MATLAB

The Language of Technical Computing

Computation
Visualization

Programming

Function Reference
Volume 3: P-7 -.«‘\The MathWorks

Version 7

X L8

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 3: P - Z
0 COPYRIGHT 1984 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

For MATLAB 5.0 (Release 8)
Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11

Printing History: December 1996 First printing
June 1997 Online only
October 1997 Online only
January 1999 Online only

June 1999 Second printing For MATLAB 5.3 (Release 11)

June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)

June 2004 Online only Revised for 7.0 (Release 14)

Contents

Functions — Categorical List

1]

Desktop Tools and Development Environment 14
Startup and Shutdown 14
Command Window and History 1-5
Help for Using MATLAB 1-5
Workspace, Search Path, and File Operations 1-5
Programming Tools 1-7
System ... e 1-8

Mathematics 1-9
Arrays and Matrices i 1-10
Linear Algebra 1-12
Elementary Math 1-14
Data Analysis and Fourier Transforms 1-17
Polynomials 1-18
Interpolation and Computational Geometry 1-19
Coordinate System Conversion 1-20
Nonlinear Numerical Methods 1-20
Specialized Math 1-22
Sparse Matricesoutiiieniii e, 1-22
Math Constants 1-24

Programming and Data Types 1-25
Data Types . ..ot e e 1-25
ATTays . o e e 1-30
Operators and Operations 1-32
Programming in MATLAB 1-35

File /O 1-40
Filename Construction 1-40
Opening, Loading, Saving Files 1-41
Low-Level File I/O 1-41
Text Fileso e 1-41
XML Documents it 1-41
Spreadsheets i 1-42

ii

Contents

ScientificData 1-42

Audio and Audio/Video 1-43
Images 1-43
Internet Exchange 1-44
Graphics 1-45
Basic Plots and Graphs 1-45
Annotating Plots 1-46
Specialized Plotting 1-46
Bit-Mapped Images 1-49
Printing 1-49
Handle Graphics 1-49
3-D Visualization, 1-52
Surface and Mesh Plots 1-52
View Control 1-53
Lighting 1-55
Transparencyc..uieeemmmiie i 1-55
Volume Visualization 1-55
Creating Graphical User Interfaces 1-56
Predefined Dialog Boxes 1-56
Deploying User Interfaces, 1-57
Developing User Interfaces 1-57
User Interface Objects 1-57
Finding Objects from Callbacks 1-57

Functions — Alphabetical List

2

Functions — Categorical

List

The MATLAB® Function Reference contains descriptions of all MATLAB

commands and functions.

Select a category from the following table to see a list of related functions.

Desktop Tools and
Development Environment

Mathematics

Programming and Data
Types

File I/O

Graphics
3-D Visualization
Creating Graphical User

Interface

External Interfaces

Startup, Command Window, help, editing and
debugging, tuning, other general functions

Arrays and matrices, linear algebra, data
analysis, other areas of mathematics

Function/expression evaluation, program
control, function handles, object oriented
programming, error handling, operators, data
types, dates and times, timers

General and low-level file I/O, plus specific
file formats, like audio, spreadsheet, HDF,
images

Line plots, annotating graphs, specialized
plots, images, printing, Handle Graphics®

Surface and mesh plots, view control, lighting
and transparency, volume visualization.

GUIDE, programming graphical user
interfaces.

Java, COM, Serial Port functions.

See Simulink®, Stateﬂow®, Real-Time Workshop®, and the individual
toolboxes for lists of their functions

1 Funciions — Categorical List

Desktop Tools and Development Environment

General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

“Startup and Shutdown” Startup and shutdown options

“Command Window and Controlling Command Window and History

History”

“Help for Using Finding information

MATLAB”

“Workspace, Search File, search path, variable management

Path, and File

Operations”

“Programming Tools” Editing and debugging, source control, Notebook
“System” Identifying current computer, license, product

version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

genpath Generate a path string

matlab Start MATLAB (UNIX systems)

matlab Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for single user systems or administrators
prefdir Return directory containing preferences, history, and layout files
preferences Display Preferences dialog box for MATLAB and related products
quit Terminate MATLAB

startup MATLAB startup M-file for user-defined options

14

Desktop Tools and Development Environment

Command Window and History

clc

Clear Command Window

commandhistoryOpen the Command History, or select it if already open
commandwindow Open the Command Window, or select it if already open

diary
dos
format
home
matlab:
more
perl
system
unix

Save session to file

Execute DOS command and return result

Control display format for output

Move cursor to upper left corner of Command Window

Run specified function via hyperlink (matlabcolon)
Control paged output for Command Window

Call Perl script using appropriate operating system executable
Execute operating system command and return result

Execute UNIX command and return result

Help for Using MATLAB

doc

demo
docopt
docsearch
help
helpbrowser
helpwin
info
lookfor
playshow
support
web
whatsnew

Display online documentation in MATLAB Help browser

Access product demos via Help browser

Web browser for UNIX platforms

Open Help browser Search pane and run search for specified term
Display help for MATLAB functions in Command Window
Display Help browser for access to full online documentation and demos
Provide access to and display M-file help for all functions
Display Release Notes for MathWorks products

Search for specified keyword in all help entries

Run published M-file demo

Open MathWorks Technical Support Web page

Open Web site or file in Web browser or Help browser

Display Release Notes for MathWorks products

Workspace, Search Path, and File Operations

* “Workspace”

e “Search Path”
¢ “File Operations”

1-5

1 Funciions — Categorical List

1-6

Workspace
assignin
clear
evalin
exist
openvar
pack
uiimport
which
who, whos
workspace

Search Path

addpath
genpath
partialpath
path
path2rc
pathdef
pathsep
pathtool

Assign value to workspace variable

Remove items from workspace, freeing up system memory
Execute string containing MATLAB expression in a workspace
Check if variables or functions are defined

Open workspace variable in Array Editor for graphical editing
Consolidate workspace memory

Open Import Wizard, the graphical user interface to import data
Locate functions and files

List variables in the workspace

Display Workspace browser, a tool for managing the workspace

Add directories to MATLAB search path

Generate path string

Partial pathname

View or change the MATLAB directory search path

Replaced by savepath

List of directories in the MATLAB search path

Return path separator for current platform

Open Set Path dialog box to view and change MATLAB path

restoredefaultpathRestore the default search path

rmpath
savepath

Remove directories from MATLAB search path
Save current MATLAB search path to pathdef.m file

File Operations

cd
copyfile
delete

dir

exist
fileattrib
filebrowser
lookfor

1s
matlabroot
mkdir
movefile
pwd
recycle
rehash
rmdir

Change working directory

Copy file or directory

Delete files or graphics objects

Display directory listing

Check if variables or functions are defined

Set or get attributes of file or directory

Display Current Directory browser, a tool for viewing files
Search for specified keyword in all help entries
List directory on UNIX

Return root directory of MATLAB installation
Make new directory

Move file or directory

Display current directory

Set option to move deleted files to recycle folder
Refresh function and file system path caches
Remove directory

Desktop Tools and Development Environment

type List file

web Open Web site or file in Web browser or Help browser
what List MATLARB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Programming Tools
¢ “Editing and Debugging”

¢ “Performance Improvement and Tuning Tools and Techniques”
® “Source Control”
¢ “Publishing”

Editing and Debugging

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
dbquit Quit debug mode

dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints

dbtype List M-file with line numbers
dbup Change local workspace context
debug M-file debugging functions
edit Edit or create M-file

keyboard Invoke the keyboard in an M-file

Performance Improvement and Tuning Tools and Techniques

memory Help for memory limitations

mlint Check M-files for possible problems, and report results
mlintrpt Run mlint for file or directory, reporting results in Web browser
pack Consolidate workspace memory

profile Profile the execution time for a function

profsave Save profile report in HTML format

rehash Refresh function and file system path caches

sparse Create sparse matrix

zeros Create array of all zeros

1-7

1 Funciions — Categorical List

1-8

Source Control

checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system

customverctrl Allow custom source control system
undocheckout Undo previous checkout from source control system

verctrl Version control operations on PC platforms

Publishing

notebook Open M-book in Microsoft Word (Windows only)

publish Run M-file containing cells, and save results to file of specified type
System

computer Identify information about computer on which MATLAB is running
javachk Generate error message based on Java feature support

license Show license number for MATLAB

prefdir Return directory containing preferences, history, and layout files
usejava Determine if a Java feature is supported in MATLAB

ver Display version information for MathWorks products

version Get MATLAB version number

Mathematics

Mathematics

Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices”

“Linear Algebra”

“Elementary Math”

“Data Analysis and
Fourier Transforms’

4

“Polynomials”

“Interpolation and
Computational
Geometry”

“Coordinate System
Conversion”

“Nonlinear Numerical
Methods”

“Specialized Math”

“Sparse Matrices”

“Math Constants”

Basic array operators and operations, creation of
elementary and specialized arrays and matrices

Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

Conversions between Cartesian and polar or
spherical coordinates

Differential equations, optimization, integration

Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

1-9

1 Funciions — Categorical List

Arrays and Matrices

e “Basic Information”
® “Operators”

® “Operations and Manipulation”

¢ “Elementary Matrices and Arrays”

® “Specialized Matrices”

Basic Information

disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
isfloat True for floating-point arrays
isinteger True for integer arrays
islogical True for logical array
isnumeric True for numeric arrays
isscalar True for scalars
issparse True for sparse matrix
isvector True for vectors
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix
Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
» Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
: Nonconjugated transpose
Lx Array multiplication (element-wise)
~ Array power (element-wise)
A Left array divide (element-wise)
i Right array divide (element-wise)

Mathematics

Operations and Manipulation

: (colon) Index into array, rearrange array
accumarray Construct an array with accumulation
blkdiag Block diagonal concatenation

cat Concatenate arrays

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

diag Diagonal matrices and diagonals of matrix
dot Vector dot product

end Last index

find Find indices of nonzero elements

fliplr Flip matrices left-right

flipud Flip matrices up-down

flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation

ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product

max Maximum value of array

min Minimum value of array

permute Rearrange dimensions of multidimensional array
prod Product of array elements

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

sum Sum of array elements

sqrtm Matrix square root

sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix

triu Upper triangular part of matrix

vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

1-11

1 Funciions — Categorical List

1-12

Elementary Matrices and Arrays

: (colon)
blkdiag
diag

eye
freqgspace
linspace
logspace
meshgrid
ndgrid
ones
rand
randn
repmat
zeros

Regularly spaced vector

Construct block diagonal matrix from input arguments
Diagonal matrices and diagonals of matrix

Identity matrix

Frequency spacing for frequency response

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Replicate and tile array

Create array of all zeros

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal
rosser
toeplitz
vander
wilkinson

Companion matrix

Test matrices

Hadamard matrix

Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix

Magic square

Pascal matrix

Classic symmetric eigenvalue test problem
Toeplitz matrix

Vandermonde matrix

Wilkinson’s eigenvalue test matrix

Linear Algebra

e “Matrix Analysis”

¢ “Linear Equations”

¢ “Eigenvalues and Singular Values”

e “Matrix Logarithms and Exponentials”

e “Factorization”

Mathematics

Matrix Analysis

cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant

norm Matrix or vector norm

normest Estimate matrix 2-norm

null Null space

orth Orthogonalization

rank Matrix rank

rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

\ and /
chol
cholinc
cond
condest
funm

inv
linsolve
1scov
1sgnonneg
1u

luinc
pinv

qr

rcond

Linear equation solution

Cholesky factorization

Incomplete Cholesky factorization
Condition number with respect to inversion
1-norm condition number estimate

Evaluate general matrix function

Matrix inverse

Solve linear systems of equations

Least squares solution in presence of known covariance
Nonnegative least squares

LU matrix factorization

Incomplete LU factorization

Moore-Penrose pseudoinverse of matrix
Orthogonal-triangular decomposition
Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

balance
cdf2rdf
condeig
eig
eigs
gsvd
hess
poly
polyeig
qz

Improve accuracy of computed eigenvalues

Convert complex diagonal form to real block diagonal form

Condition number with respect to eigenvalues
Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of sparse matrix
Generalized singular value decomposition
Hessenberg form of matrix

Polynomial with specified roots

Polynomial eigenvalue problem

QZ factorization for generalized eigenvalues

1-13

1 Funciions — Categorical List

1-14

rsf2csf
schur
svd
svds

Convert real Schur form to complex Schur form
Schur decomposition

Singular value decomposition

Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm
logm
sqrtm

Factorization

balance
cdf2rdf
chol
cholinc
cholupdate
1u

luinc
planerot
qr
grdelete
grinsert
qrupdate
qz
rsf2csf

Matrix exponential
Matrix logarithm
Matrix square root

Diagonal scaling to improve eigenvalue accuracy
Complex diagonal form to real block diagonal form
Cholesky factorization

Incomplete Cholesky factorization

Rank 1 update to Cholesky factorization

LU matrix factorization

Incomplete LU factorization

Givens plane rotation

Orthogonal-triangular decomposition

Delete column or row from QR factorization

Insert column or row into QR factorization

Rank 1 update to QR factorization

QZ factorization for generalized eigenvalues

Real block diagonal form to complex diagonal form

Elementary Math

® “Trigonometric”

¢ “Exponential”

* “Complex”

¢ “Rounding and Remainder”

® “Discrete Math (e.g., Prime Factors)”

Mathematics

Trigonometric

acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech
asin
asind
asinh
atan
atand
atanh
atan2
cos
cosd
cosh
cot
cotd
coth
csc
cscd
csch
sec
secd
sech
sin
sind
sinh
tan
tand
tanh

Inverse cosine

Inverse cosine, degrees
Inverse hyperbolic cosine
Inverse cotangent
Inverse cotangent, degrees
Inverse hyperbolic cotangent
Inverse cosecant

Inverse cosecant, degrees
Inverse hyperbolic cosecant
Inverse secant

Inverse secant, degrees
Inverse hyperbolic secant
Inverse sine
Inverse sine, degrees
Inverse hyperbolic sine
Inverse tangent

Inverse tangent, degrees
Inverse hyperbolic tangent
Four-quadrant inverse tangent
Cosine

Cosine, degrees
Hyperbolic cosine
Cotangent

Cotangent, degrees
Hyperbolic cotangent
Cosecant

Cosecant, degrees
Hyperbolic cosecant
Secant

Secant, degrees
Hyperbolic secant

Sine

Sine, degrees

Hyperbolic sine

Tangent

Tangent, degrees
Hyperbolic tangent

1-15

1 Funciions — Categorical List

Exponential

exp Exponential

expmi Exponential of x minus 1

log Natural logarithm

logip Logarithm of 1+x

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

nextpow?2 Next higher power of 2

pow2 Base 2 power and scale floating-point number

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

nthroot Real nth root

Complex

abs Absolute value

angle Phase angle

complex Construct complex data from real and imaginary parts

conj Complex conjugate

cplxpair Sort numbers into complex conjugate pairs

i Imaginary unit

imag Complex imaginary part

isreal True for real array

j Imaginary unit

real Complex real part

sign Signum

unwrap Unwrap phase angle

Rounding and Remainder

fix Round towards zero

floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division

rem Remainder after division

1-16

Mathematics

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

ged Greatest common divisor

isprime True for prime numbers

lcm Least common multiple

nchoosek All combinations of N elements taken K at a time
perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms

¢ “Basic Operations”

¢ “Finite Differences”

¢ “Correlation”

¢ “Filtering and Convolution”

e “Fourier Transforms”

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array

mean Average or mean value of arrays

median Median value of arrays

min Minimum elements of array

prod Product of array elements

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

std Standard deviation

sum Sum of array elements

trapz Trapezoidal numerical integration

var Variance

Finite Differences

del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1-17

1 Funciions — Categorical List

1-18

Correlation

corrcoef Correlation coefficients

cov Covariance matrix

subspace Angle between two subspaces

Filtering and Convolution

conv Convolution and polynomial multiplication

conv2 Two-dimensional convolution

convn N-dimensional convolution

deconv Deconvolution and polynomial division

detrend Linear trend removal

filter Filter data with infinite impulse response (IIR) or finite impulse response
(FIR) filter

filter2 Two-dimensional digital filtering

Fourier Transforms

abs Absolute value and complex magnitude

angle Phase angle

fft One-dimensional discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier Transform

fftshift Shift DC component of discrete Fourier transform to center of spectrum
fftw Interface to the FFTW library run-time algorithm for tuning FFTs
ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse multidimensional discrete Fourier transform

ifftshift Inverse fast Fourier transform shift

nextpow2 Next power of two

unwrap Correct phase angles

Polynomials

conv Convolution and polynomial multiplication

deconv Deconvolution and polynomial division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Analytic polynomial integration

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Mathematics

Interpolation and Computational Geometry

® “Interpolation”

¢ “Delaunay Triangulation and Tessellation”
® “Convex Hull”

® “Voronoi Diagrams”

® “Domain Generation”

Interpolation

dsearch Search for nearest point

dsearchn Multidimensional closest point search

griddata Data gridding

griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)

interp2 Two-dimensional data interpolation (table lookup)

interp3 Three-dimensional data interpolation (table lookup)

interpft One-dimensional interpolation using fast Fourier transform method
interpn Multidimensional data interpolation (table lookup)

meshgrid Generate X and Y matrices for three-dimensional plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

tsearchn Multidimensional closest simplex search

unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point

dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot Two-dimensional triangular plot
trisurf Triangular surface plot

tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

1-19

1 Funciions — Categorical List

Convex Hull

convhull Convex hull

convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search for nearest point

patch Create patch graphics object

plot Linear two-dimensional plot
voronoi Voronoi diagram

voronoin Multidimensional Voronoi diagrams

Domain Generation

meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation

Coordinate System Conversion

Cartesian

cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods

¢ “Ordinary Differential Equations (IVP)”
¢ “Delay Differential Equations”

¢ “Boundary Value Problems”

e “Partial Differential Equations”

® “Optimization”

® “Numerical Integration (Quadrature)”

1-20

Mathematics

Ordinary Differential Equations (IVP)

ode113 Solve non-stiff differential equations, variable order method
ode151 Solve fully implicit differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method

0de23s Solve stiff differential equations, low order method

ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule
ode23tb Solve stiff differential equations, low order method

ode45 Solve non-stiff differential equations, medium order method
odextend Extend the solution of an initial value problem

odeget Get ODE options parameters

odeset Create/alter ODE options structure

decic Compute consistent initial conditions for ode151

deval Evaluate solution of differential equation problem

Delay Differential Equations

dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters

ddeset Create/alter DDE options structure

deval Evaluate solution of differential equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for ODEs
bvpget Get BVP options parameters

bvpset Create/alter BVP options structure

deval Evaluate solution of differential equation problem

Partial Differential Equations

pdepe Solve initial-boundary value problems for parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe
Optimization

fminbnd Scalar bounded nonlinear function minimization

fminsearch Multidimensional unconstrained nonlinear minimization, by
Nelder-Mead direct search method

fzero Scalar nonlinear zero finding

1sgnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

1-21

1 Funciions — Categorical List

1-22

Numerical Integration (Quadrature)

quad

quadl
quadv
dblquad
triplequad

Numerically evaluate integral, adaptive Simpson quadrature (low order)
Numerically evaluate integral, adaptive Lobatto quadrature (high order)
Vectorized quadrature

Numerically evaluate double integral

Numerically evaluate triple integral

Specialized Math

airy
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
ellipj
ellipke
erf
erfc
erfcinv
erfcx
erfinv
expint
gamma
gammainc
gammaln
legendre
psi

Airy functions

Bessel functions of third kind (Hankel functions)
Modified Bessel function of first kind
Bessel function of first kind

Modified Bessel function of second kind
Bessel function of second kind

Beta function

Incomplete beta function

Logarithm of beta function

Jacobi elliptic functions

Complete elliptic integrals of first and second kind
Error function

Complementary error function

Inverse complementary error function
Scaled complementary error function
Inverse error function

Exponential integral

Gamma function

Incomplete gamma function

Logarithm of gamma function
Associated Legendre functions

Psi (polygamma) function

Sparse Matrices

¢ “Elementary Sparse Matrices”

® “Full to Sparse Conversion”

® “Working with Sparse Matrices”

® “Reordering Algorithms”

® “Linear Algebra”

¢ “Linear Equations (Iterative Methods)”

® “Tree Operations”

Mathematics

Elementary Sparse Matrices

spdiags
speye
sprand
sprandn
sprandsym

Sparse matrix formed from diagonals
Sparse identity matrix

Sparse uniformly distributed random matrix
Sparse normally distributed random matrix
Sparse random symmetric matrix

Full to Sparse Conversion

find

full
sparse
spconvert

Find indices of nonzero elements

Convert sparse matrix to full matrix
Create sparse matrix

Import from sparse matrix external format

Working with Sparse Matrices

issparse
nnz
nonzeros
nzmax
spalloc
spfun
spones
spparms
spy

True for sparse matrix

Number of nonzero matrix elements

Nonzero matrix elements

Amount of storage allocated for nonzero matrix elements
Allocate space for sparse matrix

Apply function to nonzero matrix elements

Replace nonzero sparse matrix elements with ones

Set parameters for sparse matrix routines

Visualize sparsity pattern

Reordering Algorithms

colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation

colperm Column permutation

dmperm Dulmage-Mendelsohn permutation

randperm Random permutation

symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation

symrcm Symmetric reverse Cuthill-McKee permutation
Linear Algebra

cholinc Incomplete Cholesky factorization

condest 1-norm condition number estimate

eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization

normest Estimate matrix 2-norm

sprank Structural rank

svds Singular values and vectors of sparse matrix

1-23

1 Funciions — Categorical List

Linear Equations (lterative Methods)

bicg BiConjugate Gradients method

bicgstab BiConjugate Gradients Stabilized method

cgs Conjugate Gradients Squared method

gmres Generalized Minimum Residual method

lsqr LSQR implementation of Conjugate Gradients on Normal Equations
minres Minimum Residual method

pcg Preconditioned Conjugate Gradients method

qmr Quasi-Minimal Residual method

spaugment Form least squares augmented system

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity, o

intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type

j Imaginary unit

NaN Not-a-Number

pi Ratio of a circle’s circumference to its diameter, Tt
realmax Largest positive floating-point number

realmin Smallest positive floating-point number

1-24

Programming and Data Types

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB

programs.

“Data Types”

“Arrays”

“Operators and Operations”

“Programming in MATLAB”

Data Types

® “Numeric”

® “Characters and Strings”
® “Structures”

e “Cell Arrays”

® “Data Type Conversion”
¢ “Determine Data Type”

Numeric, character, structures, cell arrays,
and data type conversion

Basic array operations and manipulation

Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1-25

1 Funciions — Categorical List

1-26

Numeric
[]

cat

class

find
intmax
intmin
intwarning
ipermute
isa
isequal

Array constructor

Concatenate arrays

Return object’s class name (e.g., numeric)

Find indices and values of nonzero array elements
Largest possible value of specified integer type
Smallest possible value of specified integer type

Enable or disable integer warnings

Inverse permute dimensions of multidimensional array
Determine if item is object of given class (e.g., numeric)
Determine if arrays are numerically equal

isequalwithequalnansTest for equality, treating NaNs as equal

isnumeric
isreal
isscalar
isvector
permute
realmax
realmin
reshape
squeeze
zeros

Determine if item is numeric array

Determine if all array elements are real numbers
True for scalars (1-by-1 matrices)

True for vectors (1-by-N or N-by-1 matrices)
Rearrange dimensions of multidimensional array
Largest positive floating-point number

Smallest positive floating-point number
Reshape array

Remove singleton dimensions from array

Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings

Describes MATLAB string handling

Creating and Manipulating Strings

blanks
char
cellstr
datestr
deblank
lower
sprintf
sscanf
strcat

Create string of blanks

Create character array (string)

Create cell array of strings from character array
Convert to date string format

Strip trailing blanks from the end of string
Convert string to lower case

Write formatted data to string

Read string under format control

String concatenation

Programming and Data Types

strjust
strread
strrep
strtrim
strvcat
upper

Justify character array

Read formatted data from string

String search and replace

Remove leading and trailing whitespace from string
Vertical concatenation of strings

Convert string to upper case

Comparing and Searching Strings

class
findstr
isa
iscellstr
ischar
isletter
isscalar
isspace
isstrprop
isvector
regexp
regexpi
regexprep
strcmp
strcmpi
strfind
strmatch
strncmp
strncmpi
strtok

Return object’s class name (e.g., char)

Find string within another, longer string

Determine if item is object of given class (e.g., char)
Determine if item is cell array of strings

Determine if item is character array

Detect array elements that are letters of the alphabet
True for scalars (1-by-1 matrices)

Detect elements that are ASCII white spaces
Determine content of each element of string

True for vectors (1-by-N or N-by-1 matrices)
Match regular expression

Match regular expression, ignoring case

Replace string using regular expression

Compare strings

Compare strings, ignoring case

Find one string within another

Find possible matches for string

Compare first n characters of strings

Compare first n characters of strings, ignoring case
First token in string

Evaluating String Expressions

eval
evalc
evalin

Execute string containing MATLAB expression
Evaluate MATLAB expression with capture
Execute string containing MATLAB expression in workspace

1-27

1 Funciions — Categorical List

Structures

cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs

fieldnames Field names of structure

isa Determine if item is object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isscalar True for scalars (1-by-1 matrices)

isstruct Determine if item is structure array
isvector True for vectors (1-by-N or N-by-1 matrices)
orderfields Order fields of a structure array

rmfield Remove structure fields

struct Create structure array

struct2cell Structure to cell array conversion

Cell Arrays

{} Construct cell array

cell Construct cell array

cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents

cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)

deal Deal inputs to outputs

isa Determine if item is object of given class (e.g., cell)
iscell Determine if item is cell array

iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
isscalar True for scalars (1-by-1 matrices)

isvector True for vectors (1-by-N or N-by-1 matrices)
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array

struct2cell Structure to cell array conversion

1-28

Programming and Data Types

Data Type Conversion

Numeric

double Convert to double-precision

int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision

uint8 Convert to unsigned 8-bit integer
uinti16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String fo Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number

str2num Convert string to number

Numeric to String

char Convert to character array (string)

dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string

mat2str Convert a matrix to string

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array

datestr Convert serial date number to string

func2str Convert function handle to function name string
logical Convert numeric to logical array

mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array

str2func Convert function name string to function handle

struct2cell Convert structure to cell array

1-29

1 Funciions — Categorical List

Determine Data Type

is* Detect state

isa Determine if item is object of given class
iscell Determine if item is cell array

iscellstr Determine if item is cell array of strings
ischar Determine if item is character array

isfield Determine if item is character array

isfloat True for floating-point arrays

isinteger True for integer arrays

isjava Determine if item is Java object

islogical Determine if item is logical array

isnumeric Determine if item is numeric array

isobject Determine if item is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if item is MATLAB structure array
Arrays

® “Array Operations”
® “Basic Array Information”
® “Array Manipulation”

¢ “Elementary Arrays”

Array Operations

[1] Array constructor
) Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
L* Array multiplication
./ Array right division
\ Array left division
” Array power
Array (nonconjugated) transpose

1-30

Programming and Data Types

Basic Array Information

disp

display
isempty
isequal

Display text or array

Overloaded method to display text or array
Determine if array is empty

Determine if arrays are numerically equal

isequalwithequalnansTest for equality, treating NaNs as equal

islogical Determine if item is logical array

isnumeric Determine if item is numeric array

isscalar Determine if item is a scalar

isvector Determine if item is a vector

length Length of vector

ndims Number of array dimensions

numel Number of elements in matrix or cell array

size Array dimensions

Array Manipulation

: Specify range of array elements

blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays

circshift Shift array circularly

find Find indices and values of nonzero elements

fliplr Flip matrices left-right

flipud Flip matrices up-down

flipdim Flip array along specified dimension

horzcat Horizontal concatenation

ind2sub Subscripts from linear index

ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

vertcat Horizontal concatenation

1-31

1 Funciions — Categorical List

1-32

Elementary Arrays

blkdiag
eye
linspace
logspace
meshgrid
ndgrid
ones
rand
randn
zeros

Regularly spaced vector

Construct block diagonal matrix from input arguments
Identity matrix

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create array of all zeros

Operators and Operations

® “Special Characters”

¢ “Arithmetic Operations”

* “Bit-wise Operations”

® “Relational Operations”

® “Logical Operations”

® “Set Operations”

¢ “Date and Time Operations”

Special Characters

" A~ s
e —

— g0 =

Specify range of array elements

Pass function arguments, or prioritize operations
Construct array

Construct cell array

Decimal point, or structure field separator
Continue statement to next line

Array row element separator

Array column element separator

Insert comment line into code

Command to operating system
Assignment

Programming and Data Types

Arithmetic Operations

+

> — ~ % |l =

> — ~ *

Plus

Minus

Decimal point

Assignment

Matrix multiplication

Matrix right division

Matrix left division

Matrix power

Matrix transpose

Array multiplication (element-wise)
Array right division (element-wise)
Array left division (element-wise)
Array power (element-wise)

Array transpose

Bit-wise Operations

bitand
bitcmp
bitor
bitmax
bitset
bitshift
bitget
bitxor

Bit-wise AND

Bit-wise complement

Bit-wise OR

Maximum floating-point integer
Set bit at specified position
Bit-wise shift

Get bit at specified position
Bit-wise XOR

Relational Operations

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

1-33

1 Funciions — Categorical List

1-34

Logical Operations

&&

| |
&
I

all

any

false
find

is*

isa
iskeyword
isvarname
logical
true

xor

Logical AND

Logical OR

Logical AND for arrays

Logical OR for arrays

Logical NOT

Test to determine if all elements are nonzero
Test for any nonzero elements

False array

Find indices and values of nonzero elements
Detect state

Determine if item is object of given class
Determine if string is MATLAB keyword
Determine if string is valid variable name
Convert numeric values to logical

True array

Logical EXCLUSIVE OR

Set Operations

intersect
ismember
setdiff
issorted
setxor
union
unique

Set intersection of two vectors

Detect members of set

Return set difference of two vectors
Determine if set elements are in sorted order
Set exclusive or of two vectors

Set union of two vectors

Unique elements of vector

Date and Time Operations

addtodate
calendar
clock
cputime
date
datenum
datestr
datevec
eomday
etime
now

tic, toc
weekday

Modify particular field of date number
Calendar for specified month
Current time as date vector

Elapsed CPU time

Current date string

Serial date number

Convert serial date number to string
Date components

End of month

Elapsed time

Current date and time

Stopwatch timer

Day of the week

Programming and Data Types

Programming in MATLAB

¢ “M-File Functions and Scripts”

* “Evaluation of Expressions and Functions”

* “Timer Functions”

® “Variables and Functions in Memory”
¢ “Control Flow”

® “Function Handles”

® “Object-Oriented Programming”

¢ “Error Handling”

* “MEX Programming”

M-File Functions and Scripts

()

[
%

depfun
depdir
echo
function
input
inputname
mfilename

Pass function arguments

Insert comment line into code

Continue statement to next line

List dependent functions of M-file or P-file
List dependent directories of M-file or P-file
Echo M-files during execution

Function M-files

Request user input

Input argument name

Name of currently running M-file

namelengthmax Return maximum identifier length

nargin
nargout
nargchk
nargoutchk
pcode
script
varargin
varargout

Number of function input arguments
Number of function output arguments
Check number of input arguments
Validate number of output arguments
Create preparsed pseudocode file (P-file)
Describes script M-file

Accept variable number of arguments
Return variable number of arguments

1-35

1 Funciions — Categorical List

1-36

Evaluation of Expressions and Functions

builtin Execute built-in function from overloaded method
cellfun Apply function to each element in cell array

echo Echo M-files during execution

eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace

feval Evaluate function

iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name

pause Halt execution temporarily

run Run script that is not on current path

script Describes script M-file

symvar Determine symbolic variables in expression

tic, toc Stopwatch timer

Timer Functions

delete Delete timer object from memory

disp Display information about timer object

get Retrieve information about timer object properties
isvalid Determine if timer object is valid

set Display or set timer object properties

start Start a timer

startat Start a timer at a specific timer

stop Stop a timer

timer Create a timer object

timerfind Return an array of all visible timer objects in memory
timerfindall Return an array of all timer objects in memory
wait Block command line until timer completes

Variables and Functions in Memory

assignin Assign value to workspace variable
genvarname Construct valid variable name from string
global Define global variables

inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared

mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmax Return maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable

rehash Refresh function and file system caches

Programming and Data Types

Control Flow

break
case
catch
continue
else
elseif
end
error
for

if
otherwise
return
switch
try
while

Terminate execution of for loop or while loop
Case switch

Begin catch block

Pass control to next iteration of for or while loop
Conditionally execute statements

Conditionally execute statements

Terminate conditional statements, or indicate last index
Display error messages

Repeat statements specific number of times
Conditionally execute statements

Default part of switch statement

Return to invoking function

Switch among several cases based on expression
Begin try block

Repeat statements indefinite number of times

Function Handles

class
feval

Return object’s class name (e.g. function _handle)
Evaluate function

function_handle

functions
func2str
isa
isequal
str2func

Describes function handle data type

Return information about function handle

Constructs function name string from function handle
Determine if item is object of given class (e.g. function handle)
Determine if function handles are equal

Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object

fieldnames List public fields belonging to object,

inferiorto Establish inferior class relationship

isa Determine if item is object of given class

isobject Determine if item is MATLAB OOPs object

loadobj User-defined extension of 1oad function for user objects
methods Display information on class methods

methodsview Display information on class methods in separate window
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B

1-37

1 Funciions — Categorical List

1-38

subsindex
subsref
substruct
superiorto

Overloaded method for X (A)

Overloaded method for A(I), A{I} and A.field
Create structure argument for subsasgn or subsref
Establish superior class relationship

Java Classes and Objects

cell

class
clear
depfun
exist
fieldnames
im2java
import
inmem

isa

isjava
javaaddpath
javaArray
javachk

Convert Java array object to cell array

Return class name of Java object

Clear Java import list or Java class definitions
List Java classes used by M-file

Determine if item is Java class

List public fields belonging to object

Convert image to instance of Java image object
Add package or class to current Java import list
List names of Java classes loaded into memory
Determine if item is object of given class
Determine if item is Java object

Add entries to dynamic Java class path
Construct Java array

Generate error message based on Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java class path
methods Display information on class methods

methodsview Display information on class methods in separate window
usejava Determine if a Java feature is supported in MATLAB
which Display package and class name for method

Error Handling

catch Begin catch block of try/catch statement

error Display error message

ferror Query MATLAB about errors in file input or output
intwarning Enable or disable integer warnings

lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error

try Begin try block of try/catch statement

warning Display warning message

Programming and Data Types

MEX Programming

dbmex Enable MEX-file debugging

inmem Return names of currently loaded MEX-files

mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1-39

1 Funciions — Categorical List

1-40

File 1/0

Functions to read and write data to files of different format types.

“Filename Construction” Get path, directory, filename

information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/0” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,

WAVE, AVI files
“Images” Graphics files

“Internet Exchange” URL, zip, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction

fileparts Return parts of filename

filesep Return directory separator for this platform
fullfile Build full filename from parts

tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

File 1/O

Opening, Loading, Saving Files

importdata
load

open

save
uiimport
winopen

Load data from various types of files

Load all or specific data from MAT or ASCII file

Open files of various types using appropriate editor or program
Save all or specific data to MAT or ASCII file

Open Import Wizard, the graphical user interface to import data
Open file in appropriate application (Windows only)

Low-Level File I/O

fclose
feof
ferror
fgetl
fgets
fopen
fprintf
fread
frewind
fscanf
fseek
ftell
fwrite

Text Files

csvread
csvwrite
dlmread
dlmwrite
textread
textscan

Close one or more open files

Test for end-of-file

Query MATLAB about errors in file input or output
Return next line of file as string without line terminator(s)
Return next line of file as string with line terminator(s)
Open file or obtain information about open files

Write formatted data to file

Read binary data from file

Rewind open file

Read formatted data from file

Set file position indicator

Get file position indicator

Write binary data to file

Read numeric data from text file, using comma delimiter

Write numeric data to text file, using comma delimiter

Read numeric data from text file, specifying your own delimiter
Write numeric data to text file, specifying your own delimiter
Read data from text file, write to multiple outputs

Read data from text file, convert and write to cell array

XML Documents

xmlread
xmlwrite
xslt

Parse XML document
Serialize XML Document Object Model node
Transform XML document using XSLT engine

1-41

1 Funciions — Categorical List

Spreadsheets

Microsoft Excel Functions

xlsfinfo Determine if file contains Microsoft Excel (. x1s) spreadsheet
x1lsread Read Microsoft Excel spreadsheet file (. x1s)
xlswrite Write Microsoft Excel spreadsheet file (. x1s)

Lotus123 Functions

wk1read Read Lotus123 WK1 spreadsheet file into matrix
wkiwrite Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)

cdfepoch Convert MATLAB date number or date string into CDF epoch
cdfinfo Return information about CDF file

cdfread Read CDF file

cdfwrite Write CDF file

Flexible Image Transport System

fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)

hdf Interface to HDF4 files

hdfinfo Return information about HDF4 or HDF-EOS file
hdfread Read HDF4 file

hdftool Start HDF4 Import Tool

hdf5 Describes HDF5 data type objects

hdf5info Return information about HDF5 file

hdf5read Read HDFS5 file

hdf5write Write data to file in HDF5 format
Band-Interleaved Data

multibandread Read band-interleaved data from file
multibandwriteWrite band-interleaved data to file

1-42

File 1/O

Audio and Audio/Video

General

audioplayer

Create audio player object

audiorecorder Perform real-time audio capture

beep
1lin2mu
mmfileinfo
mu2lin
sound
soundsc

Produce beep sound

Convert linear audio signal to mu-law
Information about a multimedia file
Convert mu-law audio signal to linear
Convert vector into sound

Scale data and play as sound

SPARCstation-Specific Sound Functions

auread
auwrite

Read NeXT/SUN (. au) sound file
Write NeXT/SUN (. au) sound file

Microsoft WAVE Sound Functions

wavplay
wavread
wavrecord
wavwrite

Play sound on PC-based audio output device
Read Microsoft WAVE (.wav) sound file
Record sound using PC-based audio input device
Write Microsoft WAVE (.wav) sound file

Audio/Video Interleaved (AVI) Functions

addframe
avifile
aviinfo
aviread
close
movie2avi

Images
im2java
imfinfo
imread
imwrite

Add frame to AVI file

Create new AVI file

Return information about AVI file

Read AVI file

Close AVI file

Create AVI movie from MATLAB movie

Convert image to instance of Java image object
Return information about graphics file

Read image from graphics file

Write image to graphics file

1-43

1 Funciions — Categorical List

Internet Exchange

ftp Connect to FTP server, creating an FTP object

sendmail Send e-mail message (attachments optional) to list of addresses
unzip Extract contents of zip file

urlread Read contents at URL

urlwrite Save contents of URL to file

zip Create compressed version of files in zip format

1-44

Graphics

Graphics

2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

Basic Plots and Graphs

box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars

hold Hold current graph

LineSpec Line specification syntax
loglog Plot using log-log scales

polar Polar coordinate plot

plot Plot vectors or matrices.

plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot

semilogy Semi-log scale plot

subplot Create axes in tiled positions

Plotting Tools

figurepalette Display figure palette on figure
pan Turn panning on or off.
plotbrowser Display plot browser on figure
plottools Start plotting tools
propertyeditorDisplay property editor on figure
zoom Turn zooming on or off

1-45

1 Funciions — Categorical List

1-46

Annotating Plots

annotation
clabel
datetick
gtext
legend
texlabel
title
xlabel
ylabel
zlabel

Create annotation objects

Add contour labels to contour plot

Date formatted tick labels

Place text on 2-D graph using mouse

Graph legend for lines and patches

Produce the TeX format from character string
Titles for 2-D and 3-D plots

X-axis labels for 2-D and 3-D plots

Y-axis labels for 2-D and 3-D plots

Z-axis labels for 3-D plots

Annotation Object Properties

arrow
doublearrow
ellipse
line
rectangle
textarrow

Properties for annotation arrows

Properties for double-headed annotation arrows
Properties for annotation ellipses

Properties for annotation lines

Properties for annotation rectangles

Properties for annotation textbox

Specialized Plotting

® “Area, Bar, and Pie Plots”

¢ “Contour Plots”

® “Direction and Velocity Plots”
® “Discrete Data Plots”

® “Function Plots”

¢ “Histograms”

® “Polygons and Surfaces”
® “Scatter/Bubble Plots”

® “Animation”

Graphics

Area, Bar, and Pie Plots

area Area plot

bar Vertical bar chart

barh Horizontal bar chart

bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char

pie Pie plot

pie3d 3-D pie plot

Contour Plots

contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter

ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots

comet Comet plot

comet3 3-D comet plot

compass Compass plot

feather Feather plot

quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots

stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots

ezcontour Easy to use contour plotter

ezcontourf Easy to use filled contour plotter

ezmesh Easy to use 3-D mesh plotter

ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter

ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter

ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

1-47

1 Funciions — Categorical List

Histograms

hist
histc
rose

Plot histograms
Histogram count
Plot rose or angle histogram

Polygons and Surfaces

convhull
cylinder
delaunay
dsearch
ellipsoid
fill
fill3
inpolygon
pcolor
polyarea
ribbon
slice
sphere
tsearch
voronoi
waterfall

Convex hull

Generate cylinder

Delaunay triangulation

Search Delaunay triangulation for nearest point
Generate ellipsoid

Draw filled 2-D polygons

Draw filled 3-D polygons in 3-space
True for points inside a polygonal region
Pseudocolor (checkerboard) plot

Area of polygon

Ribbon plot

Volumetric slice plot

Generate sphere

Search for enclosing Delaunay triangle
Voronoi diagram

Waterfall plot

Scatter/Bubble Plots

plotmatrix

scatter
scatter3

Animation

frame2im
getframe
im2frame
movie
noanimate

1-48

Scatter plot matrix
Scatter plot
3-D scatter plot

Convert movie frame to indexed image
Capture movie frame

Convert image to movie frame

Play recorded movie frames

Change EraseMode of all objects to normal

Graphics

Bit-Mapped Images

frame2im Convert movie frame to indexed image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage file format registry

im2frame Convert image to movie frame

im2java Convert image to instance of Java image object
imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB image
Printing

frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation

pagesetupdlg Page setup dialog box

print Print graph or save graph to file

printdlg Print dialog box

printopt Configure local printer defaults
printpreview Preview figure to be printed

saveas Save figure to graphic file

Handle Graphics
¢ Finding and Identifying Graphics Objects

¢ Object Creation Functions
® Figure Windows
® Axes Operations

1-49

1 Funciions — Categorical List

1-50

Finding and Identifying Graphics Objects

allchild
ancestor
copyobj
delete
findall
figflag
findfigs
findobj
gca

gcho
gcbhf

gco

get
ishandle
set

Find all children of specified objects

Find ancestor of graphics object

Make copy of graphics object and its children
Delete files or graphics objects

Find all graphics objects (including hidden handles)
Test if figure is on screen

Display off-screen visible figure windows

Find objects with specified property values

Get current Axes handle

Return object whose callback is currently executing
Return handle of figure containing callback object
Return handle of current object

Get object properties

True if value is valid object handle

Set object properties

Obiject Creation Functions

axes Create axes object

figure Create figure (graph) windows
hggroup Create a group object

hgtransform Create a group to transform

image Create image (2-D matrix)

light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties

surface Create surface (quadrilaterals)

text Create text object (character strings)
uicontextmenu Create context menu (popup associated with object)
Plot Objects

areaseries Property list

barseries Property list

contourgroup Property list
errorbarseriesProperty list

lineseries Property list

quivergroup Property list

scattergroup Property list

stairseries Property list

stemseries Property list

surfaceplot Property list

Graphics

Figure Windows

clc

clf
close
closereq
drawnow
figflag
gcf
hgload
hgsave
newplot
opengl
refresh
saveas

Clear figure window

Clear figure

Close specified window

Default close request function

Complete any pending drawing

Test if figure is on screen

Get current figure handle

Load graphics object hierarchy from a FIG-file
Save graphics object hierarchy to a FIG-file
Graphics M-file preamble for NextPlot property
Change automatic selection mode of OpenGL rendering
Refresh figure

Save figure or model to desired output format

Axes Operations

axis

box

cla

gca

grid

ishold
makehgtform

Plot axis scaling and appearance
Display axes border

Clear Axes

Get current Axes handle

Grid lines for 2-D and 3-D plots
Get the current hold state

Create a transform matrix

Operating on Object Properties

get
linkaxes
linkprop
set

Get object properties

Synchronize limits of specified axes

Maintain same value for corresponding properties
Set object properties

1-51

1 Funciions — Categorical List

1-52

3-D Visualization

Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting
Transparency Specify and control object transparency
Volume Visualization Visualize gridded volume data

Surface and Mesh Plots

® Creating Surfaces and Meshes
® Domain Generation
® Color Operations

¢ Colormaps

Creating Surfaces and Meshes

hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

3-D Visualization

Color Operations

brighten Brighten or darken colormap

caxis Pseudocolor axis scaling
colormapeditorStart colormap editor

colorbar Display color bar (color scale)

colordef Set up color defaults

colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color

graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion

rgbplot Plot colormap

shading Color shading mode

spinmap Spin the colormap

surfnorm 3-D surface normals

whitebg Change axes background color for plots
Colormaps

autumn Shades of red and yellow colormap

bone Gray-scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap

flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap

hot Black-red-yellow-white colormap

hsv Hue-saturation-value (HSV) colormap

jet Variant of HSV

lines Line color colormap

prism Colormap of prism colors

spring Shades of magenta and yellow colormap
summer Shades of green and yellow colormap
winter Shades of blue and green colormap

View Control

® Controlling the Camera Viewpoint

® Setting the Aspect Ratio and Axis Limits
® Object Manipulation

® Selecting Region of Interest

1-53

1 Funciions — Categorical List

1-54

Controlling the Camera Viewpoint

camdolly Move camera position and target
camlookat View specific objects

camorbit Orbit about camera target

campan Rotate camera target about camera position
campos Set or get camera position

camproj Set or get projection type

camroll Rotate camera about viewing axis
camtarget Set or get camera target
cameratoolbar Control camera toolbar programmatically
camup Set or get camera up-vector

camva Set or get camera view angle

camzoom Zoom camera in or out

view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

makehgtform Create a transform matrix

Setting the Aspect Ratio and Axis Limits

daspect Set or get data aspect ratio

pbaspect Set or get plot box aspect ratio

x1lim Set or get the current x-axis limits

ylim Set or get the current y-axis limits

zlim Set or get the current z-axis limits

Object Manipulation

pan Turns panning on or off

reset Reset axis or figure

rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizelnteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest

dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

3-D Visualization

Lighting

camlight Cerate or position Light

light Light object creation function

lightangle Position light in sphereical coordinates

lighting Lighting mode

material Material reflectance mode

Transparency

alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Volume Visualization

coneplot
contourslice
curl
divergence
flow

Plot velocity vectors as cones in 3-D vector field
Draw contours in volume slice plane

Compute curl and angular velocity of vector field
Compute divergence of vector field

Generate scalar volume data

interpstreamspeedInterpolate streamline vertices from vector-field magnitudes

isocaps
isocolors
isonormals
isosurface
reducepatch
reducevolume
shrinkfaces
slice
smooth3
stream2
stream3
streamline

Compute isosurface end-cap geometry
Compute colors of isosurface vertices
Compute normals of isosurface vertices
Extract isosurface data from volume data
Reduce number of patch faces

Reduce number of elements in volume data set
Reduce size of patch faces

Draw slice planes in volume

Smooth 3-D data

Compute 2-D stream line data

Compute 3-D stream line data

Draw stream lines from 2- or 3-D vector data

streamparticlesDraws stream particles from vector volume data

streamribbon
streamslice
streamtube
surf2patch
subvolume
volumebounds

Draws stream ribbons from vector volume data

Draws well-spaced stream lines from vector volume data

Draws stream tubes from vector volume data

Convert surface data to patch data

Extract subset of volume data set

Return coordinate and color limits for volume (scalar and vector)

1-56

1 Funciions — Categorical List

1-56

Creating Graphical User Interfaces

Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes

Deploying User
Interfaces

Developing Use
Interfaces

Dialog boxes for error, user input, waiting, etc.

Launching GUIs, creating the handles structure

r Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from Finding object handles from within callbacks

Callbacks functions

GUI Utility Functions Moving objects, text wrapping
Controlling Program Wait and resume based on user input
Execution

Predefined Dialog Boxes

dialog
errordlg
helpdlg
inputdlg
listdlg
msgbox
pagesetupdlg
printdlg
questdlg
uigetdir
uigetfile
uiputfile
uisetcolor
uisetfont
waitbar
warndlg

Create dialog box

Create error dialog box

Display help dialog box

Create input dialog box

Create list selection dialog box

Create message dialog box

Page setup dialog box

Display print dialog box

Create question dialog box

Display dialog box to retrieve name of directory
Display dialog box to retrieve name of file for reading
Display dialog box to retrieve name of file for writing
Set ColorSpec using dialog box

Set font using dialog box

Display wait bar

Create warning dialog box

Creating Graphical User Inferfaces

Deploying User Interfaces

guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces

guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data

getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input

ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects

menu Generate menu of choices for user input
uibuttongroup Create component to exclusively manage radiobuttons and togglebuttons
uicontextmenu Create context menu

uicontrol Create user interface control
uimenu Create user interface menu
uipanel Create panel container object

uipushtool Create toolbar push button
uitoggletool Create toolbar toggle button
uitoolbar Create toolbar

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Display off-screen visible figure windows

findobj Find specific graphics object

gcbf Return handle of figure containing callback object
gcho Return handle of object whose callback is executing

1-57

1 Funciions — Categorical List

1-58

Functions — Alphabetical
List

pack

Purpose

Syntax

Description

Remarks

2-1596

2pack

Consolidate workspace memory

pack
pack filename
pack('filename')

pack frees up needed space by reorganizing information so it only uses the
minimum memory required. You must run pack from a directory for which you
have write permission. Running pack clears all variables not in the base
workspace, so persistent variables, for example, will be cleared.

pack filename accepts an optional filename for the temporary file used to
hold the variables. Otherwise, it uses the file named pack.tmp. You must run
pack from a directory for which you have write permission.

pack('filename') is the function form of pack.

The pack function does not affect the amount of memory allocated to the
MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When memory is
fragmented, there may be plenty of free space, but not enough contiguous
memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack function may
find you some free memory without forcing you to delete variables.

The pack function frees space by:

¢ Saving all variables in the base workspace to disk in a temporary file called
pack.tmp

¢ Clearing all variables and functions from memory
® Reloading the base workspace variables back from pack.tmp
® Deleting the temporary file pack.tmp

pack

Examples

See Also

If you use pack and there is still not enough free memory to proceed, you must
clear some variables. If you run out of memory often, you can allocate larger
matrices earlier in the MATLAB session and use these system-specific tips:

e UNIX: Ask your system manager to increase your swap space.

® Windows: Increase virtual memory using the Windows Control Panel.

To maintain persistent variables when you run pack, use mlock in the function.
Change the current directory to one that is writable, run pack, and return to
the previous directory.

cwd = pwd;
cd(tempdir);
pack

cd(cwd)

clear, memory

2-1597

pagesetupdig

Purpose Page position dialog box
Syntax dlg = pagesetupdlg(fig)
Description dlg = pagesetupdlg(fig) creates a dialog box from which a set of pagelayout

properties for the figure window, fig, can be set.
pagesetupdlg implements the "Page Setup..." option in the Figure File Menu.

Unlike pagedlg, pagesetupdlg currently only supports setting the layout for a
single figure. fig must be a single figure handle, not a vector of figures or a
simulink diagram.

Page Setup - Figure 1

x|
Size and Fosition | Paper I Lines and Text I Axes and Figure I

rMaode
" Use screen size, centered an page

' Use manual size and position

Manual size and position

Fampk

Top: 2.50 =
Llse defaults |

Left: |0.25 33
Fill page |

Width: Ia.oo 3:
Fix aspect ratio |

Height: |s.00 =
I j Center |
Units:Iinches vI

Help.. | [o]34 I Cancel

See Also printpreview, printopt

2-1598

pan

Purpose

Syntax

Description

See Also

Pan the view of a graph interactively

pan on
pan xon

pan yon

pan off

pan
pan(figure_handle,...)

pan on truns on mouse-based panning in the current figure.

pan xon turns on panning only in the x direction in the current figure.
pan yon turns on panning only in the y direction in the current figure.
pan off turns panning off in the current figure.

pan toggles the pan state in the current figure on or off.

pan(figure_handle,...) sets the pan state in the specified figure.

zoom, linkaxes

“Object Manipulation” for related functions

2-1599

pareto

Purpose

Syntax

Description

See Also

2-1600

Pareto chart

pareto(Y)
pareto(Y,names)
pareto(Y,X)

H = pareto(...)

Pareto charts display the values in the vector Y as bars drawn in descending
order.
pareto(Y) labels each bar with its element index in Y.

pareto(Y,names) labels each bar with the associated name in the string matrix
or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

H = pareto(...) returns a combination of patch and line object handles.

hist, bar

partialpath

Purpose

Description

Examples

See Also

Partial pathname

A partial pathname is a pathname relative to the MATLAB path, matlabpath.
It is used to locate private and method files, which are usually hidden, or to
restrict the search for files when more than one file with the given name exists.

A partial pathname contains the last component, or last several components,
of the full pathname separated by /. For example, matfun/trace,
private/children, and demos/clown.mat are valid partial pathnames.
Specifying the @ in method directory names is optional.

Partial pathnames make it easy to find toolbox or MATLAB relative files on
your path, independent of the location where MATLAB is installed.

Many commands accept partial pathnames instead of a full pathname. Some of
these commands are

help, type, load, exist, what, which, edit, dbtype, dbstop,
dbclear, and fopen

The following example uses a partial pathname:

what graph2d/@figobj
M-files in directory matlabroot\toolbox\matlab\graph2d\@figobj

deselectall doresize figobj middrag subsasgn
doclick enddrag get set subsref

P-files in directory matlabroot\toolbox\matlab\graph2d\@figobj

deselectall doresize figobj middrag subsasgn
doclick enddrag get set subsref

The @ in the class directory name @figobj is not necessary. You get the same
response from the following command:

what graph2d/figobj

fileparts, matlabroot, path

2-1601

pascal

Purpose Pascal matrix
Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)
Description A = pascal(n) returns the Pascal matrix of order n: a symmetric positive

definite matrix with integer entries taken from Pascal’s triangle. The inverse
of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to the signs
of the columns) of the Pascal matrix. It is involutary, that is, it is its own
inverse.

A = pascal(n,2) returns a transposed and permuted version of pascal(n,1).
Ais a cube root of the identity matrix.

Examples pascal(4) returns
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
1 1 1
-2 -1 0
1 0 0
See Also chol

2-1602

patch

Purpose

Syntax

Description

Create patch graphics object

patch(X,Y,C)

patch(X,Y,Z,C)

patch (FV)

patch(...'PropertyName' ,PropertyValue...)
patch('PropertyName' ,PropertyValue...) PN/PV pairs only
handle = patch(...)

patch is the low-level graphics function for creating patch graphics objects. A
patch object is one or more polygons defined by the coordinates of its vertices.
You can specify the coloring and lighting of the patch. See Creating 3-D Models
with Patches for more information on using patch objects.

patch(X,Y,C) adds the filled two-dimensional patch to the current axes. The
elements of X and Y specify the vertices of a polygon. If X and Y are matrices,
MATLAB draws one polygon per column. C determines the color of the patch.
It can be a single ColorSpec, one color per face, or one color per vertex (see
“Remarks”). If C is a 1-by-3 vector, it is assumed to be an RGB triplet,
specifying a color directly.

patch(X,Y,Z,C) creates a patch in three-dimensional coordinates.

patch(FV) creates a patch using structure FV, which contains the fields
vertices, faces, and optionally facevertexdata. These fields correspond to
the Vertices, Faces, and FaceVertexCData patch properties.

patch(...'PropertyName',PropertyValue...) follows the X, Y, (Z), and C
arguments with property name/property value pairs to specify additional patch
properties.

patch('PropertyName' ,PropertyVvalue,...) specifies all properties using
property name/property value pairs. This form enables you to omit the color
specification because MATLAB uses the default face color and edge color unless
you explicitly assign a value to the FaceColor and EdgeColor properties. This
form also allows you to specify the patch using the Faces and Vertices
properties instead of x-, ¥-, and z-coordinates. See the “Examples” section for
more information.

2-1603

patch

Remarks

2-1604

handle = patch(...) returns the handle of the patch object it creates.

Unlike high-level area creation functions, such as fill or area, patch does not
check the settings of the figure and axes NextPlot properties. It simply adds
the patch object to the current axes.

If the coordinate data does not define closed polygons, patch closes the
polygons. The data can define concave or intersecting polygons. However, if the
edges of an individual patch face intersect themselves, the resulting face may
or may not be completely filled. In that case, it is better to break up the face
into smaller polygons.

Specifying Patch Properties

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

There are two patch properties that specify color:

® CData — Use when specifying x-, y-, and z-coordinates (XData, YData, ZData).

® FaceVertexCData — Use when specifying vertices and connection matrix
(Vertices and Faces).

The CData and FaceVertexCData properties accept color data as indexed or
true color (RGB) values. See the CData and FaceVertexCData property
descriptions for information on how to specify color.

Indexed color data can represent either direct indices into the colormap or
scaled values that map the data linearly to the entire colormap (see the caxis
function for more information on this scaling). The CDataMapping property
determines how MATLAB interprets indexed color data.

patch

Color Specification

CData
—— Color Interpretation by MATLAB

FaceVertexCData—
True Color

Indexed—— Color Mapping
(CDataMapping)

direct

scaled

Color Data Interpretation
You can specify patch colors as

® A single color for all faces
® One color for each face, enabling flat coloring
® One color for each vertex, enabling interpolated coloring

The following tables summarize how MATLAB interprets color data defined by
the CData and FaceVertexCData properties.

Interpretation of the CData Property

[X,Y,Z]Data CData Required for Results Obtained

Dimensions Indexed True Color
1-by-1-by-3

Use the single color specified for all patch faces. Edges

m-by-n scalar
can be only a single color.

2-1605

patch

[X,Y,Z]Data
Dimensions

CData Required for
Indexed True Color

Results Obtained

m-by-n 1-by-n 1-by-n-by-3 Use one color for each patch face. Edges can be only a
(n>=4) single color.
m-by-n m-by-n m-by-n-3 Assign a color to each vertex. Patch faces can be flat (a
single color) or interpolated. Edges can be flat or
interpolated.
Interpretation of the FaceVertexCData Property
Vertices Faces FaceVertexCData Results Obtained

Dimensions

Required for

Dimensions Indexed True Color

m-by-n

m-by-n

m-by-n

k-by-3 scalar 1-by-3 Use the single color specified for all

patch faces. Edges can be only a single
color.

k-by-3 k-by-1 k-by-3 Use one color for each patch face. Edges

can be only a single color.

k-by-3 m-by-1 m-by-3 Assign a color to each vertex. Patch faces

can be flat (a single color) or
interpolated. Edges can be flat or
interpolated.

Examples

2-1606

This example creates a patch object using two different methods:

® Specifying x-, y-, and z-coordinates and color data (XData, YData, ZData, and

CData properties)

® Specifying vertices, the connection matrix, and color data (Vertices, Faces,
FaceVertexCData, and FaceColor properties)

patch

Specifying X, Y, and Z Coordinates

The first approach specifies the coordinates of each vertex. In this example, the
coordinate data defines two triangular faces, each having three vertices. Using
true color, the top face is set to white and the bottom face to gray.

X [0 0;0 151 1];

y [1 1;2 252 1];

z =11 1;1 1;11];
tcolor(1,1,1:3) = [1 1 1];
tcolor(1,2,1:3) = [.7 .7 .7];
patch(x,y,z,tcolor)

V2 V3
19 V5
1.8
1.7
1.6
1.5
1.4
1.3
1.2
11 V1
V4 V6
10 0.2 0.4 0.6 0.8 1

Notice that each face shares two vertices with the other face (V{-V4 and V3-V5).

Specifying Vertices and Faces

The Vertices property contains the coordinates of each unique vertex defining
the patch. The Faces property specifies how to connect these vertices to form

each face of the patch. For this example, two vertices share the same location
so you need to specify only four of the six vertices. Each row contains the x-, y-,
and z-coordinates of each vertex.

vert = [01 1;02 1;1 2 1;1 1 1];

There are only two faces, defined by connecting the vertices in the order
indicated.

2-1607

patch

2-1608

fac = [1 2 3;1 3 4];

To specify the face colors, define a 2-by-3 matrix containing two RGB color
definitions.

tcolor = [1 1 1;.7 .7 .7];

With two faces and two colors, MATLAB can color each face with flat shading.
This means you must set the FaceColor property to flat, since the
faces/vertices technique is available only as a low-level function call (i.e., only
by specifying property name/property value pairs).

Create the patch by specifying the Faces, Vertices, and FaceVertexCData
properties as well as the FaceColor property.

patch('Faces',fac, 'Vertices',vert, 'FaceVertexCData',tcolor,...
'FaceColor', 'flat')

V22 V3
19
18
v Face 1
16
15
1.4
13 Face 2
1.2
1.1
Vllo 0.2 0.4 0.6 0.8 1 V4

Specifying only unique vertices and their connection matrix can reduce the size
of the data for patches having many faces. See the descriptions of the Faces,
Vertices, and FaceVertexCData properties for information on how to define
them.

MATLAB does not require each face to have the same number of vertices. In
cases where they do not, pad the Faces matrix with NaNs. To define a patch

patch

with faces that do not close, add one or more NaNs to the row in the Vertices
matrix that defines the vertex you do not want connected.

Object
Hierarchy

Setting Default Properties
You can set default patch properties on the axes, figure, and root levels:

set (0, 'DefaultPatchPropertyName' ,PropertyValue...)
set(gcf, 'DefaultPatchPropertyName' ,PropertyValue...)
set(gca, 'DefaultPatchPropertyName' ,PropertyValue...)

PropertyName is the name of the patch property and Propertyvalue is the
value you are specifying. Use set and get to access patch properties.

Property List The following table lists all patch properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Property Name Property Description Property Value

Data Defining the Object

Faces Connection matrix for Vertices Values: m-by-n matrix
Default: [1,2,3]

Vertices Matrix of x-, y-, and Value: matrix
z-coordinates of the vertices Default: [0,1;1,1;0,0]
(used with Faces)

XData The x-coordinates of the Value: vector or matrix
vertices of the patch Default: [0;1;0]

2-1609

patch

Property Name Property Description Property Value

YData The y-coordinates of the Value: vector or matrix
vertices of the patch Default: [1;1;0]

ZData The z-coordinates of the vertices Value: vector or matrix
of the patch Default: [] (empty matrix)

Specifying Color

CData Color data for use with the
XData/YData/ZData method

CDataMapping Controls mapping of CData to
colormap

EdgeColor Color of face edges

FaceColor Color of face

FaceVertexCData Color data for use with

Faces/Vertices method

MarkerEdgeColor Color of marker or the edge
color for filled markers

MarkerFaceColor Fill color for markers that are
closed shapes

Controlling the Effects of Lights

AmbientStrength Intensity of the ambient light

Value: scalar, vector, or
matrix
Default: [] (empty matrix)

Values: scaled, direct
Default: scaled

Values: ColorSpec, none,
flat, interp
Default: ColorSpec

Values: ColorSpec, none,
flat, interp
Default: ColorSpec

Value: matrix
Default: [] (empty matrix)

Values: ColorSpec, none,
auto
Default: auto

Values: ColorSpec, none,
auto
Default: none

Value: scalar >=0 and <=1
Default: 0.3

2-1610

patch

Property Name

Property Description

Property Value

BackFacelLighting

DiffuseStrength

EdgelLighting

FaceLighting

NormalMode

SpecularColorReflectance

SpecularExponent

SpecularStrength

VertexNormals
Defining Edges and Markers

LineStyle

LineWidth

Marker

Controls lighting of faces
pointing away from camera

Intensity of diffuse light

Method used to light edges

Method used to light edges

MATLAB generated or
user-specified normal vectors

Composite color of specularly
reflected light
Harshness of specular reflection

Intensity of specular light

Vertex normal vectors

Select from five line styles.

The width of the edge in points

Marker symbol to plot at data
points

Values: unlit, 1it,
reverselit
Default: reverselit

Value: scalar >=0 and <=1
Default: 0.6

Values: none, flat,
gouraud, phong
Default: none

Values: none, flat,
gouraud, phong
Default: none

Values: auto, manual
Default: auto

Value: scalar 0 to 1
Default: 1

Value: scalar >= 1
Default: 10

Value: scalar >=0 and <=1
Default: 0.9

Value: matrix

Values: -, —, :, —.,
Default: -

none

Value: scalar
Default: 0.5 points

Values: see Marker property
Default: none

2-1611

patch

Property Name

Property Description

Property Value

MarkerSize

Specifying Transparency

AlphaDataMapping

EdgeAlpha

FaceAlpha

FaceVertexAlphaData

Controlling the Appearance

Clipping

EraseMode

SelectionHighlight

Visible

Controlling Access to Objects

HandleVisibility

Size of marker in points

Transparency mapping method

Transparency of the edges of
patch faces

Transparency of the patch face

Face and vertex transparency
data

Clipping to axes rectangle

Method of drawing and erasing
the patch (useful for animation)

Highlights patch when selected
(Selected property set to on)

Makes the patch visible or
invisible

Determines if and when the
patch’s handle is visible to other
functions

Value: size in points
Default: 6

Values: none, direct,
scaled
Default: scaled

Values: scalar, flat,
interp
Default: 1 (opaque)

Values: scalar, flat,
interp
Default: 1 (opaque)

Value: m-by-1 matrix

Values: on, off
Default: on

Values: normal, none, xor,
background
Default: normal

Values: on, off
Default: on

Values: on, off
Default: on

Values: on, callback, off
Default: on

2-1612

patch

Property Name Property Description

Property Value

HitTest Determines if the patch can
become the current object (see
the figure CurrentObject
property)

Controlling Callback Routine Execution

BeingDeleted Query to see if object is being
deleted.
BusyAction Specifies how to handle callback

routine interruption

ButtonDownFcn Defines a callback routine that
executes when a mouse button
is pressed on over the patch

CreateFcn Defines a callback routine that
executes when a patch is
created

DeleteFcn Defines a callback routine that

executes when the patch is
deleted (via close or delete)

Interruptible Determines if callback routine
can be interrupted

UIContextMenu Associates a context menu with
the patch

General Information About the Patch
Children Patch objects have no children.

Parent The parent of a patch object is
an axes, hggroup, or
hgtransform object.

Values: on, off
Default: on

Values: on | off
Read only

Values: cancel, queue
Default: queue

Value: string or function
handle
Default: ' ' (empty string)

Value: string or function
handle
Default: ' ' (empty string)

Value: string or function
handle
Default: ' ' (empty string)

Values: on, off
Default: on (can be
interrupted)

Value: handle of a
Uicontrextmenu

Value: [] (empty matrix)
Value: object handle

2-1613

patch

Property Name

Property Description

Property Value

Selected Indicates whether the patch is Values: on, of f
in a selected state Default: on
Tag User-specified label Value: any string
Default: '' (empty string)
Type The type of graphics object Value: the string 'patch’
(read only)
UserData User-specified data Value: any matrix
Default: [] (empty matrix)
See Also area, caxis, fill, fill3, isosurface, surface

2-1614

Patch Properties

Modifying
Properties

Patch Property
Descriptions

You can set and query graphics object properties in two ways:

¢ The Property Editor is an interactive tool that enables you to see and change
object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

AlphaDataMapping none | direct | {scaled}

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. This property can be any of the following:

® none — The transparency values of FaceVertexAlphaData are between 0 and
1 or are clamped to this range (the default).

® scaled — Transform the FaceVertexAlphaData to span the portion of the
alphamap indicated by the axes ALim property, linearly mapping data values
to alpha values.

e direct — Use the FaceVertexAlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer values ranging
from 1 to length(alphamap). MATLAB maps values less than 1 to the first
alpha value in the alphamap, and values greater than length(alphamap) to
the last alpha value in the alphamap. Values with a decimal portion are fixed
to the nearest lower integer. If FaceVertexAlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a value of 0 to
the first alpha value in the alphamap).

AmbientStrength scalar >= 0 and <=1

Strength of ambient light. This property sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire scene. You
must have at least one visible light object in the axes for the ambient light to
be visible. The axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the axes.

2-1615

Patch Properties

2-1616

You can also set the strength of the diffuse and specular contribution of light
objects. See the DiffuseStrength and SpecularStrength properties.

BackFaceLighting unlit | 1it | {reverselit}

Face lighting control. This property determines how faces are lit when their
vertex normals point away from the camera:

® unlit — Face is not lit.
® 1it — Face is lit in normal way.

® reverselit — Face is lit as if the vertex pointed towards the camera.

This property is useful for discriminating between the internal and external
surfaces of an object. See the Using MATLAB Graphics manual for an example.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property) It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted, and therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is of f, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

e cancel — Discard the event that attempted to execute a second callback
routine.

Patch Properties

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the patch object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CDhata scalar, vector, or matrix

Patch colors. This property specifies the color of the patch. You can specify color
for each vertex, each face, or a single color for the entire patch. The way
MATLAB interprets CData depends on the type of data supplied. The data can
be numeric values that are scaled to map linearly into the current colormap,
integer values that are used directly as indices into the current colormap, or
arrays of RGB values. RGB values are not mapped into the current colormap,
but interpreted as the colors defined. On true color systems, MATLAB uses the
actual colors defined by the RGB triples.

The following two diagrams illustrate the dimensions of CData with respect to
the coordinate data arrays, XData, YData, and ZData. The first diagram
illustrates the use of indexed color.

2-1617

Patch Properties

Single Color One Color One Color
Per Face Per Vertex
CData CDhata
CData
L
[X,Y,Z]Data ('X,Y,z]Data
F||F| F| F| F
a-ffaTlT a7 aT a’
L clle|ec|c]c| — |
ellefelel]e [X,Y,Z]Data
L1123 4] 5]

The second diagram illustrates the use of true color. True color requires
m-by-n-by-3 arrays to define red, green, and blue components for each color.

2-1618

Patch Properties

Single Color One Color One Color
Per Face Per Vertex
coate IR
B WB/IIII [] Green [
G/ T 1] Red | [
R R cTLDatla —
[X,Y,z]Data IX,Y,z]pata (Data T
FI|F|F|F|F -
TaraT al aTl a’ I
C C C C C
Te el el e e
12131 4]5] [X,Y,z]Data

Note that if CData contains NaNs, MATLAB does not color the faces.

See also the Faces, Vertices, and FaceVertexCData properties for an
alternative method of patch definition.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB
interprets indexed color data used to color the patch. (If you use true color
specification for CData or FaceVertexCData, this property has no effect.)

¢ scaled — Transform the color data to span the portion of the colormap
indicated by the axes CLim property, linearly mapping data values to colors.
See the caxis command for more information on this mapping.

® direct — Use the color data as indices directly into the colormap. When not
scaled, the data are usually integer values ranging from 1 to
length(colormap). MATLAB maps values less than 1 to the first color in the
colormap, and values greater than length(colormap) to the last color in the

2-1619

Patch Properties

2-1620

colormap. Values with a decimal portion are fixed to the nearest lower
integer.

Children matrix of handles
Always the empty matrix; patch objects have no children.
Clipping {on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does not display any
portion of the patch outside the axes rectangle.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a patch object. You must
define this property as a default value for patches or in a call to the patch
function that creates a new object.

For example, the following statement creates a patch (assuming x, y, z, and ¢
are defined), and executes the function referenced by the function handle
@myCreateFcn.

patch(x,y,z,c, 'CreateFcn',@myCreateFcn)

MATLAB executes the create function after setting all properties for the patch
created. Setting this property on an existing patch object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete patch callback routine. A callback routine that executes when you delete
the patch object (e.g., when you issue a delete command or clear the axes (cla)
or figure (c1f) containing the patch). MATLAB executes the routine before
deleting the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

Patch Properties

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DiffuseStrength scalar >= 0 and <=1

Intensity of diffuse light. This property sets the intensity of the diffuse
component of the light falling on the patch. Diffuse light comes from light
objects in the axes.

You can also set the intensity of the ambient and specular components of the
light on the patch object. See the AmbientStrength and SpecularStrength
properties.

EdgeAlpha {scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be any of the
following:

e gcalar — A single non-NaN scalar value between 0 and 1 that controls the
transparency of all the edges of the object. 1 (the default) means fully opaque
and 0 means completely transparent.

e flat — The alpha data (FaceVertexAlphaData) of each vertex controls the
transparency of the edge that follows it.

¢ interp — Linear interpolation of the alpha data (FaceVertexAlphaData) at
each vertex determines the transparency of the edge.

Note that you cannot specify flat or interp EdgeAlpha without first setting
FaceVertexAlphaData to a matrix containing one alpha value per face (flat)
or one alpha value per vertex (interp).

EdgeColor {ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB colors the
edges of the individual faces that make up the patch.

® ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for edges. The default edge color is black. See
ColorSpec for more information on specifying color.

® none — Edges are not drawn.

e flat — The color of each vertex controls the color of the edge that follows it.
This means flat edge coloring is dependent on the order in which you specify
the vertices:

2-1621

Patch Properties

2-1622

>

O——

Vertex controlling the
color of the following edge

® interp — Linear interpolation of the CData or FaceVertexCData values at
the vertices determines the edge color.

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on patch edges. Choices are

® none — Lights do not affect the edges of this object.
e flat — The effect of light objects is uniform across each edge of the patch.

¢ gouraud — The effect of light objects is calculated at the vertices and then
linearly interpolated across the edge lines.

® phong — The effect of light objects is determined by interpolating the vertex
normals across each edge line and calculating the reflectance at each pixel.
Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase patch objects. Alternative erase modes are useful in creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

Patch Properties

® none — Do not erase the patch when it is moved or destroyed. While the
object is still visible on the screen after erasing with EraseMode none, you
cannot print it because MATLAB stores no information about its former
location.

¢ xor— Draw and erase the patch by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the patch does not damage
the color of the objects behind it. However, patch color depends on the color
of the screen behind it and is correctly colored only when over the axes
background Color, or the figure background Color if the axes Color is set to
none.

® background — Erase the patch by drawing it in the axes background Color,
or the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased patch, but the patch is always properly
colored.

Printing with Nonnormal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
perform an XOR of a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode objects.
FaceAlpha {scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the following:

® A scalar — A single non-NaN value between 0 and 1 that controls the
transparency of all the faces of the object. 1 (the default) means fully opaque
and 0 means completely transparent (invisible).

e flat — The values of the alpha data (FaceVertexAlphaData) determine the
transparency for each face. The alpha data at the first vertex determines the
transparency of the entire face.

¢ interp — Bilinear interpolation of the alpha data (FacevVertexAlphaData) at
each vertex determines the transparency of each face.

2-1623

Patch Properties

2-1624

Note that you cannot specify flat or interp FaceAlpha without first setting
FaceVertexAlphaData to a matrix containing one alpha value per face (flat)
or one alpha value per vertex (interp).

FaceColor {ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

® ColorSpec — A three-element RGB vector or one of the MATLAB predefined
names, specifying a single color for faces. See ColorSpec for more
information on specifying color.

® none — Do not draw faces. Note that edges are drawn independently of faces.

e flat — The CData or FaceVertexCData property must contain one value per
face and determines the color for each face in the patch. The color data at the
first vertex determines the color of the entire face.

¢ interp — Bilinear interpolation of the color at each vertex determines the
coloring of each face.The CData or FaceVertexCData property must contain
one value per vertex.

FacelLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of light objects on patch faces. Choices are

® none — Lights do not affect the faces of this object.

e flat — The effect of light objects is uniform across the faces of the patch.
Select this choice to view faceted objects.

® gouraud — The effect of light objects is calculated at the vertices and then
linearly interpolated across the faces. Select this choice to view curved
surfaces.

® phong — The effect of light objects is determined by interpolating the vertex
normals across each face and calculating the reflectance at each pixel. Select
this choice to view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces m-by-n matrix

Vertex connection defining each face. This property is the connection matrix
specifying which vertices in the Vertices property are connected. The Faces
matrix defines m faces with up to n vertices each. Each row designates the

Patch Properties

connections for a single face, and the number of elements in that row that are
not NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way to specify a
patch that can be more efficient than using x, y, and z coordinates in most cases.
For example, consider the following patch. It is composed of eight triangular
faces defined by nine vertices.

Faces property Vertices property

V V V
[8 9
s F; | V1| V4| V5 Vi X1 Y| Z4
16} Fe F, Fy Vi V5 Vy V, Xo| Yo| Z9
Fo Fg Fa | V2| V5| Ve | V3 |Xg|Vy| 2
Va, Vs Vg Iy Vo V6 V3 V4- X4 Y4 Z4
08l F5 V4 V7 VS V5 X5 Y5 Z5
06l F F
1 i 3 Fg :774 Vs [Vs Vg | Xg| Yo| Zg
o4 2 F F 5|Vg |V
02} N ! 8 2 V7 X7 Y7 Z7
v o omWlvlve] T
Vo | Xg| Y| Zg

The corresponding Faces and Vertices properties are shown to the right of the
patch. Note how some faces share vertices with other faces. For example, the
fifth vertex (V5) is used six times, once each by faces one, two, and three and
six, seven, and eight. Without sharing vertices, this same patch requires 24
vertex definitions.

FaceVertexAlphaData m-by-1 matrix

Face and vertex transparency data. The FaceVertexAlphaData property
specifies the transparency of patches that have been defined by the Faces and
Vertices properties. The interpretation of the values specified for
FaceVertexAlphaData depends on the dimensions of the data.

FaceVertexAlphaData can be one of the following:

2-1625

Patch Properties

2-1626

® A single value, which applies the same transparency to the entire patch. The
FaceAlpha property must be set to flat.

* An m-by-1 matrix (where m is the number of rows in the Faces property),
which specifies one transparency value per face. The FaceAlpha property
must be set to flat.

® An m-by-1 matrix (where m is the number of rows in the Vertices property),
which specifies one transparency value per vertex. The FaceAlpha property
must be set to interp.

The AlphaDataMapping property determines how MATLAB interprets the
FaceVertexAlphaData property values.

FaceVertexCData matrix

Face and vertex colors. The FaceVertexCData property specifies the color of
patches defined by the Faces and Vertices properties. You must also set the
values of the FaceColor, EdgeColor, MarkerFaceColor, or MarkerEdgeColor
are set appropriately. The interpretation of the values specified for
FaceVertexCData depends on the dimensions of the data.

For indexed colors, FaceVertexCData can be

¢ A single value, which applies a single color to the entire patch

® An n-by-1 matrix, where n is the number of rows in the Faces property,
which specifies one color per face

¢ An n-by-1 matrix, where n is the number of rows in the Vertices property,
which specifies one color per vertex

For true colors, FaceVertexCData can be

® A 1-by-3 matrix, which applies a single color to the entire patch

¢ An n-by-3 matrix, where n is the number of rows in the Faces property,
which specifies one color per face

® An n-by-3 matrix, where n is the number of rows in the Vertices property,
which specifies one color per vertex

The following diagram illustrates the various forms of the FacevertexCData
property for a patch having eight faces and nine vertices. The CDataMapping
property determines how MATLAB interprets the FaceVertexCData property
when you specify indexed colors

Patch Properties

| FaceVertexCData|
Indexed /True color

/// / \
" Onecolor One color e One color One color
Single color per face per vertex Single color per face per vertex
C Cy Cy R|G|B| |Ry|Gy|By| |Ry|Gy|By
Co Cy Ro|Gg|By| |Rg|Gg| By
Cs Cs R3|Gg|Bs| |R3|Gg|Bs
Cy Cy R4 |Gy |By| |Ry|Gy|By
Cs Cs R5|G5|Bs| |R5|G5|Bs
Ce Ce R¢|Gg|Bs| |Re|Ge|Bs
Cq Cq R7|G7|B7| |R7|Gr| By
Cg Cg Rg|Gg|Bg| |Rg|Gg|Bg
Cy Rg | Bg | Bg

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to

2-1627

Patch Properties

2-1628

protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the patch can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the patch. If HitTest is off, clicking
the patch selects the object below it (which may be the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a patch callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Patch Properties

LineStyle {-} | —]] —-. | none

Edge linestyle. This property specifies the line style of the patch edges. The
following table lists the available line styles.

Symbol Line Style
- Solid line (default)

— Dashed line
Dotted line
-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

Edge line width. The width, in points, of the patch edges (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies marks that locate vertices. You
can set values for the Marker property independently from the LineStyle
property. The following tables lists the available markers.

Marker Specifier Description

+ Plus sign

0 Circle

* Asterisk
Point

X Cross

s Square

2-1629

Patch Properties

2-1630

Marker Specifier Description

d Diamond

~

Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)

MarkerEdgeColor ColorSpec | none | {auto} | flat

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).

® ColorSpec — Defines the color to use.
® none — Specifies no color, which makes nonfilled markers invisible.

® auto — Sets MarkerEdgeColor to the same color as the EdgeColor property.

MarkerFaceColor ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles).

® ColorSpec — Defines the color to use.

® none — Makes the interior of the marker transparent, allowing the
background to show through.

® auto — Sets the fill color to the axes color, or the figure color, if the axes
Color property is set to none.

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is 6 points (1 point = 1/72 inch). Note that MATLAB draws
the point marker at 1/3 of the specified size.

Patch Properties

NormalMode {auto} | manual

MATLARB generated or user-specified normal vectors. When this property is
auto, MATLAB calculates vertex normals based on the coordinate data. If you
specify your own vertex normals, MATLAB sets this property to manual and
does not generate its own data. See also the VertexNormals property.

Parent handle of axes, hggroup, or hgtransform

Parent of patch object. This property contains the handle of the patch object’s
parent. The parent of a patch object is the axes, hggroup, or hgtransform object
that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles or a dashed box (depending on the number of faces) if the
SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by

* Drawing handles at each vertex for a single-faced patch

¢ Drawing a dashed bounding box for a multifaced patch

When SelectionHighlight is off, MATLAB does not draw the handles.

SpecularColorReflectancescalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the
specularly reflected light depends on both the color of the object from which it
reflects and the color of the light source. When set to 1, the color of the
specularly reflected light depends only on the color of the light source (i.e., the
light object Color property). The proportions vary linearly for values in
between.

2-1631

Patch Properties

2-1632

SpecularExponent scalar >=1

Harshness of specular reflection. This property controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength scalar>=0and<=1

Intensity of specular light. This property sets the intensity of the specular
component of the light falling on the patch. Specular light comes from light
objects in the axes.

You can also set the intensity of the ambient and diffuse components of the
light on the patch object. See the AmbientStrength and DiffuseStrength
properties.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you use patch objects to create borders for a group of
uicontrol objects and want to change the color of the borders in a uicontrol’s
callback routine. You can specify a Tag with the patch definition

patch(X,Y,'k','Tag', 'PatchBorder"')

Then use findobj in the uicontrol’s callback routine to obtain the handle of the
patch and set its FaceColor property.

set(findobj ('Tag', 'PatchBorder'), 'FaceColor', 'w')

Type string (read only)

Class of the graphics object. For patch objects, Type is always the string
‘patch’.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property the handle of a
uicontextmenu object created in the same figure as the patch. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the patch.

Patch Properties

See Also

UserData matrix

User-specified data. Any matrix you want to associate with the patch object.
MATLAB does not use this data, but you can access it using set and get.

VertexNormals matrix

Surface normal vectors. This property contains the vertex normals for the
patch. MATLAB generates this data to perform lighting calculations. You can
supply your own vertex normal data, even if it does not match the coordinate
data. This can be useful to produce interesting lighting effects.

Vertices matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates for each vertex.
See the Faces property for more information.

Visible {on} | off

Patch object visibility. By default, all patches are visible. When set to of f, the
patch is not visible, but still exists, and you can query and set its properties.

XData vector or matrix

X-coordinates. The x-coordinates of the patch vertices. If XData is a matrix,
each column represents the x-coordinates of a single face of the patch. In this
case, XData, YData, and ZData must have the same dimensions.

YData vector or matrix

Y-coordinates. The y-coordinates of the patch vertices. If YData is a matrix,
each column represents the y-coordinates of a single face of the patch. In this
case, XData, YData, and ZData must have the same dimensions.

ZData vector or matrix

Z-coordinates. The z-coordinates of the patch vertices. If ZData is a matrix, each
column represents the z-coordinates of a single face of the patch. In this case,
XData, YData, and ZData must have the same dimensions.

patch

2-1633

path

Purpose

Graphical
Interface

Syntax

Description

2-1634

View or change the MATLAB directory search path

As an alternative to the path function, use the Set Path dialog box. To open it,
select Set Path from the File menu in the MATLAB desktop.

path

path('newpath')
path(path, 'newpath')
path('newpath',path)
p = path(...)

path displays the current MATLAB search path. The initial search path list is
defined by toolbox/local/pathdef.m.

path('newpath') changes the search path to newpath, where newpath is a
string array of directories.

path(path, 'newpath') appends the newpath directory to the current search
path.

path('newpath',path) prepends the newpath directory to the current search
path.

p = path(...) returns the specified path in string variable p.

Note Save any M-files you create and any MathWorks-supplied M-files that
you edit in a directory that is not in the $matlabroot/toolbox directory tree.
If you keep your files in $matlabroot/toolbox directories, they can be
overwritten when you install a new version of MATLAB. Also note that
locations of files in the $matlabroot/toolbox directory tree are loaded and
cached in memory at the beginning of each MATLAB session to improve
performance. If you save files to $matlabroot/toolbox directories using an
external editor or add or remove in from these directories using file system
operations, run rehash toolbox before you use the files in the current session.
If you make changes to existing files in $matlabroot/toolbox directories
using an external editor, run clear functionname before you use the files in

path

Examples

See Also

the current session. For more information, see rehash or Toolbox Path
Caching.

Add a new directory to the search path on Windows.
path(path, 'c:/tools/goodstuff')
Add a new directory to the search path on UNIX.
path(path,'/home/tools/goodstuff')
addpath, cd, dir, genpath, matlabroot, partialpath, pathdef, pathsep,
pathtool, rehash, restoredefaultpath, rmpath, savepath, startup, what

Search Path

2-1635

path2rc

Purpose Save current MATLAB search path to pathdef.m file
Syntax path2rc
Description path2rc runs savepath. The savepath function is replacing path2rc. Use

savepath instead of path2rc and replace instances of path2rc with savepath.

2-1636

pathdef

Purpose

Tropical
Interface

Syntax

Description

See Also

List of directories in the MATLAB search path

As an alternative to using the pathdef.m file directly, use the Set Path dialog
box. To open it, select Set Path from the File menu in the MATLAB desktop.

pathdef

pathdef returns a string listing of the directories in the MATLAB search path.
Use path to view each directory in pathdef.m on a separate line.

When you start a new session, MATLAB creates the search path defined in the
pathdef.m file located in the MATLAB startup directory. If that directory does
not contain a pathdef.m file, MATLAB uses the search path defined in
$matlabroot/toolbox/local/pathdef.m.

Make changes to the path using the Set Path dialog box and addpath and
rmpath. While you can edit pathdef.m directly, use caution so you do not
accidentally make MATLAB supplied directories unusable. Use savepath to
save pathdef.m, and to use that path in future sessions, specify the MATLAB
startup directory as its location.

addpath, cd, dir, genpath, matlabroot, partialpath, path, pathsep,
pathtool, rehash, restoredefaultpath, rmpath, savepath, startup, what

Search Path documentation, including:
¢ “How MATLAB Finds the Search Path, pathdef.m”
® “Saving Settings to the Path”

¢ “Using the Path in Future Sessions”

¢ “Recovering from Problems with the Search Path”

2-1637

pathsep

Purpose Return path separator for current platform
Syntax ¢ = pathsep
Description ¢ = pathsep returns the path separator character for this platform. The path

separator is the character that separates directories in the string returned by
the matlabpath function.

Examples Extract each individual path from the string returned by matlabpath. Use
pathsep to define the path separator:

s = matlabpath;
p=1;

while true
t = strtok(s(p:end),
disp(sprintf('S%ss', t)
p=p + length(t) + 1;
if isempty(strfind(s(p:end),';')) break, end;
end

pathsep);
)

Here is the output:

D:\Applications\matlabR14beta2\toolbox\matlab\general
:\Applications\matlabR14beta2\toolbox\matlab\ops
:\Applications\matlabR14beta2\toolbox\matlab\lang
:\Applications\matlabR14beta2\toolbox\matlab\elmat
:\Applications\matlabR14beta2\toolbox\matlab\elfun

O O O O

See Also filesep, fullfile, fileparts

2-1638

pathtool

Purpose

Graphical
Interface

Syntax

Description

Al

Open Set Path dialog box to view and change MATLAB path

As an alternative to the pathtool function, select Set Path from the File menu
in the MATLAB desktop.

pathtool

pathtool opens the Set Path dialog box, a graphical user interface you use to
view and modify the MATLAB search path.

Directories on the current search path.

Set Path

| changes take effect immediately.

MATLAB search path:
Add Falder . | B Cornfiles

Darmyfilesireports
Add with Subfulders...l - v §

Make changes
to the search
path.

Save changes
for use in future

[CaDamatlabr! Ztoalboximatiabigeneral
3 Drnatlabr 2toclboximatiabiops

3 Dnatlabr 2itoolb oxirmatiabiang

[Drnatlabr 2toolb oximatiabloxielmat
Move L [C3 Damatlabr 2Zdoolbodimatiablelfun

3 Drnatlabr 2toclboximatiakispecfun
3 Drnatlabr 2toolboximati ablosmatiun
Wove to Bottarm [C3Damatiabr! Ztoalboximatiabloadatafun
[CaDamatiabr! Ztoalboximatiabiodiaudio
[Drnatlabr 2itoolb oxirmatiablox polyfun

Remaye 750 M- adabed Tibaa b aad e ot a bl end fedoos x
4| | 3

Mowe to Top

tdawe Down

i EREE

MATLAB

sessions. ——— Save | Close | BEyert Default | Help |
Use the changes for the current Replace current path with all
session, but do not save the directories installed with
changes for use in future MATLAB ~ MATLAB and related products.
sessions.

2-1639

pathtool

See Also addpath, cd, dir, genpath, matlabroot, partialpath, path, pathdef, pathsep,
rehash, restoredefaultpath, rmpath, savepath, startup, what

Search Path documentation, including, “Setting the Search Path”

2-1640

pause

Purpose

Syntax

Description

See Also

Halt execution temporarily

pause

pause(n)
pause on
pause off

pause, by itself, causes M-files to stop and wait for you to press any key before
continuing.

pause (n) pauses execution for n seconds before continuing, where n can be any
nonnegative real number. The resolution of the clock is platform specific. A
fractional pause of 0.01 seconds should be supported on most platforms.

pause on allows subsequent pause commands to pause execution.

pause off ensures that any subsequent pause or pause(n) statements do not
pause execution. This allows normally interactive scripts to run unattended.

drawnow

2-1641

pbaspect

Purpose

Syntax

Description

Remarks

2-1642

Set or query the plot box aspect ratio

pbaspect
pbaspect([aspect_ratio])
pbaspect('mode")
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

The plot box aspect ratio determines the relative size of the x-, y-, and z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the current
axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current axes
to the specified value. Specify the aspect ratio as three relative values
representing the ratio of the x-, y-, and z-axes size. For example, a value of

[1 1 1] (the default) means the plot box is a cube (although with stretch-to-fill
enabled, it may not appear as a cube). See Remarks.

pbaspect('mode') returns the current value of the plot box aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.
pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect (axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. If you do not specify an axes handle,
pbaspect operates on the current axes.

pbaspect sets or queries values of the axes object PLotBoxAspectRatio and
PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, MATLAB sets the ratio to
[1 1 1], but may change it to accommodate manual settings of the data aspect
ratio, camera view angle, or axis limits. See the axes DataAspectRatio
property for a table listing the interactions between various properties.

pbaspect

Examples

|

Setting a value for the plot box aspect ratio or setting the plot box aspect ratio
mode to manual disables the MATLAB stretch-to-fill feature (stretching of the
axes to fit the window). This means setting the plot box aspect ratio to its
current value,

pbaspect (pbaspect)

can cause a change in the way the graphs look. See the Remarks section of the
axes reference description and the “Aspect Ratio” section in the Using
MATLAB Graphics manual for a discussion of stretch-to-fill.

The following surface plot of the function z = xe(**~*) is useful to illustrate
the plot box aspect ratio. First plot the function over the range
2<x<2,-2<y<2,

[x,y] = meshgrid([-2:.2:2]);
zZ = X.*exp(-x."2 - y."2);
surf(x,y,z)

Querying the plot box aspect ratio shows that the plot box is square.

pbaspect
ans =

2-1643

pbaspect

1 1 1

It is also interesting to look at the data aspect ratio selected by MATLAB.

daspect
ans =
4 4 1

Toillustrate the interaction between the plot box and data aspect ratios, set the
data aspect ratio to [1 1 1] and again query the plot box aspect ratio.

daspect([1 1 1])

pbaspect
ans =
4 4 A1

The plot box aspect ratio has changed to accommodate the specified data aspect
ratio. Now suppose you want the plot box aspect ratioto be [1 1 1] as well.

pbaspect([1 1 1])

2-1644

pbaspect

|

-2

Notice how MATLAB changed the axes limits because of the constraints
introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example, displaying
two subplots in one figure can give surface plots a squashed appearance.
Disabling stretch-to-fill,

upper_plot = subplot(211);
surf(x,y,z)

lower_plot = subplot(212);
surf(x,y,z)

pbaspect (upper_plot, 'manual')

2-1645

pbaspect

-2 -2

See Also axis, daspect, x1im, ylim, z1im
The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim
The “Aspect Ratio” section in the Using MATLAB Graphics manual

2-1646

P<9

Purpose Preconditioned Conjugate Gradients method

Syntax X = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)

Description X = pcg(A,b) attempts to solve the system of linear equations A*x=b for x.
The n-by-n coefficient matrix A must be symmetric and positive definite, and
should also be large and sparse. The column vector b must have length n. A can
be a function afun such that afun(x) returns A*x.

If pcg converges, a message to that effect is displayed. If pcg fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x) /norm(b) and
the iteration number at which the method stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tolis [], then pcg uses
the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[1, then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use symmetric
positive definite preconditioner Mor M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If Mis [] then pcg applies no preconditioner. M
can be a function that returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x01is [], then pcg
uses the default, an all-zero vector.

2-1647

pPcg

pcg(afun,b,tol,maxit,mi1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2, ... to functions afun(x,p1,p2,...), mifun(x,p1,p2,...),and
m2fun(x,p1,p2,...).

[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

1 pcg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 pcg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during pcg became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the relative
residual norm(b-A*x) /norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norms at each iteration including
norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);

b = sum(A,2);

tol = 1e-12;

maxit = 15;

M = diag([10:-1:1 1 1:10]);

2-1648

P<9

[x,flag,rr,iter,rv] = pcg(A,b,tol,maxit,M);
Alternatively, use this one-line matrix-vector product function

function y = afun(x,n)

y = [0;
x(1:n-1)]1 + [((n-1)/2:-1:0)";
(1:(n-1)/2)"']1.*x + [x(2:n);
0];

and this one-line preconditioner backsolve function

function y = mfun(r,n)
y=r ./ [((n-1)/2:-1:1)"; 1; (1:(n-1)/2)"'];

as inputs to pcg

[x1,flagl,rri1,iter1,rv1] = pcg(@afun,b,tol,maxit,@mfun,...
[1,01,21);

Example 2.

A = delsq(numgrid('C',25));
b ones(length(A),1);
[x,flag] = pcg(A,b)

flagis 1 because pcg does not converge to the default tolerance of 1e-6 within
the default 20 iterations.

R = cholinc(A,1e-3);
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e-8,10,R',R)

flag2 is 0 because pcg converges to the tolerance of 1.2e-9 (the value of
relres?2) at the sixth iteration (the value of iter2) when preconditioned by the
incomplete Cholesky factorization with a drop tolerance of 1e-3.

resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can follow the
progress of pcg by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0).

semilogy(O:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

2-1649

pPcg

10

107 E
107k E
10°L E
©
21071 E
¢
g
B10°L 4
[
10°F E
107
10°k
10’9 L L L L L
0 1 2 3 4 5 6
iteration number
See Also bicg, bicgstab, cgs, cholinc, gmres, 1sqr, minres, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

2-1650

pchip

Purpose

Syntax

Description

Remarks

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

pchip(x,y,xi)
pchip(x,y)

yi
pp

yi = pchip(x,y,xi) returns vector yi containing elements corresponding to
the elements of xi and determined by piecewise cubic interpolation within
vectors x and y. The vector x specifies the points at which the data y is given.
If y is a matrix, then the interpolation is performed for each column of y and
yiis length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by ppval.
x can be a row or column vector. y is a row or column vector of the same length
as X, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function P(x) at
intermediate points, such that:

® On each subinterval x;, <x<x, , ;, P(x) is the cubic Hermite interpolant to
the given values and certain slopes at the two endpoints.
e P(x)interpolates v, i.e., P(xj) = and the first derivative P'(x) is

continuous. P"(x) is probably not continuous; there may be jumps at the X;.

® The slopes at the x; are chosen in such a way that P(x) preserves the shape
of the data and respects monotonicity. This means that, on intervals where
the data are monotonic, so is P(x) ; at points where the data has a local
extremum, so does P(x).

Note If y is a matrix, P(x) satisfies the above for each column of y .

spline constructs S(x) in almost the same way pchip constructs P(x).
However, spline chooses the slopes at the x; differently, namely to make even
S"(x) continuous. This has the following eé‘ects:

® spline produces a smoother result, i.e. S"(x) is continuous.

® spline produces a more accurate result if the data consists of values of a
smooth function.

2-1651

pchip

® pchip has no overshoots and less oscillation if the data are not smooth.
® pchip is less expensive to set up.

® The two are equally expensive to evaluate.

Examples x = -3:3;
y=[-1-1-10111];
t = -8:.01:3;
p = pchip(x,y,t);
s = spline(x,y,t);
plo (Xsys ‘o’ Jtapa t-t ,t,S, - I)
legend('data', 'pchip', 'spline',4)
15
1r — Se_ _ .-
0.5F B
O, 4
_0.57 4
_1”’h\\v\\;’ i
O data
— pchip
— spline
_1‘5 Il Il Il Il Il
-3 -2 -1 0 1 2 3
See Also interpt, spline, ppval
References [1] Fritsch, F. N. and R. E. Carlson, “Monotone Piecewise Cubic Interpolation,”

SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods and
Software, Prentice Hall, 1988.

2-1652

pcode

Purpose

Syntax

Description

Create preparsed pseudocode file (P-file)

pcode fun

pcode *.m

pcode funi fun2 ...
pcode... -inplace

pcode fun parses the M-file fun.m into the P-file fun.p and puts it into the
current directory. The original M-file can be anywhere on the search path.

pcode *.m creates P-files for all the M-files in the current directory.
pcode funi fun2 ... creates P-files for the listed functions.

pcode... -inplace creates P-files in the same directory as the M-files. An
error occurs if the files can’t be created.

2-1653

pcolor

Purpose

Syntax

Description

Remarks

2-1654

Pseudocolor plot

pcolor(C)
pcolor(X,Y,C)
pcolor(axes_handle,...)

h = pcolor(...)

A pseudocolor plot is a rectangular array of cells with colors determined by C.
MATLAB creates a pseudocolor plot using each set of four adjacent points in C
to define a surface rectangle (i.e., cell).

The default shading is faceted, which colors each cell with a single color. The
last row and column of C are not used in this case. With shading interp, each
cell is colored by bilinear interpolation of the colors at its four vertices, using
all elements of C.

The minimum and maximum elements of C are assigned the first and last
colors in the colormap. Colors for the remaining elements in C are determined
by a linear mapping from value to colormap element.

pcolor(C) draws a pseudocolor plot. The elements of C are linearly mapped to
an index into the current colormap. The mapping from C to the current
colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the locations

specified by X and Y. The plot is a logically rectangular, two-dimensional grid
with vertices at the points [X(i,j), Y(i,j)]. X and Y are vectors or matrices
that specify the spacing of the grid lines. If X and Y are vectors, X corresponds
to the columns of C and Y corresponds to the rows. If X and Y are matrices, they
must be the same size as C.

pcolor(axes_handles,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = pcolor(...) returns a handle to a surface graphics object.

A pseudocolor plot is a flat surface plot viewed from above. pcolor(X,Y,C) is
the same as viewing surf(X,Y,0*Z,C) using view([0 90]).

pcolor

Examples

When you use shading faceted or shading flat, the constant color of each cell
is the color associated with the corner having the smallest x-y coordinates.
Therefore, C(i, j) determines the color of the cell in the ith row and jth column.
The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear

interpolation of the colors at its four vertices, and all elements of C are used.

A Hadamard matrix has elements that are +1 and 1. A colormap with only two
entries is appropriate when displaying a pseudocolor plot of this matrix.

pcolor (hadamard(20))
colormap(gray(2))
axis 1ij

axis square

LA DUULPIC LUIUL WILLICTL 111 UuSdSTL althd a puiar ~vuralnate System.
n = 6;
r = (0:n)'/n;
theta = pi*(n:n)/n;

X = r*cos(theta);
Y = r*sin(theta);
C = r*cos(2*theta);

pcolor(X,Y,C)

2-1655

pcolor

Algorithm

See Also

2-1656

axis equal tight

The number of vertex colors for pcolor(C) is the same as the number of cells
for image (C). pcolor differs from image in that pcolor (C) specifies the colors
of vertices, which are scaled to fit the colormap; changing the axes clim
property changes this color mapping. image (C) specifies the colors of cells and
directly indexes into the colormap without scaling. Additionally,
pcolor(X,Y,C) can produce parametric grids, which is not possible with image.

caxis, image, mesh, shading, surf, view

pdepe

Purpose

Syntax

Arguments

Description

Solve initial-boundary value problems for systems of parabolic and elliptic
partial differential equations (PDEs) in one space variable and time

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,pl,p2...)

m A parameter corresponding to the symmetry of the problem. m can

be slab = 0, cylindrical = 1, or spherical = 2.

pdefun A function that defines the components of the PDE.

icfun A function that defines the initial conditions.
bcfun A function that defines the boundary conditions.
xmesh A vector [x0, x1, ..., xn] specifying the points at which a numerical

solution is requested for every value in tspan. The elements of
xmesh must satisfy x0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points at which a solution is
requested for every value in xmesh. The elements of tspan must
satisfy t0 < t1 < ... < tf. The length of tspan must be >= 3.

options Some options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. In most
cases, default values for these options provide satisfactory
solutions. See odeset for details.

p1,p2,... Optional parameters to be passed to pdefun, icfun, and bcfun.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves initial-boundary
value problems for systems of parabolic and elliptic PDEs in the one space
variable x and time ¢ . The ordinary differential equations (ODEs) resulting
from discretization in space are integrated to obtain approximate solutions at
times specified in tspan. The pdepe function returns values of the solution on
a mesh provided in xmesh.

2-1657

pdepe

2-1658

pdepe solves PDEs of the form:

c(x,t,u,%) %—l: =x " (%C(xmf(x,t,u,%)) + s(x,t,u,g—Z) (2-1)

The PDEs hold for ¢y<t< tr and a <x <b. The interval [a, b] must be finite.
m can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry,
respectively. If m >0, then a must be >= 0.

In Equation 2-1, f(x, t,u,0u/0x) is a flux term and s(x, ¢, v, du/0x) is a source
term. The coupling of the partial derivatives with respect to time is restricted
to multiplication by a diagonal matrix c(x, ¢, v, 0u/0dx) . The diagonal elements
of this matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a parabolic
equation. There must be at least one parabolic equation. An element of ¢ that
corresponds to a parabolic equation can vanish at isolated values of x if those
values of x are mesh points. Discontinuities in ¢ and/or s due to material
interfaces are permitted provided that a mesh point is placed at each interface.

For ¢t = t, and all x, the solution components satisfy initial conditions of the
form

u(x, ty) = uglx) (2-2)

For all ¢+ and either x = a or x = b, the solution components satisfy a
boundary condition of the form

plx,t,u) + q(x,t) x,t,u,a—Lf) =0 (2-3)
Ox

Elements of g are either identically zero or never zero. Note that the boundary
conditions are expressed in terms of the flux f rather than du/dx . Also, of the
two coefficients, only p can depend on u« .

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

® m corresponds to m .
e xmesh(1) and xmesh (end) correspond to a and b.
® tspan(1) and tspan(end) correspond to ¢, and tr.

pdepe

® pdefun computes the terms c, f, and s (Equation 2-1). It has the form
[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution u and its partial derivative with respect to x,
respectively. ¢, f, and s are column vectors. ¢ stores the diagonal elements of
the matrix ¢ (Equation 2-1).

e icfun evaluates the initial conditions. It has the form
u = icfun(x)

When called with an argument x, icfun evaluates and returns the initial
values of the solution components at x in the column vector u.

® bcfun evaluates the terms p and g of the boundary conditions
(Equation 2-3). It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

ul is the approximate solution at the left boundary x1 = a@ and ur is the
approximate solution at the right boundary xr = 5. pl and gl are column
vectors corresponding to p and g evaluated at x1, similarly pr and qr
correspond to xr. When m >0 and a = 0, boundedness of the solution near
x = 0 requires that the flux f vanish at a = 0. pdepe imposes this
boundary condition automatically and it ignores values returned in pl and

ql.

pdepe returns the solution as a multidimensional array sol.
u; = ui=sol(:,:,i) is an approximation to the ith component of the solution
vector u . The element ui(j,k) = sol(j,k,i) approximates u; at

(t,x) = (tspan(j),xmesh(k)).

ui=sol(j,:,i) approximates component i of the solution at time tspan(j) and
mesh points xmesh(:). Use pdeval to compute the approximation and its
partial derivative du;/dx at points not included in xmesh. See pdeval for
details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves as above
with default integration parameters replaced by values in options, an
argument created with the odeset function. Only some of the options of the
underlying ODE solver are available in pdepe: RelTol, AbsTol, NormControl,

2-1659

pdepe

Remarks

2-1660

InitialStep, and MaxStep. The defaults obtained by leaving off the input
argument options will generally be satisfactory. See odeset for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,pl,p2...)
passes the additional parameters p1, p2, ... to the functions pdefun, icfun, and
bcfun. Use options = [] as a placeholder if no options are set.

® The arrays xmesh and tspan play different roles in pdepe.

tspan The pdepe function performs the time integration with an ODE
solver that selects both the time step and formula dynamically. The
elements of tspan merely specify where you want answers and the cost
depends weakly on the length of tspan.

xmesh Second order approximations to the solution are made on the mesh
specified in xmesh. Generally, it is best to use closely spaced mesh points
where the solution changes rapidly. pdepe does not select the mesh in x
automatically. You must provide an appropriate fixed mesh in xmesh. The
cost depends strongly on the length of xmesh. When m >0, it is not necessary
to use a fine mesh near x = 0 to account for the coordinate singularity.

® The time integration is done with ode15s. pdepe exploits the capabilities of
ode15s for solving the differential-algebraic equations that arise when
Equation 2-1 contains elliptic equations, and for handling Jacobians with a
specified sparsity pattern.

¢ After discretization, elliptic equations give rise to algebraic equations. If the
elements of the initial conditions vector that correspond to elliptic equations
are not “consistent” with the discretization, pdepe tries to adjust them before
beginning the time integration. For this reason, the solution returned for the
initial time may have a discretization error comparable to that at any other
time. If the mesh is sufficiently fine, pdepe can find consistent initial
conditions close to the given ones. If pdepe displays a message that it has
difficulty finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions vector that
correspond to parabolic equations.

pdepe

Examples

Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

2 _ 2 (0u)
0t Ox\ox
This equation holds on an interval 0 <x <1 for times £ >0.
The PDE satisfies the initial condition
u(x,0) = sintx
and boundary conditions
u(0,t)=0
e '+ 3—3(1, t)=0
It is convenient to use subfunctions to place all the functions required by pdepe
in a single M-file.
function pdex1
m = 0;

X linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdexipde,@pdexiic,@pdexibc,x,t);
% Extract the first solution component as u.
u=s0l(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)

title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')

ylabel('Time t')

% A solution profile can also be illuminating.
figure

plot(x,u(end,:))

title('Solution at t = 2')

xlabel('Distance x')

2-1661

pdepe

2-1662

function [c,f,s] = pdexipde(x,t,u,DuDx)

C = pi~2;
f = DuDx;
s = 0;

function u0 = pdexiic(x)
u0 = sin(pi*x);

function [pl,ql,pr,qr] = pdexibc(xl,ul,xr,ur,t)
pl = ul;

al = 0;

pr = pi * exp(-t);

ar = 1;

In this example, the PDE, initial condition, and boundary conditions are coded
in subfunctions pdex1pde, pdexiic, and pdexibc.

The surface plot shows the behavior of the solution.

Numerical solution computed with 20 mesh points.

0.8

Time t

Distance x

pdepe

The following plot shows the solution profile at the final value of t (i.e., t = 2).

Solution att=2

u(x,2)

-0.02 L L L L L L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance x

Example 2. This example illustrates the solution of a system of PDEs. The
problem has boundary layers at both ends of the interval. The solution changes
rapidly for small ¢.

The PDEs are

Ou, 62u1
Ef_ = 0.024 ng(ulfuz)
Oug 62u2
W = 0.170 §+F(u1—u2)

where F(y) = exp(5.73y) —exp(-11.46y).

This equation holds on an interval 0 <x <1 for times £ >0.

2-1663

pdepe

The PDE satisfies the initial conditions
uq(x,0)=1
ug(x,0)=0

and boundary conditions
Ouq 020
T (1)

uy(0,)=0
u(l,)=1

Ouy Li=0
a(1) =
In the form expected by pdepe, the equations are
1 0 d|uyl 0 (0.024(du,/0x) . ~F(u,—-uy)
1| 9wyl 9%]0.170(duy/0x)| | F(u;—usy)

The boundary conditions on the partial derivatives of u have to be written in
terms of the flux. In the form expected by pdepe, the left boundary condition is

o, |1 0.024(du,/0x)| _ |0
uy| |0| " 0.170(0uy/0x)| |0

and the right boundary condition is

u, -1 N 0 . 0.024(du,/0x)| |0

0 1| [0.170(duy/ dx) 0
The solution changes rapidly for small ¢. The program selects the step size in
time to resolve this sharp change, but to see this behavior in the plots, the
example must select the output times accordingly. There are boundary layers
in the solution at both ends of [0,1], so the example places mesh points near 0

and 1 to resolve these sharp changes. Often some experimentation is needed to
select a mesh that reveals the behavior of the solution.

2-1664

pdepe

function pdex4

m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
ul = sol(:,:,1);
u2 = sol(:,:,2);

figure

surf(x,t,ul)
title('ut(x,t)"')
xlabel('Distance x')
ylabel('Time t')

figure

surf(x,t,u2)
title('u2(x,t)"')
xlabel('Distance x')
ylabel('Time t')

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 11;

f = [0.024; 0.17] .* DuDx;

y = u(1) - u(2);

F = exp(5.73*y)-exp(-11.47*y);

s = [-F; FI;

function u0 = pdex4ic(x);
uo = [1; 01;

function [pl,ql,pr,qr] = pdexd4bc(x1l,ul,xr,ur,t)
pl = [0; ul(2)];

aql = [1; 0];
pr = [ur(1)-1; 0];
ar = [0; 1];

In this example, the PDEs, intial conditions, and boundary conditions are
coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

2-1665

pdepe

The surface plots show the behavior of the solution components.

2-1666

pdepe

See Also function_handle, pdeval, ode15s, odeset, odeget
References [1] Skeel, R. D. and M. Berzins, “A Method for the Spatial Discretization of

Parabolic Equations in One Space Variable,” SIAM Journal on Scientific and
Statistical Computing, Vol. 11, 1990, pp.1-32.

2-1667

pdeval

Purpose
Syntax

Arguments

Description

See Also

2-1668

Evaluate the numerical solution of a PDE using the output of pdepe

[uout,duoutdx] = pdeval(m,xmesh,ui,xout)

m Symmetry of the problem: slab = 0, cylindrical = 1, spherical = 2.
This is the first input argument used in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which the elements
of ui were computed. This is the same vector with which pdepe was
called.

ui A vector so0l(j,:,1) that approximates component i of the solution at
time ¢, and mesh points xmesh, where sol is the solution returned
by pdepe.

xout A vector of points from the interval [x0,xn] at which the interpolated
solution is requested.

[uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution «. and
its partial derivative du./0x at points from the interval [x0,xn]. The pdeval
function returns the computed values in uout and duoutdx, respectively.

Note pdeval evaluates the partial derivative aui/ Ox rather than the flux f.
Although the flux is continuous, the partial derivative may have a jump at a
material interface.

pdepe

peaks

Purpose

Syntax

Description

See Also

A sample function of two variables.

peaks;
peaks(n);
peaks (V) ;
peaks(X,Y);

N N N N
1l

peaks;
peaks(N);
peaks (V) ;
peaks(X,Y);

[X,Y,Z] = peaks;
[X,Y,Z] = peaks(n);
[X,Y,Z] = peaks(V);

peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf, pcolor,
contour, and so on.

Z = peaks; returns a 49-by-49 matrix.
Z = peaks(n); returns an n-by-n matrix.

z

peaks (V) ; returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be the same
size) and returns a matrix the same size.

peaks(...) (with no output argument) plots the peaks function with surf.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf (X,Y,Z,del2(Z)). If not given as input, the
underlying matrices X and Y are

[X,Y] = meshgrid(V,V)

where V is a given vector, or V is a vector of length n with elements equally
spaced from -3 to 3. If no input argument is given, the default n is 49.

meshgrid, surf

2-1669

perl

Purpose

Syntax

Description

Examples

See Also

2-1670

Call Perl script using appropriate operating system executable

perl('perlfile')
perl('perlfile',argil,arg2,...)
result = perl(...)

perl('perlfile') calls the Perl script perlfile, using the appropriate oper-
ating system Perl executable. Perl is included with MATLAB, so MATLAB
users can run M-files containing the perl function.

perl('perlfile',argi,arg2,...) calls the Perl script perlfile, using the
appropriate operating system Perl executable, and passes the arguments arg1,
arg2, and so on, to perlfile.

result = perl(...) returns the results of attempted Perl call to result.

Given the Perl script, hello.pl

$input = $ARGV[O];
print "Hello $input.";

run the following statement in MATLAB
perl('hello.pl', 'World')
MATLAB returns

ans =
Hello World.

It is sometimes beneficial to use Perl scripts instead of MATLAB code. The
perl function allows you to run those scripts from within MATLAB. Specific
examples where you might choose to use a Perl script include:

¢ Perl script already exists

® Perl script preprocesses data quickly, formatting it in a way more easily read
by MATLAB

¢ Perl has features not supported by MATLAB

! (exclamation point), dos, regexp, system, unix

perms

Purpose
Syntax

Description

Examples

Limitations

See Also

All possible permutations

o
1

perms(v)

P = perms(v), where v is a row vector of length n, creates a matrix whose rows
consist of all possible permutations of the n elements of v. Matrix P contains n!
rows and n columns.

The command perms (2:2:6) returns all the permutations of the numbers 2, 4,
and 6:

NN DADMOOO
o R~rMNDON D
~AOODNBADN

This function is only practical for situations where n is less than about 15.

nchoosek, permute, randperm

2-1671

permute

Purpose
Syntax

Description

Remarks

Examples

See Also

2-1672

Rearrange the dimensions of a multidimensional array

B

permute (A,order)

B = permute(A,order) rearranges the dimensions of A so that they are in the
order specified by the vector order. B has the same values of A but the order of
the subscripts needed to access any particular element is rearranged as
specified by order. All the elements of order must be unique.

permute and ipermute are a generalization of transpose (. ') for
multidimensional arrays.
Given any matrix A, the statement
permute(A,[2 1])
is the same as A" .
For example:

A= 1[12; 3 4]; permute(A,[2 1])
ans =

1 3

2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =
13 14 12
ipermute

persistent

Purpose
Syntax

Description

Remarks

See Also

Define persistent variable
persistent X Y Z

persistent X Y Z defines X, Y, and Z as variables that are local to the function
in which they are declared; yet their values are retained in memory between
calls to the function. Persistent variables are similar to global variables
because MATLAB creates permanent storage for both. They differ from global
variables in that persistent variables are known only to the function in which
they are declared. This prevents persistent variables from being changed by
other functions or from the MATLAB command line.

Persistent variables are cleared when the M-file is cleared from memory or
when the M-file is changed. To keep an M-file in memory until MATLAB quits,
use mlock.

If the persistent variable does not exist the first time you issue the persistent
statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same name
exists in the current workspace.

There is no function form of the persistent command (i.e., you cannot use
parentheses and quote the variable names).

clear, global, mislocked, mlock, munlock

2-1673

pi

Purpose
Syntax

Description

Examples

See Also

2-1674

Ratio of a circle’s circumference to its diameter, T
pi

pi returns the floating-point number nearest the value of 1. The expressions
4*atan(1) and imag(log(-1)) provide the same value.

The expression sin(pi) is not exactly zero because pi is not exactly .

sin(pi)
ans =
1.2246e-16

ans, eps, i, Inf, j, NaN

Purpose

Syntax

Description

Remarks

Examples

Pie chart

pie(X)
pie(X,explode)
pie(...,labels)
pie(axes_handle,...)
h = pie(...)

pie(X) draws a pie chart using the data in X. Each element in X is represented
as a slice in the pie chart.

pie(X,explode) offsets a slice from the pie. explode is a vector or matrix of
zeros and nonzeros that correspond to X. A nonzero value offsets the
corresponding slice from the center of the pie chart, so that X(i,j) is offset
from the center if explode (i, j) is nonzero. explode must be the same size as
X.

pie(...,labels) specifies text labels for the slices. The number of labels must
equal the number of elements in X. For example,

pie(1:3,{'Taxes', 'Expenses','Profit'})

pie(axes_handle,...) plotsintothe axes with handle axes_handle instead of
the current axes (gca).

h = pie(...) returns a vector of handles to patch and text graphics objects.

The values in X are normalized via X/sum(X) to determine the area of each slice
of the pie. If sum(X)<1, the values in X directly specify the area of the pie slices.
MATLAB draws only a partial pie if sum(X)<1.

Emphasize the second slice in the chart by setting its corresponding explode
element to 1.

x =[13 0.5 2.
explode = [0 1
pie(x,explode)
colormap jet

5 2];
0 0 0];

2-1675

pie

11%

33%

6%

See Also pie3

2-1676

pie3

Purpose

Syntax

Description

Remarks

Examples

Three-dimensional pie chart

pie3
pie3

X)

X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

—_~ o~ o~ o~

pie3(X) draws a three-dimensional pie chart using the data in X. Each element
in X is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center of the pie
chart. X(i,j) is offset from the center of the pie chart if explode(i,j) is
nonzero. explode must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of labels
must equal the number of elements in X. For example,

pie3(1:3,{'Taxes', 'Expenses', 'Profit'})

pie3(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = pie(...) returns a vector of handles to patch, surface, and text graphics
objects.

The values in X are normalized via X/sum(X) to determine the area of each slice
of the pie. If sum(X)<1, the values in X directly specify the area of the pie slices.
MATLAB draws only a partial pie if sum(X)<1.

Offset a slice in the pie chart by setting the corresponding explode element to
1:

x =1[13 0.5 2.5 2]
explode = [0 1 0 0 O]
pie3(x,explode)
colormap hsv

2-1677

See Also pie

2-1678

pinv

Purpose

Syntax

Definition

Description

Examples

Moore-Penrose pseudoinverse of a matrix

B
B

pinv(A)
pinv(A,tol)

The Moore-Penrose pseudoinverse is a matrix B of the same dimensions as A"
satisfying four conditions:

A*B*A = A

B*A*B = B

A*B is Hermitian

B*A is Hermitian

The computation is based on svd (A) and any singular values less than tol are
treated as zero.

B

pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and overrides the
default tolerance, max(size(A))*norm(A)*eps.

If A is square and not singular, then pinv(A) is an expensive way to compute
inv(A).IfAis not square, or is square and singular, then inv (A) does not exist.
In these cases, pinv(A) has some of, but not all, the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are
X = pinv(A)*b

and
y = A\b

These two are distinguished by the facts that norm(x) is smaller than the norm
of any other solution and that y has the fewest possible nonzero components.

For example, the matrix generated by

2-1679

pinv

A = magic(8); A = A(:,1:6)
is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6

9 55 54 12 13 51

17 47 46 20 21 43

40 26 27 37 36 30

32 34 35 29 28 38

41 23 22 44 45 19

49 15 14 52 53 11

8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns, one
solution to A*x = b would be a vector of all 1’s. With only six columns, the
equations are still consistent, so a solution exists, but it is not all 1’s. Since the
matrix is rank deficient, there are infinitely many solutions. Two of them are

X = pinv(A)*b
which is

X =
.1538
.4615
.3846
.3846
.4615
.1538

R G G G G G Y

2-1680

pinv

and
y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013.
y =
4.0000
5.0000
0
0
0
-1.0000

Both of these are exact solutions in the sense that norm(Ax-b) and
norm(ALy -b) are on the order of roundoff error. The solution x is special because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three nonzero
components.

See Also inv, gr, rank, svd

2-1681

planerot

Purpose Givens plane rotation
Syntax [G,y] = planerot(x)
Descripl'ion [G,y] = planerot(x) where x is a 2-component column vector, returns a

2-by-2 orthogonal matrix G so that y = G*x hasy(2) = 0.

Examples x = [3 4];
[G,y] = planerot(x"')

G =
0.6000 0.8000
-0.8000 0.6000
y =
5
0
See Also grdelete, qrinsert

2-1682

playshow

Purpose
Syntax

Description

Examples

See Also

Run published M-file demo

playshow demoname

playshow runs the published M-file demo demoname. To determine if a demo is
a published M-file type, view the H1 line for the demo M-file, that is, the first
comment line. If it begins with two comment symbols (%%), it is a published

M-file demo.

The first line in nesteddemo begins with two comment symbols:

%% Nested Function Examples

Therefore, type playshow nesteddemo to run the demo.

demo, helpbrowser

2-1683

plot

Purpose

Syntax

Description

2-1684

Linear 2-D plot

plot(Y)

plot(X1,Y1,...)

plot(X1,Y1,LineSpec,...)
(

plot(...,'PropertyName' ,PropertyValue,...)
plot(axes_handle,...)

h = plot(...)

hlines = plot('v6',...)

plot(Y) plots the columns of Y versus their index if Y is a real number. IfY is
complex, plot(Y) is equivalent to plot(real(Y),imag(Y)). In all other uses of
plot, the imaginary component is ignored.

plot(X1,Y1,...) plots all lines defined by Xn versus Yn pairs. If only Xn or Yn
is a matrix, the vector is plotted versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

plot(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec is a line specification that determines line type,
marker symbol, and color of the plotted lines. You can mix Xn,Yn,LineSpec
triples with Xn,Yn pairs: plot(X1,Y1,X2,Y2,LineSpec,X3,Y3).

Note See LineSpec for a list of line style, marker, and color specifiers.

plot(...,'PropertyName',PropertyValue,...) sets properties to the
specified property values for all lineseries graphics objects created by plot.
(See the “Examples” section for examples.)

plot(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = plot(...) returns a column vector of handles to lineseries graphics
objects, one handle per line.

plot

Remarks

Backward Compatible Version

hlines = plot('v6',...) returns the handles to line objects instead of
lineseries objects.

If you do not specify a color when plotting more than one line, plot
automatically cycles through the colors in the order specified by the current
axes ColorOrder property. After cycling through all the colors defined by
ColorOrder, plot then cycles through the line styles defined in the axes
LineStyleOrder property.

The default LineStyleOrder property has a single entry (a solid line with no
marker).

Cycling Through Line Colors and Styles

By default, MATLAB resets the ColorOrder and LineStyleOrder properties
each time you call plot. If you want changes you make to these properties to
persist, then you must define these changes as default values. For example,

set (0, 'DefaultAxesColorOrder',[0 O O],...
'DefaultAxesLineStyleOrder','-|-.|--|:")

sets the default ColorOrder to use only the color black and sets the
LineStyleOrder to use solid, dash-dot, dash-dash, and dotted line styles.

Prevent Resetting of Color and Styles with hold all

The all option to the hold command prevents the ColorOrder and
LineStyleOrder from being reset in subsequent plot commands. In the
following sequence of commands, MATLAB continues to cycle through the
colors defined by the axes ColorOrder property (see above).

plot(rand(12,2))
hold all
plot(randn(12,2))

Additional Information

¢ See Creating Line Plots and Annotating Graphs for more information on
plotting.
® See LineSpec for more information on specifying line styles and colors.

2-1685

plot

Examples

2-1686

Specifying the Color and Size of Markers

You can also specify other line characteristics using graphics properties (see
line for a description of these properties):

® LineWidth — Specifies the width (in points) of the line.

® MarkerEdgeColor — Specifies the color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram, and the four
triangles).

® MarkerFaceColor — Specifies the color of the face of filled markers.

® MarkerSize — Specifies the size of the marker in units of points.
For example, these statements,

X = -pi:pi/10:pi;

y = tan(sin(x)) - sin(tan(x));

plot(x,y,'--rs', 'LineWidth',2,...
‘MarkerkedgeColor','k',...
‘MarkerFaceColor','g',...
‘MarkerSize',10)

produce this graph.

plot

3
R
IR}
2F [= | 4
'RV
1 v/ oM
\
m % b
1k ! ' 1
' =]
! \
Ell \
oF D\ |;|—I:I-I:I-IJE-I:I (m] 9
\ 1
]
a .
-1 AN 1 -
o o
\ F-‘]
v 1
2 H \‘ 'l i
Y
o
-3 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

Specifying Tick-Mark Location and Labeling
You can adjust the axis tick-mark locations and the labels appearing at each
tick. For example, this plot of the sine function relabels the x-axis with more
meaningful values:

X = -pi:.1:pi;

y = sin(x);

plot(x,y)

set(gca, 'XTick',-pi:pi/2:pi)

set(gca, 'XTickLabel' ,{'-pi',"'-pi/2','0"','pi/2',"'pi'})

Now add axis labels and annotate the point —pi/4, sin(-pi/4).

2-1687

plot

2-1688

0.8 b

0.6 b

0.4 b

0.2r b

-0.2 1

-04F 4

-0.61 4

-0.8F 4

-1 | | | . .
—pi —pi/l2 0 pil2 pi

Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using the
graph from the previous example, add an x- and y-axis label:

xlabel('-\pi \leq \Theta \leq \pi')

ylabel('sin(\Theta)')

title('Plot of sin(\Theta)')

text(-pi/4,sin(-pi/4), " '\leftarrow sin(-\pi\div4)',...
'HorizontalAlignment', 'left')

Now change the line color to red by first finding the handle of the line object
created by plot and then setting its Color property. In the same statement, set
the LineWidth property to 2 points.

set(findobj(gca, 'Type', 'line', 'Color',[0 O 1]),...
‘Color','red',...
'LineWidth',2)

plot

See Also

Plot of sin(®)
T

0.8

0.6

0.4

0.2

sin(©)
o

-pi —pil2

axis, bar, grid, hold, legend, 1line, LineSpec, loglog, plot3, plotyy,
semilogx, semilogy, subplot, title, xlabel, x1im, ylabel, ylim, zlabel,
z1lim, stem

See the text String property for a list of symbols and how to display them.

See the Plot Editor for information on plot annotation tools in the figure
window toolbar.

See Basic Plots and Graphs for related functions.

2-1689

plot3

Purpose

Syntax

Description

Remarks

Examples

2-1690

3-D line plot

plot3(X1,Y1,Z21,...)
plot3(X1,Y1,Z1,LineSpec,...)

plot3(..., 'PropertyName',PropertyValue,...)
h = plot3(...)

The plot3 function displays a three-dimensional plot of a set of data points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots one or
more lines in three-dimensional space through the points whose coordinates
are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined by the
Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification that
determines line style, marker symbol, and color of the plotted lines.

plot3(...,'PropertyName',PropertyValue,...) sets properties to the
specified property values for all line graphics objects created by plot3.

h = plot3(...) returns a column vector of handles to lineseries graphics
objects, with one handle per object.

If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the rows
or columns of the matrix, depending whether the vectors’ lengths equal the
number of rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for example,
plot3(X1,Y1,21,X2,Y2,Z22,LineSpec,X3,Y3,Z3)

See LineSpec and plot for information on line types and markers.

Plot a three-dimensional helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on

axis square

plot3

See Also axis, bar3, grid, 1line, LineSpec, loglog, plot, semilogx, semilogy, subplot

2-1691

plotbrowser

Purpose Show or hide figure plotbrowser

Syntax plotbrowser('on')
plotbrowser('off')
plotbrowser('toggle')
plotbrowser(figure_handle,...)

Description plotbrowser('on') displays the Plot Browser on the current figure.
plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser('toggle') or plotbrowser toggles the visibility of the Plot
Browser on the current figure.

plotbrowser(figure handle,...) shows or hides the Plot Browser on the
figure specified by figure handle.

See Also figurepalette, propertyeditor

2-1692

plotedit
|

Purpose Start plot edit mode to allow editing and annotation of plots

Syntax plotedit on
plotedit off
plotedit
plotedit('state')
plotedit(h)
plotedit(h, 'state')

Description plotedit on starts plot edit mode for the current figure, allowing you to use a
graphical interface to annotate and edit plots easily. In plot edit mode, you can
label axes, change line styles, and add text, line, and arrow annotations.

plotedit off ends plot mode for the current figure.
plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure handle
h.

plotedit('state') specifies the plotedit state for the current figure. Values
for state can be as shown.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the menu bar
hidetoolsmenu Removes the Tools menu from the menu bar

Note hidetoolsmenu is intended for GUI developers who do not want the
Tools menu to appear in applications that use the figure window.

plotedit(h, 'state') specifies the plotedit state for figure handle h.

2-1693

plotedit

Remarks Plot Editing Mode Graphical Interface Components

Use these toolbar buttons to add a legend, text, and arrows.

To start plot edit mode, click
this button.
e (=1
Use the Ed“, Insert, File Edit Wiew Infert Tools Desktop MWindow Help
andToolsmenisto DEE&[F | RAN®[E 0E O
add objects or edit 2L2|AAB 7|=E==|00MN NN HE
exisiing Obieds ina Lotka-Volterra Predator-Prey Population Model
as0 T T
Double-click on an object N e o
to select it. 300
Many predators; Cut
250 prey population Copy
will decline
Position labels, legends, ° EE:Ete
. M oangl alor...
u|.1d Piher objects byig BT C
clicking and dragging. E LneStyle
§_ 150+ Marker »
. o o Few praﬂaltC:rS; Marker Size
Acfess ob|.ed-spec|f|c plot Jo0l P popaaton Proparties,..
edit functions through 7 Show M-code
context-sensitive pop-up I
menus. I
0 1
0 5 10 15
Time t (Years)
Examples Start plot edit mode for figure 2.
plotedit(2)
End plot edit mode for figure 2.
plotedit(2, 'off')
Hide the Tools menu for the current figure:
plotedit('hidetoolsmenu')
See Also axes, line, open, plot, print, saveas, text, propedit

2-1694

plotedit

2-1695

plotmatrix

Purpose

Syntax

Description

Examples

2-1696

Draw scatter plots

plotmatrix(X,Y)
plotmatrix(..., " 'LineSpec')
[H,AX,BigAx,P] = plotmatrix(...)

plotmatrix(X,Y) scatter plots the columns of X against the columns of Y. If X
is p-by-m and Y is p-by-n, plotmatrix produces an n-by-m matrix of axes.
plotmatrix(Y) is the same as plotmatrix(Y,Y) except that the diagonal is
replaced by hist(Y(:,1)).

plotmatrix(...,'LineSpec') uses a LineSpec to create the scatter plot. The
defaultis '."'.

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to the
objects created in H, a matrix of handles to the individual subaxes in AX, a
handle to a big (invisible) axes that frames the subaxes in BigAx, and a matrix
of handles for the histogram plots in P. BigAx is left as the current axes so that
asubsequent title, xlabel, or ylabel command is centered with respect to the
matrix of axes.

Generate plots of random data.

X = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;1"';
plotmatrix(y,'*r')

plotmatrix

See Also scatter, scatter3

2-1697

plottools

Purpose

Syntax

Description

See Also

2-1698

Show or hide the plot tools

plottools('on')
plottools('off")

plottools
plottools(figure_handle,...)
plottools(..., 'tool")

plottools('on') displays the Figure Palette, Plot Browser, and Property
Editor on the current figure.

plottools('off') hidesthe Figure Palette, Plot Browser, and Property Editor
on the current figure.

plottools with no arguments, is the same as plottools('on')

plottools(figure_handle,...) displays or hides the plot tools on the
specified figure instead of the current figure.

plottools(...,'tool"') operates on the specified tool only. tool can be one of
the following strings:

® figurepalette
® plotbrowser
® propertyeditor

figurepalette, plotbrowser, propertyeditor

plotyy

Purpose

Syntax

Description

Examples

Create graphs with y-axes on both left and right side

plotyy(X1,Y1,X2,Y2)

plotyy(X1,Y1,X2,Y2, 'function')
plotyy(X1,Y1,X2,Y2, 'functioni', 'function2')
[AX,H1,H2] = plotyy(...)

plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the left and
plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to
produce the graph.

function can be either a function handle or a string specifying plot, semilogx,
semilogy, loglog, stem, or any MATLAB function that accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyyxi,y1,x2,y2, " 'loglog') % string

Function handles enable you to access user-defined subfunctions and can
provide other advantages. See @ for more information on using function
handles.

plotyy(X1,Y1,X2,Y2, 'function1', 'function2') uses functioni(X1,Y1) to
plot the data for the left axis and function2(X2,Y2) to plot the data for the
right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes created in AX
and the handles of the graphics objects from each plot in H1 and H2. AX (1) is the
left axes and AX(2) is the right axes.

This example graphs two mathematical functions using plot as the plotting
function. The two y-axes enable you to display both sets of data on one graph
even though relative values of the data are quite different.

X = 0:0.01:20;

y1 = 200*exp(-0.05*x).*sin(x);

2-1699

plotyy

y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2, 'plot’);

You can use the handles returned by plotyy to label the axes and set the line
styles used for plotting. With the axes handles you can specify the YLabel
properties of the left- and right-side y-axis:

set(get(AX(1),'Ylabel'), 'String', 'Left Y-axis')
set(get(AX(2), 'Ylabel'), 'String', 'Right Y-axis')

Use the xlabel and title commands to label the x-axis and add a title:
xlabel('Zero to 20 \musec.')
title('Labeling plotyy')

Use the line handles to set the LineStyle properties of the left- and right-side
plots:

set(H1, 'LineStyle','--")
set(H2, 'LineStyle',':")

Labeling plotyy

200 T 0.8
~
/
I
150F 1 \ 0.6
!
- \ VAR
I \ ’ \\
s
100 ! / \ ~ 0.4
I \ , \ AN
i
. ! 1 \ roon
i \ ! \ / \
50 A l \ ! \ /402
' ! ! \ ! \ i
@ ! S | \ ! \ / @
%] T 1 \ / 3
Iooob A ! e L Ry N PR
z \ l: \‘ ; N / o
5} / k=
4 \ ! \
\ ! ! I \ / &
1 \ \ 1
- \ —
50 | . \ / \ ; 0.2
] \ / \ 7
\ p \ / A
. - \ \ 7
-100F: - \ ! N -0.4
G \ ! N
\ I
N !
\ /
-150 : N -0.6
-200 . ; y ~08
0 5 10 15 20

Zero to 20 psec.

2-1700

plotyy

See Also plot, loglog, semilogx, semilogy, axes properties XAxisLocation,
YAxisLocation

See Using Multiple X- and Y-Axes for more information.

2-1701

pol2cart

Purpose

Syntax

Description

Algorithm

See Also

2-1702

Transform polar or cylindrical coordinates to Cartesian

[X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

[X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data stored in
corresponding elements of THETA and RHO to two-dimensional Cartesian, or xy,
coordinates. The arrays THETA and RHO must be the same size (or either can be
scalar). The values in THETA must be in radians.

[X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical coordinate
data stored in corresponding elements of THETA, RHO, and Z to
three-dimensional Cartesian, or xyz, coordinates. The arrays THETA , RHO, and
Z must be the same size (or any can be scalar). The values in THETA must be in

radians.

The mapping from polar and cylindrical coordinates to Cartesian coordinates
is:

r z
A
P
p)
Y
z
O
A
¢ tho
N theta /theta
‘ » X
X
Polar to Cartesian Mapping Cylindrical to Cartesian Mapping
theta = atan2(y,x) theta = atan2(y,x)
rho = sqrt(x.”2 + y."2) rho = sqrt(x.”2 + y."2)
zZ = Z

cart2pol, cart2sph, sph2cart

polar

Purpose

Syntax

Description

Examples

Plot polar coordinates

polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)

h = polar(...)

The polar function accepts polar coordinates, plots them in a Cartesian plane,
and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta versus the
radius rho. theta is the angle from the x-axis to the radius vector specified in
radians; rho is the length of the radius vector specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot symbol,
and color for the lines drawn in the polar plot.

polar(axes_handle,...) plotsintothe axes with handle axes_handle instead
of the current axes (gca).

h = polar(...) returns the handle of a line object in h.

Create a simple polar plot using a dashed red line:
t = 0:.01:2*pi;

polar(t,sin(2*t).*cos(2*t),'--r')

2-1703

polar

270

See Also cart2pol, compass, LineSpec, plot, pol2cart, rose

2-1704

poly

Purpose

Syntax

Description

Remarks

Examples

Polynomial with specified roots

poly(A)
poly(r)

T T
Inun

p = poly(A) where A is an n-by-n matrix returns an n+1 element row vector
whose elements are the coefficients of the characteristic polynomial,

det(sl —A). The coefficients are ordered in descending powers: if a vector ¢ has
n+1 components, the polynomial it represents is ¢;s™ +... +¢,s+c¢c, , |

p = poly(r) where r is a vector returns a row vector whose elements are the
coefficients of the polynomial whose roots are the elements of r.
Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the polynomial
specified by the coefficients row vector p. For vectors, roots and poly are
inverse functions of each other, up to ordering, scaling, and roundoff error.

MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =
1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =
1 -6 -72 -27

The roots of this polynomial (eigenvalues of matrix A) are returned in a column
vector by roots:

r = roots(p)

2-1705

Algorithm

See Also

2-1706

12.1229
-5.7345
-0.3884

The algorithms employed for poly and roots illustrate an interesting aspect of
the modern approach to eigenvalue computation. poly (A) generates the
characteristic polynomial of A, and roots(poly(A)) finds the roots of that
polynomial, which are the eigenvalues of A. But both poly and roots use eig,
which is based on similarity transformations. The classical approach, which
characterizes eigenvalues as roots of the characteristic polynomial, is actually
reversed.

If Ais an n-by-n matrix, poly(A) produces the coefficients ¢ (1) through
c(n+1),withc(1) = 1,in

det(N[-A) = cA\"+ ... +c,A+c,

The algorithm is

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n
c(2:3+1) = c(2:j+1)-z(j)*c(1:7);
end

This recursion is easily derived by expanding the product.
A-A)DA=Ag)...(A=A))

It is possible to prove that poly (A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is true
even if the eigenvalues of A are badly conditioned. The traditional algorithms
for obtaining the characteristic polynomial, which do not use the eigenvalues,
do not have such satisfactory numerical properties.

conv, polyval, residue, roots

polyarea

Purpose Area of polygon
Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)
Description A = polyarea(X,Y) returns the area of the polygon specified by the vertices in

the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area of
polygons defined by the columns X and V.

If X and Y are multidimensional arrays, polyarea returns the area of the
polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by scalar dim.

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)"';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

Area = 2.3776

-0.5 0 0.5 1

See Also convhull, inpolygon, rectint

2-1707

polyder

Purpose

Syntax

Description

Examples

See Also

2-1708

Polynomial derivative

k polyder(p)
k polyder(a,b)
[q,d] = polyder(b,a)

The polyder function calculates the derivative of polynomials, polynomial
products, and polynomial quotients. The operands a, b, and p are vectors whose
elements are the coefficients of a polynomial in descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the polynomials a
and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of the
derivative of the polynomial quotient b/a.

The derivative of the product

(3x2 + 6x + 9)(x2 + 2x)

is obtained with

[3 6 9];
[1 2 0];
polyder(a,b)

X X T o
I}

12 36 42 18

This result represents the polynomial

12x3 + 36x2 + 42x + 18

conv, deconv

polyeig

Purpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,Al,...Ap)
e = polyeig(AO0,Al1,..,Ap)
[X, e, s] = polyeig(AO0,A1,..,AP)

Description [X,e] = polyeig(AO0,Al,...Ap) solves the polynomial eigenvalue problem of
degree p

(Ag+AA + ... +)\PAp)x =0

where polynomial degree p is a non-negative integer, and A0,A1,...Ap are
input matrices of order n. The output consists of a matrix X, of size n-by-n*p,
whose columns are the eigenvectors, and a vector e, of length n*p, containing
the eigenvalues.

If 1ambda is the jth eigenvalue in e, and x is the jth column of eigenvectors in
X, then (A0 + lambda*A1 + ... + lambda“p*Ap)*x is approximately 0.

e = polyeig(AO,Al,..,Ap) is a vector of length n*p whose elements are the
eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(AO,A1,..,AP) also returns a p*n length vector s, of
length p*n, containing condition numbers for the eigenvalues. At least one of
A0 and AP must be nonsingular. Large condition numbers imply that the
problem is close to a problem with multiple eigenvalues.

Remarks Based on the values of p and n, polyeig handles several special cases:

®p = 0,o0r polyeig(A) is the standard eigenvalue problem: eig(A).

*p

e n = 1,o0r polyeig(a0,al,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... al a0]).

1, or polyeig(A,B) is the generalized eigenvalue problem: eig (A, -B).

If both A0 and Ap are singular the problem is potentially ill-posed.
Theoretically, the solutions might not exist or might not be unique.
Computationally, the computed solutions might be inaccurate. If one, but not
both, of A0 and Ap is singular, the problem is well posed, but some of the
eigenvalues might be zero or infinite.

2-1709

polyeig

Algorithm

See Also

References

2-1710

The polyeig function uses the QZ factorization to find intermediate results in
the computation of generalized eigenvalues. It uses these intermediate results
to determine if the eigenvalues are well-determined. See the descriptions of eig
and gz for more on this.

coneig, eig, qz

[1] Dedieu, Jean-Pierre Dedieu and Francoise Tisseur, “Perturbation theory for
homogeneous polynomial eigenvalue problems,” Linear Algebra Appl., Vol.
358, pp. 71-94, 2003.

[2] Tisseur, Francoise and Karl Meerbergen, “The quadratic eigenvalue
problem,” SIAM Rev., Vol. 43, Number 2, pp. 235-286, 2001.

polyfit

Purpose

Syntax

Description

Examples

Polynomial curve fitting

p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least squares sense. The result p is a
row vector of length n+1 containing the polynomial coefficients in descending
powers

px) = ppa+pox® 1+ . +p x+tp, . 4

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p and a
structure S for use with polyval to obtain error estimates or predictions. If the
errors in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

x—Hq
Mo

X =

where p; = mean(x) and p, = std(x) . mu is the two-element vector [y, u] .
This centering and scaling transformation improves the numerical
properties of both the polynomial and the fitting algorithm.

This example involves fitting the error function, erf (x), by a polynomial in x.
This is a risky project because erf (x) is a bounded function, while polynomials
are unbounded, so the fit might not be very good.

First generate a vector of x points, equally spaced in the interval [0, 2.5] ; then
evaluate erf (x) at those points.

x = (0: 0.1: 2.5)";

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

2-1711

p:
0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

There are seven coefficients and the polynomial is

0.0084x° - 0.0983x° + 0.4217x* - 0.7435x” + 0.1471x” + 1.1064x + 0.0004
To see how good the fit is, evaluate the polynomial at the data points with
f = polyval(p,x);
A table showing the data, fit, and error is

table = [x y f y-f]

table =
0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

So, on this interval, the fit is good to between three and four digits. Beyond this
interval the graph shows that the polynomial behavior takes over and the
approximation quickly deteriorates.

X = (0: 0.1: 5)';

y erf(x);

f polyval(p,X);
plOt(Xsyslolsxafal'l)
axis([0 5 0 2])

2-1712

polyfit

Algorithm

See Also

1.8 b

1.6 A

1.2 b

17 0O0O0OO0OO0OOO0OOOO 00000000 O4

0.8+ i

0.4} 1

0.2+ b

The polyfit M-file forms the Vandermonde matrix, V', whose elements are
powers of x .
Ul,] = xln -J

It then uses the backslash operator, \, to solve the least squares problem
Vp Oy

You can modify the M-file to use other functions of x as the basis functions.

poly, polyval, roots

2-1713

polyint

Purpose Integrate polynomial analytically
Syntax polyint(p,k)
polyint(p)
Description polyint(p,k) returns a polynomial representing the integral of polynomial p,

using a scalar constant of integration k.

polyint(p) assumes a constant of integration k=0.

See Also polyder, polyval, polyvalm, polyfit

2-1714

polyval

Purpose

Syntax

Description

Remarks

Examples

Polynomial evaluation

y polyval(p,X)

y polyval(p,x,[],mu)
[y,deltal polyval(p,x,S)
[y,delta] polyval(p,x,S,mu)

y = polyval(p,x) returns the value of a polynomial of degree n evaluated at
x. The input argument p is a vector of length n+1 whose elements are the
coefficients in descending powers of the polynomial to be evaluated.

Y =Pyt px” M At

x can be a matrix or a vector. In either case, polyval evaluates p at each
element of x.

y = polyval(p,x,[],mu) uses x = (x —H;)/ Hy in place of x . In this equation,
M; = mean(x) and Wy = std(x) . The centering and scaling parameters
mu = [H;, U] are optional output computed by polyfit.

[y,delta] = polyval(p,x,S) and [y,delta] = polyval(p,x,S,mu) use the
optional output structure S generated by polyfit to generate error estimates,
ytdelta. If the errors in the data input to polyfit are independent normal
with constant variance, ytdelta contains at least 50% of the predictions.

The polyvalm(p,x) function, with x a matrix, evaluates the polynomial in a
matrix sense. See polyvalm for more information.

The polynomial p(x) = 3x%+2x+1 is evaluated at x = 5,7, and 9 with

p=1I321];
polyval(p,[5 7 9])

which results in

ans =

86 162 262

For another example, see polyfit.

2-1715

polyval

See Also polyfit, polyvalm

2-1716

polyvalm

Purpose
Syntax

Description

Examples

Matrix polynomial evaluation

Y

polyvalm(p,X)

Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is the same
as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a polynomial in
descending powers, and X must be a square matrix.

The Pascal matrices are formed from Pascal’s triangle of binomial coefficients.
Here is the Pascal matrix of order 4.

X = pascal(4)

X =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.
p = poly(X)
p -

1 -29 72 -29 1

This represents the polynomial x4 — 29x3 + 72x2 - 29x + 1.

Pascal matrices have the curious property that the vector of coefficients of the
characteristic polynomial is palindromic; it is the same forward and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)

ans =
16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089
16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)

2-1717

polyvalm

ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

2-1718

pow2

Purpose

Syntax

Description

Remarks

Examples

See Also

Base 2 power and scale floating-point numbers

X
X

pow2(Y)
pow2(F,E)

X = pow2(Y) returns an array X whose elements are 2 raised to the power Y.

X = pow2(F,E) computes x = f * 2° for corresponding elements of F and E.
The result is computed quickly by simply adding E to the floating-point
exponent of F. Arguments F and E are real and integer arrays, respectively.

This function corresponds to the ANSI C function 1dexp () and the IEEE
floating-point standard function scalbn().

For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X

1/2 1 1

pi/4 2 pi

-3/4 2 -3

1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

log2, exp, hex2num, realmax, realmin

The arithmetic operators * and . "

2-1719

ppval

Purpose

Syntax

Description

Examples

See Also

2-1720

Evaluate piecewise polynomial.

<
1l

ppval(pp,xx)
ppval(xx,pp)

<
1l

v = ppval(pp,xx) returns the value at the points xx of the piecewise
polynomial contained in pp, as constructed by spline or the spline utility mkpp.

v = ppval(xx,pp) returns the same result but can be used with functions like
fminbnd, fzero and quad that take a function as an argument.

Compare the results of integrating the function cos

a=0; b=10;
int1 = quad(@cos,a,b,[1,[])

int1
-0.5440

with the results of integrating the piecewise polynomial pp that approximates
the cosine function by interpolating the computed values x and y.

X = a:b;

y = cos(x);

pp = spline(x,y);

int2 = quad(@ppval,a,b,[],[],pp)

int2 =
-0.5485

int1 provides the integral of the cosine function over the interval [a,b], while
int2 provides the integral over the same interval of the piecewise polynomial
pp.

mkpp, spline, unmkpp

prefdir

Purpose

Syntax

Description

Examples

Return directory containing preferences, history, and layout files

prefdir
d = prefdir
d = prefdir(1)

prefdir returns the directory that contains preferences for MATLAB and
related products (matlab.prf), the command history (history.m), the
MATLAB shortcuts (shortcuts.xml), and the MATLAB desktop layout files
(MATLABDesktop.xml and Your_Saved_LayoutMATLABLayout.xml).

On Macintosh platforms, the directory might be in a hidden folder, for example,
myname/.matlab/R14. To access the directory, select Go -> Go to Folder in the
Finder. In the resulting dialog box, type the path returned by prefdir and
press Enter.

d = prefdir returns the name of the directory containing preferences and
related files, but does not ensure its existence.

d = prefdir(1) creates a directory for preferences and related files if one does
not exist.
Run

prefdir
MATLAB returns
ans =

C:\WINNT\Profiles\tbear.MATHWORKS
\Application Data\MathWorks\MATLAB\R14

Running dir for the directory shows

history.m
. matlab.prf
cwdhistory.m MATLABDesktop.xml
shortcuts.xml

and possibly other files for other MathWorks products and any desktop layouts
you saved.

2-1721

prefdir

See Also Fonts, Colors, and Other Preferences

2-1722

preferences

Purpose

Graphical
Interface

Syntax

Description

Display Preferences dialog box for MATLAB and related products

As an alternative to the preferences function, select Preferences from the
File menu in the MATLAB desktop or any desktop tool.

preferences

preferences displays the Preferences dialog box, from which you can make

changes to options for MATLAB and related products. For more information,

see Fonts, Colors, and Other Preferences.

2-1723

primes

Purpose
Syntax

Description

Examples

See Also

2-1724

Generate list of prime numbers

p = primes(n)

p = primes(n) returns a row vector of the prime numbers less than or equal
to n. A prime number is one that has no factors other than 1 and itself.

p = primes(37)

p:

factor

11

13

17

19

23

29

31

37

print, printopt

Purpose

Syntax

Description

Create hardcopy output

print

print filename

print -ddriver

print -dformat

print -dformat filename
print -smodelname
print ... -options
[pcmd,dev] = printopt

print and printopt produce hardcopy output. All arguments to the print
command are optional. You can use them in any combination or order.

print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the device
and system printing command defined by printopt.

print filename directs the output to the file designated by filename. If
filename does not include an extension, print appends an appropriate
extension.

print -ddriver prints the figure using the specified printer driver, (such as
color PostScript). If you omit -ddriver, print uses the default value stored in
printopt.m. The Printer Driver table lists all supported device types.

print -dformat copies the figure to the system clipboard (Windows only). A
valid format for this operation is either -dmeta (Windows Enhanced Metafile)
or -dbitmap (Windows Bitmap).

print -dformat filename exports the figure to the specified file using the
specified graphics format, (such as TIFF). The Graphics Format table lists all
supported graphics file formats.

print -smodelname prints the current Simulink model modelname.

print -options specifies print options that modify the action of the print
command. (For example, the noui option suppresses printing of user interface
controls.) The Options section lists available options.

2-1725

print, printopt

Drivers

print(...) is the function form of print. It enables you to pass variables for
any input arguments. This form is useful for passing filenames and handles.
See Batch Processing for an example.

[pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is an M-file
used by print to produce the hardcopy output. You can edit the M-file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the command that
print uses to send a file to the printer. dev contains the printer driver or
graphics format option for the print command. Their defaults are platform
dependent.

Platform System Printing Driver or Format
Command

UNIX lpr r dps2

Windows COPY /B %s LPT1: dwin

The table below shows the complete list of printer drivers supported by
MATLAB. If you do not specify a driver, MATLAB uses the default setting
shown in the previous table.

Some of the drivers are available from a product called Ghostscript, which is
shipped with MATLAB. The last column indicates when Ghostscript is used.

Some drivers are not available on all platforms. This is noted in the first
column of the table.

Printer Driver

PRINT Command GhostScript
Option String

Canon Bubbledet BJ10e -dbj10e Yes
Canon Bubbledet BJ200 color -dbj200 Yes
Canon Color Bubbledet BJC-70/BJC-600/BJC-4000 -dbjc600 Yes
Canon Color Bubbledet BJC-800 -dbjc800 Yes

2-1726

print, printopt

Printer Driver PRINT Command GhostScript
Option String

DEC LNO3 -d1n03 Yes

Epson and compatible 9- or 24-pin dot matrix print -depson Yes

drivers

Epson and compatible 9-pin with interleaved lines -deps9high Yes

(triple resolution)

Epson LQ-2550 and compatible; color (not supported on -depsonc Yes

HP-700)

Fujitsu 3400/2400/1200 -depsonc Yes

HP Designdet 650C color (not supported on Windows) -ddnj650c Yes

HP Deskdet 500 -ddjet500 Yes

HP Deskdet 500C (creates black and white output) -dcdjmono Yes

HP Deskdet 500C (with 24 bit/pixel color and -dcdjcolor Yes

high-quality Floyd-Steinberg color dithering) (not

supported on Windows)

HP Deskdet 500C/540C color (not supported on -dcdj500 Yes

Windows)

HP Deskjet 550C color (not supported on Windows) -dcdj550 Yes

HP DeskdJet and Deskdet Plus -ddeskjet Yes

HP Laserdet -dlaserjet Yes

HP LaserdJet+ -dljetplus Yes

HP Laserdet IIP -dljet2p Yes

HP Laserdet II1 -dljet3 Yes

HP LaserdJet 4.5L and 5P -dljet4 Yes

HP Laserdet 5 and 6 -dpx1mono Yes

2-1727

print, printopt

Printer Driver PRINT Command GhostScript
Option String

HP PaintdJet color -dpaintjet Yes
HP PaintdJet XL color -dpjx1 Yes
HP PaintJet XL color -dpjetxl Yes
HP PaintdJet XL300 color (not supported on Windows) -dpjx1300 Yes
HPGL for HP 7475A and other compatible plotters. -dhpgl No
(Renderer cannot be set to Z-buffer.)

IBM 9-pin Proprinter -dibmpro Yes
PostScript black and white -dps No
PostScript color -dpsc No
PostScript Level 2 black and white -dps2 No
PostScript Level 2 color -dpsc2 No
Windows color (Windows only) -dwinc No
Windows monochrome (Windows only) -dwin No

Note Generally, Level 2 PostScript files are smaller and are rendered more
quickly when printing than Level 1 PostScript files. However, not all
PostScript printers support Level 2, so determine the capabilities of your
printer before using those drivers. Level 2 PostScript is the default for UNIX.
You can change this default by editing the printopt.m file.

Graphics To save your figure as a graphics-format file, specify a format switch and

Format Files filename. To set the resolution of the output file for a built-in MATLAB format,
use the -r switch. (For example, -r300 sets the output resolution to 300 dots
per inch.) The - r switch is also supported for Windows Enhanced Metafiles but
is not supported for Ghostscript formats.

2-1728

print, printopt

The table below shows the supported output formats for exporting from

MATLAB and the switch settings to use. In some cases, a format is available
both as a MATLAB output filter and as a Ghostscript output filter. The first
column indicates this by showing “MATLAB” or “Ghostscript” in parentheses.
All formats except for EMF are supported on both the PC and UNIX platforms.

Graphics Format Bitmapor PRINT Command MATLAB or
Vector Option String Ghostscript
BMP monochrome BMP Bitmap -dbmpmono Ghostscript
BMP 24-bit BMP Bitmap -dbmp16m Ghostscript
BMP 8-bit (256-color) BMP *this format usesa Bitmap -dbmp256 Ghostscript
fixed colormap
BMP 24-bit Bitmap -dbmp MATLAB
EMF Vector -dmeta MATLAB
EPS black and white Vector -deps MATLAB
EPS color Vector -depsc MATLAB
EPS Level 2 black and white Vector -deps2 MATLAB
EPS Level 2 color Vector -depsc2 MATLAB
HDF 24-bit Bitmap -dhdf MATLAB
ILL (Adobe Illustrator) Vector -dill MATLAB
JPEG 24-bit Bitmap -djpeg MATLAB
PBM (plain format) 1-bit Bitmap -dpbm Ghostscript
PBM (raw format) 1-bit Bitmap -dpbmraw Ghostscript
PCX 1-bit Bitmap -dpcxmono Ghostscript
PCX 24-bit color PCX file format, three 8-bit Bitmap -dpcx24b Ghostscript

planes

2-1729

print, printopt

Graphics Format Bitmapor PRINT Command MATLAB or
Vector Option String Ghostscript
PCX 8-bit Newer color PCX file format Bitmap -dpcx256 Ghostscript
(256-color)
PCX Older color PCX file format (EGA/VGA, Bitmap -dpcx16 Ghostscript
16-color)
PCX 8-bit Bitmap -dpcx MATLAB
PDF Color PDF file format -dpdf Ghostscript
PGM Portable Graymap (plain format) Bitmap -dpgm Ghostscript
PGM Portable Graymap (raw format) Bitmap -dpgmraw Ghostscript
PNG 24-bit Bitmap -dpng MATLAB
PPM Portable Pixmap, plain format Bitmap -dppm Ghostscript
PPM Portable Pixmap raw format Bitmap -dppmraw Ghostscript
TIFF 24-bit Bitmap -dtiff or MATLAB
-dtiffn
TIFF preview for EPS Files Bitmap -tiff

The TIFF image format is supported on all platforms by almost all word
processors for importing images. JPEG is a lossy, highly compressed format
that is supported on all platforms for image processing and for inclusion into
HTML documents on the World Wide Web. To create these formats, MATLAB
renders the figure using the Z-buffer rendering method and the resulting
bitmap is then saved to the specified file.

Options This table summarizes options that you can specify for print. The second
column also shows which tutorial sections contain more detailed information.

2-1730

print, printopt

The sections listed are located under Printing and Exporting Figures with
MATLAB.

Option Description

-adobecset PostScript only. Use PostScript default character set encoding. See “Early
PostScript 1 Printers.”

-append PostScript only. Append figure to existing PostScript file. See “Settings That
Are Driver Specific.”

-cmyk PostScript only. Print with CMYK colors instead of RGB. See “Setting CMYK
Color.”

-ddriver Printing only. Printer driver to use. See Drivers table.

-dformat Exporting only. Graphics format to use. See Graphics Format Files table.

-dsetup Display the Print Setup dialog.

-fhandle Handle of figure to print. Note that you cannot specify both this option and
the -swindowtitle option. See “Which Figure Is Printed.”

-loose PostScript and Ghostscript only. Use loose bounding box for PostScript. See
“Producing Uncropped Figures.”

-noui Suppress printing of user interface controls. See “Excluding User Interface
Controls.”

-opengl Render using the OpenGL algorithm. Note that you cannot specify this
method in conjunction with -zbuffer or -painters. See “Selecting a
Renderer.”

-painters Render using the Painter’s algorithm. Note that you cannot specify this
method in conjunction with -zbuffer or -opengl. See “Selecting a Renderer.”

-Pprinter Specify name of printer to use. See “Selecting Printer.”

-rnumber PostScript and Ghostscript only. Specify resolution in dots per inch. See

“Setting the Resolution.”

2-1731

print, printopt

Option Description

-swindowtitle Specify name of Simulink system window to print. Note that you cannot
specify both this option and the -fhandle option. See “Which Figure Is

Printed.”
-V Windows only. Display the Windows Print dialog box. The v stands for
“verbose mode.”
-zbuffer Render using the Z-buffer algorithm. Note that you cannot specify this
method in conjunction with -opengl or -painters. See “Selecting a
Renderer.”
Paper Sizes MATLAB supports a number of standard paper sizes. You can select from the

following list by setting the PaperType property of the figure or selecting a
supported paper size from the Print dialog box.

Property Value Size (Width-by-Height)
usletter 8.5-by-11 inches
uslegal 11-by-14 inches
tabloid 11-by-17 inches
A0 841-by-1189 mm
A1 594-by-841 mm
A2 420-by-594 mm
A3 297-by-420 mm
A4 210-by-297 mm
A5 148-by-210 mm
BO 1029-by-1456 mm
B1 728-by-1028 mm
B2 514-by-728 mm

2-1732

print, printopt

Property Value Size (Width-by-Height)
B3 364-by-514 mm

B4 257-by-364 mm

B5 182-by-257 mm
arch-A 9-by-12 inches

arch-B 12-by-18 inches
arch-C 18-by-24 inches
arch-D 24-by-36 inches
arch-E 36-by-48 inches

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Printing Tips This section includes information about specific printing issues.

Figures with Resize Functions

The print command produces a warning when you print a figure having a
callback routine defined for the figure ResizeFcn. To avoid the warning, set the
figure PaperPositionMode property to auto or select Match Figure Screen
Size in the File->Page Setup dialog box.

Troubleshooting MS-Windows Printing

If you encounter problems such as segmentation violations, general protection
faults, or application errors, or the output does not appear as you expect when
using MS-Windows printer drivers, try the following:

2-1733

print, printopt

2-1734

¢ If your printer is PostScript compatible, print with one of the MATLAB
built-in PostScript drivers. There are various PostScript device options that
you can use with the print command: they all start with —dps.

¢ The behavior you are experiencing may occur only with certain versions of
the print driver. Contact the print driver vendor for information on how to
obtain and install a different driver.

¢ Try printing with one of the MATLAB built-in Ghostscript devices. These
devices use Ghostscript to convert PostScript files into other formats, such
as HP LaserdJet, PCX, Canon Bubbledet, and so on.

® Copy the figure as a Windows Enhanced Metafile using the Edit-->Copy
Figure menu item on the figure window menu or the print —dmeta option at
the command line. You can then import the file into another application for
printing.
You can set copy options in the figure’s File-->Preferences-->Copying
Options dialog box. The Windows Enhanced Metafile clipboard format
produces a better quality image than Windows Bitmap.

Printing MATLAB GUIs
You can generally obtain better results when printing a figure window that
contains MATLAB uicontrols by setting these key properties:

® Set the figure PaperPositionMode property to auto. This ensures the printed
version is the same size as the onscreen version. With PaperPositionMode
set to auto MATLAB does not resize the figure to fit the current value of the
PaperPosition. This is particularly important if you have specified a figure
ResizeFcn, because if MATLAB resizes the figure during the print operation,
the ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command
set(gcf, 'PaperPositionMode', 'auto')

® Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white, but does not
change the color of uicontrols. If you have set the background color, for
example, to match the gray of the GUI devices, you must set InvertHardcopy
to of f to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command
set(gcf, 'InvertHardcopy', 'off"')

print, printopt

Examples

¢ Use a color device if you want lines and text that are in color on the screen to
be written to the output file as colored objects. Black and white devices
convert colored lines and text to black or white to provide the best contrast
with the background and to avoid dithering.

® Use the print command’s —1loose option to prevent MATLAB from using a
bounding box that is tightly wrapped around objects contained in the figure.
This is important if you have intentionally used space between uicontrols or
axes and the edge of the figure and you want to maintain this appearance in
the printed output.

Notes on Printing Interpolated Shading with PostScript Drivers

MATLAB can print surface objects (such as graphs created with surf or mesh)
using interpolated colors. However, only patch objects that are composed of
triangular faces can be printed using interpolated shading.

Printed output is always interpolated in RGB space, not in the colormap colors.
This means that if you are using indexed color and interpolated face coloring,
the printed output can look different from what is displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer to perform
the interpolation calculations. This can take an excessive amount of time and
in some cases, printers may actually time out before finishing the print job.
One solution to this problem is to interpolate the data and generate a greater
number of faces, which can then be flat shaded.

To ensure that the printed output matches what you see on the screen, print
using the -zbuffer option. To obtain higher resolution (for example, to make
text look better), use the - r option to increase the resolution. There is, however,
a tradeoff between the resolution and the size of the created PostScript file,
which can be quite large at higher resolutions. The default resolution of 150 dpi
generally produces good results. You can reduce the size of the output file by
making the figure smaller before printing it and setting the figure
PaperPositionMode to auto, or by just setting the PaperPosition property to
a smaller size.

Specifying the Figure to Print

You can print a noncurrent figure by specifying the figure’s handle. If a figure
has the title “Figure No. 27, its handle is 2. The syntax is

2-1735

print, printopt

2-1736

print -fhandle

This example prints the figure whose handle is 2, regardless of which figure is
the current figure.

print -f2

Note You must use the -f option if the figure’s handle is hidden (i.e., its
HandleVisibility property is set to off).

This example saves the figure with the handle -2 to a PostScript file named
Figure2, which can be printed later.

print -f2 -dps 'Figure2.ps'

If the figure uses noninteger handles, use the figure command to get its value,
and then pass it in as the first argument.

h = figure('IntegerHandle', 'off')
print h -depson

You can also pass a figure handle as a variable to the function form of print.
For example,

h = figure; plot(1:4,5:8)

print(h)
This example uses the function form of print to enable a filename to be passed
in as a variable.

filename = 'mydata’';

print('-f3', '-dpsc', filename);

(Because a filename is specified, the figure will be printed to a file.)

Specifying the Model to Print

To print a noncurrent Simulink model, use the -s option with the title of the
window. For example, this command prints the Simulink window titled f14.

print -sfi14

print, printopt

If the window title includes any spaces, you must call the function form rather
than the command form of print. For example, this command saves Simulink
window title Thruster Control.

print('-sThruster Control')

To print the current system, use
print -s

For information about issues specific to printing Simulink windows, see the
Simulink documentation.

This example prints a surface plot with interpolated shading. Setting the
current figure’s (gcf) PaperPositionMode to auto enables you to resize the
figure window and print it at the size you see on the screen. See Options and
the previous section for information on the —zbuffer and —r200 options.

surf (peaks)

shading interp

set(gcf, 'PaperPositionMode’', 'auto')
print —-dpsc2 —zbuffer -r200

Batch Processing

You can use the function form of print to pass variables containing file names.
For example, this for loop creates a series of graphs and prints each one with a
different file name.

for k=1:length(fnames)
surf(Z(:,:,k))
print('-dtiff','-r200',fnames(k))
end

Tiff Preview
The command

print -depsc -tiff -r300 picture1

saves the current figure at 300 dpi, in a color Encapsulated PostScript file
named picturei.eps. The -tiff option creates a 72 dpi TIFF preview, which
many word processor applications can display on screen after you import the
EPS file. This enables you to view the picture on screen within your word

2-1737

print, printopt

processor and print the document to a PostScript printer using a resolution of
300 dpi.

See Also orient, figure

2-1738

printdlg

Purpose

Syntax

Description

Display print dialog box

printdlg

printdlg(fig)
printdlg('-crossplatform',fig)
printdlg('-setup',fig)

printdlg prints the current figure.

printdlg(fig) creates a dialog box from which you can print the figure
window identified by the handle fig. Note that uimenus do not print.

printdlg('-crossplatform',fig) displays the standard cross-platform
MATLAB printing dialog rather than the built-in printing dialog box for
Microsoft Windows computers. Insert this option before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a setup mode.
Here one can set the default printing options without actually printing.

2-1739

printpreview

Purpose

Preview figure
to be printed

Syntax printpreview
printpreview(f)
Description printpreview displays a dialog box showing the figure in the currently active

figure window as it will be printed. The figure is displayed with a 1/4 size
thumbnail or full size image.

printpreview(f) displays a dialog box showing the figure having the handle f
as it will be printed.

You can select any of the following options from the Print Preview dialog box.

Option Button Description
Print... Close Print Preview and open the Print dialog
Page Setup... Open the Page Setup dialog
Zoom In Display a full size image of the page
Zoom Out Display a 1/4 scaled image of the page
Close Close the Print Preview dialog
See Also printdlg, pagesetupdlg

2-1740

prod

Purpose

Syntax

Description

Examples

See Also

Product of array elements

B
B

prod(A)
prod(A,dim)

B = prod(A) returns the products along different dimensions of an array.
If Ais a vector, prod(A) returns the product of the elements.

If A is a matrix, prod (A) treats the columns of A as vectors, returning a row
vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = prod(A,dim) takes the products along the dimension of A specified by
scalar dim.

The magic square of order 3 is

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =

96 45 84

The product of the elements in each row can be obtained by:
prod(M,2) =
48
105
72

cumprod, diff, sum

2-1741

profile

Purpose

Graphical
Interface

Syntax

Description

2-1742

Profile the execution time for a function

As an alternative to the profile function, select Desktop -> Profiler from the
desktop.

profile on

profile on -detail Ievel
profile on -history
profile off

profile resume

profile clear

profile viewer

s = profile('status')
stats = profile('info')

The profile function helps you debug and optimize M-files by tracking their
execution time. For each function in the M-file, profile records information
about execution time, number of calls, parent functions, child functions, code
line hit count, and code line execution time. Some people use profile simply
to see the child functions; see also depfun for that purpose. To open the Profiler
graphical user interface, use the profile viewer syntax.

profile on starts the Profiler, clearing previously recorded profile statistics.

profile on -detail Ievel starts the Profiler, clearing previously recorded
profile statistics, and specifying the set of functions you want to profile. Use the
following text strings as the value of the -detail option, Ievel.

Value for level Gathers Information About

'builtin' M-functions, M-subfunctions, and MEX-functions,
plus built-in functions, such as eig

'mmex ' M-functions, M-subfunctions, and MEX-functions.
This is the default value.

profile on -history starts the Profiler, clearing previously recorded profile
statistics, and recording the exact sequence of function calls. The profile

profile

function records up to 10,000 function entry and exit events. For more than
10,000 events, profile continues to record other profile statistics, but not the
sequence of calls. By default, the history option is not enabled.

profile off stops the Profiler.

profile resume restarts the Profiler without clearing previously recorded
statistics.

profile clear clears the statistics recorded by profile.

profile viewer stops the Profiler and displays the results in the Profiler
window.

S = profile('status') returns a structure containing information about the
current status of the Profiler. The table lists the fields in the order they appear
in the structure.

Field Values
ProfilerStatus ‘on' or 'off’
DetaillLevel ‘mmex' or 'builtin’
HistoryTracking 'on' or 'off'

stats = profile('info') stops the Profiler and displays a structure
containing the results. Use this function to access the data generated by
profile. The table lists the fields in the order they appear in the structure.

Field Description

FunctionTable Structure array containing statistics about each
functions called

FunctionHistory Array containing function call history

ClockPrecision Precision of profile’s time measurement

2-1743

profile

Field Description
Name Name of the profiler
ClockSpeed Estimated clock speed of the CPU

The FunctionTable field is an array of structures, where each structure
contains information about one of the functions or subfunctions called during
execution. The following table lists these fields in the order they appear in the

structure.

Field Description

FunctionName Function name, includes subfunction references

FileName Filename is a fully qualified path

Type M-functions, MEX-functions, and many other
types of functions including M-subfunctions,
nested functions, and anonymous functions

NumCalls Number of times this function was called

TotalTime Total time spent in this function and its child
functions

TotalRecursiveTime No longer used. Ignore value.

Children FunctionTable indices to child functions

Parents FunctionTable indices to parent functions

2-1744

profile

Examples

Field Description

ExecutedLines Array containing line-by-line details for the
function being profiled.
Column 1: Number of the line that executed. If a
line was not executed, it does not appear in this
matrix.
Column 2: Number of times that line was
executed
Column 3: Total time spent on that line. Note:
The sum of Column 3 does not necessarily add
up to the function's TotalTime.

IsRecursive Boolean value: True if recursive, otherwise
False

AcceleratorMessages No longer used

This example profiles the MATLAB magic command and then displays the
results in the Profiler window. The example then retrieves the profile data on
which the HTML display is based and uses the profsave command to save the

profile data in HTML form.

profile on
plot(magic(35))
profile viewer

p = profile('info');

profsave(p, ‘profile_results')

Another way to save profile data is to store it in a MAT-file. This example
stores the profile data in a MAT-file, clears the profile data from memory, and
then loads the profile data from the MAT-file. This example also shows a way
to bring the reloaded profile data into the Profiler graphical interface as live
profile data; not as a static HTML page.

p = profile('info');
save myprofiledata p

clear p

load myprofiledata

profview(0,p)

2-1745

profile

See Also

2-1746

This example illustrates an effective way to view the results of profiling when
the history option is enabled. The history data describes the sequence of
functions entered and exited during execution. The profile command returns
history data in the FunctionHistory field of the structure it returns. The
history data is a 2-by-n array. The first row contains Boolean values where 1
means entrance into a function and 0 means exit from a function. The second
row identifies the function being entered or exited by its index in the
FunctionTable field. This example reads the history data and displays it in the
MATLAB Command Window.

profile on -history
plot(magic(4));
p = profile('info');

for n = 1:size(p.FunctionHistory,2)
if p.FunctionHistory(1,n)==0
str = 'entering function: ';
else
str = ' exiting function: ';
end
disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName]);
end

depdir, depfun, mlint, profsave

See Profiling for Improving Performance

profsave

Purpose

Syntax

Description

Examples

See Also

Save profile report in HTML format

profsave
profsave(profinfo)
profsave(profinfo,dirname)

profsave executes the profile('info') function and saves the results in
HTML format. profsave creates a separate HTML file for each function listed
in the FunctionTable field of the structure returned by profile. By default,
profsave stores the HTML files in a subdirectory of the current directory
named profile results.

profsave (profinfo) saves the profiling results, profinfo, in HTML format.
profinfo is a structure of profiling information returned by the
profile('info') function.

profsave (profinfo,dirname) saves the profiling results, profinfo,in HTML
format. profsave creates a separate HTML file for each function listed in the
FunctionTable field of profinfo and stores them in the directory specified by
dirname.

Run profile and save the results.

profile on

plot(magic(5))

profile off

profsave(profile('info'), 'myprofile results')
profile

Profiling for Improving Performance

2-1747

propedit

Purpose

Syntax

Description

See Also

2-1748

Starts the Property Editor

propedit
propedit(handle_list)
propedit(handle_list, 'v6')

propedit starts the Property Editor, a graphical user interface to the
properties of graphics objects. There must be a current figure to call propedit
without an object handle.

propedit(handle list) edits the properties for the object (or objects) in
handle_list.

propedit(handle list,'v6') displays the MATLAB Version 6 Property
Editor.

Starting the Property Editor enables plot editing mode for the figure.

Note The Version 6 Property Editor may not work with all objects.

inspect, plotedit, propertyeditor

propertyeditor

Purpose

Syntax

Description

See Also

Show or hide property editor

propertyeditor('on')
propertyeditor('off')
propertyeditor('toggle'), propertyeditor
propertyeditor(figure_handle,...)

propertyeditor('on') displays the property editor on the current figure.
propertyeditor('off') hides the property editor on the current figure.

propertyeditor('toggle') or propertyeditor toggles the visibility of the
property editor on the current figure.

propertyeditor(figure_handle,...) displays or hides the property editor on
the figure specified by figure handle.

plotbrowser, figurepalette

2-1749

psi

Purpose Psi (polygamma) function
Syntax Y = psi(X)

Y = psi(k,X)

Y = psi(k0:k1,X)

Description Y = psi(X) evaluates the Y function for each element of array X. X must be
real and nonnegative. The Y function, also known as the digamma function,
is the logarithmic derivative of the gamma function

P(x) = digamma(x)
_ d(log(I'(x)))
dx
_ d(F(x))/dx
I(x)

Y = psi(k,X) evaluates the kth derivative of Y at the elements of X. psi(0,X)
is the digamma function, psi(1,X) is the trigamma function, psi(2,X) is the
tetragamma function, etc.

Y = psi(k0:k1,X) evaluates derivatives of order kO through k1 at X. Y(k,j) is
the (k-1+k0)th derivative of |, evaluated at X(j).

Examples Example 1. Use the psi function to calculate Euler's constant, y.

format long

-psi(1)

ans =
0.57721566490153

-psi(0,1)
ans =
0.57721566490153

Example 2. The trigamma function of 2, psi(1,2), is the same as (1T2/6) -1.

format long

psi(1,2)

ans =
0.64493406684823

2-1750

psi

pi~2/6 - 1
ans =
0.64493406684823

Example 3. This code produces the first page of Table 6.1 in Abramowitz and
Stegun [1].

X = (1:.005:1.250)"';
[x gamma(x) gammaln(x) psi(0:1,x)"' x-1]

Example 4. This code produces a portion of Table 6.2 in [1].
psi(2:3,1:.01:2)"

See Also gamma, gammainc, gammaln

References [1] Abramowitz, M. and 1. A. Stegun, Handbook of Mathematical Functions,
Dover Publlications, 1965, Sections 6.3 and 6.4.

2-1751

publish

Purpose Run M-file containing cells, and save results to file of specified type
Graphical As an alternative to the publish function, use the File -> Publish To menu
Interface items in the Editor/Debugger.

Syntax publish('script"')

publish('script', 'format')
publish('script', 'options')

Description publish('script') runs the file named script and publishes the code,
comments, and results to an HTML output file. The output file is named
script.html and is stored, along with other supporting output files, in an html
subdirectory in script’s directory.

publish('script', 'format') runs the file named script and publishes the
code, comments, and results to an output file using the specified format.
Allowable values for format are html (the default), xml, tex for LaTeX, doc for
Microsoft Word documents, and ppt for Microsoft PowerPoint documents. The
output file is named script.format and is stored, along with other supporting
output files, in an html subdirectory in script’s directory.

publish('script', 'options') provides a structure of options that may
contain any of the following fields (first choice listed is the default):

Field Values

format "html' | 'doc' | 'ppt' | 'xml' | 'rpt' |
‘latex’

stylesheet "' | an XSL filename (ignored unless format is
HTML or XML)

outputDir "' (an html subfolder below the file) | full
path

imageFormat 'png' | any supported by PRINT or IMWRITE,

depending on figureSnapMethod

figureSnapMethod 'print' | 'getframe'

2-1752

publish

Examples

See Also

Field Values

useNewFigure true | false

maxHeight [1 | positive integer (pixels)
maxWidth [1 | positive integer (pixels)
showCode true | false

evalCode true | false

stopOnError true | false
createThumbnail true | false

To publish the file d: /mymfiles/sine_wave.m to HTML, run
publish('d:/mymfiles/sine_wave.m', ‘'html')

MATLAB runs the file and saves the code, comments, and results to
d:/mymfiles/html/sine_wave.html. Open that file in a browser to view the
published document.

notebook
Publishing to HTML, XML, LaTeX, Word and PowerPoint Using Cells

2-1753

pwd

Purpose Display current directory
Graphical As an alternative to the pwd function, use the current directory field in the
Interface MATLAB desktop toolbar.
Syntax pwd
s = pwd
Description pwd displays the current working directory.

s = pwd returns the current directory to the variable s.

See Also cd, dir, fileparts, mfilename, path, what

2-1754

qmr

Purpose

Syntax

Description

Quasi-Minimal Residual method

x = qmr(A,b)

gmr(A,b,tol)

gmr(A,b,tol,maxit)

gqmr(A,b,tol,maxit,M)
gqmr(A,b,tol,maxit,M1,M2)

qgmr (A,b,tol,maxit,M1,M2,x0)
gmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = gmr(A,b,...)

[x,flag,relres] = gmr(A,b,...)
[x,flag,relres,iter] = gmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

x = qgmr(A,b) attempts to solve the system of linear equations A*x=b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x and afun(x, 'transp') returns A' *x.

If gmr converges, a message to that effect is displayed. If gmr fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x) /norm(b) and
the iteration number at which the method stopped or failed.

gmr (A,b,tol) specifies the tolerance of the method. If tolis [], then gmr uses
the default, 1e-6.

gmr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit is
[1, then gmr uses the default, min(n,20).

gmr(A,b,tol,maxit,M) and gqmr(A,b,tol,maxit,M1,M2) use preconditioners

Mor M = M1*M2 and effectively solve the system inv (M) *A*x = inv(M)*b for x.

IfMis [] then gmr applies no preconditioner. Mcan be a function mfun such that
mfun(x) returns M\x and mfun(x, 'transp') returns M' \x.

gmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x01is [], then gmr
uses the default, an all zero vector.

2-1755

qmr

Examples

2-1756

gmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... tofunctions afun(x,p1,p2,...) and
afun(x,p1,p2,..., 'transp') and similarly to the preconditioner functions

mifun and m2fun.

[x,flag] = gmr(A,b,...) also returns a convergence flag.

Flag Convergence

0 gmr converged to the desired tolerance tol within maxit
iterations.

1 gmr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 The method stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during gmr became

too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmr(A,b,...) also returns the relative residual
norm(b-A*x) /norm(b). If flagis 0, relres <= tol.

[x,flag,relres,iter] = gmr(A,b,...) alsoreturns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = gmr(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Example 1.
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);

qmr

tol = 1e-8; maxit = 15;

M1 spdiags([on/(-2) on],-1:0,n,n);
M2 spdiags([4*on -on],0:1,n,n);

x = gmr(A,b,tol,maxit,M1,M2,[1]);

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)

if (nargin > 2) & strcmp(transp_flag, 'transp')
y =4 x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

y =4 %%
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

as input to gmr

x1 = gmr(@afun,b,tol,maxit,M1,M2,[]1,n);

Example 2.

load west0479;
A west0479;
b sum(A,2);
[x,flag] = qgmr(A,b)

flagis 1 because gmr does not converge to the default tolerance 1e -6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = qmr(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and qmr
fails in the first iteration when it tries to solve a system such as U1*y = r for
y using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = gmr(A,b,1e-15,10,L2,U2)

flag2 is 0 because gmr converges to the tolerance of 1.6571e-016 (the value of
relres?2) at the eighth iteration (the value of iter2) when preconditioned by

2-1757

qmr

the incomplete LU factorization with a drop tolerance of 1e-6.

resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2). You can follow the
progress of gmr by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-0")
xlabel('iteration number')
ylabel('relative residual')

10

relative residual

iteration number

See Also bicg, bicgstab, cgs, gmres, 1sqr, luinc, minres, pcg, symmlq
@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Freund, Roland W. and Né6el M. Nachtigal, “QMR: A quasi-minimal residual
method for non-Hermitian linear systems”, SIAM Journal: Numer. Math. 60,
1991, pp. 315-339.

2-1758

qr

Purpose

Syntax

Description

Orthogonal-triangular decomposition

[Q,R] = qgr(A) (full and sparse matrices)
[Q,R] = qr(A,0) (full and sparse matrices)
[Q,R,E] = gr(A) (full matrices)

[Q,R,E] = gr(A,0) (full matrices)

X = qr(A) (full matrices)

R = gr(A) (sparse matrices)

[C,R] = qr(A,B) (sparse matrices)

R = gr(A,0) (sparse matrices)

[C,R] = qr(A,B,0) (sparse matrices)

The gr function performs the orthogonal-triangular decomposition of a matrix.
This factorization is useful for both square and rectangular matrices. It
expresses the matrix as the product of a real orthonormal or complex unitary
matrix and an upper triangular matrix.

[Q,R] = qgr(A) produces an upper triangular matrix R of the same dimension
as A and a unitary matrix Q so that A = Q*R. For sparse matrices, Q is often
nearly full. If [m n] = size(A), then Q is m-by-m and R is m-by-n.

[Q,R] = gr(A,0) produces an “economy-size” decomposition. If
[m n] = size(A),and m > n, then qr computes only the first n columns of of Q
and R is n-by-n. If m <= n, it is the same as [Q,R] = qr(A).

[Q,R,E] = gr(A) for full matrix A, produces a permutation matrix E, an upper
triangular matrix R with decreasing diagonal elements, and a unitary matrix
Q@ sothat A*E = Q*R. The column permutation E is chosen so that abs (diag(R))
is decreasing.

[Q,R,E] = gr(A,0) for full matrix A, produces an “economy-size”
decomposition in which E is a permutation vector, so that A(:,E) = Q*R. The
column permutation E is chosen so that abs(diag(R)) is decreasing.

X = gr(A) for full matrix A, returns the output of the LAPACK subroutine
DGEQRF or ZGEQRF. triu(qgr(A)) isR.

2-1759

qr

Examples

2-1760

R = gr(A) for sparse matrix A, produces only an upper triangular matrix, R.
The matrix R provides a Cholesky factorization for the matrix associated with
the normal equations,

R'*R = A'*A

This approach avoids the loss of numerical information inherent in the
computation of A' *A. It may be preferred to [Q,R] = qr(A) since Q is always
nearly full.

[C,R] = gr(A,B) for sparse matrix A, applies the orthogonal transformations
to B, producing C = Q'*B without computing Q. B and A must have the same
number of rows.

R = qr(A,0) and [C,R] = qr(A,B,0) for sparse matrix A, produce
“economy-size” results.

For sparse matrices, the Q-less QR factorization allows the solution of sparse
least squares problems

minimize||Ax — b|
with two steps

[C,R] = ar(A,b)
X = R\c

If A is sparse but not square, MATLAB uses the two steps above for the linear
equation solving backslash operator, i.e., x = A\b.

Example 1. Start with

A= [1 2 3
4 5 6
7 8 9
10 11 12

]

This is a rank-deficient matrix; the middle column is the average of the other
two columns. The rank deficiency is revealed by the factorization:

[Q,R] = qr(A)

Q =

qr

-0.0776 -0.8331 0.5444 0.0605
-0.3105 -0.4512 -0.7709 0.3251
-0.54383 -0.0694 -0.0913 -0.8317
-0.7762 0.3124 0.3178 0.4461
R =

-12.8841 -14.5916 -16.2992

0 -1.0413 -2.0826

0 0 0.0000

0 0 0

The triangular structure of R gives it zeros below the diagonal; the zero on the
diagonal in R(3,3) implies that R, and consequently A, does not have full rank.

Example 2. This examples uses matrix A from the first example. The QR
factorization is used to solve linear systems with more equations than
unknowns. For example, let

b = [1;3;5;7]
The linear system Ax = b represents four equations in only three unknowns.
The best solution in a least squares sense is computed by

x = A\b
which produces

Warning: Rank deficient, rank = 2, tol = 1.4594E-014
X =
0.5000
0
0.1667

The quantity tol is a tolerance used to decide if a diagonal element of R is
negligible. If [Q,R,E] = gr(A), then

tol = max(size(A))*eps*abs(R(1,1))
The solution x was computed using the factorization and the two steps

y = Q'*b;
X = R\y

2-1761

qr

Algorithm

See Also

References

2-1762

The computed solution can be checked by forming Ax . This equals b to within
roundoff error, which indicates that even though the simultaneous equations
Ax = b are overdetermined and rank deficient, they happen to be consistent.
There are infinitely many solution vectors x; the QR factorization has found
just one of them.

The gr function uses LAPACK routines to compute the QR decomposition:

Syntax Redl Complex

R = ar(A) DGEQRF ZGEQRF

R = ar(A,0)

[Q,R] = qgr(A) DGEQRF, DORGQR ZGEQRF, ZUNGQR
[Q,R] = ar(A,0)

[Q,R,e] = qr(A) DGEQP3, DORGQR ZGEQPF, ZUNGQR
[Q,R,e] = ar(A,0)

1lu, null, orth, grdelete, grinsert, qrupdate

The arithmetic operators \ and /

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

(http://www.netlib.org/lapack/lug/lapack lug.html), Third Edition,
SIAM, Philadelphia, 1999.

grdelete

Purpose

Syntax

Description

Examples

Delete column or row from QR factorization

[@1,R1] = grdelete(Q,R,j)
[@1,R1] = grdelete(Q,R,j,"'col")
[@1,R1] = grdelete(Q,R,j, ' 'row')

[Q1,R1] = grdelete(Q,R,j) returns the QR factorization of the matrix A1,
where A1 is A with the column A(:,j) removed and [Q,R] = qr(A) is the QR
factorization of A.

[Q1,R1] grdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] grdelete(Q,R,j, 'row') returns the QR factorization of the
matrix A1, where A1 is A with the row A(j,:) removed and [Q,R] = gqr(A) is
the QR factorization of A.

A = magic(5);
[Q,R] = ar(A);
j =3

[@1,R1] = grdelete(Q,R,j, 'row');

Q1 =
0.5274 -0.5197 -0.6697 -0.0578
0.7135 0.6911 0.0158 0.1142
0.3102 -0.1982 0.4675 -0.8037
0.3413 -0.4616 0.5768 0.5811
R1 =

32.2335 26.0908 19.9482 21.4063 23.3297
0 -19.7045 -10.9891 0.4318 -1.4873
0 0 22.7444 5.8357 -3.1977
0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from
A2 = A;
A2(j,:)
[Q2,R2]

[1;
qr(A2)

2-1763

qrdelete

Q2 =
-0.5274 0.5197 0.6697 -0.0578
-0.7135 -0.6911 -0.0158 0.1142
-0.3102 0.1982 -0.4675 -0.8037
-0.3413 0.4616 -0.5768 0.5811
R2 =

-32.2335 -26.0908 -19.9482 -21.4063 -23.3297
0 19.7045 10.9891 -0.4318 1.4873

0 0 -22.7444 -5.8357 3.1977
0 0 0 -14.5784 3.7796
Algorithm The grdelete function uses a series of Givens rotations to zero out the

appropriate elements of the factorization.

See Also planerot, qr, grinsert

2-1764

grinsert

Purpose

Syntax

Description

Examples

Insert col

[Q1,R1]
[Q1,R1]
[Q1,R1]

[Q1,R1]
where A1

umn or row into QR factorization

grinsert(Q,R,j,x)
grinsert(Q,R,j,x,'col")
grinsert(Q,R,j,x, 'row")

= grinsert(Q,R,j,x) returns the QR factorization of the matrix A1,
is A = Q*R with the column x inserted before A(:,j). If Ahasn

columns and j = n+1, then x is inserted after the last column of A.

[Q1,R1] = grinsert(Q,R,j,x, 'col') is the same as qrinsert(Q,R,j,x).
[Q1,R1] = qrinsert(Q,R,j,X, 'row') returns the QR factorization of the
matrix A1, where A1 is A = Q*R with an extra row, x, inserted before A(j,:).
A = magic(5);
[Q,R] = qgr(A);
i =3
X = 1:5;
[Q1,R1] = qgrinsert(Q,R,j,x, 'row")
Q1 =
0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225
R1 =
32.4962 26.6801 21.4795 23.8182 26.0031

19.9292 12.4403 2.1340 4.3271
0 24.4514 11.8132 3.9931

O O o oo

0 0 20.2382 10.3392
0 0 0 16.1948
0 0 0 0

returns a valid QR factorization, although possibly different from

2-1765

qgrinsert

2)5 x5 A(jiend,:)];

A2 = [A(1:j-1,
= qr(A2)

[Q2,R2]

Q2 =
-0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
-0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
-0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
-0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
-0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
-0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =

-32.4962 -26.6801 -21.4795 -23.8182 -26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 -24.4514 -11.8132 -3.9931
0 0 0 -20.2382 -10.3392
0 0 0 0 16.1948
0 0 0 0 0
Algorithm The grinsert function inserts the values of x into the jth column (row) of R. It

then uses a series of Givens rotations to zero out the nonzero elements of R on
and below the diagonal in the jth column (row).

See Also planerot, qr, qrdelete

2-1766

qrupdate

Description
Syntax

Description

Remarks

Examples

Rank 1 update to QR factorization

[Q@1,R1] = grupdate(Q,R,u,v)

[Q1,R1] = grupdate(Q,R,u,v) when [Q,R] = qr(A) is the original QR
factorization of A, returns the QR factorization of A + u*v', where u and v are
column vectors of appropriate lengths.

grupdate works only for full matrices.

The matrix

mu = sqrt(eps)

mu
1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of forming
A'*A. Instead, we work with the QR factorization — orthonormal Q and upper
triangular R.

[Q,R] = qr(A);

As we expect, R is upper triangular.

-1.0000 -1.0000 -1.0000 -1.0000
0 0.0000 0.0000 0.0000

0 0 0.0000 0.0000
0 0 0 0.0000
0 0 0 0

In this case, the upper triangular entries of R, excluding the first row, are on
the order of sqrt(eps).

Consider the update vectors

u=1]-10000]"'; v =o0nes(4,1);

2-1767

qrupdate

Instead of computing the rather trivial QR factorization of this rank one update
to A from scratch with

[QT,RT] = gqr(A + u*v')
QT =
0 0 0 0 1
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
RT =
1.0e-007 *
-0.1490 0 0 0
0 -0.1490 0 0
0 0 -0.1490 0
0 0 0 -0.1490
0 0 0 0

we may use qrupdate.

[@1,R1] = grupdate(Q,R,u,v)

Q1 =
-0.0000 -0.0000 -0.0000 -0.0000 1.0000
1.0000 -0.0000 -0.0000 -0.0000 0.0000
0.0000 1.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000
-0.0000 -0.0000 -0.0000 1.0000 0.0000
R1 =
1.0e-007 *
0.1490 0.0000 0.0000 0.0000
0 0.1490 0.0000 0.0000
0 0 0.1490 0.0000

2-1768

qrupdate

Algorithm

References

See Also

0 0 0 0.1490
0 0 0 0

Note that both factorizations are correct, even though they are different.

grupdate uses the algorithm in section 12.5.1 of the third edition of Matrix
Computations by Golub and van Loan. qrupdate is useful since, if we take

N = max(m,n), then computing the new QR factorization from scratch is
roughly an O(N3) algorithm, while simply updating the existing factors in this
way is an O(N2) algorithm.

[1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

cholupdate, gqr

2-1769

quad, quad8

Purpose

Syntax

Description

2-1770

Numerically evaluate integral, adaptive Simpson quadrature

Note The quad8 function, which implemented a higher order method, is
obsolete. The quadl function is its recommended replacement.

quad(fun,a,b)
quad(fun,a,b,tol)
quad(fun,a,b,tol,trace)
g,fcnt] = quadl(fun,a,b,...)

q
q
q
[

Quadrature is a numerical method used to find the area under the graph of a
function, that is, to compute a definite integral.

q=fﬂww

g = quad(fun,a,b) tries to approximate the integral of function fun from a to
b to within an error of 1e-6 using recursive adaptive Simpson quadrature. fun
is a function handle for either an M-file function or an anonymous function.
The function y = fun(x) should accept a vector argument x and return a vector
result y, the integrand evaluated at each element of x.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

g = quad(fun,a,b,tol) uses an absolute error tolerance tol instead of the
default which is 1.0e-6. Larger values of tol result in fewer function
evaluations and faster computation, but less accurate results. In MATLAB
version 5.3 and earlier, the quad function used a less reliable algorithm and a
default relative tolerance of 1.0e-3.

g = quad(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a Q] during the recursion.

[q,fcnt] = quad(...) returns the number of function evaluations.

quad, quad8

Examples

Algorithm

Diagnostics

See Also

References

The function quadl may be more efficient with high accuracies and smooth
integrands.
Pass M-file function handle @myfun to quad:
Q = quad(@myfun,0,2);
where the M-file myfun.m is
function y = myfun(x)
y =1./(x."3-2*x-5);
Pass anonymous function handle F to quad:

F =@(x)1./(x."3-2*x-5);
Q = quad(F,0,2);

quad implements a low order method using an adaptive recursive Simpson’s
rule.

quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity is
possible.

'"Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

'Infinite or Not-a-Number function value encountered' indicates a
floating point overflow or division by zero during the evaluation of the
integrand in the interior of the interval.

dblquad, quadl, triplequad, @ (function handle), anonymous functions

[1] Gander, W. and W. Gautschi, “Adaptive Quadrature — Revisited”, BIT, Vol.
40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-1771

quadl

Purpose

Syntax

Description

Examples

2-1772

Numerically evaluate integral, adaptive Lobatto quadrature

quadl(fun,a,b)
quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
q,fcnt] = quadl(fun,a,b,...)

— O O QO
1}

g = quadl(fun,a,b) approximates the integral of function fun from a to b, to
within an error of 10°® using recursive adaptive Lobatto quadrature. fun is a
function handle for either an M-file function or an anonymous function. fun
accepts a vector x and returns a vector y, the function fun evaluated at each
element of x.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

g = quadl(fun,a,b,tol) uses an absolute error tolerance of tol instead of the
default, which is 1.0e-6. Larger values of tol result in fewer function
evaluations and faster computation, but less accurate results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and . " in the definition of fun so that it can be
evaluated with a vector argument.

The function quad may be more efficient with low accuracies or nonsmooth
integrands.
Pass M-file function handle @myfun to quadl:
Q = quadl(@myfun,0,2);
where the M-file myfun.m is

function y = myfun(x)
y =1./(x."3-2*x-5);

Pass anonymous function handle F to quadl:

quadl

Algorithm

Diagnostics

See Also

References

F
Q

@(x) 1./(x.”3-2*x-5);
quadl(F,0,2);

quadl implements a high order method using an adaptive Gauss/Lobatto
qudrature rule.

quadl may issue one of the following warnings:

'"Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity is
possible.

'"Maximum function count exceeded' indicates that the integrand has been
evaluated more than 10,000 times. A nonintegrable singularity is likely.

"Infinite or Not-a-Number function value encountered' indicates a
floating point overflow or division by zero during the evaluation of the
integrand in the interior of the interval.

dblquad, quad, triplequad, @ (function handle), anonymous functions

[1] Gander, W. and W. Gautschi, “Adaptive Quadrature — Revisited”, BIT,
Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-1773

quadv

Purpose

Syntax

Description

Example

2-1774

Vectorized quadrature

quadv (fun,A,B)

quadv (fun,A,B,tol)

quadv (fun,A,B,tol, trace)
,fcnt] = quadv(...)

Q
Q
Q
[Q

Q = quadv(fun,A,B) approximates the integral of the complex array-valued
function fun from A to B to within an error of 1.e-6 using recursive adaptive
Simpson quadrature. The function y = fun(x) should accept a scalar argument
x and return an array result Y, whose components are the integrands evaluated
at x.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

Q = quadv(fun,A,B,tol) uses the absolute error tolerance TOL for all the
integrals instead of the default, which is 1.e-6.

Q = quadv(fun,A,B,tol,trace) with non-zero trace shows the values of
[fcnt a b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.

The same tolerance is used for all components, so the results obtained with
quadv are usually not the same as those obtained with quad on the individual
components.

fun = @(x,n) (1./((1:n)+x));
Q = quadv(fun,0,1,[1,[1,10)

The resulting array Q has elements Q(k) = log((k+1)./(k)).
Q =

Columns 1 through 8

0.6931 0.4055 0.2877 0.2231 0.1823 0.1542
0.1335 0.1178

Columns 9 through 10

quadv

0.1054 0.0953

See Also quad, dblquad, triplequad

2-1775

questdig

Purpose

Syntax

Description

See Also

2-1776

Create and display question dialog box

button = questdlg('qstring')

button = questdlg('qstring', 'title')

button = questdlg('qstring', 'title', 'default')

button = questdlg('qstring', 'title','strt1','str2', 'default')

button = questdlg('qstring', 'title', 'strt1','str2','str3', 'default’)

button = questdlg('gstring') displays a modal dialog presenting the
question 'gstring'. The dialog has three default buttons, Yes, No, and
Cancel. Ifthe user presses one of these three buttons, button is set to the name
of the button pressed. If the user presses the close button on the dialog, button
is set to the empty string. If the user presses the Return key, button is set to
'Yes'. 'gstring' is a cell array or a string that automatically wraps to fit
within the dialog box.

button = questdlg('qgstring','title') displays a question dialog with
'‘title' displayed in the dialog’s title bar.

button = questdlg('gstring','title','default') specifies which push
button is the default in the event that the Return key is pressed. 'default'
must be 'Yes', 'No', or 'Cancel"’.

button = questdlg('qstring', 'title','strt1', ' 'str2', 'default')
creates a question dialog box with two push buttons labeled 'str1' and
'str2'. 'default' specifies the default button selection and must be 'stri' or
‘str2'.

button =

questdlg('qgstring', 'title', 'stri1','str2','str3', 'default') createsa
question dialog box with three push buttons labeled 'str1', 'str2', and
'str3'. 'default’' specifies the default button selection and must be 'stri’,
'str2',or 'str3'.

In all cases where 'default’ is specified, if'default' is not set to one of the
button names, pressing the Return key displays a warning and the dialog
remains open.

inputdlg, textwrap

quit

Purpose

Graphical
Interface

Syntax

Description

Remarks

Terminate MATLAB

As an alternative to the quit function, use the close box or select Exit MATLAB
from the File menu in the MATLAB desktop.

quit
quit cancel
quit force

quit terminates MATLAB after running finish.m, if finish.m exists. The
workspace is not automatically saved by quit. To save the workspace or
perform other actions when quitting, create a finish.m file to perform those
actions. For example, you can display a dialog box to confirm quitting using a
finish.m file—see the following examples for details. If an error occurs while
finish.mis running, quit is canceled so that you can correct your finish.m file
without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to override
finish.m, for example, if an errant finish.m will not let you quit.

When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so

that figures are visible. See the reference pages for these functions for more
information.

2-1777

quit

Examples

See Also

Purpose

Syntax

Description

2-1778

Two sample finish.m files are included with MATLAB. Use them to help you
create your own finish.m, or rename one of the files to finish.m to use it.

e finishsav.m—Saves the workspace to a MAT-file when MATLAB quits.

e finishdlg.m—Displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code:

button = questdlg('Ready to quit?',
'"Exit Dialog', 'Yes','No','No');
switch button
case 'Yes',
disp('Exiting MATLAB');
%Save variables to matlab.mat
save
case 'No',
quit cancel;
end

finish, save, startup

quiver
Quiver or velocity plot

quiver(x,y,u,v)

quiver(u,v)

quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec, 'filled")
quiver(axes_handle,...)

h = quiver(...)

hlines = quiver('ve',...)

A quiver plot displays velocity vectors as arrows with components (u,v) at the
points (x,y).

For example, the first vector is defined by components u(1),v(1) and is
displayed at the point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in each
corresponding pair of elements in x and y. The matrices x, y, u, and v must all

quit

be the same size and contain corresponding position and velocity components.
However, x and y can also be vectors, as explained in the next section.

Expanding x and y Coordinates

MATLAB expands x and y if they are not matrices. This expansion is
equivalent to calling meshgrid to generate matrices from vectors:

[x,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:
length(x) = nand length(y) = m, where [m,n] = size(u) = size(v).

The vector x corresponds to the columns of u and v, and vector y corresponds to
the rows of u and v.

quiver(u,v) draws vectors specified by u and v at equally spaced points in the
x-y plane.

quiver(...,scale) automatically scales the arrows to fit within the grid and
then stretches them by the factor scale. scale = 2 doubles their relative
length and scale = 0.5 halves the length. Use scale = 0 to plot the velocity
vectors without automatic scaling.

quiver(...,LineSpec) specifies line style, marker symbol, and color using
any valid LineSpec. quiver draws the markers at the origin of the vectors.

quiver(...,LineSpec, 'filled') fills markers specified by LineSpec.

quiver(axes_handles,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = quiver(...) returns the handle to the quivergroup object.

Backward Compatible Version

hlines = quiver('v6',...) returns the handles of line objects instead of
quivergroup objects for compatibility with MATLAB 6.5 and earlier.

2-1779

quit

Examples Showing the Gradient with Quiver Plots
Plot the gradient field of the function z = xe(**~¥%) :

[X,Y] = meshgrid(-2:.2:2);

Z = X.*exp(-X."2 - Y."2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)

hold on

quiver(X,Y,DX,DY)

colormap hsv

hold off
2
15+
1, ~ X N
«~ ~ N
-~ ~ ~ N
05 /o« B
I G a
o5~ T T~)
AN
W
_17 - e /
=15
-2 I I I I I I
-2 -15 -1 -0.5 0 0.5 1 1.5
See Also contour, LineSpec, plot, quiver3

“Direction and Velocity Plots” for related functions
Two-Dimensional Quiver Plots for more examples

See “Quivergroup Properties” for property descriptions

2-1780

quiver3

Purpose

Syntax

Description

Examples

Three-dimensional velocity plot

quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec, 'filled')
qu1ver3(axes_handle,...)

= quiver3(...)

A three-dimensional quiver plot displays vectors with components (u,v,w) at
the points (x,y,z).

quiver3(x,y,z,u,v,w) plots vectors with components (u,v,w) at the points
(%,y,z). The matrices x,y,z,u,v,w must all be the same size and contain the
corresponding position and vector components.

quiver3(z,u,v,w) plots the vectors at the equally spaced surface points
specified by matrix z. quiver3 automatically scales the vectors based on the
distance between them to prevent them from overlapping.

quiver3(...,scale) automatically scales the vectors to prevent them from
overlapping, then multiplies them by scale. scale = 2 doubles their relative
length and scale = 0.5 halves them. Use scale = 0 to plot the vectors without
the automatic scaling.

quiver3(...,LineSpec) specifies line type and color using any valid
LineSpec.

quiver3(...,LineSpec, 'filled') fills markers specified by LineSpec.

quiver3(axes_handles,...) plots into the axes with handle axes _handle
instead of the current axes (gca).

= quiver3(...) returns a vector of line handles.

Plot the surface normals of the function 2z = xe!™* Y%,

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X."2 - Y."2);

2-1781

quiver3

[U,V,W] = surfnorm(X,Y,Z);
quiver3(X,Y,z,U,V,W,0.5);

hold on

surf(X,Y,2);

colormap hsv

view(-35,45)

axis ([-2 2 -1 1 -.6 .6])

hold off

See Also axis, contour, LineSpec, plot, plot3, quiver, surfnorm, view
“Direction and Velocity Plots” for related functions

Three-Dimensional Quiver Plots for more examples

2-1782

Quivergroup Properties

Modifying
Properties

Quivergroup
Property
Descriptions

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on quivergroup objects.

This section provides a description of properties. Curly braces { } enclose
default values.

AutoScale {on} | off

Autoscale arrow length. Based on average spacing in the x and y directions,
AutoScale scales the arrow length to fit within the grid-defined coordinate
data and keeps the arrows from overlapping. After autoscaling, quiver applies
the AutoScaleFactor to the arrow length.

AutoScaleFactor scalar (default = 0.9)

User-specified scale factor. When AutoScale is on, the quiver function applies
this user-specified autoscale factor to the arrow length. A value of 2 doubles the
length of the arrows; 0.5 halves the length.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects that are going to be deleted, and therefore can check the
object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event

2-1783

Quivergroup Properties

2-1784

queue is processed. If the Interruptible property is of f, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

e cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the quivergroup object.

This property can be

® A string that is a valid MATLAB expression
¢ The name of an M-file
¢ A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the quivergroup object. An array containing the handles of all line
objects parented to the quivergroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the quiver Children property unless you
set the Root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on")
Clipping {on} | off
Clipping mode. MATLAB clips quiver plots to the axes plot box by default. If
you set Clipping to off, arrows might be displayed outside the axes plot box.
Color ColorSpec

Color of arrows. A three-element RGB vector or one of the MATLAB predefined
names, specifying the arrow color. See the ColorSpec reference page for more

Quivergroup Properties

information on specifying color. For example, the following statement shows
the arrow color set to blue.

h = quiver(u,v, 'Color','b');
CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a quivergroup object. You must
specify the callback during the creation of the object. For example,

quiver(u,v, 'CreateFcn',@CallbackFcn)
where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other quivergroup properties.
Setting this property on an existing quivergroup object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
quivergroup object is deleted (e.g., this might happen when you issue a delete
command on the quivergroup object, its parent axes, or the figure containing
it). MATLAB executes the callback before destroying the object’s properties so
that the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.
DisplayName string

Label used by plot legends. The legend and the plot browser use this text for
labels for any quivergroup objects appearing in these legends.

2-1785

Quivergroup Properties

2-1786

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase quiver child objects (the lines used to construct the arrows). Alternative
erase modes are useful for creating animated sequences, where control of the
way individual objects are redrawn is necessary to improve performance and
obtain the desired effect.

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

¢ xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB might
mathematically combine layers of colors (e.g., performing an XOR operation on
a pixel color and the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

Quivergroup Properties

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the quivergroup object.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

® of f — SettingHandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

2-1787

Quivergroup Properties

2-1788

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the quivergroup object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the line objects that
compose the quiver plot. If HitTest is of f, clicking the quivergroup object
selects the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select quivergroup object on arrows or extent of graph. This property enables
you to select quivergroup objects in two ways:

¢ Select by clicking quiver arrows (default).

® Select by clicking anywhere in the extent of the quiver plot.

When HitTestArea is of f, you must click the quiver lines (excluding the base
line) to select the quivergroup object. When HitTestArea is on, you can select
the quivergroup object by clicking anywhere within the extent of the graph (i.e.,
anywhere within a rectangle that encloses all the arrows).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a quivergroup object callback can be interrupted by subsequently
invoked callbacks.

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from a quiver property. Note that MATLAB does

Quivergroup Properties

not save the state of variables or the display (e.g., the handle returned by the
gca or gcf command) when an interruption occurs.

LineStyle {-} | -—— 1] 1] —-. | none

Line style. This property specifies the line style used for the quiver arrows.
Available line styles are shown in the following table.

Symbol Line Style
- Solid line (default)
-— Dashed line

Dotted line
-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

Width of the quiver arrows. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies the type of markers that are
displayed at the x- and y-coordinates. You can set values for the Marker
property independently from the LineStyle property. Supported markers
include those shown in the following table.

Marker Specifier Description

+ Plus sign

0 Circle

* Asterisk
Point

2-1789

Quivergroup Properties

2-1790

Marker Specifier Description
X Cross

s Square

d Diamond

Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)
h Six-pointed star (hexagram)
none No marker (default)

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the quiver Color property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or to the figure color, if the axes Color property is set to none (which is
the factory default for axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker in points. The default
value for MarkerSize is 6 points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '."' symbol) at one-third the specified
size.

Quivergroup Properties

MaxHeadSize scalar (default = 0.2

Maximum size of arrowhead. A value determining the maximum size of the
arrowhead relative to the length of the arrow.

Parent axes handle

Parent of quivergroup object. This property contains the handle of the
quivergroup object’s parent object. The parent of a quivergroup object is the
axes, hggroup, or hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
handles at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
to set this property to on, thereby indicating that the quivergroup object is
selected.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing selection handles on the
arrows. When SelectionHighlight is off, MATLAB does not draw the
handles.

ShowArrowHead {on} | off

Display arrowheads on vectors. When this property is on, MATLAB draws
arrowheads on the vectors displayed by quiver. When you set this property to
off, quiver draws the vectors as lines without arrowheads.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create a quivergroup object and set the Tag property:

t = quiver(u,v, 'Tag', 'quivert')

2-1791

Quivergroup Properties

2-1792

When you want to access the quivergroup object, you can use findobj to find
the object’s handle. The following statement changes the Color property of the
object whose Tag is quiveri.

set(findobj('Tag', 'quiveri'),'Color', 'red")

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of the graphics object. For stem objects, Type is 'hggroup'. This statement
finds all the hggroup objects in the current axes.

t = findobj(gca, 'Type', "hggroup');
UIContextMenu handle of a uicontextmenu object

Associate a context menu with the quivergroup object. Assign this property the
handle of a uicontextmenu object created in the quivergroup object’s parent
figure. Use the uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the extent of the
quivergroup object.

UserData array

User-specified data. This property can be any data you want to associate with
the quivergroup object (including cell arrays and structures). The quivergroup
object does not set values for this property, but you can access it using the set
and get functions.

Visible {on} | off

Visibility of quivergroup object and its children. By default, stem object
visibility is on. This means all children of the quivergroup object are visible
unless the child object’s Visible property is set to off. Setting a quivergroup
object’s Visible property to off also makes its children invisible.

UData matrix

One dimension of 2-D or 3-D vector components. UData, VData, and WData,
together specify the components of the vectors displayed as arrows in the
quiver graph. For example, the first vector is defined by components
UData(1),vData(1),WData(1).

Quivergroup Properties

UDataSource string (MATLAB variable)
Link UData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the UData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change UData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

VData matrix

One dimension of 2-D or 3-D vector components. UData, VData and WData (for
3-D) together specify the components of the vectors displayed as arrows in the
quiver graph. For example, the first vector is defined by components
UData(1),VData(1),WData(1).

VDataSource string (MATLAB variable)

Link VData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the VData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change VData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

2-1793

Quivergroup Properties

2-1794

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

WData matrix

One dimension of 2-D or 3-D vector components. UData, VData and WData (for
3-D) together specify the components of the vectors displayed as arrows in the
quiver graph. For example, the first vector is defined by components
UData(1),VData(1) WData(1).

WDataSource string (MATLAB variable)

Link WData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the WData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change WData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

XData vector or matrix

X-axis coordinates of arrows. The quiver function draws an individual arrow
at each x-axis location in the XData array. XData can be either a matrix equal
in size to all other data properties or for 2-D, a vector equal in length to the
number of columns in UData or VData. That is, length(XData) ==
size(UData,2).

Quivergroup Properties

If you do not specify XData (i.e., the input argument X), the quiver function
uses the indices of UData to create the quiver graph. See the XDataMode
property for related information.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData (by setting
the XData property or specifying the input argument X), the quiver function
sets this property to manual.

If you set XDataMode to auto after having specified XData, the quiver function
resets the x tick-mark labels to the indices of the U, V, and W data, overwriting
any previous values.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a different
dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate
values.

YData vector or matrix

Y-axis coordinates of arrows. The quiver function draws an individual arrow at
each y-axis location in the YData array. YData can be either a matrix equal in
size to all other data properties or for 2-D, a vector equal in length to the

number of rows in UData or VData. That is, length(YData) == size(UData,1).

2-1795

Quivergroup Properties

2-1796

If you do not specify YData (i.e., the input argument Y), the quiver function
uses the indices of VData to create the quiver graph. See the YDataMode
property for related information.

The input argument y in the quiver function calling syntax assigns values to
YData.

YDataMode {auto} | manual

Use automatic or user-specified y-axis values. If you specify YData (by setting
the YData property or specifying the input argument Y), MATLAB sets this
property to manual.

If you set YDataMode to auto after having specified YData, MATLAB resets the
y tick-mark labels to the indices of the U, V, and W data, overwriting any
previous values.

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

ZData vector or matrix

Z-axis coordinates of arrows. The quiver function draws an individual arrow at
each z-axis location in the ZData array. ZData must be a matrix equal in size to
XData and YData.

Quivergroup Properties

The input argument z in the quiver3 function calling syntax assigns values to
ZData.

2-1797

qz

Purpose

Syntax

Description

2-1798

QZ factorization for generalized eigenvalues

[AA,BB,Q,Z,] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

The gz function gives access to intermediate results in the computation of
generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such that
Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB are triangular.

[AA,BB,Q,Z,V,W] = gz(A,B) also produces matrices V and W whose columns
are generalized eigenvectors.

gz(A,B,flag) for real matrices A and B, produces one of two decompositions
depending on the value of flag:

'‘complex' Produces a possibly complex decomposition with a triangular
AA. For compatibility with earlier versions, 'complex' is the
default.

'real’ Produces a real decomposition with a quasitriangular AA,

containing 1-by-1 and 2-by-2 blocks on its diagonal.

If AA is triangular, the diagonal elements of AA and BB, a = diag(AA) and
B = diag(BB) , are the generalized eigenvalues that satisfy

A*V*B = B*V*q

B*W'*A = a*W'*B

The eigenvalues produced by

A = eig(A,B)
are the ratios of the a s and 3 s.
A=a./B
If AA is triangular, the diagonal elements of AA and BB,

rand

Purpose

Syntax

Description

2rand

Uniformly distributed random numbers and arrays

rand
= rand
= rand
= rand
= rand
= rand

n)

m,n)

[m n])
m,n,p,...)
[mnp...1)
size(A))

_— o~ o~ o~ o~ o~

s = rand('state')

The rand function generates arrays of random numbers whose elements are
uniformly distributed in the interval (0,1).

Y = rand(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = rand(m,n) orY = rand([m n]) returns an m-by-n matrix of random
entries.

Y

rand(m,n,p,...)orY = rand([m n p...]) generates random arrays.

Y = rand(size(A)) returns an array of random entries that is the same size
as A.

rand, by itself, returns a scalar whose value changes each time it’s referenced.

s = rand('state') returns a 35-element vector containing the current state
of the uniform generator. To change the state of the generator:

rand('state',s) Resets the state to s.

rand('state',0) Resets the generator to its initial state.

rand('state',j) For integer j, resets the generator to its

j-th state.

rand('state',sum(100*clock)) Resets it to a different state each time.

2-1799

rand

Examples

See Also

2-1800

Example 1.R = rand(3,4) may produce

R =
0.2190 0.6793 0.5194 0.0535
0.0470 0.9347 0.8310 0.5297
0.6789 0.3835 0.0346 0.6711

This code makes a random choice between two equally probable alternatives.

if rand < .5
"heads'
else
'tails'
end

Example 2. Generate a uniform distribution of random numbers on a specified
interval [a,b]. To do this, multiply the output of rand by (b-a) then add a. For
example, to generate a 5-by-5 array of uniformly distributed random numbers
on the interval [10,50]

a = 10; b = 50;
X a + (b-a) * rand(5)
X -

18.1106 10.6110 26.7460 43.5247 30.1125
17.9489 39.8714 43.8489 10.7856 38.3789
34.1517 27.8039 31.0061 37.2511 27.1557
20.8875 47.2726 18.1059 25.1792 22.1847
17.9526 28.6398 36.8855 43.2718 17.5861

randn, randperm, sprand, sprandn

randn

Purpose

Syntax

Description

Normally distributed random numbers and arrays

= randn
= randn
= randn
randn
= randn
= randn
randn

s = randn('state')

n)

m,n)

[m n])
m,N,P,...)
[mnp...])
size(A))

< < < < =< <
1

The randn function generates arrays of random numbers whose elements are
normally distributed with mean 0, variance ¢” = 1, and standard deviation
o=1.

Y = randn(n) returns an n-by-n matrix of random entries. An error message
appears if n is not a scalar.

Y = randn(m,n) or Y = randn([m n]) returns an m-by-n matrix of random
entries.

Y

randn(m,n,p,...)orY = randn([m n p...]) generates random arrays.

Y = randn(size(A)) returns an array of random entries that is the same size
as A.

randn, by itself, returns a scalar whose value changes each time it’s referenced.

s = randn('state') returns a 2-element vector containing the current state
of the normal generator. To change the state of the generator:

randn('state',s)
randn('state',0)

randn('state',j)

randn('state',sum(100*clock))

Resets the state to s.
Resets the generator to its initial state.

For integer j, resets the generator to its
jth state.

Resets it to a different state each time.

2-1801

randn

Examples

See Also

2-1802

Example 1.R = randn(3,4) may produce

R =
1.1650 0.3516 0.0591 0.8717
0.6268 -0.6965 1.7971 -1.4462
0.0751 1.6961 0.2641 -0.7012

For a histogram of the randn distribution, see hist.

E12(ample 2. Generate a random distribution with a specific mean and variance
0" . To do this, multiply the output of randn by the standard deviation ¢, and
then add the desired mean. For example, to generate a 5-by-5 array of random
numbers with a mean of .6 that are distributed with a variance of 0.1

X
X:

.6 + sqrt(0.1) * randn(5)

0.8713 0.4735 0.8114 0.0927 0.7672
0.9966 0.8182 0.9766 0.6814 0.6694
0.0960 0.8579 0.2197 0.2659 0.3085
0.1443 0.8251 0.5937 1.0475 -0.0864
0.7806 1.0080 0.5504 0.3454 0.5813

rand, randperm, sprand, sprandn

randperm

Purpose
Syntax
Description
Remarks

Examples

See Also

Random permutation

randperm(n)

©
1

p = randperm(n) returns a random permutation of the integers 1:n.
The randperm function calls rand and therefore changes rand’s state.

randperm(6) might be the vector
[3 2 6 4 1 5]

or it might be some other permutation of 1:6.

permute

2-1803

rank

Purpose

Syntax

Description

Remark

Algorithm

See Also

References

2-1804

Rank of a matrix

-~
1l

rank(A)
rank (A, tol)

-~
1l

The rank function provides an estimate of the number of linearly independent
rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger than
the default tolerance, max (size(A))*norm(A)*eps.

k = rank(A,tol) returns the number of singular values of A that are larger
than tol.

Use sprank to determine the structural rank of a sparse matrix.

There are a number of ways to compute the rank of a matrix. MATLAB uses
the method based on the singular value decomposition, or SVD. The SVD
algorithm is the most time consuming, but also the most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*s(1)*eps;
r = sum(s > tol);

sprank

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

rat, rats

Purpose

Syntax

Description

Examples

Rational fraction approximation

[N,D] = rat(X)
[N,D] = rat(X,tol)

rat(...)
S = rats(X,strlen)
S = rats(X)

Even though all floating-point numbers are rational numbers, it is sometimes
desirable to approximate them by simple rational numbers, which are fractions
whose numerator and denominator are small integers. The rat function
attempts to do this. Rational approximations are generated by truncating
continued fraction expansions. The rats function calls rat, and returns
strings.

[N,D] = rat(X) returns arrays N and D so that N. /D approximates X to within
the default tolerance, 1.e-6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.
rat(X), with no output arguments, simply displays the continued fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements that
cannot be printed in the allotted space, but are not negligible compared to the
other elements in X. strlen is the length of each string element returned by the
rats function. The default is strlen = 13, which allows 6 elements in 78
spaces.

S = rats(X) returns the same results as those printed by MATLAB with
format rat.

Ordinarily, the statement
s=1-1/2+1/3 - 1/4 +1/5 - 1/6 + 1/7

produces

S:
0.7595

2-1805

rat, rats

However, with

format rat
or with
rats(s)
the printed result is

S =
319/420

This is a simple rational number. Its denominator is 420, the least common
multiple of the denominators of the terms involved in the original expression.
Even though the quantity s is stored internally as a binary floating-point
number, the desired rational form can be reconstructed.

To see how the rational approximation is generated, the statement rat(s)
produces
1+ 1/(-4 +1/(-6 +1/(-3 + 1/(-5))))
And the statement
[n,d] = rat(s)
produces
n =319, d = 420

The mathematical quantity Tt is certainly not a rational number, but the
MATLAB quantity pi that approximates it is a rational number. pi is the ratio
of a large integer and 2°2:

14148475504056880/4503599627370496

However, this is not a simple rational number. The value printed for pi with
format rat, or with rats(pi), is

355/113

This approximation was known in Euclid’s time. Its decimal representation is

3.14159292035398

2-1806

rat, rats

Algorithm

See Also

and so it agrees with pi to seven significant figures. The statement
rat(pi)
produces

3+ 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more familiar
approximation 22/7 is obtained from the first two terms of this continued
fraction.

The rat (X) function approximates each element of X by a continued fraction of
the form

1
1

(d3+ +dlk)

dy+

The d s are obtained by repeatedly picking off the integer part and then taking
the reciprocal of the fractional part. The accuracy of the approximation
increases exponentially with the number of terms and is worst when

X = sqrt(2).Forx = sqrt(2), the error with k terms is about 2.68* (.173) "k,
so each additional term increases the accuracy by less than one decimal digit.
It takes 21 terms to get full floating-point accuracy.

format

2-1807

rbbox

Purpose

Syntax

Description

Remarks

2-1808

Create rubberband box for area selection

rbbox

rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

rbbox initializes and tracks a rubberband box in the current figure. It sets the
initial rectangular size of the box to 0, anchors the box at the figure’s
CurrentPoint, and begins tracking from this point.

rbbox (initialRect) specifies the initial location and size of the rubberband
box as [x y width height], where x and y define the lower left corner, and
width and height define the size. initialRect is in the units specified by the
current figure’s Units property, and measured from the lower left corner of the
figure window. The corner of the box closest to the pointer position follows the
pointer until rbbox receives a button-up event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that remains
fixed. All arguments are in the units specified by the current figure’s Units
property, and measured from the lower left corner of the figure window.
fixedPoint is a two-element vector, [x y]. The tracking point is the corner
diametrically opposite the anchored corner defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently the
rubberband box is updated. When the tracking point exceeds stepSize figure
units, rbbox redraws the rubberband box. The default stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width height],
where x and y are the x and y components of the lower left corner of the box,
and width and height are the dimensions of the box.

rbbox is useful for defining and resizing a rectangular region:

rbbox

¢ For box definition, initialRectis [x y 0 0], where (x,y) is the figure’s

CurrentPoint.

¢ For box resizing, initialRect defines the rectangular region that you resize
(e.g., alegend). fixedPoint is the corner diametrically opposite the tracking

point.

rbbox returns immediately if a button is not currently pressed. Therefore, you
use rbbox with waitforbuttonpress so that the mouse button is down when
rbbox is called. rbbox returns when you release the mouse button.

Examples Assuming the current view is view(2), use the current axes’ CurrentPoint
property to determine the extent of the rectangle in dataspace units:
k = waitforbuttonpress;
point1 = get(gca, 'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca, 'CurrentPoint'); % button up detected
point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);
p1 = min(pointi1,point2); % calculate locations
offset = abs(pointi1-point2); % and dimensions
x = [p1(1) p1(1)+offset(1) p1(1)+offset(1) pi1(1) p1(1)];
y = [p1(2) p1(2) p1(2)+offset(2) pi1(2)+offset(2) p1(2)];
hold on
axis manual
plot(x,y) % redraw in dataspace units
See Also axis, dragrect, waitforbuttonpress

“View Control” for related functions

2-1809

rcond

Purpose
Syntax

Description

Algorithm

See Also

References

2-1810

Matrix reciprocal condition number estimate

o
1l

rcond (A)

¢ = rcond(A) returns an estimate for the reciprocal of the condition of A in
1-norm using the LAPACK condition estimator. If A is well conditioned,
rcond(A) is near 1.0. If Ais badly conditioned, rcond (A) is near 0.0. Compared
to cond, rcond is a more efficient, but less reliable, method of estimating the
condition of a matrix.

rcond uses LAPACK routines to compute the estimate of the reciprocal
condition number:

Matrix Routine
Real DLANGE, DGETRF, DGECON
Complex ZLANGE, ZGETRF, ZGECON

cond, condest, norm, normest, rank, svd

[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
dJ. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

(http://www.netlib.org/lapack/lug/lapack lug.html), Third Edition,
SIAM, Philadelphia, 1999.

real

Purpose
Syntax
Description
Examples

See Also

Real part of complex number

X real(z)

>
1

real(Z) returns the real part of the elements of the complex array 7.
real (2+3*1i) is 2.

abs, angle, conj, i, j, imag

2-1811

reallog

Purpose Natural logarithm for nonnegative real arrays
Syntax Y = reallog(X)
Description Y = reallog(X) returns the natural logarithm of each element in array X.

Array X must contain only nonnegative real numbers. The size of Y is the same
as the size of X.

Examples M = magic(4)
M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
reallog (M)
ans =
2.7726 0.6931 1.0986 2.5649
1.6094 2.3979 2.3026 2.0794
2.1972 1.9459 1.7918 2.4849
1.3863 2.6391 2.7081 0
See Also log, realpow, realsqrt

2-1812

realmax

Purpose
Syntax

Description

Examples

Algorithm

See Also

Largest positive floating-point number

realmax

>
1

n = realmax returns the largest floating-point number representable on your
computer. Anything larger overflows.

realmax('double') is the same as realmax with no arguments.

realmax('single') is the largest single precision floating point number
representable on your computer. Anything larger overflows to single (Inf).

realmax is one bit less than 21924 or about 1.7977e+308.

The realmax function is equivalent to pow2 (2-eps,maxexp), where maxexp is
the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

eps, realmin, intmax

2-1813

realmin

Purpose Smallest positive floating-point number
Syntax n = realmin
Descripl'ion n = realmin returns the smallest positive normalized floating-point number

on your computer. Anything smaller underflows or is an IEEE “denormal.”
REALMIN('double') is the same as REALMIN with no arguments.

REALMIN('single') is the smallest positive normalized single precision
floating point number on your computer.

Examples realmin is 2~ (-1022) or about 2.2251e-308.

Algorithm The realmin function is equivalent to pow2(1,minexp) where minexp is the
smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

See Also eps, realmax, intmin

2-1814

realpow

Purpose Array power for real-only output

Syntax Z = realpow(X,Y)

Descripl'ion Z = realpow(X,Y) raises each element of array X to the power of its
corresponding element in array Y. Arrays X and Y must be the same size. The
range of realpow is the set of all real numbers, i.e., all elements of the output
array Z must be real.

Examples X = -2*ones(3,3)

X =
-2 -2 -2
-2 -2 -2
-2 -2 -2

Y = pascal(3)

ans =
1 1 1
1 2 3
1 3 6

realpow(X,Y)

ans =
-2 -2 -2
-2 4 -8
-2 -8 64
See Also reallog, realsqrt, .~ (array power operator)

2-1815

realsqrt

Purpose Square root for nonnegative real arrays
Syntax Y = realsqrt(X)
Description Y = realsqrt(X) returns the square root of each element of array X. Array X
must contain only nonnegative real numbers. The size of Y is the same as the
size of X.
Examples M = magic(4)
M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
realsqrt (M)
ans =
4.0000 1.4142 1.7321 3.6056
2.2361 3.3166 3.1623 2.8284
3.0000 2.6458 2.4495 3.4641
2.0000 3.7417 3.8730 1.0000
See Also reallog, realpow, sqrt, sqrtm

2-1816

rectangle

Purpose

Syntax

Description

Remarks

Examples

Create a 2-D rectangle object

rectangle
rectangle('Position',[x,y,w,h])
rectangle(..., 'Curvature',[x,y])

h = rectangle(...)

rectangle draws a rectangle with Position [0,0,1,1] and Curvature [0,0]
(i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the point x,y
and having a width of w and a height of h. Specify values in axes data units.

Note that, to display a rectangle in the specified proportions, you need to set
the axes data aspect ratio so that one unit is of equal length along both the x
and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle(..., 'Curvature',[x,y]) specifies the curvature of the rectangle
sides, enabling it to vary from a rectangle to an ellipse. The horizontal
curvature x is the fraction of width of the rectangle that is curved along the top
and bottom edges. The vertical curvature y is the fraction of the height of the
rectangle that is curved along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides. A value of
[1,1] creates an ellipse. If you specify only one value for Curvature, then the
same length (in axes data units) is curved along both horizontal and vertical
sides. The amount of curvature is determined by the shorter dimension.

h = rectangle(...) returns the handle of the rectangle object created.
Rectangle objects are 2-D and can be drawn in an axes only if the view is [0
90] (i.e., view(2)). Rectangles are children of axes and are defined in

coordinates of the axes data.

This example sets the data aspect ratio to [1,1,1] so that the rectangle is
displayed in the specified proportions (daspect). Note that the horizontal and

2-1817

rectangle

vertical curvature can be different. Also, note the effects of using a single value
for Curvature.

rectangle('Position',[0.59,0.35,3.75,1.37],...
'Curvature',[0.8,0.4],...
'LineWidth',2, 'LineStyle','--")
daspect([1,1,1])

1.8

————————

- -

-

- -~

16r - ~

141

1
1.2 1
1
1
1
0.8

1
0.6 « ’
04F Tt e e e e eamm =T

0.2

0.5 1 15 2 25 3 35 4 4.5

18-

16r ’ ~

14 ! ‘

1.2r

-—— -
- -

0.8
0.6 ’
0.4r N o e = -

0.2

A Curvature of [1] produces a rectangle with the shortest side completely
round:

2-1818

rectangle

1.8+
16r 4 ~
14 ,

1.2

0.8 !
o6F o ’
04t N e e e e e e e e e e e e e e e e e e e -7

0.2

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10], 'Curvature',[1,1],...
'FaceColor','r")

daspect([1,1,1])

x1im([0,71)

ylim([1,13])

2-1819

rectangle

12

10

See Also line, patch, rectangle properties
“Object Creation Functions” for related functions

See the annotation function for information about the rectangle annotation
object.

Object
Hierarchy

2-1820

rectangle

Setting Default Properties
You can set default rectangle properties on the axes, figure, and root levels:

set (0, 'DefaultRectangleProperty',PropertyValue...)
set(gcf, 'DefaultRectangleProperty',PropertyValue...)
set(gca, 'DefaultRectangleProperty',PropertyValue...)

where Property is the name of the rectangle property whose default value you
want to set and PropertyValue is the value you are specifying. Use set and get
to access the surface properties.
Property List The following table lists all rectangle properties and provides a brief
description of each. The property name links take you to an expanded
description of the properties.

Property Name Property Description Property Value

Defining the Rectangle Object

Curvature Degree of horizontal and vertical Value: two-element vector
curvature with values between 0 and 1
Default: [0,0]
EraseMode Method of drawing and erasing the Values: normal, none, xor,
rectangle (useful for animation) background
Default: normal
EdgeColor Color of rectangle edges Value: ColorSpec or none
Default: ColorSpec [0,0,0]
FaceColor Color of rectangle interior Value: ColorSpec or none
Default: none
LineStyle Line style of edges Values: -, ——, :, —., none
Default: -
Linewidth Width of edge lines in points Value: scalar
Default: 0.5 points
Position Location and width and height of Value: [x,y,width,height]

rectangle

Default: [0,0,1,1]

2-1821

rectangle

Property Name Property Description

Property Value

General Information About Rectangle Objects

Children Rectangle objects have no children.

Parent The parent of a rectangle object is an
axes, hggroup, or hgtransform object.

Selected Indicates if the rectangle isin a
selected state

Tag User-specified label

Type The type of graphics object (read
only)

UserData User-specified data

Properties Related to Callback Routine Execution

BeingDeleted Query to see if object is being
deleted.

BusyAction Specifies how to handle callback
routine interruption

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed on over the rectangle

CreateFcn Defines a callback routine that
executes when a rectangle is created

DeleteFcn Defines a callback routine that

executes when the rectangle is
deleted (via close or delete)

Value: object handle

Values: on, off
Default: of f

Value: any string
Default: '' (empty string)

Value: the string
'rectangle’

Value: any matrix
Default: [] (empty matrix)

Values: on | off
Read only

Values: cancel, queue
Default: queue

Value: string or function
handle
Default: ' ' (empty string)

Value: string or function
handle
Default: ' ' (empty string)

Value: string or function
handle
Default: ' ' (empty string)

2-1822

rectangle

Property Name Property Description

Property Value

Interruptible Determines if callback routine can be
interrupted
UIContextMenu Associates a context menu with the

rectangle

Controlling Access to Objects

HandleVisibility Determines if and when the
rectangle’s handle is visible to other
functions

HitTest Determines if the rectangle can

become the current object (see the
Figure CurrentObject property)

Controlling the Appearance

Clipping Clipping to axes rectangle

SelectionHighlight Highlights rectangle when selected
(Selected property is set to on)

Visible Makes the rectangle visible or

invisible

Values: on, off
Default: on (can be
interrupted)

Value: handle of a
Uicontextmenu

Values: on, callback, off
Default: on

Values: on, off
Default: on

Values: on, off
Default: on

Values: on, off
Default: on

Values: on, off
Default: on

2-1823

Rectangle properties

Modifying
Properties

Rectangle
Property
Descriptions

2-1824

You can set and query graphics object properties in two ways:

® The Property Editor is an interactive tool that enables you to see and change
object property values.

® The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BeingDeleted on | {off} read only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted, and therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

Rectangle properties

e cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the rectangle object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

The empty matrix; rectangle objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips rectangles to the axes plot box by default. If you
set Clipping to off, rectangles are displayed outside the axes plot box. This

can occur if you create a rectangle, set hold to on, freeze axis scaling (axis set
to manual), and then create a larger rectangle.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a rectangle object. You
must define this property as a default value for rectangles or in a call to the
rectangle function to create a new rectangle object. For example, the
statement

set (0, 'DefaultRectangleCreateFcn',...
'set(gca, ' 'DataAspectRatio'’',[1,1,1])")

defines a default value on the root level that sets the axes DataAspectRatio
whenever you create a rectangle object. MATLAB executes this routine after
setting all rectangle properties. Setting this property on an existing rectangle
object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

2-1825

Rectangle properties

2-1826

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Curvature one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. This property specifies the
curvature of the rectangle sides, which enables the shape of the rectangle to
vary from rectangular to ellipsoidal. The horizontal curvature x is the fraction
of width of the rectangle that is curved along the top and bottom edges. The
vertical curvature y is the fraction of the height of the rectangle that is curved
along the left and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides. A value of
[1,1] creates an ellipse. If you specify only one value for Curvature, then the
same length (in axes data units) is curved along both horizontal and vertical
sides. The amount of curvature is determined by the shorter dimension.

DeleteFcn string or function handle

Delete rectangle callback routine. A callback routine that executes when you
delete the rectangle object (e.g., when you issue a delete command or clear the
axes or figure). MATLAB executes the routine before deleting the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

EdgeColor {ColorSpec} | none

Color of the rectangle edges. This property specifies the color of the rectangle
edges as a color or specifies that no edges be drawn.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase rectangle objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

¢ normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are

Rectangle properties

rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

® none — Do not erase the rectangle when it is moved or destroyed. While the
object is still visible on the screen after erasing with EraseMode none, you
cannot print it because MATLAB stores no information about its former
location.

® xor — Draw and erase the rectangle by performing an exclusive OR (XOR)
with the color of the screen beneath it. This mode does not damage the color
of the objects beneath the rectangle. However, the rectangle’s color depends
on the color of whatever is beneath it on the display.

® background — Erase the rectangle by drawing it in the axes background
Color, or the figure background Color if the axes Color is set to none. This
damages objects that are behind the erased rectangle, but rectangles are
always properly colored.

Printing with Nonnormal Erase Modes.

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR of a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode objects.

FaceColor ColorSpec | {none}

Color of rectangle face. This property specifies the color of the rectangle face,
which is not colored by default.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

2-1827

Rectangle properties

2-1828

Handles are always visible when Handlevisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the rectangle can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the rectangle. If HitTest is off,
clicking the rectangle selects the object below it (which may be the axes
containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a rectangle callback routine can be interrupted by subsequently

Rectangle properties

invoked callback routines. Only callback routines defined for the
ButtonDownFcn are affected by the Interruptible property. MATLAB checks
for events that can interrupt a callback routine only when it encounters a
drawnow, figure, getframe, or pause command in the routine.

LineStyle {-}| -—— | + | —- | none

Line style of rectangle edge. This property specifies the line style of the edges.
The available line styles are

Symbol Line Style
- Solid line (default)

-—— Dashed line
Dotted line
-. Dash-dot line

none No line

LineWidth scalar

The width of the rectangle edge line. Specify this value in points (1 point = 1/72
inch). The default LineWidth is 0.5 points.

Parent handle of axes, hggroup, or hgtransform

Parent of rectangle object. This property contains the handle of the rectangle
object’s parent. The parent of a rectangle object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Position four-element vector [x,y,width,height]

Location and size of rectangle. This property specifies the location and size of
the rectangle in the data units of the axes. The point defined by x, y specifies

one corner of the rectangle, and width and height define the size in units along
the x-and y-axes respectively.

2-1829

Rectangle properties

2-1830

Selected on | off

Is object selected? When this property is on MATLAB displays selection handles
ifthe SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For rectangle objects, Type is always the string
‘rectangle’.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the rectangle. Assign this property the handle of
a uicontextmenu object created in the same figure as the rectangle. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the rectangle.

UserData matrix

User-specified data. Any data you want to associate with the rectangle object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Rectangle visibility. By default, all rectangles are visible. When set to off, the
rectangle is not visible, but still exists, and you can get and set its properties.

rectint

Purpose
Syntax

Description

See Also

Rectangle intersection area.

area = rectint(A,B)

area = rectint(A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is then
a matrix giving the intersection of all rectangles specified by A with all the
rectangles specified by B. That is, if Ais n-by-4 and B is m-by-4, then areais an
n-by-m matrix where area(i,j) is the intersection area of the rectangles
specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height], where
the point defined by x and y specifies one corner of the rectangle, and width
and height define the size in units along the x and y axes respectively.

polyarea

2-1831

recycle

Purpose

Syntax

Description

Remarks

Examples

2-1832

Set option to move deleted files to recycle folder

S = recycle
recycle state
S = recycle('state')

w
1l

S = recycle returns a character array S that shows the current state of the
MATLAB file recycling option. This state can be either on or of f. When file
recycling is on, MATLAB moves all files that you delete with the delete
function to either the recycle bin (on the PC or Macintosh) or a temporary folder
(on UNIX). When file recycling is of f, any files you delete are actually removed
from the system.

The default recycle state is off. You can turn recycling on for all of your
MATLAB sessions using the Preferences dialog box (Select File -> Preferences
-> General). Under the heading Default behavior of the delete function
select Move files to the Recycle Bin.

S = recycle state setsthe MATLAB recycle option to the given state, either
on or off. Return value S shows the previous recycle state.

S = recycle('state') is the function format for this command.

To set the recycle state for all MATLAB sessions, use the Preferences dialog
box. Open the Preferences dialog and select General. To enable or disable
recycling, click Move files to the recycle bin or Delete files permanently. See
“General Preferences for MATLAB” in the Desktop Tools and Development
Environment documentation for more information.

Start from a state where file recycling has been turned off. Check the current
recycle state:

recycle
ans =
off

Turn file recycling on. Delete a file and verify that it has been transferred to
the recycle bin or temporary folder:

recycle on;
delete myfile.txt

recycle

See Also delete, dir, 1s, fileparts, mkdir, rmdir

2-1833

reducepatch

Purpose

Syntax

Description

2-1834

Reduce the number of patch faces

reducepatch(p,r)
nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)

reducepatch(..., 'fast')
reducepatch(..., 'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

reducepatch(p,r) reduces the number of faces of the patch identified by
handle p, while attempting to preserve the overall shape of the original object.
MATLAB interprets the reduction factor r in one of two ways depending on its
value:

e If r is less than 1, r is interpreted as a fraction of the original number of
faces. For example, if you specify r as 0.2, then the number of faces is reduced
to 20% of the number in the original patch.

e If r is greater than or equal to 1, then r is the target number of faces. For
example, if you specify r as 400, then the number of faces is reduced until
there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices but
does not set the Faces and Vertices properties of patch p. The struct nfv
contains the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and vertices in
the struct fv.

nfv = reducepatch(p) or nfv = reducepatch(fv) uses a reduction value of
0.5.

reducepatch(...,'fast') assumes the vertices are unique and does not
compute shared vertices.

reducepatch(..., 'verbose') prints progress messages to the command
window as the computation progresses.

reducepatch

Remarks

Examples

nfv = reducepatch(f,v,r) performs the reduction on the faces in f and the
vertices in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the arrays nf
and nv.

If the patch contains nonshared vertices, MATLAB computes shared vertices
before reducing the number of faces. If the faces of the patch are not triangles,
MATLAB triangulates the faces before reduction. The faces returned are
always defined as triangles.

The number of output triangles may not be exactly the number specified with
the reduction factor argument (r), particularly if the faces of the original patch
are not triangles.

This example illustrates the effect of reducing the number of faces to only 15%
of the original value.

[X,y,Z,V] = flOW;

p = patch(isosurface(x,y,z,v,-3));
set(p, 'facecolor','w', 'EdgeColor','b');
daspect([1,1,1])

view(3)

figure;

h = axes;

p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])

view(3)

2-1835

reducepatch

2-1836

PN W

Before Reduction

SOVAVAVAAV AVavAY
SR ANV AV ATy
B0V «év» AVAVL AV AV, YY)
«»vwvvmv A“ vk
1A‘>::VA¢:V;¢* Iy AVA A AV‘ A"""""m A
A""‘ m«m A‘,éév‘ifl»"%’f VA% mm
A 17V
ﬂ

A\
Vv ror/VAAm'A

reducepatch

|

After Reduction to 15% of Original Number of Faces

v

N
BN

fi
AN
N

@&\
I
%

N \)
RN
Y
4“
N\
L\N

d
|

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducevolume
“Volume Visualization” for related functions

Vector Field Displayed with Cone Plots for another example

2-1837

reducevolume

Purpose

Syntax

Description

Examples

2-1838

Reduce the number of elements in a volume data set

[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] reducevolume(V, [Rx,Ry,Rz])
nv = reducevolume(...)

[nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the number
of elements in the volume by retaining every Rx'? element in the x direction,
every Ry element in the y direction, and every Rz element in the z direction.
If a scalar R is used to indicate the amount or reduction instead of a
three-element vector, MATLAB assumes the reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The reduced
volume is returned in nv, and the coordinates of the reduced volume are
returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays X, Y, and
Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

nv = reducevolume(...) returns only the reduced volume.

This example uses a data set that is a collection of MRI slices of a human skull.
This data is processed in a variety of ways:

¢ The 4-D array is squeezed (squeeze) into three dimensions and then reduced
(reducevolume) so that what remains is every fourth element in the x and y
directions and every element in the z direction.

® The reduced data is smoothed (smooth3).

¢ The outline of the skull is an isosurface generated as a patch (p1) whose
vertex normals are recalculated to improve the appearance when lighting is
applied (patch, isosurface, isonormals).

® A second patch (p2) with an interpolated face color draws the end caps
(FaceColor, isocaps).

® The view of the object is set (view, axis, daspect).

reducevolume

|

¢ A 100-element grayscale colormap provides coloring for the end caps
(colormap).

¢ Adding a light to the right of the camera illuminates the object (camlight,
lighting).

load mri

D = squeeze(D);

[x,y,z,D] = reducevolume(D,[4,4,1]);

D = smooth3(D);

p1 = patch(isosurface(x,y,z,D, 5,'verbose'),...
'FaceColor', 'red', 'EdgeColor', 'none');

isonormals(x,y,z,D,p1);

p2 = patch(isocaps(x,y,z,D, 5),...
'FaceColor', 'interp', 'EdgeColor', 'none');

view(3); axis tight; daspect([1,1,.4])

colormap(gray(100))

camlight; lighting gouraud

25
20
15
10

120

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducepatch

“Volume Visualization” for related functions

2-1839

refresh

Purpose

Syntax

Description

See Also

2-1840

Redraw current figure

refresh
refresh(h)

refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

“Figure Windows” for related functions

refreshdata

Purpose

Syntax

Description

Examples

Refresh data in graph when data source is specified

refreshdata

refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles, 'workspace')

refreshdata evaluates any data source properties (XDataSource,
YDataSource, or ZDataSource) on all objects in graphs in the current figure. If
the specified data source has changed, MATLAB updates the graph to reflect
this change.

Note that the variable assigned to the data source property must be in the base
workspace.

refreshdata(figure_handle) refreshes the data of the objects in the specified
figure.

refreshdata(object_handles) refreshes the data of the objects specified in
objects_handles or the children of those objects. Therefore, object_handles
can contain figure, axes, or plot object handles.

refreshdata(object handles, 'workspace') enables you to specify whether
the data source properties are evaluated in the base workspace or the
workspace of the function in which refreshdata was called. workspace is a
string that can be:

® base — evaluate the data source properties in the base workspace.

® caller — evaluate the data source properties in the workspace of the
function that called refreshdata.

This example creates a contour plot and changes its data source. The call to
refreshdata causes the graph to update.

z = peaks(5);

[c h] = contour(z, 'ZDataSource','z");

drawnow

pause(3) % Wait 3 seconds and the graph will update
z = peaks(20);

refreshdata(h)

2-1841

refreshdata

See Also The [X,Y,Z]DataSource properties of plot objects.

2-1842

regexp, regexpi

Purpose

Syntax

Description

Match regular expression

Each of these syntaxes apply to both regexp and regexpi. The regexp function
is case sensitive in matching regular expressions to a string, and regexpi is
case insensitive:

regexp('str', ‘'expr')

[start end extents match tokens names] = regexp('str', 'expr')
[vli v2 ...] = regexp('str', 'expr', 'qt', 'g2', ...)

[vli v2 ...] = regexp('str', 'expr', 'q1', 'g2', ..., 'once')
regexp 'str' ‘'expr' 'q1' 'g2' ... 'once'

The following descriptions apply to both regexp and regexpi:

regexp('str', 'expr') returns a row vector containing the starting index of
each substring of str that matches the regular expression string expr. If no
matches are found, regexp returns an empty array. The str and expr
arguments can also be cell arrays of strings. See the guidelines listed below
under “Multiple Strings and Expressions”.

[start end extents match tokens names] = regexp('str', 'expr')
returns up to six values, one for each output variable you specify, and in the
default order (as shown in the table below).

[vl v2 ...] = regexp('str', 'expr', q1, g2, ...) returns up to six
values, one for each output variable you specify, and ordered according to the
order of the qualifier arguments, q1, g2, etc.

Return Values for Regular Expressions

Default Description Qualifier
Order
1 Row vector containing the starting index of each substring of str start

that matches expr

2 Row vector containing the ending index of each substring of str end
that matches expr

3 Cell array containing the starting and ending indices of each sub- tokenExtents
string of str that matches a token in expr

2-1843

regexp, regexpi

Return Values for Regular Expressions

Default Description Qualifier
Order
4 Cell array containing the text of each substring of str that match
matches expr
5 Cell array containing the text of each token captured by regexp. tokens
6 Structure array containing the name and text of each named names
token captured by regexp. If there are no named tokens in expr,
regexp returns a structure array with no fields.
Field names of the returned structure are set to the token names,
and field values are the text of those tokens. Named tokens are
generated by the expression (?<tokenname>).
[vli v2 ...] = regexp('str', 'expr', 'q1', 'g2', ., 'once')
returns just the first match found. The keyword once must come last in the
argument list. Output and qualifier arguments are not required.
regexp 'str' ‘'expr' 'ql' 'g2' ... 'once' isthe command syntax for
this function. Only the 'str' and 'expr' arguments are required.
Remarks Multiple Strings and Expressions

Either the str or expr argument, or both, can be a cell array of strings,

according to the following guidelines:

e If stris a cell array of strings, then each of the regexp outputs is a cell array

having the same dimensions as str.

¢ If stris a single string but expr is a cell array of strings, then each of the
regexp outputs is a cell array having the same dimensions as expr.

¢ If both str and expr are cell arrays of strings, these two cell arrays must

contain the same number of elements.

See “Regular Expressions” in the MATLAB documentation for a listing of all

regular expression elements supported by MATLAB.

regexp does not support international character sets.

2-1844

regexp, regexpi

Examples

Example 1

Return a row vector of indices that match words that start with ¢, end with t,
and contain one or more vowels between them. Make the matches insensitive
to letter case (by using regexpi):

str = 'bat cat can car COAT court cut ct CAT-scan';
regexpi(str, 'c[aeiou]+t')
ans =

5 17 28 35

Example 2
Return a cell array of row vectors of indices that match capital letters and
white spaces in the cell array of strings str:

str = {'Madrid, Spain' ‘Romeo and Juliet' 'MATLAB is great'};
s1 = regexp(str, '[A-Z]');
s2 = regexp(str, '\s');

Capital letters, '[A-Z] "', were found at these str indices:

s1{:}
ans =
1 9
ans =
1 11
ans =
1 2 3 4 5 6

Space characters, '\s', were found at these str indices:

s2{:}
ans =
8
ans =
6 10
ans =
7 10

2-1845

regexp, regexpi

2-1846

Example 3

Return the text and the starting and ending indices of words containing the
letter x:

str = 'regexp helps you relax';
[m s e] = regexp(str, '\w*x\w*', 'match', 'start', 'end')
m =
‘regexp’ ‘relax’
S =
1 18
e =
6 22
Example 4

Search a string for opening and closing HTML tags. Use the expression <(\w+)
to find the opening tag (e.g., '<tagname') and to create a token for it. Use the
expression </\1> to find another occurrence of the same token, but formatted
as a closing tag (e.g., '</tagname>"'):

str = 'if <code>A</code> == x², disp(x)';
expr = '<(\w+).*?>,.*?2</\1>";
[tok mat] = regexp(str, expr, 'tokens', 'match');
tok{:}
ans =

‘code’
ans =

sup'
ans =

‘em'
mat{:}
ans =

<code>A</code>
ans =

²
ans =

disp(x)

regexp, regexpi

See “Tokens” in the MATLAB Programming documentation for information on
using tokens.

Example 5

Enter a string containing two names, the first and last names being in a
different order:

str = sprintf('Jdohn Davis\nRogers, James')
str =

John Davis

Rogers, James

Create an expression that generates first and last name tokens, assigning the
names first and last to the tokens. Call regexp to get the text and names of
each token found:

expr = ...
"(?<first>\w+)\s+(?<last>\w+) | (?<last>\w+),\s+(?<first>\w+)';

[tokens names] = regexp(str, expr, 'tokens', 'names');

Examine the tokens cell array that was returned. The first and last name
tokens appear in the order in which they were generated: first name—last
name, then last name—first name:

tokens{:}
ans =

‘dJohn' 'Davis’
ans =

'Rogers' ‘James'

Now examine the names structure that was returned. First and last names
appear in a more usable order:

names(:,1)
ans =
first: 'John'
last: 'Davis'

2-1847

regexp, regexpi

names(:,2)

ans =
first: 'James'
last: 'Rogers'

See Also regexprep, strfind, findstr, strmatch, strcmp, strcmpi, strncmp, strncmpi

2-1848

regexprep

Purpose Replace string using regular expression
Syntax = regexprep('str', 'expr', 'repstr')
= regexprep('str', 'expr', 'repstr', optionlist)
Description s = regexprep('str', 'expr', 'repstr') replaces all occurrences of the

regular expression expr in string str with the string repstr. The new string is
returned in s. If no matches are found, return string s is the same as input
string str.

If str is a cell array of strings, then the regexprep return value s is always a
cell array of strings having the same dimensions as str.

If expr is a cell array of strings and repstr is a single string, regexprep uses
the same replacement string on each expression in expr. If both expr and
repstr are cell arrays of strings, then expr and repstr must contain the same
number of elements, and regexprep pairs each repstr element with its
matching element in expr.

You can capture parts of the input string as tokens and then reuse them in the
replacement string. Specify the parts of the string to capture using the (...)
operator. Specify the tokens to use in the replacement string using the
operators $1, $2, $N to reference the first, second, and Nth tokens captured. (See
the section on “Tokens” and the example “Using Tokens in a Replacement
String” in the External Interfaces documentation for information on using
tokens.)

s = regexprep('str', 'expr', 'repstr' optionlist) By default,
regexprep replaces all matches and is case sensitive. You can use one or more

2-1849

regexprep

of the following options with regexprep. Separate each option in optionlist
with a comma.

Option Description

‘ignorecase’ Ignore the case of characters when matching expr to
str.

'preservecase’ Ignore case when matching (as with 'ignorecase'),

but override the case of replace characters with the
case of corresponding characters in str when replac-

ing.
‘once’ Replace only the first occurrence of expr in str.
N Replace only the Nth occurrence of expr in str.
Remarks See “Regular Expressions” in the MATLAB documentation for a listing of all

regular expression metacharacters supported by MATLAB.
regexprep does not support international character sets.
Examples Example 1

Perform a case-sensitive replacement on words starting with m and ending with
y:

str ‘My flowers may bloom in May';
pat = 'm(\w*)y';
regexprep(str, pat, 'April')
ans =
My flowers April bloom in May

Replace all words starting with m and ending with y, regardless of case, but
maintain the original case in the replacement strings:

regexprep(str, pat, 'April', 'preservecase')
ans =
April flowers april bloom in April

2-1850

regexprep

Example 2

Replace all variations of the words 'walk up' using the letters following walk
as a token. In the replacement string

str = 'I walk up, they walked up, we are walking up.';
pat 'walk (\w*) up';
regexprep(str, pat, 'ascend$1')
ans =
I ascend, they ascended, we are ascending.

Example 3
This example operates on a cell array of strings. It searches for consecutive
matching letters (e.g., '00') and uses a common replacement value (' --") for

all matches. The function returns a cell array of strings having the same
dimensions as the input cell array:

str = {

‘Whose woods these are I think I know.'
'His house is in the village though;'
‘He will not see me stopping here' 5
‘To watch his woods fill up with snow.'};

H

H

a = regexprep(str, '(.)\1', '--', ‘'ignorecase')

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'

'"To watch his w--ds fi-- up with snow.'

See Also regexp, regexpi, strfind, findstr, strmatch, strcmp, strcmpi, strncmp,
strncmpi

2-1851

rehash

Purpose

Syntax

Description

2-1852

Refresh function and file system path caches

rehash

rehash path

rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

rehash with no arguments updates the MATLAB list of known files and classes
for directories on the search path that are not in $matlabroot/toolbox. It
compares the timestamps for loaded functions (functions that have been called
but not cleared in the current session) against their timestamps on disk. It
clears loaded functions if the files on disk are newer. All of this normally
happens each time MATLAB displays the Command Window prompt.
Therefore, use rehash with no arguments only when you run an M-file that
updates another M-file, and the calling file needs to reuse the updated version
before it has finished running.

rehash path performs the same updates as rehash, but uses a different
technique for detecting the files and directories that require updates. If you
receive a warning during MATLAB startup notifying you that MATLAB could
not tell if a directory has changed and you encounter problems with MATLAB
using the most current versions of your M-files, run rehash path.

rehash toolbox updates all directories in $matlabroot/toolbox. Run this
when you add or remove files in $matlabroot/toolbox during a session by
some means other than MATLAB tools, like the Editor.

rehash pathreset performs the same updates as rehash path, and also
ensures the known files and classes list follows precedence rules for shadowed
functions.

rehash toolboxreset performs the same updates as rehash toolbox, and
also ensures the known files and classes list follows precedence rules for
shadowed functions.

rehash

rehash toolboxcache performs the same updates as rehash toolbox, and
also updates the cache file. This is the equivalent of clicking the Update
Toolbox Path Cache button in General Preferences.

See Also addpath, clear, path, rmpath
Toolbox Path Caching

2-1853

rem

Purpose
Syntax

Description

Remarks

See Also

2-1854

Remainder after division

o]
1l

rem(X,Y)

R = rem(X,Y) ifY ~= 0, returns X - n.*Ywheren = fix(X./Y). IfYis not an
integer and the quotient X. /Y is within roundoff error of an integer, then n is
that integer. By convention, rem(X,0) is NaN. The inputs X and Y must be real
arrays of the same size, or real scalars.

So long as operands X and Y are of the same sign, the statement rem(X,Y)
returns the same result as does mod (X, Y). However, for positive X and Y,

rem(-X,Y) = mod(-X,Y)-Y

The rem function returns a result that is between 0 and sign(X)*abs(Y). IfY
is zero, rem returns NaN.

mod

rename (ftp)

Purpose Rename file on FTP server

Syni‘ax rename (f, 'oldname', 'newname')

Descripl'ion rename (f, 'oldname', 'newname') changes the name of the file oldname to
newname in the current directory of the FTP server f, where f was created using
ftp.

Examples Connect to server testsite, view the contents, and change the name of

testfile.m to showresults.m.

test=ftp('ftp.testsite.com');

dir(test)
. testfile.m
rename (test, 'testfile.m', 'showresults.m')
dir(test)
showresults.m
See Also dir (ftp), delete (ftp), ftp, mget (ftp), mput (ftp)

2-1855

repmat

Purpose Replicate and tile an array
Syntax B = repmat(A,m,n)

B = repmat(A,[m n])

B = repmat(A,[m n p...])

repmat(A,m,n)

Description B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n tiling of
copies of A. The statement repmat (A, n) creates an n-by-n tiling.

B

repmat (A, [m n]) accomplishes the same result as repmat (A,m,n).

B = repmat(A,[m n p...]) produces a multidimensional (m-by-n-by-p-by-...)
array composed of copies of A. A may be multidimensional.

repmat (A,m,n) when A is a scalar, produces an m-by-n matrix filled with A’s
value. This can be much faster than a*ones(m,n) when m or n is large.

Examples In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

- O =+ O =0
- o =0 =0

0
1
0
1
0
1

- O = O = 0

1 1
0 0
1 1
0 0
1 1
0 0

o - O =0 =
o - O =0 =

The statement N = repmat(NaN,[2 3]) creates a 2-by-3 matrix of NaNs.

2-1856

reset

Purpose
Syntax

Description

Examples

See Also

Reset graphics object properties to their defaults

reset(h)

reset(h) resets all properties having factory defaults on the object identified

by h. To see the list of factory defaults, use the statement
get (0, 'factory')

If his a figure, MATLAB does not reset Position, Units, PaperPosition, and

PaperuUnits. If h is an axes, MATLAB does not reset Position and Units.

reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

cla, clf, gca, gcf, hold

“Object Manipulation” for related functions

2-1857

reshape

Purpose

Syntax

Description

Examples

2-1858

Reshape array

B = reshape(A,m,n)

B = reshape(A,m,n,p,...)

B = reshape(A,[mnp ...])

B = reshape(A,...,[],...)

B = reshape(A,siz)

B = reshape(A,m,n) returns the m-by-n matrix B whose elements are taken

column-wise from A. An error results if A does not have m*n elements.

B = reshape(A,m,n,p,...) or B =reshape(A,[m n p ...]) returns an
n-dimensional array with the same elements as A but reshaped to have the size
m-by-n-by-p-by-... . The product of the specified dimensions, m*n*p*..., must be
the same as prod(size(A)).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the dimensions
equals prod(size(A)). Thevalue of prod(size (A)) must be evenly divisible by
the product of the specified dimensions. You can use only one occurence of [].

B = reshape(A,siz) returns an n-dimensional array with the same elements
as A, but reshaped to siz, a vector representing the dimensions of the reshaped
array. The quantity prod(siz) must be the same as prod(size(A)).

Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
1 4 7 10
2 5 8 11
3 6 9 12
B = reshape(A,2,6)
B =
1 3 5 7 9 11
2 4 6 8 10 12
B = reshape(A,2,[1])

reshape

B =
1 3 5 7 9 11
2 4 6 8 10 12
See Also shiftdim, squeeze

The colon operator :

2-1859

residue

Purpose

Syntax

Description

Definition

2-1860

Convert between partial fraction expansion and polynomial coefficients

[r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a partial
fraction expansion of the ratio of two polynomials, b(s) and a(s), of the form

b(s) _ bys" +bys" N rbgs™ P b Lo

a(s) alsn+a23n71+a35n72+...+an+1
where b : and a ; are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back to the
polynomials with coefficients in b and a.

If there are no multiple roots, then

b(s) _ M1, T2

a(s) s—-p; s—py s-p,

"n

+k(s)

The number of poles n is
n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1
Ifp(j) = ... = p(j+m-1) is a pole of multiplicity m, then the expansion

includes terms of the form

rl' + rl‘+1 +m+r{+m—1
$=Pj (s—p))? (s—p)™

residue

Arguments b,a Vectors that specify the coefficients of the polynomials in descending
powers of s
r Column vector of residues
P Column vector of poles
k Row vector of direct terms
Algorithm It first obtains the poles with roots. Next, if the fraction is nonproper, the

direct term k is found using deconv, which performs polynomial long division.
Finally, the residues are determined by evaluating the polynomial with
individual roots removed. For repeated roots, resi2 computes the residues at
the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials represents
an ill-posed problem. If the denominator polynomial, a(s) , is near a polynomial
with multiple roots, then small changes in the data, including roundoff errors,
can make arbitrarily large changes in the resulting poles and residues.
Problem formulations making use of state-space or zero-pole representations
are preferable.

Examples If the ratio of two polynomials is expressed as

b(s) _ 552 +3s%_2s+7

a(s) 7433+8s+3
then

b=[58-27]

a=1[-408 3]

and you can calculate the partial fraction expansion as

[r, p, kK] = residue(b,a)
r‘ =

-1.4167

-0.6653

1.3320

2-1861

residue

p:
1.5737
-1.1644
-0.4093
k =
-1.2500

Now, convert the partial fraction expansion back to polynomial coefficients.
[b,a] = residue(r,p,k)
b =
-1.2500 -0.7500 0.5000 -1.7500

1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

b(s) _ —1.25s° 0.755>+ 0.50s - 1.75

a(s) s°-2.00s - 0.75
Note that the result is normalized for the leading coefficient in the
denominator.
See Also deconv, poly, roots
References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,

Prentice-Hall, 1975, p. 56.

2-1862

restoredefaultpath

Purpose

Syntax

Description

See Also

Restore the default search path

restoredefaultpath
restoredefaultpath; matlabrc

restoredefaultpath sets the search path to include only installed products
from the MathWorks. Run restoredefaultpath if you are having problems
with the search path. If restoredefaultpath seems to correct the problem, run
savepath. Start MATLAB again to be sure the problem does not reappear.

restoredefaultpath; matlabrc sets the search path to include only installed
products from the MathWorks and corrects path problems encountered during
startup. Run restoredefaultpath; matlabrc if you are having problems with
the search path and restoredefaultpath by itself does not correct the
problem. After the problem seems to be resolved, run savepath. Start MATLAB
again to be sure the problem does not reappear.

addpath, path, pathdef, rmpath, savepath
Search Path in the MATLAB User Guide

2-1863

rethrow

Purpose
Syntax

Description

Examples

See Also

2-1864

Reissue error
rethrow(err)

rethrow(err) reissues the error specified by err. The currently running M-file
terminates and control returns to the keyboard (or to any enclosing catch
block). The err argument must be a MATLAB structure containing the
following character array fields.

Fieldname Description
message Text of the error message
identifier Message identifier of the error message

See “Message Identifiers” in the MATLAB documentation for more information
on the syntax and usage of message identifiers.

A convenient way to get a valid err structure for the last error issued is by
using the lasterror function.

rethrowis usually used in conjunction with try-catch statements to reissue an
error from a catch block after performing catch-related operations. For
example,

try

do_something
catch

do_cleanup

rethrow(lasterror)
end

error, lasterror, lasterr, try, catch, dbstop

refurn

Purpose
Syntax

Description

Examples

See Also

Return to the invoking function

return

return causes a normal return to the invoking function or to the keyboard. It

also terminates keyboard mode.

If the determinant function were an M-file, it might use a return statement in

handling the special case of an empty matrix, as follows:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)
d=1;
return
else

end

break, continue, disp, end, error, for, if, keyboard, switch, while

2-1865

rgb2hsv

Purpose
Syntax

Description

See Also

2-1866

Convert RGB colormap to HSV colormap

cmap rgb2hsv (M)

cmap = rgb2hsv(M) converts an RGB colormap M to an HSV colormap cmap.
Both colormaps are m-by-3 matrices. The elements of both colormaps are in the
range 0 to 1.

The columns of the input matrix M represent intensities of red, green, and blue,
respectively. The columns of the output matrix cmap represent hue, saturation,
and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image to the equivalent
HSV image. RGB is an m-by-n-by-3 image array whose three planes contain
the red, green, and blue components for the image. HSV is returned as an
m-by-n-by-3 image array whose three planes contain the hue, saturation, and
value components for the image.

brighten, colormap, hsv2rgb, rgbplot

“Color Operations” for related functions

rgbplot

Purpose Plot colormap

Syntax rgbplot (cmap)

Description rgbplot (cmap) plots the three columns of cmap, where cmap is an m-by-3
colormap matrix. rgbplot draws the first column in red, the second in green,
and the third in blue.

Examples Plot the RGB values of the copper colormap.

rgbplot (copper)

1
09 b
0.8 b
0.7 4
0.6 4
0.5 b
04r B
0.3 b
0.2 b
0.1p b

00 1‘0 2‘0 3‘0 4‘0 5‘0 (;0 70

See Also colormap

“Color Operations” for related functions

2-1867

ribbon

Purpose

Syntax

Description

Examples

2-1868

Ribbon plot

ribbon
ribbon
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

Y)
X,Y)

—_— o~ o~ o~

ribbon(Y) plots the columns of Y as separate three-dimensional ribbons using
X = 1:size(Y,1).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional strips. X and
Y are vectors of the same size or matrices of the same size. Additionally, X can
be a row or a column vector, and Y a matrix with length(X) rows.

ribbon(X,Y,width) specifies the width of the ribbons. The default is 0.75.

ribbon(axes_handle, ...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = ribbon(...) returns a vector of handles to surface graphics objects.
ribbon returns one handle per strip.

Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);
z = peaks(X,Y);

ribbon(y,z)

colormap hsv

ribbon

waterfall

ki

plot, plot3, surface

See Also

“Polygons and Surfaces” for related functions

2-1869

rmappdata

Purpose Remove application-defined data
Syntax rmappdata(h,name)
Descripl'ion rmappdata(h,name) removes the application-defined data name from the object

specified by handle h.

See Also getappdata, isappdata, setappdata

2-1870

rmdir

Purpose

Graphical
Interface

Syntax

Description

Examples

Remove directory

As an alternative to the rmdir function, use the delete feature in the Current
Directory browser.

rmdir('dirname')
rmdir('dirname','s")
[status,message,messageid] = rmdir('dirname','s"')

rmdir('dirname') removes the directory dirname from the current directory.
If the directory is not empty, you must use the s argument. If dirname is not in
the current directory, specify the relative path to the current directory or the
full path for dirname.

rmdir('dirname','s"') removes the directory dirname and its contents from
the current directory. This removes all subdirectories and files in the current
directory regardless of their write permissions.

[status, message, messageid] = rmdir('dirname','s') removes the
directory dirname and its contents from the current directory, returning the
status, a message, and the MATLAB error message ID (see error and
lasterr). Here, status is 1 for success and is 0 for error, and message,
messageid, and the s input argument are optional.

Remove Empty Directory
To remove myfiles from the current directory, where myfiles is empty, type
rmdir('myfiles"')

If the current directory is matlabr13/work, and myfiles is in
d:/matlabri3/work/project/, use the relative path to myfiles

rmdir('project/myfiles')
or the full path to myfiles
rmdir('d:/matlabri3/work/project/myfiles"')

2-1871

rmdir

Remove Directory and All Contents
To remove myfiles, its subdirectories, and all files in the directories, assuming
myfiles is in the current directory, type

rmdir('myfiles','s")
Remove Directory and Return Results
To remove myfiles from the current directory, type
[stat, mess, id]=rmdir('myfiles')
MATLAB returns
stat

mess
The directory is not empty.
id =
MATLAB:RMDIR:OSError
indicating the directory myfiles is not empty.
To remove myfiles and its contents, run
[stat, mess]=rmdir('myfiles','s")

and MATLAB returns
stat

mess

indicating myfiles and its contents were removed.

2-1872

rmdir

See Also cd, copyfile, delete, dir, error, fileattrib, filebrowser, lasterr, mkdir,
movefile

2-1873

rmdir (ftp)

Purpose
Syntax

Description

Examples

See Also

2-1874

Remove directory on FTP server
rmdir(f, 'dirname')

rmdir(f, 'dirname') removes the directory dirname from the current
directory of the FTP server f, where f was created using ftp.

Connect to server testsite, view the contents of testdir, and remove the
directory newdir from the directory testdir.

test=ftp('ftp.testsite.com');
cd(test, 'testdir');

dir(test)

. . newdir
dir(test, 'newdir')

rmdir(test, 'newdir');
dir(test, 'testdir')

cd (ftp), delete (ftp),dir (ftp), ftp, mkdir (ftp)

rmfield

Purpose

Syntax

Description

See Also

Remove structure fields

rmfield(s, 'field"')
rmfield(s,FIELDS)

rmfield(s, 'field') removes the specified field from the structure array

n un
I

s = rmfield(s,FIELDS) removes more than one field at a time when FIELDS is
a character array of field names or cell array of strings.

fieldnames, setfield, getfield, isfield, orderfields, dynamic field names

2-1875

rmpath

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

2-1876

Remove directories from MATLAB search path

As an alternative to the rmpath function, use the Set Path dialog box. To open
it, select Set Path from the File menu in the MATLAB desktop.

rmpath('directory')
rmpath directory

rmpath('directory') removes the specified directory from the current
MATLAB search path. Use the full pathname for directory.

rmpath directory is the unquoted form of the syntax.

Remove /usr/local/matlab/mytools from the search path.

rmpath /usr/local/matlab/mytools

addpath, cd, dir, genpath, matlabroot, partialpath, path, pathdef, pathsep,
pathtool, rehash, restoredefaultpath, savepath, what

Search Path

root object

Purpose

Description

See Also

Object
Hierarchy

Root object properties
The root is a graphics object that corresponds to the computer screen. There is

only one root object and it has no parent. The children of the root object are
figures.

The root object exists when you start MATLAB; you never have to create it and
you cannot destroy it. Use set and get to access the root properties.

diary, echo, figure, format, gcf, get, set

Root

‘ Uiobjects

‘ Axes

2-1877

Root Properties

Modifying
Properties

Root Properties

2-1878

You can set and query graphics object properties in two ways:

® The Property Editor is an interactive tool that enables you to see and change
object property values.

® The set and get commands enable you to set and query the values of

properties.

To change the default values of properties, see Setting Default Property
Values.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}
Not used by the root object.
ButtonDownFcn string
Not used by the root object.
CallbackObject handle (read only)

Handle of current callback’s object. This property contains the handle of the
object whose callback routine is currently executing. If no callback routines are
executing, this property contains the empty matrix []. See also the gco
command.

CaptureMatrix (obsolete)
This property has been superseded by the getframe command.

CaptureRect (obsolete)
This property has been superseded by the getframe command.
Children vector of handles

Handles of child objects. A vector containing the handles of all nonhidden
figure objects (see HandleVisibility for more information). You can change
the order of the handles and thereby change the stacking order of the figures
on the display.

Clipping {on} | off

Clipping has no effect on the root object.

Root Properties

CommandWindowSize [columns rows]

Current size of command window. This property contains the size of the
MATLAB command window in a two-element vector. The first element is the
number of columns wide and the second element is the number of rows tall.

CreateFcn

The root does not use this property.

CurrentFigure figure handle

Handle of the current figure window, which is the one most recently created,
clicked in, or made current with the statement

figure(h)
which restacks the figure to the top of the screen, or
set (0, 'CurrentFigure',h)

which does not restack the figures. In these statements, h is the handle of an
existing figure. If there are no figure objects,

get (0, 'CurrentFigure')
returns the empty matrix. Note, however, that gcf always returns a figure
handle, and creates one if there are no figure objects.
DeleteFcn string
This property is not used, because you cannot delete the root object.
Diary on | {off}

Diary file mode. When this property is on, MATLAB maintains a file (whose
name is specified by the DiaryFile property) that saves a copy of all keyboard
input and most of the resulting output. See also the diary command.

DiaryFile string
Diary filename. The name of the diary file. The default name is diary.

Echo on | {off}

Script echoing mode. When Echo is on, MATLAB displays each line of a script
file as it executes. See also the echo command.

2-1879

Root Properties

2-1880

ErrorMessage string

Text of last error message. This property contains the last error message issued
by MATLAB.

FixedWidthFontName font name

Fixed-width font to use for axes, text, and uicontrols whose FontName is set to
FixedWidth. MATLAB uses the font name specified for this property as the
value for axes, text, and uicontrol FontName properties when their FontName
property is set to FixedWidth. Specifying the font name with this property
eliminates the need to hardcode font names in MATLAB applications and
thereby enables these applications to run without modification in locales where
non-ASCII character sets are required. In these cases, MATLAB attempts to
set the value of FixedWidthFontName to the correct value for a given locale.

MATLAB application developers should not change this property, but should
create axes, text, and uicontrols with FontName properties set to FixedWidth
when they want to use a fixed-width font for these objects.

MATLAB end users can set this property if they do not want to use the
preselected value. In locales where Latin-based characters are used, Courier is
the default.

Format short | {shortE} | long | longE | bank |
hex | + | rat

Output format mode. This property sets the format used to display numbers.
See also the format command.

® short — Fixed-point format with 5 digits

® shortE — Floating-point format with 5 digits

® shortG — Fixed- or floating-point format displaying as many significant
figures as possible with 5 digits

® long — Scaled fixed-point format with 15 digits
¢ 1ongE — Floating-point format with 15 digits

® 1ongG — Fixed- or floating-point format displaying as many significant
figures as possible with 15 digits

® pank — Fixed-format of dollars and cents

® hex — Hexadecimal format

Root Properties

* + — Displays + and — symbols

® rat — Approximation by ratio of small integers
FormatSpacing compact | {loose}

Output format spacing (see also format command).

® compact — Suppress extra line feeds for more compact display.
® loose — Display extra line feeds for a more readable display.
HandleVisibility {on} | callback | off

This property is not useful on the root object.

HitTest {on} | off

This property is not useful on the root object.

Interruptible {on} | off

This property is not useful on the root object.

Language string

System environment setting.

MonitorPosition [x y width height;x y width height]

Width and height of primary and secondary monitors, in pixels. This property
contains the width and height of each monitor connnected to your computer.
The x and y values for the primary monitor are 0, 0 and the width and height
of the monitor are specified in pixels.

The secondary monitor position is specified as

X = primary monitor width + 1
y = primary monitor height + 1

Querying the value of the figure MonitorPosition on a multiheaded system
returnes the position for each monitor on a separate line.

v
V =

X y width height % Primary monitor

x y width height % Secondary monitor

get(0, 'MonitorPosition')

Note that MATLAB sets the value of the ScreenSize property to the combined
size of the monitors.

2-1881

Root Properties

2-1882

Parent handle

Handle of parent object. This property always contains the empty matrix,
because the root object has no parent.

PointerLocation [x,y]

Current location of pointer. A vector containing the x- and y-coordinates of the
pointer position, measured from the lower left corner of the screen. You can
move the pointer by changing the values of this property. The Units property
determines the units of this measurement.

This property always contains the instantaneous pointer location, even if the
pointer is not in a MATLAB window. A callback routine querying the
PointerLocation can get a different value than the location of the pointer
when the callback was triggered. This difference results from delays in callback
execution caused by competition for system resources.

PointerWindow handle (read only)

Handle of window containing the pointer. MATLAB sets this property to the
handle of the figure window containing the pointer. If the pointer is not in a
MATLAB window, the value of this property is 0. A callback routine querying
the PointerWindow can get the wrong window handle if you move the pointer
to another window before the callback executes. This error results from delays
in callback execution caused by competition for system resources.

RecursionLimit integer

Number of nested M-file calls. This property sets a limit to the number of
nested calls to M-files MATLAB will make before stopping (or potentially
running out of memory). By default the value is set to a large value. Setting this
property to a smaller value (something like 150, for example) should prevent
MATLAB from running out of memory and will instead cause MATLAB to
issue an error when the limit is reached.

ScreenDepth bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of bits per
pixel). The maximum number of simultaneously displayed colors on the
current graphics device is 2 raised to this power.

ScreenDepth supersedes the BlackAndWhite property. To override automatic
hardware checking, set this property to 1. This value causes MATLAB to
assume the display is monochrome. This is useful if MATLAB is running on

Root Properties

color hardware but is being displayed on a monochrome terminal. Such a
situation can cause MATLAB to determine erroneously that the display is
color.

ScreenSize four-element rectangle vector (read only)

Screen size. A four-element vector,

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units except pixels,
in which case left and bottom are 1. width and height are the screen
dimensions in units specified by the Units property.

Selected on | off

This property has no effect on the root level.
SelectionHighlight {on} | off

This property has no effect on the root level.
ShowHiddenHandles on | {off}

Show or hide handles marked as hidden. When set to on, this property disables
handle hiding and exposes all object handles regardless of the setting of an
object’s HandleVisibility property. When set to off, all objects so marked
remain hidden within the graphics hierarchy.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. While it is not necessary to identify
the root object with a tag (since its handle is always 0), you can use this
property to store any string value that you can later retrieve using set.

Type string (read only)

Class of graphics object. For the root object, Type is always 'root'.
UIContextMenu handle

This property has no effect on the root level.

Units {pixels} | normalized | inches | centimeters
| points | characters

Unit of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower left

2-1883

Root Properties

2-1884

corner of the screen. Normalized units map the lower left corner of the screen
to (0,0) and the upper right corner to (1.0,1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch). Characters are
units defined by characters from the default system font; the width of one unit
is the width of the letter x, the height of one character is the distance between
the baselines of two lines of text.

This property affects the PointerLocation and ScreenSize properties. If you
change the value of Units, it is good practice to return it to its default value
after completing your operation, so as not to affect other functions that assume
Units is set to the default value.

UserData matrix

User-specified data. This property can be any data you want to associate with
the root object. MATLAB does not use this property, but you can access it using
the set and get functions.

Visible {on} | off
Object visibility. This property has no effect on the root object.

roots

Purpose
Syntax

Description

Remarks

Examples

Algorithm

Polynomial roots

S
1

roots(c)

r = roots(c) returns a column vector whose elements are the roots of the
polynomial c.

Row vector ¢ contains the coefficients of a polynomial, ordered in descending
powers. If ¢ has n+1 components, the polynomial it represents is

cys" .. te,stce, -
Note the relationship of this function to p = poly(r), which returns a row
vector whose elements are the coefficients of the polynomial. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling, and
roundoff error.

The polynomial s3 — 6s2 — 72s — 27 is represented in MATLAB as
p=1[1-6-72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)
r‘ -
12.1229
-5.7345
-0.3884

The algorithm simply involves computing the eigenvalues of the companion
matrix:

A = diag(ones(n-1,1),-1);
A(1,:) = -c(2:n+1)./c(1);
eig(A)

It is possible to prove that the results produced are the exact eigenvalues of a
matrix within roundoff error of the companion matrix A, but this does not mean
that they are the exact roots of a polynomial with coefficients within roundoff
error of those in c.

2-1885

roofts

See Also fzero, poly, residue

2-1886

rose

Purpose Angle histogram

Syntax rose
rose

theta)

theta, x)
rose(theta,nbins)
rose(axes_handles,...)
h = rose(...)
[tout,rout] = rose(...)

—_— o~ o~ o~

Description rose creates an angle histogram, which is a polar plot showing the distribution
of values grouped according to their numeric range. Each group is shown as one
bin.

rose(theta) plots an angle histogram showing the distribution of theta in 20
angle bins or less. The vector theta, expressed in radians, determines the angle
of each bin from the origin. The length of each bin reflects the number of
elements in theta that fall within a group, which ranges from 0 to the greatest
number of elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the locations of
bins. length(x) is the number of bins and the values of x specify the center
angle of each bin. For example, if x is a five-element vector, rose distributes the
elements of theta in five bins centered at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0, 2*pi].
The default is 20.

rose(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

h = rose(...) returns the handles of the line objects used to create the graph.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax does not
generate a plot.

2-1887

rose

Example Create a rose plot showing the distribution of 50 random numbers.

theta = 2*pi*rand(1,50);
rose(theta)

270

See Also compass, feather, hist, line, polar
“Histograms” for related functions

Histograms in Polar Coordinates for another example

2-1888

rosser

Purpose Classic symmetric eigenvalue test problem
Syntax A = rosser
Description A = rosser returns the Rosser matrix. This matrix was a challenge for many

matrix eigenvalue algorithms. But LAPACK's DSYEV routine used in MATLAB
has no trouble with it. The matrix is 8-by-8 with integer elements. It has:

¢ A double eigenvalue

¢ Three nearly equal eigenvalues

® Dominant eigenvalues of opposite sign

® A zero eigenvalue

* A small, nonzero eigenvalue

Examples rosser
ans =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44
-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23

-8 -71 61 8 411 -599 208 208
-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -9M1

29 -44 52 -23 208 208 -911 99

2-1889

rot90

Purpose

Syntax

Description

Examples

See Also

2-1890

Rotate matrix 90°

B = rot90(A)

B = rot90(A,k)

B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A,k) rotates matrix A counterclockwise by k*90 degrees, where k is

an integer.

The matrix

X =
1 2 3
4 5 6
7 8 9

rotated by 90 degrees is

Y = rot90(X)

Y =
3 6 9
2 5 8
1 4 7

flipdim, fliplr, flipud

rotate

Purpose

Syntax

Description

Remarks

Rotate object about a specified direction

rotate(h,direction,alpha)
rotate(...,origin)

The rotate function rotates a graphics object in three-dimensional space,
according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha degrees.
direction is a two- or three-element vector that describes the axis of rotation
in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default origin is the center of the plot box.

The graphics object you want rotated must be a child of the same axes. The
object’s data is modified by the rotation transformation. This is in contrast to
view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to the origin.
P is expressed as the spherical coordinates [theta phi] or as Cartesian
coordinates.

The two-element form for direction specifies the axis direction using the
spherical coordinates [theta phi]. theta is the angle in the x-y plane
counterclockwise from the positive x-axis. phi is the elevation of the direction
vector from the x-y plane.

2-1891

rotate

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin to

X,Y,Z).
Examples Rotate a graphics object 180° about the x-axis.

h = surf(peaks(20));
rotate(h,[1 0 0],180)

Rotate a surface graphics object 45° about its center in the z direction.

h = surf(peaks(20));
zdir = [0 0 1];

center = [10 10 0];
rotate(h,zdir,45,center)

Remarks rotate changes the Xdata, Ydata, and Zdata properties of the appropriate
graphics object.

See Also rotatedd, sph2cart, view
The axes CameraPosition, CameraTarget, CameraUpVector, CameraViewAngle

“Object Manipulation” for related functions

2-1892

rotate3d

Purpose

Syntax

Description

See Also

Rotate 3-D view using mouse

rotate3d on

rotate3d off

rotate3dd
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)

rotate3d on enables mouse-base rotation on all axes within the current figure.
rotate3d off disables interactive axes rotation in the current figure.
rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified figure
instead of the current figure.

rotate3d(axes_handle,...) enables rotation only in the specified axes.

Using rotate3d

When enabled, rotate3d provides continuous rotation of axes and the objects
it contains through mouse movement. A numeric readout appears in the lower
left corner of the figure during rotation, showing the current azimuth and
elevation of the axes. Releasing the mouse button removes the animated box
and the readout.

You can also enable 3-D rotation from the figure Tools menu or the figure
toolbar.

camorbit, rotate, view

Object Manipulation for related functions

2-1893

round

Purpose Round to nearest integer
Syntax Y = round(X)
Description Y = round(X) rounds the elements of X to the nearest integers. For complex X,

the imaginary and real parts are rounded independently.
Examples a=1[-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000
Columns 5 through 6
7.0000 2.4000 + 3.6000i

round(a)
ans =
Columns 1 through 4
-2.0000 0 3.0000 6.0000
Columns 5 through 6
7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor

2-1894

rref

Purpose

Syntax

Description

Examples

Reduced row echelon form

R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

R = rref(A) produces the reduced row echelon form of A using Gauss Jordan
elimination with partial pivoting. A default tolerance of
(max(size(A))*eps *norm(A,inf)) tests for negligible column elements.

[R,jb] = rref(A) also returns a vector jb such that:

e r = length(jb) is this algorithm's idea of the rank of A.
® x(jb) are the pivot variables in a linear system Ax = b.
® A(:,jb) is a basis for the range of A.

® R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value for the
rank than rank, orth and null.

Note The demo rrefmovie (A) enables you to sequence through the
iterations of the algorithm.

Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

2-1895

rref

See Also

2-1896

O O o =

inv, lu, rank

o o =0

o <+ OO

'
o W w =

rsf2csf

Purpose
Syntax

Description

Examples

Convert real Schur form to complex Schur form
[U,T] = rsf2csf(U,T)

The complex Schur form of a matrix is upper triangular with the eigenvalues
of the matrix on the diagonal. The real Schur form has the real eigenvalues on
the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex form.

Arguments U and T represent the unitary and Schur forms of a matrix A,
respectively, that satisfy the relationships: A= U*T*U' and U'*U =
eye(size(A)). See schur for details.

Given matrix A,

N = —
_ = N =
—_) = =
N

with the eigenvalues

4.8121 1.9202 + 1.4742i1 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for readability)
consists of the eigenvalues of A.

U =

-0.4916 -0.2756 - 0.44111 0.2133 + 0.56991 -0.3428
-0.4980 -0.1012 + 0.21631 -0.1046 + 0.20931 0.8001
-0.6751 0.1842 + 0.38601 -0.1867 - 0.3808i -0.4260
-0.2337 0.2635 - 0.64811i 0.3134 - 0.54481 0.2466

2-1897

rsf2csf

T =
4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067
0 1.9202 + 1.4742i 2.3355 0.1117 + 1.65471
0 0 1.9202 - 1.47423 0.8002 + 0.23101
0 0 0 1.3474
See Also schur

2-1898

save

Purpose

Graphical
Interface

Syntax

Description

2save
Save workspace variables on disk

As an alternative to the save function, select Save Workspace As from the File
menu in the MATLAB desktop, or use the Workspace browser.

save
save('filename')

save('filename', 'vari', ‘'var2', ...)
save('filename', '-struct', 's')

save('filename', '-struct', 's', 'f1', 'f2';, ...)
save('-regexp', expri, expr2, ...)

save('..., 'format')

save filename vari var2 ...

save by itself stores all workspace variables in a binary format in the current
directory in a file named matlab.mat. Retrieve the data with load. MAT-files
are double-precision, binary, MATLAB format files. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the different
formats allow. They can also be manipulated by other programs external to
MATLAB.

save('filename') stores all workspace variables in the current directory in
filename.mat. To save to another directory, use the full pathname for the
filename. If filename is the special string stdio, the save command sends the
data as standard output.

save('filename', 'varil', 'var2', ...) savesonlythe specified workspace
variables in filename.mat. Use the * wildcard to save only those variables that
match the specified pattern. For example, save('A*') saves all variables that
start with A.

save('filename', '-struct', 's') saves all fields of the scalar structure s
as individual variables within the file filename.

save('filename', '-struct', 's', 'f1', 'f2', ...) saves as individual
variables only those structure fields specified (s.f1,s.f2, ...).

2-1899

save

Remarks

2-1900

save('-regexp', expri, expr2, ...) saves those variables that match any
of the regular expressions expri, expr2, etc.

save(..., 'format') enables you to make use of other data formats available
with the save function. See the following table.

Format How Data Is Stored

-append The specified existing MAT-file, appended
to the end. See Remarks, below.

-ascii 8-digit ASCII format

-ascii -double 16-digit ASCII format

-ascii -tabs Delimits with tabs

-ascii -double -tabs 16-digit ASCII format, tab delimited

-mat Binary MAT-file form (default)

-v4 A format that MATLAB Version 4 can open

-v6 A format that MATLAB Version 6 and ear-

lier can open

save filename vari var2 ... is the command form of the syntax.

By default, MATLAB compresses the data it saves to MAT-files. MATLAB also
uses Unicode character encoding when saving character data. Specify the -v6
option if you want to disable both of these features for a particular save
operation. If you save data to a MAT-file that you intend to load using
MATLAB Version 6 or earlier, then you must specify the -v6 option when
saving.

To override the compression and Unicode setting for all of your MATLAB
sessions, use the Preferences dialog box. Open the Preferences dialog and
select General and then MAT-Files. To disable data compression and Unicode
encoding, click Ensure backward compatibility (-v6). To turn these features
back on, click Use default features (Unicode and compression). See “General
Preferences for MATLAB” in the Desktop Tools and Development
Environment documentation for more information.

save

For information on any of the following topics related to saving to MAT-files,
see “Exporting Data to MAT-Files” in the “MATLAB Programming”
documentation:

* Appending variables to an existing MAT-file
¢ Compressing data in the MAT-file

¢ Saving in ASCII format

¢ Saving in MATLAB Version 4 format

¢ Saving with Unicode character encoding

¢ Data storage requirements

® Saving from external programs

Examples Example 1
Save all variables from the workspace in binary MAT-file test.mat:

save test.mat

Example 2
Save variables p and q in binary MAT-file test.mat:
savefile = 'test.mat’;
p = rand(1, 10);
g = ones(10);
save(savefile, 'p', 'q")
Example 3

Save the variables vol and temp in ASCII format to a file named june10:

save('d:\mymfiles\juneiO', 'vol', 'temp','-ASCII')

Example 4

Save the fields of structure s1 as individual variables rather than as an entire
structure.

si.a = 12.7; si1.b = {'abc', [4 5; 6 7]}; si1.c = 'Hello!';
save newstruct.mat -struct si;
clear

Check what was saved to newstruct.mat:

2-1901

save

2-1902

whos -file newstruct.mat

Name Size Bytes Class

a 1x1 8 double array
b 1x2 158 cell array
c 1x6 12 char array

Grand total is 16 elements using 178 bytes

Read only the b field into the MATLAB workspace.

str = load('newstruct.mat', 'b')
str =
b: {'abc' [2x2 double]}

Example 5
Using regular expressions, save in MAT-file mydata.mat those variables with
names that begin with Mon, Tue, or Wed:

save('mydata', '-regexp', '“Mon|~Tue|"Wed');

Here is another way of doing the same thing. In this case, there are three
separate expression arguments:

save('mydata', '-regexp', '“Mon', '~“Tue', '“Wed');

Example 6

Save a 3000-by-3000 matrix uncompressed to file c1.mat, and compressed to
file c2.mat. The compressed file uses about one quarter the disk space required
to store the uncompressed data:

X
y

ones(3000);
uint32(rand(3000) * 100);

save ¢c1 x y
save c2 x y -compress

d1 = dir('c1.mat');
d2 dir('c2.mat');

d1.bytes

save

ans =

45000240 % Size of the uncompressed data
d2.bytes
ans =

11985634 % Size of the compressed data

d2.bytes/d1.bytes
ans =
0.2663 % Ratio of compressed to uncompressed

Example 7

This example is similar to the last one, except that it saves one variable
uncompressed, and then a second variable compressed to the same MAT-file. It
then loads this data back into the MATLAB workspace:

X = ones(3000);
y = uint32(rand(3000) * 100);

save c1 Xx;
save c1 y -compress -append;

d = dir('cl.mat');
d.bytes
ans =

20952950

clear
load ci
whos
Name Size Bytes Class

X 3000x3000 72000000 double array
y 3000x3000 36000000 wuint32 array

Grand total is 18000000 elements using 108000000 bytes

See Also load, clear, diary, fprintf, fwrite, who, workspace

2-1903

saveas

Purpose

Syntax

Description

2-1904

Save figure or model using specified format

saveas(h,'filename.ext')
saveas(h, 'filename', 'format')

saveas(h,'filename.ext') saves the figure or model with the handle h to the
file filename.ext. The format of the file is determined by the extension, ext.
Allowable values for ext are listed in this table.

ext Values Format

ai Adobe Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLARB figure (invalid for Simulink models)
ipg JPEG image (invalid for Simulink models)

m MATLAB M-file (invalid for Simulink models)
pbm Portable bitmap

pcx Paintbrush 24-bit

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed

saveas(h, 'filename', 'format') saves the figure or model with the handle h
to the file called filename using the specified format. The filename can have
an extension, but the extension is not used to define the file format. If no
extension is specified, the standard extension corresponding to the specified
format is automatically appended to the filename.

saveas

Remarks

Examples

Allowable values for format are the extensions in the table above and the
device types supported by print. The print device types include the formats
listed in the table of extensions above as well as additional file formats. Use an
extension from the table above or from the list of device types supported by
print. When using the print device type to specify format for saveas, do not
use the prefixed -d.

You can use open to open files saved using saveas with an m or fig extension.
Other formats are not supported by open. The Save As dialog box you access
from the figure window’s File menu uses saveas, limiting the file extensions to
m and fig. The Export dialog box you access from the figure window’s File
menu uses saveas with the format argument.

Example 1 - Specify File Extension

Save the current figure that you annotated using the Plot Editor to a file named
pred_prey using the MATLAB fig format. This allows you to open the file
pred_prey.fig at a later time and continue editing it with the Plot Editor.

saveas(gcf, 'pred_prey.fig')

Example 2 - Specify File Format but No Extension

Save the current figure, using Adobe Illustrator format, to the file 1ogo. Use
the ai extension from the above table to specify the format. The file created is
logo.ai.

saveas(gcf, 'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print devices
table, which is -dill; use doc print or help print to see the table for print

device types. The file created is 1logo.ai. MATLAB automatically appends the
ai extension for an Illustrator format file because no extension was specified.

saveas(gcf, 'logo', 'ill')

Example 3 - Specify File Format and Extension

Save the current figure to the file star. eps using the Level 2 Color PostScript
format. If you use doc print or help print, you can see from the table for print
device types that the device type for this format is -dpsc2. The file created is
star.eps.

2-1905

saveas

See Also

2-1906

saveas(gcf, 'star.eps', 'psc2')

In another example, save the current model to the file trans.tiff using the
TIFF format with no compression. From the table for print device types, you
can see that the device type for this format is -dtiffn. The file created is
trans.tiff.

saveas(gcf, 'trans.tiff', 'tiffn')

open, print

“Printing” for related functions

saveobj

Purpose
Syntax

Description

Remarks

Examples

See Also

Save an object to a MAT-file

B

saveobj (A)

B = saveobj(A) is called by the MATLAB save function when object A is saved
to a MAT-file. This call executes the saveobj method for the object’s class, if
such a method exists. The return value B is subsequently used by save to
populate the MAT-file.

When you issue a save command on an object, MATLAB looks for a method
called saveobj in the class directory. You can overload this method to modify
the object before the save operation. For example, you could define a saveobj
method that saves related data along with the object.

saveobj can be overloaded only for user objects. save will not call saveobj for
a built-in datatype, such as double, even if @double/saveobj exists.

saveobj will be separately invoked for each object to be saved.

A child object does not inherit the saveobj method of its parent class. To
implement saveobj for any class, including a class that inherits from a parent,
you must define a saveobj method within that class directory.

The following example shows a saveobj method written for the portfolio
class. The method determines if a portfolio object has already been assigned
an account number from a previous save operation. If not, saveobj calls
getAccountNumber to obtain the number and assigns it to the account_number
field. The contents of b is saved to the MAT-file.

function b = saveobj(a)

if isempty(a.account_number)
a.account_number = getAccountNumber(a);

end

b = aj;

save, load, loadobj

2-1907

savepath

Purpose

Graphical
Interface

Syntax

Description

Examples

See Also

2-1908

Save current MATLAB search path to pathdef.m file

As an alternative to the savepath function, use the Set Path dialog box. To
open it, select Set Path from the File menu in the MATLAB desktop.

savepath
savepath newfile

savepath saves the current MATLAB search path to pathdef.m. It returns

0 If the file was saved successfully

1 If the save failed

savepath newfile saves the current MATLAB search path to newfile, where
newfile is in the current directory or is a relative or absolute path.
The statement

savepath myfiles/pathdef.m

saves the current search path to the file pathdef.m, which is located in the
myfiles directory in the MATLAB current directory.

Consider using savepath in your MATLAB finish.m file to save the path when
you exit MATLAB.

addpath, cd, dir, finish, genpath, matlabroot, partialpath, pathdef,
pathsep, pathtool, rehash, restoredefaultpath, rmpath, savepath, startup,
what

Search Path

scatter

Purpose

Syntax

Description

2-D scatter/bubble graph

scatter(X,Y,S,C)

scatter(X,Y)

scatter(X,Y,S)

scatter(...,markertype)
scatter(...,'filled"')

scatter(..., 'PropertyName' ,propertyvalue)
scatter(axes_handle,...)

h = scatter(...)

hlines = scatter('v6',...)

scatter(X,Y,S,C) displays colored circles at the locations specified by the
vectors X and Y (which must be the same size).

S determines the area of each marker (specified in points*2). S can be a vector
the same length as X and Y or a scalar. If S is a scalar, MATLAB draws all the
markers the same size.

C determines the colors of each marker. When C is a vector the same length as
X and Y, the values in C are linearly mapped to the colors in the current
colormap. When C is a 1length (X)-by-3 matrix, it specifies the colors of the
markers as RGB values. C can also be a color string (see ColorSpec for a list of
color string specifiers).

scatter(X,Y) draws the markers in the default size and color.

scatter(X,Y,S) draws the markers at the specified sizes (S) with a single
color. This type of graph is also known as a bubble plot.

scatter(...,markertype) uses the marker type specified instead of '0' (see
LineSpec for a list of marker specifiers).

scatter(...,'filled"') fills the markers.

scatter(..., 'PropertyName' ,propertyvalue) creates the scatter graph,
applying the specified property settings. See scattergroup properties for a
description of properties.

2-1909

scatter

Examples

See Also

2-1910

scatter(axes_handles,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = scatter(...) returns the handle of the scattergroup object created.

Backward Compatible Version

hpatch = scatter('vé',...) returnsthe handles to the patch objects created
by scatter (see Patch Properties for a list of properties you can specify using
the object handles and set).

See Plot Objects and Backward Compatibility for more information.

load seamount
scatter(x,y,5,2)

-47.95

—-48.05
-48.1-
-48.15

-48.21

-48.25

-48.3

-48.351-

-48.4 1

8.45 I I I I I I I I I]
210.8 210.9 211 2111 211.2 211.3 211.4 2115 2116 2117 211.8

-4

scatter3, plot3
“Scatter/Bubble Plots” for related functions
See Triangulation and Interpolation of Scatter Data for related information.

See “Scattergroup Properties” for property descriptions

scatter3

Purpose

Syntax

Description

3-D scatter plot

scatter3
scatter3
scatter3(X,Y,Z,S)
scatter3(...,markertype)
scatter3(...,'filled")

h = scatter3(...,)

hpatch = scatter3('v6',...)

X,Y,Z,8,C)
X,Y,2)

—~ o~ o~ o~

scatter3(X,Y,Z,S,C) displays colored circles at the locations specified by the
vectors X, Y, and Z (which must all be the same size).

S determines the size of each marker (specified in points). S can be a vector the
same length as X, Y, and Z or a scalar. If S is a scalar, MATLAB draws all the
markers the same size.

C determines the colors of each marker. When C is a vector the same length as
X, Y, and Z, the values in C are linearly mapped to the colors in the current
colormap. When C is a 1length (X)-by-3 matrix, it specifies the colors of the
markers as RGB values. C can also be a color string (see ColorSpec for a list of
color string specifiers).

scatter3(X,Y,Z) draws the markers in the default size and color.

scatter3(X,Y,Z,S) draws the markers at the specified sizes (S) with a single
color.

scatter3(...,markertype) uses the marker type specified instead of 'o' (see
LineSpec for a list of marker specifiers).

scatter3(..., 'filled"') fills the markers.

h = scatter3(...) returns handles to the scattergroup objects created by
scatter3. See “Scattergroup Properties” for property descriptions.

Backward Compatible Version

hpatch = scatter3('v6',...) returns the handles to the patch objects
created by scatter3 (see Patch for a list of properties you can specify using the
object handles and set).

2-1911

scatter3

Remarks Use plot3 for single color, single marker size 3-D scatter plots.
Examples [X,y,z] = sphere(16);

X = [x(:)*.5 x(:)*.75 x(:)1;

Y = [y(:)*.5 y(:)*.75 y(:)];

Z = [z(:)*.5 z(:)*.75 z(:)];

S = repmat([1 .75 .5]*10,prod(size(x)),1);

C = repmat([1 2 3],prod(size(x)),1);

scatter3(X(:),Y(:),Z(:),S(:),C(:),"'filled'), view(—60,60)

See Also scatter, plot3
See “Scattergroup Properties” for property descriptions

“Scatter/Bubble Plots” for related functions

2-1912

Scattergroup Properties

Modifying
Properties

Scattergroup
Property
Descriptions

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for scattergroup objects.

See Plot Objects for information on scattergroup objects.

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine whether objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when the object’s
delete function callback is called (see the DeleteFcn property). It remains set
to on while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

¢ cancel — Discard the event that attempted to execute a second callback
routine.

® queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

2-1913

Scattergroup Properties

2-1914

ButtonDownFcn string or function handle
Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the scattergroup object.

This property can be
® A string that is a valid MATLAB expression

® The name of an M-file

e A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

CData vector, m-by-3 matrix, ColorSpec

Color of markers. When CData is a vector the same length as XData and YData,
the values in CData are linearly mapped to the colors in the current colormap.
When CData is a length(XData)-by-3 matrix, it specifies the colors of the
markers as RGB values. CData can also be a color string (see ColorSpec for a
list of color string specifiers).

CDhataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable
that, by default, is evaluated in the base workspace to generate the CData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change CData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning

and not render the graph until you have changed all data source properties to
appropriate values.

Scattergroup Properties

Children array of graphics object handles

Children of the scattergroup object. An array containing the handle of a patch
object parented to the scattergroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the stem Children property unless you set
the Root ShowHiddenHandles property to on:

set (0, 'ShowHiddenHandles', 'on")

Clipping {on} | off

Clipping mode. MATLAB clips scatter plots to the axes plot box by default. If
you set Clipping to off, lines might be displayed outside the axes plot box.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a scattergroup object. You must
specify the callback during the creation of the object. For example,

scatter(x,y, 'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other scattergroup properties.
Setting this property on an existing scattergroup object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
scattergroup object is deleted (e.g., this might happen when you issue a delete
command on the scattergroup object, its parent axes, or the figure containing
it). MATLAB executes the callback before destroying the object’s properties so
the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which can be queried using gcbo.

2-1915

Scattergroup Properties

2-1916

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

DisplayName string

Label used by plot legends. The legend and the plot browser use this text for
labels for any scattergroup objects appearing in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase scatter child objects (the patch used to construct the scatter graph).
Alternative erase modes are useful for creating animated sequences, where
control of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

® normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

® none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

® xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

® background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Scattergroup Properties

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR operation on
a pixel color with that of the pixel behind it) and ignore three-dimensional
sorting to obtain greater rendering speed. However, these techniques are not
applied to the printed output.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the scattergroup object.

® on — Handles are always visible when HandleVisibility is on.

® callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

e of f — SettingHandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, cl1f,
and close.

2-1917

Scattergroup Properties

2-1918

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines whether the scattergroup object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the line objects that
compose the stem plot. If HitTest is off, clicking the stemseries object selects
the object below it (which is usually the axes containing it).

HitTestArea on | {off}

Select scattergroup object on markers or area of scatter graph. This property
enables you to select scattergroup objects in two ways:

¢ Select by clicking on scatter markers (default).

