0 for error. Only one output argument is required and the f input
argument is optional.

The * wildcard in a path string is supported. Current behavior of copyfile
differs between UNIX and Windows when using the wildcard * or copying
directories.

Examples Copy File in Current Directory, Assigning a New Name to It
To make a copy of a file myfun.m in the current directory, assigning it the name
myfun2.m, type

copyfile('myfun.m','myfun2.m')

copyfile

2-471

Copy File to Another Directory
To copy myfun.m to the directory d:/work/myfiles, keeping the same filename,
type

copyfile('myfun.m','d:/work/myfiles')

Copy All Matching Files by Using a Wildcard
To copy all files in the directory myfiles whose names begin with my to the
directory newprojects, where newprojects is at the same level as the current
directory, type

copyfile('myfiles/my*','../newprojects')

Copy Directory and Return Status
In this example, all files and subdirectories in the current directory’s myfiles
directory are copied to the directory d:/work/myfiles. Note that before
running the copyfile function, d:/work does not contain the directory
myfiles. It is created because myfiles is appended to destination in the
copyfile function:

[s,mess,messid]=copyfile('myfiles','d:/work/myfiles')
s =
 1

mess =
 ''

messid =
 ''

The message returned indicates that copyfile was successful.

Copy File to Read-Only Directory
Copy myfile.m from the current directory to d:/work/restricted, where
restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile.m exists in d:/work/restricted.

See Also cd, delete, dir, fileattrib, filebrowser, fileparts, mkdir, movefile, rmdir

copyobj

2-472

2copyobjPurpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical to the
original objects except the copies have different values for their Parent
property and a new handle. The new parent must be appropriate for the copied
object (e.g., you can copy a line object only to another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects identified by
h and returns the handle of the new object or a vector of handles to new objects.
The new graphics objects are children of the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be the same
length, and the output argument, new_handle, is a vector of the same length.
In this case, new_handle(i) is a copy of h(i) with its Parent property set to
p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p.
Each new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of h(i) with
its Parent property set to p. The length of new_handle equals length(h).

Graphics objects are arranged as a hierarchy. See Handle Graphics Objects for
more information.

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);
colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property), view, and
grid (axes properties) are not copies.

copyobj

2-473

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects

“Finding and Identifying Graphics Objects” for related functions

corrcoef

2-474

2corrcoefPurpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients calculated from
an input matrix X whose rows are observations and whose columns are
variables. The matrix R = corrcoef(X) is related to the covariance
matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the
hypothesis of no correlation. Each p-value is the probability of getting a
correlation as large as the observed value by random chance, when the true
correlation is zero. If P(i,j) is small, say less than 0.05, then the correlation
R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP, of the same
size as R, containing lower and upper bounds for a 95% confidence interval for
each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the following.

R i j,() C i j,()
C i i,()C j j,()

-------------------------------------=

corrcoef

2-475

The p-value is computed by transforming the correlation to create a t statistic
having n-2 degrees of freedom, where n is the number of rows of X. The
confidence bounds are based on an asymptotic normal distribution of
0.5*log((1+R)/(1-R)), with an approximate variance equal to 1/(n-3).
These bounds are accurate for large samples when X has a multivariate normal
distribution. The 'pairwise' option can produce an R matrix that is not
positive definite.

Examples Generate random data having correlation between column 4 and the other
columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
 1.0000 -0.3566 0.1929 0.3457
 -0.3566 1.0000 -0.1429 0.4461
 0.1929 -0.1429 1.0000 0.5183
 0.3457 0.4461 0.5183 1.0000

p =
 1.0000 0.0531 0.3072 0.0613
 0.0531 1.0000 0.4511 0.0135
 0.3072 0.4511 1.0000 0.0033
 0.0613 0.0135 0.0033 1.0000

ans =
 4 2
 4 3
 2 4

'alpha' A number between 0 and 1 to specify a confidence level of
100*(1 - alpha)%. Default is 0.05 for 95% confidence intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to use rows
with no NaN values, or 'pairwise' to compute R(i,j) using
rows with no NaN values in either column i or j.

corrcoef

2-476

 3 4

See Also cov, mean, std

xcorr, xcov in the Signal Processing Toolbox

cos

2-477

2cosPurpose Cosine of an argument in radians

Syntax Y = cos(X)

Description The cos function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Examples Graph the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of .

Definition The cosine can be defined as

π– x π≤ ≤

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

π

x iy+()cos x() y()coshcos i x()sinh y()sin–=

z()cos eiz e iz–+
2

-----------------------=

cos

2-478

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acos, acosh, cosd, cosh

cosd

2-479

2cosdPurpose Cosine of an argument in degrees

Syntax Y = cosd(X)

Description Y = cosd(X) is the cosine of the elements of X, expressed in degrees. For odd
integers n, cosd(n*90) is exactly zero, whereas cos(n*pi/2) reflects the
accuracy of the floating point value of pi.

See Also acosd, cos

cosh

2-480

2coshPurpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain .

x = -5:0.01:5;
plot(x,cosh(x)), grid on

Definition The hyperbolic cosine can be defined as

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

5– x 5≤ ≤

−5 0 5
0

10

20

30

40

50

60

70

80

cosh z() ez e z–+
2

-------------------=

cosh

2-481

See Also acos, acosh, cos

cot

2-482

2cotPurpose Cotangent of an argument in radians

Syntax Y = cot(X)

Description The cot function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Examples Graph the cotangent the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Definition The cotangent can be defined as

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π.< <

−4 −3 −2 −1 0 1 2 3 4
−100

−80

−60

−40

−20

0

20

40

60

80

100

z()cot 1
z()tan

-----------------=

cot

2-483

See Also acot, acoth, cotd, coth

cotd

2-484

2cotdPurpose Cotangent of an argument in degrees

Syntax Y = cotd(X)

Description Y = cotd(X) is the cotangent of the elements of X, expressed in degrees. For
integers n, cotd(n*180) is infinite, whereas cot(n*pi) is large but finite,
reflecting the accuracy of the floating point value of pi.

See Also acotd, cot

coth

2-485

2cothPurpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

Definition The hyperbolic cotangent can be defined as

Algorithm coth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π.< <

−4 −3 −2 −1 0 1 2 3 4
−100

−50

0

50

100

150

z()coth 1
z()tanh

---------------------=

coth

2-486

See Also acot, acoth, cot

cov

2-487

2covPurpose Covariance matrix

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(x) where x is a vector returns the variance of the vector elements. For
matrices where each row is an observation and each column a variable, cov(x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each
column, and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(x,y), where x and y are column vectors of equal length, is equivalent
to cov([x y]).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where is the mathematical expectation and .

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of variances for
each column of A:

v = diag(cov(A))'
v =
 10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

C =
 10.3333 -4.1667 3.0000
 -4.1667 2.3333 -1.5000
 3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns of A.
The off-diagonal elements C(i,j) represent the covariances of columns i and j.

See Also corrcoef, mean, std

xcorr, xcov in the Signal Processing Toolbox

cov x1,x2() E x1 µ1–() x2 µ2–()[]=

E µi Exi=

cplxpair

2-488

2cplxpairPurpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a complex
array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100*eps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides
the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message

Complex numbers can't be paired.

cputime

2-489

2cputimePurpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and
wrap around.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc

createClassFromWsdl

2-490

2createClassFromWsdlPurpose Creates MATLAB classes from Web Services Description Language (WSDL)

Syntax createClassFromWsdl('source')

Description createClassFromWsdl('source') creates MATLAB classes based on a WSDL
application programming interface (API). The source argument specifies a
URL or file path to a WSDL API, which defines web service methods,
arguments, and transactions.

Based on the WSDL API, the createClassFromWSDL function creates a new
folder in the current directory. The folder contains an M-file for each web
service method. In addition, two default M-files are created that display
method results (display.m) and that initialize the web service MATLAB object
(servicename.m).

For example, if myWebService offers two methods (method1 and method2), the
createClassFromWSDL function creates:

• @myWebService folder in the current directory

• method1.m — M-file for method1

• method2.m — M-file for method2

• display.m — Default M-file for display method

• myWebService.m — Default M-file for the myWebService MATLAB object

Remarks For more information about WSDL and web services, see the following
resources:

• World Wide Web Consortium (W3C) WSDL specification

• W3C SOAP specification

XMethods.net

Example The following example calls a web service that returns the book price for an
International Standard Bibliographic Number (ISBN).

% The createClassFromWSDL function takes the WSDL URL as an
% argument.
createClassFromWsdl('http://www.xmethods.net/sd/2001/BNQuoteServ
ice.wsdl');
bq = bnquoteservice;

createClassFromWsdl

2-491

% getQuote is the web service method. The first argument,
% bq, is an instance of the bnquoteservice class. The
% second argument, 0735712719, is an ISBN number.
getprice(bq, '0735712719');

cross

2-492

2crossPurpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B. That is,
C = A x B. A and B must be 3-element vectors. If A and B are multidimensional
arrays, cross returns the cross product of A and B along the first dimension of
length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays, returns the
cross product of A and B in dimension dim . A and B must have the same size,
and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3];
b = [4 5 6];
c = cross(a,b)

c =
 -3 6 -3

d = dot(a,b)

d =
 32

See Also dot

csc

2-493

2cscPurpose Cosecant of an argument in radians

Syntax Y = csc(x)

Description The csc function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Examples Graph the cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

Definition The cosecant can be defined as

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π< <

−4 −3 −2 −1 0 1 2 3 4
−150

−100

−50

0

50

100

150

z()csc 1
z()sin

----------------=

csc

2-494

See Also acsc, acsch, cscd, csch

cscd

2-495

2cscdPurpose Cosecant of an argument in degrees

Syntax Y = cscd(X)

Description Y = cscd(X) is the cosecant of the elements of X, expressed in degrees. For
integers n, cscd(n*180) is infinite, whereas csc(n*pi) is large but finite,
reflecting the accuracy of the floating point value of pi.

See Also acscd, csc

csch

2-496

2 cschPurpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the hyperbolic cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

Definition The hyperbolic cosecant can be defined as

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π< <

−4 −3 −2 −1 0 1 2 3 4
−100

−80

−60

−40

−20

0

20

40

60

80

100

z()csch 1
z()sinh

--------------------=

csch

2-497

See Also acsc, acsch, csc

csvread

2-498

2csvreadPurpose Read a comma-separated value file

Syntax M = csvread('filename')
M = csvread('filename', row, col)
M = csvread('filename', row, col, range)

Description M = csvread('filename') reads a comma-separated value formatted file,
filename. The result is returned in M. The file can only contain numeric values.

M = csvread('filename', row, col) reads data from the comma-separated
value formatted file starting at the specified row and column. The row and
column arguments are zero based, so that row=0 and col=0 specify the first
value in the file.

M = csvread('filename', row, col, range) reads only the range specified.
Specify range using the notation [R1 C1 R2 C2] where (R1,C1) is the upper left
corner of the data to be read and (R2,C2) is the lower right corner. You can also
specify the range using spreadsheet notation, as in range = 'A1..B7'.

Remarks csvread fills empty delimited fields with zero. Data files having lines that end
with a nonspace delimiter, such as a semicolon, produce a result that has an
additional last column of zeros.

csvread imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type. Valid
forms for a complex number are

Embedded white-space in a complex number is invalid and is regarded as a
field delimiter.

Examples Given the file csvlist.dat that contains the comma-separated values

 02, 04, 06, 08, 10, 12
 03, 06, 09, 12, 15, 18

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

csvread

2-499

 05, 10, 15, 20, 25, 30
 07, 14, 21, 28, 35, 42
 11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')

ans =

 2 4 6 8 10 12
 3 6 9 12 15 18
 5 10 15 20 25 30
 7 14 21 28 35 42
 11 22 33 44 55 66

To read the matrix starting with zero-based row 2, column 0, and assign it to
the variable m,

m = csvread('csvlist.dat', 2, 0)

m =

 5 10 15 20 25 30
 7 14 21 28 35 42
 11 22 33 44 55 66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])

m =

 5 10 15 20
 7 14 21 28

See Also csvwrite, dlmread, textscan, wk1read, file formats, importdata, uiimport

csvwrite

2-500

2csvwritePurpose Write a comma-separated value file

Syntax csvwrite('filename',M)
csvwrite('filename',M,row,col)

Description csvwrite('filename',M) writes matrix M into filename as comma-separated
values.

csvwrite('filename',M,row,col) writes matrix M into filename starting at
the specified row and column offset. The row and column arguments are zero
based, so that row=0 and C=0 specify the first value in the file.

Examples The following example creates a comma-separated value file from the matrix m.

m = [3 6 9 12 15; 5 10 15 20 25; 7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread, dlmwrite, textread, wk1write, file formats, importdata, uiimport

cumprod

2-501

2cumprodPurpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different dimensions of
an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative product
of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod(A,1) increments
the first (row) index, thus working along the rows of A.

Examples cumprod(1:5)
ans =
 1 2 6 24 120

A = [1 2 3; 4 5 6];

cumprod(A)
ans =
 1 2 3
 4 10 18

cumprod(A,2)
ans =
 1 2 6
 4 20 120

See Also cumsum, prod, sum

cumsum

2-502

2cumsumPurpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum(A,1) works across
the first dimension (the rows).

Examples cumsum(1:5)
ans =
 [1 3 6 10 15]

A = [1 2 3; 4 5 6];

cumsum(A)
ans =
 1 2 3
 5 7 9

cumsum(A,2)
ans =
 1 3 6
 4 9 15

See Also cumprod, prod, sum

cumtrapz

2-503

2cumtrapzPurpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(... dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y
via the trapezoidal method with unit spacing. To compute the integral with
other than unit spacing, multiply Z by the spacing increment.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the cumulative
integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array whose first nonsingleton dimension is
length(X). cumtrapz operates across this dimension.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,DIM) integrates across the
dimension of Y specified by scalar dim. The length of X must be the same as
size(Y,dim).

Example Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =

0 0 0
 1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =

0 0.5000 2.0000
 0 3.5000 8.0000

cumtrapz

2-504

See Also cumsum, trapz

curl

2-505

2curlPurpose Computes the curl and angular velocity of a vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl and
angular velocity perpendicular to the flow (in radians per time unit) of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must
be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic
and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...) returns
only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular velocity at
specified locations in the vector field.

curl

2-506

load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume and
plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')
hold off
colormap copper

curl

2-507

See Also streamribbon, divergence

“Volume Visualization” for related functions

Displaying Curl with Stream Ribbons for another example

customverctrl

2-508

2customverctrlPurpose Allow custom source control system

Syntax customverctrl(filename, arguments)

Description This function is supplied for customers who want to integrate a version control
system that is not supported with MATLAB. This function must conform to the
structure of one of the supported version control systems, for example RCS. See
the files clearcase.m, pvcs.m, rcs.m, and sourcesafe.m in
$matlabroot\toolbox\matlab\verctrl as examples.

See Also checkin, checkout, cmopts, undocheckout

cylinder

2-509

2cylinderPurpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can draw
the cylindrical object using surf or mesh, or draw it immediately by not
providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder with a
radius equal to 1. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a cylinder
using r to define a profile curve. cylinder treats each element in r as a radius
at equally spaced heights along the unit height of the cylinder. The cylinder has
20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a cylinder
based on the profile curve defined by vector r. The cylinder has n equally spaced
points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using surf.

Remarks cylinder treats its first argument as a profile curve. The resulting surface
graphics object is generated by rotating the curve about the x-axis, and then
aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');

cylinder

2-510

set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

daspect

2-511

2daspectPurpose Set or query the axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units along the
x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current axes to the
specified value. Specify the aspect ratio as three relative values representing
the ratio of the x-, y-, and z-axis scaling (e.g., [1 1 3] means one unit in x is
equal in length to one unit in y and three units in z).

daspect('mode') returns the current value of the data aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data aspect
ratio so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the data
aspect ratio to [1 1 1] to produce the correct proportions.

Setting a value for data aspect ratio or setting the data aspect ratio mode to
manual disables the MATLAB stretch-to-fill feature (stretching of the axes to

daspect

2-512

fit the window). This means setting the data aspect ratio to a value, including
its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section of the
axes description for more information.

Examples The following surface plot of the function is useful to illustrate
the data aspect ratio. First plot the function over the range –2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

Querying the data aspect ratio shows how MATLAB has drawn the surface.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with equal
scaling along each axis.

daspect([1 1 1])

z xe x2 y2––()=

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

daspect

2-513

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” for related functions

Axes Aspect Ratio for more information

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

datacursormode

2-514

2datacursormodePurpose Enable/disable interactive data cursor mode

Syntax datacursormode on
datacursormode off
datacursormode
datacursormode(figure_handle,...)
dcm_obj = datacursormode(figure_handle)

Description datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure.

datacursormode toggles data cursor mode on the current figure.

datacursormode(figure_handle,...) enables or disables data cursor mode
on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the figure’s data cursor
mode object, which enables you to customize the data cursor. See “Data Cursor
Mode Object”.

Data Cursor
Mode Object

The data cursor mode object has properties that enable you to controls certain
aspects of the data cursor. You can use the set and get commands and the
returned object (dcm_obj in the above syntax) to set and query property values.

Data Cursor Mode Properties
Enabled on | off

Specifies whether this mode is currently enabled on the figure.

SnapToDataVertex on | off

Specifies whether the data cursor snaps to the nearest data value or is located
at the actual pointer position.

DisplayStyle datatip | window

Determines how the data is displayed.

• datatip displays cursor information in a yellow text box next to a marker
indicating the actual data point being displayed.

datacursormode

2-515

• window displays cursor information in a floating window within the figure.

Updatefcn function handle

This property references a function that customizes the text appearing in the
data cursor. The function handle must reference a function that has two
implicit arguments (these arguments are automatically pass to the function by
MATLAB when the function executes). For example, the following function
definition line uses the required arguments:

function output_txt = myfunction(obj,event_obj)
% obj Currently not used (empty)
% event_obj Handle to event object
% output_txt Data cursor text string (string or cell array of
% strings).

event_obj is an object having the following read-only properties.

• Target – Handle of the object the data cursor is referencing (the object on
which the user clicked).

• Position – An array specifying the x, y, (and z for 3-D graphs) coordinates
of the cursor.

You can query these properties within your function. For example,

pos = get(event_obj,'Position');

returns the coordinates of the cursor.

See Function Handles for more information on creating a function handle.

See “Change Data Cursor Text” for an example.

Data Cursor Method
You can use the getCursorInfo function with the data cursor mode object
(dcm_obj in the above syntax) to obtain information about the data cursor. For
example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph. Each
structure has the following fields:

• Target — The handle of the graphics object containing the data point.

datacursormode

2-516

• Position — An array specifying the x, y, (and z) coordinates of the cursor.

Line and lineseries objects have an additional field:

• DataIndex — A scalar index into the data arrays that correspond to the
nearest data point. The value is the same for each array.

Examples This example creates a plot and enables data cursor mode from the command
line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Setting Data Cursor Mode Options
This example enables data cursor mode on the current figure and sets data
cursor mode options. The following statements

• Create a graph

• Toggle data cursor mode to on

• Save the data cursor mode object to specify options and get the handle of the
line to which the datatip is attached.

fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip','SnapToDataVertex','off')

% Click on line to place datatip

c_info = getCursorInfo(dcm_obj);
set(c_info.Target,'LineWidth',2) % Make selected line wider

datacursormode

2-517

Change Data Cursor Text
This example shows you how to customize the text that is displayed by the data
cursor. Supose you want to replace the text displayed in the datatip and data
window with "Time:" and "Ampltude:".

function doc_datacursormode
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))
dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

% Click on line to select data point

function txt = myupdatefcn(empt,event_obj)
pos = get(event_obj,'Position');
txt = {['Time: ',num2str(pos(1))],...

['Amplitude: ',num2str(pos(2))]};

0 5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6

X= 32
Y= 2.243

datatipinfo

2-518

2datatipinfo Purpose Produce short description of input variable

Syntax datatipinfo(var)

Description datatipinfo(var) displays a short description of a variable, similar to what is
displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:

A = rand(5);

datatipinfo(A)
A: 5x5 double =
 0.4445 0.3567 0.7458 0.0767 0.4400
 0.7962 0.6575 0.3918 0.8289 0.9746
 0.5641 0.9808 0.0265 0.4838 0.6722
 0.9099 0.9653 0.2508 0.4859 0.4054
 0.2857 0.5198 0.7383 0.9301 0.9604

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);

datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size and
data type:

A = rand(5);
A(:,:,2) = A(:,:,1);

datatipinfo(A)
A: 5x5x2 double

See Also debug

date

2-519

2datePurpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

datenum

2-520

2datenumPurpose Convert to serial date number

Syntax N = datenum(DT)
N = datenum(DT, P)
N = datenum(DT, F)
N = datenum(DT, F, P)
N = datenum(Y, M, D)
N = datenum(Y, M, D, H, MI, S)

Description The datenum function converts date strings and date vectors (defined by
datevec) into serial date numbers. Date numbers are serial days elapsed from
some reference date. By default, the serial day 1 corresponds to 1-Jan-0000.

Date strings and date vectors can contain multiple dates in either a cell array
of strings or an M-by-N vector, respectively. In either case, the resulting output
is a column vector of date numbers.

N = datenum(DT) converts the date string or date vector DT into a serial date
number. Date strings with two-character years, e.g., 12-june-12, are assumed
to lie within the 100-year period centered about the current year.

Note If DT is a string, it must be in one of the date formats 0, 1, 2, 6, 13, 14,
15, 16, or 23 as defined by datestr.

N = datenum(DT, P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

N = datenum(DT, F) uses the specified date form F to interpret the date string
DT during conversion to date number N. The date form must be composed of
date format symbols according to Table , Free-Form Date Format Specifiers, in
the datestr function reference page.

N = datenum(DT, F, P) uses the specified date form F to interpret the date
string DT and pivot year P to interpret the year when expressed in two digits.

datenum

2-521

N = datenum(Y, M, D) returns the serial date numbers for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically carried to the next unit.

N = datenum(Y, M, D, H, MI, S) returns the serial date numbers for
corresponding elements of the Y, M, D, H, MI, and S (year, month, day, hour,
minute, and second) array values. Y, M, D, H, MI, and S must be arrays of the
same size (or any can be a scalar). Values outside the normal range of each
array are automatically carried to the next unit (for example, month values
greater than 12 are carried to years). Month values less than 1 are set to be 1.
All other units can wrap and have valid negative values.

Examples Convert a date string to a serial date number:

n = datenum('19-May-2001')

n =
 730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

n =
 731204

Convert a date vector to a serial date number:

format bank
n = datenum([2001 5 19 18 0 0])

n =
 730990.75

Convert a date string to a serial date number using the default pivot year:

n = datenum('12-june-12')

n =
 735032

datenum

2-522

Convert the same date string to a serial date number using 1900 as the pivot
year:

n = datenum('12-june-12', 1900)

n =
 698507

Specify format 'dd.mm.yyyy' to be used in interpreting a nonstandard date
string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

n =
 730625.75

See Also datestr, datevec, date, clock, now, datetick

datestr

2-523

2datestrPurpose Date string format

Syntax str = datestr(DT)
str = datestr(DT, dateform)
str = datestr(DT, dateform, P)
str = datestr(..., 'local')

Description str = datestr(DT) converts a serial date number (defined by datenum) or date
vector (defined by datevec) to a date string. You can also convert an array of N
serial date numbers or date vectors to an N-by-M array of date strings.

Date strings with two-character years, e.g., 12-june-12, are assumed to lie
within the 100-year period centered about the current year.

str = datestr(DT, dateform) converts a serial date number, date vector, or
date string DT to a date string having format dateform. The dateform
argument can be either a number or a string. See Table , Dateform Format
Numbers and Strings, on page 2-524, for valid dateform values.

By default, the value of dateform is 1, 16, or 0, depending on whether DT
contains a date, time, or both. If DT is a string, dateform must be one of 0, 1, 2,
6, 13, 14, 15, 16, or 23.

Table , Free-Form Date Format Specifiers, on page 2-526, shows the symbols
you can use to specify a free-form date format in the dateform argument. These
symbols control how MATLAB displays the returned string.

str = datestr(DT, dateform, P) uses the specified pivot year as the
starting year of the 100-year range in which a two-character year resides. The
default pivot year is the current year minus 50 years.

str = datestr(..., 'local') returns the string in a localized format. The
default is US English ('en_US'). This argument must come last in the argument
sequence.

datestr

2-524

Dateform Format Numbers and Strings

dateform
(number)

dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

datestr

2-525

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a string
suitable for input to datenum or datevec. Other date string formats do not
work with these functions unless you specify a date form in the function call.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part of the
input array DT. If you do not specify dateform, or if you specify dateform as -1,
the date string format defaults to the following:

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000 15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO 8601) 'yyyy-mm-dd' 2000-03-01

30 (ISO 8601) 'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

1 If DT contains date information only, e.g., 01-Mar-1995

16 If DT contains time information only, e.g., 03:45 PM

0 If DT is a date vector, or a string that contains both date and time
information, e.g., 01-Mar-1995 03:45

Dateform Format Numbers and Strings

dateform
(number)

dateform (string) Example

datestr

2-526

The following table shows the string symbols to use in specifying a free-form
format for the output date string. MATLAB interprets these symbols according
to your computer’s language setting and the current MATLAB language
setting.

Note Free-form specifiers AM and PM from the table above are identical. They
do not influence which characters are displayed following the time (AM versus

Free-Form Date Format Specifiers

Symbol Interpretation Example

yyyy Show year in full. 1990, 2002

YY Show year in two digits. 90, 02

mmmm Show month using full name. March, December

mmm Show month using first three letters. Mar, Dec

mm Show month in two digits. 03, 12

m Show month using capitalized first
letter.

M, D

dddd Show day using full name. Monday, Tuesday

ddd Show day using first three letters. Mon, Tue

dd Show day in two digits. 05, 20

d Show day using capitalized first letter. M, T

HH Show hour in two digits (no leading
zeros when free-form specifier AM or PM
is used (see last entry in this table)).

05, 5 AM

MM Show minute in two digits. 12, 02

SS Show second in two digits. 07, 59

AM or PM Append AM or PM to date string (see
note below).

3:45:02 PM

datestr

2-527

PM), but only whether or not they are displayed. MATLAB selects AM or PM
based on the time entered.

Examples Return the current date and time in a string using the default format, 0:

datestr(now)

ans =
 28-Jan-2003 13:41:27

Format the same showing only the date and in the mm/dd/yy format. Note that
you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
 01/28/03

Display the returned date string using your own format made up of symbols
shown in the Free-Form Date Format Specifiers table above.

datestr(now, 'dd.mm.yyyy')

ans =
 28.01.2003

Convert a nonstandard date form into a standard MATLAB date form by first
converting to a date number and then to a string:

datestr(datenum('24.01.2003', 'dd.mm.yyyy'), 2)

ans =
 01/24/03

See Also datenum, datevec, date, clock, now, datetick

datetick

2-528

2datetickPurpose Label tick lines using dates

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)
datetick(...,'keeplimits')
datetick(...,'keepticks')
datetick(axes_handle,...)

Description datetick(tickaxis) labels the tick lines of an axis using dates, replacing the
default numeric labels. tickaxis is the string 'x', 'y', or 'z'. The default is
'x'. datetick selects a label format based on the minimum and maximum
limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the integer
dateform (see table). To produce correct results, the data for the specified axis
must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

datetick

2-529

datetick(...,'keeplimits') changes the tick labels to date-based labels
while preserving the axis limits.

datetick(...,'keepticks') changes the tick labels to date-based labels
without changing their locations.

You can use both keeplimits and keepticks in the same call to datetick.

datetick(axes_handle,...) uses the axes specified by the handle ax instead
of the current axes.

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1 01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

dateform (number) dateform (string) Example

datetick

2-530

Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes property
(i.e., XTick, YTick, or ZTick) before calling datetick.

Example Consider graphing population data based on the 1990 U.S. census:

t = (1900:10:1990)'; % Time interval
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633]'; % Population
plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on
datetick('x',11) % Replace x-axis ticks with 2-digit year
labels

See Also The axes properties XTick, YTick, and ZTick

datenum, datestr

“Annotating Plots” for related functions

00 20 40 60 80 00
60

80

100

120

140

160

180

200

220

240

260

datevec

2-531

2datevecPurpose Date components

V = datevec(DT)
V = datevec(DT, P)
V = datevec(DT, F)
V = datevec(DT, F, P)
[Y, M, D, H, MI, S] = datevec(DT)

Description V = datevec(DT) converts a serial date number (defined by datenum) or date
string (defined by datestr) to a date vector V having elements [year, month,
day, hour, minute, second]. The first five vector elements are integers. You can
also convert an array of N serial date numbers or date strings to an N-by-6 array
of date vectors.

Date strings with two-character years, e.g., 12-june-12, are assumed to lie
within the 100-year period centered about the current year.

V = datevec(DT, P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

V = datevec(DT, F) uses the specified date form F to interpret the date string
DT during conversion to date vector V. The date form must be composed of date
format symbols according to the Free-Form Date Format Specifiers table in the
datestr function reference page.

V = datevec(DT, F, P) uses the specified date form F to interpret the date
string DT, and pivot year P to interpret the year when expressed in two digits.

[Y, M, D, H, MI, S] = datevec(DT) returns the components of the date
vector as individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

datevec

2-532

Examples Obtain a date vector using a string as input:

datevec('12/24/1984 12:45')

ans =
 1984 12 24 12 45 0

Obtain a date vector using a serial date number as input:

t = datenum('12/24/1984 12:45')
t =
 725000.53

datevec(t)

ans =
 1984 12 24 12 45 0

Assign elements of the returned date vector:

[y, m, d, h, mi, s] = datevec('12/24/1984 12:45');

sprintf('Date: %d/%d/%d Time: %d:%d\n', m, d, y, h, mi)

ans =
 Date: 12/24/1984 Time: 12:45

Use free-form date format 'dd.mm.yyyy' to indicate how you want a
nonstandard date string interpreted:

datevec('19.05.2003', 'dd.mm.yyyy')

ans =
 2003 19 5 12 45 0

See Also datenum, datestr, date, clock, now, datetick

dbclear

2-533

2dbclearPurpose Clear breakpoints

Graphical
Interface

As an alternative to the dbclear function, there are various ways to clear
breakpoints using the Editor/Debugger.

Syntax dbclear all
dbclear in mfile
dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if caught error
dbclear if caught error identifier
dbclear if error
dbclear if error identifier
dbclear if warning
dbclear if warning identifier
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as breakpoints set
for errors, caught errors, caught error identifiers, warnings, warning
identifiers, and naninf/infnan.

dbclear in mfile removes all breakpoints in mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if caught error removes the breakpoints set using dbstop if
caught error and dbstop if caught error identifier statements.

dbclear if caught error identifier removes the breakpoints set using the
dbstop if caught error identifier statement for the specified identifier. It
is an error to clear this setting on a specific identifier if dbstop if caught
error or dbstop if caught error all is set.

dbclear

2-534

dbclear if error removes the breakpoints set using dbstop if error and
dbstop if error identifier statements.

dbclear if error identifier removes the breakpoint set using dbstop if
error identifier for the specified identifier. It is an error to clear this
setting on a specific identifier if dbstop if error or dbstop if error all is
set.

dbclear if warning removes the breakpoints set using the dbstop if
warning and dbstop if warning identifier statements.

dbclear if warning identifier removes the breakpoint set using dbstop
if warning identifier for the specified identifier. It is an error to clear this
setting on a specific identifier if dbstop if warning or dbstop if warning all
is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf.

dbclear if infnan also removes the breakpoint set by dbstop if naninf.

Remarks The at, and in keywords are optional.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup,
partialpath

dbcont

2-535

2dbcontPurpose Resume execution

Graphical
Interface

As an alternative to the dbcont function, you can select Continue from the
Debug menu in the Editor/Debugger or click the Continue button in the
Editor/Debugger toolbar.

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution continues
until another breakpoint is encountered, a pause condition is met, an error
occurs, or MATLAB returns to the base workspace prompt.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbdown

2-536

2dbdownPurpose Change local workspace context when in debug mode

Graphical
Interface

As an alternative to the dbdown function, you can select a different workspace
from the Stack field in the Editor/Debugger toolbar.

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
function at least once before you issue this function. dbdown is the opposite of
dbup.

Multiple dbdown functions change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dblquad

2-537

2dblquadPurpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to evaluate
the double integral fun(x,y) over the rectangle xmin <= x <= xmax,
ymin <= y <= ymax. fun is a function handle for either an M-file function or an
anonymous function. fun(x,y) must accept a vector x and a scalar y and return
a vector of values of the integrand.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol instead of
the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the quadrature
function specified as method, instead of the default quad. Valid values for
method are @quadl or the function handle of a user-defined quadrature method
that has the same calling sequence as quad and quadl.

Example Pass M-file function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

where the M-file integrnd.m is

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated
with a vector x and a scalar y .

dblquad

2-538

Nonsquare regions can be handled by setting the integrand to zero outside of
the region. For example, the volume of a hemisphere is

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also quad, quadl, triplequad, @ (function handle), anonymous functions

dbmex

2-539

2dbmexPurpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop
dbmex print

Description dbmex on enables MEX-file debugging for UNIX platforms. It is not supported
on the Sun Solaris platform. To use this option, first start MATLAB from
within a debugger by typing matlab -Ddebugger, where debugger is the name
of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

Remarks On Sun Solaris platforms, dbmex is not supported. See the Technical Support
solution 23388 at
http://www.mathworks.com/support/solutions/data/23388.shtml for an
alternative method of debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

dbquit

2-540

2dbquitPurpose Quit debug mode

Graphical
Interface

As an alternative to the dbquit function, you can select Exit Debug Mode from
the Debug menu in the Editor/Debugger.

Syntax dbquit

Description dbquit immediately terminates the debugger and returns control to the base
workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbstack

2-541

2dbstackPurpose Display function call stack

Graphical
Interface

As an alternative to the dbstack function, you can view the Stack field in the
Editor/Debugger toolbar.

Syntax dbstack
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
The line number of the most recently executed function call (at which the
current breakpoint occurred) is listed first, followed by its calling function,
which is followed by its calling function, and so on, until the topmost M-file
function is reached.

dbstack(n) omits from the display the first n frames. This is useful when
issuing a dbstack from within, say, an error handler.

dbstack('-completenames') outputs the “complete name” (the absolute file
name and the entire sequence of functions that nests the function in the stack
frame) of each function in the stack.

Either none, one, or both of the n and '-completenames' may appear. If both
appear, the order is irrelevant.

[ST,I] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields

The current workspace index is returned in I.

If you step past the end of an M-file, then dbstack returns a negative line
number value to identify that special case. For example, if the last line to be

file The file in which the function
appears. This field will be the empty
string if there is no file.

name Function name within the file.

line Function line number.

dbstack

2-542

executed is line 15, then the dbstack line number is 15 before you execute that
line and -15 afterwards.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup,
mfilename

dbstatus

2-543

2dbstatusPurpose List all breakpoints

Graphical
Interface

Part of the information shown by dbstatus (namely, the breakpoint line
numbers) is displayed graphically by the breakpoint icons when a file is viewed
in the Editor/Debugger.

Syntax dbstatus
dbstatus mfile
s = dbstatus(...)

Description dbstatus by itself lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus mfile displays a list of the line numbers for which breakpoints are
set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields

Use dbstatus class/function, dbstatus private/function or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

name Function name.

line Vector of breakpoint line numbers.

cond Cell vector of breakpoint conditional
expression strings corresponding to
lines in the line field.

cond Condition string ('error', 'caught
error', 'warning', or 'naninf').

identifier When cond is one of 'error', 'caught
error', or 'warning', a cell vector of
MATLAB Message Identifier strings
for which the particular cond state is
set.

dbstatus

2-544

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

dbstep

2-545

2dbstepPurpose Execute one or more lines from current breakpoint

Graphical
Interface

As an alternative to the dbstep function, you can select Step or Step In from
the Debug menu in the Editor/Debugger, or click on the Step or Step In
buttons of the Editor/Debugger toolbar.

Syntax dbstep
dbstep nlines
dbstep in
dbstep out

Description This function allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep function steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file function, execution will step to the first executable line of the
called M-file function. If there is no call to an M-file on that line, dbstep in is
the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving the
function.

For all forms, MATLAB also stops execution at any breakpoint it encounters.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup

dbstop

2-546

2dbstopPurpose Set breakpoints

Graphical
Interface

Some of the dbstop functionality can be accessed through the Debug menu or
the toolbar buttons of the Editor/Debugger.

Syntax dbstop in mfile
dbstop in mfile at lineno
dbstop in mfile at lineno@
dbstop in mfile at lineno@n
dbstop in mfile at subfun
dbstop in mfile at lineno if expression
dbstop in mfile at lineno@ if expression
dbstop in mfile at lineno@n if expression
dbstop in mfile at subfun if expression
dbstop in mfile if expression
dbstop if error
dbstop if error identifier
dbstop if caught error
dbstop if caught error identifier
dbstop if warning
dbstop if warning identifier
dbstop if naninf
dbstop if infnan

Description dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. mfile must be in a
directory that is on the search path or in the current directory. If you have
graphical debugging enabled, the MATLAB Debugger opens with a breakpoint
at the first executable line of mfile. You can then use the debugging utilities,
review the workspace, or issue any valid MATLAB function. Use dbcont or
dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is lineno, putting
MATLAB in debug mode. mfile must be in a directory that is on the search
path or in the current directory. If you have graphical debugging enabled, the
MATLAB Debugger opens mfile with a breakpoint at line lineno. If that line

dbstop

2-547

is not executable, execution stops and the breakpoint is set at the next
executable line following lineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at lineno@ Stops just after any call to the first anonymous
function in the specified line number in mfile.

dbstop in mfile at lineno@n Stops just after any call to the nth
anonymous function in the specified line number in mfile.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. mfile must be in a directory that is on the search path or in the
current directory. If you have graphical debugging enabled, the MATLAB
Debugger opens mfile with a breakpoint at the subfunction specified by
subfun. You can then use the debugging utilities, review the workspace, or
issue any valid MATLAB function. Use dbcont or dbstep to resume execution
of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno if expression temporarily stops execution of
mfile when you run it, just prior to execution of the line whose number is
lineno, putting MATLAB in debug mode. Execution will stop only if
expression evaluates to true. The expression, expression, is evaluated (as if
by eval), in mfile’s workspace when the breakpoint is encountered, and must
evaluate to a scalar logical value (true or false). mfile must be in a directory
that is on the search path or in the current directory. If you have graphical
debugging enabled, the MATLAB Debugger opens mfile with a breakpoint at
line lineno. If that line is not executable, execution stops and the breakpoint
is set at the next executable line following lineno. When execution stops, you
can use the debugging utilities, review the workspace, or issue any valid
MATLAB function. Use dbcont or dbstep to resume execution of mfile. Use
dbquit to exit from the Debugger.

dbstop in mfile at lineno@ if expression Stops just after any call to the
first anonymous function in the specified line number in mfile if expression
evaluates to true.

dbstop

2-548

dbstop in mfile at lineno@n if expression Stops just after any call to the
nth anonymous function in the specified line number in mfile if expression
evaluates to true.

dbstop in mfile at subfun if expression temporarily stops execution of
mfile when you run it, just prior to execution of the subfunction subfun,
putting MATLAB in debug mode. Execution will stop only if expression
evaluates to true. The expression, expression, is evaluated (as if by eval), in
mfile’s workspace when the breakpoint is encountered, and must evaluate to
a scalar logical value (true or false). mfile must be in a directory that is on
the search path or in the current directory. If you have graphical debugging
enabled, the MATLAB Debugger opens mfile with a breakpoint at the
subfunction specified by subfun. You can then use the debugging utilities,
review the workspace, or issue any valid MATLAB function. Use dbcont or
dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile if expression temporarily stops execution of mfile when
you run it, at the first executable line, putting MATLAB in debug mode.
Execution will stop only if expression evaluates to true. The expression,
expression, is evaluated (as if by eval), in mfile’s workspace when the
breakpoint is encountered, and must evaluate to a scalar logical value (true or
false). mfile must be in a directory that is on the search path or in the current
directory. If you have graphical debugging enabled, the MATLAB Debugger
opens with a breakpoint at the first executable line of mfile. You can then use
the debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line
that generated the error. The M-file must be in a directory that is on the search
path or in the current directory. The errors that stop execution do not include
run-time errors that are detected within a try...catch block. You cannot
resume execution after an uncaught run-time error. Use dbquit to exit from
the Debugger.

dbstop if error identifier stops execution when any M-file you
subsequently run produces a run-time error whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that

dbstop

2-549

generated the error. The M-file must be in a directory that is on the search path
or in the current directory. The errors that stop execution do not include
run-time errors that are detected within a try...catch block. You cannot
resume execution after an uncaught run-time error. Use dbquit to exit from
the Debugger.

dbstop if caught error stops execution when any M-file you subsequently
run produces a run-time error, putting MATLAB in debug mode, paused at the
line that generated the error. The M-file must be in a directory that is on the
search path or in the current directory. The errors that stop execution will only
be those that are detected within a try...catch block. You cannot resume
execution after an uncaught run-time error. Use dbquit to exit from the
Debugger.

dbstop if caught error identifier stops execution when any M-file you
subsequently run produces a run-time error whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that
generated the error. The M-file must be in a directory that is on the search path
or in the current directory. The errors that stop execution will only be those
that are detected within a try...catch block. You cannot resume execution
after an uncaught run-time error. Use dbquit to exit from the Debugger.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. The M-file must be in a directory that is on
the search path or in the current directory. Use dbcont or dbstep to resume
execution.

dbstop if warning identifier stops execution when any M-file you
subsequently run produces a run-time warning whose message identifier is
identifier, putting MATLAB in debug mode, paused at the line that
generated the warning. The M-file must be in a directory that is on the search
path or in the current directory. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any M-file you
subsequently run encounters an infinite value (Inf) or a value that is not a
number (NaN), putting MATLAB in debug mode, paused at the line where Inf
or NaN was encountered. For convenience, you can use either naninf or
infnan—they perform in exactly the same manner. The M-file must be in a

dbstop

2-550

directory that is on the search path or in the current directory. Use dbcont or
dbstep to resume execution. Use dbquit to exit from the Debugger.

Remarks The at, and in keywords are optional.

dbstop

2-551

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Stop at First Executable Line
The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy

n = length(x);

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy(magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K>>

and put MATLAB in debug mode.

dbstop

2-552

Stop if InfNaN
In buggy, if any of the elements of the input x is zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K>>

and put MATLAB in debug mode.

See Also break, dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype,
dbup, keyboard, partialpath, return

dbtype

2-553

2dbtypePurpose List M-file with line numbers

Graphical
Interface

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor/Debugger.

Syntax dbtype mfile
dbtype mfile start:end

Description The dbtype command is used to list an M-file function with line numbers to aid
the user in setting breakpoints.

dbtype mfile displays the contents of the specified M-file function with line
numbers preceding each line. mfile must be full path name of an M-file
function or a MATLAB path relative partial pathname.

dbtype mfile start:end displays the portion of the file specified by a range of
line numbers from start to end.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the first line
of the M-file, type

dbtype mfile 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath

dbup

2-554

2dbupPurpose Change local workspace context

Graphical
Interface

As an alternative to the dbup function, you can select a different workspace
from the Stack field in the toolbar of the Editor/Debugger.

Syntax dbup

Description This function allows you to examine the calling M-file to determine what led to
the arguments’ being passed to the called function.

dbup changes the current workspace context, while the user is in the debug
mode, to the workspace of the calling M-file.

Multiple dbup functions change the workspace context to each previous calling
M-file on the stack until the base workspace context is reached. (It is not
necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype

dde23

2-555

2dde23Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments

Description sol = dde23(ddefun,lags,history,tspan) integrates the system of DDEs

on the interval , where are constant, positive delays and
.

ddefun Function that evaluates the right side of the differential
equations . The function
must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current , y is a column vector that
approximates , and Z(:,j) approximates for
delay = lags(j). The output is a column vector
corresponding to .

lags Vector of constant, positive delays .

history Specify history in one of three ways:

• A function of such that y = history(t) returns the
solution for as a column vector

• A constant column vector, if is constant

• The solution sol from a previous integration, if this call
continues that integration

tspan Interval of integration as a vector [t0,tf] with t0 < tf.

options Optional integration argument. A structure you create using
the ddeset function. See ddeset for details.

p1,p2,... Optional parameters that dde23 passes to ddefun, if it is a
function, and any functions you specify in options.

y ′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t
y t() y t τ j–()

τ j
f t y t() y t τ1–() … y t τk–(), , , ,()

τ1 … τk, ,

t
y t() t t0≤

y t()

y ′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t0 tf,[] τ 1 … τk, ,
t0 tf<

dde23

2-556

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary function deval
and the output sol to evaluate the solution at specific points tint in the
interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol = dde23(ddefun,lags,history,tspan,options) solves as above with
default integration properties replaced by values in options, an argument
created with ddeset. See ddeset and “Initial Value Problems for DDEs” in the
MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by
default) and vector of absolute error tolerances 'AbsTol' (all components are
1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in the history or
solution. Set this option to a vector that contains the locations of discontinuities
in the solution prior to t0 (the history) or in coefficients of the equations at
known values of after t0.

Use the 'Events' option to specify a function that dde23 calls to find where
functions vanish. This function must be of the
form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth event
function in events:

• value(k) is the value of the kth event function.

sol.x Mesh selected by dde23

sol.y Approximation to at the mesh points in sol.x.

sol.yp Approximation to at the mesh points in sol.x

sol.solver Solver name, 'dde23'

y x()

y ′ x()

t

g t y t() y t τ1–() … y t τk–(), , , ,()

dde23

2-557

• isterminal(k) = 1 if you want the integration to terminate at a zero of this
event function and 0 otherwise.

• direction(k) = 0 if you want dde23 to compute all zeros of this event
function, +1 if only zeros where the event function increases, and -1 if only
zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The
function ddex1de computes the delay differential equations, and ddex1hist
computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To see the
code in an editor, click the example name, or type edit ddex1 at the command
line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval
[0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using subfunctions. For more
examples see ddex2.

sol.xe Row vector of locations of all events, i.e., times when an event
function vanished

sol.ye Matrix whose columns are the solution values corresponding to
times in sol.xe

sol.ie Vector containing indices that specify which event occurred at
the corresponding time in sol.xe

dde23

2-558

Algorithm dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3)
pair and interpolant of ode23. It uses iteration to take steps longer than the
lags.

See Also ddeget, ddeset, deval, @ (function_handle)

References L.F. Shampine and S. Thompson, “Solving DDEs in MATLAB,” Applied
Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

ddeget

2-559

2ddegetPurpose Extract properties from options structure created with ddeset

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = ddeget(options,'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23, ddeset

ddeset

2-560

2ddesetPurpose Create/alter delay differential equations (DDE) options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates an
integrator options structure options in which the named properties have the
specified values. Any unspecified properties have default values. It is sufficient
to type only the leading characters that uniquely identify the property. Case is
ignored for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = ddeset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

ddeset with no input arguments displays all property names and their possible
values.

DDE Properties These properties are available:

Property Value Description

RelTol Positive scalar
{1e-3}

Relative error tolerance that applies to all components
of the solution vector. The estimated error in each
integration step satisfies
|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol Positive scalar or
vector {1e-6}

Absolute error tolerance that applies to all components
of the solution vector. Elements of a vector of tolerances
apply to corresponding components of the solution
vector.

ddeset

2-561

NormControl on | {off} Control error relative to norm of solution. Set this
property on to request that dde23 control the error in
each integration step with
norm(e) <= max(RelTol*norm(y),AbsTol). By default
dde23 uses a more stringent component-wise error
control.

Stats on | {off} Display computational cost statistics.

Events Function The solver uses the specified function to locate where
functions of t, y, Z vanish. See dde23 for details.

MaxStep Positive scalar
{0.1*tspan}

Upper bound on the magnitude of the step size. The
default is one-tenth of the tspan interval.

InitialStep Positive scalar Suggested initial step size. The solver tries this first. By
default the solver determines an initial step size
automatically.

OutputFcn Function Installable output function. This output function is
called by the solver after each time step. When a solver
is called with no output arguments, OutputFcn defaults
to the function odeplot. Otherwise, OutputFcn defaults
to [].

To create or modify an output function, see ODE Solver
Output Properties in the “Differential Equations”
section of the MATLAB documentation.

OutputSel Vector of integers Output selection indices. Specifies the components of
the solution vector that dde23 passes to the OutputFcn.
The default is all components.

Property Value Description

ddeset

2-562

See Also dde23, ddeget, @ (function_handle)

Jumps Vector Location of discontinuities in solution. Points where
the history or solution may have a jump discontinuity in
a low-order derivative. See dde23 for details.

InitialY Vector Initial value of solution. By default the initial value of
the solution is the value returned by history at the
initial point. A different initial value can be supplied as
the value of the InitialY property.

Property Value Description

t

deal

2-563

2dealPurpose Deal inputs to outputs

Syntax [Y1,Y2,Y3,...] = deal(X)
[Y1,Y2,Y3,...] = deal(X1,X2,X3,...)

Description [Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...) is the same as Y1 = X1; Y2 = X2;
Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to the
cell array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...

Examples Use deal to copy the contents of a 4-element cell array into four separate
output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

b =

deal

2-564

 1
 1
 1

c =

 1 0 0
 0 1 0
 0 0 1

d =

 0
 0
 0

Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =

Pat

name2 =

Tony

Note In many instances, you can access the data in cell arrays and structure
fields without using the deal function.

These two commands perform the same operation as those used in the previous
two examples, except that these commands do not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

deal

2-565

See Also cell, iscell, celldisp, struct, isstruct, fieldnames, isfield,
orderfields, rmfield, cell2struct, struct2cell

deblank

2-566

2deblankPurpose Strip trailing blanks from the end of a string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes the trailing blanks from the end of a character
string str.

c = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

The deblank function is useful for cleaning up the rows of a character array.

Examples A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';

A =

 'MATLAB ' 'SIMULINK '
 'Toolboxes ' 'The MathWorks '

deblank(A)

ans =

 'MATLAB' 'SIMULINK'
 'Toolboxes' 'The MathWorks'

debug

2-567

2debugPurpose M-file debugging functions

Graphical
Interface

As an alternative to the debugging functions, you can use debugging features
in the Debug menu and toolbar buttons of the Editor/Debugger.

Description Use debugging functions (listed in the See Also section) to help you identify
problems in your M-files.

Set breakpoints using dbstop.

When a breakpoint is hit during execution, MATLAB goes into debug mode, the
debugger window becomes active, and the prompt changes to a K>>. Any
MATLAB command is allowed at the prompt.

To resume execution, use dbcont or dbstep. To exit from the debugger use
dbquit.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

Debugging M- Files in the MATLAB documentation details the
Editor/Debugger as well as the use of debugging functions.

dec2base

2-568

2dec2basePurpose Decimal number to base conversion

Syntax str = dec2base(d,base)
str = dec2base(d,base,n)

Description str = dec2base(d,base) converts the nonnegative integer d to the specified
base. d must be a nonnegative integer smaller than 2^52, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

Examples The expression dec2base(23,2) converts 2310 to base 2, returning the string
'10111'.

See Also base2dec

dec2bin

2-569

2dec2binPurpose Decimal to binary number conversion

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description str = dec2bin(d) returns the binary representation of d as a string. d must
be a nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n bits.

Examples
ans =
 10111

See Also bin2dec, dec2hex

dec2hex

2-570

2dec2hexPurpose Decimal to hexadecimal number conversion

Syntax str = dec2hex(d)
str = dec2hex(d,n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative integer
smaller than 2^52.

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
 3FF

See Also dec2bin, format, hex2dec, hex2num

decic

2-571

2decicPurpose Compute consistent initial conditions for ode15i

Syntax [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options)
[y0mod,yp0mod] =

decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options,p1,p2...)
[y0mod,yp0mod,resnrm] = decic(...)

Decription [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0) uses the
inputs y0 and yp0 as initial guesses for an iteration to find output values that
satisfy the requirement , i.e., y0mod and yp0mod are
consistent initial conditions. The function decic changes as few components of
the guesses as possible. You can specify that decic holds certain components
fixed by setting fixed_y0(i) = 1 if no change is permitted in the guess for
y0(i) and 0 otherwise. decic interprets fixed_y0 = [] as allowing changes in
all entries. fixed_yp0 is handled similarly.

You cannot fix more than length(y0) components. Depending on the problem,
it may not be possible to fix this many. It also may not be possible to fix certain
components of y0 or yp0. It is recommended that you fix no more components
than necessary.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options) computes as above
with default tolerances for consistent initial conditions, AbsTol and RelTol,
replaced by the values in options, a structure you create with the odeset
function.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options,p1,p2...) passes
the additional parameters p1,p2,... to the ODE function as
odefun(t,y,yp,p1,p2...), and to all functions specified in options. Use
options = [] as a place holder if no options are set.

[y0mod,yp0mod,resnrm] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...) returns the norm of
odefun(t0,y0mod,yp0mod) as resnrm. If the norm seems unduly large, use
options to decrease RelTol (1e-3 by default).

f t0 y0mod yp0mod, ,() 0=

decic

2-572

Examples These demos provide examples of the use of decic in solving implicit ODEs:
ihb1dae, iburgersode.

See Also ode15i, odeget, odeset

deconv

2-573

2deconvPurpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector q and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient q and remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =
 10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =
 10 20 30
r =
 0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue

del2

2-574

2del2Purpose Discrete Laplacian

Syntax L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function evaluated at the point on a
square grid, then 4*del2(U) is a finite difference approximation of Laplace’s
differential operator applied to , that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables , del2(U) is an approximation,

where is the number of variables in .

Description L = del2(U) where U is a rectangular array is a discrete approximation of

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

u x y,()

u

l ∇ 2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

dy2
----------+

 
 
 

==

lij
1
4
--- ui 1 j,+ ui 1 j,– ui j 1+, ui j 1–,+ + +() ui j,–=

u x y z …, , ,()

l ∇ 2u
2N
----------- 1

2N
-------- d2u

dx2
---------- d2u

dy2
---------- d2u

dz2
---------- …+ + +

 
 
 

==

N u

l ∇ 2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

dy2
----------+

 
 
 

==

del2

2-575

-L = del2(U) when U is an multidimensional array, returns an
approximation of

where is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u,1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

Examples The function

has

For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = x.*x+y.*y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

∇ 2u
2N

N

u x y,() x2 y2+=

u∇ 2 4=

del2

2-576

V = 4*del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

delaunay

2-577

2delaunayPurpose Delaunay triangulation

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,options)

Definition Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi polygon.

Description TRI = delaunay(x,y) for the data points defined by vectors x and y, returns a
set of triangles such that no data points are contained in any triangle's
circumscribed circle. Each row of the m-by-3 matrix TRI defines one such
triangle and contains indices into x and y. If the original data points are
collinear or x is empty, the triangles cannot be computed and delaunay returns
an empty matrix.

delaunay uses Qhull.

TRI = delaunay(x,y,options) specifies a cell array of strings options to be
used in Qhull via delaunayn. The default options are {'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

Remarks The Delaunay triangulation is used by: griddata (to interpolate scattered
data), voronoi (to compute the voronoi diagram), and is useful by itself to
create a triangular grid for scattered data points.

Delaunay triangle

Voronoi polygon

x

delaunay

2-578

The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

Examples Example 1. Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
subplot(1,2,1),...
triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b-'),...

triplot Displays the triangles defined in the m-by-3 matrix TRI. See
Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix TRI as a
surface in 3-D space. To see a 2-D surface, you can supply a
vector of some constant value for the third dimension. For
example

trisurf(TRI,x,y,zeros(size(x)))

See Example 2.

trimesh Displays each triangle defined in the m-by-3 matrix TRI as a
mesh in 3-D space. To see a 2-D surface, you can supply a vector
of some constant value for the third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except in 3-D
space. See Example 2.

delaunay

2-579

axis([0 1 0 1])

Example 2. Create a 2-D grid then use trisurf to plot its Delaunay
triangulation in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);
trisurf(tri,x,y,zeros(size(x)))

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voronoi
diagram

Delaunay
triangulation

delaunay

2-580

Next, generate peaks data as a 15-by-15 matrix, and use that data with the
Delaunay triangulation to produce a surface in 3-D space.

z = peaks(15);
trisurf(tri,x,y,z)

0

5

10

15

0

5

10

15
−1

−0.5

0

0.5

1

0

5

10

15

0

5

10

15
−10

−5

0

5

10

delaunay

2-581

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

Algorithm delaunay is based on Qhull. For information about Qhull, see
http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay3, delaunayn, dsearch, griddata, plot, triplot, trimesh, trisurf,
tsearch, voronoi

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

0

5

10

15

0

5

10

15
−10

−5

0

5

10

delaunay3

2-582

2delaunay3Purpose 3-dimensional Delaunay tessellation

Syntax T = delaunay3(x,y,z)
T = delaunay3(x,y,z,options)

Description T = delaunay3(x,y,z) returns an array T, each row of which contains the
indices of the points in (x,y,z) that make up a tetrahedron in the tessellation
of (x,y,z). T is a numtes-by-4 array where numtes is the number of facets in
the tessellation. x, y, and z are vectors of equal length. If the original data
points are collinear or x, y, and z define an insufficient number of points, the
triangles cannot be computed and delaunay3 returns an empty matrix.

delaunay3 uses Qhull.

T = delaunay3(x,y,z,options) specifies a cell array of strings options to be
used in Qhull via delaunay3. The default options are {'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

Visualization Use tetramesh to plot delaunay3 output. tetramesh displays the tetrahedrons
defined in T as mesh. tetramesh uses the default tranparency parameter value
'FaceAlpha' = 0.9.

Example This example generates a 3-dimensional Delaunay tessellation, then uses
tetramesh to plot the tetrahedrons that form the corresponding simplex.
camorbit rotates the camera position to provide a meaningful view of the
figure.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

delaunay3

2-583

 9 1 5 6
 3 9 1 5
 2 9 1 6
 2 3 9 4
 2 3 9 1
 7 9 5 6
 7 3 9 5
 8 7 9 6
 8 2 9 6
 8 2 9 4
 8 3 9 4
 8 7 3 9

X = [x(:) y(:) z(:)];
tetramesh(Tes,X);camorbit(20,0)

Algorithm delaunay3 is based on Qhull [2]. For information about Qhull, see
http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

delaunay3

2-584

See Also delaunay, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

delaunayn

2-585

2delaunaynPurpose N-dimensional Delaunay tessellation

Syntax T = delaunayn(X)
T = delaunayn(X, options)

Description T = delaunayn(X) computes a set of simplices such that no data points of X are
contained in any circumspheres of the simplices. The set of simplices forms the
Delaunay tessellation. X is an m-by-n array representing m points in
n-dimensional space. T is a numt-by-(n+1) array where each row contains the
indices into X of the vertices of the corresponding simplex.

delaunayn uses Qhull.

T = delaunayn(X, options) specifies a cell array of strings options to be used
as options in Qhull. The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input

• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options are
used, not even the default. For more information on Qhull and its options, see
http://www.qhull.org.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for delaunay.

• For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

• You cannot plot delaunayn output for n > 3.

Example This example generates an n-dimensional Delaunay tessellation, where n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.

delaunayn

2-586

X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
 9 1 5 6
 3 9 1 5
 2 9 1 6
 2 3 9 4
 2 3 9 1
 7 9 5 6
 7 3 9 5
 8 7 9 6
 8 2 9 6
 8 2 9 4
 8 3 9 4
 8 7 3 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide a
meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

delaunayn

2-587

Algorithm delaunayn is based on Qhull [2]. For information about Qhull, see
http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunayn, delaunay3, tetramesh, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

delete

2-588

2deletePurpose Delete files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the Current
Directory browser.

Syntax delete filename
delete(h)
delete('filename')

Description delete filename deletes the named file from the disk. The filename may
include an absolute pathname or a pathname relative to the current directory.
The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

delete('filename') is the function form of delete. Use this form when the
filename is stored in a string.

Note MATLAB does not ask for confirmation when you enter the delete
command. To avoid accidentally losing files or graphics objects that you need,
make sure that you have accurately specified the items you want deleted.

Remarks The action that the delete function takes on deleted files depends upon the
setting of the MATLAB recycle state. If you set the recycle state to on,
MATLAB moves deleted files to your recycle bin or temporary directory. With
the recycle state set to off (the default), deleted files are permanently removed
from the system.

To set the recycle state for all MATLAB sessions, use the Preferences dialog
box. Open the Preferences dialog and select General. To enable or disable
recycling, click Move files to the recycle bin or Delete files permanently. See
“General Preferences for MATLAB” in the Desktop Tools and Development
Environment documentation for more information.

The delete function deletes files and handles to graphics objects only. Use the
rmdir function to delete directories.

delete

2-589

Examples To delete all files with a .mat extension in the ../mytests/ directory, type

delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also recycle, dir, edit, fileparts, mkdir, rmdir, type

delete (ftp)

2-590

2delete (ftp)Purpose Delete file on FTP server

Syntax delete(f,'filename')

Description delete(f,'filename') removes the file filename from the current directory of
the FTP server f, where f was created using ftp.

Examples Connect to server testsite.

test=ftp('ftp.testsite.com')

Change the current directory to testdir and view the contents.

cd(test,'testdir');
dir(test)

See Also ftp

delete (timer)

2-591

2delete (timer)Purpose Remove a timer object from memory

Syntax delete(obj)

Description delete(obj) removes the timer object, obj, from memory. If obj is an array of
timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be reused. Use
the clear command to remove invalid timer objects from the workspace.

If multiple references to a timer object exist in the workspace, deleting the
timer object invalidates the remaining references. Use the clear command to
remove the remaining references to the object from the workspace.

See Also clear, isvalid, timer

demo

2-592

2demoPurpose Access product demos via Help browser

Graphical
Interface

As an alternative to the demo function, you can select Help -> Demos from the
MATLAB desktop, or click the Demos tab when the Help browser is open.

Syntax demo
demo subtopic
demo subtopic category
demo('subtopic', 'category')

Description demo opens the Demos panel in the Help browser. In the left pane, expand the
listing for a product area (for example, MATLAB). Within that product area,
expand the listing for a product or product category (for example, MATLAB
Graphics). Select a specific demo from the list (for example, Visualizing Sound).
In the right pane, view instructions for using the demo. For more information,
see Demos in the Help Browser. To run a demo from the command line, type
the demo name. For published M-file demos, that is those demos in which the
H1 line begins with two comment symbols (%%), type playshow followed by the
demo name to run it.

demo subtopic opens the Demos panel in the Help browser with the specified
subtopic expanded. Subtopics are matlab, toolbox, simulink, and blockset.

demo subtopic product opens the Demos panel in the Help browser to the
specified product or category within the subtopic. The demo function uses the
full name displayed in the Demo panel for product.

demo('subtopic', 'category') is the function form of the syntax. Use this
form when category is more than one word.

demo

2-593

Examples Accessing Toolbox Demos
To find the demos relating to the Communications Toolbox, type

demo toolbox communications

The Help browser opens to the Demos panel with the Toolbox subtopic
expanded and with the Communications product highlighted and expanded to
show the available demos.

Access demos for
all installed
products using the
Demos tab.

Select a
demo to
see
details
about it.

Click this link to
run the demo.

The code for the demo is in the
specified file. Click this link to
view the M-file code in the Editor.

Expand
the listing
for a
product
and
category
to see its
demos.

demo

2-594

Accessing Simulink Demos
To accesses the demos within Simulink, type

demo simulink automotive

The Demos panel opens with the Simulink subtopic and Automotive category
expanded.

Function Form of demo
To access the Simulink Report Generator demos, run

demo('simulink', 'simulink report generator')

which displays

demo

2-595

Running a Demo from the Command Line
Type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running a Published M-File Demo from the Command Line
Type

quake

to run an earthquake data demo. Not much appears to happen. This is because
quake is a published M-file demo. Verify this by viewing the M-file, quake.m,
for example, by typing

edit quake

The first line, that is, the H1 line for quake is

%% Loma Prieta Earthquake

The %% indicates that quake is a published M-file demo. So to run it, type

playshow quake

and the earthquake demo runs.

See Also help, helpbrowser, helpwin, lookfor, playshow

depdir

2-596

2depdirPurpose List the dependent directories of an M-file or P-file

Syntax list = depdir('file_name');
[list,prob_files,prob_sym,prob_strings] = depdir('file_name');
[...] = depdir('file_name1','file_name2',...);

Description The depdir function lists the directories of all the functions that a specified
M-file or P-file needs to operate. This function is useful for finding all the
directories that need to be included with a run-time application and for
determining the run-time path.

list = depdir('file_name') creates a cell array of strings containing the
directories of all the M-files and P-files that file_name.m or file_name.p uses.
This includes the second-level files that are called directly by file_name, as
well as the third-level files that are called by the second-level files, and so on.

[list,prob_files,prob_sym,prob_strings] = depdir('file_name')
creates three additional cell arrays containing information about any problems
with the depdir search. prob_files contains filenames that depdir was
unable to parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to parse.

[...] = depdir('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent directories of all files are listed
together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

depfun

2-597

2depfunPurpose List the dependent functions of an M-file or P-file

Syntax list = depfun('file_name');
[list,builtins,classes] = depfun('file_name');
[list,builtins,classes,prob_files,prob_sym,eval_strings,...

called_from,java_classes] = depfun('file_name');
[...] = depfun('file_name1','file_name2',...);
[...] = depfun('fig_file_name');
[...] = depfun(...,'-toponly');

Description The depfun function lists all the functions and scripts, as well as built-in
functions, that a specified M-file needs to operate. This is useful for finding all
of the M-files that you need to compile for a MATLAB run-time application.

list = depfun('file_name') creates a cell array of strings containing the
paths of all the files that file_name.m uses. This includes the second-level files
that are called directly by file_name.m, as well as the third-level files that are
called by the second-level files, and so on.

Note If depfun reports that “These files could not be parsed:” or if the
prob_files output below is nonempty, then the rest of the output of depfun
might be incomplete. You should correct the problematic files and invoke
depfun again.

[list,builtins,classes] = depfun('file_name') creates three cell arrays
containing information about dependent functions. list contains the paths of
all the files that file_name and its subordinates use. builtins contains the
built-in functions that file_name and its subordinates use. classes contains
the MATLAB classes that file_name and its subordinates use.

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called_from,java_classes] = depfun('file_name') creates additional cell
arrays or structure arrays containing information about any problems with the
depfun search and about where the functions in list are invoked. The
additional outputs are

depfun

2-598

• prob_files, which indicates which files depfun was unable to parse, find, or
access. Parsing problems can arise from MATLAB syntax errors. prob_files
is a structure array whose fields are

- name, which gives the names of the files

- listindex, which tells where the files appeared in list

- errmsg, which describes the problems

• prob_sym, which indicates which symbols depfun was unable to resolve as
functions or variables. It is a structure array whose fields are

- fcn_id, which tells where the files appeared in list

- name, which gives the names of the problematic symbols

• eval_strings, which indicates usage of these evaluation functions: eval,
evalc, evalin, feval. When preparing a run-time application, you should
examine this output to determine whether an evaluation function invokes a
function that does not appear in list. The output eval_strings is a
structure array whose fields are

- fcn_name, which give the names of the files that use evaluation functions

- lineno, which gives the line numbers in the files where the evaluation
functions appear

• called_from, a cell array of the same length as list. This cell array is
arranged so that
list(called_from{i})

returns all functions in file_name that invoke the function list{i}.

• java_classes, a cell array of Java class names that file_name and its
subordinates use

[...] = depfun('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun('fig_file_name') looks for dependent functions among the
callback strings of the GUI elements that are defined in the .fig or .mat file
named fig_file_name.

[...] = depfun(...,'-toponly') differs from the other syntaxes of depfun
in that it examines only the files listed explicitly as input arguments. It does

depfun

2-599

not examine the files on which they depend. In this syntax, the flag '-toponly'
must be the last input argument.

Notes

1 If depfun does not find a file called hginfo.mat on the path, then it creates
one. This file contains information about Handle Graphics callbacks.

2 If your application uses toolbar items from the MATLAB default figure
window, then you must include 'FigureToolBar.fig' in your input to
depfun.

3 If your application uses menu items from the MATLAB default figure
window, then you must include 'FigureMenuBar.fig' in your input to
depfun.

4 Because many built-in Handle Graphics functions invoke newplot, the list
produced by depfun always includes the functions on which newplot is
dependent:
- 'matlabroot\toolbox\matlab\graphics\newplot.m'
- 'matlabroot\toolbox\matlab\graphics\closereq.m'
- 'matlabroot\toolbox\matlab\graphics\gcf.m'
- 'matlabroot\toolbox\matlab\graphics\gca.m'
- 'matlabroot\toolbox\matlab\graphics\private\clo.m'
- 'matlabroot\toolbox\matlab\general\@char\delete.m'
- 'matlabroot\toolbox\matlab\lang\nargchk.m'
- 'matlabroot\toolbox\matlab\uitools\allchild.m'
- 'matlabroot\toolbox\matlab\ops\setdiff.m'
- 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'
- 'matlabroot\toolbox\matlab\iofun\filesep.m'
- 'matlabroot\toolbox\matlab\ops\unique.m'
- 'matlabroot\toolbox\matlab\elmat\repmat.m'
- 'matlabroot\toolbox\matlab\datafun\sortrows.m'
- 'matlabroot\toolbox\matlab\strfun\deblank.m'
- 'matlabroot\toolbox\matlab\ops\@cell\unique.m'
- 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'
- 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'
- 'matlabroot\toolbox\matlab\strfun\cellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\iscell.m'
- 'matlabroot\toolbox\matlab\strfun\iscellstr.m'

depfun

2-600

- 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly
[list,builtins,classes] = depfun('gca');

See Also depdir, profile

det

2-601

2detPurpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond(X) can check for singular and nearly
singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by Gaussian
elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
 1 2 3
 4 5 6
 7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /

detrend

2-602

2detrendPurpose Remove linear trends.

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x,'constant') removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same as
detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend
x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

breakpoints

detrend

2-603

y =

-0.0000
 1.0000
 -2.0000
 1.0000
 0.0000
 1.0000
 -2.0000
 1.0000
 -0.0000

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit

deval

2-604

2devalPurpose Evaluate the solution of a differential equation

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate the
solution of a differential equation problem. sol is a structure returned by one
of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb, ode15i)

• The delay differential equations solver (dde23),

• The boundary value problem solver (bvp4c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For each i,
sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx) evaluate
as above but return only the solution components with indices listed in the
vector idx.

[sxint, spxint] = deval(...) also returns spxint, the value of the first
derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained by
bvp4c might be discontinuous at the interfaces. For an interface point xc,
deval returns the average of the limits from the left and right of xc. To get the
limit values, set the xint argument of deval to be slightly smaller or slightly
larger than xc.

Example This example solves the system using ode45, and evaluates
and plots the first component of the solution at 100 points in the interval
[0,20].

y ′ vdp1 t y,()=

deval

2-605

sol = ode45(@vdp1,[0 20],[2 0]);
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, ode15i

DDE solver: dde23

BVP solver: bvp4c

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

diag

2-606

2diagPurpose Diagonal matrices and diagonals of a matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square matrix X
of order n+abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

Examples diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement

diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

k > 0

k < 0

k = 0

diag

2-607

See Also spdiags, tril, triu

dialog

2-608

2dialogPurpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle to a
dialog box. This function creates a figure graphics object and sets the figure
properties recommended for dialog boxes. You can specify any valid figure
property value.

See Also errordlg, figure, helpdlg, inputdlg, pagesetupdlg, printdlg, questdlg,
uiwait, uiresume, warndlg

“Predefined Dialog Boxes” for related functions

diary

2-609

2diaryPurpose Save session to a file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting text
output, with some exceptions (see “Remarks” for details). The output of diary
is an ASCII file, suitable for searching in, printing, inclusion in most reports
and other documents. If you do not specify filename, MATLAB creates a file
named diary in the current directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the diary
status.

diary('filename') writes a copy of all subsequent keyboard input and the
resulting output (except it does not include graphics) to the named file, where
filename is the full pathname or filename is in the current MATLAB
directory. If the file already exists, output is appended to the end of the file. You
cannot use a filename called off or on. To see the name of the diary file, use
get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Remarks Because the output of diary is plain text, the file does not exactly mirror input
and output from the Command Window:

• Output does not include graphics (figure windows).

• Syntax highlighting and font preferences are not preserved.

diary

2-610

• Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For example, if
you enter the following statement
disp('Generate magic square')

MATLAB displays

However, the diary file, when viewed in a text editor, shows
disp('Generate magic square')
Generate magic square

If you view the output of diary in the Command Window, the Command
Window interprets the <a href ...> statement and displays it as a
hyperlink.

• Viewing the output of diary in a console window might produce different
results compared to viewing diary output in the desktop Command Window.
One example is using the \r option for the fprintf function; using the \n
option might alleviate that problem.

See Also Command History in MATLAB Desktop Tools documentation

diff

2-611

2diffPurpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =
 1 1 1 1

z = diff(x,2)
z =

diff

2-612

 0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

dir

2-613

2dirPurpose Display directory listing

Graphical
Interface

As an alternative to the dir function, use the Current Directory browser.

Syntax dir
dir name
files = dir('name')

Description dir lists the files in the current working directory. Results are not sorted, but
presented in the order returned by the operating system.

dir name lists the specified files. The name argument can be a pathname,
filename, or can include both. You can use absolute and relative pathnames
and wildcards (*).

files = dir('directory') returns the list of files in the specified directory
(or the current directory, if dirname is not specified) to an m-by-1 structure with
the fields

Examples List Directory Contents
To view the contents of the matlab/audio directory, type

dir $matlabroot/toolbox/matlab/audio

Using Wildcard and File Extension
To view the MAT files in your current working directory that include the term
java, type

dir *java*.mat

MATLAB returns

java_array.mat javafrmobj.mat testjava.mat

name Filename

date Modification date

bytes Number of bytes allocated to the file

isdir 1 if name is a directory; 0 if not

dir

2-614

Using Relative Pathname
To view the M-files in the MATLAB audio directory, type

dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m'))

MATLAB returns

Contents.m auread.m soundsc.m
audiodevinfo.m auwrite.m wavplay.m
audioplayer.m lin2mu.m wavread.m
audioplayerreg.m mu2lin.m wavrecord.m
audiorecorder.m prefspanel.m wavwrite.m
audiouniquename.m sound.m

Returning File List to Structure
To return the list of files to the variable audio_files, type

audio_files=dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m'))

MATLAB returns the information in a structure array.

audio_files =
19x1 struct array with fields:
 name
 date
 bytes
 isdir

Index into the structure to access a particular item. For example,

audio_files(3).name
ans =
audioplayer.m

See Also cd, copyfile, delete, fileattrib, filebrowser, fileparts, isdir, ls,
matlabroot, mkdir, mfilename, movefile, rmdir, type, what

dir (ftp)

2-615

2dir (ftp)Purpose List contents of directory on FTP server

Syntax dir(f,'dirname')
d=dir(...)

Description dir(f,'dirname') lists the files in the specified directory, dirname, on the
FTP server f, where f was created using ftp. If dirname is unspecified, dir
lists the files in the current directory of f.

d=dir(...) returns the results in an m-by-1 structure with the following
fields for each file:

Examples Connect to the MathWorks FTP server and view the contents.

tmw=ftp('ftp.mathworks.com');
dir(tmw)

. incoming pickup
README matlab pub
README.incoming outgoing pubs

Change to the directory pub/pentium.

cd(tmw,'pub/pentium')

name Filename

date Date last modified

bytes Size of the file

isdir 1 if name is a directory and 0 if not

dir (ftp)

2-616

View the contents of that directory.

dir(tmw)

. Intel_resp.txt NYT_2.txt

.. Intel_support.txt NYT_Dec14.uu
Andy_Grove.txt Intel_white.ps New_York_Times.txt
Associated_Press.txt MathWorks_press.txt Nicely_1.txt
CNN.html Mathisen.txt Nicely_2.txt
Coe.txt Moler_1.txt Nicely_3.txt
Cygnus.txt Moler_2.txt Pratt.txt
EE_Times.txt Moler_3.txt README.txt
FAQ.txt Moler_4.txt SPSS.txt
IBM_study.txt Moler_5.txt Smith.txt
Intel_FAX.txt Moler_6.ps p87test.txt
Intel_fix.txt Moler_7.txt p87test.zip
Intel_replace.txt Myths.txt test

Or return the results to the structure m.

m=dir(tmw)

m =

37x1 struct array with fields:
 name
 date
 bytes
 isdir

View element 17.

m(17)

ans =

 name: 'Moler_1.txt'
 date: '1995 Mar 27'
 bytes: 3427
 isdir: 0

See Also ftp, mkdir (ftp), rmdir (ftp)

disp

2-617

2dispPurpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X contains a
text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading X =, which is not always desirable.

Note that disp does not display empty arrays.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

 Corn Oats Hay
 0.2113 0.8474 0.2749
 0.0820 0.4524 0.8807
 0.7599 0.8075 0.6538
 0.0087 0.4832 0.4899
 0.8096 0.6135 0.7741

See Also format, int2str, num2str, rats, sprintf

disp (timer)

2-618

2disp (timer)Purpose Display information about timer object

Syntax obj
disp(obj)

Description obj or disp(obj) displays summary information for the timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary information
about the timer objects in the array.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when

• Creating a timer object, using the timer function

• Configuring property values using the dot notation

Examples The following commands display summary information for timer object t.

t = timer

Timer Object: timer-1

 Timer Settings
 ExecutionMode: singleShot
 Period: 1
 BusyMode: drop
 Running: off

 Callbacks
 TimerFcn: []
 ErrorFcn: []
 StartFcn: []
 StopFcn: []

This example shows the format of summary information displayed for an array
of timer objects.

t2 = timer;
disp(timerfind)

Timer Object Array

disp (timer)

2-619

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-1
 2 singleShot 1 '' timer-2

See Also timer, get

display

2-620

2displayPurpose Overloaded method to display an object

Syntax display(X)

Description display(X) prints the value of a variable or expression, X. MATLAB calls
display(X) when it interprets a variable or expression, X, that is not
terminated by a semicolon. For example, sin(A) calls display, while sin(A);
does not.

If X is an instance of a MATLAB class, then MATLAB calls the display method
of that class, if such a method exists. If the class has no display method or if X
is not an instance of a MATLAB class, then the MATLAB built-in display
function is called.

Examples A typical implementation of display calls disp to do most of the work and looks
like this.

function display(X)
if isequal(get(0,'FormatSpacing'),'compact')
 disp([inputname(1) ' =']);
 disp(X)
else
 disp(' ')
 disp([inputname(1) ' =']);
 disp(' ');
 disp(X)
end

The expression magic(3), with no terminating semicolon, calls this function as
display(magic(3)).

magic(3)

ans =

 8 1 6
 3 5 7
 4 9 2

As an example of a class display method, the function below implements the
display method for objects of the MATLAB class polynom.

display

2-621

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with a
semicolon, the MATLAB interpreter calls display(p), resulting in the output

p =

 x^3 - 2*x - 5

See Also disp, ans, sprintf, special characters

divergence

2-622

2divergencePurpose Computes the divergence of a vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D vector
field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector field U,
V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D
plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice planes
using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight

divergence

2-623

See Also streamtube, curl, isosurface

“Volume Visualization” for related functions

Displaying Divergence with Stream Tubes for another example

dlmread

2-624

2dlmreadPurpose Read an ASCII-delimited file into a matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax M = dlmread('filename')
M = dlmread('filename', delimiter)
M = dlmread('filename', delimiter, R, C)
M = dlmread('filename', delimiter, range)

Description M = dlmread('filename') reads numeric data from the ASCII-delimited file
filename, using a delimiter inferred from the formatting of the file. Comma (,)
is the default delimiter.

M = dlmread('filename', delimiter) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. Use \t to specify
a tab delimiter.

Note When a delimiter is inferred from the formatting of the file, consecutive
whitespaces are treated as a single delimiter. By contrast, if a delimiter is
specified by the delimiter input, any repeated delimiter character is treated
as a separate delimiter.

M = dlmread('filename', delimiter, R, C) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. The values R and
C specify the row and column where the upper left corner of the data lies in the
file. R and C are zero based, so that R=0, C=0 specifies the first value in the file,
which is the upper left corner.

M = dlmread('filename', delimiter, range) reads the range specified by
range = [R1 C1 R2 C2] where (R1,C1) is the upper left corner of the data to
be read and (R2,C2) is the lower right corner. You can also specify the range
using spreadsheet notation, as in range = 'A1..B7'.

dlmread

2-625

Remarks dlmread fills empty delimited fields with zero. Data files having lines that end
with a nonspace delimiter, such as a semicolon, produce a result that has an
additional last column of zeros.

dlmread imports any complex number as a whole into a complex numeric field,
converting the real and imaginary parts to the specified numeric type. Valid
forms for a complex number are

Embedded white-space in a complex number is invalid and is regarded as a
field delimiter.

See Also dlmwrite, textscan, csvread, csvwrite, wk1read, wk1write

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

dlmwrite

2-626

2dlmwritePurpose Write a matrix to an ASCII-delimited file

Syntax dlmwrite('filename', M)
dlmwrite('filename', M, 'D')
dlmwrite('filename', M, 'D', R, C)
dlmwrite('filename', M, attribute1, value1, attribute2, value2, ...)
dlmwrite('filename', M, '-append')
dlmwrite('filename', M, '-append', attribute-value list)

Description dlmwrite('filename', M) writes matrix M into an ASCII format file using the
default delimiter (,) to separate matrix elements. The data is written starting
at the first column of the first row in the destination file, filename.

dlmwrite('filename', M, 'D') writes matrix M into an ASCII format file,
using delimiter D to separate matrix elements. The data is written starting at
the first column of the first row in the destination file, filename. A comma (,)
is the default delimiter. Use \t to produce tab-delimited files.

dlmwrite('filename', M, 'D', R, C) writes matrix A into an ASCII format
file, using delimiter D to separate matrix elements. The data is written starting
at row R and column C in the destination file, filename. R and C are zero based,
so that R=0, C=0 specifies the first value in the file, which is the upper left
corner.

dlmwrite('filename', M, 'attrib1', value1, 'attrib2', value2, ...)
is an alternate syntax to those shown above, in which you specify any number
of attribute-value pairs in any order in the argument list. Each attribute must
be immediately followed by a corresponding value (see the table below).

Attribute Value

delimiter Delimiter string to be used in separating matrix elements

newline Character(s) to use in terminating each line (see table below)

roffset Offset, in rows, from the top of the destination file to where
matrix data is to be written. Offset is zero based.

dlmwrite

2-627

This table shows which values you can use when setting the newline attribute.

dlmwrite('filename', M, '-append') appends the matrix to the file. If you
do not specify '-append', dlmwrite overwrites any existing data in the file.

dlmwrite('filename', M, '-append', attribute-value list) is the same
as the syntax shown above, but accepts a list of attribute-value pairs. You
can place the '-append' flag in the argument list anywhere between
attribute-value pairs, but not in between an attribute and its value.

Remarks The resulting file is readable by spreadsheet programs.

Examples Export matrix M to a file delimited by the tab character and using a precision
of six significant digits:

dlmwrite('myfile.txt', M, 'delimiter', '\t', 'precision', 6)
type myfile.txt

0.893898 0.284409 0.582792 0.432907
0.199138 0.469224 0.423496 0.22595
0.298723 0.0647811 0.515512 0.579807
0.661443 0.988335 0.333951 0.760365

coffset Offset, in columns, from the left side of the destination file to
where matrix data is to be written. Offset is zero based.

precision Numeric precision to use in writing data to the file. Specify
the number of significant digits or a C-style format string
starting in %, such as '%10.5f'.

Line Terminator Description

'pc' PC terminator (implies carriage
return/line feed (CR/LF))

'unix' UNIX terminator (implies line feed (LF))

Attribute Value

dlmwrite

2-628

Export matrix M to a file using a precision of six decimal places and the
conventional line terminator for the PC platform:

dlmwrite('myfile.txt', m, 'precision', '%.6f', 'newline', 'pc')
type myfile.txt

16.000000,2.000000,3.000000,13.000000
5.000000,11.000000,10.000000,8.000000
9.000000,7.000000,6.000000,12.000000
4.000000,14.000000,15.000000,1.000000

Export matrix M to a file, and then append an additional matrix to the file that
is offset one row below the first:

M = magic(4);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), 'append', 'on', ...
 'roffset', 1, 'delimiter', ' ')

type myfile.txt

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

See Also dlmread, csvwrite, csvread, wk1write, wk1read

dmperm

2-629

2dmpermPurpose Dulmage-Mendelsohn decomposition

 Syntax p = dmperm(A)
[p,q,r,s] = dmperm(A)

Description p = dmperm(A) if A is square and has full rank, returns a row permutation p so
that A(p,:) has nonzero diagonal elements. This permutation is also called a
perfect matching. If A is not square or not full rank, p is a vector that identifies
a matching of maximum size: for each column j of A, either p(j)=0 or
A(p(j),j) is nonzero.

[p,q,r,s] = dmperm(A), where A need not be square or full rank, finds
permutations p and q and index vectors r and s so that A(p,q) is block upper
triangular. The kth block has indices (r(k):r(k+1)-1, s(k):s(k+1)-1).
When A is square and has full rank, r = s.

If A is not square or not full rank, the first block may have more columns and
the last block may have more rows. All other blocks are square and irreducible.
dmperm permutes nonzeros to the diagonals of square blocks, but does not do
this for non-square blocks.

Remarks If A is a reducible matrix, the linear system can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the
diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to the strong
Hall components of that graph. The output of dmperm can also be used to find
the connected or strongly connected components of an undirected or directed
graph. For more information see Pothen and Fan [].

See Also sprank

References Pothen, Alex and Chin-Ju Fan, "Computing the Block Triangular Form of a
Sparse Matrix," ACM Transactions on Mathematical Software, Vol. 16, No. 4,
Dec. 1990, pp. 303-324.

Ax b=

doc

2-630

2docPurpose Display online documentation in MATLAB Help browser

Graphical
Interface

As an alternative to the doc function, use the Help browser Search tab. Type
the function name and click Go.

Syntax doc
doc functionname
doc toolboxname/
doc toolboxname/functionname

Description doc opens the Help browser, if it is not already running, or brings the window
on top when it is already open.

doc functionname displays the reference page for the MATLAB function
functionname in the Help browser (for example, you are looking at the
reference page for the doc function). If functionname is overloaded, that is, if
functionname appears in multiple directories on the MATLAB search path,
doc displays the reference page for the first functionname on the search path
and displays a hyperlinked list of the other functions and their directories in
the MATLAB Command Window. If a reference page for functionname does
not exist, doc displays its M-file help in the Help browser.

doc toolboxname displays the Roadmap page for toolboxname in the Help
browser, which provides a summary of the most pertinent documentation for
that product.

doc toolboxname/functionname displays the reference page for functionname
that belongs to the specified toolboxname, in the Help browser. This is useful
for overloaded functions.

Examples Type doc abs to display the reference page for the abs function. If Simulink
and the Signal Processing Toolbox are installed and on the search path, the
Command Window lists hyperlinks for the abs function in those products

doc signal/abs
doc simulink/abs

Type doc signal/abs to display the reference page for the abs function in the
Signal Processing Toolbox.

doc

2-631

Type doc signal to display the Roadmap page for the Signal Processing
Toolbox.

Note If there is a function called name as well as a toolbox called name, the
Roadmap page for the toolbox called name displays. To see the reference page
for the function called name, use doc toolboxname/name, where toolboxname
is the name of the toolbox in which the function name resides. For example, doc
matlab displays the roadmap page for matlab, while doc matlab/matlab
displays the reference page for the matlab UNIX startup function.

See Also docopt, docsearch, help, helpbrowser, lookfor, type, web

docopt

2-632

2docoptPurpose Web browser for UNIX platforms

Syntax docopt

Description docopt displays the Web browser used with MATLAB on non-Macintosh UNIX
platforms, with the default being netscape (for Netscape). For non-Macintosh
UNIX platforms, you can modify the docopt.m file to specify the Web browser
MATLAB uses. The Web browser is used with the web function and its
-browser option. It is also used for links to external Web sites from the Help.

doccmd = docopt returns a string containing the command that web -browser
uses to invoke a Web browser.

To change the browser, edit the docopt.m file and change line 51. For example,

50 elseif isunix % UNIX
51 % doccmd = '';

Remove the comment symbol. In the quote, enter the command that launches
your Web browser, and save the file. For example

51 doccmd = 'mozilla';

specifies Mozilla as the Web browser MATLAB uses.

See Also doc, edit, helpbrowser, web

docsearch

2-633

2docsearchPurpose Open Help browser Search pane and run search for specified term

Graphical
Interface

As an alternative to the docsearch function, select Desktop -> Help and click
the Search tab.

Syntax docsearch
docsearch word
docsearch ('word1 word2 ...')
docsearch('word1 word2 BOOLEANOP word3')

Description docsearch opens the Help browser to the Search pane, or if the Help browser
is already opens, brings it to the top.

docsearch word1 executes a Help browser full-text search for word1,
displaying results in the Help browser Search pane.

docsearch ('word1 word2 ...') executes a Help browser full-text search for
pages containing word1 and word2 and any other specified words, displaying
results in the Help browser Search pane.

docsearch('word1 word2 BOOLEANOP word3') executes a a Help browser
full-text search for the term word1 word2 BOOLEANOP word3, where BOOLEANOP
is a Boolean operator (AND, NOT, OR) used to limit the search. Results display in
the Help browser Search pane.

Examples docsearch print finds all pages that contain the word print.

docsearch('print figure') finds all pages that contain the words print and
figure.

docsearch('print OR printing AND figure NOT exporting') finds all
pages that contain the words print and figure, or printing and figure, but
only if the pages do not contain the word exporting.

See Also doc, helpbrowser

Search Documentation with the Help Browser

dos

2-634

2dosPurpose Execute a DOS command and return result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for Windows
systems.

status = dos('command') returns completion status to the status variable.

[status,result] = dos('command') in addition to completion status, returns
the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed, but the
syntax causes different results based on the type of programs. Console
programs have stdout and their output is returned to the result variable. They
are always run in an iconified DOS or Command Prompt Window except as
noted below. Console programs never execute in the background. Also,
MATLAB will always wait for the stdout pipe to close before continuing
execution. Windows programs may be executed in the background as they have
no stdout.

The ampersand, &, character has special meaning. For console programs this
causes the console to open. Omitting this character will cause console programs
to run iconically. For Windows programs, appending this character will cause
the application to run in the background. MATLAB will continue processing.

Examples The following example performs a directory listing, returning a zero (success)
in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window

dos('edit &')

dos

2-635

To open the notepad editor and return control immediately to MATLAB

dos('notepad file.m &')

The next example returns a one in s and an error message in w because foo is
not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command Window
as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix, winopen

dot

2-636

2dotPurpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and B must
be vectors of the same length. When A and B are both column vectors, dot(A,B)
is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product along the
first non-singleton dimension of A and B. A and B must have the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
 32

See Also cross

double

2-637

2doublePurpose Convert to double precision

Syntax double(X)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

 Remarks double is called for the expressions in for, if, and while loops if the expression
isn't already double-precision. double should be overloaded for any object when
it makes sense to convert it to a double-precision value.

dragrect

2-638

2dragrectPurpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the final
position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the rectangles in
increments of stepsize. The lower left corner of the first rectangle is
constrained to a grid of size equal to stepsize starting at the lower left corner
of the figure, and all other rectangles maintain their original offset from the
first rectangle.

[finalrect] = dragrect(...) returns the final positions of the rectangles
when the mouse button is released. The default step size is 1.

Remarks dragrect returns immediately if a mouse button is not currently pressed. Use
dragrect in a ButtonDownFcn, or from the command line in conjunction with
waitforbuttonpress, to ensure that the mouse button is down when dragrect
is called. dragrect returns when you release the mouse button.

If the drag ends over a figure window, the positions of the rectangles are
returned in that figure’s coordinate system. If the drag ends over a part of the
screen not contained within a figure window, the rectangles are returned in the
coordinate system of the figure over which the drag began.

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress

“Selecting Region of Interest” for related functions

drawnow

2-639

2drawnowPurpose Complete pending drawing events

Syntax drawnow

Description drawnow flushes the event queue and updates the figure window.

Remarks Other events that cause MATLAB to flush the event queue and draw the figure
windows include

• Returning to the MATLAB prompt

• A pause statement

• A waitforbuttonpress statement

• A waitfor statement

• A getframe statement

• A figure statement

Examples Executing the statements

x = -pi:pi/20:pi;
plot(x,cos(x))
drawnow
title('A Short Title')
grid on

as an M-file updates the current figure after executing the drawnow function
and after executing the final statement.

See Also waitfor, pause, waitforbuttonpress

“Figure Windows” for related functions

dsearch

2-640

2dsearchPurpose Search for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the nearest
point to the point (xi,yi). dsearch requires a triangulation TRI of the points x,y
obtained using delaunay. If xi and yi are vectors, K is a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi

dsearchn

2-641

2dsearchnPurpose N-dimensional nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in X for each
point in XI. X is an m-by-n matrix representing m points in n-dimensional space.
XI is a p-by-n matrix, representing p points in n-dimensional space. T is a
numt-by-n+1 matrix, a tessellation of the data X generated by delaunayn. The
output k is a column vector of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest points in X
for each point in XI, unless a point is outside the convex hull. If XI(J,:) is
outside the convex hull, then K(J) is assigned outval, a scalar double. Inf is
often used for outval. If outval is [], then k is the same as in the case
k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation. With
large X and small XI, this approach is faster and uses much less memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest points. d
is a column vector of length p.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn

echo

2-642

2echo
Purpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files are not displayed on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected.

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

echo on Turns on the echoing of commands in all script files

echo off Turns off the echoing of commands in all script files

echo Toggles the echo state

echo fcnname on Turns on echoing of the named function file

echo fcnname off Turns off echoing of the named function file

echo fcnname Toggles the echo state of the named function file

echo on all Sets echoing on for all function files

echo off all Sets echoing off for all function files

echo

2-643

See Also function

edit

2-644

2editPurpose Edit or create M-file

Graphical
Interface

As an alternative to the edit function, select New or Open from the File menu
in the MATLAB desktop or any desktop tool.

Syntax edit
edit fun.m
edit file.ext
edit fun1 fun2 fun3 ...
edit class/fun
edit private/fun
edit class/private/fun

Description edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. Note that fun.m can
be a MATLAB partialpath or a complete path. If fun.m does not exist, a
prompt appears asking if you want to create a new file titled fun.m. After you
click Yes, the Editor/Debugger creates a blank file titled fun.m. If you do not
want the prompt to appear in this situation, select that check box in the
prompt. Then when you type edit fun.m, where fun.m did not previously exist,
a new file called fun.m is automatically opened in the Editor. To make the
prompt appear, specify it in preferences for Prompt.

edit file.ext opens the specified file.

edit fun1 fun2 fun3 ... opens fun1.m, fun2.m, fun3.m, and so on, in the
default editor.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

Remarks To specify the default editor for MATLAB, select Preferences from the File
menu. On the Editor/Debugger panel, select MATLAB editor or specify
another.

edit

2-645

UNIX Users
If you run MATLAB with the -nodisplay startup option, or run without the
DISPLAY environment variable set, edit uses the External Editor command.
It does not use the MATLAB Editor/Debugger, but instead uses the default
editor defined for your system in $matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor options
by adding the following line to your own.Xdefaults file, located in ~home

matlab*externalEditorCommand: $EDITOR -option $FILE

where

• $EDITOR is the name of your default editor, for example, emacs; leaving it as
$EDITOR means your default system editor will be used.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the filename you type with the edit command will open in the
specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs editor.

After adding the line to your.Xdefaults file, you must run the following before
starting MATLAB:

xrdb -merge ~home/.Xdefaults

See Also open, type

eig

2-646

2eigPurpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns a vector containing the generalized eigenvalues, if A and
B are square matrices.

Note If S is sparse and symmetric, you can use d = eig(S) to returns the
eigenvalues of S. To request eigenvectors, and in all other cases, use eigs to
find the eigenvalues or eigenvectors of sparse matrices.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that A*V = V*D. Matrix D is the canonical form of A—a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

If W is a matrix such that W'*A = D*W', the columns of W are the left eigenvectors
of A . Use [W,D] = eig(A.'); W = conj(W) to compute the left eigenvectors.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors without a
preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
A*V = B*V*D.

eig

2-647

[V,D] = eig(A,B,flag) specifies the algorithm used to compute eigenvalues
and eigenvectors. flag can be:

Note For eig(A), the eigenvectors are scaled so that the norm of each is 1.0.
For eig(A,B), eig(A,'nobalance'), and eig(A,B,flag), the eigenvectors are
not normalized.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the equation

where is an n-by-n matrix, is a length n column vector, and is a scalar.
The n values of that satisfy the equation are the eigenvalues, and the
corresponding values of are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues , and optionally the eigenvectors .

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

where both and are n-by-n matrices and is a scalar. The values of that
satisfy the equation are the generalized eigenvalues and the corresponding
values of are the generalized right eigenvectors.

If is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

Because can be singular, an alternative algorithm, called the QZ method, is
necessary.

'chol' Computes the generalized eigenvalues of A and B using the
Cholesky factorization of B. This is the default for symmetric
(Hermitian) A and symmetric (Hermitian) positive definite B.

'qz' Ignores the symmetry, if any, and uses the QZ algorithm as it
would for nonsymmetric (non-Hermitian) A and B.

Ax λx=

A x λ
λ

x
λ x

Ax λBx=

A B λ λ

x

B

B 1– Ax λx=

B

eig

2-648

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix V diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies A*X = X*D.

Examples The matrix

B = [3 -2 -.9 2*eps
 -2 4 1 -eps
 -eps/4 eps/2 -1 0
 -.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')
B*VN - VN*DN

Algorithm Inputs of Type Double
For inputs of type double, MATLAB uses the following LAPACK routines to
compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

• With preliminary balance step DGEEV (with SCLFAC = 2 instead
of 8 in DGEBAL)

• d = eig(A,'nobalance') DGEHRD, DHSEQR

• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

eig

2-649

Inputs of Type Single
For inputs of type single, MATLAB uses the following LAPACK routines to
compute eigenvalues and eigenvectors.

Non-Hermitian A:

• With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR

• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC

Real symmetric A,
symmetric positive definite B.

DSYGV

Special case:
eig(A,B,'qz') for real A, B
(same as real nonsymmetric A, real
general B)

DGGEV

Real nonsymmetric A, real general B DGGEV

Complex Hermitian A,
Hermitian positive definite B.

ZHEGV

Special case:
eig(A,B,'qz') for complex A or B
(same as complex non-Hermitian A,
complex B)

ZGGEV

Complex non-Hermitian A, complex B ZGGEV

Case Routine

Real symmetric A SSYEV

Real nonsymmetric A:

• With preliminary balance step SGEEV

• d = eig(A,'nobalance') SGEHRD, SHSEQR

Case Routine

eig

2-650

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

• [V,D] = eig(A,'nobalance') SGEHRD, SORGHR, SHSEQR, STREVC

Hermitian A CHEEV

Non-Hermitian A:

• With preliminary balance step CGEEV

• d = eig(A,'nobalance') CGEHRD, CHSEQR

• [V,D] = eig(A,'nobalance') CGEHRD, CUNGHR, CHSEQR, CTREVC

Real symmetric A,
symmetric positive definite B.

CSYGV

Special case:
eig(A,B,'qz') for real A, B
(same as real nonsymmetric A, real
general B)

SGGEV

Real nonsymmetric A, real general B SGGEV

Complex Hermitian A,
Hermitian positive definite B.

CHEGV

Special case:
eig(A,B,'qz') for complex A or B
(same as complex non-Hermitian A,
complex B)

CGGEV

Complex non-Hermitian A, complex B CGGEV

Case Routine

eigs

2-651

2eigsPurpose Find a few eigenvalues and eigenvectors of a square large sparse matrix

Syntax d = eigs(A)
d = eigs(A,B)
d = eigs(A,k)
d = eigs(A,B,k)
d = eigs(A,k,sigma)
d = eigs(A,B,k,sigma)
d = eigs(A,k,sigma,options)
d = eigs(A,B,k,sigma,options)
d = eigs(Afun,n)
d = eigs(Afun,n,B)
d = eigs(Afun,n,k)
d = eigs(Afun,n,B,k)
d = eigs(Afun,n,k,sigma)
d = eigs(Afun,n,B,k,sigma)
d = eigs(Afun,n,k,sigma,options)
d = eigs(Afun,n,B,k,sigma,options)
d = eigs(Afun,n,k,sigma,options,p1,p2...)
d = eigs(Afun,n,B,k,sigma,options,p1,p2...)
[V,D] = eigs(A,...)
[V,D] = eigs(Afun,n,...)
[V,D,flag] = eigs(A,...)
[V,D,flag] = eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A's six largest magnitude eigenvalues.

[V,D] = eigs(A) returns a diagonal matrix D of A's six largest magnitude
eigenvalues and a matrix V whose columns are the corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0 then all
the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B must
be symmetric (or Hermitian) positive definite and the same size as A.
eigs(A,[],...) indicates the standard eigenvalue problem A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude eigenvalues.

eigs

2-652

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma, which can take any of the following values:

Note The MATLAB 5 value sigma = 'be' is obsolete for nonsymmetric and
complex problems.

scalar
(real or complex,
including 0)

The eigenvalues closest to sigma. If A is a function, Afun
must return Y = (A-sigma*B)\x (i.e., Y = A\x when
sigma = 0). Note, B need only be symmetric (Hermitian)
positive semi-definite.

'lm' Largest magnitude (default).

'sm' Smallest magnitude. Same as sigma = 0. If A is a function,
Afun must return Y = A\x. Note, B need only be symmetric
(Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

'la' Largest algebraic ('lr' in MATLAB 5)

'sa' Smallest algebraic ('sr' in MATLAB 5)

'be' Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also options:

'lr' Largest real part

'sr' Smallest real part

'li' Largest imaginary part

'si' Smallest imaginary part

eigs

2-653

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an options
structure. Default values are shown in brackets ({}).

Note MATLAB 5 options stagtol and cheb are no longer allowed.

Parameter Description Values

options.issym 1 if A or A-sigma*B represented
by Afun is symmetric, 0
otherwise.

[{0} | 1]

options.isreal 1 if A or A-sigma*B represented
by Afun is real, 0 otherwise.

[0 | {1}]

options.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar | {eps}]

options.maxit Maximum number of iterations. [integer | {300}]

options.p Number of basis vectors. p >= 2k
(p >= 2k+1 real nonsymmetric)
advised. Note: p must satisfy
k < p <= n for real symmetric,
k+1 < p <= n otherwise.

[integer | 2*k]

options.v0 Starting vector. Randomly
generated by
ARPACK

options.disp Diagnostic information display
level.

[0 | {1} | 2]

options.cholB 1 if B is really its Cholesky factor
chol(B), 0 otherwise.

[{0} | 1]

options.permB Permutation vector permB if
sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

eigs

2-654

eigs(Afun,n,...) accepts the function Afun instead of the matrix A.
y = Afun(x) should return:

n is the size of A. The matrix A, A-sigma*I or A-sigma*B represented by Afun is
assumed to be real and nonsymmetric unless specified otherwise by
opts.isreal and opts.issym. In all the eigs syntaxes, eigs(A,...) can be
replaced by eigs(Afun,n,...).

eigs(Afun,n,k,sigma,opts,p1,p2,...) and
eigs(Afun,n,B,k,sigma,opts,p1,p2,...) provide for additional arguments
which are passed to Afun(x,p1,p2,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran library
ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD, ZNAUPD, and
ZNEUPD.

Examples Example 1: This example shows the use of function handles.

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm');

Equivalently, if dnRk is the following one-line function:

function y = dnRk(x,R,k)

A*x if sigma is not specified, or is a string other than 'sm'

A\x if sigma is 0 or 'sm'

(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue
problem). I is an identity matrix of the same size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized eigenvalue
problem)

eigs

2-655

y = (delsq(numgrid(R,k))) \ x;

then pass dnRk's additional arguments, 'C' and 15, to eigs.

n = size(A,1);
opts.issym = 1;
d2 = eigs(@dnRk,n,5,'sm',opts,'C',15);

Example 2: west0479 is a real 479-by-479 sparse matrix with both real and
pairs of complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as computed
by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')
hold off
legend('eigs(west0479,8)','eig(full(west0479))')

eigs

2-656

Example 3: A = delsq(numgrid('C',30)) is a symmetric positive definite
matrix of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes all 632
eigenvalues. It computes and plots the six largest and smallest magnitude
eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

−150 −100 −50 0 50 100 150
−2000

−1500

−1000

−500

0

500

1000

1500

2000
eigs(west0479,8)
eig(full(west0479))

eigs

2-657

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A. As
lambda gets closer to 4.0, eigs fails. We must use sigma near but not equal to
4 to find those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

1 2 3 4 5 6
7.8

7.85

7.9

7.95

8

eigs(A)
eig(full(A))

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
eigs(A,6,’SM’)
eig(full(A))

eigs

2-658

The plot shows the 20 eigenvalues closest to 4 that were computed by eig,
along with the 18 eigenvalues closest to 4 - 1e-6 that were computed by eigs.

See Also arpackc, eig, svds

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an Implicitly
Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and Applications, Vol.
17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users' Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a k-Step
Arnoldi Method,” SIAM J. Matrix Analysis and Applications, Vol. 13, 1992,
pp. 357-385.

2 4 6 8 10 12 14 16 18 20
3.97

3.98

3.99

4

4.01

4.02

4.03
18 repeated eigenvalues of delsq(numgrid(’C’,30)) at 4

eigs(A,18,sigma)
eig(A)

ellipj

2-659

2ellipjPurpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus instead of the
parameter . They are related by

The Jacobi elliptic functions obey many mathematical identities; for a good
sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to
accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

u θd

1 m θsin2–()
1
2

0

φ

∫=

sn u() φsin cn u(), φcos= = dn u(), 1 m φsin2–()
1
2

= am u(), φ=

k
m

k2 m αsin2= =

a0 1,= b0 1 m–()
1
2

,= c0 m()

1
2

=

ellipj

2-660

ellipj computes successive iterates with

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:

Limitations The ellipj function is limited to the input domain . Map other values
of M into this range using the transformations described in [1], equations 16.10
and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

2φn 1– φn–()sin
cn
an
------ φn()sin=

sn u() φ0sin=

cn u() φ0cos=

dn u() 1 m sn u()2⋅–()
1
2

=

0 m 1≤ ≤

ellipke

2-661

2ellipkePurpose Complete elliptic integrals of the first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is

where , the elliptic integral of the first kind, is

The complete elliptic integral of the second kind

is

Some definitions of K and E use the modulus instead of the parameter .
They are related by

Description K = ellipke(M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the complete elliptic integral to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

K m() F π 2⁄ m()=

F

K m() 1 t2–() 1 mt2–()[]
1–
2

0

1

∫ dt 1 m θsin2–()
1–
2

θd

0

π
2

∫= =

E m() E K m()() E π 2⁄ m〈 | 〉= =

E m() 1 t2–()
1–
2

1 mt2–()

1
2

0

1

∫= dt 1 m θsin2–()
1
2

0

π
2

∫ dθ=

k m

k2 m αsin2= =

ellipke

2-662

Algorithm ellipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the
triplet of numbers

ellipke computes successive iterations of , , and with

stopping at iteration when , within the tolerance specified by eps. The
complete elliptic integral of the first kind is then

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

a0 1= b0, 1 m–()
1
2

= c0, m()
1
2

=

ai bi ci

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

n cn 0≈

K m() π
2an
----------=

0 m 1≤ ≤

ellipsoid

2-663

2ellipsoidPurpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates three n+1-by-n+1
matrices so that surf(x,y,z) produces an ellipsoid with center (xc,yc,zc)
and radii (xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

ellipsoid(...) with no output arguments graphs the ellipsoid as a surface.

Algorithm ellipsoid generates the data using the following equation:

See Also cylinder, sphere, surf

“Polygons and Surfaces” for related functions

Y = sin(X);
E = std(Y)*ones(size(X));

x xc–()2

xr2
---------------------- y yc–()2

yr2
---------------------- z zc–()2

zr2
----------------------+ +

else

2-664

2elsePurpose Conditionally execute statements

Syntax if expression
 statements1
else
 statements2
end

Description else is used to delineate an alternate block of statements. If expression
evaluates as false, MATLAB executes the one or more commands denoted
here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, “if (matrix A is less than matrix B)”), true means
that every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&,|,~) into
compound expressions such as (count < limit) & ((height - offset) >=
0).

See if for more information.

Examples In this example, if both of the conditions are not satisfied, then the student fails
the course.

if ((attendance >= 0.90) & (grade_average >= 60))
 pass = 1;
else
 fail = 1;
end;

See Also if, elseif, end, for, while, switch, break, return, relational operators, logical
operators (elementwise and short-circuit)

elseif

2-665

2elseifPurpose Conditionally execute statements

Syntax if expression1
 statements1
elseif expression2
 statements2
end

Description If expression1 evaluates as false and expression2 as true, MATLAB
executes the one or more commands denoted here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, is matrix A less then matrix B), true means that
every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&,|,~) into
compound expressions such as (count < limit) & ((height - offset) >= 0).

See if for more information.

Remarks else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only
one terminating end.

The two segments shown below produce identical results. Exactly one of the
four assignments to x is executed, depending upon the values of the three
logical expressions, A, B, and C.

if A if A
x = a x = a

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end

elseif

2-666

end
end

Examples Here is an example showing if, else, and elseif.

for m = 1:k
 for n = 1:k
 if m == n
 a(m,n) = 2;
 elseif abs(m-n) == 2
 a(m,n) = 1;
 else
 a(m,n) = 0;
 end
 end
end

For k=5 you get the matrix

a =

 2 0 1 0 0
 0 2 0 1 0
 1 0 2 0 1
 0 1 0 2 0
 0 0 1 0 2

See Also if, else, end, for, while, switch, break, return, relational operators, logical
operators (elementwise and short-circuit)

end

2-667

2endPurpose Terminate for, while, switch, try, and if statements or indicate last index

Syntax while expression % (or if, for, or try)
 statements
end
B = A(index:end,index)

Description end is used to terminate for, while, switch, try, and if statements. Without
an end statement, for, while, switch, try, and if wait for further input. Each
end is paired with the closest previous unpaired for, while, switch, try, or if
and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index. Examples
of this use are X(3:end) and X(1,1:2:end-1). When using end to grow an
array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end method
for the object. The end method should have the calling sequence end(obj,k,n),
where obj is the user object, k is the index in the expression where the end
syntax is used, and n is the total number of indices in the expression. For
example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0

a(k) = a(k) + 2;
 end
end

In this example, end is used in an indexing expression.

A = magic(5)

A =

end

2-668

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = A(end,2:end)

B =

 18 25 2 9

See Also break, for, if, return, switch, try, while

eomday

2-669

2eomdayPurpose End of month

Syntax E = eomday(Y,M)

Description E = eomday(Y,M) returns the last day of the year and month given by
corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2∗ ones(length(y),1)');
y(find(E==29))'

ans =
 Columns 1 through 6
 1904 1908 1912 1916 1920 1924

 Columns 7 through 12
 1928 1932 1936 1940 1944 1948

 Columns 13 through 18
 1952 1956 1960 1964 1968 1972

 Columns 19 through 24
 1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

eps

2-670

2epsPurpose Floating-point relative accuracy

Syntax eps
d = eps(X)
eps('double')
eps('single')

Description eps returns the distance from 1.0 to the next largest double-precision number,
that is eps = 2^(-52).

d = eps(X) is the positive distance from abs(X) to the next larger in magnitude
floating point number of the same precision as X. X may be either double
precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X)

eps('double') is the same as eps or eps(1.0).

eps('single') is the same as eps(single(1.0)) or single(2^-23).

Except for denormals, if 2^E <= abs(X) < 2^(E+1), then

eps(X) = 2^(E-23) if isa(X,'single')
eps(X) = 2^(E-52) if isa(X,'double')

Replace expressions of the form

if Y < eps * ABS(X)

with

if Y < eps(X)

Examples double precision
eps(1/2) = 2^(-53)
eps(1) = 2^(-52)
eps(2) = 2^(-51)
eps(realmax) = 2^971
eps(0) = 2^(-1074)
if(abs(x)) <= realmin, eps(x) = 2^(-1074)
eps(Inf) = NaN
eps(NaN) = NaN
single precision

eps

2-671

eps(single(1/2)) = 2^(-24)
eps(single(1)) = 2^(-23)
eps(single(2)) = 2^(-22)
eps(realmax('single')) = 2^104
eps(single(0)) = 2^(-149)
if(abs(x)) <= realmin('single'), eps(x) = 2^(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax, realmin

erf, erfc, erfcx, erfinv, erfcinv

2-672

2erf, erfc, erfcx, erfinv, erfcinvPurpose Error functions

Syntax Y = erf(X) Error function
Y = erfc(X) Complementary error function
Y = erfcx(X) Scaled complementary error function
X = erfinv(Y) Inverse error function
X = erfcinv(Y) Inverse complementary error function

Definition The error function erf(X) is twice the integral of the Gaussian distribution
with 0 mean and variance of .

The complementary error function erfc(X) is defined as

The scaled complementary error function erfcx(X) is defined as

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. Elements of Y must be in the interval [-1 1]. The function erfinv
satisfies for and .

X = erfcinv(Y) returns the value of the inverse of the complementary error
function for each element of Y. Elements of Y must be in the interval [0 2]. The
function erfcinv satisfies for and .

1 2⁄

erf x() 2
π

------- e t2–
0

x

∫ dt=

erfc x() 2
π

------- e t2– td
x

∞

∫ 1 erf x()–= =

erfcx x() ex2 erfc x()=
1
π

------- 
  1

x

y erf x()= 1– y 1≤ ≤ ∞– x ∞≤ ≤

y erfc x()= 2 y 0≥ ≥ ∞– x ∞≤ ≤

erf, erfc, erfcx, erfinv, erfcinv

2-673

Remarks The relationship between the complementary error function erfc and the
standard normal probability distribution returned by the Statistics Toolbox
function normcdf is

The relationship between the inverse complementary error function erfcinv
and the inverse standard normal probability distribution returned by the
Statistics Toolbox function norminv is

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a Fortran
program by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN,
March 19, 1990. The main computation evaluates near-minimax rational
approximations from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step of Halley’s
method.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969

normcdf x() 0.5 * erfc x– 2⁄()=

norminv p() 2– * erfcinv 2p()=

error

2-674

2errorPurpose Display error messages

Syntax error('message')
error('message',a1,a2, ...)
error('message_id','message')
error('message_id','message',a1,a2,...)

Description error('message') displays an error message and returns control to the
keyboard. The error message contains the input string message.

The error command has no effect if message is a null string.

error('message',a1,a2,...) displays a message string that contains
formatting conversion characters, such as those used with the MATLAB
sprintf function. Each conversion character in message is converted to one of
the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument with
error. See Example 3 below.

error('message_id','message') attaches a unique message identifier, or
message_id, to the error message. The identifier enables you to better identify
the source of an error. See “Message Identifiers” and “Using Message
Identifiers with lasterr” in the MATLAB documentation for more information
on the message_id argument and how to use it.

error('message_id','message',a1,a2, ...) includes formatting
conversion characters in message, and the character translations a1, a2, ...

Examples Example 1
The error function provides an error return from M-files:

function foo(x,y)
if nargin ~= 2
 error('Wrong number of input arguments')
end

error

2-675

The returned error message looks like this:

foo(pi)

??? Error using ==> foo
Wrong number of input arguments

Example 2
Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
 'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterr to determine the message identifier
and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =
 The angle specified must be less than 90 degrees.
msgid =
 MyToolbox:angleTooLarge

Example 3
MATLAB converts special characters (like \n and %d) in the error message
string only when you specify more than one input argument with error. In the
single argument case shown below, \n is taken to mean backslash-n. It is not
converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert special
characters. This holds true regardless of whether the additional argument
supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
 'In this case, the newline \n is converted.')
??? In this case, the newline
 is converted.

See Also lasterr, lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop,
disp, sprintf

errorbar

2-676

2errorbarPurpose Plot error bars along a curve

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

errorbar('v6',...)

Description Error bars show the confidence level of data or the deviation along a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The error
bar is a distance of E(i) above and below the curve so that each bar is
symmetric and 2*E(i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E(i) long. X, Y,
E must be the same size. When they are vectors, each error bar is a distance of
E(i) above and below the point defined by (X(i),Y(i)). When they are
matrices, each error bar is a distance of E(i,j) above and below the point
defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long specifying
the lower and upper error bars. X, Y, L, and U must be the same size. When they
are vectors, each error bar is a distance of L(i) below and U(i) above the point
defined by (X(i),Y(i)). When they are matrices, each error bar is a distance
of L(i,j) below and U(i,j) above the point defined by (X(i,j),Y(i,j)).

errorbar(...,LineSpec) draws the error bars using the line type, marker
symbol, and color specified by LineSpec.

h = errorbar(...) returns handles to the errorbarseries objects created.
errorbar creates one object for vector input arguments and one object per
column for matrix input arguments. See errorbarseries properties for more
information.

errorbar

2-677

Backward Compatible Version

hlines = errorbar('v6',...) returns the handles of line objects instead of
errorbarseries objects for compatibility with MATLAB 6.5 and earlier.

See Plot Objects and Backward Compatibility for more information.

Remarks When the arguments are all matrices, errorbar draws one line per matrix
column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in length.

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
errorbar(X,Y,E)

See Also LineSpec, plot, std

“Basic Plots and Graphs” for related functions

Error Bounds for related information

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

errorbar

2-678

See “Errorbarseries Properties” for property descriptions

Errorbarseries Properties

2-679

2Errorbarseries PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries objects.
See Plot Objects for more information on errorbarseries objects.

Errorbarseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine whether objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when the object’s
delete function callback is called (see the DeleteFcn property). It remains set
to on while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects that are going to be deleted, and therefore can check the
object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Errorbarseries Properties

2-680

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the errorbarseries object.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the errorbarseries object. An array containing the handles of all line
objects parented to the errorbarseries object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the errorbar Children property unless you
set the Root ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Clipping {on} | off

Clipping mode. MATLAB clips errorbar plots to the axes plot box by default. If
you set Clipping to off, lines might be displayed outside the axes plot box.

Color ColorSpec

Color of errorbar lines. A three-element RGB vector or one of the MATLAB
predefined names, specifying the curve and error bar color. See the ColorSpec
reference page for more information on specifying color.

For example, the following statement would produce an errorbar graph with
both the curve and error bars colored red.

h = errorbar(Y,randn(10,1),'Color','r');

CreateFcn string or function handle

Not available on errorbarseries objects.

Errorbarseries Properties

2-681

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
errorbarseries object is deleted (e.g., this might happen when you issue a
delete command on the errorbarseries object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying the object’s
properties so the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser use this text for
labels for any errorbarseries objects appearing in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase errorbar child objects (the lines used to construct the errorbar graph).
Alternative erase modes are useful for creating animated sequences, where
control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if

Errorbarseries Properties

2-682

the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., perform an XOR on a pixel color
with that of the pixel behind it) and ignore three-dimensional sorting to obtain
greater rendering speed. However, these techniques are not applied to the
printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the errorbarseries object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Errorbarseries Properties

2-683

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility
You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the errorbarseries object can
become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the curve and error
bars that compose the errorbar graph. If HitTest is off, clicking the
errorbarseries object selects the object below it (which is usually the axes
containing it).

HitTestArea on | {off}

Select errorbarseries object on lines or area of graph. This property enables you
to select errorbarseries objects in two ways:

• Select by clicking curve and error bars (default).

• Select by clicking anywhere in the extent of the errorbar graph.

Errorbarseries Properties

2-684

When HitTestArea is off, you must click the curve or error bars to select the
errorbarseries object. When HitTestArea is on, you can select the
errorbarseries object by clicking anywhere within the extent of the errorbar
graph (i.e., anywhere within a rectangle that encloses all the lines).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an errorbarseries object callback can be interrupted by callbacks
invoked subsequently.

Only callbacks defined for the ButtonDownFcn are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from an errorbar property. Note that MATLAB
does not save the state of variables or the display (e.g., the handle returned by
the gca or gcf command) when an interruption occurs.

LData array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses this data to
determine the length of the errorbar below each data point. Specify these
values in data units. See also UData.

LDataSource string (MATLAB variable)

Link LData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the LData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change LData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Errorbarseries Properties

2-685

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style used for the curve and error
bars. Available line styles are shown in the following table.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the curve and error bar lines. Specify this value in points (1 point
= 1/72 inch). The default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies the type of markers that are
displayed at the data points defining the curve. You can set values for the
Marker property independently from the LineStyle property. Supported
markers include those shown in the following table.

Symbol Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

Errorbarseries Properties

2-686

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the Color property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or to the figure color if the axes Color property is set to none (which is
the factory default for axes objects).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker in points. The default
value for MarkerSize is 6 points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

Marker Specifier Description

Errorbarseries Properties

2-687

Parent object handle

Parent of errorbarseries object. This property contains the handle of the
errorbarseries object’s parent. The parent of an errorbarseries object is the
axes, hggroup, or hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
handles at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the errorbarseries object has
been selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing selection handles on the
curve and error bars. When SelectionHighlight is off, MATLAB does not
draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an errorbarseries object and set the Tag
property:

t = errorbar(Y,E,'Tag','errorbar1')

When you want to access the errorbarseries object, you can use findobj to find
the errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property of the object
whose Tag is errorbar1.

set(findobj('Tag','errorbar1'),'MarkerFaceColor','red')

Errorbarseries Properties

2-688

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For errorbarseries objects, Type is 'hggroup'. The
following statement finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UData array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses this data to
determine the length of the errorbar above each data point. Specify these
values in data units.

UDataSource string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the UData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change UData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the errorbarseries object. Assign this property the
handle of a uicontextmenu object created in the errorbarseries object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the errorbarseries
object.

UserData array

User-specified data. This property can be any data you want to associate with
the errorbarseries object (including cell arrays and structures). The
errorbarseries object does not set values for this property, but you can access it
using the set and get functions.

Visible {on} | off

Visibility of errorbarseries object and its children. By default, errorbarseries
object visibility is on. This means all children of the errorbarseries object are
visible unless the child object’s Visible property is set to off. Setting an

Errorbarseries Properties

2-689

errorbarseries object’s Visible property to off also makes its children
invisible.

XData array

X-coordinates of the curve. The errorbar function plots a curve using the x-axis
coordinates in the XData array. XData must be the same size as YData.

If you do not specify XData (i.e., the input argument x), the errorbar function
uses the indices of YData to create the curve. See the XDataMode property for
related information.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the input argument x), the errorbar function
sets this property to manual.

If you set XDataMode to auto after having specified XData, the errorbar
function resets the x tick-mark labels to the indices of the YData.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

Errorbarseries Properties

2-690

YData scalar, vector, or matrix

Data defining curve. YData contains the data defining the curve. If YData is a
matrix, the errorbar function displays a curve with error bars for each column
in the matrix.

The input argument Y in the errorbar function calling syntax assigns values
to YData.

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that
is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

errordlg

2-691

2errordlgPurpose Create and display an error dialog box

Syntax errordlg
errordlg('errorstring')
errordlg('errorstring','dlgname')
errordlg('errorstring','dlgname','on')
h = errordlg(...)

Description errordlg creates an error dialog box, or if the named dialog exists, errordlg
pops the named dialog in front of other windows.

errordlg displays a dialog box named 'Error Dialog' that contains the string
'This is the default error string.'

errordlg('errorstring') displays a dialog box named 'Error Dialog' that
contains the string 'errorstring'.

errordlg('errorstring','dlgname') displays a dialog box named 'dlgname'
that contains the string 'errorstring'.

errordlg('errorstring','dlgname','on') specifies whether to replace an
existing dialog box having the same name. 'on' brings an existing error dialog
having the same name to the foreground. In this case, errordlg does not create
a new dialog.

h = errordlg(...) returns the handle of the dialog box.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The error dialog
box has an OK pushbutton and remains on the screen until you press the OK
button or the Return key. After pressing the button, the error dialog box
disappears.

The appearance of the dialog box depends on the windowing system you use.

Examples The function

errordlg('File not found','File Error');

errordlg

2-692

displays this dialog box:

See Also dialog, helpdlg, msgbox, questdlg, warndlg

“Predefined Dialog Boxes” for related functions

etime

2-693

2etimePurpose Elapsed time

Syntax e = etime(t2,t1)

Description e = etime(t2,t1) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048,1);
t = clock; fft(x); etime(clock,t)
ans =
 0.4167

Limitations As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across
these boundaries if needed.

See Also clock, cputime, tic, toc

etree

2-694

2etreePurpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric matrix
whose upper triangle is that of A. p(j) is the parent of column j in the tree, or
0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot

etreeplot

2-695

2etreeplotPurpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit
one or both.

See Also etree, treeplot, treelayout

eval

2-696

2evalPurpose Execute a string containing a MATLAB expression

Syntax eval(expression)
[a1,a2,a3,...] = eval(function(b1,b2,b3,...))

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = eval(function(b1,b2,b3,...)) executes function with
arguments b1,b2,b3,..., and returns the results in the specified output
variables.

Remarks Using the eval output argument list is recommended over including the output
arguments in the expression string. The first syntax below avoids strict
checking by the MATLAB parser and can produce untrapped errors and other
unexpected behavior.

eval('[a1,a2,a3,...] = function(var)') % not recommended

[a1,a2,a3,...] = eval('function(var)') % recommended syntax

Examples This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

 magic_str = ['M',int2str(n),' = magic(n)'];
 eval(magic_str)

end

The next example executes the size function on a 3-dimensional array,
returning the array dimensions in output variables d1, d2, and d3.

A = magic(4);
A(:,:,2) = A';

[d1,d2,d3] = eval('size(A)')

eval

2-697

d1 =
 4

d2 =
 4

d3 =
 2

See Also assignin, catch, evalin, feval, lasterr, try

evalc

2-698

2evalcPurpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
T = evalc(s1,s2)
[T,X,Y,Z,...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that would
normally be written to the command window is captured and returned in the
character array T (lines in T are separated by \n characters).

T = evalc(s1,s2) is the same as eval(s1,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) is the same as [X,Y,Z,...] = eval(S) except
that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also diary, eval, evalin, input, more

evalin

2-699

2evalinPurpose Execute a string containing a MATLAB expression in a workspace

Syntax evalin(ws,expression)
[a1,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

Description evalin(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base' or 'caller' to denote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws,'[a1,a2,a3,...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin('base','var');

evalin

2-700

Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin('caller','evalin(''caller'',''x'')')
doesn’t work.

See Also assignin, catch, eval, feval, lasterr, try

exist

2-701

2existPurpose Check if variables or functions are defined

Graphical
Interface

As an alternative to the exist function, use the Workspace browser or the
Current Directory Browser.

Syntax exist item
exist item kind
a = exist('item','kind')

Description exist('item') returns the status of item:

If item specifies a filename, that filename may include an extension to
preclude conflicting with other similar filenames. For example,
exist('file.ext').

If item specifies a filename, MATLAB attempts to locate the file, examines the
filename extension, and determines the value to return based on the extension
alone. MATLAB does not examine the contents or internal structure of the file.

MEX, MDL, and P-files must be on the MATLAB search path for exist to
return the values shown above. If item is found, but is not on the MATLAB
search path, exist('item') returns 2, because it considers item to be an
unknown file type.

0 If item does not exist.

1 If item is a variable in the workspace.

2 If item is an M-file on your MATLAB search path. It also returns 2
when item is the full pathname to a file or when item is the name of
an ordinary file on your MATLAB search path.

3 If item is a MEX- or DLL-file on your MATLAB search path.

4 If item is an MDL-file on your MATLAB search path.

5 If item is a built-in MATLAB function.

6 If item is a P-file on your MATLAB search path.

7 If item is a directory.

8 If item is a Java class.

exist

2-702

Any other file type or directory specified by item is not required to be on the
MATLAB search path to be recognized by exist. If the file or directory is not
on the search path, then item must specify either a full pathname, a partial
pathname relative to MATLABPATH, or a partial pathname relative to your
current directory.

If item is a Java class, then exist('item') returns an 8. However, if item is a
Java class file, then exist('item') returns a 2.

exist item kind returns the status of item for the specified kind. If item of
type kind does not exist, it returns 0. The kind argument may be one of the
following:

a = exist('item','kind') is the function form of the syntax.

Remarks To check for the existence of more than one variable, use the ismember function.
For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

 1 0 1

Examples This example uses exist to check whether a MATLAB function is a built-in
function or a file:

type = exist('plot')
type =

5

builtin Checks only for built-in functions.

class Checks only for Java classes.

dir Checks only for directories.

file Checks only for files or directories.

var Checks only for variables.

exist

2-703

This indicates that plot is a built-in function.

In the following example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class.

exist Welcome
ans =
 8

exist javaclasses/Welcome.class
ans =
 2

indicates there is a Java class Welcome and a Java class file Welcome.class.

The following example indicates that testresults is both a variable in the
workspace and a directory on the search path:

exist('testresults','var')
ans =
 1

exist('testresults','dir')
ans =
 7

See Also assignin, computer, dir, evalin, help, inmem, isempty, lookfor, mfilename,
partialpath, what, which, who

exit

2-704

2exitPurpose Terminate MATLAB (same as quit)

Graphical
Interface

As an alternative to the exit function, select Exit MATLAB from the File
menu or click the close box in the MATLAB desktop.

Syntax exit

Description exit ends the current MATLAB session. It is the same as quit. and takes the
same termination options, such as force. For more information, see quit.

See Also finish, quit

exp

2-705

2expPurpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
, it returns the complex exponential .

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

z x i*y+= ez ex y()cos i y()sin+()=

expint

2-706

2expintPurpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

Another common definition of the exponential integral function is the Cauchy
principal value integral

which, for real positive x, is related to expint as

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

E1 x() e t–

t

x

∞

∫= dt

Ei x() et

t
---- td

∞–

x

∫=

E1 x–() Ei x()– iπ–=

expm

2-707

2expmPurpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant to the matrix power X. The expm function
produces complex results if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

Algorithm expm is a built-in function that uses the Padé approximation with scaling and
squaring. You can see the coding of this algorithm in the expm1 demo.

Note The expmdemo1, expmdemo2, and expmdemo3 demos illustrate the use of
Padé approximation, Taylor series approximation, and eigenvalues and
eigenvectors, respectively, to compute the matrix exponential.

References [1] and [2] describe and compare many algorithms for computing a
matrix exponential. The built-in method, expm, is essentially method 3 of [2].

Examples This example computes and compares the matrix exponential of A and the
exponential of A.

A = [1 1 0
 0 0 2
 0 0 -1];

expm(A)
ans =
 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

exp(A)
ans =
 2.7183 2.7183 1.0000
 1.0000 1.0000 7.3891
 1.0000 1.0000 0.3679

e

expm

2-708

Notice that the diagonal elements of the two results are equal. This would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

See Also exp, funm, logm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

expm1

2-709

2expm1Purpose Compute exp(x)-1 accurately for small values of x

Syntax y = exp1m(x)

Description y = expm1(x) computes exp(x)-1, compensating for the roundoff in exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be zero.

See Also exp, log1p, expmdemo1

eye

2-710

2eyePurpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
Y = eye(size(A))
eye(m, n, classname)
eye([m,n],classname)

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n matrix with 1's
of class classname on the diagonal and zeros of class classname elsewhere.
classname is a string specifying the data type of the output. classname can
have the following values: 'double', 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', or 'uint32'.

Example: x = eye(2,3,'int8');

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros

ezcontour

2-711

2ezcontourPurpose Easy to use contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a mathematical
function of two variables, such as x and y. ezcontour calls the contour
function.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontour('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezcontour(...) returns the handles to patch objects in h.

ezcontour automatically adds a title and axis labels.

ezcontour

2-712

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontour. For example, the MATLAB syntax for a
contour plot of the expression

sqrt(x.^2 + y.^2)

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezcontour does
not alter the syntax, as in the case with string inputs.

Examples The following mathematical expression defines a function of two variables, x
and y.

ezcontour requires a function handle argument that expresses this function
using MATLAB syntax. This example uses an anonymous function, which you
can define in the command window without creating an M-File.

f=@(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2);

For convenience, this function is written on three lines. See the peaks

Pass the function handle f to ezcontour along with a domain ranging from −3
to 3 in both x and y and specify a computational grid of 49-by-49:

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5– 
  e x2– y2–– 1

3
---e x 1+()2– y2––=

ezcontour

2-713

ezcontour(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph, so
MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)

ezcontourf

2-714

2ezcontourfPurpose Easy to use filled contour plotter

Syntax ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description ezcontourf(f) plots the contour lines of f(x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.
ezcontourf calls the contourf function.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezcontourf(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezcontourf(...) returns the handles to patch objects in h.

ezcontourf automatically adds a title and axis labels.

ezcontourf

2-715

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontourf. For example, the MATLAB syntax for a
filled contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezcontourf
does not alter the syntax, as in the case with string inputs.

Examples The following mathematical expression defines a function of two variables, x
and y.

ezcontourf requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string

f = ['3*(1−x)^2*exp(−(x^2)−(y+1)^2)',...
'− 10*(x/5 − x^3 − y^5)*exp(-x^2−y^2)',...
'- 1/3*exp(−(x+1)^2 − y^2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5– 
  e x2– y2–– 1

3
---e x 1+()2– y2––=

ezcontourf

2-716

Pass the string variable f to ezcontourf along with a domain ranging from −3
to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph, so
MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)

ezmesh

2-717

2ezmeshPurpose Easy to use 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description ezmesh(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezmesh calls the mesh
function.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezmesh(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmesh('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmesh

2-718

ezmesh(...,'circ') plots f over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezmesh(...) returns the handles to a surface object in h.

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a mesh
plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezmesh does not
alter the syntax, as in the case with string inputs.

Examples This example visualizes the function

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform
blue color by setting the colormap to a single color:

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)
colormap([0 0 1])

f x y,() xe x– 2 y2–=

ezmesh

2-719

See Also ezmeshc, mesh

“Function Plots” for related functions

−2
0

2

−2
−1

0
1

2

−0.5

0

0.5

x

x exp(−x2 − y2)

y

ezmeshc

2-720

2ezmeshcPurpose Easy to use combination mesh/contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmeshc(axes_handle,...)
h = ezmeshc(...)

Description ezmeshc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezmeshc calls the
meshc function.

The function f is plotted over the default domain -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezmeshc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
< x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmeshc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmeshc

2-721

ezmeshc(...,'circ') plots f over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezmeshc(...) returns the handles to a surface object in h.

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmeshc. For example, the MATLAB syntax for a
mesh/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezmeshc does
not alter the syntax, as in the case with string inputs.

Examples Create a mesh/contour graph of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi])

f x y,() y

1 x2 y2+ +
---------------------------=

ezmeshc

2-722

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26)
.

See Also ezmesh, ezsurfc, meshc

“Function Plots” for related functions

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

ezplot

2-723

2ezplotPurpose Easy to use function plotter

Syntax ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)
h = ezplot(...)

Description ezplot(f) plots the expression f = f(x) over the default domain -2π < x < 2π.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezplot(f,[min,max]) plots f = f(x) over the domain: min < x < max.

For implicitly defined functions, f = f(x,y):

ezplot(f) plots f(x,y) = 0 over the default domain -2π < x < 2π, -2π < y < 2π.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f(x,y) = 0 over xmin < x < xmax and
ymin < y < ymax.

ezplot(f,[min,max]) plots f(x,y) = 0 over min < x < max and min < y < max.

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezplot('u^2 - v^2 - 1',[-3,2,-2,3]) plots u2 - v2 - 1 = 0 over -3 < u < 2, -2
< v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t)
over the default domain 0 < t < 2π.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t < tmax.

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

ezplot

2-724

ezplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezplot(...) returns the handles to a line objects in h.

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot. For example, the MATLAB syntax for a plot of
the expression

x.^2 - y.^2

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezplot.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezplot(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezplot does not
alter the syntax, as in the case with string inputs.

Examples This example plots the implicitly defined function

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

ezplot

2-725

See Also ezplot3, ezpolar, plot

“Function Plots” for related functions

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x

y

x2−y4 = 0

ezplot3

2-726

2ezplot3Purpose Easy to use 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the
default domain 0 < t < 2π.

x, y, and z can be function handles for M-file functions or an anonymous
functions (see Function Handles and Anonymous Functions) or strings (see the
Remarks section).

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over
the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

ezplot3(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezplot3(...) returns the handle to a line object in h.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot3. For example, the MATLAB syntax for a plot of
the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezplot3.

ezplot3

2-727

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezplot does not
alter the syntax, as in the case with string inputs.

Examples This example plots the parametric curve

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

See Also ezplot, ezpolar, plot3

“Function Plots” for related functions

x t y t z t=,cos=,sin=

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

x

x = sin(t), y = cos(t), z = t

y

z

ezpolar

2-728

2ezpolarPurpose Easy to use polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description ezpolar(f) plots the polar curve rho = f(theta) over the default domain 0 <
theta < 2π.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezpolar(f,[a,b]) plots f for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezpolar(...) returns the handles to a line object in h.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezpolar. For example, the MATLAB syntax for a plot of
the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the string you pass to ezpolar.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

ezpolar

2-729

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezpolar does
not alter the syntax, as in the case with string inputs.

Examples This example creates a polar plot of the function

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

See Also ezplot, ezplot3, plot, plot3, polar

“Function Plots” for related functions

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

r = 1+cos(t)

ezsurf

2-730

2ezsurfPurpose Easy to use 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description ezsurf(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezsurf calls the surf
function.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezsurf(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
< x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurf('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurf

2-731

ezsurf(...,'circ') plots f over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezsurf(...) returns the handles to a surface object in h.

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a surface
plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezsurf does not
alter the syntax, as in the case with string inputs.

Examples ezsurf does not graph points where the mathematical function is not defined
(these data points are set to NaNs, which MATLAB does not plot). This example
illustrates this filtering of singularities/discontinuous points by graphing the
function

over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

f x y,() x iy+()atan()real=

ezsurf

2-732

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));
surf(x,y,z)

−5

0

5

−5

0

5

−2

−1

0

1

2

x

real(atan(x+i y))

y

ezsurf

2-733

Note also that ezsurf creates graphs that have axis labels, a title, and extend
to the axis limits.

See Also ezmesh, ezsurfc, surf

“Function Plots” for related functions

−10
−5

0
5

10

−10
−5

0
5

10
−2

−1

0

1

2

ezsurfc

2-734

2ezsurfcPurpose Easy to use combination surface/contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description ezsurfc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y. ezsurfc calls the
surfc function.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

f can be a function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions) or a string (see the Remarks
section).

ezsurfc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min
< x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurfc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurfc

2-735

ezsurfc(...,'circ') plots f over a disk centered on the domain.

ezsurfc(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ezsurfc(...) returns the handles to a surface object in h.

Remarks Passing the Function as a String
Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurfc. For example, the MATLAB syntax for a
surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

Passing a Function Handle
Function handle arguments must point to functions that use MATLAB syntax.
For example, the following statements define an anonymous function and pass
the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since ezsurfc does
not alter the syntax, as in the case with string inputs.

Examples Create a surface/contour plot of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid of size
35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi],35)

f x y,() y

1 x2 y2+ +
---------------------------=

ezsurfc

2-736

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26).

See Also ezmesh, ezmeshc, ezsurf, surfc

“Function Plots” for related functions

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

Index-1

Index

Symbols
! 2-17
- 2-2
% 2-17
& 2-13, 2-15
&& 2-15
' 2-2, 2-17
() 2-17
* 2-2
+ 2-2
, 2-17
. 2-17
... 2-17
/ 2-2
< 2-11
= 2-17
== 2-11
> 2-11
\ 2-2
^ 2-2
{} 2-17
| 2-13, 2-15
|| 2-15
~ 2-13, 2-15
~= 2-11

A
abs 2-23
absolute value 2-23
accumarray 2-24
accuracy

of linear equation solution 2-420

of matrix inversion 2-420
acos 2-28
acosd 2-29
acosh 2-30
acot 2-31
acotd 2-32
acoth 2-33
acsc 2-34
acscd 2-35
acsch 2-36
addition (arithmetic operator) 2-2
addpath 2-39
addressing selected array elements 2-21
addtodate 2-41, 2-252
adjacency graph 2-629
airy 2-42
Airy functions

relationship to modified Bessel functions 2-42
ALim, Axes property 2-151
all 2-45
AmbientLightColor, Axes property 2-152
and (M-file function equivalent for &) 2-14
AND, logical

bit-wise 2-239
angle 2-55
ans 2-81
any 2-82
arccosecant 2-34
arccosine 2-28
arccotangent 2-31
arcsecant 2-101
arcsine 2-106
arctangent 2-113

four-quadrant 2-114, 2-115
arithmetic operations, matrix and array

distinguished 2-2

Index

Index-2

arithmetic operators
reference 2-2

array
addressing selected elements of 2-21
displaying 2-617
left division (arithmetic operator) 2-3
multiplication (arithmetic operator) 2-2
power (arithmetic operator) 2-3
right division (arithmetic operator) 2-3
shift circularly 2-353
transpose (arithmetic operator) 2-4

arrays
maximum size of 2-419

arrowhead matrix 2-410
ASCII

delimited files
writing 2-626

ASCII data
printable characters (list of) 2-334
reading 2-624

asec 2-101
asecd 2-103
asech 2-104
asin 2-106
asind 2-108
asinh 2-109
aspect ratio of axes 2-511
assignin 2-111
atan 2-113
atan2 2-114, 2-115
atand 2-117
atanh 2-118
.au files

reading 2-130
writing 2-131

audio
saving in AVI format 2-132

audioplayer 2-120
audiorecorder 2-124
aufinfo 2-129
auread 2-130
auwrite 2-131
avi 2-132
avifile 2-132
aviinfo 2-135
aviread 2-137
Axes

creating 2-138
defining default properties 2-142
fixed-width font 2-160
property descriptions 2-151

axes
setting and querying data aspect ratio 2-511

axis 2-174

B
BackgroundColor

annotation textbox property 2-76
balance 2-180
bar3 2-188
bar3h 2-188
BarLayout

barseries property 2-192
BarWidth

barseries property 2-192
base to decimal conversion 2-203
base two operations

conversion from decimal to binary 2-569
BaseLine

barseries property 2-192
BaseValue

area property 2-90
barseries property 2-192

Index

Index-3

beep 2-204
BeingDeleted

areaseries property 2-90
barseries property 2-193
contour property 2-442
errorbar property 2-679

Bessel functions
first kind 2-212
modified, first kind 2-209
modified, second kind 2-215
second kind 2-218

Bessel functions, modified
relationship to Airy functions 2-42

Bessel’s equation
(defined) 2-212
modified (defined) 2-209

besseli 2-209
besselj 2-212
besselk 2-215
bessely 2-218
beta 2-221
beta function

(defined) 2-221
incomplete (defined) 2-223
natural logarithm 2-224

betainc 2-223
betaln 2-224
bicg 2-225
bicgstab 2-232
BiConjugate Gradients method 2-225
BiConjugate Gradients Stabilized method 2-232
bin2dec 2-237
binary to decimal conversion 2-237
bitand 2-239
bitcmp 2-240
bitget 2-241
bitmax 2-242

bitor 2-244
bitset 2-245
bitshift 2-246
bit-wise operations

AND 2-239
get 2-241
OR 2-244
set bit 2-245
shift 2-246
XOR 2-248

bitxor 2-248
blanks

removing trailing 2-566
blanks 2-249
blkdiag 2-250
box 2-251
Box, Axes property 2-152
braces, curly (special characters) 2-17
brackets (special characters) 2-17
break 2-252
breakpoints

listing 2-543
removing 2-533
resuming execution from 2-535
setting in M-files 2-546, 2-548

brighten 2-253
builtin 2-254
BusyAction

areaseries property 2-90
Axes property 2-152
barseries property 2-193
contour property 2-442
errorbar property 2-679

ButtonDownFcn

area series property 2-91
Axes property 2-153
barseries property 2-193

Index

Index-4

contour property 2-443
errorbar property 2-680

bvp4c 2-255
bvpget 2-264
bvpinit 2-265
bvpset 2-268

C
calendar 2-271
camdolly 2-272
camera

dollying position 2-272
moving camera and target postions 2-272
placing a light at 2-276
positioning to view objects 2-278
rotating around camera target 2-280, 2-282
rotating around viewing axis 2-286
setting and querying position 2-283
setting and querying projection type 2-285
setting and querying target 2-287
setting and querying up vector 2-289
setting and querying view angle 2-291

CameraPosition, Axes property 2-153
CameraPositionMode, Axes property 2-153
CameraTarget, Axes property 2-153
CameraTargetMode, Axes property 2-154
CameraUpVector, Axes property 2-154
CameraUpVectorMode, Axes property 2-154
CameraViewAngle, Axes property 2-154
CameraViewAngleMode, Axes property 2-154
camlight 2-276
camlookat 2-278
camorbit 2-280
campan 2-282
campos 2-283
camproj 2-285

camroll 2-286
camtarget 2-287
camup 2-289
camva 2-291
camzoom 2-293
cart2pol 2-294
cart2sph 2-295
Cartesian coordinates 2-294, 2-295
case 2-296
cast 2-297
cat 2-298
catch 2-299
caxis 2-299
cd 2-304
cd (ftp) 2-305
cdf2rdf 2-307
cdfepoch 2-309
cdfinfo 2-310
cdfread 2-313
cdfwrite 2-315
ceil 2-318
cell 2-319
cell array

creating 2-319
structure of, displaying 2-328

cell2mat 2-321
cell2struct 2-323
celldisp 2-325
cellfun 2-326
cellplot 2-328
cgs 2-330
char 2-334
checkin 2-336

examples 2-337
options 2-336

checkout 2-338
examples 2-339

Index

Index-5

options 2-338
Children

areaseries property 2-91
Axes property 2-155
barseries property 2-194
contour property 2-443
errorbar property 2-680

chol 2-341
Cholesky factorization 2-341

preordering for 2-410
cholinc 2-343
cholupdate 2-350
circshift 2-353
cla 2-354
clabel 2-355
class 2-361
clc 2-363, 2-369
clear 2-364
clearing

Command Window 2-363
items from workspace 2-364
Java import list 2-365

clf 2-369
CLim, Axes property 2-156
CLimMode, Axes property 2-156
clipboard 2-370
Clipping

areaseries property 2-91
Axes property 2-156
barseries property 2-194
contour property 2-443
errrobar property 2-680

clock 2-371
close 2-372

AVI files 2-374
closest point search 2-641
cmapeditor 2-391

cmopts 2-377
colamd 2-378
colmmd 2-380
colon operator 2-21
Color

annotation arrow property 2-59
annotation doublearrow property 2-62
annotation line property 2-67
annotation textarrow property 2-71
annotation textbox property 2-76
Axes property 2-156
errorbar property 2-680

colorbar 2-377
colormap

editor 2-391
colormap 2-387
ColorOrder, Axes property 2-156
ColorSpec 2-408
colperm 2-410
comet 2-411
comet3 2-413
comma (special characters) 2-19
Command Window

clearing 2-363
get width 2-414

commandhistory 2-413
commandwindow 2-414
compan 2-415
companion matrix 2-415
compass 2-416
complementary error function

(defined) 2-672
scaled (defined) 2-672

complete elliptic integral
(defined) 2-661
modulus of 2-659, 2-661

complex

Index

Index-6

exponential (defined) 2-705
phase angle 2-55

complex 2-417
complex conjugate 2-428

sorting pairs of 2-488
complex data

creating 2-417
complex numbers, magnitude 2-23
computer 2-419
computer MATLAB is running on 2-419
concatenating arrays 2-298
cond 2-420
condeig 2-421
condest 2-422
condition number of matrix 2-420

improving 2-180
coneplot 2-419
conj 2-428
conjugate, complex 2-428

sorting pairs of 2-488
continuation (..., special characters) 2-19
continue 2-429
contour

and mesh plot 2-720
filled plot 2-714
functions 2-711
of mathematical expression 2-712
with surface plot 2-734

contour3 2-435
contourc 2-438
contourf 2-440
ContourMatrix

contour property 2-443
contours

in slice planes 2-456
contourslice 2-456
contrast 2-459

conv 2-460
conv2 2-461
conversion

base to decimal 2-203
binary to decimal 2-237
Cartesian to cylindrical 2-294
Cartesian to polar 2-294
complex diagonal to real block diagonal 2-307
decimal number to base 2-563, 2-568
decimal to binary 2-569
decimal to hexadecimal 2-570
string matrix to cell array 2-329
vector to character string 2-334

convex hulls
multidimensional vizualization 2-467
two-dimensional vizualization 2-465

convhull 2-465
convhulln 2-467
convn 2-469
convolution 2-460

inverse See deconvolution
two-dimensional 2-461

coordinates
Cartesian 2-294, 2-295
cylindrical 2-294, 2-295
polar 2-294, 2-295

coordinates.See also conversion
copyfile 2-470
copyobj 2-472
corrcoef 2-474
cos 2-477
cosd 2-479
cosecant

hyperbolic 2-496
inverse 2-34
inverse hyperbolic 2-36

cosh 2-480

Index

Index-7

cosine 2-477
hyperbolic 2-480
inverse 2-28
inverse hyperbolic 2-30

cot 2-482
cotangent 2-482

hyperbolic 2-485
inverse 2-31
inverse hyperbolic 2-33

cotd 2-484
coth 2-485
cov 2-487
cplxpair 2-488
cputime 2-489
CreateFcn

areaseries property 2-91
Axes property 2-157
barseries property 2-194
contour property 2-444
errorbar property 2-680

cross 2-492
cross product 2-492
csc 2-493
cscd 2-495
csch 2-496
csvread 2-498
csvwrite 2-500
ctranspose (M-file function equivalent for ') 2-6
cumprod 2-501
cumsum 2-502
cumtrapz 2-503
cumulative

product 2-501
sum 2-502

curl 2-505
curly braces (special characters) 2-17
current directory

changing 2-304
CurrentPoint

Axes property 2-157
customverctrl 2-508
cylinder 2-508
cylindrical coordinates 2-294, 2-295

D
daspect 2-511
data aspect ratio of axes 2-511
data types

complex 2-417
DataAspectRatio, Axes property 2-158
DataAspectRatioMode, Axes property 2-159
datatipinfo 2-518
date 2-519
date and time functions 2-669
date string

format of 2-523
date vector 2-531
datenum 2-520
datestr 2-523
datevec 2-531
dbclear 2-533
dbcont 2-535
dbdown 2-536
dblquad 2-537
dbmex 2-539
dbquit 2-540
dbstack 2-541
dbstatus 2-543
dbstep 2-545
dbstop 2-546
dbtype 2-553
dbup 2-554
dde23 2-555

Index

Index-8

ddeget 2-559
ddeset 2-560
deal 2-563
deblank 2-566
debugging

changing workspace context 2-536
changing workspace to calling M-file 2-554
displaying function call stack 2-541
MEX-files on UNIX 2-539
quitting debug mode 2-540
removing breakpoints 2-533
resuming execution from breakpoint 2-545
setting breakpoints in 2-546, 2-548
stepping through lines 2-545

dec2base 2-563, 2-568
dec2bin 2-569
dec2hex 2-570
decic function 2-571
decimal number to base conversion 2-563, 2-568
decimal point (.)

(special characters) 2-18
to distinguish matrix and array operations

2-2
decomposition

Dulmage-Mendelsohn 2-629
deconv 2-573
deconvolution 2-573
del operator 2-574
del2 2-574
delaunay 2-577
Delaunay tessellation

3-dimensional vizualization 2-582
multidimensional vizualization 2-585

Delaunay triangulation
vizualization 2-577

delaunay3 2-582
delaunayn 2-585

delete 2-588
delete

timer object 2-591
delete (ftp) 2-590
DeleteFcn

areaseries property 2-92
Axes property 2-159
barseries property 2-194
contour property 2-444
errorbar property 2-681

deleting
files 2-588
items from workspace 2-364

delimiters in ASCII files 2-624, 2-626
demo 2-592
depdir 2-596
depfun 2-597
derivative

approximate 2-611
det 2-601
determinant of a matrix 2-601
detrend 2-602
deval 2-604
diag 2-606
diagonal 2-606

main 2-606
dialog box

error 2-691
diff 2-611
differences

between adjacent array elements 2-611
differential equation solvers

ODE boundary value problems 2-255
adjusting parameters 2-268
extracting properties 2-264
extracting properties of 2-694, 2-695
forming initial guess 2-265

Index

Index-9

dir 2-613
dir (ftp) 2-615
directories

adding to search path 2-39
checking existence of 2-701
copying 2-470
listing contents of 2-613
See also directory, search path

directory
changing on FTP server 2-305
listing for FTP server 2-615
See also directories

directory, changing 2-304
disconnect 2-375
discontinuities, plotting functions with 2-731
disp 2-617
disp

timer object 2-618
display 2-620
DisplayName

areaseries property 2-92
barseries property 2-195
contour property 2-444
errorbar property 2-681

distribution
Gaussian 2-672

division
array, left (arithmetic operator) 2-3
array, right (arithmetic operator) 2-3
matrix, left (arithmetic operator) 2-3
matrix, right (arithmetic operator) 2-3
of polynomials 2-573

dlmread 2-624
dlmwrite 2-626
dmperm 2-629
dolly camera 2-272
dos 2-634

dot 2-636
dot product 2-492, 2-636
double 2-637
double integral

numerical evaluation 2-537
dragrect 2-638
DrawMode, Axes property 2-160
drawnow 2-639
dsearch 2-640
dsearchn 2-641
Dulmage-Mendelsohn decomposition 2-629

E
echo 2-642
edge finding, Sobel technique 2-462
EdgeColor

annotation ellipse property 2-65
annotation rectangle property 2-69
annotation textbox property 2-76
areaseries property 2-92
barseries property 2-195

editing
M-files 2-644

eig 2-646
eigensystem

transforming 2-307
eigenvalue

accuracy of 2-646
complex 2-307
of companion matrix 2-415
problem 2-647
problem, generalized 2-647
repeated 2-648

eigenvalues
effect of roundoff error 2-180
improving accuracy 2-180

Index

Index-10

eigenvector
left 2-647
right 2-647

eigs 2-651
ellipj 2-659
ellipke 2-661
ellipsoid 2-663
elliptic functions, Jacobian

(defined) 2-659
elliptic integral

complete (defined) 2-661
modulus of 2-659, 2-661

else 2-664
elseif 2-665
end 2-667
end of line, indicating 2-19
eomday 2-669
eps 2-670
equal sign (special characters) 2-18
equations, linear

accuracy of solution 2-420
EraseMode

areaseries property 2-92
barseries property 2-195
contour property 2-444
errorbar property 2-681

erf 2-672
erfc 2-672
erfcinv 2-672
erfcx 2-672
erfinv 2-672
error 2-674
error function

(defined) 2-672
complementary 2-672
scaled complementary 2-672

error message

displaying 2-674
errorbars 2-676
errordlg 2-691
etime 2-693
etree 2-694
etreeplot 2-695
eval 2-696
evalc 2-698
evalin 2-699
examples

contouring mathematical expressions 2-712
mesh plot of mathematical function 2-718
mesh/contour plot 2-721
plotting filled contours 2-715
plotting function of two variables 2-724
plotting parametric curves 2-727
polar plot of function 2-729
surface plot of mathematical function 2-731
surface/contour plot 2-735

exclamation point (special characters) 2-19
execution

resuming from breakpoint 2-535
exist 2-693
exit 2-704
exp 2-705
expint 2-706
expm 2-707
expm1 2-709
exponential 2-705

complex (defined) 2-705
integral 2-706
matrix 2-707

exponentiation
array (arithmetic operator) 2-3
matrix (arithmetic operator) 2-3

eye 2-710
ezcontour 2-711

Index

Index-11

ezcontourf 2-714
ezmesh 2-717
ezmeshc 2-720
ezplot 2-723
ezplot3 2-726
ezpolar 2-728
ezsurf 2-730
ezsurfc 2-734

F
FaceAlpha

annotation textbox property 2-76
FaceColor

annotation ellipse property 2-65
annotation rectangle property 2-69
areaseries property 2-93
barseries property 2-196

factorization, Cholesky 2-341
preordering for 2-410

Figures
updating from M-file 2-639

files
ASCII delimited

reading 2-624
writing 2-626

checking existence of 2-701
copying 2-470
deleting 2-588
deleting on FTP server 2-590
listing

names in a directory 2-613
size, determining 2-614
sound

reading 2-130
writing 2-131, 2-132

Fill

contour property 2-446
filter

two-dimensional 2-461
fixed-width font

axes 2-160
floating-point

integer, maximum 2-242
flow control

break 2-252
case 2-296
end 2-667
error 2-674

font
fixed-width, axes 2-160

FontAngle

annotation textbox property 2-78
Axes property 2-160

FontName

annotation textarrow property 2-71
annotation textbox property 2-78
Axes property 2-160

fonts
bold 2-72, 2-78

FontSize

annotation textarrow property 2-71
annotation textbox property 2-78
Axes property 2-161

FontUnits

Axes property 2-161
FontWeight

annotation textarrow property 2-72
annotation textbox property 2-78
Axes property 2-161

Fourier transform
convolution theorem and 2-460

functions
call stack for 2-541

Index

Index-12

checking existence of 2-701
clearing from workspace 2-364

G
Gaussian distribution function 2-672
generalized eigenvalue problem 2-647
generating a sequence of matrix names (M1

through M12) 2-696
global variables, clearing from workspace 2-364
graph

adjacency 2-629
graphics objects

Axes 2-138
graphics objects, deleting 2-588
GridLineStyle, Axes property 2-161

H
HandleVisibility

areaseries property 2-94
Axes property 2-161
barseries property 2-196
contour property 2-446
errorbar property 2-682

Head1Length

annotation doublearrow property 2-62
Head1Style

annotation doublearrow property 2-62
Head1Width

annotation doublearrow property 2-63
Head2Length

annotation doublearrow property 2-62
Head2Style

annotation doublearrow property 2-62
Head2Width

annotation doublearrow property 2-63

HeadLength

annotation arrow property 2-59
annotation textarrow property 2-72

HeadStyle

annotation arrow property 2-59
annotation textarrow property 2-72

HeadWidth

annotation arrow property 2-60
Height

annotation ellipse property 2-65
annotation rectangle property 2-69

Help browser
accessing from doc 2-630

HitTest

areaseries property 2-95
Axes property 2-162
barseries property 2-197
contour property 2-447
errorbar property 2-683

HitTestArea

areaseries property 2-95
barseries property 2-198
contour property 2-447
errorbar property 2-683

HorizontalAlignment

textarrow property 2-73
textbox property 2-78

horzcat (M-file function equivalent for [,]) 2-19
hyperbolic

cosecant 2-496
cosecant, inverse 2-36
cosine 2-480
cosine, inverse 2-30
cotangent 2-485
cotangent, inverse 2-33
secant, inverse 2-104
sine, inverse 2-109

Index

Index-13

tangent, inverse 2-118

I
identity matrix 2-710
incomplete beta function

(defined) 2-223
inheritance, of objects 2-362
integer

floating-point, maximum 2-242
Interpreter

textarrow property 2-73
textbox property 2-79

Interruptible

areaseries property 2-95
Axes property 2-163
barseries property 2-198, 2-199
contour property 2-447
errorbar property 2-684

inverse
cosecant 2-34
cosine 2-28
cotangent 2-31
hyperbolic cosecant 2-36
hyperbolic cosine 2-30
hyperbolic cotangent 2-33
hyperbolic secant 2-104
hyperbolic sine 2-109
hyperbolic tangent 2-118
secant 2-101
sine 2-106
tangent 2-113
tangent, four-quadrant 2-114, 2-115

inversion, matrix
accuracy of 2-420

J
Jacobian elliptic functions

(defined) 2-659
Java

class names 2-365
Java import list

clearing 2-365
joining arrays See concatenating arrays

L
labeling

matrix columns 2-617
LabelSpacing

contour property 2-448
Laplacian 2-574
Layer, Axes property 2-163
LData

errorbar property 2-684
LDataSource

errorbar property 2-684
ldivide (M-file function equivalent for .\) 2-6
LevelList

contour property 2-448
LevelListMode

contour property 2-448
LevelStep

contour property 2-448
LevelStepMode

contour property 2-448
Light

positioning in camera coordinates 2-276
line numbers in M-files 2-553
linear equation systems

accuracy of solution 2-420
LineColor

contour property 2-449

Index

Index-14

LineStyle

annotation arrow property 2-60
annotation doublearrow property 2-64
annotation ellipse property 2-65
annotation line property 2-67
annotation rectangle property 2-69
annotation textarrow property 2-73
annotation textbox property 2-79
areaseries property 2-96
barseries property 2-198
contour property 2-449
errorbar property 2-685

LineStyleOrder

Axes property 2-163
LineWidth

annotation arrow property 2-60
annotation doublearrow property 2-64
annotation ellipse property 2-66
annotation line property 2-67
annotation rectangle property 2-70
annotation textarrow property 2-73
annotation textbox property 2-79
areaseries property 2-96
Axes property 2-164
barseries property 2-199
contour property 2-449
errorbar property 2-685

Lobatto IIIa ODE solver 2-263
log

saving session to file 2-609
logarithm

of beta function (natural) 2-224
logical operations

AND, bit-wise 2-239
OR, bit-wise 2-244
XOR, bit-wise 2-248

logical operators 2-13, 2-15

logical tests
all 2-45
any 2-82

M
Margin

annotation textbox property 2-79
Marker

marker property 2-685
MarkerEdgeColor

errorbar property 2-686
MarkerFaceColor

errorbar property 2-686
MarkerSize

errorbar property 2-686
matrix

addressing selected rows and columns of 2-21
arrowhead 2-410
companion 2-415
condition number of 2-420
condition number, improving 2-180
converting to vector 2-21
defective (defined) 2-648
determinant of 2-601
diagonal of 2-606
Dulmage-Mendelsohn decomposition 2-629
exponential 2-707
identity 2-710
inversion, accuracy of 2-420
left division (arithmetic operator) 2-3
maximum size of 2-419
modal 2-646
multiplication (defined) 2-2
power (arithmetic operator) 2-3
reading files into 2-624
right division (arithmetic operator) 2-3

Index

Index-15

singularity, test for 2-601
trace of 2-606
transpose (arithmetic operator) 2-4
transposing 2-18
writing to ASCII delimited file 2-626
See also array

matrix names, (M1 through M12) generating a
sequence of 2-696

matrix power See matrix, exponential
maximum matching 2-629
MDL-files

checking existence of 2-701
memory

clearing 2-364
methods

inheritance of 2-362
MEX-files

clearing from workspace 2-364
debugging on UNIX 2-539

M-file
displaying during execution 2-642
function file, echoing 2-642
script file, echoing 2-642

M-files
checking existence of 2-701
clearing from workspace 2-364
deleting 2-588
editing 2-644
line numbers, listing 2-553
setting breakpoints 2-546, 2-548

MinorGridLineStyle, Axes property 2-164
minus (M-file function equivalent for -) 2-6
mldivide (M-file function equivalent for \) 2-6
modal matrix 2-646
modified Bessel functions

relationship to Airy functions 2-42
modifying for PVCS 2-377

movies
exporting in AVI format 2-132

mpower (M-file function equivalent for ^) 2-6
mrdivide (M-file function equivalent for /) 2-6
mtimes (M-file function equivalent for *) 2-6
multidimensional arrays

concatenating 2-298
multiplication

array (arithmetic operator) 2-2
matrix (defined) 2-2
of polynomials 2-460

N
NextPlot

Axes property 2-164
not (M-file function equivalent for ~) 2-14
numerical evaluation

double integral 2-537

O
object

inheritance 2-362
object classes, list of predefined 2-361
operating system command, issuing 2-19
operators

arithmetic 2-2
logical 2-13, 2-15
overloading arithmetic 2-7
overloading relational 2-11
relational 2-11
special characters 2-17

logical OR
bit-wise 2-244

or (M-file function equivalent for |) 2-14

Index

Index-16

orthographic projection, setting and querying
2-285

OuterPosition

Axes property 2-165
overloading

arithmetic operators 2-7
relational operators 2-11
special characters 2-20

P
parametric curve, plotting 2-726
Parent

areaseries property 2-96
Axes property 2-166
barseries property 2-199
contour property 2-449
errorbar property 2-687

parentheses (special characters) 2-18
path

adding directories to 2-39
pauses, removing 2-533
percent sign (special characters) 2-19
perfect matching 2-629
period (.), to distinguish matrix and array

operations 2-2
period (special characters) 2-18
perspective projection, setting and querying

2-285
P-files

checking existence of 2-701
phase angle, complex 2-55
platform MATLAB is running on 2-419
PlotBoxAspectRatio, Axes property 2-166
PlotBoxAspectRatioMode, Axes property 2-166
plotting

contours (a 2-711

contours (ez function) 2-711
ez-function mesh plot 2-717
filled contours 2-714
functions with discontinuities 2-731
in polar coordinates 2-728
mathematical function 2-723
mesh contour plot 2-720
parametric curve 2-726
surfaces 2-730
velocity vectors 2-423

plus (M-file function equivalent for +) 2-6
polar coordinates

computing the angle 2-55
converting from Cartesian 2-294
plotting in 2-728

polynomial
division 2-573
multiplication 2-460

poorly conditioned eigenvalues 2-180
Position

annotation textbox property 2-79
Axes property 2-167

position of camera
dollying 2-272

position of camera, setting and querying 2-283
power

matrix See matrix exponential
power (M-file function equivalent for .^) 2-6
printing, suppressing 2-19
product

cumulative 2-501
of vectors (cross) 2-492
scalar (dot) 2-492

projection type, setting and querying 2-285
ProjectionType, Axes property 2-167

Index

Index-17

R
rdivide (M-file function equivalent for ./) 2-6
rearranging arrays

converting to vector 2-21
rearranging matrices

converting to vector 2-21
transposing 2-18

reference page
accessing from doc 2-630

regularly spaced vectors, creating 2-21
relational operators 2-11
rolling camera 2-286
rotating camera 2-280
rotating camera target 2-282
round

towards infinity 2-318
roundoff error

convolution theorem and 2-460
effect on eigenvalues 2-180

S
saving

session to a file 2-609
scalar product (of vectors) 2-492
scaled complementary error function (defined)

2-672
search path

adding directories to 2-39
secant

inverse 2-101
inverse hyperbolic 2-104

Selected

areaseries property 2-96
Axes property 2-167
barseries property 2-199
contour property 2-450

errorbar property 2-687
SelectionHighlight

areaseries property 2-97
Axes property 2-167
barseries property 2-199
contour property 2-450
errorbar property 2-687

semicolon (special characters) 2-19
sequence of matrix names (M1 through M12)

generating 2-696
session

saving 2-609
shifting array

circular 2-353
ShowText

contour property 2-450
sine

inverse 2-106
inverse hyperbolic 2-109

single quote (special characters) 2-18
slice planes, contouring 2-456
sorting

complex conjugate pairs 2-488
sound

files
reading 2-130
writing 2-131

source control systems
checking in files 2-336
checking out files 2-338
viewing current system 2-377

sparse matrix
minimum degree ordering of 2-380
permuting columns of 2-410

special characters
overloading 2-20

spreadsheets

Index

Index-18

reading into a matrix 2-624
writing matrices into 2-626

stack, displaying 2-541
str2cell 2-329
stretch-to-fill 2-139
String

textarrow property 2-73
textbox property 2-80

string
converting from vector to 2-334

string matrix to cell array conversion 2-329
subsref (M-file function equivalent for

A(i,j,k...)) 2-19
subtraction (arithmetic operator) 2-2
sum

cumulative 2-502
Surface

and contour plotter 2-734
plotting mathematical functions 2-730

T
Tag

areaseries property 2-97
Axes property 2-168
barseries property 2-199
contour property 2-450
errorbar property 2-687

tangent
four-quadrant, inverse 2-114, 2-115
inverse 2-113
inverse hyperbolic 2-118

target, of camera 2-287
test, logical See logical tests and detecting
TextBackgroundColor

annotation textbarrow property 2-74
TextColor

annotation textbarrow property 2-74
TextEdgeColor

annotation textbarrow property 2-74
TextLineWidth

annotation textarrow property 2-74
TextList

contour property 2-450
TextListMode

contour property 2-451
TextMargin

annotation textbarrow property 2-74
TextRotation, textarrow property 2-74
TextStep

contour property 2-451
TextStepMode

contour property 2-451
TickDir, Axes property 2-168
TickDirMode, Axes property 2-168
TickLength, Axes property 2-168
time

CPU 2-489
required to execute commands 2-693

time and date functions 2-669
times (M-file function equivalent for .*) 2-6
Title, Axes property 2-169
trace of a matrix 2-606
trailing blanks

removing 2-566
transformation

See also conversion
transpose

array (arithmetic operator) 2-4
matrix (arithmetic operator) 2-4

transpose (M-file function equivalent for .') 2-6
truth tables (for logical operations) 2-13
Type

areaseries property 2-97

Index

Index-19

Axes property 2-169
barseries property 2-200
contour property 2-452
errorbar property 2-688

U
UData

errorbar property 2-688
UDataSource

errorbar property 2-688
UIContextMenu

areaseries property 2-97
Axes property 2-169
barseries property 2-200
contour property 2-452
errorbar property 2-688

uminus (M-file function equivalent for unary)
2-6

Units

Axes property 2-169
UNIX

Web browser 2-632
up vector, of camera 2-289
updating figure during M-file execution 2-639
uplus (M-file function equivalent for unary +) 2-6
UserData

areaseries property 2-97
Axes property 2-170
barseries property 2-200
contour property 2-452
errorbar property 2-688

V
variables

checking existence of 2-701

clearing from workspace 2-364
vector

dot product 2-636
product (cross) 2-492

vector field, plotting 2-423
vectorizing ODE function (BVP) 2-269
vectors, creating

regularly spaced 2-21
velocity vectors, plotting 2-423
vertcat (M-file function equivalent for [;]) 2-19
VerticalAlignment, textarrow property 2-74
VerticalAlignment, textbox property 2-80
video

saving in AVI format 2-132
view 2-278
view angle, of camera 2-291
View, Axes property (obsolete) 2-170
viewing

a group of object 2-278
a specific object in a scene 2-278

Visible

areaseries property 2-98
Axes property 2-170
barseries property 2-200
contour property 2-452
errorbar property 2-688

visualizing
cell array structure 2-328

volumes
contouring slice planes 2-456

W
Web browser

specifying for UNIX 2-632
Width

annotation ellipse property 2-66

Index

Index-20

annotation rectangle property 2-70
workspace

changing context while debugging 2-536,
2-554

clearing items from 2-364

X
X

annotation arrow property 2-60, 2-64
annotation ellipse property 2-66
annotation line property 2-67
annotation rectangle property 2-70
annotation textarrow property 2-75

XAxisLocation, Axes property 2-170
XColor, Axes property 2-170
XData

areaseries property 2-98
barseries property 2-200
contour property 2-452
errorbar property 2-689

XDataMode

areaseries property 2-98
barseries property 2-201
contour property 2-453
errorbar property 2-689

XDataSource

areaseries property 2-98
barseries property 2-201
contour property 2-453
errorbar property 2-689

XDir, Axes property 2-171
XGrid, Axes property 2-171
XLabel, Axes property 2-171
XLim, Axes property 2-172
XLimMode, Axes property 2-172
XMinorGrid, Axes property 2-172

logical XOR
bit-wise 2-248

XOR, printing 2-93, 2-196, 2-445, 2-682
XScale, Axes property 2-172
XTick, Axes property 2-172
XTickLabel, Axes property 2-173
XTickLabelMode, Axes property 2-173
XTickMode, Axes property 2-173

Y
Y

annotation arrow property 2-61, 2-64, 2-68
annotation ellipse property 2-66
annotation rectangle property 2-70
annotation textarrow property 2-75

YAxisLocation, Axes property 2-170
YColor, Axes property 2-170
YData

areaseries property 2-99
barseries property 2-201
contour property 2-453
errorbar property 2-690

YDataMode

contour property 2-453
YDataSource

areaseries property 2-99
barseries property 2-202
contour property 2-454
errorbar property 2-690

YDir, Axes property 2-171
YGrid, Axes property 2-171
YLabel, Axes property 2-171
YLim, Axes property 2-172
YLimMode, Axes property 2-172
YMinorGrid, Axes property 2-172
YScale, Axes property 2-172

Index

Index-21

YTick, Axes property 2-172
YTickLabel, Axes property 2-173
YTickLabelMode, Axes property 2-173
YTickMode, Axes property 2-173

Z
ZColor, Axes property 2-170
ZData

contour property 2-454
ZDataSource

contour property 2-454
ZDir, Axes property 2-171
ZGrid, Axes property 2-171
ZLim, Axes property 2-172
ZLimMode, Axes property 2-172
ZMinorGrid, Axes property 2-172
ZScale, Axes property 2-172
ZTick, Axes property 2-172
ZTickLabel, Axes property 2-173
ZTickLabelMode, Axes property 2-173
ZTickMode, Axes property 2-173

	Functions — Categorical List
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Editing and Debugging
	Performance Improvement and Tuning Tools and Techniques
	Source Control
	Publishing

	System

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion
	Determine Data Type

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange

	Graphics
	Basic Plots and Graphs
	Plotting Tools

	Annotating Plots
	Annotation Object Properties

	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding Objects from Callbacks

	Functions — Alphabetical List
	2 Arithmetic Operators + - * / \ ^ '
	Relational Operators <��>�<=�� >=�== ~=
	Logical Operators: Elementwise & | ~
	Logical Operators: Short-circuit && ||
	Special Characters [] () {} = ' , ; : % ! @
	colon (:)
	abs
	accumarray
	acos
	acosd
	acosh
	acot
	acotd
	acoth
	acsc
	acscd
	acsch
	addframe
	addpath
	addtodate
	airy
	alim
	all
	allchild
	alpha
	alphamap
	ancestor
	angle
	annotation
	Annotation Arrow Properties
	Annotation Doublearrow Properties
	Annotation Ellipse Properties
	Annotation Line Properties
	Annotation Rectangle Properties
	Annotation Textarrow Properties
	Annotation Textbox Properties
	ans
	any
	area
	Areaseries Properties
	ascii (ftp)
	asec
	asecd
	asech
	asin
	asind
	asinh
	assignin
	atan
	atan2
	atand
	atanh
	audioplayer
	audiorecorder
	aufinfo
	auread
	auwrite
	avifile
	aviinfo
	aviread
	axes
	Axes Properties
	axis
	2 balance
	bar, barh
	bar3, bar3h
	Barseries Properties
	base2dec
	beep
	besselh
	besseli
	besselj
	besselk
	bessely
	beta
	betainc
	betaln
	bicg
	bicgstab
	bin2dec
	binary (ftp)
	bitand
	bitcmp
	bitget
	bitmax
	bitor
	bitset
	bitshift
	bitxor
	blanks
	blkdiag
	box
	break
	brighten
	builtin
	bvp4c
	bvpget
	bvpinit
	bvpset
	2 calendar
	camdolly
	cameratoolbar
	camlight
	camlookat
	camorbit
	campan
	campos
	camproj
	camroll
	camtarget
	camup
	camva
	camzoom
	cart2pol
	cart2sph
	case
	cast
	cat
	catch
	caxis
	cd
	cd (ftp)
	cdf2rdf
	cdfepoch
	cdfinfo
	cdfread
	cdfwrite
	ceil
	cell
	cell2mat
	cell2struct
	celldisp
	cellfun
	cellplot
	cellstr
	cgs
	char
	checkin
	checkout
	chol
	cholinc
	cholupdate
	circshift
	cla
	clabel
	class
	clc
	clear
	clf
	clipboard
	clock
	close
	close (avifile)
	close (ftp)
	closereq
	cmopts
	colamd
	colmmd
	colorbar
	colordef
	colormap
	colormapeditor
	ColorSpec
	colperm
	comet
	comet3
	commandhistory
	commandwindow
	compan
	compass
	computer
	cond
	condeig
	condest
	coneplot
	conj
	continue
	contour
	contour3
	contourc
	contourf
	Contourgroup Properties
	contourslice
	contrast
	conv
	conv2
	convhull
	convhulln
	convn
	copyfile
	copyobj
	corrcoef
	cos
	cosd
	cosh
	cot
	cotd
	coth
	cov
	cplxpair
	cputime
	createClassFromWsdl
	cross
	csc
	cscd
	csch
	csvread
	csvwrite
	cumprod
	cumsum
	cumtrapz
	curl
	customverctrl
	cylinder
	daspect
	datacursormode
	datatipinfo
	date
	datenum
	datestr
	datetick
	datevec
	dbclear
	dbcont
	dbdown
	dblquad
	dbmex
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	dde23
	ddeget
	ddeset
	deal
	deblank
	debug
	dec2base
	dec2bin
	dec2hex
	decic
	deconv
	del2
	delaunay
	delaunay3
	delaunayn
	delete
	delete (ftp)
	delete (timer)
	demo
	depdir
	depfun
	det
	detrend
	deval
	diag
	dialog
	diary
	diff
	dir
	dir (ftp)
	disp
	disp (timer)
	display
	divergence
	dlmread
	dlmwrite
	dmperm
	doc
	docopt
	docsearch
	dos
	dot
	double
	dragrect
	drawnow
	dsearch
	dsearchn
	2 echo
	edit
	eig
	eigs
	ellipj
	ellipke
	ellipsoid
	else
	elseif
	end
	eomday
	eps
	erf, erfc, erfcx, erfinv, erfcinv
	error
	errorbar
	Errorbarseries Properties
	errordlg
	etime
	etree
	etreeplot
	eval
	evalc
	evalin
	exist
	exit
	exp
	expint
	expm
	expm1
	eye
	ezcontour
	ezcontourf
	ezmesh
	ezmeshc
	ezplot
	ezplot3
	ezpolar
	ezsurf
	ezsurfc

	Index

