
MATLAB®

Graphics

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Graphics

© COPYRIGHT 1984–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2006 Online only New for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)

This publication was previously part of the Using
MATLAB® Graphics User Guide.

October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)

Contents

Plots and Plotting Tools

1
Figures, Plots, and Graphs . 1-2
What Is a MATLAB Graph? . 1-2
Anatomy of a Graph . 1-3
Figure Toolbars . 1-5
Types of MATLAB Plots . 1-6

Plotting Tools — Interactive Plotting 1-11
What Are Plotting Tools? . 1-11
Plotting Tools Interface Overview . 1-12
The Figure Palette . 1-19
The Plot Browser . 1-24
The Property Editor . 1-29
Accessing Object Properties with the Property Inspector . . 1-30

Example — Plotting Workspace Variables 1-36
Identifying Workspace Data to Plot 1-36
Adding a Subplot . 1-39

Example — Choosing a Graph Type 1-44
Selecting a Graph from the Plot Catalog 1-44
Plotting Expressions . 1-48

Example — Specifying a Data Source 1-52
Creating the Graph . 1-52
Varying the Data Source . 1-52
Data Sources for Multiobject Graphs 1-54

Example — Generating MATLAB Code to Reproduce a
Graph . 1-56
Create a Stem Plot and Generate Code for It 1-56
Data Arguments . 1-58
Limitations . 1-58

v

Editing Plots . 1-59
Why Edit Plots? . 1-59
Interactive Plot Editing . 1-59
Using Functions to Edit Graphs . 1-59

Working in Plot Edit Mode . 1-61
Figure Windows in Plot Edit Mode 1-61
Starting Plot Edit Mode . 1-62
Exiting Plot Edit Mode . 1-63
Selecting Objects in a Graph . 1-63
Cutting, Copying, and Pasting Plot Objects 1-64
Moving and Resizing Objects . 1-67
Setting Object Properties . 1-68
Undo/Redo — Eliminating Mistakes 1-68

Saving Your Work . 1-70
Saving a Graph in FIG-File Format 1-70
Saving to a Different Format — Exporting Figures 1-71
Printing Figures . 1-72
Generating a MATLAB File to Recreate a Graph 1-73

Data Exploration Tools

2
Ways to Explore Graphical Data . 2-2
Introduction . 2-2
Types of Tools . 2-2
Customizing Data Exploration Tools 2-3

Data Cursor — Displaying Data Values Interactively . . 2-10
What Is a Data Cursor? . 2-10
Enabling Data Cursor Mode . 2-11
Display Style — Datatip or Cursor Window 2-20
Selection Style — Select Data Points or Interpolate Points
on Graph . 2-21

Exporting Data Value to Workspace Variable 2-22

Enlarging the View . 2-25
Zooming in 2-D and 3-D . 2-25

vi Contents

Zooming in 2-D Views . 2-25

Panning — Shifting Your View of the Graph 2-29

Rotate 3D — Interactive Rotation of 3-D Views 2-31
Enabling 3-D Rotation . 2-31
Selecting Predefined Views . 2-31
Rotation Style for Complex Graphs 2-32
Undo/Redo — Eliminating Mistakes 2-34

Annotating Graphs

3
How to Annotate Graphs . 3-2
Graph Annotation Features . 3-2
Enclosing Regions of a Graph in a Rectangle or an
Ellipse . 3-6

Textbox Annotations . 3-8
Annotation Lines and Arrows . 3-12
Adding a Colorbar to a Graph . 3-15
Adding a Legend to a Graph . 3-19
Pinning — Attaching to a Point in the Graph 3-22

Alignment Tool — Aligning and Distributing Objects . . 3-24
Alignment Tool Functionality . 3-24
Example — Vertical Distribute, Horizontal Align 3-25
Align/Distribute Menu Options . 3-28
Snap to Grid — Aligning Objects on a Grid 3-30

Adding Titles to Graphs . 3-33
What Is a Title? . 3-33
Using the Title Option on the Insert Menu 3-34
Using the Property Editor to Add a Title 3-34
Using the title Function . 3-35

Adding Axis Labels to Graphs . 3-38
What Are Axis Labels? . 3-38
Using the Label Options on the Insert Menu 3-40

vii

Using the Property Editor to Add Axis Labels 3-40
Using Axis-Label Commands . 3-42

Adding Text Annotations to Graphs 3-45
What Are Text Annotations? . 3-45
Creating Text Annotations with the text or gtext
Function . 3-46

Text Alignment . 3-51
Example — Aligning Text . 3-52
Editing Text Objects . 3-54
Mathematical Symbols, Greek Letters, and TeX
Characters . 3-54

Using Character and Numeric Variables in Text 3-58
Example — Multiline Text . 3-59
Example — Using LaTeX to Format Math Equations 3-60
Drawing Text in a Box . 3-64

Adding Arrows and Lines to Graphs 3-66
Creating Arrows and Lines in Plot Editing Mode 3-66
Editing Arrows and Line Annotations 3-67

Positioning Annotations in Data Space 3-69
Example — Pinning Text Arrows and Ellipses 3-69

Basic Plotting Commands

4
Setting Up Figures . 4-2
Creating Figure Windows . 4-2
Displaying Multiple Plots per Figure 4-2
Specifying the Target Axes . 4-5
Default Color Scheme . 4-5

Using High-Level Plotting Functions 4-7
Functions for Plotting Line Graphs 4-7
Programmatic Plotting . 4-8
Creating Line Plots . 4-9
Specifying Line Style . 4-11
Colors, Line Styles, and Markers . 4-12

viii Contents

Specifying the Color and Size of Lines 4-13
Adding Plots to an Existing Graph 4-14
Plotting Only the Data Points . 4-16
Plotting Markers and Lines . 4-16
Line Styles for Black and White Output 4-17
Setting Default Line Styles . 4-18

Line Plots of Matrix Data . 4-20

Plotting Imaginary and Complex Data 4-23

Plotting with Two Y-Axes . 4-25
Introduction . 4-25
Combining Linear and Logarithmic Axes 4-26

Setting Axis Parameters . 4-29
Axis Scaling and Ticks . 4-29
Axis Limits and Ticks . 4-29
Example — Specifying Ticks and Tick Labels 4-32
Setting Aspect Ratio . 4-34

Creating Specialized Plots

5
Bar and Area Graphs . 5-2
Types of Bar Graphs . 5-2
Coloring 2-D Bars According to Height 5-6
Coloring 3-D Bars According to Height 5-10
Stacked Bar Graphs to Show Contributing Amounts 5-12
Specifying X-Axis Data . 5-14
Overlaying Bar Graphs . 5-16
Overlaying Other Plots on Bar Graphs 5-17
Area Graphs . 5-21
Comparing Data Sets with Area Graphs 5-24

Pie Charts . 5-28
Creating a Pie Chart . 5-28
Labeling the Pie Chart . 5-29

ix

Removing a Piece from a Pie Chart 5-31

Histograms . 5-33
Functions for Creating Histograms 5-33
Histograms in Cartesian Coordinates 5-33
Histograms in Polar Coordinates . 5-35
Specifying Number of Bins . 5-36
Using Data Cursors with Histograms 5-38

Discrete Data Graphs . 5-40
Functions for Creating Graphs of Discrete Data 5-40
Two-Dimensional Stem Plots . 5-40
Combining Stem Plots with Line Plots 5-44
Three-Dimensional Stem Plots . 5-45
Stairstep Plots . 5-48

Direction and Velocity Vector Graphs 5-51
Functions for Graphing Vector Quantities 5-51
Compass Plots . 5-52
Feather Plots . 5-53
Two-Dimensional Quiver Plots . 5-55
Three-Dimensional Quiver Plots . 5-57

Contour Plots . 5-60
Functions for Creating Contour Displays 5-60
Creating Simple Contour Plots . 5-61
Labeling Contours . 5-63
Filled Contours . 5-65
Specifying Contour Levels . 5-66
Index Contours . 5-70
The Contouring Algorithm . 5-73
Changing the Offset of a Contour . 5-76
Displaying Contours in Polar Coordinates 5-77
Preparing Data for Contouring . 5-80

Interactive Plotting . 5-84
Example — Selecting Plotting Points from the Screen 5-84

Animation . 5-86
Ways to Animate Plots . 5-86
Movies . 5-87

x Contents

Example — Visualizing an FFT as a Movie 5-87
Updating Plot Object Axis and Color Data 5-88

Displaying Bit-Mapped Images

6
Working with Images in MATLAB Graphics 6-2
What Is Image Data? . 6-2
Supported Image Formats . 6-3
Functions for Reading, Writing, and Displaying Images . . 6-4

Image Types . 6-5
Indexed Images . 6-5
Intensity Images . 6-7
RGB (Truecolor) Images . 6-8

Working with 8-Bit and 16-Bit Images 6-10
8-Bit and 16-Bit Indexed Images . 6-10
8-Bit and 16-Bit Intensity Images . 6-11
8-Bit and 16-Bit RGB Images . 6-11
Mathematical Operations Support for uint8 and uint16 . . 6-12
Other 8-Bit and 16-Bit Array Support 6-13
Converting an 8-Bit RGB Image to Grayscale 6-13
Summary of Image Types and Numeric Classes 6-17

Reading, Writing, and Querying Graphics Image
Files . 6-18
Working with Image Formats . 6-18
Reading a Graphics Image . 6-19
Writing a Graphics Image . 6-19
Subsetting a Graphics Image (Cropping) 6-20
Obtaining Information About Graphics Files 6-21

Displaying Graphics Images . 6-22
Image Types and Display Methods 6-22
Controlling Aspect Ratio and Display Size 6-24

The Image Object and Its Properties 6-27

xi

Image CData . 6-27
Image CDataMapping . 6-28
XData and YData . 6-28
Adding Text to Images . 6-32
Additional Techniques for Fast Image Updating 6-34

Printing Images . 6-36

Converting the Data or Graphic Type of Images 6-37

Printing and Exporting

7
Overview of Printing and Exporting 7-2
Print and Export Operations . 7-2
Graphical User Interfaces . 7-2
Command Line Interface . 7-3
Specifying Parameters and Options 7-5
Default Settings and How to Change Them 7-7

How to Print or Export . 7-10
Using Print Preview . 7-10
Printing a Figure . 7-13
Printing to a File . 7-18
Exporting to a File . 7-20
Exporting to the Windows or Macintosh Clipboard 7-32

Examples of Printing and Exporting 7-37
Printing a Figure at Screen Size . 7-37
Printing with a Specific Paper Size 7-38
Printing a Centered Figure . 7-38
Exporting in a Specific Graphics Format 7-40
Exporting in EPS Format with a TIFF Preview 7-41
Exporting a Figure to the Clipboard 7-41

Changing a Figure’s Settings . 7-44
Parameters that Affect Printing . 7-44
Selecting the Figure . 7-46

xii Contents

Selecting the Printer . 7-47
Setting the Figure Size and Position 7-48
Setting the Paper Size or Type . 7-51
Setting the Paper Orientation . 7-53
Selecting a Renderer . 7-55
Setting the Resolution . 7-61
Setting the Axes Ticks and Limits . 7-64
Setting the Background Color . 7-66
Setting Line and Text Characteristics 7-67
Setting the Line and Text Color . 7-70
Specifying a Colorspace for Printing and Exporting 7-73
Excluding User Interface Controls form Printed Output . . 7-75
Producing Uncropped Figures . 7-76

Choosing a Graphics Format . 7-77
What Are Graphic Formats? . 7-77
Frequently Used Graphics Formats 7-78
Factors to Consider in Choosing a Format 7-78
Properties Affected by Choice of Format 7-81
Impact of Rendering Method on the Output 7-83
Description of Selected Graphics Formats 7-84
How to Specify a Format for Exporting 7-87

Choosing a Printer Driver . 7-89
What Are Printer Drivers? . 7-89
Factors to Consider in Choosing a Driver 7-90
Driver-Specific Information . 7-93
How to Specify the Printer Driver to Use 7-97

Troubleshooting . 7-99
Introduction . 7-99
Common Problems . 7-99
Printing Problems . 7-100
Exporting Problems . 7-103
General Problems . 7-107

xiii

Handle Graphics Objects

8
Organization of Graphics Objects 8-3

Types of Graphics Objects . 8-4
Introduction . 8-4
Information on Specific Graphics Objects 8-4

Graphics Windows — the Figure . 8-6
Introduction . 8-6
Figures Used for Graphing Data . 8-7
Figures Used for GUIs . 8-8
Root Object — The Figure Parent . 8-9
More Information on Figures . 8-9

Core Graphics Objects . 8-10
Introduction . 8-10
Core Graphics Objects . 8-13
Example — Creating Core Graphics Objects 8-14
Parenting . 8-16
High-Level Versus Low-Level Functions 8-17
Simplified Calling Syntax . 8-17

Plot Objects . 8-19
Introduction . 8-19
Creating a Plot Object . 8-20
Identifying Plot Objects Programmatically 8-21
Plot Objects and Backward Compatibility 8-22

Linking Graphs to Variables — Data Source
Properties . 8-23
Introduction . 8-23
Data Source Example . 8-23
Changing the Size of Data Variables 8-24

Annotation Objects . 8-25
Introduction . 8-25
Annotation Object Properties . 8-25
Annotation Layer . 8-26

xiv Contents

Example — Enclosing Subplots with an Annotation
Rectangle . 8-27

Group Objects . 8-30
Introduction . 8-30
Creating a Group . 8-30
Transforming Objects . 8-31

Example — Transforming a Hierarchy of Objects 8-39

Object Properties . 8-44
Introduction . 8-44
Storing Object Information . 8-44
Changing Values . 8-45
Order Dependence of Setting Property Values 8-45
Default Values . 8-46
Properties Common to All Objects . 8-46

Setting and Querying Property Values 8-48
Using set and get . 8-48
Setting Property Values . 8-48
Querying Property Values . 8-50

Factory-Defined Property Values 8-53

Setting Default Property Values . 8-54
Factory- and User-Defined Values . 8-54
How MATLAB Searches for Default Values 8-54
Defining Default Values . 8-56
Examples — Setting Default Line Styles 8-57

Accessing Object Handles . 8-61
Introduction . 8-61
Special Object Handles . 8-61
The Current Figure, Axes, and Object 8-62
Searching for Objects by Property Values — findobj 8-63
Copying Objects . 8-68
Deleting Objects . 8-70

Controlling Graphics Output . 8-72

xv

Figure Targets . 8-72
Specifying the Target for Graphics Output 8-72
Preparing Figures and Axes for Graphics 8-74
Targeting Graphics Output with newplot 8-75
Example — Using newplot . 8-77
Testing for Hold State . 8-79
Protecting Figures and Axes . 8-80

The Figure Close Request Function 8-83
Introduction . 8-83
Quitting the MATLAB Environment 8-84
Errors in the Close Request Function 8-84
Overriding the Close Request Function 8-85
Redefining the CloseRequestFcn . 8-85

Saving Handles in Files . 8-87
About Saving Handles . 8-87
Save Information First . 8-87

Properties Changed by Built-In Functions 8-89

Objects That Can Contain Other Objects 8-92

Using Panel Containers in Figures — Uipanels 8-93
Introduction . 8-93
Figure Resize Functions . 8-93
Example — Using Figure Panels . 8-94

Grouping Objects Within Axes — hgtransform 8-99
Introduction . 8-99
Example — Translating Grouped Objects 8-99

Controlling Legends . 8-103
Legend Control Options . 8-103
Properties for Controlling Legend Content 8-103
Updating a Legend . 8-104
Example — Excluding a Particular Object From a
Legend . 8-105

Example — One Legend Entry for a Group of Objects 8-106
Example — Showing Children of Group Objects in
Legend . 8-107

xvi Contents

Example — Grouping Objects to Reduce the Legend
Entries . 8-109

Callback Properties for Graphics Objects 8-111
What is a Callback? . 8-111
Graphics Object Callbacks . 8-111
User Interface Object Callbacks . 8-112
Figure Callbacks . 8-112

Function Handle Callbacks . 8-113
Introduction . 8-113
Function Handle Syntax . 8-114
Why Use Function Handle Callbacks 8-115
Example — Using Function Handles in GUIs 8-117

Optimizing Graphics Performance 8-122
Introduction . 8-122
General Performance Guidelines . 8-122
Disabling Automatic Modes . 8-123
Changing Graph Data Rapidly . 8-125
Specify Axes with Plotting Function for Better
Performance . 8-128

Performance of Bit-Mapped Images 8-129
Performance of Patch Objects . 8-130
Performance of Surface Objects . 8-131

Using Figure Properties

9
Figure Objects . 9-2
Related Information About Figures 9-2

Docking Figures in the Desktop . 9-3
Introduction . 9-3
Figure Properties That Affect Docking 9-4
Creating a Nondockable Figure . 9-5

Positioning Figures . 9-6

xvii

Introduction . 9-6
The Position Vector . 9-6
Example — Specifying Figure Position 9-9

Figure Colormaps — The Colormap Property 9-12
Introduction . 9-12
Specifying the Figure Colormap . 9-12

Selecting Drawing Methods . 9-14
Double Buffering . 9-14
Selecting a Renderer . 9-14

Specifying the Figure Pointer . 9-17
Predefined Figure Pointer Symbols 9-17
Defining Custom Pointers . 9-18

Using Axes Properties

10
Axes Objects — Defining Coordinate Systems for
Graphs . 10-2

Labeling and Appearance Properties 10-3
Introduction . 10-3
Creating Axes with Specific Characteristics 10-3
Axis Labels . 10-4

Positioning Axes . 10-6
Introduction . 10-6
The Position Vector . 10-6
Position Units . 10-8

Automatic Axes Resize . 10-9
Properties Controlling Axes Size . 10-9
Using OuterPosition as the ActivePositionProperty 10-11
ActivePositionProperty = OuterPosition 10-12
ActivePositionProperty = Position . 10-12
Axes Resizing in Subplots . 10-13

xviii Contents

Multiple Axes per Figure . 10-15
Introduction . 10-15
Placing Text Outside the Axes . 10-15
Multiple Axes for Different Scaling 10-16

Individual Axis Control . 10-18
Properties Controlling Axis Limits 10-18
Setting Axis Limits . 10-19
Setting Tick Mark Locations . 10-20
Changing Axis Direction . 10-22

Using Multiple X- and Y-Axes . 10-25
Introduction . 10-25
Example — Double Axis Graphs . 10-25

Automatic-Mode Properties . 10-29

Colors Controlled by Axes . 10-32
Introduction . 10-32
Specifying Axes Colors . 10-32

Axes Color Limits — the CLim Property 10-36
Introduction . 10-36
Simulating Multiple Colormaps in a Figure 10-37
Complete Example Code . 10-37
Calculating Color Limits . 10-38

Defining the Color of Lines for Plotting 10-41
Introduction . 10-41
Defining Your Own ColorOrder . 10-41
Line Styles Used for Plotting — LineStyleOrder 10-43

Index

xix

xx Contents

1

Plots and Plotting Tools

If you are viewing this document in the MATLAB® Help browser, watch the
Interactive Plot Creation with the Plot Tools video demo for an overview
of the major functionality. It covers much of the material presented in the
following sections:

• “Figures, Plots, and Graphs” on page 1-2

• “Plotting Tools — Interactive Plotting” on page 1-11

• “Example — Plotting Workspace Variables” on page 1-36

• “Example — Choosing a Graph Type” on page 1-44

• “Example — Specifying a Data Source” on page 1-52

• “Example — Generating MATLAB Code to Reproduce a Graph” on page
1-56

• “Editing Plots” on page 1-59

• “Working in Plot Edit Mode” on page 1-61

• “Saving Your Work” on page 1-70

1 Plots and Plotting Tools

Figures, Plots, and Graphs

In this section...

“What Is a MATLAB Graph?” on page 1-2

“Anatomy of a Graph” on page 1-3

“Figure Toolbars” on page 1-5

“Types of MATLAB Plots” on page 1-6

What Is a MATLAB Graph?
The MATLAB environment offers a variety of data plotting functions plus a
set of GUI tools to create, and modify graphic displays. The GUI tools afford
most of the control over graphic properties and options that typed commands
such as annotate, get, and set provide.

A figure is a MATLAB window that contains graphic displays (usually data
plots) and UI components. You create figures explicitly with the figure
function, and implicitly whenever you plot graphics and no figure is active.
By default, figure windows are resizable and include pull-down menus and
toolbars.

A plot is any graphic display you can create within a figure window. Plots
can display tabular data, geometric objects, surface and image objects, and
annotations such as titles, legends, and colorbars. Figures can contain any
number of plots. Each plot is created within a 2-D or a 3-D data space called
an axes. You can explicitly create axes with the axes or subplot functions.

A graph is a plot of data within a 2-D or 3-D axes. Most plots made with
MATLAB functions and GUIs are therefore graphs. When you graph a
one-dimensional variable (e.g., rand(100,1)), the indices of the data vector
(in this case 1:100) become assigned as x values, and plots the data vector
as y values. Some types of graphs can display more than one variable at a
time, others cannot.

The contents and varieties of figures, plots and graphs that MATLAB can
make are explained in the following sections.

1-2

Figures, Plots, and Graphs

Note All the figures are generated on a Windows® system, the placement of
the toolbar and menu options can vary for other operating systems.

Anatomy of a Graph
MATLAB plotting functions and tools direct their output to a figure window.
Each figure is a separate window that you can dock in the desktop, and
collect together with other plots in a Figure Group. To illustrate the basic
components of a graph, execute the following code to create a plot of a family
of sine curves:

x = 0:.2:20;
y = sin(x)./sqrt(x+1);
y(2,:) = sin(x/2)./sqrt(x+1);
y(3,:) = sin(x/3)./sqrt(x+1);
plot(x,y)

The resulting figure contains a 2-D set of axes. This graphic identifies the
components and tools of a figure window.

1-3

1 Plots and Plotting Tools

�������	
����

��������������

������
��	
�����
���

�
�����������	
��
��������

��
�������
�������
��
	�����

������
������
�����������������

The plot function uses a default line style and color to distinguish the data
sets plotted in the graph. You can change the appearance of these graphic
components or add annotations to the graph to present your data in a
particular way.

1-4

Figures, Plots, and Graphs

Figure Toolbars
Figure toolbars provide shortcuts to access commonly used features. These
include operations such as saving and printing, plus tools for interactive
zooming, panning, rotating, querying, and editing plots. The following picture
shows the features available from this toolbar.

�
����
���������

�
����
��	�
�

���� ������!
����������

"
���������
�����#���

$�
 %�����
&'�

����
�
����

(��#
�
 �
�

����
��
��

����
��
�

You can enable two other toolbars from the View menu:

• Camera Toolbar — Use for manipulating 3-D views. See “View Control with
the Camera Toolbar” in the MATLAB 3-D Visualization documentation
for more information.

)�#���������

)�
�����

$��
����������
*�������

*��
�
��	��

$��+�����

�!��

%������
�
*���

• Plot Edit Toolbar — Use for annotation and setting object properties.
See “Annotation Tools on the Plot Edit Toolbar” on page 3-3 for more
information.

1-5

1 Plots and Plotting Tools

)�����������
���
�����
������������!
�����
	����	���������+����,

������!�������+���
���	
#�
������

$�
���+������
��������
�

-���������
�
����
�
��	�������

����������.���
�.
���������������

���	
����� �
�������
��
�
��������

�
��������������.
����.������
	��
�
���������

Types of MATLAB Plots
You can construct a wide variety of 2-D and 3-D MATLAB plots with very
little, if any, programming required on your part. The following two tables
classify and illustrate most of the kinds of plots you can create. They include
line, bar, area, direction and vector field, radial, and scatter graphs. They
also include 2-D and 3-D functions that generate and plot geometric shapes
and objects. Most 2-D plots have 3-D analogs, and there are a variety of
volumetric displays for 3-D solids and vector fields. Plot types that begin
with “ez” (such as ezsurf) are convenience functions that can plot arguments
given as functions.

Two-Dimensional Plotting Functions
The table below shows all available MATLAB 2-D plot functions. If you are
reading this online, you can click any icon to see the documentation for that
function. Techniques for using many of the functions are also discussed in
later sections of this document.

1-6

Figures, Plots, and Graphs

Line
Graphs

Bar
Graphs

Area
Graphs

Direction
Graphs

Radial
Graphs

Scatter
Graphs

plot bar
(grouped)

area feather polar scatter

plotyy barh
(grouped)

pie quiver rose spy

loglog bar
(stacked)

fill comet compass plotmatrix

semilogx barh
(stacked)

contourf ezpolar

semilogy hist image

stairs pareto pcolor

contour errorbar ezcontourf

1-7

1 Plots and Plotting Tools

Line
Graphs

Bar
Graphs

Area
Graphs

Direction
Graphs

Radial
Graphs

Scatter
Graphs

ezplot stem

ezcontour

Three-Dimensional Plotting Functions
The table below shows all available MATLAB 3-D and volumetric plot
functions. It includes functions that generate 3-D data (cylinder, ellipsoid,
sphere), but most plot either arrays of data or functions. If you are reading
this online, you can click any picture in the table to see the documentation
for that function. For information about and examples of using 3-D plotting
functions, see “Creating 3-D Graphs” in the 3-D Visualization documentation.

Line
Graphs

Mesh
Graphs
and Bar
Graphs

Area
Graphs

and
Constructive
Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

plot3 mesh pie3 surf quiver3 scatter3

contour3 meshc fill3 surfl comet3 coneplot

contourslicemeshz patch surfc streamslicestreamline

1-8

Figures, Plots, and Graphs

Line
Graphs

Mesh
Graphs
and Bar
Graphs

Area
Graphs

and
Constructive
Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

ezplot3 ezmesh cylinder ezsurf streamribbon

waterfall stem3 ellipsoid ezsurfc streamtube

bar3 sphere

bar3h

Choosing a Plot Type Interactively
You can interactively generate any of the plotting functions shown in the
previous tables using the Plot Selector and Plot Catalog tools:

1 Select one or more numeric workspace variables in the Workspace Browser,
the Variable Editor or the plotting tools Figure Palette.

2 Open the Plot Selector or Plot Catalog tool and scroll to the name or icon of
the type of graph you want to create. Alternatively, right-click a selected
variable and choose Plot Catalog from the context menu. You can enter
a search term in either tool to locate a graph by function name or other
identifying information.

1-9

1 Plots and Plotting Tools

3 Click the icon to plot the selected variables.

The graph displays in the current figure, and the command that generated it
displays in the Command Window.

You can choose any type of MATLAB plot and plots from several toolboxes.
You need a license for a toolbox in order for its plot types to display in the
tools. If you select a graphics function that is not able to plot the selected
variables, the entry for that plot type turns gray and a diagnostic message
pops up when you hover over it.

For more information, see , , “Creating Plots from the Workspace Browser”,
and “Plotting Workspace Variables” on page 1-20.

1-10

Plotting Tools — Interactive Plotting

Plotting Tools — Interactive Plotting

In this section...

“What Are Plotting Tools?” on page 1-11

“Plotting Tools Interface Overview” on page 1-12

“The Figure Palette” on page 1-19

“The Plot Browser” on page 1-24

“The Property Editor” on page 1-29

“Accessing Object Properties with the Property Inspector” on page 1-30

What Are Plotting Tools?
The modular, interactive plotting environment called plotting tools enables
you to

• Create various type of graphs

• Select variables to plot directly from a workspace browser

• Easily create and manipulate subplots in the figure

• Add annotations such as arrows, lines, and text

• Set properties on graphics objects

You can open and configure plotting tools in many ways. To create a figure
with the plotting tools attached, use the plottools command. You can also
start the plotting tools from the figure toolbar by clicking the Show Plot

Tools icon .

Remove the plotting tools from a figure using the Hide Plot Tools icon .

You can display the three basic plotting tools from the View menu by
selecting Figure Palette, Plot Browser, or Property Editor .

The next section describes the individual components making up the plotting
tools.

1-11

1 Plots and Plotting Tools

Plotting Tools Interface Overview
The Plotting Tools interface includes three panels that are associated with
a figure.

• Figure Palette — Use to create and arrange subplot axes, view and plot
workspace variables, and add annotations. Display the Figure Palette
using the figurepalette command.

• Plot Browser — Use to select and control the visibility of the axes or
graphic objects plotted in the figure. You can also add data to any selected
axes by clicking the Add Data button. Display the Plot Browser using
the plotbrowser command.

• Property Editor — Use to set common properties of the selected object. You
can also open the Property Editor using the propertyeditor command. In
the Property Editor you can click theMore Properties button to display
the Property Inspector, a GUI that displays most object properties and
allows you to change any property’s value (unless it is read-only). See
“Accessing Object Properties with the Property Inspector” on page 1-30 for
details.

1-12

Plotting Tools — Interactive Plotting

Activating Plotting Tools
The following example shows the plotting tools attached to a figure containing
two subplots of lineseries data. The code to produce the graphs is

% First subplot
x = 0:pi/100:2*pi;
y1 = sin(x);
y2 = sin(x+.25);
y3 = sin(x+.5);
subplot(2,1,1);
plot(x,y1,x,y2,x,y3);
axis tight;
% Second sublot
w1 = cos(x);
w2 = cos(x+.25);
w3 = cos(x+.5);
subplot(2,1,2);
plot(x,w1,x,w2,x,w3);
axis tight;

You summon the plotting tools, either by selecting Figure Palette, Plot
Browser, and Property Editor from the figure’s View menu, or by typing

plottools

in the Command Window. Typing plottools or plottools on restores the
configuration of tools the last time you were using them; use the View menu
to show the ones you need and hide the ones you do not, and the mouse to
dock and undock them. The default configuration of plotting tools is shown
below. MATLAB preferences remember the current arrangement of plot tools
— whether they are visible or not — each time you exit; if you want to revert
to the default configuration you need to restore the arrangement shown
below manually.

1-13

1 Plots and Plotting Tools

$������!�"������������!�
	
��
������������������

)�����������
������������

)��������������!
$������!��
�������

-�	
���$������ ������
������ ��
���������������� -�	
�� $�����������

Managing Plotting Tools
Each of the plotting tools shown above can be docked or undocked from its
figure, or dismissed by clicking the x at the right end of its titlebar. If you
dismiss a tool and want it back again, you can raise it from the View menu or
by typing one of several commands. For instance, if you had undocked, and
then dismissed the figure palette, you could type either

plottools('on','figurepalette')

or

1-14

Plotting Tools — Interactive Plotting

figurepalette

Your desktop configuration might then look like this:

Figures Groups. When you activate any plot tool for a figure (or dock the
figure in the desktop), the figure becomes part of a Figures group. Figures
groups are desktop containers that you can dock in your desktop. Individual
figures are not dockable except within the Figures group container. If you
create subsequent figures, they will also dock in the Figures group, where
they can be panelled or overlapped for viewing. A row of tabs appears along
the bottom, one for each figure in the group.

When you dock a plot tool in a figure group and then dock the figure group
in the desktop, the tool is included in that section of the desktop as well,
as the following illustration shows:

1-15

1 Plots and Plotting Tools

Working with Multiple Figures. When you create a new figure and plot
into it, It is created without plotting tools enabled, even if another figure
already has them open:

figure
plot(y1,w1)

This generates a freestanding plot, like this:

1-16

Plotting Tools — Interactive Plotting

If you then open the plotting tools for the figure by clicking the Open Plotting

Tools icon , the figure docks in the figure window:

1-17

1 Plots and Plotting Tools

The new figure might seem to disappear if the Figures window is hidden, but
it will overlay the existing plot within that window (it does not replace it).
You can switch between the two figures by clicking the tabs at the bottom of
the figure area. Be aware that clicking the x on the right side of a figure’s tab
deletes that figure entirely, without asking for confirmation.

If you want to see both figures at once, use the Tiling Palette

at the upper right corner of the Figures window to arrange
the figures. For example, clicking the Left/Right tiling tool lays out the two
figures side by side:

1-18

Plotting Tools — Interactive Plotting

As the above illustrations shows, plot objects can be selected in both figures,
but only one figure has focus at a time.

The Figure Palette
The Figure Palette contains three panels. Select the panel you want to view
by clicking the respective button, which twists down the panel and exposes
its contents.

The Figure Palette enables you to perform the following tasks with these
panels:

• New Subplots — Add 2-D or 3-D axes to the figure.

• Variables — Browse and plot workspace variables.

• Annotations — Add annotations to graphs.

1-19

1 Plots and Plotting Tools

Adding Subplot Axes
The New Subplots panel enables you to create a grid of either 2-D or 3-D
axes. To display the selector, click the grid icon next to the axes type. A
subplot selector grid appears.

As you move the cursor, squares darken to indicate the layout of axes that
will be created if you release the mouse button. Click Cancel at the bottom of
the grid to leave the figure unchanged.

The picture above shows the New Subplots panel selected to display
four equally sized axes in the figure. Existing axes resize as required to
accommodate the new layout.

Plotting Workspace Variables
The Variables panel displays current workspace variables. Double-clicking
a variable in this panel opens that variable in the Variable Editor. If you
select a variable and right-click to display the context menu, you can select a
graphics function to plot the variable.

1-20

Plotting Tools — Interactive Plotting

For example, the following picture illustrates how to plot the columns of
variable Z. This is equivalent to passing a matrix to the plot function.

The context menu contains a list of possible plot types based on the variable
you select and also enables you to perform certain operation on the variable,
such as opening it in the Variable Editor, saving, copying, and so on.

The context menu items may change when you select different variables
because a particular variable might be incompatible some of the plot types.

1-21

1 Plots and Plotting Tools

Drag and Drop Plotting
You can also drag the variable directly into an axes, in which case MATLAB
selects the first appropriate plot type for that variable. If there are multiple
axes, you must first select the one you want to plot in and then drag the
variable to that axes.

In the previous example, the variable Z would be plotted using the plot
function if you were to drag it into an axes.

If the desired plotting function is not available from the context menu, you
can select the Plot Catalog item to open the Plot Catalog tool. You can also
use the Plot Selector from the Workspace Browser to create different types
of plots of selected variables.

The Plot Catalog Tool
The Plot Catalog makes using MATLAB and toolbox plotting functions easy
by eliminating the need to type their commands. You can select workspace
variables or type their names (as well as MATLAB expressions) in the
Plotted Variables text field. The tool then passes the contents of the field
as arguments to the plotting function you select. You can also enter function
handles to pass to one of the “ez...” family of plotting functions from the
Analytic Plots category.

1-22

Plotting Tools — Interactive Plotting

The following picture shows the Plot Catalog tool with the polar graphing
function selected to display the expression t,exp(-alpha*t).*sin(.5*t).

The Plot Catalog has three vertical panes. Use the left pane to select a
category of plots. The middle pane shows thumbnail plots and descriptions of
all functions in the category. Functions that MATLAB determines are unable
to plot the data display in grey and cannot be chosen. The right pane presents
the syntax description of the plotting function you choose from its function
reference page. You see the entire reference page in the Help browser, click
More Help... at the top right.

To generate a plot, click its icon on the middle pane, or click Plot or Plot in
New Figure below the right pane. The Plot Catalog assesses the arguments

1-23

1 Plots and Plotting Tools

you provide before calling the graphics function to determine if their number,
class, and size match any of the function signatures. When it detects a
mismatch, it displays diagnostics in the right pane to help you proceed.

Tip The Plot Catalog and Plot Selector can fail to diagnose some deficiencies
that prevent a graphics function from being able to plot variables or
expressions. If no plot displays, or if a plot seems to be incorrect after you
click for one, check the Command Window for warning and error messages.

The Plot Catalog has all the capabilities of the Plot Selector. To learn more
about how you can use these tools, see “Creating Plots from the Workspace
Browser”.

Adding Annotations to Graphs
The Annotations panel enables you to insert annotation objects into a plot.
To add an object, first select the object you want to add, and then click and
drag the mouse to position and size the object.

See “How to Annotate Graphs” on page 3-2 for more information about the
various types of annotation objects.

The Plot Browser
The Plot Browser provides a legend of all the graphs in the figure. It lists each
axes and the objects (lines, surfaces, etc.) used to create the graph.

For example, suppose you plot an 11-by-11 matrix z. The plot function
creates one line for each column in z.

plot(z,'DisplayName','z')

1-24

Plotting Tools — Interactive Plotting

When you set the DisplayName property, the Plot Browser indicates which
line corresponds to which column.

1-25

1 Plots and Plotting Tools

If you want to set the properties of an individual line, double-click on the
line in the Plot Browser. Its properties are displayed in the Property Editor,
which opens on the bottom of the figure.

You can select a line in the graph, and the corresponding entry in the Plot
Browser is highlighted, enabling you to see which column in the variable
produced the line.

Controlling Object Visibility
The check box next to each item in the Plot Browser controls the object’s
visibility. For example, suppose you want to plot only certain columns of data
in z, perhaps the positive values. You can deselect the columns you do not
want to display. The graph updates as you deselect each box and rescales
the axes as required.

1-26

Plotting Tools — Interactive Plotting

Deleting Objects
You can delete any selected item in the Plot Browser by selecting Delete
from the right-click context menu.

Adding Data to Axes
The Plot Browser provides the mechanism by which you add data to axes.
The procedure is as follows:

1-27

1 Plots and Plotting Tools

1 Select a 2-D or 3-D axes from the New Subplots subpanel.

2 After creating the axes, select it in the Plot Browser panel to enable the
Add Data button at the bottom of the panel.

3 Click the Add Data button to display the Add Data to Axes dialog.

The Add Data to Axes dialog enables you to select a plot type and specify the
workspace variables to pass to the plotting function. You can also specify a
MATLAB expression, which is evaluated to produce the data to plot.

Selecting Workspace Variables to Create a Graph. Suppose you want
to create a surface graph from three workspace variables defining the XData,
YData, and ZData (see the surf function for more information on this type of
graph).

In the workspace you have defined three variables, x, y, and z. To create
the graph, configure the Add Data to Axes dialog as shown in the following
picture.

1-28

Plotting Tools — Interactive Plotting

Using a MATLAB Expression to Create a Graph. The following picture
shows the Add Data to Axes dialog specifying a workspace variable x for the
plot’s x data and a MATLAB expression (x.^2 + 3*x + 5) for the y data.

You can use the default X Data value of index if you do not want to specify x
data. In this case, the y data versus the index of the y data values are plotted,
which is equivalent to calling the plot command with only one argument.

The Property Editor
The Property Editor enables you to access a subset of the selected object’s
properties. When no object is selected, the Property Editor displays the
figure’s properties.

Ways to Display the Property Editor
There are a variety of ways to display the Property Editor:

• Double-click an object when plot edit mode is enabled.

• Select an object and right-click to display its context menu, then select
Properties.

• Select Property Editor from the View menu.

• Use the propertyeditor command.

1-29

1 Plots and Plotting Tools

Changing Plot Types
You can use the property editor to change the type of plot used to display
data. For example, you can change the following line graph to a stem, stairs,
area, or bar graph by changing the Plot Type field.

Accessing Object Properties with the Property
Inspector
The Property Editor enables you to change the most commonly used object
properties. To access more object properties, use the Property Inspector.
Open the Property Inspector by clicking theMore Properties button on the
Property Editor or by typing inspect in the Command Window. The following
picture shows the Property Inspector displaying the properties of the same
lineseries object as that in the previous picture.

1-30

Plotting Tools — Interactive Plotting

The default view of properties is an alphabetic list; you can change to a tree
view by clicking the icon in the upper left corner containing plus marks. Click
the “AZ” icon to its right to return to an alphabetized list view. Properties
that contain fields, such as RGB color components, have a plus mark to
their left you can click to expose the individual values. You can change
properties that have enumerated values, such as Marker, via drop-down lists
(downward-pointing triangles on the right edge of the inspector window). The

1-31

1 Plots and Plotting Tools

following figure shows the Marker property being set to diamond using the
Property Inspector (note the tree view in which other groups of properties
have been collapsed):

There are a few properties of objects that the Property Inspector does not
show, for example Parent and Children. For complete descriptions of the
properties of graphics objects, use the Handle Graphics Property Browser.

1-32

../infotool/hgprop/doc_frame.html

Plotting Tools — Interactive Plotting

Getting Help for Object Properties
If you are not sure what a property does or what values it can take on, you
can get a description of it from the Property Inspector. To do so, right-click
on the name or values of a property and select What’s This from the popup
menu; a Help window opens displaying the property reference page for the
current object, scrolled to the property you clicked. The following picture
shows how this works:

1-33

1 Plots and Plotting Tools

%�	��'�������������������
��������������������
�

$������!�����������

������!���
���
����'
��
����/���������
���

1-34

Plotting Tools — Interactive Plotting

Accessing Objects You Cannot Click
If you want to access the properties of light or uicontextmenus objects, you
need to get the handle using MATLAB commands, because you cannot click
on these objects.

For example, to get the handles of all light objects in the current axes, use
findobj.

h = findobj(gca,'Type','light');

Then use the inspect command to display the Property Inspector.

inspect(h) % Inspect all light objects
inspect(h(1)) % Inspect the first light object in list

1-35

1 Plots and Plotting Tools

Example — Plotting Workspace Variables

In this section...

“Identifying Workspace Data to Plot” on page 1-36

“Adding a Subplot” on page 1-39

Identifying Workspace Data to Plot
This example illustrates how to use the plotting tools to graph a workspace
variable versus an expression typed into the Add Data to Axes dialog.

Create a variable in the workspace,

x = -2*pi:pi/25:2*pi;

Use the plottools command to create a figure group with the plotting tools
attached.

plottools

Click 2D Axes in the New Subplot panel of the Figure Palette.

1-36

Example — Plotting Workspace Variables

Once the axes appears, the Add Data button on the Plot Browser is activated.

Click this button to display the Add Data to Axes dialog. When the Add Data
to Axes dialog is displayed, enter the following values:

• Select plot as the Plot Type.

• Set X Data Source to x.

• Set Y Data Source to sin(x).^2.

• Click OK to plot this data.

1-37

1 Plots and Plotting Tools

A plot of sin(x).^2 versus x appears.

Now add another plot to the same axes. Click Add Data again and specify
the data to plot:

• Set X Data Source to x.

• Set Y Data Source set to sin(x).^8.

• Click OK to plot this data.

Select the last plot (the green line) and set the Plot Type in the Property
Editor to Stem. The plot should now look like the following picture.

1-38

Example — Plotting Workspace Variables

Adding a Subplot
Add a second axes below the current axes using the New Subplots panel.
Click the right-facing arrowhead next to 2D Axes and move the mouse to
darken two squares, one on top of the other.

1-39

1 Plots and Plotting Tools

This creates a subplot axes below the existing axes. The existing axes resize
so both fit in the figure.

In the inserted axes, select its entry in the Plot Browser and then click Add
Data.

When the Add Data to Axes dialog is displayed, enter the following values:

• Set X Data Source to x.

• Set Y Data Source to sin(x).^3.

• Click OK to plot this data.

Now add another plot overlaid on the first by clicking Add Data again and
specify the data to plot:

• Set X Data Source to x.

1-40

Example — Plotting Workspace Variables

• Set Y Data Source to sin(x).^9.

• Click OK to plot this data.

Select the plot labeled sin(x).^9 under the second axes in the Plot Browser.
Set the Plot Type in the Property Editor to Area.

Setting Axis Limits
Adjust the x-axis in both axes using the Property Editor.

• Select the first axes in the Plot Browser.

• Change X Limits to -7 and 7.

Repeat these steps for the second axes.

Adding Titles and Labels
Select the first axes in the Plot Browser and set the following properties in
the Property Editor:

• Set Title to Even Powers.

• Set X Label to X.

• Click the Y Axis tab and set Y Label to Sine of X.

Select the second axes in the Plot Browser and set the following properties in
the properties panel:

• Set Title to Odd Powers.

• Set X Label to X.

• On the Y Axis tab, set Y label to Sine of X.

The Plot Browser now reflects the new axes names.

1-41

1 Plots and Plotting Tools

The following picture shows the result of these steps.

1-42

Example — Plotting Workspace Variables

Select the text of the y-axis label on the first axes (now labeled Even Powers
in the Plot Browser) and click theMore Properties button on the Property
Editor. Set the Rotation property to 0 and reposition the text by hand.

To make more space for the y-axis label, which is now in a horizontal position,
select the axes and move it to the right with the mouse.

Repeat this process for the second axes (labeled Odd Powers in the Plot
Browser).

The repositioned text label now looks like the following picture.

Note You can always undo your last change to the graph by selecting Undo
from the Edit menu.

1-43

1 Plots and Plotting Tools

Example — Choosing a Graph Type

In this section...

“Selecting a Graph from the Plot Catalog” on page 1-44

“Plotting Expressions” on page 1-48

Selecting a Graph from the Plot Catalog
This example shows how to use the Figure Palette and the Plot Catalog to
select a graph type for the data you want to plot. A surface graph is often a
useful way to visualize a function of two variables. Use the following steps
represent the example data as a surface graph (using the surf function).

1 Create three variables in your workspace (x, y, z) that represent a
mathematical function evaluated over a specified domain (-2 to 2).:

% Generate the values for x and y
[x,y] = meshgrid(-2:.2:2);
% Evaluate z as a function of x and y
z = x.*exp(-x.^2-y.^2);

2 Create a figure and attach to it the Figure Palette:

figure;
figurepalette

3 Expand the figure palette Variables panel (unless it is already open).

4 Select x, and then y, and then z in the Variables panel with shift+click to
indicate the variables to pass the plotting function.

5 Open a context menu by right-clicking any of the three variables.

1-44

Example — Choosing a Graph Type

6 Since the function you want to use, surf, does not appear in the list,
select Plot Catalog.

The Plot Catalog tool opens in a new window.

7 In the Plot Catalog tool, select the 3D Surfaces in the first column and
surf(x,y,z) from the second column, as shown here.

1-45

1 Plots and Plotting Tools

8 Create the plot by clicking either the surf icon or the Plot button.

The following graph results.

1-46

Example — Choosing a Graph Type

1-47

1 Plots and Plotting Tools

Plotting Expressions
You can enter MATLAB expressions in the Plot Catalog tool. This example
uses two variables to plot a line graph:

1 Create the following variables in the workspace.

t = 0:.01:20;
alpha =.055;

2 Plot a line graph of t versus this expression:

exp(-alpha*t).*sin(.5*t)

3 Create a figure and open the Figure Palette for it:

figure,figurepalette

4 Select the variable t and right-click to display the context menu. Select
Plot Catalog from the menu.

1-48

Example — Choosing a Graph Type

5 When the Plot Catalog tool opens, add the expression to the Plotted
Variables text field so it reads t,exp(-alpha*t).*sin(.5*t). You can
reference the variable alpha because you created it in the base workspace.

1-49

1 Plots and Plotting Tools

6 Click the thumbnail or the Plot button to create the graph. The figure
looks like the following illustration.

1-50

Example — Choosing a Graph Type

The Plot Catalog tool issued the following commands, which appear in the
Command Window:

plot(t,exp(-alpha*t).*sin(.5*t),'DisplayName',...
'exp(-alpha*t).*sin(.5*t) vs. t','XDataSource',...
't','YDataSource','exp(-alpha*t).*sin(.5*t)');
figure(gcf)

For information about working with variables in the MATLAB Workspace,
see topics in MATLAB Workspace.

1-51

1 Plots and Plotting Tools

Example — Specifying a Data Source

In this section...

“Creating the Graph” on page 1-52

“Varying the Data Source” on page 1-52

“Data Sources for Multiobject Graphs” on page 1-54

Creating the Graph
First define two variables by issuing these statements in the command
window.

t = 0:.01:20;
alpha =.055;

Next plot t versus the expression exp(-alpha*t).*sin(.5*t) using the
plot function or the plot tools.

plot(t,exp(-alpha*t).*sin(.5*t))

Varying the Data Source
Plot objects have properties that enable you to specify the source of the
data that defines the object. For example, you can specify a workspace
variable name or a MATLAB expression as the value of the XDataSource,
YDataSource, or ZDataSource property for a line in a plot (i.e., a lineseries
object). You can then use the Property Editor to change the variable name or
alter the expression, and the plot is updated to reflect the change.

After creating the graph, you can use the Property Editor to couple the plotted
line to the MATLAB expression.

1 Double-click on the plotted line to display its property panel.

2 Enter the MATLAB expression exp(-alpha*t).*cos(.5*t) in the Y Data
Source text field.

1-52

../ref/lineseriesproperties.html#XDataSource
../ref/lineseriesproperties.html#YDataSource
../ref/lineseriesproperties.html#ZDataSource

Example — Specifying a Data Source

You can now modify the expression in the Y Data Source text field and
observe how the graph changes. After changing the text, click the Refresh
Data button to update the data.

In the following picture, alpha is no longer negated, so the function grows
instead of decays. Also the period has been shortened by changing sin(.5*t)
to sin(1.5*t).

1-53

1 Plots and Plotting Tools

Data Sources for Multiobject Graphs
Suppose you create a line graph from matrix data. For example,

z = peaks;
h = plot(z,'YDataSource','z');

Because there is one lineseries object for each column of z, the following is
true.

The data source for h(1) is z(:,1).

1-54

Example — Specifying a Data Source

The data source for h(2) is z(:,2).

...

The data source for h(n) is z(:,n).

1-55

1 Plots and Plotting Tools

Example — Generating MATLAB Code to Reproduce a
Graph

In this section...

“Create a Stem Plot and Generate Code for It” on page 1-56

“Data Arguments” on page 1-58

“Limitations” on page 1-58

Create a Stem Plot and Generate Code for It
Suppose you have created the following graph.

t = 0:.2:20;
alpha =.055;
stem(t,exp(-alpha*t).*sin(5*t))

Use the Property Editor to modify the graph. Select the stemseries and
change the marker fill color to dark red, and marker edge color and line color
to dark green. Remove the axes box, and change the font size for the axes
labels to 8 to look like the following picture:

1-56

Example — Generating MATLAB® Code to Reproduce a Graph

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

You can generate code to reproduce this graph by selecting Generate code
from the File menu. MATLAB code generation software composes a function
that recreates the graph and opens the generated file in the editor.

This feature is particularly useful for capturing property settings and other
modifications you make using the plot tools GUI. The generated file appears
in an editor window and consists of the following code:

function createfigure(X1, Y1)
%CREATEFIGURE(X1,Y1)
% X1: stem x
% Y1: stem y

1-57

1 Plots and Plotting Tools

% Auto-generated by MATLAB on 24-May-2006 14:23:45

% Create figure
figure1 = figure('Color',[1,1,1]);

% Create axes
axes('Parent',figure1,'FontSize',8);
hold('all');

% Create stem
stem(X1,Y1,'MarkerFaceColor',[0.8471,0,1608 0],...

'MarkerEdgeColor',[0.1686,0.5059,0.3373],...
'Color',[0,0.498,0]);

You must save the file before exiting MATLAB if you want to use it in future
sessions.

Data Arguments
Generated functions do not store the data necessary to recreate the graph.
You must supply the data arguments t as X1 and exp(-alpha*t).*sin(5*t)
as Y1 to the function to recreate your graph. Of course, you can call the
generated function with other argument pairs too.

Limitations
Attempting to generate code for graphs containing a large number of graphics
objects (e.g., greater than 20 plotted lines) might be impractical.

1-58

Editing Plots

Editing Plots

In this section...

“Why Edit Plots?” on page 1-59

“Interactive Plot Editing” on page 1-59

“Using Functions to Edit Graphs” on page 1-59

Why Edit Plots?
MATLAB graphs are formatted to provide readability, setting the scale of
axes, including tick marks on the axes, and using color and line style to
distinguish the plots in the graph. However, if you are creating presentation
graphics, you might want to change this default formatting or add descriptive
labels, titles, legends, and other annotations to help explain your data.

You can edit the plots you create two ways:

• Using the mouse to select and edit objects interactively

• Using MATLAB functions at the command line or in a MATLAB code file

Interactive Plot Editing
If you enable plot editing mode in the MATLAB figure window, you can
perform point-and-click editing of your graph. In this mode, you can modify
the appearance of a graphics object by double-clicking on the object and
changing the values of its properties. You access the properties through a
graphical user interface called the Property Editor.

For more information about interactive editing, see “Working in Plot Edit
Mode” on page 1-61.

For information about editing object properties in plot editing mode, see “The
Property Editor” on page 1-29.

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line or if you are creating
a code file, you can use MATLAB commands to edit the graphs you create.

1-59

1 Plots and Plotting Tools

Taking advantage of the MATLAB Handle Graphics® system, you can use the
set and get commands to change the properties of the objects in a graph.

Note Plot editing mode provides an alternative way to access the properties
of MATLAB graphic objects. However, you can only access a subset of object
properties through this mechanism. You might need to use a combination of
interactive editing and command-line editing to achieve the effect you desire.

1-60

Working in Plot Edit Mode

Working in Plot Edit Mode

In this section...

“Figure Windows in Plot Edit Mode” on page 1-61

“Starting Plot Edit Mode” on page 1-62

“Exiting Plot Edit Mode” on page 1-63

“Selecting Objects in a Graph” on page 1-63

“Cutting, Copying, and Pasting Plot Objects” on page 1-64

“Moving and Resizing Objects” on page 1-67

“Setting Object Properties” on page 1-68

“Undo/Redo — Eliminating Mistakes” on page 1-68

Figure Windows in Plot Edit Mode
The MATLAB figure window supports a point-and-click editing mode that you
can use to customize the appearance of your graph. This section describes how
to enter plot edit mode and perform basic editing tasks, including selecting,
cutting, copying, pasting, moving, and resizing objects and modifying other
plot properties. The following figure illustrates some capabilities of plot edit
mode.

1-61

1 Plots and Plotting Tools

0����������
���
�������������	�
�.�����.��
��������,

)����������������������������������#���,

0�������"���.��
����.��
�������
#�

���������
�����������������
	
�������+����,

��
���'�������
���+����������������,

$������
�������.���	�
��.��
�������
��+������!�������
	��
�����		�
	,

���������+���'������������������
�

����
��/�����
����'��
����/�
����
��#�

��1��	��������2,

Starting Plot Edit Mode
Before you can select objects in a figure by clicking on them, you must activate
plot editing mode. There are several ways to activate plot edit mode:

• Choose the Edit Plot option on the figure window Tools menu.

• Click the selection button in the figure window toolbar.

)������������
���
�����
����
����������#���

1-62

Working in Plot Edit Mode

• Choose an option from the Edit or Insert menu. For example, if you choose
the Axes Properties option on the Edit menu, MATLAB activates plot
edit mode and the axes appear selected.

• Run the plotedit command in the MATLAB Command Window.

• Start the plotting tools with the plottools command.

When a figure window is in plot edit mode, the Edit Plot option on the Tools
menu is checked and the selection button in the toolbar is depressed.

Exiting Plot Edit Mode
To exit plot edit mode, click the selection button or click the Edit Plot option
on the Tools menu. When plot edit mode is turned off, the selection button is
no longer depressed.

Selecting Objects in a Graph
To select an object in a graph,

1 Start plot edit mode.

2 Move the cursor over the object and click it.

Selection handles appear on the selected object.

Note When you manually select an object, its Selected property is set to
on. Handles appear regardless of the setting of its SelectionHighlight
property (which when off prevents handles from appearing outside of plot
edit mode). Plot edit mode does not consider objects selected with set (as in
set(h,'Selected','on')) to be selected, even if they have selection handles.
Programmatically selected objects therefore do not respond to actions such
as typing Delete. They can be dragged, however, because doing so selects
them manually.

Selecting Multiple Objects
To select multiple objects at the same time,

1-63

1 Plots and Plotting Tools

1 Start plot edit mode.

2 Move the cursor over an object and Shift+click to select it. Repeat for each
object you want to select.

You can perform actions on all the selected objects. For example, to remove a
textbox annotation and an arrow annotation from a graph, select the objects
and then select Delete or Cut from the Edit menu (Cut keeps a copy on the
clipboard, Delete does not).

Deselecting Objects
To deselect an object, move the cursor off the object onto the figure window
background and click the left mouse button (this deselects all selected objects
and selects the one you clicked). You can also Shift+click on a selected object
to deselect it (doing this will not deselect any other object).

Cutting, Copying, and Pasting Plot Objects
To cut an object from a graph, or copy and paste an object in a graph, perform
these steps:

1 Start plot edit mode.

2 Select the object.

3 Select the Cut, Copy, or Paste option from the Edit menu or use standard
shortcut keys for your platform.

Alternatively, with plot edit mode enabled, you can right-click on an object
and then select an editing command from the context menu associated with
the object.

Copying and Pasting Multiple Objects
When you cut or copy axes and plot objects such as lineseries or barseries
from a figure and paste them there or elsewhere, the results depend on what
you select and the type of container into which you paste the objects.

Copy and Paste Axes. The following semantics apply to copying and
pasting axes into the same or different figure:

1-64

Working in Plot Edit Mode

Select, Copy, and Paste Axes Result of Pasting Axes

Select axes Ax1 from figure Fig1,
copy and paste it into Fig2, which
has no axes.

New axes Ax2 is created in Fig2.
Ax2 inherits all properties of Ax1,
including all children. Ax1 will be
selected in Fig1; Ax2 will be selected
in Fig2.

Select axes Ax1 from figure Fig1,
copy and paste (from Edit Menu)
into Fig2, that contains axis Ax2
which is not selected.

New axes Ax3 is created in Fig2. All
children of Ax1 are copied to Ax3.
All the selected objects in Fig2 are
deselected, and the pasted axes Ax3
is selected. The selections in Fig1
are unchanged.

Select axes Ax1 from figure Fig1,
copy and paste into Ax2 in the same
or different figure.

New axis Ax3 is created having the
same properties (including position)
and children as Ax1; any selected
objects in Ax2 are deselected, and
axes Ax3 is selected. When pasting
to a new figure, selections in Fig1
will be unchanged.

Select axes Ax1 from figure Fig1,
copy and paste into same or different
axes in Fig1.

New axes Ax2 is added to Fig1, offset
from Ax1, and is the only selected
object.

Note When an axis is pasted into an existing axes, the pasted axes becomes
a peer of the existing axes and is offset slightly to visually indicate that the
paste operation was successful.

Copy and Paste Plot Objects. The following semantics apply to copying
and pasting plot objects (lines are used as examples) from one axes into the
same or different figure:

1-65

1 Plots and Plotting Tools

Select, Copy, and Paste Objects Result of Pasting Objects

Select and copy one or more lines
from axes Ax1 and paste into
selected axes Ax2 in the same or
different figure.

The lines are added to Ax2; the
pasted lines are the only selected
objects in the destination figure.

Select and copy lines from axes Ax1
in Fig1 and paste into figure Fig2,
which contains no axes or has no
axes selected.

New axes Ax2 is created in Fig2
containing the lines, which are
selected in it; Ax2 has default axes
properties.

Select and copy lines from axes Ax1
and paste into selected axes Ax2 and
Ax3.

Lines are pasted into both Ax2 and
Ax3; all the pasted lines are selected.

Select and copy lines from axes Ax1
and paste into selected axes Ax1.

Nothing is pasted, as the extra
content would be redundant.

Copy and Paste Plot Objects from Multiple Axes. The following
semantics apply to copying and pasting plot objects (lines are used as
examples) from one or more axes into the same or different figure:

Select, Copy, and Paste Objects Result of Pasting Objects

Select and copy Line1 from axes Ax1
and Line2 from axes Ax2 and paste
into axes Ax3.

Two lines are pasted into axes Ax3
and are the only selected objects
there.

Select and copy lines from axes Ax1
and axes Ax2 and paste into figure
Fig2, which contains no axes or has
no axes selected.

New axes Ax3 is created in Fig2, into
which all the lines are pasted; Ax3
has default axes properties.

Select and copy multiple lines from
Axes Ax1 and axes Ax2 and paste
into Ax1, Ax2, or some other axes.

Only those lines that did not
originate in an axes are pasted into
it, and the pasted lines are the only
selected objects.

Copy and Paste Multiple Axes and Plot Objects. The following semantics
apply to copying and pasting several axes and selected plot objects (lines are
used as examples) from one or more axes into the same or different figure:

1-66

Working in Plot Edit Mode

Select, Copy, and Paste Objects Result of Pasting Objects

Select Line1 from axes Ax1, select
axes Ax2, and paste into figure Fig2,
which contains no axes or has no
axes selected.

Ax2 and its contents is pasted as new
axes Ax3; another new axis Ax4 is
created into which the line is pasted

Select Line1 from axes Ax1, select
axes Ax2, and paste into axes Ax3.

Line1 is pasted into axes Ax3 and
axes Ax2 is pasted as new axis Ax4.

Select axes Ax1 and Line1 from Ax1,
and paste into Ax1.

New axes Ax2 is created having all
the properties of Ax1 but containing
Line1 as its only child.

Select axes Ax1 and Line1 from Ax1
in Fig1 and paste into figure Fig2,
which contains no axes or has no
axes selected.

Line1 is pasted in new axes Ax2,
and Ax1 and its children (including
Line1) is pasted as new axis Ax3.

Select axes Ax1 and Line1 from Ax1,
and paste into axes Ax2.

New axes Ax3 is created having all
the properties of Ax1 but containing
Line1 as its only child.

Copying and Pasting Annotation Objects
In plot edit mode you can copy and paste annotations such as textboxes,
textarrows, rectangles, and ellipses, in various combinations. If any such
objects happen to be pinned to their axes (see “Pinning — Attaching to a
Point in the Graph” on page 3-22), their copies are pasted unpinned. As
annotation objects are children of figures, they never create new axes when
you paste them.

Moving and Resizing Objects
To move or resize an object in a graph, perform these steps:

1 Start plot edit mode.

2 Select the object. Selection handles appear on the object When the cursor is
over the object, it turns into crossed arrows; outside the selection it reverts
to a pointer.

1-67

1 Plots and Plotting Tools

To move the object, drag it to the new location. You can also nudge it one pixel
up, down, left, or right with the appropriate arrow key on your keyboard. If
you have selected Snap to Layout Grid from the Tools menu, each keypress
makes objects move to the next grid position.

To resize the object, drag a selection handle.

You can shift-click to select multiple objects and move them as a group. Arrow
keys work well for this. However, when you resize one of several selected
objects, only that object changes size.

Note You can move text objects, but you cannot resize them (annotation
text boxes can be resized, however). You can resize axes objects, but you
can only move them by dragging their edges (or via their selection handles,
one at a time).

Setting Object Properties
In MATLAB graphics, every object in a graph supports a set of properties that
control the graph’s appearance and behavior. For example, line objects have
properties that control thickness, color, and line style.

Double-clicking on an object displays the Property Editor. To edit the
properties of the axes or figure, double-click on a region that does not contain
other objects.

See “The Property Editor” on page 1-29 for more information.

Undo/Redo — Eliminating Mistakes
The figure Edit menu contains two items that enable you to undo recent
operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting
Undo.

1-68

Working in Plot Edit Mode

For example, if you create a plot, zoom in, pan the view, and then undo the
pan operation, the menu looks as follows:

You could now undo the previous zoom operation or redo the pan operation
you just undid.

1-69

1 Plots and Plotting Tools

Saving Your Work

In this section...

“Saving a Graph in FIG-File Format” on page 1-70

“Saving to a Different Format — Exporting Figures” on page 1-71

“Printing Figures” on page 1-72

“Generating a MATLAB File to Recreate a Graph” on page 1-73

Saving a Graph in FIG-File Format

Note To save a figure in a format that is compatible with MATLAB versions
prior to 7, refer to “Plot Objects and Backward Compatibility” on page 8-22
for more information.

The MATLAB FIG-file is a binary format to which you can save figures
so that they can be opened in subsequent MATLAB sessions. The whole
figure, including graphs, graph data, annotations, data tips, menus and other
uicontrols, is saved. (The only exception is highlighting created by data
brushing.) These files have a .fig filename extension.

To save a graph in a figure file,

1 Select Save from the figure window File menu or click the Save button
on the toolbar. If this is the first time you are saving the file, the Save As
dialog box appears.

2 Make sure that the Save as type is MATLAB Figure (*.fig) on the
drop-down menu.

3 Specify the name you want to give to the figure file.

4 Click OK.

The graph is saved as a figure file (.fig), which is a binary file format used
to store figures.

1-70

Saving Your Work

You can also use the saveas command.

Use the hgsave command to create backward compatible FIG-files.

If you want to save the figure in a format that can be used by another
application, see “Saving to a Different Format — Exporting Figures” on page
1-71.

Opening a Figure File
To open a figure file, perform these steps:

1 Select Open from the File menu or click the Open button on the toolbar.

2 Select the figure file you want to open and click OK.

The figure file appears in a new figure window.

You can also use the open command.

Saving to a Different Format — Exporting Figures
To save a figure in a format that can be used by another application, such as
the standard graphics file formats TIFF or EPS, perform these steps:

1 Select Export Setup from the File menu. This dialog provides options
you can specify for the output file, such as the figure size, fonts, line size
and style, and output format.

2 Select Export from the Export Setup dialog. A standard Save As dialog
appears.

3 Select the graphic format from the list of formats in the Save as type
drop-down menu. This selects the format of the exported file and adds the
standard filename extension given to files of that type.

4 Enter the name you want to give the file, less the extension.

5 Click Save.

1-71

1 Plots and Plotting Tools

Note Whenever you specify a format for saving a figure with the Save As
menu item , that file format is used again the next time you save that figure
or a new one. If you do not want to save in the previously-used format, use
Save As and be sure to set the Save as type drop-down menu to the kind of
file you want to write. However, saving a figure with the saveas function and
a format does not change the Save as type setting in the GUI.

Copying a Figure to the Clipboard
On Microsoft® systems, you can also copy a figure to the clipboard and then
paste it into another application:

1 Select Copy Options from the Edit menu. The Copying Options page of
the Preferences dialog box appears.

2 Complete the fields on the Copying Options page and click OK.

3 Select Copy Figure from the Edit menu.

The figure is copied to the Windows clipboard. You can then paste the
figure from the Windows clipboard into a file in another application.

Printing Figures
Before printing a figure,

1 Select Print Preview from the Filemenu to set printing options, including
plot size and position, and paper size and orientation.

The Print Preview dialog box opens.

2 Make changes in the dialog box. Changes you can make are arranged by
tabs on the left-hand pane. If you want the printed output to match the
annotated plot you see on the screen exactly,

a On the Layout tab, click Auto (Actual Size, Centered).

b On the Advanced tab, click Keep screen limits and ticks.

For information about other options for print preview, click the Help
button in the dialog box.

1-72

Saving Your Work

To print a figure, select Print from the figure window File menu and
complete the Print dialog box that appears.

You can also use the print command.

Generating a MATLAB File to Recreate a Graph
You can generate a MATLAB file from a graph, which you can then use to
regenerate the graph. This approach is a useful way to generate MATLAB
code for work you have performed with the plotting tools. To use this option,

1 Select Generate code from the File menu.

The generated code displays in the MATLAB Editor.

2 Save the file using Save As from the Editor File menu.

Running the Saved File
Most of the generated files require you to pass in data as arguments. The file
assumes you are using the same data originally used to create the graph.

Comments at the beginning of the file state the type of data expected. For
example, the following statements illustrate a case where three input vectors
are required.

function createplot(X1, Y1, Y2)
%CREATEPLOT(X1,Y1,Y2)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data

See “Example — Generating MATLAB Code to Reproduce a Graph” on page
1-56 for another example.

1-73

1 Plots and Plotting Tools

1-74

2

Data Exploration Tools

• “Ways to Explore Graphical Data” on page 2-2

• “Data Cursor — Displaying Data Values Interactively” on page 2-10

• “Enlarging the View” on page 2-25

• “Panning — Shifting Your View of the Graph” on page 2-29

• “Rotate 3D — Interactive Rotation of 3-D Views” on page 2-31

2 Data Exploration Tools

Ways to Explore Graphical Data

In this section...

“Introduction” on page 2-2

“Types of Tools” on page 2-2

“Customizing Data Exploration Tools” on page 2-3

Introduction
After determining what type of graph best represents your data, you can
further enhance the visual display of information using the tools discussed in
this section. These tools enable you to explore data interactively, eliminating
the need to set the plethora of graphics properties required to achieve the
same results using MATLAB commands.

Once you have achieved the desired results, you can then generate the
MATLAB code necessary to reproduce the graph you created interactively.
See “Example — Generating MATLAB Code to Reproduce a Graph” on page
1-56 for more information.

Types of Tools
See the following sections for information on specific tools.

• “Data Cursor — Displaying Data Values Interactively” on page 2-10

• “Enlarging the View” on page 2-25

• “Panning — Shifting Your View of the Graph” on page 2-29

• “Rotate 3D — Interactive Rotation of 3-D Views” on page 2-31

• Camera Toolbar — Interacting with 3-D Views

You can also explore graphs visually with data brushing and linking:

• Data brushing lets you “paint” observations on a graph to select them for
special treatment, such as

- Extracting them into new variables

2-2

Ways to Explore Graphical Data

- Replacing them with constant or NaN values

- Deleting them

• Data linking connects graphs with the workspace variables they display,
updating graphs when variables change

Brushing and linking work together across plots. When multiple graphs or
subplots display the same variables, linking the graphs and brushing any of
them causes the same data to also highlight on other linked graphs. The
highlighting also appears on the selected rows of data when the variables are
opened in the Variable Editor. For details, see “Marking Up Graphs with
Data Brushing” and “Making Graphs Responsive with Data Linking” in the
Data Analysis documentation.

You can perform numerical data analysis directly on graphs with curve fitting
and time series tools; see

• “Regression Analysis”

• “Interactive Fitting”

• “Time Series Tools”

These and other topics are covered in the “Data Processing” section of the
Data Analysis documentation. You can also use the Curve Fitting Toolbox™
cftool if you have installed that toolbox.

Customizing Data Exploration Tools
Most of the data exploration tools place you in amode in which mouse gestures
and clicks control a figure’s content. You can customize behavior to control
what happens in a mode by setting up a mode object for that mode. You can
find examples of how to do this in the reference pages for datacursormode,
pan, zoom , and rotate3d. You can also customize the behavior of the mouse
scroll wheel by writing a callback for the WindowScrollWheelFcn property of
a figure, as illustrated in “Example — Programming the Mouse Scroll Wheel
to Explore Graphics in Figures” on page 2-4.

2-3

../ref/figure_props.html#WindowScrollWheelFcn

2 Data Exploration Tools

Note Do not change figure callbacks within an interactive mode.
While a mode is active (when panning, zooming, etc.), you will receive a
warning if you attempt to change any of the figure’s callbacks and the
operation will not succeed. The one exception to this rule is the figure
WindowButtonMotionFcn callback, which can be changed from within a mode.
Therefore, if you are creating a GUI that updates a figure’s callbacks, the GUI
should some keep track of which interactive mode is active, if any, before
attempting to do this.

Example — Programming the Mouse Scroll Wheel to Explore
Graphics in Figures
If your mouse has a scroll wheel, you can capture events it generates to modify
views of graphics without entering an interactive mode. Create a figure
WindowScrollWheelFcn callback for this purpose. The following example
illustrates how to manage scroll wheel events. It also demonstrates how to
provide different behaviors depending on whether you left-click or right-click
before turning the scroll wheel.

Note MATLAB ignores custom scroll wheel callbacks while a figure is in an
interactive mode (pan, zoom, rotate3d, or datacursormode). This example
illustrates how to simulate an interactive mode within a scroll wheel callback.

The following example sets up a figure with an axes and an edit text
uicontrol. It generates a surface plot of the peaks function with interpolated
shading and Phong lighting, and creates a lighting object to illuminate
the surface from the left side. The code provides the figure with a
WindowScrollWheelFcn callback to respond to scroll wheel events:

function scrollwheel_ex

% Example of using a figure WindowScrollWheelFcn callback to rotate

% or zoom a graph, and change font size of an edit text uicontrol.

% Scrolling the uiciontrol text up and down is built in, and the

% myscroll callback does not change or disable that behavior.

% The callback overrides scrolling when right-clicking in the edit box.

% To toggle the text box scrolling behavior, you must click outside the

2-4

../ref/figure_props.html#WindowButtonMotionFcn
../ref/figure_props.html#WindowScrollWheelFcn

Ways to Explore Graphical Data

% text box first.

% Create a figure with an axes and a edit text box

hf = figure('Visible','off','Units','pixels','Color',[.9 .8 .7]);

set(hf,'Name','Scrollwheel Demo','NumberTitle','off')

ha = axes('Units','normalized','Position',[.025 .2, .95 .75]);

he = uicontrol('Style','edit','Min',1,'Max',100,...

'Units','normalized','Position',[.025 .025 .95, .15],...

'FontUnits','points','HorizontalAlignment','left',...

'BackgroundColor',[.95 .85 .75]);

% Plot a 3-D surfaceplot and customize its appearance

hs = surf(ha,peaks(100),'FaceColor','interp','EdgeColor','none');

colormap('hot')

axis('vis3d','off')

lighting('phong')

camlight('left')

view(25,20)

title('Left-click and scroll to rotate; right-click and scroll to zoom.')

% Add some help text to the edit text box

set(he,'String',help('peaks'))

% Install scroll wheel callback in figure

set(hf,'WindowScrollWheelFcn',{@myscroll,ha,hs,he});

set(hf,'Visible','on')

To run the example, take either of the following actions:

• Select and copy the scrollwheel_ex function and paste it into a new code
document. Then copy the following myscroll callback function and paste
it at the end of the file, after the first function. Save the program with
the file name scrollwheel_ex.m.

• If you are reading this in the Help browser, you can click here to copy
the scrollwheel_ex.m file from the documentation examples folder to
your current folder.

After you have created the program file, run the example by typing:

scrollwheel_ex

Running the main function produces a plot like the one shown here.

2-5

2 Data Exploration Tools

The figure callback,

set(hf,'WindowScrollWheelFcn',{@myscroll,ha,hs,he});

provides a function handle to a function called myscroll (which you define
in the same file). The callback function receives the handles to the axes,
surfaceplot, and uicontrol as arguments. The callback uses the axes and
uicontrol handles to determine which object (if any) your mouse pointer is
over when you move the mouse scroll wheel. The callback uses the figure
SelectionType property to identify whether you last pressed the left or right
mouse button. The callback executes the following different actions for each
button:

• When the mouse pointer is within the axes limits:

- Scrolling after a left click rotates the surface around its z-axis clockwise
or counterclockwise.

- Scrolling after a right click zooms the view of the surface in or out.

• When you click the mouse in the edit text box:

2-6

../ref/figure_props.html#SelectionType

Ways to Explore Graphical Data

- Scrolling after a left click scrolls the contents up or down. This is default
behavior for an edit text uicontrol, over which the callback has no control.

- Scrolling after a right click increases or decreases the font size of the
text in the edit text box to between 5 and 64 points while scrolling the
text. (You cannot disable edit text box scrolling.)

- Because of how edit text boxes manage focus, you need to click outside
the edit text box before attempting a different gesture. If you right-click
inside the text box and then left-click inside it, the text size still zooms
when you scroll the mouse wheel. If you do not click outside the text box
before using the scroll wheel to manipulate the surface plot, your gesture
affects both the text box and the plot.

As it does for all callbacks, MATLAB provides the first two arguments
(hfig, the handle of the object receiving the callback, and events, an event
structure). These arguments do not appear in the invocation for the callback
that you installed in the figure. The three handles you did provide (which
myscroll calls hax, hsp, and het) follow the two built-in arguments. Copy the
following callback code and paste it at the end of the file scrollwheel_ex.m:

function myscroll(hfig,events,hax,hsp,het)

% Callback for mouse scrollwheel

% hfig, hax, hsp, het: handles to figure, axes, surfaceplot, text box

% events: event structure, containing members

% VerticalScrollCount - +1 for scroll up, -1 for scroll down

% VerticalScrollAmount - lines to scroll per count (unused here)

% Called when scroll wheel is adjusted in figure hfig.

% When within axes, the action taken is either:

% Rotate left or right around Z-axis (normal click on axes)

% Zoom in or out (right-click on axes)

% The mouse pointer must be within the axes position rectangle.

% When within edit box, the action is to

% Increase or decrease font size (right-click)

% Scroll text up or down (left-click, default behavior)

cp = get(hfig,'CurrentPoint'); % Where mouse is, in figure units

seltype = get(hfig,'SelectionType'); % Identifies button pressed

unit = get(hax,'Units');

set(hax,'Units','pixels'); % Will test bounds in pixels

obj_pos = get(hax,'Position'); % Axes bounds

2-7

2 Data Exploration Tools

set(hax,'Units',unit) % Reset axes units to previous units

% Is mouse pointer within axes?

if cp(1) > obj_pos(1) && cp(1) < obj_pos(1) + obj_pos(3) && ...

cp(2) > obj_pos(2) && cp(2) < obj_pos(2) + obj_pos(4)

if strcmp(seltype,'alt')

% Zoom in or out when right button was pressed

zfac = 1.1; % Zoom in if wheel was scrolled up

if events.VerticalScrollCount < 0

zfac = 1/zfac; % Zoom out if wheel was scrolled down

end

zoom(zfac)

else % Rotate view when left button was pressed

yrot = 10; % Increment to rotate around z-axis

rotate(hsp,[0 0 1],events.VerticalScrollCount * yrot);

end

else % Is mouse pointer within the edit box?

unit = get(het,'Units');

set(het,'Units','pixels');

obj_pos = get(het,'Position');

set(het,'Units',unit)

if cp(1) > obj_pos(1) && cp(1) < obj_pos(1) + obj_pos(3) && ...

cp(2) > obj_pos(2) && cp(2) < obj_pos(2) + obj_pos(4)

if strcmp(seltype,'alt') % Right mouse button clicked

fs = get(het,'FontSize');

% Magnify or reduce font size in text box

fs = fs+events.VerticalScrollCount;

% Keep font size between 5 and 64 points

fs = min(max(fs,5),64);

set(het,'FontSize',fs)

end

% For either button, default behavior is to scroll edit text

end

end

Testing the figure CurrentPoint property against the bounds of the objects
ensures that your code always takes appropriate actions in response to scroll
wheel events. Querying the figure SelectionType property lets your code do
different things in response to left- and right-clicking and depressing modifier
keys, such as Shift, Ctrl, and Alt.

2-8

Ways to Explore Graphical Data

The following illustration displays how the callback responds to scroll wheel
motion over the axes and edit text box.

Left-Click Scrolling Behavior Right-Click Scrolling Behavior

The axes and uicontrol have normalized units, which enable you to resize the
figure. The callback first converts the units into pixels for the purpose of
determining whether the mouse pointer is over either object. The comparison
is with the CurrentPoint property of the figure, which is in pixels. After the
comparison, the callback restores units of the objects to normalized.

2-9

2 Data Exploration Tools

Data Cursor — Displaying Data Values Interactively

In this section...

“What Is a Data Cursor?” on page 2-10

“Enabling Data Cursor Mode” on page 2-11

“Display Style — Datatip or Cursor Window” on page 2-20

“Selection Style — Select Data Points or Interpolate Points on Graph” on
page 2-21

“Exporting Data Value to Workspace Variable” on page 2-22

What Is a Data Cursor?
Data cursors enable you to read data directly from a graph by displaying the
values of points you select on plotted lines, surfaces, images, and so on. You
can place multiple datatips in a plot and move them interactively. If you save
the figure, the datatips in it are saved, along with any other annotations
present.

When data cursor mode is enabled, you can

• Click on any graphics object defined by data values and display the x, y,
and z (if 3-D) values of the nearest data point.

• Interpolate the values of points between data points.

• Display multiple data tips on graphs.

• Display the data values in a cursor window that you can locate anywhere
in the figure window or as a data tip (small text box) located next to the
data point.

• Export data values as workspace variables.

• Print or export the graph with data tip or cursor window displayed for
annotation purposes.

• Edit the data tip display function to customize what information is
displayed and how it is presented

• Select a different data tip display function

2-10

Data Cursor — Displaying Data Values Interactively

Enabling Data Cursor Mode

Select the data cursor icon in the figure toolbar or select the Data
Cursor item in the Tools menu.

Once you have enabled data cursor mode, clicking the mouse on a line or other
graph object displays data values of the point clicked. Clicking elsewhere does
not create or update data tips. To place additional data tips, as the picture
below shows, see “Creating Multiple Data Tips” on page 2-17, below. In the
picture, the black squares are located at points selected by the Data Cursor
tool, and the data tips next to them display the x and y values of those points.

The illustrations below use traffic count data stored in count.dat:

load count.dat
plot(count)

2-11

2 Data Exploration Tools

Moving the Marker
You can move the marker using the arrow keys and the mouse. The up and
right arrows move the marker to data points having greater index values
in the data arrays. The down and left arrow keys move the marker to data
points having lesser index values. When you set Selection Style to Mouse
Position using the tool’s context menu, you can drag markers and position
them anywhere along a line. However, you cannot drag markers between

2-12

Data Cursor — Displaying Data Values Interactively

different line or other series on a plot. The cursor changes to crossed arrows
when it comes close enough to a marker for you to drag the datatip, as shown
below:

)������
������3
�����
�����	���������
�������
	�����������
�,

Positioning the Datatip Text Box
You can position the data tip text box in any one of four positions with respect
to the data point: upper right (the default), upper left, lower left, and lower
right.

To position the datatip, press, but do not release the mouse button while over
the datatip text box and drag it to one of the four positions, as shown below:

2-13

2 Data Exploration Tools

You can reposition a datatip, but not its text box, using the arrow keys as well.

Dragging the Datatip to Different Locations
You can drag the datatip to different locations on the graph object by clicking
down on the datatip and dragging the mouse. You can also use the arrow keys
to move the datatip.

)������
������3
�����
�����	���������
�������
	�����������
�,

2-14

Data Cursor — Displaying Data Values Interactively

Note Surface plots and 3-D bar graphs can contain NaN values. If you drag
a datatip to a location coded as NaN, the datatip will disappear (because its
coordinates become (NaN,NaN,NaN)). You can continue to drag it invisibly,
however, and it will reappear when it is over a non-NaN location. However,
if you create a new datatip while the previous current one is invisible, the
previous one cannot be retrieved.

Datatips on Image Objects
Datatips on images display the x- and y-coordinates as well as the RGB values
and a color index (for indexed images), as show below:

Datatips on 3-D Objects
You can use datatips to read data points on 3-D graphs as well. In 3-D views,
data tips display the x-, y- and z-coordinates.

2-15

2 Data Exploration Tools

−3

−2

−1

0

1

2

3 −3
−2

−1
0

1
2

3

−6

−4

−2

0

2

4

6

8

X: −0.51724
Y: −0.72414
Z: 3.6812

2-16

Data Cursor — Displaying Data Values Interactively

Creating Multiple Data Tips
Normally, there is only one datatip displayed at one time. However, you can
display multiple datatips simultaneously on a graph. This is a simple way to
annotate a number of points on a graph.

Use the following procedure to create multiple datatips.

1 Enable data cursor mode from the figure toolbar. The cursor changes to
a cross.

2 Click on the graph to insert a datatip.

3 Right-click to display the context menu. Select Create New Datatip.

4 Click on the graph to place the second datatip.

2-17

2 Data Exploration Tools

Deleting Datatips
You can remove the most recently added datatip or all datatips. When in data
cursor mode, right-click to display the context menu.

• Select Delete Current Datatip or press the Delete key to remove the
last datatip that you added.

• Select Delete All Datatips to remove all datatips.

Customizing Data Cursor Text
You can customize the text displayed by the data cursor using the
datacursormode function. Use the last two items in the Data Cursor context
menu to for this purpose:

2-18

Data Cursor — Displaying Data Values Interactively

• Edit Text Update Function— Opens an editor window to let you modify
the function currently being used to place text in datatips

• Select Text Update Function — Opens an input file dialog for you to
navigate to and select a MATLAB file to use to format text in datatips you
subsequently create

When you select Edit Text Update Function for the first time, an editor
window opens with the default text update callback, which consists of the
following code:

function output_txt = myfunction(obj,event_obj)

% Display the position of the data cursor

% obj Currently not used (empty)

% event_obj Handle to event object

% output_txt Data cursor text string (string or cell array of strings).

pos = get(event_obj,'Position');

output_txt = {['X: ',num2str(pos(1),4)],...

['Y: ',num2str(pos(2),4)]};

% If there is a Z-coordinate in the position, display it as well

if length(pos) > 2

output_txt{end+1} = ['Z: ',num2str(pos(3),4)];

end

You can modify this code to display properties of the graphics object other
than position. If you want to do so, you should first save this code to a

2-19

2 Data Exploration Tools

MATLAB file before changing it, and select that file if you want to revert to
default datatip displays during the same session.

If for example you save it as def_datatip_cb.m, and then modify the code
and save it to another file, you can then choose between the default behavior
and customized behavior by choosing Select Text Update Function from
the context menu and selecting one of the callbacks you saved.

See the Examples section of the datacursormode reference page for more
information on using data cursor objects and update functions. Also see the
example of customizing datatip text in “Using Data Tips to Explore Graphs”
in the MATLAB Data Analysis documentation.

Display Style — Datatip or Cursor Window
By default, the data cursor displays values as a datatip (small text box located
next to the data point). You can also display a single data value in a cursor
window that is anchored within the figure window. You can place multiple
datatips on a graph, which makes this display style useful for annotations.

The cursor window style is particularly useful when you want to drag the data
cursor to explore image and surface data; numeric information in the window
updates without obscuring the any of the figure’s symbology.

To use the cursor window, change the display style as follows:

1 While in data cursor mode, right-click to display the context menu.

2 Mouse over the Display Style item.

3 Select Window Inside Figure.

2-20

Data Cursor — Displaying Data Values Interactively

Note If you change the data cursor Display Style from Datatip toWindow
Inside Figure with the context menu, only the most recent data tip is
displayed; all other existing data tips are removed because the window can
display only one datatip at a time.

Selection Style — Select Data Points or Interpolate
Points on Graph
By default, the data cursor displays the values of the data point nearest to
the point you click with the mouse, and the data marker snaps to this point.
The data cursor can also determine the values of points that lie in between

2-21

2 Data Exploration Tools

the data defining the graph, by linearly interpolating between the two data
points closest to the location you click the mouse.

Enabling Interpolation Mode
If you want to be able to select any point along a graph and display its value,
use the following procedure:

1 While in data cursor mode, right-click to display the context menu.

2 Mouse over the Selection Style item.

3 Select Mouse Position.

MATLAB does not honor interpolation mode when you use the arrow keys
to move a datatip to a new location.

Exporting Data Value to Workspace Variable
You can export the values displayed with the data cursor to MATLAB
workspace variables. To do this, display the right-click context menu while in
data cursor mode and select Export Cursor Data to Workspace.

2-22

Data Cursor — Displaying Data Values Interactively

The Export Cursor Data to Workspace dialog then displays for you to name
the workspace variable.

Clicking OK creates a MATLAB structure with the specified name in your
base workspace, containing the following fields:

• Target— Handle of the graphics object containing the data point

• Position — x- and y- (and z-) coordinates of the data cursor location in
axes data units

Line and lineseries objects have an additional field:

• DataIndex — A scalar index into the data arrays that correspond to the
nearest data point. The value is the same for each array.

For example, if you saved the workspace variable as cursor_info, then you
would access the position data by referencing the Position field.

2-23

2 Data Exploration Tools

cursor_info.Position
ans =

0.4189 0.1746 0

2-24

Enlarging the View

Enlarging the View

In this section...

“Zooming in 2-D and 3-D” on page 2-25

“Zooming in 2-D Views” on page 2-25

Zooming in 2-D and 3-D
Zooming changes the magnification of a graph without changing the size of
the figure or axes. Zooming is useful to see greater detail in a small area. As
explained below, zooming behaves differently depending on whether it is
applied to a 2-D or 3-D view.

Enable zooming by clicking one of the zoom icons . Select + to zoom
in and – to zoom out.

Tip When in zoom in mode, you can use Shift+click to zoom out (i.e., press and
hold down the Shift key while clicking the mouse). You can also right-click
and zoom out or restore the plot to its original view using the context menu.

Zooming in 2-D Views
In 2-D views, click the area of the axes where you want to zoom in, or drag
the cursor to draw a box around the area you want to zoom in on. The axes is
redrawn, changing the limits to display the specified area.

For example, selecting the region of the following plot,

2-25

2 Data Exploration Tools

���	���������
����
�/�����������4��#

results in a rescaling of the axes to display only that region.

2-26

Enlarging the View

The above figure also shows the context menu when you right-click in Zoom
mode. It enables you to

• Zoom out

• Reset to the view of the graph when it was plotted (undo one or more
changes of view)

• Constrain zooming to expand only the x-axis (horizontal zoom)

• Constrain zooming to expand only the x-axis (vertical zoom)

Undoing Zoom Actions
If you want to reset the graph to its original view, right-click to display the
context menu and select Reset to Original View. You can also use the Undo
item on the Edit menu to undo each operation you performed on your graph.

2-27

2 Data Exploration Tools

Zoom Constrained to Horizontal or Vertical
In 2-D views, you can constrain zoom to operate in either the horizontal or
vertical direction. To do this, right-click to display the context menu while
in zoom mode and select the desired constraint from the Zoom Options
submenu, as illustrated in the previous figure. Horizontal zooming is useful
for exploring time series graphs that have dense intervals. Vertical zooming
can help you see minor variations in places where the YData range is small
compared to the y-axis limits.

Zooming in 3-D Views
In 3-D views, moving the cursor up or to the right zooms in, while moving the
cursor down or to the left zooms out. Both toolbar icons enable the same
behavior. 3-D zooming does not change the axes limits, as in 2-D zooming.
Instead it changes the view (specifically, the axes CameraViewAngle property)
as if you were looking through a camera with a zoom lens.

2-28

../ref/axes_props.html#CameraViewAngle

Panning — Shifting Your View of the Graph

Panning — Shifting Your View of the Graph
You can move your view of a graph up and down as well as left and right with
the pan tool. Panning is useful when you have zoomed in on a graph and want
to translate the plot to view different portions.

Click this icon on the figure toolbar to enable panning . In pan mode you
can freely move up, down, left or right, or you can constrain movement to
be vertical or horizontal only by right-clicking and selecting one of the Pan
Options from the pan tool’s context menu.

You can pan across both 2-D and 3-D views. 2-D panning has the effect
of changing the axis limits that you are viewing, but it does not change
the actual limits of the plot. For example, suppose you have a time-series
waveform that you want to zoom in on to view detail, but you also want to be
able to scan the entire plot.

2-29

2 Data Exploration Tools

0 100 200 300 400 500 600 700 800
−2000

0

2000

4000

0 100 200 300 400 500 600 700 800
−2000

0

2000

4000

540 560 580 600 620 640 660 680 700

0

500

1000

1500

3-D panning moves the axes with the object, because the 3-D view is not
aligned to the x-, y-, or z-axis. The axes limits do not change as in 2-D panning.

2-30

Rotate 3D — Interactive Rotation of 3-D Views

Rotate 3D — Interactive Rotation of 3-D Views

In this section...

“Enabling 3-D Rotation” on page 2-31

“Selecting Predefined Views” on page 2-31

“Rotation Style for Complex Graphs” on page 2-32

“Undo/Redo — Eliminating Mistakes” on page 2-34

Enabling 3-D Rotation
You can easily rotate graphs to any orientation with the mouse. Rotation
involves the reorientation of the axes and all the graphics objects it contains.
Therefore none of the data defining the graphics objects is affected by rotation;
instead the orientation of the x-, y-, and z-axes changes with respect to the
viewer.

There are three ways to enable Rotate 3D mode:

• Select Rotate 3D from the Tools menu.

• Click the Rotate 3D icon in the figure toolbar .

• Execute the rotate3d command.

Once the mode is enabled, you press and hold the mouse button while moving
the cursor to rotate the graph.

Selecting Predefined Views
When Rotate 3D mode is enabled, you can control various rotation options
from the right-click context menu.

You can rotate to predefined views on the right-click context menu:

• Reset to Original View — Reset to the default view (azimuth -37.5°,
elevation 30°).

• Go to X-Y View— View graph along the z-axis (azimuth 0°, elevation 90°).

2-31

2 Data Exploration Tools

• Go to X-Z View— View graph along the y-axis (azimuth 0°, elevation 0°).

• Go to Y-Z View— View graph along the x-axis (azimuth 90°, elevation 0°).

Rotation Style for Complex Graphs
You can select from two rotation styles on the right-click context menu’s
Rotation Options submenu:

• Plot Box Rotate— Display only the axes bounding box for faster rotation
of complex objects. Use this option if the default Continuous Rotate
style is unacceptably slow.

• Continuous Rotate— Display all graphics during rotation.

Axes Behavior During Rotation
You can select two types of behavior with respect to the aspect ratio of axes
during rotation:

• Stretch-to-Fill Axes – Default axes behavior is optimized for 2-D plots.
Graphs fit the rectangular shape of the figure.

• Fixed Aspect Ratio Axes – Maintains a fixed shape of objects in the axes
as they are rotated. Use this setting when rotating 3-D plots.

The following pictures illustrate a sphere as it is rotated with Stretch-to-Fill
Axes selected. Notice that the sphere is not round due to the selected aspect
ratio.

2-32

Rotate 3D — Interactive Rotation of 3-D Views

The next picture shows how the Fixed Aspect Ratio Axes option results in a
sphere that maintains its proper shape as it is rotated.

2-33

2 Data Exploration Tools

Undo/Redo — Eliminating Mistakes
The figure Edit menu contains two items that enable you to undo any zoom,
pan, or rotate operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting
Undo.

For example, if you create a plot, zoom in, pan the view, and then undo the
pan operation, the menu looks as follows:

2-34

Rotate 3D — Interactive Rotation of 3-D Views

You could now undo the previous zoom operation or redo the pan operation
you just undid.

2-35

2 Data Exploration Tools

2-36

3

Annotating Graphs

• “How to Annotate Graphs” on page 3-2

• “Alignment Tool — Aligning and Distributing Objects” on page 3-24

• “Adding Titles to Graphs” on page 3-33

• “Adding Axis Labels to Graphs” on page 3-38

• “Adding Text Annotations to Graphs” on page 3-45

• “Adding Arrows and Lines to Graphs” on page 3-66

• “Positioning Annotations in Data Space” on page 3-69

3 Annotating Graphs

How to Annotate Graphs

In this section...

“Graph Annotation Features” on page 3-2

“Enclosing Regions of a Graph in a Rectangle or an Ellipse” on page 3-6

“Textbox Annotations” on page 3-8

“Annotation Lines and Arrows” on page 3-12

“Adding a Colorbar to a Graph” on page 3-15

“Adding a Legend to a Graph” on page 3-19

“Pinning — Attaching to a Point in the Graph” on page 3-22

Graph Annotation Features
Annotating graphs with text and other explanatory material can improve
the graph’s ability to convey information. MATLAB graphics tools include a
variety of features for annotating graphs, with which you can

• Add text, lines and arrows, rectangles, ellipses, and other annotation
objects anywhere on the figure

• Anchor annotations to locations in data space

• Add a legend and colorbar

• Add axis labels and titles

• Edit the properties of graphics objects

The following sections provide more information.

• “Enclosing Regions of a Graph in a Rectangle or an Ellipse” on page 3-6

• “Textbox Annotations” on page 3-8

• “Annotation Lines and Arrows” on page 3-12

• “Adding a Colorbar to a Graph” on page 3-15

• “Adding a Legend to a Graph” on page 3-19

3-2

How to Annotate Graphs

• “Pinning — Attaching to a Point in the Graph” on page 3-22

Annotation Tools on the Plot Edit Toolbar
Select Plot Edit Toolbar from the View menu to display the toolbar.

)�����������
���
�����
������������!
�����
	����	���������+����,

$�
���+������
��������
�

������!�������+���
���	
#�
������

-�����������
�
��
� ��	�������

����������.���
�.
��������������

���	
����� �
�������
��
�
��������

�
���������������.�����.
�����
	����
���������

Annotation Tools on the Figure Palette
Basic annotation tools are available from the figure palette. Select Figure
Palette from the View menu to display the figure palette.

3-3

3 Annotating Graphs

Adding Annotations from the Insert Menu
Annotation features are available from the Insert menu.

3-4

How to Annotate Graphs

Command Interface
You can add annotations using MATLAB commands. The following table lists
the functions used to create annotations.

MATLAB Functions for Creating Annotations

Function Purpose

annotation Create annotations including lines, arrows, text arrows,
double arrows, text boxes, rectangles, and ellipses

xlabel,
ylabel,
zlabel

Add a text label to the respective axis

title Add a title to a graph

3-5

3 Annotating Graphs

MATLAB Functions for Creating Annotations (Continued)

Function Purpose

colorbar Add a colorbar to a graph

legend Add a legend to a graph

Removing Annotations
You can delete any annotation manually, and (if it has an explicit handle)
programmatically. See “Deleting Annotations” on page 8-26 in the MATLAB
function reference documentation for details.

Enclosing Regions of a Graph in a Rectangle or an
Ellipse
You can add a rectangle or an ellipse to draw attention to a specific region of
a graph. While either object is selected, you can move and resize it as well
as display a right-click context menu that enables you to modify behavior
and appearance.

Insert the rectangle or ellipse by clicking the corresponding button in the
plot edit toolbar

or by selecting Rectangle or Ellipse from the Insert menu. The cursor
changes to a cross indicating you can click down, drag, and release the left
mouse button to define the size and shape of the object.

Pinning Rectangles and Ellipses
You can attach the rectangle to a particular point in the figure by pinning it
to that point. There are three ways to pin the rectangle:

• Right-click the rectangle to display its context menu. Select Pin to axes
to set a pin in the default location.

3-6

How to Annotate Graphs

• Select the pin button in the figure toolbar (see “Pinning — Attaching to a
Point in the Graph” on page 3-22).

• Select Pin to axes from the Tools menu. The cursor changes to a pin; click
anywhere within the object to set a pin at that location.

By default (using the first of the options described above), pinning attaches
the lower left corner of the rectangle or ellipse to its current location in the
axes data units. You can move the point of attachment by clicking the corner
and dragging the anchor to another point. The cursor changes to a pin while
you are dragging. You cannot drag or resize a rectangle or an ellipse when
it is pinned.

Modifying the Rectangle or Ellipse from the Context Menu
Right-click the rectangle or ellipse to display its context menu.

The menu contains the following options:

3-7

3 Annotating Graphs

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
selected object.

• Pin to axes — Pin the lower left corner to the current location (you can
move the point of attachment by clicking and dragging the point while in
plot edit mode).

• Unpin — Detach the rectangle from the attachment point.

• Face Color — Fill color for the rectangle or ellipse

• Edge Color— Color of the line used to draw the rectangle or ellipse

• Line Width—Width of the line used to draw the rectangle or ellipse

• Line Style— Type of line used to draw the rectangle or ellipse

• Properties— Display the Property Editor with textbox properties.

• Show M-code— Create MATLAB code that recreates the graph.

Setting Rectangle and Ellipse Properties
You can use the Property Editor to set rectangle and ellipse properties by
selecting Properties from the context menu. The Property Editor displays
the same properties that are described above in the context menu section.

You can click theMore Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all properties for the
selected annotation object. However, you should not change some of these
properties because doing so can affect the proper functioning of the annotation
object. See the following sections for descriptions of the properties you can
change on the respective objects.

• Annotation Rectangle Properties

• Annotation Ellipse Properties

Textbox Annotations
A textbox is a rectangle that can contain multiline text. You can attach the
textbox to any point in the figure.

Insert a textbox by clicking the textbox button in the figure toolbar ,
then click where you want to place the text string. The default behavior for

3-8

../ref/annotationrectangleproperties.html
../ref/annotationellipseproperties.html

How to Annotate Graphs

textboxes is for them to resize to accommodate the amount of text you enter
into them. You can also resize the textbox after typing or click and drag the
box to a certain size when you create it (when you do this, the textbox stays
that size no matter how much text you place within it).

You can also select TextBox from the Insert menu.

Selecting Textbox Objects
The selection behavior of the textbox object differs from other annotation
objects.

• To move a textbox, click the text once to select it.

• To edit the a textbox, double-click within the box.

• To display the Property Editor with textbox properties, right-click to
display the context menu and select Properties.

Pinning the Textbox
You can attach the textbox to a particular point in the figure by pinning it to
that point. There are three ways to pin the textbox:

• Right-click within the textbox to display its context menu and select Pin
to Axes.

• Select the pin button in the figure toolbar and click a handle of the textbox
(See “Pinning — Attaching to a Point in the Graph” on page 3-22).

• Select Pin to Axes from the Tools menu.

By default, pinning attaches the lower left corner of the textbox to its location
in the axes data space. You can move the point of attachment by clicking on
the corner and dragging the anchor to another point, but you cannot drag the
textbox when it is pinned..

3-9

3 Annotating Graphs

Modifying the Textbox from the Context Menu
Right-clicking in a textbox displays its context menu, which enables you to
perform a number of operations on the textbox. In the following picture, the
textbox Background Color has been set to yellow and its Font has been set
to bold using the context menu. The textbox has its default resizing behavior,
as indicated by the checked item Fit Box to Text:

When you create a textbox without dragging it to have a specific size, Fit
Box to Text is enabled, and the box will grow or shrink as you type or edit
its text. If you drag when creating a textbox, or change its size by dragging
any of its handles in plot edit mode, Fit Box to Text is disabled, but you can
re-enable it using the context menu.

The menu contains the following options:

3-10

How to Annotate Graphs

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
textbox.

• Pin to axes — Pin the textbox to the current location (you can move the
point of attachment by clicking and dragging the textbox while in plot
edit mode).

• Unpin — Detach the textbox from the attachment point.

• Edit— Enable edit mode to change the text. You can also double-click the
textbox with the left mouse button to enable edit mode.

• Fit Box to Text— Resize textbox to accommodate text extents (or not)

• Text Color — Color of the text characters

• Background Color— Fill color of the rectangle enclosing the text

• Edge Color— Color of the textbox edge line (you must set Line Style to a
value other than none to display edges)

• Font — Type of font used for the text

• Interpreter — Interpret characters as TeX (latex or tex) or as literal
characters (none).

• Line Width — Width of the textbox edge line

• Line Style — Style of line used for the textbox edge

• Properties— Display the Property Editor with textbox properties.

• Show M-code— Create MATLAB code that recreates the graph.

Setting Textbox Properties
You can use the Property Editor to set textbox properties by selecting Show
Property Editor from the textbox context menu. It displays the same
properties that are described above in the context menu section.

You can click theMore Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all textbox properties.
However, you should not change some of these properties because doing so
can affect the proper functioning of the textbox.

See Textbox Properties in the reference documentation for a description of the
properties you can change.

3-11

../ref/annotationtextboxproperties.html

3 Annotating Graphs

Annotation Lines and Arrows
You can add lines and three types of arrows to a graph and attach them to
any point in the figure. The three types of arrows include

• Single-headed arrow

• Arrow with attached text box

• Double-headed arrow

Insert a line or arrow by clicking the appropriate button in the figure toolbar

, then click down, drag the line or arrow to the desired point,
and release the mouse. The arrowhead appears at the terminal end.

With the line or arrow selected, right-click to display the context menu, which
provides access to a number of options.

Inserting a Text Arrow
A text arrow combines a textbox with an arrow. It is useful for labeling points
on a graph. Add a text arrow to a graph by selecting the arrow button that
has a T above the arrow. Insert the text arrow and type text in the box.

Pinning the Arrowhead End
You can attach the arrowhead end to the point of interest on the graph while
letting the text box automatically reposition itself as you zoom or pan the
graph.

There are three ways to pin annotations:

• Right-click the object to display its context menu and select Pin.

• Select the pin button in the plot edit toolbar (See “Pinning — Attaching to
a Point in the Graph” on page 3-22).

• Select Pin to axes from the Tools menu.

3-12

How to Annotate Graphs

Modifying the Text Arrow from the Context Menu
Right-clicking on a text arrow displays its context menu, which enables you
to perform a number of operations on the text arrow. The context menus for
lines, arrows, and double arrows contain similar items:

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
textbox.

• Pin to axes — Pin the textbox to the current location (you can move
the point of attachment by clicking and dragging the point while in plot
edit mode).

• Unpin — Detach the textbox from the attachment point.

• Reverse Direction— Swap the arrow head and the textbox or move the
arrowhead to the other end of a plain arrow.

• Edit Text — Enable edit mode to change the text characters.

• Color — Color of the text characters, textbox edge, and arrow

• Text Background Color— Color of the rectangle enclosing the text

• Font — Type of font used for the text

3-13

3 Annotating Graphs

• Line Width — Width of the textbox edge line

• Line Style — Style of line used for the textbox edge

• Head Style — Type of arrowhead to use

• Head Size — Size of the arrowhead in points

• Properties— Display the Property Editor with textbox properties.

• Show M-code— Create MATLAB code that recreates the graph.

For example, the following illustration shows the text border enabled and the
text background color set to yellow.

3-14

How to Annotate Graphs

Setting Line and Arrow Properties
You can use the Property Editor to set line and arrow properties by selecting
Properties from the context menu. The Property Editor displays the same
properties that are described above in the context menu section.

You can click theMore Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all properties for
the selected annotation object. However, you should not change some of
these properties, because doing so can affect the proper functioning of the
annotation. See the following sections in the reference documentation for
descriptions of the properties you can change on the respective objects.

• Annotation Line Properties

• Annotation Arrow Properties

• Annotation Textarrow Properties

• Annotation Doublearrow Properties

Adding a Colorbar to a Graph
Colorbars display the current colormap and indicate the mapping from data
values to colors. The following picture shows a surface plot with 2-D contour
lines below. The colorbar at the right indicates how the z-axis data values
correspond to colors in both the surface and contour graphs.

Add a colorbar by clicking the colorbar button in the toolbar or by
selecting Colorbar from the Insert menu. When plot editing is enabled, you
can select and then move and resize the colorbar. The following commands
will also create this plot:

surfc(peaks(30))
colorbar

3-15

../ref/annotationlineproperties.html
../ref/annotationarrowproperties.html
../ref/annotationtextarrowproperties.html
../ref/annotationdoublearrowproperties.html

3 Annotating Graphs

You can also use the colorbar function to add a colorbar to a 2-D graph.

Positioning Options for Colorbars
There are a variety of ways to reposition a colorbar in the figure.

• Enable plot edit mode, then select and drag the colorbar to the desired
location.

• Right-click over the colorbar to display its context menu. Mouse over
Locations and select one of the predefined locations for the colorbar.

• Right-click over the colorbar to display its context menu and select
Properties. This displays the Property Editor, which provides a graphical
positioning device for the colorbar.

Labeling Colorbar Ticks
The default colorbar labels ticks with numeric values, which are placed at
intervals specified by the colorbar’s YTick parameter (for vertical colorbars) or
its XTick parameter (for horizontal colorbars), within upper and lower limits
specified by CData. You can override these limits by using the caxis function.

3-16

How to Annotate Graphs

You can specify strings in place of the numeric labels on colorbars. This is
useful for display of data on nominal or ordinal scales and for when you
want to interpret the meaning of entries in the colormap for the viewer. To
substitute strings for numbers along a colorbar, you define a label for each
tick location. You do this by specifying a cell array of strings for YTicklabel
(vertical colorbars) or XTickLabel (horizontal colorbars), as the examples
below show.

Example 1: Default Vertical Colorbar with YTickLabels

contourf(peaks(60));
colormap(jet(8));
hcb = colorbar('YTickLabel',...
{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'});
set(hcb,'YTickMode','manual')

Example 2: Horizontal Colorbar with XTickLabels

figure
contourf(peaks(60));

3-17

3 Annotating Graphs

colormap(jet(8));
hcb = colorbar('Location','SouthOutside','XTickLabel',...
{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'});
set(hcb,'XTickMode','manual')

In these examples, the number of colors and the number of labels were set
to be the same (8). This is typical for nominal (categorical) data, but not
necessary if you do not object to having a range of colors associated with each
label.

If ticks change, for instance if YTick (XTick) values change or the plot is
rescaled while YTickMode (XTickMode) or YTickLabelMode (XTickLabelMode)
is auto, too few or too many colorbar labels may be displayed, and can sit next
to colors they do not represent. When there are fewer labels than ticks, the
labels will cycle, with the lowest one following the highest one, etc., to give
each tick a label. This is probably not what you want, so you need to reset
YTick (XTick) values in such cases. Finding the correct values can take some
experimentation. The set functions in the above examples prevent MATLAB
from changing the number of ticks when you resize figures.

3-18

How to Annotate Graphs

Selecting a Different Colormap
If you change the figure colormap, the colorbar updates automatically. Use
one of the following methods to change the colormap.

• Right-click over the colorbar to display its context menu. Mouse over
Standard Colormaps and select from the displayed list.

• Right-click over the colorbar to display its context menu and select
Properties. Click the figure background to load the figure properties into
the Property Editor. Select the colormap from the pull-down list.

• Use the colormap function.

Modifying the Colormap
You can use a colorbar to modify the current colormap. To do this, select
Interactive Colormap Shift from the right-click context menu. In this
mode, you can left-click down on any color in the colorbar and, by dragging
the mouse, shift the color-to-data mapping.

To perform more sophisticated operations on the colormap, open the colormap
editor by selecting Open Colormap Editor from the colorbar’s context menu.
See the colormapeditor reference page for more information.

Adding a Legend to a Graph
Legends provide a key to the various data plotted on a graph. The following
picture shows the legend for a graph of several functions of a variable plotted
with lines of different colors. A graph can have only one legend, which applies
to and will symbolize all data series contained by an axes, according to their
form (e.g., lines, bars, pies, etc.). You can assign an appropriate string to
each line in the legend.

3-19

3 Annotating Graphs

Add a legend by clicking the legend button in the toolbar or by selecting
Legend from the Insert menu. When plot editing is enabled, you can select
and then move and resize the legend.

You can also use the legend function to add a legend to a graph, which gives
additional controls over appearance. You must use this command in order
to display a legend with more than 50 entries, as the legend toolbar button
is limited to displaying legends for 50 elements.

Specifying the Text
By default, the legend labels each plotted object (line, surface, etc.) with the
strings data1, data2, etc. You can change this text by double-clicking on the
text to enable edit mode. In edit mode, you can retype the text string.

You can use TeX characters in the text strings to produce symbols. You can
disable interpretation of characters as TeX sequences by selecting none from
the Interpreter submenu of the legend’s right-click context menu.

See the Table of TeX symbols in the Text Properties reference documentation
for more information.

Positioning the Legend
There are a number of ways to position the legend.

3-20

../ref/text_props.html#String

How to Annotate Graphs

• Enable plot edit mode, select the legend, and drag it to the desired location.

• Right-click the legend to display its context menu, mouse over Location,
and select one of the predefined locations from the submenu.

• Right-click the legend to display its context menu and select Properties
to display the Property Editor, which provides a graphical device for
positioning the legend.

You can also select a vertical or horizontal orientation for the legend. Use the
Orientation item in the context menu to make this selection.

Changing the Appearance of the Legend
You can specify the following legend characteristics from the context menu:

• Color — Set the background color of the legend. In addition, you can
specify the Color property as 'none' to make the legend background be
transparent.

• EdgeColor— Set the color of the line enclosing the legend box.

You can use a colorspec or an RGB color triplet to set the above two
properties.

• LineWidth — Set the width of the edge line.

• Font— Set the font, font style, and font size of the text used in the legend.

• Interpreter— Set the text Interpreter property to use TeX or plain text.

• Orientation — Orient the legend entries side by side (horizontal) or on
top of each other.

• Properties— Display the Property Editor with legend properties.

• Show M-code— Generates MATLAB code for recreating the legend.

Controlling the Appearance of Grouped Objects on a Legend
When you create a legend for groups of graphic objects such as lineseries,
barseries, or stemseries, the default legend will show an individual legend
entry for each of the graphics objects. Sometimes you might want only certain
objects to appear in a legend, to show one legend entry for the entire series,
or to show the individual children of a series (however, not all series have

3-21

3 Annotating Graphs

children; you can use the Handle Graphics Property Browser to determine
this). You can control how groups appear in the legend by setting values for
their Annotation property via MATLAB code. For information on how to
customize legends in this manner, see “Controlling Legends” on page 8-103.

You can view the values of an object’s Annotation property in the Property
Inspector, but you can not set them there; you need to use MATLAB code.

Pinning — Attaching to a Point in the Graph
Pinning is the attachment of an object to a particular point in the figure.
Pinning enables you to pan or resize the figure while keeping annotations
associated with the same point. For example, the following picture shows
regions in two different graphs associated by pinning both ends of a double
arrow.

3-22

../infotool/hgprop/doc_frame.html

How to Annotate Graphs

If you perform a horizontal zoom on the top axes (select Horizontal Zoom
from the Options submenu of the Tools menu) and then pan the graph to
show the first 120 seconds of the data, the double arrow continues to point
to the same locations on the graph.

Pinning Objects
To pin an object, first enable pinning mode by clicking the Pin to axes button

in the plot edit toolbar or selecting Pin to axes from the Tools menu.
Then click the point you want to pin.

To unpin an object, right-click to display the context menu and select Unpin.

You can pin annotation lines, arrows, rectangles, ellipses, and text boxes.

When this mode is enabled, axes, rectangle, arrows, and lines automatically
align their upper left corners to the grid. As you move or resize one of these
objects, the size or position snaps to the next grid location.

3-23

3 Annotating Graphs

Alignment Tool — Aligning and Distributing Objects

In this section...

“Alignment Tool Functionality” on page 3-24

“Example — Vertical Distribute, Horizontal Align” on page 3-25

“Align/Distribute Menu Options” on page 3-28

“Snap to Grid — Aligning Objects on a Grid” on page 3-30

Alignment Tool Functionality
The Alignment Tool enables you to position objects with respect to each
other and to adjust the spacing between selected objects. The specified
align/distribute operations apply to all components that are selected when
you click the Apply or OK buttons.

Display the Alignment Tool by clicking the Align/Distribute button or by
selecting Align Distribute Tool from the Tools menu.

3-24

Alignment Tool — Aligning and Distributing Objects

The Alignment Tool provides two types of positioning operations:

• Align — Align all selected objects to a single reference line.

• Distribute — Space all selected objects uniformly with respect to each
other.

You can align and distribute objects in the vertical and horizontal directions.
The following sections provide more information.

• “Example — Vertical Distribute, Horizontal Align” on page 3-25

• “Align/Distribute Menu Options” on page 3-28

• “Snap to Grid — Aligning Objects on a Grid” on page 3-30

Example — Vertical Distribute, Horizontal Align
This example illustrates how to align three textboxes with three corresponding
axes. In this example, the text boxes were just plunked down close to the

3-25

3 Annotating Graphs

desired position and then right aligned and distributed to have 40 pixels
between them.

The following picture shows the initial layout.

Use Shift+click to select all three textboxes and then configure the Alignment
Tool as shown in the following picture.

• Set vertical distribution to 40 pixels.

• Set horizontal alignment to right-aligned.

• Click Apply.

3-26

Alignment Tool — Aligning and Distributing Objects

3-27

3 Annotating Graphs

The following picture shows the result.

Align/Distribute Menu Options
The Tools menu contains the alignment and distribution options that are
available via the Alignment Tool.

3-28

Alignment Tool — Aligning and Distributing Objects

The Smart Align and Distribute option aligns objects into rows and
columns with equal spacing between each object. It is useful when you have a
number of objects to align that can be positioned in an m-by-n grid.

For example, the following figure contains six axes that have been placed
approximately into two columns in the figure.

0 500 1000 1500
50

100

150

200

5 10 15 20 25 30 35
−4

−2

0

2

700 750 800 700 750 800
−1

−0.5

0

0.5

1

10 20 30 40 50
0

5

10
x 10

5

−1 −0.5 0 0.5 1
2

2.5

3

3.5

4

10 20 30 40 50 60
0.4

0.6

0.8

1

To align all axes in a grid, select each axes (Shift+click each one), then select
Smart Align and Distribute from the Tools menu.

3-29

3 Annotating Graphs

The resulting alignment and distribution of the axes are shown below.

0 500 1000 1500
50

100

150

200

5 10 15 20 25 30 35
−4

−2

0

2

700 750 800 700 750 800
−1

−0.5

0

0.5

1

10 20 30 40 50
0

5

10
x 10

5

−1 −0.5 0 0.5 1
2

2.5

3

3.5

4

10 20 30 40 50 60
0.4

0.6

0.8

1

Snap to Grid — Aligning Objects on a Grid
Figures have a layout grid that can aid the hand layout of objects displayed in
the figure. You can also enable a snap-to-grid feature that forces objects to
align with the grid increments when moved.

To display the grid on the figure background, select View Layout Grid from
the Tools menu.

3-30

Alignment Tool — Aligning and Distributing Objects

To force objects to align with the grid, select Snap To Layout Grid from
the Tools menu.

To move objects in the figure, enable Plot Edit mode by selecting Edit Plot
from the Tools menu. Click to select an object and then drag it to the desired
location.

The following picture illustrates a figure with four subplots. You can select
any of the four axes and move them. All axis labels and the title move with
the axes. Annotation objects move independently of the plot axes.

3-31

3 Annotating Graphs

3-32

Adding Titles to Graphs

Adding Titles to Graphs

In this section...

“What Is a Title?” on page 3-33

“Using the Title Option on the Insert Menu” on page 3-34

“Using the Property Editor to Add a Title” on page 3-34

“Using the title Function” on page 3-35

What Is a Title?
In a MATLAB figure, a title is a text string at the top of an axes. It appears in
the figure border, not within the axes it describes. Titles typically define the
subject of the graph. The following figure shows a title, centered at its top.

0 5 10 15
0

50

100

150

200

250

300

350

Time t (Years)

P
op

ul
at

io
n

S
iz

e

Lotka−Volterra Predator−Prey Population Model

Prey

Predator

Many predators;
prey population

will decline

Few predators;
prey population
will increase

3-33

3 Annotating Graphs

Note While you can use text annotations to create a title for your graph, it is
not recommended. Titles are anchored to the top of the axes they describe;
text annotations are not. If you move or resize your axes, the title remains at
the top. Additionally, if you cut a title and then paste it back into a figure, the
title is no longer anchored to the axes.

You can add a title to a graph in several ways, described in the following
sections.

Using the Title Option on the Insert Menu
To add a title to a graph using the Insert menu,

1 Click the Insert menu in the figure menu bar and choose Title. A text
entry box opens at the top of the axes.

Note Selecting the Title option enables plot editing mode automatically.

2 Enter the text of the label.

3 When you are finished entering text, click anywhere in the figure
background to close the text entry box around the title. If you click on
another object in the figure, such as an axes or line, you close the title text
entry box and also automatically select the object you clicked.

To change the font used in the title to bold, you must edit the title. You can
edit the title as you would any other text object in a graph.

Using the Property Editor to Add a Title
To add a title to a graph using the Property Editor,

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Double-click an empty region of the axes in the graph. This starts the
Property Editor. You can also start the Property Editor by right-clicking on

3-34

Adding Titles to Graphs

the axes and selecting Show Property Editor from the context menu or
by selecting Property Editor from the View menu.

The Property Editor displays a property panel specific to axes objects.
Titles are a property of axes objects.

3 Type the text of your title in the Title text entry box.

You can change the font, font style, position, and many other aspects of the
title format.

• To move the title, select the text and drag it to the desired position.

• To edit the text, double-click the title and type new characters.

• To change the font and other text properties, select the title and right-click
to display the context menu.

Using the title Function
To add a title to a graph at the MATLAB command prompt or from a file,
use the title function.

For example, the following code adds a title to the current axes and sets the
value of the FontWeight property to bold.

title('Lotka-Volterra Predator-Prey Population Model',...
'FontWeight','bold')

3-35

3 Annotating Graphs

The following figure shows a plot with this title. It also contains a legend
and text objects.

Titles are associated with axes. This means that when you make subplots,
each axes can have a distinct title. If you create a title in this way when no
figures exist, a blank figure with an axes is generated displaying the title
you specified.

To edit a title from the MATLAB command prompt or from a file, use the set
function with the title’s handle, as follows:

title_handle = title('This is the original title');
set(title_handle,'String','This is a revised title')

3-36

Adding Titles to Graphs

You can also change title strings in plot edit mode or with the Property
Inspector. For more information, including code that generates the figure
shown here, see the example in “Creating Text Annotations with the text or
gtext Function” on page 3-46.

3-37

3 Annotating Graphs

Adding Axis Labels to Graphs

In this section...

“What Are Axis Labels?” on page 3-38

“Using the Label Options on the Insert Menu” on page 3-40

“Using the Property Editor to Add Axis Labels” on page 3-40

“Using Axis-Label Commands” on page 3-42

What Are Axis Labels?
In a MATLAB figure, an axis label is a text string aligned with the x-, y-, or
z-axis in a graph. Axis labels can help explain the meaning of the units that
each axis represents. The following figure shows axis labels for both axes,
created at the Command Line using the xlabel and ylabel functions, as
follows:

xlabel('Time (Years)')
ylabel('Population Size')

3-38

Adding Axis Labels to Graphs

This is the simplest way to add axis labels using MATLAB code, and is
described in more detail in “Using Axis-Label Commands” on page 3-42 . You
can add axis labels to a graph in other ways, as described in the following
sections.

Note Although you can use free-form text annotations to create axes labels, it
is not recommended. Axis labels are anchored to the axes they describe; text
annotations are not. If you move or resize your axes, the labels automatically
move with the axes. Additionally, if you cut a label and then paste it back into
a figure, the label is no longer anchored to the axes.

3-39

3 Annotating Graphs

Using the Label Options on the Insert Menu

1 Click the Insert menu and choose the label option that corresponds to the
axis you want to label: X Label, Y Label, or Z Label. A text entry box opens
along the axis or around an existing axis label.

Note Text editing boxes for the y- and z-axis labels are horizontal; the text
you enter is automatically rotated to align the label with the axis when you
finish entering text.

2 Enter the text of the label, or edit the text of an existing label.

3 Click anywhere else in the figure background to close the text entry box
around the label. If you click on another object in the figure, such as an
axes or line, you close the label text entry box but also automatically select
the object you clicked.

Note After you use the Insert menu to add an axis label, plot edit mode is
enabled in the figure, if it was not already enabled. You can modify axis labels
in plot edit mode by double-clicking them and typing new text.

Using the Property Editor to Add Axis Labels
To add labels to a graph using the Property Editor,

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Start the Property Editor by double-clicking on the axes in the graph. You
can also start the Property Editor by right-clicking on the axes and selecting
Properties from the context menu or by selecting Property Editor from
the View menu.

The Property Editor displays the set of property panels specific to axes objects.

3 Select the X Axis, Y Axis, or Z Axis tab, depending on which axis label you
want to add. Enter the label text in the text entry box.

3-40

Adding Axis Labels to Graphs

Rotating Axis Labels
You can rotate axis labels using the Property Editor:

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Display the Property Editor by selecting (left-clicking) the axis label you want
to rotate. Right-click over the selected text, then choose Properties from
the context menu.

3 Click theMore Properties button to display the Property Inspector.

3-41

3 Annotating Graphs

4 Select the Rotation property text field. A value of 0 degrees orients the label
in the horizontal position.

5 With the left mouse button down on the selected label, drag the text to the
desired location and release.

Using Axis-Label Commands
You can add x-, y-, and z-axis labels using the xlabel, ylabel, and zlabel
functions. For example, these statements label the axes and add a title.

3-42

Adding Axis Labels to Graphs

xlabel('t = 0 to 2\pi','FontSize',16)

ylabel('sin(t)','FontSize',16)

title('\it{Value of the Sine from Zero to Two Pi}','FontSize',16)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t = 0 to 2π

si
n(

t)

Value of the Sine from Zero to Two Pi

The labeling commands automatically position the text string appropriately.
MATLAB interprets the characters immediately following the backslash (\)
as TeX commands. These commands draw symbols such as Greek letters
and arrows.

See the text String property for a list of TeX character sequences. See also
the texlabel function for converting MATLAB expressions to TeX symbols.

3-43

../ref/text_props.html#String

3 Annotating Graphs

Rotating Axis Labels Using Commands
Axis labels are text objects that you can rotate by specifying a value for the
object’s Rotation property. The handles of the x-, y-, and z-axis labels are
stored in the axes XLabel, YLabel, and ZLabel properties respectively.

Therefore, to rotate the y-axis label so that the text is horizontal:

1 Get the handle of the text object using the axes YLabel property.

2 Set the Rotation property to 0.0 degrees.

For example, this statement rotates the text of the y-axis label on the current
axes:

set(get(gca,'YLabel'),'Rotation',0.0)

Repositioning Axis Labels
You can reposition an axis label by dragging the text.

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Select the text of the label you want to reposition (handles appear around
the text object).

3 With the left mouse button down on the selected label, drag the text to the
desired location and release.

3-44

../ref/text_props.html#Rotation
../ref/axes_props.html#XLabel
../ref/axes_props.html#YLabel
../ref/axes_props.html#ZLabel

Adding Text Annotations to Graphs

Adding Text Annotations to Graphs

In this section...

“What Are Text Annotations?” on page 3-45

“Creating Text Annotations with the text or gtext Function” on page 3-46

“Text Alignment” on page 3-51

“Example — Aligning Text” on page 3-52

“Editing Text Objects” on page 3-54

“Mathematical Symbols, Greek Letters, and TeX Characters” on page 3-54

“Using Character and Numeric Variables in Text” on page 3-58

“Example — Multiline Text” on page 3-59

“Example — Using LaTeX to Format Math Equations” on page 3-60

“Drawing Text in a Box” on page 3-64

What Are Text Annotations?
Text annotations are boxes containing text strings that you compose. The
box can have a border and a background, or be invisible. The text can be in
any installed text font, and can include TeX or LaTeX markup. You can add
free-form text annotations anywhere in a MATLAB figure to help explain your
data or bring attention to specific points in your data sets.

As the following example shows, annotating a graph manually is easy in plot
edit mode. When you enable plot editing, you can create text annotations by
selecting the appropriate kind of annotation from the Insert menu, clicking
in the graph or the figure background and then entering text. To insert
textarrow annotations, you first drag out an arrow from tail to head, then
type the text at the text cursor next to the tail,

You can also add text annotations from the command line, using the text or
gtext function. The example illustrates how to use text.

Using plot editing mode or gtext makes it easy to place a text annotation
where you want in a graph. Use the text function when you want to position

3-45

3 Annotating Graphs

a text annotation at a specific point within an axes for which you know the
coordinates.

Note Text annotations created using the text or gtext function are anchored
to the axes. Text annotations created in plot edit mode are not. If you move or
resize your axes, you will have to reposition your text annotations. For more
information, see “Positioning Annotations in Data Space” on page 3-69.

Creating Text Annotations with the text or gtext
Function
To create a text annotation using the text function, you must specify the text
and its location within the axes, providing the x- and y-coordinates in the
same Units that the graph uses (pixels, normalized, etc.).

Use the gtext function when you want to position a text annotation at a
specific point in the data space with the mouse.

The following example adds text annotation, a title, and a legend to a graph
of output from the Lotka-Volterra predator-prey population model. It also
illustrates how to create multiline text annotations using cell arrays (also see
the following section “Text in Cell Arrays” on page 3-58).

% Define initial conditions
t0 = 0;
tfinal = 15;
y0 = [20 20]';
% Simulate the differential equation
tfinal = tfinal*(1+eps);
[t,y] = ode23('lotka',[t0 tfinal],y0);
% Plot the two curves, storing handles to them
% so their DisplayNames can be set
hlines = plot(t,y);
% Compose and display two multiline text
% annotations as cell arrays
str1(1) = {'Many Predators;'};
str1(2) = {'Prey Population'};
str1(3) = {'Will Decline'};

3-46

Adding Text Annotations to Graphs

text(7,220,str1)
str2(1) = {'Few Predators;'};
str2(2) = {'Prey Population'};
str2(3) = {'Will Increase'};
text(5.5,125,str2)
% Set DisplayNames for the lines for use by the legend
set(hlines(1),'Displayname','Prey')
set(hlines(2),'Displayname','Predator')
% Center a legend at the top of the graph
legend('Location','north')
% Add a title with bold style
title('Lotka-Volterra Predator-Prey Population Model',...

'FontWeight','bold')

To connect the text with the appropriate points on the plot, draw two
annotation arrows by hand. First enter plot edit mode, either by typing

plotedit

in the Command Window or by clicking the Edit Plot icon in the figure
toolbar. (Type plotedit again or click the icon again when you want to exit
plot edit mode.)

Select Arrow from the Insert menu. Draw an arrow from each block of text
to point to the lines, as shown here.

3-47

3 Annotating Graphs

Calculating the Positions of Text Annotations
You can also calculate the positions of text annotations in a graph. The
following code adds annotations at three data points on a graph.

t=0:pi/64:2*pi;
plot(t,sin(t));
title('The Sine of 0 to 2\pi')
xlabel('t = 0 to 2\pi')
ylabel('sin(t)')

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'FontSize',16)

text(pi,sin(pi),'\leftarrowsin(t) = 0',...

3-48

Adding Text Annotations to Graphs

'FontSize',16)

text(5*pi/4,sin(5*pi/4),'sin(t) = -.707\rightarrow',...
'HorizontalAlignment','right',...
'FontSize',16)

The HorizontalAlignment of the text string 'sin(t) = -.707
\rightarrow'- is set to right to place it on the left side of the point
[5*pi/4,sin(5*pi/4)] on the graph. For more information about aligning
text annotations, see “Text Alignment” on page 3-51.

Defining Symbols. For information on using symbols in text strings, see
“Mathematical Symbols, Greek Letters, and TeX Characters” on page 3-54.

You can use text objects to annotate axes at arbitrary locations. Text is
positioned using the data units of the axes. For example, suppose you plot the
function y=Ae-αt with A = 0.25, α = 0.005, and t = 0 to 900.

3-49

3 Annotating Graphs

t = 0:900;
plot(t,0.25*exp(-0.005*t))
xlabel('Time \musec')
ylabel('Amplitude')
title('\itAe^\alpha^t')

To annotate the point where the value of t = 300, calculate the text coordinates
using the function you are plotting.

text(300,.25*exp(-0.005*300),...

title('\itAe^\alpha^t')['\bullet\leftarrow\...

fontname{times}0.25{\ite}^{-0.005{\itt}}' ...

' at {\itt} = 300'],'FontSize',14)

3-50

Adding Text Annotations to Graphs

This statement defines the text Position property as

x = 300, y = 0.25e-0.005 × 300

The default text alignment places this point to the left of the string and
centered vertically with the rectangle defined by the text Extent property.
The following section provides more information about changing the default
text alignment.

Text Alignment
The HorizontalAlignment and the VerticalAlignment properties control
the placement of the text characters with respect to the specified x-, y-, and
z-coordinates. The following diagram illustrates the options for each property
and the corresponding placement of the text.

The default alignment is

• HorizontalAlignment = 'left'

• VerticalAlignment = 'middle'

3-51

../ref/text_props.html#Position
../ref/text_props.html#HorizontalAlignment
../ref/text_props.html#VerticalAlignment

3 Annotating Graphs

The text String is not placed exactly on the specified Position. For example,
the previous section showed a plot with a point annotated with text. Zooming
in on the plot enables you to see the actual positioning of the text.

The small dot is the point specified by the text Position property. The larger
dot is the bullet defined as the first character in the text String property.

Example — Aligning Text
Suppose you want to label the minimum and maximum values in a plot with
text that is anchored to these points and that displays the actual values. This
example uses the plotted data to determine the location of the text and the
values to display on the graph. One column from the peaks matrix generates
the data to plot.

Z = peaks;
h = plot(Z(:,33));

The first step is to find the indices of the minimum and maximum values to
determine the coordinates needed to position the text at these points (get,
find). Then create the string by concatenating the values with a description
of what the values are.

x = get(h,'XData'); % Get the plotted data
y = get(h,'YData');
imin = find(min(y) == y); % Find the index of the min and max
imax = find(max(y) == y);
text(x(imin),y(imin),[' Minimum = ',num2str(y(imin))],...
'VerticalAlignment','middle',...

3-52

../ref/text_props.html#String
../ref/text_props.html#Position

Adding Text Annotations to Graphs

'HorizontalAlignment','left',...
'FontSize',14)

text(x(imax),y(imax),['Maximum = ',num2str(y(imax))],...
'VerticalAlignment','bottom',...
'HorizontalAlignment','right',...
'FontSize',14)

The text function positions the string relative to the point specified by the
coordinates, in accordance with the settings of the alignment properties. For
the minimum value, the string appears to the right of the text position point;
for the maximum value the string appears above and to the left of the text
position point. The text always remains in the plane of the computer screen,
regardless of the view.

3-53

3 Annotating Graphs

Editing Text Objects
You can edit any of the text labels or annotations in a graph:

1 Start plot edit mode.

2 Double-click the string, or right-click the string and select Edit from the
context menu.

An editing bar (|) appears next to the text.

3 Make any changes to the text.

4 Click anywhere outside the text edit box to end text editing.

Note To create special characters in text, such as Greek letters or
mathematical symbols, use TeX sequences. See the text string property for a
table of characters you can use. If you create special characters by using the
Font dialog box (available via text objects’ context menus, and also found in
the Property Editor) and selecting the Symbol font family, you cannot edit
that text object using MATLAB commands.

Mathematical Symbols, Greek Letters, and TeX
Characters
You can include mathematical symbols and Greek letters in text using
TeX-style character sequences. This section describes how to construct a
TeX character sequence.

Two Levels of MATLAB TeX Support
There are two levels of TeX support, controlled by the text Interpreter
property:

• 'tex' — Support for a subset of TeX markup

• 'latex' — Support for TeX and LaTeX markup

If you do not want the characters interpreted as TeX markup, then set the
interpreter property to 'none'.

3-54

../ref/text_props.html#String
../ref/text_props.html#Interpreter

Adding Text Annotations to Graphs

Available Symbols and Greek Letters
For a list of symbols and the character sequences used to define them, see the
table of available TeX characters in the Text Properties reference page.

In general, you can define text that includes symbols and Greek letters using
the text function, assigning the character sequence to the String property
of text objects. You can also include these character sequences in the string
arguments of the title, xlabel, ylabel, and zlabel functions.

Example — Using a Mathematical Expression to Title a Graph
This example uses TeX character sequences to create graph labels. The
following statements add a title and x- and y-axis labels to an existing graph.

title('{\itAe}^{-\alpha\itt}sin\beta{\itt} \alpha<<\beta')
xlabel('Time \musec.')
ylabel('Amplitude')

3-55

../ref/text_props.html#String
../ref/text_props.html#String

3 Annotating Graphs

The backslash character (\) precedes all TeX character sequences. Looking at
the string defining the title illustrates how to use these characters.

Controlling the Interpretation of TeX Characters
The text Interpreter property controls the interpretation of TeX characters.
If you set this property to none, MATLAB interprets the special characters
literally.

Specifying Text Color in TeX Strings
Use the \color modifier to change the color of characters following it from the
previous color (which is black by default). Syntax is:

• \color{colorname} for the eight basic named colors (red, green, yellow,
magenta, blue, black, white), and plus the four Simulink® colors (gray,
darkGreen, orange, and lightBlue)

Note that short names (one-letter abbreviations) for colors are not
supported by the \color modifier.

• \color[rgb]{r g b} to specify an RGB triplet with values between 0 and
1 as a cell array

For example,

text(.1,.5,['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

3-56

../ref/text_props.html#Interpreter

Adding Text Annotations to Graphs

Specifying Subscript and Superscript Characters
The subscript character “_” and the superscript character “^” modify the
character or substring defined in braces immediately following.

To print the special characters used to define the TeX strings when
Interpreter is tex, prefix them with the backslash “\” character: \\, \{,
\} _, \^.

See the text reference page for more information.

When Interpreter is set to none, no characters in the String are interpreted,
and all are displayed when the text is drawn.

When Interpreter is set to latex, MATLAB provides a complete LaTeX
interpreter for text objects. See the Interpreter property for more
information.

3-57

../ref/text_props.html#Interpreter

3 Annotating Graphs

Using Character and Numeric Variables in Text
Any string variable is a valid specification for the text String property. This
section illustrates how to use matrix, cell array, and numeric variables as
arguments to the text function.

Text in Character Arrays
For example, each row of the matrix PersonalData contains specific
information about a person, padding all but the longest row with a space so
that each has the same number of columns).

PersonalData = ['Jack Straw ';'489 Main St';'Wichita KS '];

To display the data, index into the desired row.

text(.3,.5,['Name: ',PersonalData(1,:)])
text(.3,.45,['Address: ',PersonalData(2,:)])
text(.3,.4,['City and State: ',PersonalData(3,:)])

Text in Cell Arrays
Using a cell array enables you to create multiline text with a single text
object. Each cell does not need to be the same number of characters. For
example, the following statements,

key(1)={'{\itAe}^{-\alpha\itt}sin\beta{\itt}'};
key(2)={'Time in \musec'};
key(3)={'Amplitude in volts'};
text(.1,.8,key)

produce this output.

3-58

../ref/text_props.html#String

Adding Text Annotations to Graphs

Numeric Variables
You can specify numeric variables in text strings using the num2str (number
to string) function. For example, if you type on the command line

x = 21;
['Today is the ',num2str(x),'st day.']

The three separate strings concatenate into one.

Today is the 21st day.

Since the result is a valid string, you can specify it as a value for the text
String property.

text(xcoord,ycoord,['Today is the ',num2str(x),'st day.'])

Example — Multiline Text
You can input multiline text strings using cell arrays. Simply define a string
variable as a cell array with one line per cell. This example defines two cell
arrays, one used for a uicontrol and the other as text.

uistr(1) = {'Center each line in the Uicontrol'};
uistr(2) = {'Also check out the textwrap function'};
txstr(1) = {'Each cell is a quoted string'};
txstr(2) = {'You can specify how the string is aligned'};
txstr(3) = {'You can use LaTeX symbols like \pi \chi \Xi'};
txstr(4) = {'\bfOr use bold \rm\itor italic font\rm'};
txstr(5) = {'\fontname{courier}Or even change fonts'};
plot(0:6,sin(0:6))
uicontrol('Style','text','Position',[80 80 200 30],...

'String',uistr);
text(5.75,sin(2.5),txstr,'HorizontalAlignment','right')

3-59

3 Annotating Graphs

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Each cell is a quoted string
You can specify how the string is aligned

You can use LaTeX symbols like π χ Ξ
Or use bold or italic font

Or even change fonts

Example — Using LaTeX to Format Math Equations
The LaTeX markup language evolved from TeX, and has a superset of its
capabilities. LaTeX gives you more elaborate control over specifying and
styling mathematical symbols.

The following example illustrates some LaTeX typesetting capabilities when
used with the text function. Because the default interpreter is for TeX, you
need to specify the parameter-value pair 'interpreter','latex' when
typesetting equations such as are contained in the following script:

%% LaTeX Examples--Some well known equations rendered in LaTeX

%

figure('color','white','units','inches','position',[2 2 4 6.5]);

axis off

3-60

Adding Text Annotations to Graphs

%% A matrix; LaTeX code is

% \hbox {magic(3) is } \left({\matrix{ 8 & 1 & 6 \cr

% 3 & 5 & 7 \cr 4 & 9 & 2 } } \right)

h(1) = text('units','inch', 'position',[.2 5], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\hbox {magic(3) is } \left({\matrix{ 8 & 1 & 6 \cr'...

'3 & 5 & 7 \cr 4 & 9 & 2 } } \right)$$']);

%% A 2-D rotation transform; LaTeX code is

% \left[{\matrix{\cos(\phi) & -\sin(\phi) \cr

% \sin(\phi) & \cos(\phi) \cr}}

% \right] \left[\matrix{x \cr y} \right]

%

% $$ \left[{\matrix{\cos(\phi)

% & -\sin(\phi) \cr \sin(\phi) & \cos(\phi) % \cr}}

% \right] \left[\matrix{x \cr y} \right] $$

%

h(2) = text('units','inch', 'position',[.2 4], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\left[{\matrix{\cos(\phi) & -\sin(\phi) \cr'...

'\sin(\phi) & \cos(\phi) \cr}} \right]'...

'\left[\matrix{x \cr y} \right]$$']);

%% The Laplace transform; LaTeX code is

% L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt}

% $$ L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} $$

% The Initial Value Theorem for the Laplace transform:

% \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} f(t)

% $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0}

% f(t) $$

%

h(3) = text('units','inch', 'position',[.2 3], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}'...

'f(t)dt}$$']);

%% The definition of e; LaTeX code is

% e = \sum_{k=0}^\infty {1 \over {k!} }

% $$ e = \sum_{k=0}^\infty {1 \over {k!} } $$

%

3-61

3 Annotating Graphs

h(4) = text('units','inch', 'position',[.2 2], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$e = \sum_{k=0}^\infty {1 \over {k!} } $$');

%% Differential equation

% The equation for motion of a falling body with air resistance

% LaTeX code is

% m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 \cdot A

% $$ m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2

% \cdot A $$

%

h(5) = text('units','inch', 'position',[.2 1], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$m \ddot y = -m g + C_D \cdot {1 \over 2}'...

'\rho {\dot y}^2 \cdot A$$']);

%% Integral Equation; LaTeX code is

% \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}

% $$ \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} $$

%

h(6) = text('units','inch', 'position',[.2 0], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$');

3-62

Adding Text Annotations to Graphs

magic(3) is

⎛
⎝ 8 1 6

3 5 7
4 9 2

⎞
⎠

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
x
y

]

L{f(t)} ≡ F (s) =
∫ ∞

0

e−stf(t)dt

e =
∞∑

k=0

1
k!

mÿ = −mg + CD · 1
2
ρẏ2 · A

∫ ∞

0

x2e−x2
dx =

√
π

4

3-63

3 Annotating Graphs

You can find out more about the LaTeX system at The LaTeX Project Web
site, http://www.latex-project.org/.

Drawing Text in a Box
When you use the text function to display a character string, the string’s
position is defined by a rectangle called the Extent of the text. You can
display this rectangle either as a box or a filled area. For example, you can
highlight contour labels to make the text easier to read.

[x,y] = meshgrid(-1:.01:1);
z = x.*exp(-x.^2-y.^2);
[c,h]=contour(x,y,z);
h = clabel(c,h);
set(h,'BackgroundColor',[1 1 .6])

3-64

http://www.latex-project.org
../ref/text_props.html#Extent

Adding Text Annotations to Graphs

For additional features, see the following text properties:

• BackgroundColor— Color of the rectangle’s interior ('none' by default)

• EdgeColor— Color of the rectangle’s edge ('none' by default)

• LineStyle— Style of the rectangle’s edge line (first set EdgeColor)

• LineWidth—Width of the rectangle’s edge line (first set EdgeColor)

• Margin — Increase the size of the rectangle by adding a margin to the
text extent.

3-65

../ref/text_props.html#BackgroundColor
../ref/text_props.html#EdgeColor
../ref/text_props.html#LineStyle
../ref/text_props.html#LineWidth
../ref/text_props.html#Margin

3 Annotating Graphs

Adding Arrows and Lines to Graphs

In this section...

“Creating Arrows and Lines in Plot Editing Mode” on page 3-66

“Editing Arrows and Line Annotations” on page 3-67

Creating Arrows and Lines in Plot Editing Mode
With plot editing mode enabled, you can add arrows and lines anywhere in
a figure window.

You can also use arrow characters (TeX characters) to create arrows using
the text function. However, arrows created this way can only point to the
left or right, horizontally. See “Calculating the Positions of Text Annotations”
on page 3-48 for an example.

To add an arrow or line annotation to a graph,

3-66

Adding Arrows and Lines to Graphs

1 Click the Insert menu and choose the Arrow or Line option, or click the
Arrow or Line button in the Plot Edit toolbar.

The cursor changes to a cross-hair.

2 Position the cursor in the figure where you want to start the line or arrow and
press either mouse button. Hold the button down and move the mouse to
define the length and direction of the line or arrow.

3 Release the mouse button.

Note After you add an arrow or line, plot edit mode is enabled in the figure, if
it was not already enabled.

Editing Arrows and Line Annotations
You can edit the appearance of arrow and line annotations using the context
menu.

With plot editing mode enabled, right-click the arrow or line annotation to
display its context menu.

3-67

3 Annotating Graphs

You can select an annotation and then choose Show M-code to obtain a code
snippet that you can insert in a function or script to reproduce the annotation.

For more options, select Properties to display the Property Editor.

3-68

Positioning Annotations in Data Space

Positioning Annotations in Data Space

Example — Pinning Text Arrows and Ellipses
Annotation objects (arrow, doublearrow, textarrow, ellipse, line,
rectangle, and textbox) are attached to figures rather than to axes. By
default, they have normalized figure coordinates when first created. For
information about figure coordinates, see “Positioning Figures” on page 9-6.
Although this enables you to place annotation objects anywhere within a
figure, it also makes it difficult to precisely locate them on graphs so that
they relate to data space coordinates (the x,y units of plotted data). You can
position annotations in data space by transforming the data space coordinates
to normalized figure coordinates. This example shows how to do this using
a function called dsxy2figxy, which is a MATLAB file that accompanies
this documentation. (It is not a MATLAB function.) You specify data space
coordinates that an annotation object should occupy as arguments to the
function. The function returns the figure coordinates where the annotation
should be placed.

1 Make the function dsxy2figxy available to you in one of the following ways:

• Click here to open function dsxy2figxy in the MATLAB editor, and then
save it to your current folder or elsewhere on the MATLAB path.

• Execute the following command to add the folder where function
dsxy2figxy is stored to the MATLAB path.

addpath([docroot '/techdoc/creating_plots/examples'])

2 Create sine function data and make a line plot of it:

x1 = 1:.1:4*pi;
y1 = sin(x1)./sqrt(x1);
figure
plot(x1,y1)
axis tight

3 Interactively place a text arrow on the graph with ginput, which places a
cross-hair cursor on the axes for users to select point locations. This function
returns x,y coordinate pairs in data space.

3-69

3 Annotating Graphs

You can use ginput to interactively locate a text arrow annotation. When
called as follows, it accepts two clicks before exiting:

disp('Click graph to place arrow; first tail, then head:')

[axx axy] = ginput(2); % Returns list of x, list of y in data space

% Transform from data space to figure space

[arrowx,arrowy] = dsxy2figxy(gca, axx, axy);

har = annotation('textarrow',arrowx,arrowy);

content = sprintf('(%4.2f,%4.2f)',axx(2), axy(2));

% Plot anno text centered at the tail of the arrow

set(har,'String',content,'Fontsize',8)

4 Now place an ellipse on the axes

To place ellipses, you need a coordinate box (position rectangle) instead of
two x,y tuples. The function dsxy2figxy computes and returns a position
rectangle if it is called with one:

disp('Click in the axes to define the bounding box of an ellipse:')

[axx axy] = ginput(2); % Returns list of x, list of y in data space

abox(1) = min(axx); abox(2) = min(axy); % Get minimum x and y coords

3-70

Positioning Annotations in Data Space

abox(3) = abs(axx(1)-axx(2)); % Get box width

abox(4) = abs(axy(1)-axy(2)); % Get box height

% Transform from data space to figure space

[bbox] = dsxy2figxy(gca, abox);

% Plot the ellipse where you clicked

annotation('ellipse',bbox);

Here is the help for dsxy2figxy.

dsxy2figxy -- Transform point or position from data space

coordinates into normalized figure coordinates

Transforms [x y] or [x y width height] vectors from data space

coordinates to normalized figure coordinates in order to locate

annotation objects within a figure. These objects are: arrow,

doublearrow, textarrow, ellipse, line, rectangle, textbox

Syntax:

[figx figy] = dsxy2figxy([x1 y1],[x2 y2]) % GCA is used

figpos = dsxy2figxy([x1 y1 width height])

[figx figy] = dsxy2figxy(axes_handle, [x1 y1],[x2 y2])

figpos = dsxy2figxy(axes_handle, [x1 y1 width height])

3-71

3 Annotating Graphs

Usage: Obtain a position on a plot in data space and

apply this function to locate an annotation there, e.g.,

[axx axy] = ginput(2); (input is in data space)

[figx figy] = dsxy2figxy(gca, axx, axy); (now in figure space)

har = annotation('textarrow',figx,figy);

set(har,'String',['(' num2str(axx(2)) ',' num2str(axy(2)) ')'])

Copyright 2006-2009 The MathWorks, Inc.

If you resize the figure, the annotations can change shape but continue to
point to the same locations on the graph. This is because they and the figure
use normalized coordinates. However, if you shift the axes up, down, left,
or right within the figure—as you can in plot edit mode—the annotations
remain fixed in figure space and do not move with the axes. The following
section explains how to ensure that annotations stay connected to the data
with which you have associated them.

Anchoring Annotations to Data Points
To enable annotations to remain anchored when you reposition axes (for
example, when panning across the axes), you can manually pin them to
locations on data graphs:

1 Enter plot edit mode by pushing the arrow button on the figure toolbar.

2 Click the arrow you placed on the graph to select it.

3 Right-click the arrow and choose Pin to axes from the context menu.

3-72

Positioning Annotations in Data Space

The black handles of the arrow become hollow to indicate that the object
has been pinned.

4 Now when you change the position or shape of the axes, the arrow remains
attached to the graph, but the oval does not.

3-73

3 Annotating Graphs

The result of pinning annotations manually is functionally the same as
computing locations for them in data space, except it requires user interaction
and registers the annotation to the axes instead of to the figure. For more
information, see “Pinning the Arrowhead End” on page 3-12, “Pinning
Rectangles and Ellipses” on page 3-6, and “Pinning the Textbox” on page 3-9.

3-74

4

Basic Plotting Commands

• “Setting Up Figures” on page 4-2

• “Using High-Level Plotting Functions” on page 4-7

• “Line Plots of Matrix Data” on page 4-20

• “Plotting Imaginary and Complex Data” on page 4-23

• “Plotting with Two Y-Axes” on page 4-25

• “Setting Axis Parameters” on page 4-29

4 Basic Plotting Commands

Setting Up Figures

In this section...

“Creating Figure Windows” on page 4-2

“Displaying Multiple Plots per Figure” on page 4-2

“Specifying the Target Axes” on page 4-5

“Default Color Scheme” on page 4-5

Creating Figure Windows
MATLAB graphics are directed to a window that is separate from the
Command Window. This window is referred to as a figure. The characteristics
of this window are controlled by your computer’s windowing system and
MATLAB figure properties (see a description of each property). See Chapter
9, “Using Figure Properties” for some examples illustrating how to use figure
properties.

Graphics functions automatically create new MATLAB figure windows if none
currently exist. If a figure already exists, that window is used. If multiple
figures exist, one is designated as the current figure and is used (this is
generally the last figure used or the last figure you clicked the mouse in).

The figure function creates figure windows. For example,

figure

creates a new window and makes it the current figure. You can make an
existing figure current by clicking it with the mouse or by passing its handle
(the number indicated in the window title bar), as an argument to figure.

figure(h)

Displaying Multiple Plots per Figure
You can display multiple plots in the same figure window and print them on
the same piece of paper with the subplot function.

4-2

../ref/figure_props.html

Setting Up Figures

subplot(m,n,i) breaks the figure window into an m-by-n matrix of small
subplots and selects the ithe subplot for the current plot. The plots are
numbered along the top row of the figure window, then the second row, and
so forth.

For example, the following statements plot data in four different subregions
of the figure window.

t = 0:pi/20:2*pi;
[x,y] = meshgrid(t);
subplot(2,2,1)
plot(sin(t),cos(t))
axis equal
subplot(2,2,2)
z = sin(x)+cos(y);
plot(t,z)
axis([0 2*pi -2 2])
subplot(2,2,3)
z = sin(x).*cos(y);
plot(t,z)
axis([0 2*pi -1 1])
subplot(2,2,4)
z = (sin(x).^2)-(cos(y).^2);
plot(t,z)
axis([0 2*pi -1 1])

4-3

4 Basic Plotting Commands

Each subregion contains its own axes with characteristics you can control
independently of the other subregions. This example uses the axis function
to set limits and change the shape of the subplots.

See the axes, axis, and subplot functions for more information.

4-4

Setting Up Figures

Specifying the Target Axes
The current axes is the last one defined by subplot. If you want to access a
previously defined subplot, for example to add a title, you must first make
that axes current.

You can make an axes current in three ways:

• Click on the subplot with the mouse.

• Call subplot the m, n, i specifiers.

• Call subplot with the handle (identifier) of the axes.

For example,

subplot(2,2,2)
title('Top Right Plot')

adds a title to the plot in the upper right side of the figure.

You can obtain the handles of all the subplot axes with the statement

h = get(gcf,'Children');

The handles of all the axes are returned, with the most recently created one
first. That is, h(1) is subplot 224, h(2) is subplot 223, h(3) is subplot 222,
and h(4) is subplot 221. For example, to replace subplot 222 with a new plot,
first make it the current axes with

subplot(h(3))

Default Color Scheme
The default figure color scheme produces good contrast and visibility for
the various graphics functions. This scheme defines colors for the window
background, the axis background, the axis lines and labels, the colors of the
lines used for plotting and surface edges, and other properties that affect
appearance.

The colordef function enables you to select from predefined color schemes
and to modify colors individually. colordef predefines three color schemes:

4-5

4 Basic Plotting Commands

• colordef white — Sets the axis background color to white, the window
background color to gray, the colormap to jet, surface edge colors to black,
and defines appropriate values for the plotting color order and other
properties.

• colordef black — Sets the axis background color to black, the window
background color to dark gray, the colormap to jet, surface edge colors
to black, and defines appropriate values for the plotting color order and
other properties.

• colordef none— Set the colors to match that of MATLAB Version 4. This
is basically a black background with white axis lines and no grid. MATLAB
programs that are based on the Version 4 color scheme may need to call
colordef with the none option to produce the expected results.

You can examine the colordef.m file to determine what properties it sets
(enter type colordef at the MATLAB prompt).

4-6

Using High-Level Plotting Functions

Using High-Level Plotting Functions

In this section...

“Functions for Plotting Line Graphs” on page 4-7

“Programmatic Plotting” on page 4-8

“Creating Line Plots” on page 4-9

“Specifying Line Style” on page 4-11

“Colors, Line Styles, and Markers” on page 4-12

“Specifying the Color and Size of Lines” on page 4-13

“Adding Plots to an Existing Graph” on page 4-14

“Plotting Only the Data Points” on page 4-16

“Plotting Markers and Lines” on page 4-16

“Line Styles for Black and White Output” on page 4-17

“Setting Default Line Styles” on page 4-18

Functions for Plotting Line Graphs
Many types of MATLAB functions are available for displaying vector data
as line plots, as well as functions for annotating and printing these graphs.
The following table summarizes the functions that produce basic line plots.
These functions differ in the way they scale the plot’s axes. Each accepts
input in the form of vectors or matrices and automatically scales the axes to
accommodate the data.

Function Description

plot Graph 2-D data with linear scales for both axes

plot3 Graph 3-D data with linear scales for both axes

loglog Graph with logarithmic scales for both axes

semilogx Graph with a logarithmic scale for the x-axis and a
linear scale for the y-axis

4-7

4 Basic Plotting Commands

Function Description

semilogy Graph with a logarithmic scale for the y-axis and a
linear scale for the x-axis

plotyy Graph with y-tick labels on the left and right side

To view a gallery of all the high level plot functions, also with links to their
reference pages, see “Types of MATLAB Plots” on page 1-6.

Programmatic Plotting
The process of constructing a basic graph to meet your presentation graphics
requirements is outlined in the following table. The table shows seven typical
steps and some example code for each.

If you are performing analysis only, you may want to view various graphs just
to explore your data. In this case, steps 1 and 3 may be all you need. If you
are creating presentation graphics, you may want to fine-tune your graph by
positioning it on the page, setting line styles and colors, adding annotations,
and making other such improvements.

Step Typical Code

1 Prepare your data
x = 0:0.2:12;

y1 = besselj(1,x);

y2 = besselj(2,x);

y3 = besselj(3,x);

2 Select a window and position a plot region
within the window

hf = figure;

subplot(2,2,1)

3 Call elementary plotting function
h = plot(x,y1,x,y2,x,y3);

4 Select line and marker characteristics
set(h,'LineWidth',2,{'LineStyle'},{'--';':';'-.'})

set(h,{'Marker'},{'none';'o';'x' })

set(h,{'Color'},{'r';'g';'b'})

4-8

Using High-Level Plotting Functions

Step Typical Code

5 Set axis limits, tick marks, and grid lines
axis([0 12 -0.5 1])

grid on

6 Annotate the graph with axis labels, legend,
and text

xlabel('Time')

ylabel('Amplitude')

legend(h,'First','Second','Third')

title('Bessel Functions')

[y,ix] = min(y1);

text(x(ix),y,'First
Min \rightarrow',...
'HorizontalAlignment','right')

7 Export graph
set(hf,'PaperPositionMode','auto')

print -depsc -tiff -r200 myplot

Creating Line Plots
The plot function has different forms depending on the input arguments. For
example, if y is a vector, plot(y) produces a linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, the following statements create a vector of values in the range
[0, 2π] in increments of π/100 and then use this vector to evaluate the sine
function over that range. MATLAB plots the vector on the x-axis and the
value of the sine function on the y-axis.

t = 0:pi/100:2*pi;
y = sin(t);
plot(t,y)
grid on % Turn on grid lines for this plot

Appropriate axis ranges and tick mark locations are automatically selected.

4-9

4 Basic Plotting Commands

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

You can plot multiple graphs in one call to plot using x-y pairs. MATLAB
automatically cycles through a predefined list of colors (determined by the
axes ColorOrder property) to allow discrimination between sets of data.
Plotting three curves as a function of t produces

y = sin(t);
y2 = sin(t-0.25);
y3 = sin(t-0.5);
plot(t,y,t,y2,t,y3)

4-10

Using High-Level Plotting Functions

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Specifying Line Style
You can assign different line styles to each data set by passing line style
identifier strings to plot. For example,

t = 0:pi/100:2*pi;
y = sin(t);
y2 = sin(t-0.25);
y3 = sin(t-0.5);
plot(t,y,'-',t,y2,'--',t,y3,':')

4-11

4 Basic Plotting Commands

The graph shows three lines of different colors and lines styles representing
the value of the sine function with a small phase shift between each line, as
defined by y, y2, and y3. The lines are blue solid, green dashed, and red dotted.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Colors, Line Styles, and Markers
The basic plotting functions accepts character-string arguments that specify
various line styles, marker symbols, and colors for each vector plotted. In
the general form,

plot(x,y,'linestyle_marker_color')

4-12

Using High-Level Plotting Functions

linestyle_marker_color is a character string (delineated by single
quotation marks) constructed from

• A line style (e.g., dashed, dotted, etc.)

• A marker type (e.g., x, *, o, etc.)

• A predefined color specifier (c, m, y, k, r, g, b, w)

For example,

plot(x,y,':squarey')

plots a yellow dotted line and places square markers at each data point. If you
specify a marker type, but not a line style, only the marker is plotted.

The specification can consist of one or none of each specifier in any order.
For example, the string

'go--'

defines a dashed line with circular markers, both colored green.

You can also specify the size of the marker and, for markers that are closed
shapes, you can specify separately the colors of the edges and the face.

See the LineSpec discussion for more information.

Specifying the Color and Size of Lines
You can control a number of line style characteristics by specifying values
for line properties:

• LineWidth — Width of the line in units of points

• MarkerEdgeColor— Color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles)

• MarkerFaceColor— Color of the face of filled markers

• MarkerSize — Size of the marker in units of points

For example, these statements,

4-13

../ref/line_props.html#LineWidth
../ref/line_props.html#MarkerEdgeColor
../ref/line_props.html#MarkerFaceColor
../ref/line_props.html#MarkerSize

4 Basic Plotting Commands

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)

produce a graph with

• A red dashed line with square markers

• A line width of two points

• The edge of the marker colored black

• The face of the marker colored green

• The size of the marker set to 10 points

Adding Plots to an Existing Graph
You can add plots to an existing graph using the hold command. When you
set hold to on, MATLAB does not remove the existing graph; it adds the new
data to the current graph, rescaling if the new data falls outside the range
of the previous axis limits.

4-14

Using High-Level Plotting Functions

For example, these statements first create a semilogarithmic plot, then add
a linear plot.

semilogx(1:100,'+')
hold all % hold plot and cycle line colors
plot(1:3:300,1:100,'--')
hold off
grid on % Turn on grid lines for this plot

The x-axis limits are rest to accommodate the new data, but the scaling from
logarithmic to linear does not change.

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

4-15

4 Basic Plotting Commands

Plotting Only the Data Points
To plot a marker at each data point without connecting the markers with
lines, use a specification that does not contain a line style. For example, given
two vectors,

x = 0:pi/15:4*pi;
y = -exp(2*cos(x));

calling plot with only a color and marker specifier

plot(x,y,'r+')

plots a red plus sign at each data point.

See LineSpec for a list of available line styles, markers, and colors.

Plotting Markers and Lines
To plot both markers and the lines that connect them, specify a line style and
a marker type. For example, the following code plots the data as a red, solid
line and then adds circular markers with black edges at each data point.

4-16

Using High-Level Plotting Functions

x = 0:pi/15:4*pi;
y = -exp(2*cos(x));
plot(x,y,'-r',x,y,'ok')

Line Styles for Black and White Output
Line styles and markers enable you to discriminate different plots on the same
graph when color is not available. For example, the following statements
create a graph using a solid ('-*k') line with asterisk markers colored black
and a dash-dot ('-.ok') line with circular markers colored black.

x = 0:pi/15:4*pi;
y1 = -exp(2*cos(x));
y2 = -exp(2*sin(x));
plot(x,y1,'-*k',x,y2,'-.ok')

4-17

4 Basic Plotting Commands

Setting Default Line Styles
You can configure MATLAB defaults to use line styles instead of colors for
multiline plots by setting a value for the axes LineStyleOrder property using
a cell array of linespecs. For example, the command

set(0,'DefaultAxesLineStyleOrder',{'-o',':s','--+'})

defines three line styles and makes them the default for all plots.

To set the default line color to dark gray, use the statement

set(0,'DefaultAxesColorOrder',[0.4,0.4,0.4])

See ColorSpec for information on how to specify color as a three-element
vector of RGB values.

Now the plot function uses the line styles and colors you have defined as
defaults. For example, these statements create a multiline plot.

x = 0:pi/10:2*pi;
y1 = sin(x);

4-18

../ref/axes_props.html#LineStyleOrder

Using High-Level Plotting Functions

y2 = sin(x-pi/2);
y3 = sin(x-pi);
plot(x,y1,x,y2,x,y3)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The default values persist until you quit MATLAB. To remove default values
during your MATLAB session, use the reserved word remove.

set(0,'DefaultAxesLineStyleOrder','remove')
set(0,'DefaultAxesColorOrder','remove')

See “Setting Default Property Values” on page 8-54 for more information.

4-19

4 Basic Plotting Commands

Line Plots of Matrix Data
When you call the plot function with a single matrix argument

plot(Y)

One line is plotted for each column of the matrix. The x-axis is labeled with
the row index vector 1:m, where m is the number of rows in Y. For example,

Z = peaks;

returns a 49-by-49 matrix obtained by evaluating a function of two variables.
Plotting this matrix

plot(Z)

produces a graph with 49 lines.

4-20

Line Plots of Matrix Data

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8

10

In general, if plot is used with two arguments and if either X or Y has more
than one row or column, then

• If Y is a matrix, and x is a vector, plot(x,Y) successively plots the rows or
columns of Y versus vector x, using different colors or line types for each.
The row or column orientation varies depending on whether the number of
elements in x matches the number of rows in Y or the number of columns.
If Y is square, its columns are used.

• If X is a matrix and y is a vector, plot(X,y) plots each row or column of X
versus vector y. For example, plotting the peaks matrix versus the vector
1:length(peaks) rotates the previous plot.

4-21

4 Basic Plotting Commands

y = 1:length(peaks);
plot(peaks,y)

−8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

• If X and Y are both matrices of the same size, plot(X,Y) plots the columns
of X versus the columns of Y.

You can also use the plot function with multiple pairs of matrix arguments.

plot(X1,Y1,X2,Y2,...)

This statement graphs each X-Y pair, generating multiple lines. The different
pairs can be of different dimensions.

4-22

Plotting Imaginary and Complex Data

Plotting Imaginary and Complex Data
When the arguments to plot are complex (i.e., the imaginary part is nonzero),
All MATLAB graphics functions ignore the imaginary part except when plot
is given a single complex data argument. For this special case, the command
produces a plot of the real part versus the imaginary part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example, this statement plots the distribution of the eigenvalues of a
random matrix using circular markers to indicate the data points.

plot(eig(randn(20,20)),'o','MarkerSize',6)

4-23

4 Basic Plotting Commands

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

To plot more than one complex matrix, there is no shortcut; the real and
imaginary parts must be taken explicitly.

4-24

Plotting with Two Y-Axes

Plotting with Two Y-Axes

In this section...

“Introduction” on page 4-25

“Combining Linear and Logarithmic Axes” on page 4-26

Introduction
The plotyy function enables you to create plots of two data sets and use both
left and right side y-axes. You can also apply different plotting functions to
each data set. For example, you can combine a line plot with a stem plot
of the same data.

t = 0:pi/20:2*pi;
y = exp(sin(t));
plotyy(t,y,t,y,'plot','stem')

4-25

4 Basic Plotting Commands

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Combining Linear and Logarithmic Axes
You can use plotyy to apply linear and logarithmic scaling to compare two
data sets having different ranges of values.

t = 0:900; A = 1000; a = 0.005; b = 0.005;
z1 = A*exp(-a*t);
z2 = sin(b*t);
[haxes,hline1,hline2] = plotyy(t,z1,t,z2,'semilogy','plot');

This example saves the handles of the lines and axes created to adjust and
label the graph. First, label the axes whose y value ranges from 10 to 1000.

4-26

Plotting with Two Y-Axes

This is the first handle in haxes because it was specified first in the call to
plotyy. Use the axes function to make haxes(1) the current axes, which is
then the target for the ylabel function.

axes(haxes(1))
ylabel('Semilog Plot')

Now make the second axes current and call ylabel again.

axes(haxes(2))
ylabel('Linear Plot')

You can modify the characteristics of the plotted lines in a similar way. For
example, to change the line style of the second line plotted to a dashed line,
use the statement

set(hline2,'LineStyle','--')

See “Using Multiple X- and Y-Axes” on page 10-25 for an example that
employs double x- and y-axes.

4-27

4 Basic Plotting Commands

See LineSpec for additional line properties.

4-28

Setting Axis Parameters

Setting Axis Parameters

In this section...

“Axis Scaling and Ticks” on page 4-29

“Axis Limits and Ticks” on page 4-29

“Example — Specifying Ticks and Tick Labels” on page 4-32

“Setting Aspect Ratio” on page 4-34

Axis Scaling and Ticks
When you create a MATLAB graph, the axis limits and tick-mark spacing
are automatically selected based on the data plotted. However, you can also
specify your own values for axis limits and tick marks with the following
functions:

• axis — Sets values that affect the current axes object (the most recently
created or the last clicked on).

• axes — (Not axis) creates a new axes object with the specified
characteristics.

• get and set — Enable you to query and set a wide variety of properties
of existing axes.

• gca — Returns the handle (identifier) of the current axes. If there are
multiple axes in the figure window, the current axes is the last graph
created or the last graph you clicked on with the mouse. The following two
sections provide more information and examples:

See “Defining the View” in the 3-D Visualization documentation for more
extensive information on manipulating 3-D views.

Axis Limits and Ticks
By default, axis limits are chosen to encompass the range of the plotted data.
You can specify the limits manually using the axis function. Call axis with
the new limits defined as a four-element vector.

axis([xmin,xmax,ymin,ymax])

4-29

4 Basic Plotting Commands

The minimum values must be less than the maximum values.

Semiautomatic Limits
If you want to autoscale only one of a min/max set of axis limits, but you want
to specify the other, use the MATLAB variable Inf or -Inf for the autoscaled
limit. For example, this graph uses default scaling.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Compare the default limits to the following graph, which sets the maximum
limit of the x-axis, but autoscales the minimum limit.

4-30

Setting Axis Parameters

axis([-Inf 5 2 2.5])

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Axis Tick Marks
The tick-mark locations are based on the range of data so as to produce
equally spaced ticks (for linear graphs). You can specify different tick marks
by setting the axes XTick and YTick properties. Define tick marks as a vector
of increasing values. The values do not need to be equally spaced.

For example, setting the y-axis tick marks for the graph from the preceding
example,

4-31

4 Basic Plotting Commands

set(gca,'YTick',[2 2.1 2.2 2.3 2.4 2.5])

produces a graph with only the specified ticks on the y-axis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.1

2.2

2.3

2.4

2.5

If you specify tick-mark values that are outside the axis limits, they are not
displayed (that is, specifying tick marks cannot cause axis limits to change).

Example — Specifying Ticks and Tick Labels
You can adjust the axis tick-mark locations and the labels appearing at each
tick mark. For example, this plot of the sine function relabels the x-axis with
more meaningful values.

4-32

Setting Axis Parameters

x = -pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

These functions (xlabel, ylabel, title, text) add axis labels and draw an
arrow that points to the location on the graph where y = sin(-pi/4).

xlabel('-\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...

'HorizontalAlignment','left')

Setting Line Properties on an Existing Plot
Change the line color to purple by first finding the handle of the line object
created by plot and then setting its Color property. Use findobj and the
fact that the MATLAB line color default is a blue line (RGB value [0 0 1]). In
the same statement, set the LineWidth property to 2 points.

set(findobj(gca,'Type','line','Color',[0 0 1]),...
'Color',[0.5,0,0.5],'LineWidth',2)

4-33

../ref/line_props.html#Color
../ref/line_props.html#LineWidth

4 Basic Plotting Commands

The Greek symbols are created using TeX character sequences.

Setting Aspect Ratio
By default, graphs display in a rectangular axes that has the same aspect
ratio as the figure window. This makes optimum use of space available for
plotting. You exercise control over the aspect ratio with the axis function.

For example,

t = 0:pi/20:2*pi;
plot(sin(t),2*cos(t))
grid on

produces a graph with the default aspect ratio. The command

axis square

makes the x- and y-axes equal in length.

4-34

Setting Axis Parameters

The square axes has one data unit in x to equal two data units in y. If you
want the x- and y-data units to be equal, use the command

axis equal

This produces an axes that is rectangular in shape, but has equal scaling
along each axis.

If you want the axes shape to conform to the plotted data, use the tight
option in conjunction with equal.

axis equal tight

4-35

4 Basic Plotting Commands

Note In order to format aspect ratio using axis, axes must exist and contain
a plot. That is, you cannot pre-format an axes that has no actual x-, y-, or
z-limits. To overcome this, you can preformat the axes with axis and issue
the hold on command before plotting data.

4-36

5

Creating Specialized Plots

• “Bar and Area Graphs” on page 5-2

• “Pie Charts” on page 5-28

• “Histograms” on page 5-33

• “Discrete Data Graphs” on page 5-40

• “Direction and Velocity Vector Graphs” on page 5-51

• “Contour Plots” on page 5-60

• “Interactive Plotting” on page 5-84

• “Animation” on page 5-86

5 Creating Specialized Plots

Bar and Area Graphs

In this section...

“Types of Bar Graphs” on page 5-2

“Coloring 2-D Bars According to Height” on page 5-6

“Coloring 3-D Bars According to Height” on page 5-10

“Stacked Bar Graphs to Show Contributing Amounts” on page 5-12

“Specifying X-Axis Data” on page 5-14

“Overlaying Bar Graphs” on page 5-16

“Overlaying Other Plots on Bar Graphs” on page 5-17

“Area Graphs” on page 5-21

“Comparing Data Sets with Area Graphs” on page 5-24

Types of Bar Graphs
Bar and area graphs display vector or matrix data. These types of graphs
are useful for viewing results over a period of time, comparing results from
different data sets, and showing how individual elements contribute to an
aggregate amount. Bar graphs are suitable for displaying discrete data,
whereas area graphs—like line graphs—are more suitable for displaying
continuous data. This table lists the functions that plot bar and area graphs.

Function Description

bar Displays columns of m-by-n matrix as m groups of
n vertical bars.

barh Displays columns of m-by-n matrix as m groups of n
horizontal bars.

bar3 Displays columns of m-by-n matrix as m groups of
n vertical 3-D bars.

bar3h Displays columns of m-by-n matrix as m groups of n
horizontal 3-D bars.

area Displays vector data as stacked area plots.

5-2

Bar and Area Graphs

Four of these five functions display bar graphs (there is only one type of
area graph; see “Area Graphs” on page 5-21). Bar graphs differ according to
whether they plot in 2-D or 3-D and create vertical or horizontal bars, as
this table describes.

Orientation Two-Dimensional Three-Dimensional

Vertical bar bar3

Horizontal barh bar3h

Grouped Bar Graph
By default, a bar graph represents each element in a matrix as one bar.
Bars in a 2-D bar graph, created by the bar function, are distributed along
the x-axis, with each element in a column drawn at a different location. All
elements in a row are clustered around the same location on the x-axis.

For example, define Y as a simple matrix and issue the bar function in its
simplest form:

Y = [5 2 1
8 7 3
9 8 6
5 5 5
4 3 2];

bar(Y)
colormap summer
grid on

The bars are clustered together by rows and evenly distributed along the
x-axis.

5-3

5 Creating Specialized Plots

Detached 3-D Bars
The bar3 function, in its simplest form, draws each element as a separate 3-D
block, with the elements of each column distributed along the y-axis. Bars
that represent elements in the first column of the matrix are centered at
1 along the x-axis. Bars that represent elements in the last column of the
matrix are centered at size(Y,2) along the x-axis. For example,

bar3(Y)

displays five groups of three bars along the y-axis. Notice that larger bars
obscure Y(1,2) and Y(1,3).

5-4

Bar and Area Graphs

By default, bar3 draws detached bars. The statement bar3(Y,'detach')
has the same effect.

Labeling the Graph. To add axes labels and x tick marks to this bar graph,
use these statements:

xlabel('X Axis')
ylabel('Y Axis')
zlabel('Z Axis')
set(gca,'XTick',[1 2 3])

Grouped 3-D Bars
Cluster the bars from each row beside each other by specifying the argument
'group'. For example:

bar3(Y,'group')

groups the bars according to row and distributes the clusters evenly along
the y-axis.

5-5

5 Creating Specialized Plots

Coloring 2-D Bars According to Height
The bar and barh functions make all bars in a series the same color. With a
little effort, however, you can assign a desired color to each bar. The typical
approach is to associate bar colors with bar heights (y values). The following
steps describe one way to do this, first using faceted shading and then using
smooth (interpolated) shading:

1 Make up some numbers, plot a default bar plot, and assign a bichromatic
colormap:

n = 13;
Z = rand(n,1);
h = bar(Z);
colormap(summer(n));

5-6

Bar and Area Graphs

Only the first color is used to color the faces.

2 Assign a new color to each bar. bar (and barh) creates a barseries object,
which encapsulates a set of patch objects for the bars. The patches have
face-vertex syntax. First get a handle for the children, and then obtain the
vertices for the bars and the vertex color data:

ch = get(h,'Children');
fvd = get(ch,'Faces');
fvcd = get(ch,'FaceVertexCData');

3 Sort the data to obtain an index for traversing the Faces array from the
lowest to highest bar:

[zs, izs] = sortrows(Z,1);

5-7

5 Creating Specialized Plots

4 Traverse the Faces array and assign colors to the face-vertex color data as
you go:

for i = 1:n
row = izs(i);
fvcd(fvd(row,:)) = i;

end
set(ch,'FaceVertexCData',fvcd)

The code assigns colors to bars based on their YData ranks, rather than on
their YData values. This helps to distinguish bars by color, but also the code
can assign to bars that are nearly the same height a wider range of colors
than if the colors were directly mapped to YData values.

5 To make the graph more readable, you can set different colors for vertices on
the baseline and on the top, and then apply interpolated shading to change

5-8

Bar and Area Graphs

hue going up the bars. The following code colors the two vertices at the base
of each bar using the first color in the colormap, and assigns a color to the two
vertices at the top proportionally to bar height. A longer color ramp than was
used previously is needed to obtain smooth gradations of shading:

k = 128; % Number of colors in color table
colormap(summer(k)); % Expand the previous colormap
shading interp % Needed to graduate colors
for i = 1:n

color = floor(k*i/n); % Interpolate a color index
row = izs(i); % Look up actual row # in data
fvcd(fvd(row,1)) = 1; % Color base vertices 1st index
fvcd(fvd(row,4)) = 1;
fvcd(fvd(row,2)) = color; % Assign top vertices color
fvcd(fvd(row,3)) = color;

end
set(ch,'FaceVertexCData', fvcd); % Apply the vertex coloring
set(ch,'EdgeColor','k') % Give bars black borders

5-9

5 Creating Specialized Plots

Coloring 3-D Bars According to Height
By default, all bars in a series (column) have the same color. You can modify
a 3-D bar plot to color each bar according to how tall it is, but the technique
is slightly different than the one used for coloring 2-D bars. Applying a
monochromatic or bichromatic colormap to such plots helps viewers see height
distinctions more readily. Adding a colorbar can also help.

The graph reads better if you override the default behavior of bar3 to shade
the sides of the bars with contrasting hues. You can color bars by height
and make the sides match the color of the top of each bar by executing the
following code:

Z = magic(5);
h = bar3(Z);

5-10

Bar and Area Graphs

colormap cool
colorbar

You can then make the plot even more readable by interpolating colors along
the bars and giving their EdgeColor a contrasting color. The following code
accomplishes this:

% Tell handle graphics to use interpolated rather than flat shading
shading interp
% For each barseries, map its CData to its ZData
for i = 1:length(h)

zdata = get(h(i),'ZData');
set(h(i),'CData',zdata)
% Add back edge color removed by interpolating shading
set(h,'EdgeColor','k')

5-11

5 Creating Specialized Plots

end

Stacked Bar Graphs to Show Contributing Amounts
Bar graphs can show how elements in the same row of a matrix contribute to
the sum of all elements in the row. These types of bar graphs are referred to
as stacked bar graphs.

Stacked bar graphs display one bar per row of a matrix. The bars are divided
into n segments, where n is the number of columns in the matrix. For vertical
bar graphs, the height of each bar equals the sum of the elements in the row.
Each segment is equal to the value of its respective element.

5-12

Bar and Area Graphs

Redefining Y

Y = [5 1 2
8 3 7
9 6 8
5 5 5
4 2 3];

Create stacked bar graphs using the optional 'stack' argument. For
example:

bar(Y,'stack')
grid on
set(gca,'Layer','top') % display gridlines on top of graph

creates a 2-D stacked bar graph, where all elements in a row correspond to
the same x location.

5-13

5 Creating Specialized Plots

Horizontal Bar Graphs
For horizontal bar graphs, the length of each bar equals the sum of the
elements in the row. The length of each segment is equal to the value of
its respective element.

barh(Y,'stack')
grid on
set(gca,'Layer','top') % Display gridlines on top of graph

Specifying X-Axis Data
Bar graphs automatically generate x-axis values and label the x-axis tick
lines. Specify a vector of x values (or y values in the case of horizontal bar
graphs) to label the axes.

For example, given temperature data,

temp = [29 23 27 25 20 23 23 27];

obtained from samples taken every five days during a thirty-five day period,

days = 0:5:35;

5-14

Bar and Area Graphs

you can display a bar graph showing temperature measured along the y-axis
and days along the x-axis using

bar(days,temp)

These statements add labels to the x- and y-axis.

xlabel('Day')
ylabel('Temperature (^{o}C)')

Setting Y-Axis Limits
By default, the y-axis range is from 0 to 30. To focus on the temperature range
from 15 to 30, change the y-axis limits.

set(gca,'YLim',[15 30],'Layer','top')

5-15

5 Creating Specialized Plots

Overlaying Bar Graphs
In addition to grouping and stacking barseries, you can overlay several bars
that share the same baseline and y-range by making each series of bars a
different width and plotting the widest ones first. The following example
shows how to accomplish this within an axes:

1 Define x and y data; it probably helps to make spacing of x values constant:

x=[1 3 5 7 9];
y1=[10 25 90 35 16];
K=0.5;

2 Plot Series 1 in blue, and set bar width to one-half an x unit:

bar1=bar(x, y1, 'FaceColor', 'b', 'EdgeColor', 'b');
set(bar1,'BarWidth',K);

3 Define Series 2, and plot it in red over the first series:

hold on;

5-16

Bar and Area Graphs

y2=[7 38 31 50 41];
bar2=bar(x, y2, 'FaceColor', 'r', 'EdgeColor', 'r');

4 Set the width of the second series to half that of the first one:

set(bar2,'BarWidth',K/2);
hold off;
legend('series1','series2')

Overlaying Other Plots on Bar Graphs
You can overlay data on a bar graph by creating another axes in the same
position. This enables you to have an independent y-axis for the overlaid data
set in contrast to the hold on statement, which uses the same axes.

For example, consider a bioremediation experiment that breaks down
hazardous waste components into nontoxic materials. The trichloroethylene
(TCE) concentration and temperature data from this experiment are

TCE = [515 420 370 250 135 120 60 20];
temp = [29 23 27 25 20 23 23 27];

5-17

5 Creating Specialized Plots

This data was obtained from samples taken every five days during a
thirty-five day period:

days = 0:5:35;

Display a bar graph and label the x- and y-axis using the statements

bar(days,temp)
xlabel('Day')
ylabel('Temperature (^{o}C)')

Overlaying a Line Plot on the Bar Graph

1 To overlay the concentration data on the bar graph, position a second axes
at the same location as the first axes, but first save the handle of the first
axes:

h1 = gca;

2 Create the second axes at the same location before plotting the second
data set:

5-18

Bar and Area Graphs

h2 = axes('Position',get(h1,'Position'));
plot(days,TCE,'LineWidth',3)

3 To ensure that the second axes does not interfere with the first, locate the
y-axis on the right side of the axes, make the background transparent, and
set the second axes’ x tick marks to the empty matrix:

set(h2,'YAxisLocation','right','Color','none','XTickLabel',[])

4 Align the x-axis of both axes and display the grid lines on top of the bars:

set(h2,'XLim',get(h1,'XLim'),'Layer','top')

5-19

5 Creating Specialized Plots

Annotating the Graph. These statements annotate the graph:

text(11,380,'Concentration','Rotation',-55,'FontSize',16,...
'Color','Red')

ylabel('TCE Concentration (PPM)')
title('Bioremediation','FontSize',16)

5-20

Bar and Area Graphs

To print the graph, set the current figure’s PaperPositionMode to auto,
which ensures the printed output matches the display:

set(gcf,'PaperPositionMode','auto')

Area Graphs
The area function displays curves generated from a vector or from separate
columns in a matrix. area plots the values in each column of a matrix as a
separate curve and fills the area between the curve and the x-axis.

Area Graphs Showing Contributing Amounts
Area graphs are useful for showing how elements in a vector or matrix
contribute to the sum of all elements at a particular x location. By default,
area accumulates all values from each row in a matrix and creates a curve
from those values. The height of the area graph is the sum of the elements in
each row. Each successive curve uses the preceding curve as its base.

5-21

5 Creating Specialized Plots

Using the matrix Y and the area function, display a graph containing three
graph areas, one per column:

Y = [5 1 2
8 3 7
9 6 8
5 5 5
4 2 3];

harea = area(Y)
% This returns handles to three hggroups (areaseries objects)

grid on

Change the face color of each layer to make the plot more readable:

set(harea(1),'FaceColor',[.5 .8 .9])
set(harea(2),'FaceColor',[.7 .9 .1])
set(harea(3),'FaceColor',[.9 1 1])

5-22

Bar and Area Graphs

Displaying the Grid on Top. To display the grid lines in the foreground
of the area graph and display only five grid lines along the x-axis, use the
statements

set(gca,'Layer','top')
set(gca,'XTick',1:5)

5-23

5 Creating Specialized Plots

Comparing Data Sets with Area Graphs
Area graphs are useful for comparing different data sets. For example, you
can show sales together with profits, as follows:

1 Create a vector containing the income from sales:

sales = [51.6 82.4 90.8 59.1 47.0];

2 Create a vector containing the years in which the sales took place:

x = 2004:2008;

3 Also create a vector of profits for the same five-year period:

profits = [19.3 34.2 61.4 50.5 29.4];

4 Use area to display profits and sales as two separate area graphs within
the same axes. Set the color of the area interior (FaceColor), its edges
(EdgeColor), and the width of the edge lines (LineWidth). See patch for a
complete list of properties.

5-24

../ref/patch_props.html

Bar and Area Graphs

area(x,sales,'FaceColor',[.5 .9 .6],...
'EdgeColor','b',...
'LineWidth',2)

hold on
area(x,profits,'FaceColor',[.9 .85 .7],...

'EdgeColor','y',...
'LineWidth',2)

hold off

You need to issue the command hold on to prevent the second graph from
erasing the first one, and to turn hold off afterward because no more
graphs will be plotted in the axes. The graph looks like this.

5 Make the x-ticks correspond to whole years and draw grid lines on top of
the area graphs:

set(gca,'XTick',x)
set(gca,'XGrid','on')
set(gca,'Layer','top')

5-25

5 Creating Specialized Plots

6 Annotate the graph interactively, using the gtext function. It accepts a
string to be placed as text annotation, and enters graphic input mode.
Position the cross-hair cursor where you want the lower-left corner of the
text to be, and click the mouse button to complete the command. Execute
the following statements to add three interactive labels and two axis labels:

disp('Click blue line to label Sales')
gtext('\leftarrow Sales')
disp('Click yellow line to label Expenses')
gtext('\leftarrow Expenses')
disp('Click green area to label Profits')
gtext('Profits')
xlabel('Years','FontSize',14)
ylabel('Expenses + Profits = Sales in 1,000''s','FontSize',14)

5-26

Bar and Area Graphs

5-27

5 Creating Specialized Plots

Pie Charts

In this section...

“Creating a Pie Chart” on page 5-28

“Labeling the Pie Chart” on page 5-29

“Removing a Piece from a Pie Chart” on page 5-31

Creating a Pie Chart
Pie charts are a useful way to communicate the percentage that each element
in a vector or matrix contributes to the sum of all elements. pie and pie3
create 2-D and 3-D pie charts. A 3-D pie chart does not show any more or
different information than a 2-D pie chart does; it simply adds depth to the
presentation by plotting the chart on top of a cylindrical base.

This example shows how to use the pie function to visualize the contribution
that three products make to total sales. Given a matrix X where each column
of X contains yearly sales figures for a specific product over a five-year period:

X = [19.3 22.1 51.6;
34.2 70.3 82.4;
61.4 82.9 90.8;
50.5 54.9 59.1;
29.4 36.3 47.0];

Sum each row in X to calculate total sales for each product over the five-year
period.

x = sum(X);

You can offset the slice of the pie that makes the greatest contribution using
the explode input argument. This argument is a vector of zero and nonzero
values. Nonzero values offset the respective slice from the chart.

First, create a vector containing zeros:.

explode = zeros(size(x));

5-28

Pie Charts

Then find the slice that contributes the most and set the corresponding
explode element to 1:

[c,offset] = max(x);
explode(offset) = 1;

The explode vector contains the elements [0 0 1]. To create the exploded
pie chart, use the statement

h = pie(x,explode);
colormap summer

Labeling the Pie Chart
The pie chart’s labels are text graphics objects. To modify the text strings
and their positions, first get the objects’ strings and extents. Braces around
a property name ensure that get outputs a cell array, which is important
when working with multiple objects:

5-29

5 Creating Specialized Plots

textObjs = findobj(h,'Type','text');
oldStr = get(textObjs,{'String'});
val = get(textObjs,{'Extent'});
oldExt = cat(1,val{:});

Create the new strings, and set the text objects’ String properties to the
new strings:

Names = {'Product X: ';'Product Y: ';'Product Z: '};
newStr = strcat(Names,oldStr);
set(textObjs,{'String'},newStr)

Find the difference between the widths of the new and old text strings and
change the values of the Position properties:

val1 = get(textObjs, {'Extent'});
newExt = cat(1, val1{:});
offset = sign(oldExt(:,1)).*(newExt(:,3)-oldExt(:,3))/2;
pos = get(textObjs, {'Position'});
textPos = cat(1, pos{:});
textPos(:,1) = textPos(:,1)+offset;
set(textObjs,{'Position'},num2cell(textPos,[3,2]))

5-30

Pie Charts

Removing a Piece from a Pie Chart
When the sum of the elements in the first input argument is equal to or
greater than 1, pie and pie3 normalize the values. So, given a vector of
elements x, each slice has an area of xi/sum(xi), where xi is an element of x.
The normalized value specifies the fractional part of each pie slice.

When the sum of the elements in the first input argument is less than 1, pie
and pie3 do not normalize the elements of vector x. They draw a partial pie.

x = [.19 .22 .41];
pie(x)
colormap summer

5-31

5 Creating Specialized Plots

5-32

Histograms

Histograms

In this section...

“Functions for Creating Histograms” on page 5-33

“Histograms in Cartesian Coordinates” on page 5-33

“Histograms in Polar Coordinates” on page 5-35

“Specifying Number of Bins” on page 5-36

“Using Data Cursors with Histograms” on page 5-38

Functions for Creating Histograms
Histograms show the distribution of data values across a data range. They
do this by dividing the data range into a certain number of intervals (called
“binning” the data), tabulating the number of values that fall into each
interval (or “bin”), and plotting the values in the bins using bars or wedges of
varying height. The functions that create histograms are hist and rose.

Function Description

hist Displays data in a Cartesian coordinate system.

rose Displays data in a polar coordinate system.

You can specify the number of bins to use as a scalar second argument. If
omitted, the default is 10 (hist) or 20 (rose). Data values passed to hist can
be in any units and can be n-by-m, but rose expects values to be in radians
in a 1-by-n or n-by-1 vector. The height (or length when using rose) of the
bins represents the number of values that fall in each bin. You can also
vary the size of bins by specifying a vector for apportioning bin widths as
the second argument.

Histograms in Cartesian Coordinates
The hist function shows the distribution of the elements in Y as a histogram
with equally spaced bins between the minimum and maximum values in Y. If Y
is a vector and is the only argument, hist creates up to 10 bins. For example:

yn = randn(10000,1);

5-33

5 Creating Specialized Plots

hist(yn)

generates 10,000 random numbers and creates a histogram with 10 bins
distributed along the x-axis between the minimum and maximum values of yn.

Matrix Input Argument
When Y is a matrix, hist creates a set of bins for each column, displaying each
set in a separate color. The statements

Y = randn(10000,3);
hist(Y)

create a histogram showing 10 bins for each column in Y.

5-34

Histograms

Histograms in Polar Coordinates
A rose plot is a histogram created in a polar coordinate system. For example,
consider samples of the wind direction taken over a 12-hour period:

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];

To display this data using the rose function, convert the data to radians,
and then use the data as an argument to the rose function. Increase the
LineWidth property of the line to improve the visibility of the plot (findobj):

wdir = wdir * pi/180;
rose(wdir)
hline = findobj(gca,'Type','line');
set(hline,'LineWidth',1.5)

The plot shows that the wind direction was primarily 335° during the 12-hour
period.

5-35

../ref/line_props.html#LineWidth

5 Creating Specialized Plots

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

Specifying Number of Bins
hist and rose interpret their second argument in one of two ways—as the
locations on the axis or the number of bins. When the second argument is a
vector x, it specifies the locations on the axis and distributes the elements in
length(x) bins. When the second argument is a scalar x, hist and rose
distribute the elements in x bins.

For example, compare the distribution of data created by two MATLAB
functions that generate random numbers. The randn function generates
normally distributed random numbers, whereas the rand function generates
uniformly distributed random numbers:

yn = randn(10000,1);
yu = rand(10000,1);

The first histogram displays the data distribution resulting from the randn
function. The locations on the x-axis and number of bins depend on the vector
x.

5-36

Histograms

x = min(yn):.2:max(yn);
subplot(1,2,1)
hist(yn,x)
title('Normally Distributed Random Numbers')

The second histogram displays the data distribution resulting from the rand
function and explicitly creates 25 bins along the x-axis.

subplot(1,2,2)
hist(yu,25)
title('Uniformly Distributed Random Numbers')

Note You can change the aspect ratio of the histogram plots using the mouse
to resize the figure window. However, before creating hardcopy output, set
the figure’s PaperPositionMode to auto to produce printed output that
matches the display.

set(gcf,'PaperPositionMode','auto')

5-37

../ref/figure_props.html#PaperPositionMode

5 Creating Specialized Plots

Using Data Cursors with Histograms

When you use the Data Cursor tool on a histogram plot, it customizes
the data tips it displays in an appropriate way. Instead of providing x-, y-,z-
coordinates, the datatips display the following information:

• Number of observations falling into the selected bin

• The x value of the bin’s center

• The lower and upper x values for the bin

For example, The following figures show a line plot and a histogram of
count.dat, a demo data set that contains three columns, giving hourly traffic
counts at three different locations. The plots depict the sum the values over
the locations. Each graph displays two datatips, but the datatips in the
right-hand plot give information specific to histograms.

load count.dat
figure;
subplot(1,2,1); plot(count(:))
subplot(1,2,2); hist(count(:),5)
datacursormode on

Click to place a datatip or drag an existing one to a new location. You can add
new datatips to a plot by right-clicking, selecting Create new datatip, and
clicking the graph where you want to put it.

5-38

Histograms

When you add datatips to histograms or bar graphs showing groups of data,
you can move a datatip to any other bar by clicking inside that bar. If you use
the cursor keys to shift a datatip back or forth across the graph, the datatip
moves to the preceding or succeeding bar of the same color.

5-39

5 Creating Specialized Plots

Discrete Data Graphs

In this section...

“Functions for Creating Graphs of Discrete Data” on page 5-40

“Two-Dimensional Stem Plots” on page 5-40

“Combining Stem Plots with Line Plots” on page 5-44

“Three-Dimensional Stem Plots” on page 5-45

“Stairstep Plots” on page 5-48

Functions for Creating Graphs of Discrete Data
In addition to bar graphs and pie charts, specialized MATLAB graphics
functions appropriately display discrete data. Discrete data generally
represents counts of things, such as traffic accidents by month or components
produced or rejected during the course of a production run. This section
describes how to use stem plots and stairstep plots to display this type of data.
The functions for generating discrete data graphs provided are

Function Description

stem Displays a discrete sequence of y-data as stems
from x-axis.

stem3 Displays a discrete sequence of z-data as stems
from xy-plane.

stairs Displays a discrete sequence of y-data as steps
from x-axis.

Two-Dimensional Stem Plots
A stem plot displays data as lines (stems) terminated with a marker symbol
at each data value. In a 2-D graph, stems extend from the x-axis.

The stem function displays two-dimensional discrete sequence data. For
example, evaluating the function y=e-αtcosβt with the values

alpha = .02; beta = .5; t = 0:4:200;

5-40

Discrete Data Graphs

y = exp(-alpha*t).*cos(beta*t);

yields a vector of discrete values for y at given values of t. A line plot shows
the data points connected with a straight line.

plot(t,y)

5-41

5 Creating Specialized Plots

A stem plot of the same function plots only discrete points on the curve:

stem(t,y)

Add axes labels to the x- and y-axis:

xlabel('Time in \musecs')
ylabel('Magnitude')

If you specify only one argument, the number of samples is equal to the length
of that argument. In this example, the number of samples is a function of t,
which contains 51 elements and determines the length of y.

5-42

Discrete Data Graphs

Customizing the Graph
You can specify the line style, the type of marker, and the color used in the
stem plot. For example, adding the string '--sr' specifies a dashed line
(--), a square marker (s), and a red color (r). The 'fill' argument colors
the face of the marker.

stem(t,y,'--sr','fill')

Setting the aspect ratio of the x- and y-axis to 2:1 improves the utility of
the graph. You can do this by setting the aspect ratio of the plot box using
pbaspect:

pbaspect([2,1,1])

This is equivalent to setting the PlotBoxApectRatio property directly:

set(gca,'PlotBoxAspectRatio',[2,1,1])

See LineSpec for a list of line styles and marker types.

5-43

5 Creating Specialized Plots

Combining Stem Plots with Line Plots
Sometimes it is useful to display more than one plot simultaneously with a
stem plot to show how you arrived at a result. For example, create a linearly
spaced vector with 60 elements and define two functions, a and b:

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);

Create a stem plot showing the linear combination of the two functions:

stem_handles = stem(x,a+b);

Overlaying a and b as line plots helps visualize the functions. Before plotting
the two curves, set hold to on so the stem plot remains displayed:

hold on
plot_handles = plot(x,a,'--r',x,b,'--g');
hold off

Use legend to annotate the graph. The stem and plot handles passed to
legend identify the lines to label. Stem plots are composed of two lines; one
draws the markers and the other draws the vertical stems. To create the
legend, use the first handle returned by stem, which identifies the marker line:

legend_handles = [stem_handles(1);plot_handles];
legend(legend_handles,'a + b','a = sin(x)','b = cos(x)')

5-44

Discrete Data Graphs

Labeling the axes and creating a title finishes the graph:

xlabel('Time in \musecs')
ylabel('Magnitude')
title('Linear Combination of Two Functions')

Three-Dimensional Stem Plots
stem3 displays 3-D stem plots extending from the xy-plane. With only
one vector argument, the stems are plotted in one row at x = 1 or y = 1,
depending on whether the argument is a column or row vector. stem3 is
intended to display data that you cannot visualize in a 2-D view.

Example — 3-D Stem Plot of an FFT
Fast Fourier transforms are calculated at points around the unit circle on the
complex plane. It is interesting to visualize the plot around the unit circle.
Calculating the unit circle

th = (0:127)/128*2*pi;

5-45

5 Creating Specialized Plots

x = cos(th);
y = sin(th);

and the magnitude frequency response of a step function. The command

f = abs(fft(ones(10,1),128));

displays the data using a 3-D stem plot, terminating the stems with filled
diamond markers:

stem3(x,y,f','d','fill')
view([-65 30])

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

8

10

Real

Magnitude Frequency Response

Imaginary

A
m

pl
itu

de

5-46

Discrete Data Graphs

Label the Graph
Label the graph with the statements

xlabel('Real')
ylabel('Imaginary')
zlabel('Amplitude')
title('Magnitude Frequency Response')

To change the orientation of the view, turn on mouse-based 3-D rotation:

rotate3d on

Example — Combining Stem and Line Plots
Three-dimensional stem plots work well for visualizing discrete functions
that do not output a large number of data points. For example, use stem3
to visualize the Laplace transform basis function, y=e-st, for a particular
constant value of s:

t = 0:.1:10; % Time limits
s = 0.1+i; % Spiral rate
y = exp(-s*t); % Compute decaying exponential

Using t as magnitudes that increase with time, create a spiral with increasing
height and draw a curve through the tops of the stems to improve definition:

stem3(real(y),imag(y),t)
hold on
plot3(real(y),imag(y),t,'r')
hold off
view(-39.5,62)

5-47

5 Creating Specialized Plots

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

5

10

Real
Imaginary

M
ag

ni
tu

de

Label the Graph
Add axes labels with the statements

xlabel('Real')
ylabel('Imaginary')
zlabel('Magnitude')

Stairstep Plots
Stairstep plots display data as the leading edges of a constant interval (i.e.,
zero-order hold state). This type of plot holds the data at a constant y value
for all values between x(i) and x(i+1), where i is the index into the x data.

5-48

Discrete Data Graphs

This type of plot is useful for drawing time-history plots of digitally sampled
data systems.

Example — Stairstep Plot of a Function
Define a function f that varies over time:

alpha = 0.01;
beta = 0.5;
t = 0:10;
f = exp(-alpha*t).*sin(beta*t);

Use stairs to display the function as a stairstep plot and a linearly
interpolated function:

stairs(t,f)
hold on
plot(t,f,'--*')
hold off

Finally, annotate the graph and set the axes limits:

label = 'Stairstep plot of e^{-(\alpha*t)} sin\beta*t';
text(0.5,-0.2,label,'FontSize',14)
xlabel('t = 0:10','FontSize',14)
axis([0 10 -1.2 1.2])

5-49

5 Creating Specialized Plots

5-50

Direction and Velocity Vector Graphs

Direction and Velocity Vector Graphs

In this section...

“Functions for Graphing Vector Quantities” on page 5-51

“Compass Plots” on page 5-52

“Feather Plots” on page 5-53

“Two-Dimensional Quiver Plots” on page 5-55

“Three-Dimensional Quiver Plots” on page 5-57

Functions for Graphing Vector Quantities
Four MATLAB functions display data consisting of direction vectors and
velocity vectors; three create 2-D plots and one creates 3-D plots.

Function Description

compass Displays vectors emanating from the origin of a
polar plot.

feather Displays vectors extending from equally spaced
points along a horizontal line.

quiver Displays 2-D vectors specified by (u,v) components.

quiver3 Displays 3-D vectors specified by (u,v,w)
components.

For feather and compass plots, you define the vectors using one or two
arguments. The arguments specify the u and v components of the vectors
relative to the origin. If you specify two arguments, the first specifies the u
components of the vectors, and the second specifies the v components of the
vectors. If you specify one argument, the functions treat the elements as
complex numbers. The real parts are the u components, and the imaginary
parts are the v components.

For quiver plots, in addition to the u-v components, you also specify x,y
locations (or x,y,z locations in the case of quiver3) to establish an origin for
each vector.

5-51

5 Creating Specialized Plots

Compass Plots
The compass function shows vectors emanating from the origin of a graph.
The function takes Cartesian coordinates and plots them on a circular grid.

Example — Compass Plot of Wind Direction and Speed
This example shows a compass plot indicating the wind direction and strength
during a 12-hour period. Two vectors define the wind direction and strength:

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];
knots = [6 6 8 6 3 9 6 8 9 10 14 12];

Convert the wind direction, given as angles, into radians before converting
the wind direction into Cartesian coordinates:

rdir = wdir * pi/180;
[x,y] = pol2cart(rdir,knots);
compass(x,y)

5-52

Direction and Velocity Vector Graphs

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

Wind Direction and Strength at
Logan Airport for
Nov. 3 at 1800 through
Nov. 4 at 0600

Create text to annotate the graph:

desc = {'Wind Direction and Strength at',
'Logan Airport for ',
'Nov. 3 at 1800 through',
'Nov. 4 at 0600'};

text(-28,15,desc)

Feather Plots
The feather function shows vectors emanating from a straight line parallel
to the x-axis. For example, create a vector of angles from 90° to 0° and a
vector the same size, with each element equal to 1.

5-53

5 Creating Specialized Plots

theta = 90:-10:0;
r = ones(size(theta));

Before creating a feather plot, transform the data into Cartesian coordinates
and increase the magnitude of r to make the arrows more distinctive:

[u,v] = pol2cart(theta*pi/180,r*10);
feather(u,v)
axis equal

2 4 6 8 10 12 14 16 18 20

−2

0

2

4

6

8

10

12

5-54

Direction and Velocity Vector Graphs

Plotting Complex Numbers
If the input argument Z is a matrix of complex numbers, feather interprets
the real parts of Z as the x components of the vectors and the imaginary parts
as the y components of the vectors:

t = 0:0.5:10; % Time limits
s = 0.05+i; % Spiral rate
Z = exp(-s*t); % Compute decaying exponential
feather(Z)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Printing the Graph
This particular graph looks better if you change the figure’s aspect ratio by
stretching the figure lengthwise using the mouse. However, to maintain this
shape in the printed output, set the figure’s PaperPositionMode to auto.

set(gcf,'PaperPositionMode','auto')

In this mode, MATLAB prints the figure as it appears on screen.

Two-Dimensional Quiver Plots
The quiver function shows vectors at given points in two-dimensional space.
The x and y components define the vectors.

5-55

5 Creating Specialized Plots

A quiver plot is useful when displayed with another plot. For example, create
10 contours of the peaks function. (See “Contour Plots” on page 5-60 for more
information.)

n = -2.0:.2:2.0;
[X,Y,Z] = peaks(n);
contour(X,Y,Z,10)

Now use gradient to create the vector components to use as inputs to quiver:

[U,V] = gradient(Z,.2);

5-56

Direction and Velocity Vector Graphs

Set hold to on and add the contour plot:

hold on
quiver(X,Y,U,V)
hold off

Three-Dimensional Quiver Plots
Three-dimensional quiver plots (quiver3) display vectors consisting of (u,v,w)
components at (x,y,z) locations. For example, you can show the path of a
projectile as a function of time,

z t v t
at

z() = +
2

2

Assign values to the constants vz and a:

vz = 10; % Velocity
a = -32; % Acceleration

Calculate the height z as time varies from 0 to 1 in increments of 0.1:

5-57

5 Creating Specialized Plots

t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;

Calculate the position in the x and y directions:

vx = 2;
x = vx*t;
vy = 3;
y = vy*t;

Compute the components of the velocity vectors and display the vectors using
the 3-D quiver plot:

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;
quiver3(x,y,z,u,v,w,scale)
view([70 18])

5-58

Direction and Velocity Vector Graphs

0
0.5

1
1.5

2
2.5 0 0.5 1 1.5 2 2.5 3 3.5

−10

−8

−6

−4

−2

0

2

5-59

5 Creating Specialized Plots

Contour Plots

In this section...

“Functions for Creating Contour Displays” on page 5-60

“Creating Simple Contour Plots” on page 5-61

“Labeling Contours” on page 5-63

“Filled Contours” on page 5-65

“Specifying Contour Levels” on page 5-66

“Index Contours” on page 5-70

“The Contouring Algorithm” on page 5-73

“Changing the Offset of a Contour” on page 5-76

“Displaying Contours in Polar Coordinates” on page 5-77

“Preparing Data for Contouring” on page 5-80

Functions for Creating Contour Displays
The contouring display functions compute, plot, and label isolines (contour
lines) for one or more matrices. These displays vary according to whether they
plot plain contour lines, filled contour lines, raised contours, or contours in
concert with mesh or surface plots. Two of the functions support contouring.
The low-level contourc function computes isolines but does not plot them.
The clabel function places elevation labels on previously generated contours.

Function Description

contour Displays 2-D isolines generated from values given
by a matrix Z.

contour3 Displays 3-D isolines generated from values given
by a matrix Z.

contourf Displays a 2-D contour plot and fills the area between
the isolines with a solid color.

contourc Low-level function to calculate the contour matrix
used by the other contour functions.

5-60

Contour Plots

Function Description

meshc Creates a mesh plot with a corresponding 2-D
contour plot.

surfc Creates a surface plot with a corresponding 2-D
contour plot.

clabel Generates labels using the contour matrix returned
from calling the contouring function and displays the
labels in the current figure.

Creating Simple Contour Plots
contour and contour3 display 2-D and 3-D contours, respectively. They
can be called with separate x, y, and z matrices, but need only one input
argument—a z matrix interpreted as heights with respect to a plane. In this
case, the contour functions determine the number of contours to display based
on the minimum and maximum data values.

To explicitly set the number of contour levels displayed by the functions, you
specify a second optional argument.

Contour Plot of the Peaks Function
The statements

[X,Y,Z] = peaks;
contour(X,Y,Z,20)

display 20 contours of the peaks function in a 2-D view.

5-61

5 Creating Specialized Plots

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Twenty Contours of the peaks Function

The statements

[X,Y,Z] = peaks;
contour3(X,Y,Z,20)
h = findobj('Type','patch');
set(h,'LineWidth',2)
title('Twenty Contours of the peaks Function')

5-62

Contour Plots

display 20 contours of the peaks function in a 3-D view and increase the line
width to 2 points.

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−10

−5

0

5

10

Twenty Contours of the peaks Function

Labeling Contours
Each contour level has a value associated with it. clabel uses these values to
display labels for 2-D contour lines. The contour matrix contains the values
clabel uses for the labels. This matrix is returned by contour, contour3,
and contourf and is described in “The Contouring Algorithm” on page 5-73.

clabel optionally returns the handles of the text objects used as labels. You
can then use these handles to set the properties of the label string.

For example, display 10 contour levels of the peaks function:

5-63

5 Creating Specialized Plots

Z = peaks;
[C,h] = contour(Z,10);

Label the contours and display a title:

clabel(C,h)
title({'Contour Labeled Using','clabel(C,h)'})

clabel labels only those contour lines that are large enough to have an
inline label inserted.

−4.922
−3.2974

−3.2974

−1.6727

−1.6727

−1.6727

−1.6727

−1
.6

72
7

−
0.048059

−0.048059

−0.048059

−0.048059

−0.048059

−0.048059

1.
57

66

1.5766

1.5766

1.5766

1.5766

1.5766

1.5766

3.2012

3.2012

3.2012

3.2012

3.2012

4.8259

4.8259

6.4505

Contour Labeled Using
clabel(C,h)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

5-64

Contour Plots

The 'manual' option enables you to add labels by selecting the contour you
want to label with the mouse.

You can also use this option to label only those contours you select
interactively.

For example:

clabel(C,h,'manual')

displays a crosshair cursor when your cursor is inside the figure. Pressing
any mouse button labels the contour line closest to the center of the crosshair.

Filled Contours
The contourf displays a two-dimensional contour plot and fills the areas
between contour lines. Use caxis to control the mapping of contour to color.
For example, this filled contour plot of the peaks data uses caxis to map the
fill colors into the center of the colormap:

Z = peaks;
[C,h] = contourf(Z,10);
caxis([-20 20])
title({'Filled Contour Plot Using','contourf(Z,10)'})

5-65

5 Creating Specialized Plots

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Filled Contour Plot Using
contourf(Z,10)

Specifying Contour Levels
The contouring functions permit you to specify the number of contour levels or
the particular contour levels to draw. In the case of contour, the two forms of
the function are contour(Z,n) and contour(Z,v). Z is the data matrix, n is
the number of contour lines, and v is a vector of specific contour levels.

When you specify n (the number of contour levels to plot), you are setting the
LevelStep property of the contourgroup. If you want to always draw n contour
levels even when the data range of Z changes, obtain the contourgroup’s
handle and set its LevelStepMode to 'manual'.

5-66

Contour Plots

When you specify v (a vector itemizing contour levels), you are setting
the contourgroup’s LevelList property. By default, the LevelList is
recomputed whenever contours are redrawn. If you always want to depict
the same contour levels, even if the data changes, set the contourgroup’s
LevelListMode property to 'manual'.

Drawing a Single Contour
MATLAB functions do not differentiate between a scalar and a one-element
vector. So, if v is a one-element vector specifying a single contour at that level,
contour interprets it as the number of contour lines, not the contour level.
Consequently, contour(Z,v) behaves in the same manner as contour(Z,n).

To display a single contour line, define v as a two-element vector with both
elements equal to the desired contour level. For example, create a 3-D contour
of the peaks function:

xrange = -3:.125:3;
yrange = xrange;
[X,Y] = meshgrid(xrange,yrange);
Z = peaks(X,Y);
contour3(X,Y,Z)

To display only one contour level at Z = 1, define v as :

v = [1 1]
contour3(X,Y,Z,v)

Example — Visualizing Contour Construction
You can think of a contour as the intersection of a 3-D surface with a
horizontal plane. The intersection defines 0 or more level lines that trace
contours. The level lines either form loops or terminate at the outer edges
of the surface. Contour loops can intersect at saddle points, and therefore
require special handling in their vicinity.

Run the following interactive code to visualize how contour lines are
constructed. Use the slider to move the plane up or down through the range
of z values, and click the Plot Contour button to draw a contour line that
delineates where the plane slices through the surface. Click the Plot Labels

5-67

5 Creating Specialized Plots

button to add a label to the contour you just plotted. Click Clear Contours to
remove all the contours and labels.

% Create x, y, and z arrays for a parametric surface

[x y]=meshgrid(linspace(0,1,10),linspace(0,1,10));

z = .5*x + y - 1.5*x.*y;

% Display with the surface function in 3-D

fh = figure; colormap cool;

hpl = uipanel(fh,'Units','normalized','position',[.025 .025 .95 .95]);

s=surface('xdata',x,'ydata',y,'zdata',z,'cdata',z);

view(3);hold on;

% Display a second surface, a horixontal plane at z = 0

p=surface('xdata',[0 1;0 1],'ydata',[0 0; 1 1],...

'zdata',[0 0; 0 0],'cdata',[0 0;0 0]);

set(p,'facealpha',.25,'facecolor','red'); % Make cut plane transparent

% Create a slider control for contour elevations

hs = uicontrol(hpl,'style','slider','min',0,'max',100,...

'units','normalized','position',[.05 .05 .2 .05],...

'sliderstep', [.01 .05]);

set(hs,'callback',... % Tell the slider what it should do

['lvl=get(hs,''value'')/100;,' ...

'set(p,''zdata'',[lvl lvl; lvl lvl]),' ...

'set(hto,''string'',num2str(lvl)),' ...

'set(hbc,''enable'',''on'')']);

lvl = 0; % Initialize the z-level of the cutting plane

% Create a label for the slider and a text box to show its value

hst = uicontrol(hpl,'Style','text', 'String','Z-level',...

'units','normalized','Position',[.05 .10 .1 .05]);

hto = uicontrol(hpl,'Style','text', 'String','0',...

'units','normalized','Position',[.13 .10 .1 .05]);

% Create a pushbutton control for drawing contours with CONTOUR3

hbc = uicontrol(hpl,'style','pushbutton','enable','off',...

'string','Plot Contour',...

'units','normalized','position',[.80 .05 .15 .05]);

set(hbc,'callback',['[C hc] = contour3(x,y,z, [lvl lvl],''r'');' ...

'set(hbl,''enable'',''on''), set(hbe,''enable'',''on''),' ...

'set(hbc,''enable'',''off'')']);

% Create a pushbutton control for labelling with CLABEL,

% which uses the "contour matrix" returned from CONTOUR3

hbl = uicontrol(hpl,'style','pushbutton','enable','off',...

5-68

Contour Plots

'string','Plot Labels',...

'units','normalized','position',[.80 .90 .15 ,.05]);

set(hbl,'callback',['clabel(C, hc,''color'',''r'',' ...

'''fontweight'',''bold'');' 'set(hbl,''enable'',''off''), '...

'set(hbe,''enable'',''on'')']);

% Create a pushbutton to clear away the contours and labels

hbe = uicontrol(hpl,'style','pushbutton','enable','off',...

'string','Clear Contours',...

'units','normalized','position',[.05 .90 .15 .05]);

set(hbe,'callback',['delete(findall(gca,''color'',''r''));' ...

'set(hbe,''enable'',''off'')']);

Here is what the figure and its controls look like with a contour plotted at
the cut line.

5-69

5 Creating Specialized Plots

See “The Contouring Algorithm” on page 5-73, below, for an explanation of
how contour lines are computed.

Index Contours
You can index contours to visually emphasize certain contour levels. This
technique, commonly used on topographic maps to highlight contours at set
altitudes such as 25, 50, 75, ... meters above sea level, provides visual cues
analogous to major ticks on a graph’s axis. It is much easier to read a contour
display that shows index contours because the heavier lines lessen the chance
that your eye jumps between adjacent contours in scanning across the plot.

5-70

Contour Plots

Example — Specifying Index Contours
The following code example highlights contours at elevations of –6, –5, –4, ...
7 for the output of the peaks function.

1 Generate a data matrix to contour:

z = peaks(100);

2 Compute 40 contour levels. Select contour levels so as to be round numbers;
zlevs is the vector of contour levels to be plotted:

zmin = floor(min(z(:))); zmax = ceil(max(z(:)));
zinc = (zmax - zmin) / 40;
zlevs = zmin:zinc:zmax;

3 Specify the vertical distance between index contours; here it is unity, but it
can be any modulus of values in zlevs.

zindex = 1;

4 Plot 2-D level lines with the contour function:

[c2,hc2] = contour(z,zlevs);

5 Create index contours by thickening level lines every zindex units:

nc = get(hc2,'Children');
for i = 1:length(nc)

ud = get(nc(i),'UserData');
if (mod(ud,zindex) == 0)

set(nc(i),'LineWidth',2);
end

end

A contour line thickens with each call to set.

6 Annotate to identify the contouring parameters used:

s = sprintf('%s %g %s %g %s', 'Peaks Function Contoured at', ...
zinc, 'Units, Indexed every', zindex, 'Units');

title(s)

5-71

5 Creating Specialized Plots

The loop of code in step 5 above works for contour but not forcontour3,
because contour3 does not create contourgroup objects containing Children.
To accomplish the same result with contour3, you must dereference the
handle to the contours returned by contour3 (hc3, below) differently, as
follows:

figure;
[c3,hc3] = contour3(z,zlevs);
for i = 1:length(hc3)

ud = get(hc3(i),'UserData');
if (mod(ud,zindex) == 0)

set(hc3(i),'LineWidth',2);
end

end

5-72

Contour Plots

s = sprintf('%s %g %s %g %s',...
'Peaks Function Contoured in 3-D at', ...
zinc, 'Units, Indexed every', zindex, 'Units');

title(s)

The Contouring Algorithm
The contourc function calculates the contour matrix for the other contour
functions. It is a low-level function that is not called from the command line.

The contouring algorithm first determines which contour levels to draw. If
you specified the input vector v, the elements of v are the contour level values,
and length(v) determines the number of contour levels generated. If you
do not specify v, the algorithm chooses no more than 20 contour levels that
are divisible by 2 or 5.

5-73

5 Creating Specialized Plots

The height matrix Z has associated X and Y matrices that locate each value
in Z at the intersection of a row and a column, or these matrices are inferred
when they are unspecified. The row and column widths can vary, but typically
they are constant (i.e., Z is a regular grid).

Before calling contourc to interpolate contours, contourf pads the height
matrix with an extra row or column on each edge. It assigns z-values to
the added grid cells that are well below the minimum value of the matrix.
The padded values enable contours to close at the matrix boundary so that
they can be filled with color. When contourc creates the contour matrix, it
replaces the x,y coordinates containing the low z-values with NaNs to prevent
contour lines that pass along matrix edges from being displayed. This is why
contour matrices returned by contourf sometimes contain NaN values.

Set the current level, c, equal to the lowest contour level to be plotted within
the range [min(Z) max(Z)]. The contouring algorithm checks each edge
of every square in the grid to see if c is between the two z values for the
edge points. If so, a contour at that level crosses the edge, and a linear
interpolation is performed:

t=(c-Z0)/(Z1-Z0)

Z0 is the z value at one edge point, and Z1 is the z value at the other edge point.

Start indexing a new contour line (i = 1) for level c by interpolating x and y:

cx(i) = X0+t*(X1-X0)
cy(i) = Y0+t*(Y1-Y0)

Walk around the edges of the square just entered; the contour exits at the
next edge with z values that bracket c. Increment i, compute t for the edge,
and then compute cx(i) and cy(i), as above.

Mark the square as having been visited. Keep checking the edges of each
square entered to determine the exit edge until the line(cx,cy) closes on its
initial point or exits the grid. If the square being entered is already marked,
the contour line closes there. Copy cx, cy, c, and i to the contour line data
structure (the matrix returned by contouring functions, described shortly).

5-74

Contour Plots

Reinitialize cx, cy, and i. Move to an unmarked square and test its edges for
intersections; when you find one at level c, repeat the preceding operations.
Any number of contour lines can exist for a given level.

Clear all the markers, increment the contour level, and repeat until c exceeds
max(Z).

Extra logic is needed for squares where a contour passes through all four
edges (saddle points) to determine which pairs of edges to connect.

contour, contour3, and contourf return a two-row matrix that specifies
all the contour lines:

C = [value1 xdata(1) xdata(2)...
numv ydata(1) ydata(2)...]

The first row of the column that begins each definition of a contour line
contains the contour value, as specified by v and used by clabel. Beneath
that value is the number of (x,y) vertices in the contour line. Remaining
columns contain the data for the (x,y) pairs. For example, the contour matrix
calculated by C = contour(peaks(3)) is as follows.

5-75

5 Creating Specialized Plots

The circled values begin each definition of a contour line.

Changing the Offset of a Contour
The surfc and meshc functions display contours beneath a surface or a mesh
plot. These functions draw the contour plot at the axes’ minimum z-axis limit.
To specify your own offset, change the ZData values of the contour lines. First,
save the handles of the graphics objects created by meshc or surfc:

h = meshc(peaks(20));

The first handle belongs to the mesh or surface. The remaining handles belong
to the contours you want to change. To raise the contour plane, increment the
z coordinate of each contour line by some amount by resetting its Zdata value:

for i = 2:length(h);
newz = get(h(i),'Zdata') + 5;
set(h(i),'Zdata',newz)

5-76

Contour Plots

end

Displaying Contours in Polar Coordinates
1 You can contour data defined in the polar coordinate system. As an
example, set up a grid in polar coordinates and convert the coordinates to
Cartesian coordinates.

[th,r] = meshgrid((0:5:360)*pi/180,0:.05:1);
[X,Y] = pol2cart(th,r);

2 Then generate the complex matrix Z on the interior of the unit circle.

Z = X+i*Y;

X, Y, and Z are points inside the circle.

3 Create and display a surface of the function Z44 1−− .

f = (Z.^4-1).^(1/4);
surf(X,Y,abs(f))

4 Display the unit circle beneath the surface and add labels to the graph:

hold on
surf(X,Y,zeros(size(X)))
hold off
xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);
zlabel('abs(f)','FontSize',14);

5-77

5 Creating Specialized Plots

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

ab
s(

f)

Imaginary Real

Contours in Cartesian Coordinates
These statements display a contour of the surface in Cartesian coordinates
and label the x- and y-axis:

contour(X,Y,abs(f),30)
axis equal
xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);

5-78

Contour Plots

Real

Im
ag

in
ar

y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Contours on a Polar Axis
You can also display the contour within a polar axes. Create a polar axes
using the polar function, and then delete the line specified with polar:

h = polar([0 2*pi], [0 1]);
delete(h)

With hold on, display the contour on the polar grid:

hold on
contour(X,Y,abs(f),30)

5-79

5 Creating Specialized Plots

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Preparing Data for Contouring
The various contour plotting functions, as well as the mesh and surface
families of functions, accept 2-D matrices as inputs. For most applications,
these input grids represent continuous functions of two variables or relatively
continuous fields of data. In many applications, source data might consist of
z values sampled over a two-dimensional domain in an irregular fashion,
such as discrete spot elevations from GPS measurements (in the form of x, y,
and z data vectors). To prepare such data for contour or mesh display, you
need to interpolate it in some fashion.

5-80

Contour Plots

There are several MATLAB methods for interpolating data into vectors, grids,
and triangulated (Delaunay) tessellations. Input observations can be one-,
two-, three- or higher-dimensional. By choosing and using these functions
carefully you control parameters and constraints for interpolation to model
your assumptions about the underlying nature of the raw data. Typically, you
use the interp2, meshgrid, and TriScatteredInterp functions to interpolate
z values for scattered x-y data points into a 2-D grid. See Interpolation in the
MATLAB Mathematics documentation for discussion and examples of data
interpolation using these and other functions.

If the surface you are contouring is “noisy,” contours depicting the surface
exhibit jaggedness. When you analyze and explore such data, you can filter
it to attentuate high-frequency variations. One way to do this is with
a convolution (with conv2 or filter2) filter, as the following example
demonstrates:

Example — Smoothing a Matrix for Plotting Contours
The conv2 and filter functions can remove high-frequency components from
a matrix representing a continuous surface or field to make the underlying
data easier to visualize.

1 Create a function of two variables and plot contour lines at a specified, fixed
interval:

Z = peaks(100);
figure;
set (gcf,'position',[400,100,600,600], 'color','w')
subplot(2,2,1);
cl = [-7:1:10]; % Define contour levels for all plots
contour(Z, cl)
axis([0 100 0 100]); colormap autumn;
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Peaks Surface (underlying data)')

2 Add uniform random noise with mean of 0 to the surface and plot resulting
contours. Irregularities in the contours tend to obscure the trend of the data:

ZN = Z + rand(100) - .5;
subplot (2,2,2)
contour(ZN, cl)

5-81

5 Creating Specialized Plots

axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Peaks Surface (noise added)')

3 Specify a 3-by-3 convolution kernal, F, for smoothing the matrix and use the
conv2 function to attenuate high spatial frequencies in the surface data:

F = [.05 .1 .05; .1 .4 .1; .05 .1 .05];
ZC = conv2(ZN,F,'same');

4 Visually compare the smoothed surface to the original and the noisy ones:

subplot (2,2,3)
contour(ZC, cl)
axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Noisy Surface (smoothed once)')

5 Smooth the surface one more time using the same operator and compare (a
larger or more uniform kernal can achieve this in one pass):

ZC2 = conv2(ZC,F,'same');
subplot (2,2,4)
contour(ZC2, cl)
axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Noisy Surface (smoothed twice)')

5-82

Contour Plots

5-83

5 Creating Specialized Plots

Interactive Plotting

Example — Selecting Plotting Points from the Screen
You can interact with graphs or generate x-y coordinates interactively. The
ginput function enables you to use the mouse or the arrow keys to select
points to plot. ginput returns the coordinates of the pointer’s position, either
the current position or the position when a mouse button or key is pressed.
For more information see the ginput function. You can use it to pick points
on a graph to return their x and y values for processing, to outline an area of
interest, or to draw arbitrary shapes.

This example illustrates the use of ginput with the spline function to create
a curve by interpolating in two dimensions.

First, select a sequence of points, [x,y], in the plane with ginput. Then
pass two one-dimensional splines through the points, evaluating them with a
spacing one-tenth of the original spacing:

axis([0 10 0 10])
hold on
% Initially, the list of points is empty.
xy = [];
n = 0;
% Loop, picking up the points.
disp('Left mouse button picks points.')
disp('Right mouse button picks last point.')
but = 1;
while but == 1

[xi,yi,but] = ginput(1);
plot(xi,yi,'ro')
n = n+1;
xy(:,n) = [xi;yi];

end
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);

% Plot the interpolated curve.

5-84

Interactive Plotting

plot(xys(1,:),xys(2,:),'b-');
hold off

This plot shows some typical output:

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

o1

o2

o3

o4

o5

o6

o7
o8

o9

o10
o11

5-85

5 Creating Specialized Plots

Animation

In this section...

“Ways to Animate Plots” on page 5-86

“Movies” on page 5-87

“Example — Visualizing an FFT as a Movie” on page 5-87

“Updating Plot Object Axis and Color Data” on page 5-88

Ways to Animate Plots
You can create animated sequences with MATLAB graphics in three different
ways:

• Save a number of different pictures and play them back as a movie.

• Continually erase and redraw the objects on the screen, making
incremental changes with each redraw.

• Redefine the XData, YData, ZData, and/or CData plot object properties,
optionally linking them to data sources (workspace variables) and updating
the properties via calls to refreshdata.

Movies are better suited to situations where each frame is complex and cannot
be redrawn rapidly. You create each movie frame in advance so the original
drawing time is not important during playback, which is just a matter of
blotting the frame to the screen. A movie is not rendered in real time; it is
simply a playback of previously rendered frames.

The second technique, drawing, erasing, and then redrawing, makes use
of different drawing modes supported by MATLAB graphics. These modes
allow faster redrawing at the expense of some rendering accuracy, so you
must consider which mode to select.

The third approach allows plots to be updated in data driven fashion and
handles redrawing plots (if drawnow is called appropriately).

5-86

Animation

This section provides an example of each technique. To see more sophisticated
demonstrations of these features, type demo at the MATLAB prompt and
explore the animation demonstrations.

Movies
You can save any sequence of graphs and play the sequence back in a short
movie. There are two steps to this process:

• Use getframe to generate each movie frame. Be sure that your computer is
not in screen saver mode when you call getframe. In the event that you are
using several virtual desktops, make sure that the desktop on which the
MATLAB application is running is visible on your monitor.

• Use movie to run the movie a specified number of times at the specified rate.

Typically, you use getframe in a for loop to assemble the array of movie
frames. getframe returns a structure having the following fields:

• cdata — Image data in a uint8 matrix. The matrix has dimensions of
height-by-width on indexed-color systems and height-by-width-by-3 on
truecolor systems.

• colormap— The colormap in an n-by-3 matrix, where n is the number of
colors. On truecolor systems, the colormap field is empty.

Example — Visualizing an FFT as a Movie
This example illustrates the use of movies to visualize the quantity
fft(eye(n)), which is a complex n-by-n matrix whose elements are various
powers of the nth root of unity, exp(i*2*pi/n).

Creating the Movie
Create the movie in a for loop calling getframe to capture the graph. Since
the plot command resets the axes properties, call axis equal within the
loop before getframe:

for k = 1:16
plot(fft(eye(k+16)))
axis equal
M(k) = getframe;

5-87

5 Creating Specialized Plots

end

Running the Movie
After generating the movie, you can play it back any number of times. To
play it back 30 times, type

movie(M,30)

You can readily generate and smoothly play back movies with a few dozen
frames on most computers. Longer movies require large amounts of primary
memory or a very effective virtual memory system.

Movies that Include the Entire Figure
To capture the contents of the entire figure window (for example, to include
GUI components in the movie), specify the figure’s handle as an argument to
the getframe command. For example, suppose you want to add a slider to
indicate the value of k in the previous example. The following code introduces
a slider on the left side of the figure.

h = uicontrol('style','slider','position',...
[10 50 20 300],'Min',1,'Max',16,'Value',1)

for k = 1:16
plot(fft(eye(k+16)))
axis equal
set(h,'Value',k)
M(k) = getframe(gcf);

end

In this example, the movie frame contains the entire figure. To play the movie
so that it looks like the original figure, make the playback axes fill the figure
window.

clf
axes('Position',[0 0 1 1])
movie(M,30)

Updating Plot Object Axis and Color Data
When you create a graph the MATLAB figure stores copies of

5-88

Animation

• Data it needs to define x, y, and z

• Color values it depicts in the plot object itself (e.g., lineseries, barseries,
surfaceplot, etc.)

If the variables that these values represent are removed or changed, the
copies of them in plot object are unaffected. However, you can update these
copies (the properties XData, YData, ZData, and CData) at any time; when you
do, the graph changes to reflect the updates.

Consequently, you can animate graphs by changing axis data. Do one of the
following:

• Explicitly provide new axis data to a graph by calling set directly, e.g.,

set(obj_handle,'YData',[3 5 8 6 7 0])

• Implicitly update a graph when a workspace variable changes value, by
first calling set to define a data source for an axis, e.g.,

set(obj_handle,'YDataSource','varname')

and then call refreshdata after you or your code updates varname.

obj_handle is a handle to the plot object you want to update or animate.
All graph objects have data source properties (at least an XDatasource and
a YDatasource; some also have a ZDatasource and a CDatasource) that by
default are empty (axis data has no connection to workspace variables).

You make a persistent connection between axis data and a variable using
set, as described earlier and illustrated by the following example. When
you call refreshdata, the workspace data replaces the axis data and the
program redraws the graph.

Calling refreshdata only causes a graph to be redrawn if any of its declared
data sources have changed. It updates all axes at the same time, and updates
selected plot objects from a calling function’s workspace or the base workspace.

As an example, this script calls refreshdata to animate an area graph of the
Pythagorean theorem:

5-89

5 Creating Specialized Plots

c = -pi:.04:pi;
cx = cos(c);
cy = -sin(c);
figure('color','white');
axis off, axis equal
line(cx, cy, 'color', [.4 .4 .8],'LineWidth',3);
title('See Pythagoras Run!','Color',[.6 0 0])
hold on
x = [-1 0 1 -1];
y = [0 0 0 0];
ht = area(x,y,'facecolor',[.6 0 0])
set(ht,'XDataSource','x')
set(ht,'YDataSource','y')
for j = 1:length(c)

x(2) = cx(j);
y(2) = cy(j);
refreshdata
drawnow

end

The script needs drawnow to display the results at each iteration. When you
call refreshdata from the command line or manually set the XData, YData,
ZData, or CData of a graph, the plot redraws automatically. One frame from
the animation looks like this.

5-90

Animation

For more information, see the refreshdata reference page.

To program the same animation without using refreshdata, the code becomes

c = -pi:.04:pi;
cx = cos(c);
cy = -sin(c);
figure('color','white');
axis off, axis equal
line(cx, cy, 'color', [.4 .4 .8],'LineWidth',3);
title('See Pythagoras run!','Color',[.6 0 0])
hold on
x = [-1 0 1 -1];
y = [0 0 0 0];
ht = area(x,y,'facecolor',[.6 0 0]);
for j = 1:length(c)

5-91

5 Creating Specialized Plots

x(2) = cx(j);
y(2) = cy(j);
set(ht,'XData',x)
set(ht,'YData',y)
drawnow

end

This code directly assigns plot axis data. Because there is less evaluation
going on, it runs visibly faster. The advantage to using refreshdata is that
it makes it easier for a program to keep plots in sync when workspace data
changes.

Updating Graphs with linkdata Versus refreshdata
The linkdata function, which you can activate and deactivate with the Data

Linking tool on the figure toolbar, is another way to update a graph
when any of its data sources change. When it is turned on, the tool updates
axis data continuously and automatically, without calling refreshdata.
However, data linking is not intended to animate plots; rather, its purpose
is to keep different plots in sync and to extend the capabilities of Data
Brushing mode, in which you manually highlight observations of interest on
a plot. When you use data brushing and data linking together, highlighting
observations on one plot causes them to highlight on other plots which display
XData, YData, or ZData from the same data sources.

Data linking is not useful for animation because it does not update plots
immediately when data source value changes. Instead, it batches updates
at roughly half-second intervals to reduce the communications involved in
keeping plots and workspace variables synchronized. Therefore, you should
not be using data linking at the same time you animate graphs using either
of the techniques described above.

For more information on data linking and data brushing, see “Marking Up
Graphs with Data Brushing” and “Making Graphs Responsive with Data
Linking” in the MATLAB Data Analysis documentation.

5-92

6

Displaying Bit-Mapped
Images

• “Working with Images in MATLAB Graphics” on page 6-2

• “Image Types” on page 6-5

• “Working with 8-Bit and 16-Bit Images” on page 6-10

• “Reading, Writing, and Querying Graphics Image Files” on page 6-18

• “Displaying Graphics Images” on page 6-22

• “The Image Object and Its Properties” on page 6-27

• “Printing Images” on page 6-36

• “Converting the Data or Graphic Type of Images” on page 6-37

6 Displaying Bit-Mapped Images

Working with Images in MATLAB Graphics

In this section...

“What Is Image Data?” on page 6-2

“Supported Image Formats” on page 6-3

“Functions for Reading, Writing, and Displaying Images” on page 6-4

What Is Image Data?
The basic MATLAB data structure is the array, an ordered set of real or
complex elements. An array is naturally suited to the representation of
images, real-valued, ordered sets of color or intensity data. (An array is suited
for complex-valued images.)

In the MATLAB workspace, most images are represented as two-dimensional
arrays (matrices), in which each element of the matrix corresponds to a single
pixel in the displayed image. For example, an image composed of 200 rows
and 300 columns of different colored dots stored as a 200-by-300 matrix. Some
images, such as RGB, require a three-dimensional array, where the first
plane in the third dimension represents the red pixel intensities, the second
plane represents the green pixel intensities, and the third plane represents
the blue pixel intensities.

This convention makes working with graphics file format images similar to
working with any other type of matrix data. For example, you can select a
single pixel from an image matrix using normal matrix subscripting:

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image
I.

The following sections describe the different data and image types, and give
details about how to read, write, work with, and display graphics images; how
to alter the display properties and aspect ratio of an image during display;
how to print an image; and how to convert the data type or graphics format
of an image.

6-2

Working with Images in MATLAB® Graphics

Data Types
MATLAB math supports three different numeric classes for image display:

• double-precision floating-point (double)

• 16-bit unsigned integer (uint16)

• 8-bit unsigned integer (uint8)

The image display commands interpret data values differently depending
on the numeric class the data is stored in. “Working with 8-Bit and 16-Bit
Images” on page 6-10 includes details on the inner workings of the storage for
8- and 16-bit images.

By default, most data occupy arrays of class double. The data in these arrays
is stored as double-precision (64-bit) floating-point numbers. All MATLAB
functions and capabilities work with these arrays.

For images stored in one of the graphics file formats supported by MATLAB
functions, however, this data representation is not always ideal. The number
of pixels in such an image can be very large; for example, a 1000-by-1000
image has a million pixels. Since at least one array element represents each
pixel , this image requires about 8 megabytes of memory if it is stored as
class double.

To reduce memory requirements, you can store image data in arrays of class
uint8 and uint16. The data in these arrays is stored as 8-bit or 16-bit
unsigned integers. These arrays require one-eighth or one-fourth as much
memory as data in double arrays.

Bit Depth
MATLAB input functions read the most commonly used bit depths (bits per
pixel) of any of the supported graphics file formats. When the data is in
memory, it can be stored as uint8, uint16, or double. For details on which bit
depths are appropriate for each supported format, see imread and imwrite.

Supported Image Formats
MATLAB commands read, write, and display several types of graphics file
formats for images. As with MATLAB generated images, once a graphics

6-3

6 Displaying Bit-Mapped Images

file format image is displayed, it becomes a Handle Graphics image object.
MATLAB supports the following graphics file formats, along with others:

• BMP (Microsoft Windows Bitmap)

• GIF (Graphics Interchange Files)

• HDF (Hierarchical Data Format)

• JPEG (Joint Photographic Experts Group)

• PCX (Paintbrush)

• PNG (Portable Network Graphics)

• TIFF (Tagged Image File Format)

• XWD (X Window Dump)

For more information about the bit depths and image types supported for
these formats, see imread and imwrite.

Functions for Reading, Writing, and Displaying
Images
Images are essentially two-dimensional matrices, so many MATLAB functions
can operate on and display images. The following table lists the most useful
ones. The sections that follow describe these functions in more detail.

Function Purpose Function Group

axis Plot axis scaling and appearance. Display

image Display image (create image object). Display

imagesc Scale data and display as image. Display

imread Read image from graphics file. File I/O

imwrite Write image to graphics file. File I/O

imfinfo Get image information from
graphics file.

Utility

ind2rgb Convert indexed image to RGB
image.

Utility

6-4

Image Types

Image Types

In this section...

“Indexed Images” on page 6-5

“Intensity Images” on page 6-7

“RGB (Truecolor) Images” on page 6-8

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map.
map is an m-by-3 array of class double containing floating-point values in the
range [0, 1]. Each row of map specifies the red, green, and blue components
of a single color. An indexed image uses “direct mapping” of pixel values to
colormap values. The color of each image pixel is determined by using the
corresponding value of X as an index into map. Values of X therefore must be
integers. The value 1 points to the first row in map, the value 2 points to the
second row, and so on. Display an indexed image with the statements

image(X); colormap(map)

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. However, you are not
limited to using the default colormap—use any colormap that you choose.
The description for the property CDataMapping describes how to alter the
type of mapping used.

The next figure illustrates the structure of an indexed image. The pixels in
the image are represented by integers, which are pointers (indices) to color
values stored in the colormap.

6-5

../ref/image_props.html#CDataMapping

6 Displaying Bit-Mapped Images

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
double, the value 1 points to the first row in the colormap, the value 2 points
to the second row, and so on. If the image matrix is of class uint8 or uint16,
there is an offset—the value 0 points to the first row in the colormap, the
value 1 points to the second row, and so on. The offset is also used in graphics
file formats to maximize the number of colors that can be supported. In the
preceding image, the image matrix is of class double. Because there is no
offset, the value 5 points to the fifth row of the colormap.

Note When using the painters renderer on the Windows platform, you should
only use 256 colors when attempting to display an indexed image. Larger
colormaps can lead to unexpected colors because the painters algorithm uses
the Windows 256 color palette, which graphics drivers and graphics hardware
are known to handle differently. To work around this issue, use the Zbuffer
or OpenGL renderer, as appropriate. For more information regarding graphics
renderers in MATLAB, see Technical Note 1201: The Technical
Support Guide to Graphics Rendering and Troubleshooting.

6-6

http://www.mathworks.com/support/tech-notes/1200/1201.html
http://www.mathworks.com/support/tech-notes/1200/1201.html

Image Types

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities
within some range. An intensity image is represented as a single matrix, with
each element of the matrix corresponding to one image pixel. The matrix can
be of class double, uint8, or uint16. While intensity images are rarely saved
with a colormap, a colormap is still used to display them. In essence, handles
intensity images are treated as indexed images.

This figure depicts an intensity image of class double.

To display an intensity image, use the imagesc (“image scale”) function,
which enables you to set the range of intensity values. imagesc scales the
image data to use the full colormap. Use the two-input form of imagesc to
display an intensity image, for example:

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range.
The imagesc function displays I by mapping the first value in the range

6-7

6 Displaying Bit-Mapped Images

(usually 0) to the first colormap entry, and the second value (usually 1) to the
last colormap entry. Values in between are linearly distributed throughout
the remaining colormap colors.

Although it is conventional to display intensity images using a grayscale
colormap, it is possible to use other colormaps. For example, the following
statements display the intensity image I in shades of blue and green:

imagesc(I,[0 1]); colormap(winter);

To display a matrix A with an arbitrary range of values as an intensity image,
use the single-argument form of imagesc. With one input argument, imagesc
maps the minimum value of the data matrix to the first colormap entry, and
maps the maximum value to the last colormap entry. For example, these two
lines are equivalent:

imagesc(A); colormap(gray)
imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

RGB (Truecolor) Images
An RGB image, sometimes referred to as a truecolor image, is stored as an
m-by-n-by-3 data array that defines red, green, and blue color components for
each individual pixel. RGB images do not use a palette. The color of each pixel
is determined by the combination of the red, green, and blue intensities stored
in each color plane at the pixel’s location. Graphics file formats store RGB
images as 24-bit images, where the red, green, and blue components are 8 bits
each. This yields a potential of 16 million colors. The precision with which a
real-life image can be replicated has led to the nickname “truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB
array of class double, each color component is a value between 0 and 1. A pixel
whose color components are (0,0,0) is displayed as black, and a pixel whose
color components are (1,1,1) is displayed as white. The three color components
for each pixel are stored along the third dimension of the data array. For
example, the red, green, and blue color components of the pixel (10,5) are
stored in RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function:

image(RGB)

6-8

Image Types

The next figure shows an RGB image of class double.

To determine the color of the pixel at (2,3), look at the RGB triplet stored in
(2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains 0.1608,
and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

6-9

6 Displaying Bit-Mapped Images

Working with 8-Bit and 16-Bit Images

In this section...

“8-Bit and 16-Bit Indexed Images” on page 6-10

“8-Bit and 16-Bit Intensity Images” on page 6-11

“8-Bit and 16-Bit RGB Images” on page 6-11

“Mathematical Operations Support for uint8 and uint16” on page 6-12

“Other 8-Bit and 16-Bit Array Support” on page 6-13

“Converting an 8-Bit RGB Image to Grayscale” on page 6-13

“Summary of Image Types and Numeric Classes” on page 6-17

8-Bit and 16-Bit Indexed Images
Double-precision (64-bit) floating-point numbers are the default MATLAB
representation for numeric data. However, to reduce memory requirements
for working with images, you can store images as 8-bit or 16-bit unsigned
integers using the numeric classes uint8 or uint16, respectively. An image
whose data matrix has class uint8 is called an 8-bit image; an image whose
data matrix has class uint16 is called a 16-bit image.

The image function can display 8- or 16-bit images directly without converting
them to double precision. However, image interprets matrix values slightly
differently when the image matrix is uint8 or uint16. The specific
interpretation depends on the image type.

If the class of X is uint8 or uint16, its values are offset by 1 before being
used as colormap indices. The value 0 points to the first row of the colormap,
the value 1 points to the second row, and so on. The image command
automatically supplies the proper offset, so the display method is the same
whether X is double, uint8, or uint16:

image(X); colormap(map);

The colormap index offset for uint8 and uint16 data is intended to support
standard graphics file formats, which typically store image data in indexed
form with a 256-entry colormap. The offset allows you to manipulate and

6-10

Working with 8-Bit and 16-Bit Images

display images of this form using the more memory-efficient uint8 and
uint16 arrays.

Because of the offset, you must add 1 to convert a uint8 or uint16 indexed
image to double. For example:

X64 = double(X8) + 1;
or

X64 = double(X16) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8 or uint16:

X8 = uint8(X64 - 1);
or

X16 = uint16(X64 - 1);

8-Bit and 16-Bit Intensity Images
The range of double image arrays is usually [0, 1], but the range of 8-bit
intensity images is usually [0, 255] and the range of 16-bit intensity images is
usually [0, 65535]. Use the following command to display an 8-bit intensity
image with a grayscale colormap:

imagesc(I,[0 255]); colormap(gray);

To convert an intensity image from double to uint16, first multiply by 65535:

I16 = uint16(round(I64*65535));

Conversely, divide by 65535 after converting a uint16 intensity image to
double:

I64 = double(I16)/65535;

8-Bit and 16-Bit RGB Images
The color components of an 8-bit RGB image are integers in the range [0, 255]
rather than floating-point values in the range [0, 1]. A pixel whose color
components are (255,255,255) is displayed as white. The image command
displays an RGB image correctly whether its class is double, uint8, or uint16:

image(RGB);

6-11

6 Displaying Bit-Mapped Images

To convert an RGB image from double to uint8, first multiply by 255:

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 RGB image to double:

RGB64 = double(RGB8)/255

To convert an RGB image from double to uint16, first multiply by 65535:

RGB16 = uint16(round(RGB64*65535));

Conversely, divide by 65535 after converting a uint16 RGB image to double:

RGB64 = double(RGB16)/65535;

Mathematical Operations Support for uint8 and
uint16
To use the following MATLAB functions with uint8 and uint16 data, first
convert the data to type double:

• conv2

• convn

• fft2

• fftn

For example, if X is a uint8 image, cast the data to type double:

fft(double(X))

In these cases, the output is always double.

The sum function returns results in the same type as its input, but provides
an option to use double precision for calculations.

MATLAB Integer Mathematics
See “Arithmetic Operations on Integer Classes” for more information on how
mathematical functions work with data types that are not doubles.

6-12

Working with 8-Bit and 16-Bit Images

Most Image Processing Toolbox™ functions accept uint8 and uint16 input.
If you plan to do sophisticated image processing on uint8 or uint16 data,
consider including that toolbox in your MATLAB computing environment.

Other 8-Bit and 16-Bit Array Support
You can perform several other operations on uint8 and uint16 arrays,
including:

• Reshaping, reordering, and concatenating arrays using the functions
reshape, cat, permute, and the [] and ' operators

• Saving and loading uint8 and uint16 arrays in MAT-files using save and
load. (Remember that if you are loading or saving a graphics file format
image, you must use the commands imread and imwrite instead.)

• Locating the indices of nonzero elements in uint8 and uint16 arrays using
find. However, the returned array is always of class double.

• Relational operators

Converting an 8-Bit RGB Image to Grayscale
You can perform arithmetic operations on integer data, which enables you
to convert image types without first converting the numeric class of the
image data.

This example reads an 8-bit RGB image into a MATLAB variable and converts
it to a grayscale image:

rgb_img = imread('ngc6543a.jpg'); % Load the image
image(rgb_img) % Display the RGB image

axis image;

6-13

6 Displaying Bit-Mapped Images

Note This image was created with the support of the Space Telescope
Science Institute, operated by the Association of Universities for Research in
Astronomy, Inc., from NASA contract NAs5-26555, and is reproduced with
permission from AURA/STScI. Digital renditions of images produced by
AURA/STScI are obtainable royalty-free. Credits: J.P. Harrington and K.J.
Orkowski (University of Maryland), and NASA.)

Calculate the monochrome luminance by combining the RGB values according
to the NTSC standard, which applies coefficients related to the eye’s
sensitivity to RGB colors:

6-14

Working with 8-Bit and 16-Bit Images

I = .2989*rgb_img(:,:,1)...
+.5870*rgb_img(:,:,2)...
+.1140*rgb_img(:,:,3);

I is an intensity image with integer values ranging from a minimum of zero:

min(I(:))
ans =
0

to a maximum of 255:

max(I(:))
ans =
255

To display the image, use a grayscale colormap with 256 values. This avoids
the need to scale the data-to-color mapping, which is required if you use a
colormap of a different size. Use the imagesc function in cases where the
colormap does not contain one entry for each data value.

Now display the image in a new figure using the gray colormap:

figure; colormap(gray(256)); image(I);
axis image;

6-15

6 Displaying Bit-Mapped Images

Related Information
Other colormaps with a range of colors that vary continuously from dark to
light can produce usable images. For example, try colormap(summer(256))
for a classic oscilloscope look. See colormap for more choices.

The brighten function enables you to increase or decrease the color
intensities in a colormap to compensate for computer display differences or to
enhance the visibility of faint or bright regions of the image (at the expense of
the opposite end of the range).

6-16

Working with 8-Bit and 16-Bit Images

Summary of Image Types and Numeric Classes
This table summarizes how data matrix elements are interpreted as pixel
colors, depending on the image type and data class.

Image Type double Data uint8 or uint16 Data

Indexed Image is an m-by-n array of
integers in the range [1, p].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1].

Image is an m-by-n array
of integers in the range
[0, p –1].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1].

Intensity Image is an m-by-n array of
floating-point values that are
linearly scaled to produce
colormap indices. The typical
range of values is [0, 1].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1] and is typically
grayscale.

Image is an m-by-n array
of integers that are linearly
scaled to produce colormap
indices. The typical range
of values is [0, 255] or [0,
65535].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1] and is typically
grayscale.

RGB
(Truecolor)

Image is an m-by-n-by-3
array of floating-point values
in the range [0, 1].

Image is an m-by-n-by-3
array of integers in the range
[0, 255] or [0, 65535].

6-17

6 Displaying Bit-Mapped Images

Reading, Writing, and Querying Graphics Image Files

In this section...

“Working with Image Formats” on page 6-18

“Reading a Graphics Image” on page 6-19

“Writing a Graphics Image” on page 6-19

“Subsetting a Graphics Image (Cropping)” on page 6-20

“Obtaining Information About Graphics Files” on page 6-21

Working with Image Formats
In its native form, a graphics file format image is not stored as a MATLAB
matrix, or even necessarily as a matrix. Most graphics files begin with a
header containing format-specific information tags, and continue with bitmap
data that can be read as a continuous stream. For this reason, you cannot
use the standard MATLAB I/O commands load and save to read and write a
graphics file format image.

Call special MATLAB functions to read and write image data from graphics
file formats:

• To read a graphics file format image use imread.

• To write a graphics file format image, use imwrite.

• To obtain information about the nature of a graphics file format image,
use imfinfo.

This table gives a clearer picture of which MATLAB commands should be
used with which image types.

Procedure Functions to Use

Load or save a matrix as a MAT-file. load

save

Load or save graphics file format image, e.g.,
BMP, TIFF.

imread

imwrite

6-18

Reading, Writing, and Querying Graphics Image Files

Procedure Functions to Use

Display any image loaded into the MATLAB
workspace.

image

imagesc

Utilities imfinfo

ind2rgb

Reading a Graphics Image
The imread function reads an image from any supported graphics image file
in any of the supported bit depths. Most of the images that you read are 8-bit.
When these are read into memory, they are stored as class uint8. The main
exception to this rule is MATLAB support for 16-bit data for PNG and TIFF
images; if you read a 16-bit PNG or TIFF image, it is stored as class uint16.

Note For indexed images, imread always reads the colormap into an array
of class double, even though the image array itself can be of class uint8 or
uint16.

The following commands read the image ngc6543a.jpg into the workspace
variable RGB and then displays the image using the image function:

RGB = imread('ngc6543a.jpg');
image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB
imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

Writing a Graphics Image
When you save an image using imwrite, the default behavior is to
automatically reduce the bit depth to uint8. Many of the images used in
MATLAB are 8-bit, and most graphics file format images do not require

6-19

6 Displaying Bit-Mapped Images

double-precision data. One exception to the rule for saving the image data
as uint8 is that PNG and TIFF images can be saved as uint16. Because
these two formats support 16-bit data, you can override the MATLAB default
behavior by specifying uint16 as the data type for imwrite. The following
example shows writing a 16-bit PNG file using imwrite.

imwrite(I,'clown.png','BitDepth',16);

Subsetting a Graphics Image (Cropping)
Sometimes you want to work with only a portion of an image file or you
want to break it up into subsections. Specify the intrinsic coordinates of the
rectangular subsection you want to work with and save it to a file from the
command line. If you do not know the coordinates of the corner points of the
subsection, choose them interactively, as the following example shows:

% Read demo RGB image from graphics file.
im = imread('street2.jpg');

% Display image with true aspect ratio
image(im); axis image

% Use ginput to select corner points of a rectangular
% region by pointing and clicking the mouse twice
p = ginput(2);

% Get the x and y corner coordinates as integers
sp(1) = min(floor(p(1)), floor(p(2))); %xmin
sp(2) = min(floor(p(3)), floor(p(4))); %ymin
sp(3) = max(ceil(p(1)), ceil(p(2))); %xmax
sp(4) = max(ceil(p(3)), ceil(p(4))); %ymax

% Index into the original image to create the new image
MM = im(sp(2):sp(4), sp(1): sp(3),:);

% Display the subsetted image with appropriate axis ratio
figure; image(MM); axis image

% Write image to graphics file.
imwrite(MM,'street2_cropped.tif')

6-20

Reading, Writing, and Querying Graphics Image Files

If you know what the image corner coordinates should be, you can manually
define sp in the preceding example rather than using ginput.

You can also display a “rubber band box” as you interact with the image to
subset it. See the code example for rbbox for details. For further information,
see the documentation for the ginput and image functions.

Obtaining Information About Graphics Files
The imfinfo function enables you to obtain information about graphics files
in any of the standard formats listed earlier. The information you obtain
depends on the type of file, but it always includes at least the following:

• Name of the file, including the folder path if the file is not in the current
folder

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: RGB (truecolor), intensity (grayscale), or indexed

6-21

6 Displaying Bit-Mapped Images

Displaying Graphics Images

In this section...

“Image Types and Display Methods” on page 6-22

“Controlling Aspect Ratio and Display Size” on page 6-24

Image Types and Display Methods
To display a graphics file image, use either image or imagesc. For example,
read the image ngc6543a.jpg to a variable RGB and display the image using
the image function. Change the axes aspect ratio to the true ratio using
axis command.

RGB = imread('ngc6543a.jpg');
image(RGB);
axis image;

6-22

Displaying Graphics Images

This table summarizes display methods for the three types of images.

Image Type Display Commands Uses Colormap Colors

Indexed image(X);
colormap(map)

Yes

Intensity imagesc(I,[0 1]);
colormap(gray)

Yes

RGB (truecolor) image(RGB) No

6-23

6 Displaying Bit-Mapped Images

Controlling Aspect Ratio and Display Size
The image function displays the image in a default-sized figure and axes. The
image stretches or shrinks to fit the display area. Sometimes you want the
aspect ratio of the display to match the aspect ratio of the image data matrix.
The easiest way to do this is with the axis image command.

For example, these commands display the earth image in the demos folder
using the default figure and axes positions:

load earth
image(X); colormap(map)

6-24

Displaying Graphics Images

The elongated globe results from stretching the image display to fit the
axes position. Use the axis image command to force the aspect ratio to be
one-to-one.

axis image

The axis image command works by setting the DataAspectRatio property of
the axes object to [1 1 1]. See axis and axes for more information on how to
control the appearance of axes objects.

Sometimes you want to display an image so that each element in the data
matrix corresponds to a single screen pixel. To display an image with this
one-to-one matrix-element-to-screen-pixel mapping, you need to resize the

6-25

6 Displaying Bit-Mapped Images

figure and axes. For example, these commands display the earth image so
that one data element corresponds to one screen pixel:

[m,n] = size(X);
figure('Units','pixels','Position',[100 100 n m])
image(X); colormap(map)
set(gca,'Position',[0 0 1 1])

The figure’s Position property is a four-element vector that specifies the
figure’s location on the screen as well as its size. The figure command
positions the figure so that its lower left corner is at position (100,100) on the
screen and so that its width and height match the image width and height.
Setting the axes position to [0 0 1 1] in normalized units creates an axes that
fills the figure. The resulting picture is shown.

6-26

The Image Object and Its Properties

The Image Object and Its Properties

In this section...

“Image CData” on page 6-27

“Image CDataMapping” on page 6-28

“XData and YData” on page 6-28

“Adding Text to Images” on page 6-32

“Additional Techniques for Fast Image Updating” on page 6-34

Image CData

Note The image and imagesc commands create image objects. Image
objects are children of axes objects, as are line, patch, surface, and text
objects. Like all Handle Graphics objects, the image object has a number of
properties you can set to fine-tune its appearance on the screen. The most
important properties of the image object with respect to appearance are
CData, CDataMapping, XData, and YData. These properties are discussed in
this and the following sections. For detailed information about these and all
the properties of the image object, see image.

The CData property of an image object contains the data array. In the
following commands, h is the handle of the image object created by image, and
the matrices X and Y are the same:

h = image(X); colormap(map)
Y = get(h,'CData');

The dimensionality of the CData array controls whether the image
displays using colormap colors or as an RGB image. If the CData array
is two-dimensional, the image is either an indexed image or an intensity
image; in either case, the image is displayed using colormap colors. If, on the
other hand, the CData array is m-by-n-by-3, it displays as a truecolor image,
ignoring the colormap colors.

6-27

../ref/image_props.html#CData
../ref/image_props.html#CDataMapping
../ref/image_props.html#XData
../ref/image_props.html#YData

6 Displaying Bit-Mapped Images

Image CDataMapping
The CDataMapping property controls whether an image is indexed or
intensity. To display an indexed image set the CDataMapping property to
'direct', so that the values of the CData array are used directly as indices
into the figure’s colormap. When the image command is used with a single
input argument, it sets the value of CDataMapping to 'direct':

h = image(X); colormap(map)
get(h,'CDataMapping')
ans =

direct

Intensity images are displayed by setting the CDataMapping property to
'scaled'. In this case, the CData values are linearly scaled to form colormap
indices. The axes CLim property controls the scale factors. The imagesc
function creates an image object whose CDataMapping property is set to
'scaled', and it adjusts the CLim property of the parent axes. For example:

h = imagesc(I,[0 1]); colormap(map)
get(h,'CDataMapping')
ans =

scaled

get(gca,'CLim')
ans =

[0 1]

XData and YData
The XData and YData properties control the coordinate system of the image.
For an m-by-n image, the default XData is [1 n] and the default YData is [1
m]. These settings imply the following:

• The left column of the image has an x-coordinate of 1.

• The right column of the image has an x-coordinate of n.

• The top row of the image has a y-coordinate of 1.

6-28

../ref/image_props.html#CData
../ref/axes_props.html#CLim
../ref/image_props.html#YData
../ref/image_props.html#XData

The Image Object and Its Properties

• The bottom row of the image has a y-coordinate of m.

For example, the statements

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
h = image(X); colormap(colorcube(12))
xlabel x; ylabel y

produce the following picture.

6-29

6 Displaying Bit-Mapped Images

The XData and YData properties of the resulting image object have the
following default values:

get(h,'XData')
ans =

1 4

6-30

The Image Object and Its Properties

get(h,'YData')
ans =

1 3

However, you can override the default settings to specify your own coordinate
system. For example, the statements

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
image(X,'XData',[-1 2],'YData',[2 4]); colormap(colorcube(12))
xlabel x; ylabel y

produce the following picture.

6-31

6 Displaying Bit-Mapped Images

Adding Text to Images
Use basic array indexing to rasterize text strings into an existing image,
as described in this section:

Draw the text strings using text, and then capture a bitmapped version of
them using getframe. Then find the black pixels and convert their subscripts
to indexes using sub2ind. Use these subscripts to “paint” the text into the

6-32

The Image Object and Its Properties

image into which you want to add the text string, and then save that image.
Here is an example using the image in the demo MAT-file mandrill.mat:

% Create the text in an axis:
t = text(.05,.1,'Mandrill Face', ...

'FontSize',12, 'FontWeight','demi');

% Capture the text from the screen:
F = getframe(gca,[10 10 200 200]);

% Close the figure:
close

% Select any plane of the resulting RGB image:
c = F.cdata(:,:,1);

% Note: If you have Image Processing Toolbox installed,
% you can convert the RGB data from the frame to black or white:
% c = rgb2ind(F.cdata,2);

% Determine where the text was (black is 0):
[i,j] = find(c == 0);

% Read in or load the image that is to contain the text:
load mandrill

% Use the size of that image, plus the row/column locations
% of the text, to determine locations in the new image:
ind = sub2ind(size(X),i,j);

% Index into new image, replacing pixels with white:
X(ind) = uint8(255);

% Display and color the new image:
imagesc(X)
axis image
colormap(bone)

6-33

6 Displaying Bit-Mapped Images

Additional Techniques for Fast Image Updating
To increase the rate at which the CData property of an image object updates,
optimize CData and set some related figure and axes properties:

• Use the smallest data type possible. Using a uint8 data type for your
image will be faster than using a double data type.

Part of the process of setting the image’s CData property includes copying
the matrix for the image’s use. The overall size of the matrix is dependent
on the size of its individual elements. Using smaller individual elements
(i.e., a smaller data type) decreases matrix size, and reduces the amount
of time needed to copy the matrix.

• Use the smallest acceptable matrix.

If the speed at which the image is displayed is your highest priority, you
may need to compromise on the size and quality of the image. Again,
decreasing the size reduces the time needed to copy the matrix.

• Make the axes exactly the same size (in pixels) as the CData matrix.

6-34

The Image Object and Its Properties

Maintaining a one-to-one correspondence between the data and the
onscreen pixels eliminates the need for interpolation. For example:

set(gca,'Units','pixels')
pos = get(gca,'Position')
width = pos(3);
height = pos(4);

When the size of your CData exactly equals [width height], each element
of the array corresponds directly to a pixel. Otherwise, the values in the
CData array must be interpolated so the image fits the axes at their current
size.

• Set the limit mode properties (XLimMode and YLimMode) of your axes to
manual.

If they are set to auto, then every time an object (such as an image, line,
patch, etc.) changes some aspect of its data, the axes must recalculate its
related properties. For example, if you specify

image(firstimage);
set(gca, 'xlimmode','manual',...
'ylimmode','manual',...
'zlimmode','manual',...
'climmode','manual',...
'alimmode','manual');

the axes do not recalculate any of the limit values before redrawing the
image.

• Set the figure’s DoubleBuffer property to off.

set(gcf,'doublebuffer','off');

The DoubleBuffer property is 'on' by default, producing flicker-free
animation. To maximize rendering speed, set DoubleBuffer to 'off’.

• Alternately, consider using a movie object if the main point of your task
is to simply display a series of images onscreen.

The MATLAB movie object utilizes underlying system graphics resources
directly, instead of executing MATLAB object code. This is faster than
repeatedly setting an image’s CData property, as described earlier.

6-35

6 Displaying Bit-Mapped Images

Printing Images
When you set the axes Position to [0 0 1 1] so that it fills the entire figure,
the aspect ratio is not preserved when you print because MATLAB printing
software adjusts the figure size when printing according to the figure’s
PaperPosition property. To preserve the image aspect ratio when printing,
set the figure’s PaperPositionMode to 'auto' from the command line.

set(gcf,'PaperPositionMode','auto')
print

When PaperPositionMode is set to 'auto', the width and height of the
printed figure are determined by the figure’s dimensions on the screen, and
the figure position is adjusted to center the figure on the page. If you want
the default value of PaperPositionMode to be 'auto', enter this line in
your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

Printed images may not always be the same size as they are on your monitor.
The size depends on accurately specifying the numbers of pixels per inch
that you monitor is displaying.

To specify the pixels-per-inch on your display, do the following (in Microsoft
Windows):

1 Go into your Display Properties by right-clicking on an empty space on your
desktop and choose Properties.

2 Click the Settings pane.

3 Click the Advanced button and choose the General pane.

4 Switch DPI setting to Custom setting and hold a real ruler up to the picture of
the ruler on the screen and drag until they match.

Until you do this, neither Windows software nor any other can determine how
big images on the screen are, and printed images cannot match the size.

On the Macintosh® platform, pixels per inch is hard-coded to 72.

6-36

../ref/figure_props.html#PaperPosition
../ref/figure_props.html#PaperPositionMode

Converting the Data or Graphic Type of Images

Converting the Data or Graphic Type of Images
Converting between data types changes the interpretation of the image data.
If you want the resulting array to be interpreted properly as image data,
rescale or offset the data when you convert it. (See the earlier sections “Image
Types” on page 6-5 and “8-Bit and 16-Bit Indexed Images” on page 6-10 for
more information about offsets.)

For certain operations, it is helpful to convert an image to a different image
type. For example, to filter a color image that is stored as an indexed image,
first convert it to RGB format. To do this efficiently, use the ind2rgb function.
When you apply the filter to the RGB image, the intensity values in the image
are filtered, as is appropriate. If you attempt to filter the indexed image, the
filter is applied to the indices in the indexed image matrix, and the results
may not be meaningful.

You can also perform certain conversions just using MATLAB syntax. For
example, to convert a grayscale image to RGB, concatenate three copies of the
original matrix along the third dimension:

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue
planes, so the image appears as shades of gray.

Changing the graphics format of an image, perhaps for compatibility with
another software product, is very straightforward. For example, to convert
an image from a BMP to a PNG, load the BMP using imread, set the data
type to uint8, uint16, or double, and then save the image using imwrite,
with 'PNG' specified as your target format. See imread and imwrite for the
specifics of which bit depths are supported for the different graphics formats,
and for how to specify the format type when writing an image to file.

6-37

6 Displaying Bit-Mapped Images

6-38

7

Printing and Exporting

• “Overview of Printing and Exporting” on page 7-2

• “How to Print or Export” on page 7-10

• “Examples of Printing and Exporting” on page 7-37

• “Changing a Figure’s Settings” on page 7-44

• “Choosing a Graphics Format” on page 7-77

• “Choosing a Printer Driver” on page 7-89

• “Troubleshooting” on page 7-99

7 Printing and Exporting

Overview of Printing and Exporting

In this section...

“Print and Export Operations” on page 7-2

“Graphical User Interfaces” on page 7-2

“Command Line Interface” on page 7-3

“Specifying Parameters and Options” on page 7-5

“Default Settings and How to Change Them” on page 7-7

Print and Export Operations
There are four basic operations that you can perform in printing or
transferring figures you’ve created with MATLAB graphics to specific file
formats for other applications to use.

Operation Description

Print Send a figure from the screen directly to the printer.

Print to File Write a figure to a PostScript® file to be printed later.

Export to File Export a figure in graphics format to a file, so that you can
import it into an application.

Export to Clipboard Copy a figure to the Microsoft Windows clipboard, so that you
can paste it into an application.

Graphical User Interfaces
In addition to typing MATLAB commands, you can use interactive tools for
either Microsoft Windows or UNIX® to print and export graphics. The table
below lists the GUIs available for doing this and explains how to open them
from figure windows.

7-2

Overview of Printing and Exporting

Dialog Box How to Open Description

Print (Windows and UNIX) File > Print or printdlg
function

Send figure to the printer,
select the printer, print to file,
and several other options

Print Preview File > Print Preview or
printpreview function

View and adjust the final
output

Export File > Export Export the figure in graphics
format to a file

Copy Options Edit > Copy Options Set format, figure size, and
background color for Copy to
Clipboard

Figure Copy Template File > Preferences Change text, line, axes, and
UI control properties

You can open the Print and Print Preview dialog boxes from a MATLAB file
or from the command line with the printdlg and printpreview functions.

Command Line Interface
You can print a MATLAB figure from the command line or from a MATLAB
file. Use the set function to set the properties that control how the printed
figure looks. Use the print function to specify the output format and start
the print or export operation.

Note Printed output from MATLAB commands and Print Previews of it
are not guaranteed to duplicate the look of figures on your display screen in
every detail. Many factors, including the complexity of the figure, available
fonts, and whether a native printer driver or a MATLAB built-in driver to is
used, affect the final output and can cause printed output to differ from what
you see on your screen.

Modifying Properties with set
The set function changes the values of properties that control the look of a
figure and objects within it. These properties are stored with the figure; some

7-3

7 Printing and Exporting

are also properties of children such as axes or annotations. When you change
one of the properties, the new value is saved with the figure and affects the
look of the figure each time you print it until you change the setting again.

To change the print properties of the current figure, the set command has
the form

set(gcf, 'Property1', value1, 'Property2', value2, ...)

where gcf is a function call that returns the handle of the current figure, and
each property value pair consists of a named property followed by the value
to which the property is set.

For example,

set(gcf, 'PaperUnits', 'centimeters', 'PaperType', 'A4', ...)

sets the units of measure and the paper size. “Changing a Figure’s Settings”
on page 7-44 describes commonly used print properties. The Figure Properties
reference page contains a complete list of the properties.

Examining Properties with get
You can also use the get function to retrieve the value of a specific property.

a = get(gcf, 'Property')

Note You can also peruse and modify figure and other object properties with
the Property Inspector GUI, which you can open with the inspect command.
To open the current figure in the Property Inspector, type
inspect(gcf)

Printing and Exporting with print
The print function performs any of the four actions shown in the table below.
You control what action is taken, depending on the presence or absence
of certain arguments.

7-4

Overview of Printing and Exporting

Action Print Command

Print a figure to a printer print

Print a figure to a file for later
printing

print filename

Copy a figure in graphics format to
the clipboard on Microsoft Windows
systems

print -dfileformat

Export a figure to a graphics format
file that you can later import into an
application

print -dfileformat filename

You can also include optional arguments with the print command. For
example, to export Figure No. 2 to file spline2d.eps, with 600 dpi resolution,
and using the EPS color graphics format, use

print -f2 -r600 -depsc spline2d

The functional form of this command is

print('-f2', '-r600', '-depsc', 'spline2d');

Printing on UNIX Platforms without a Display
If you run with the PostScript -nodisplay startup option, or run without
the DISPLAY environment variable set, you can use most print options that
apply to the UNIX platform, but some restrictions apply. For example, in
nodisplay mode uicontrols do not print; thus you cannot print a GUI if you
run in this mode.

See “Printing and Exporting without a Display” in the documentation for
the print function for details.

Specifying Parameters and Options
The table below lists parameters you can modify for the figure to be printed or
exported. To change one of these parameters, use the Print Preview or the
UNIX Print dialog box, or use the set or print function.

7-5

7 Printing and Exporting

See “Changing a Figure’s Settings” on page 7-44 for more detailed instructions.

Parameter Description

Figure size Set size of the figure on printed page

Figure position Set position of figure on printed page

Paper size Select printer paper, specified by dimension or
type

Paper orientation Specify way figure is oriented on page

Position mode Specify figure position yourself or let it be
determined automatically

Graphics format Select format for exported data (e.g., EPS, JPEG)

Resolution Specify how finely your figure is to be sampled

Renderer Select method (algorithm) for drawing graphics

Renderer mode Specify the renderer yourself or automatically
determine which renderer to use based on the
figure’s contents

Axes tick marks Keep axes tick marks and limits as shown or
automatically adjust them depending on figure
size

Background color Keep background color as shown on screen or
force it to white

Line and text color Keep line and text objects as shown on screen or
print them in black and white

UI controls Show or hide all user interface controls in figure

Bounding box Leave space between outermost objects in plot
and edges of its background area

CMYK Automatically convert RGB values to CMYK
values

Character set encoding Select character set for PostScript printers

7-6

Overview of Printing and Exporting

Default Settings and How to Change Them
If you have not changed the default print and export settings, MATLAB prints
or exports the figure as follows:

• 8-by-6 inches with no window frame

• Centered, in portrait format, on 8.5-by-11 inch paper if available

• Using white background color for the figure and axes

• Scaling ticks and limits of the axes to accommodate the printed size

Setting Defaults for a Figure
In general, to change the property settings for a specific figure, follow the
instructions given in the section “Changing a Figure’s Settings” on page 7-44.

Any settings you change with the Print Preview and Print dialog boxes or
with the set function are saved with the figure and affect each printing of the
figure until you change the settings again.

The settings you change with the Figure Copy Template Preferences
and Copy Options Preferences panels alter the figure as it is displayed
on the screen.

Setting Defaults for the Session
You can set the session defaults for figure properties. Set the session default
for a property using the syntax

set(0, 'DefaultFigurepropertyname', 'value')

where propertyname is one of the named figure properties. This example
sets the paper orientation for all subsequent print operations in the current
MATLAB session.

set(0, 'DefaultFigurePaperOrientation', 'landscape')

The Figure Properties reference page contains a complete list of the properties.

To see what default properties you can set that will be applied to all
subsequent figures in the same MATLAB session, type

7-7

7 Printing and Exporting

set(0,'default')

To see their current settings, type

get(0,'default')

Setting Defaults Across Sessions
You can set the session-to-session defaults for figure properties, the print
driver, and the print function.

Print Device and Print Command. Set the default print driver and the
default print command in your printopt.m file. This file contains instructions
for changing these settings and for displaying the current defaults. Open
printopt.m in your editor by typing the command

edit printopt

Scroll down about 40 lines until you come to this comment line:

%---> Put your own changes to the defaults here (if needed)

Add your changes after that line. For example, to change the default driver,
first find the line that sets dev, and then replace the text string with an
appropriate value. So, to set the default driver to HP LaserJet III, modify
the line to read

dev = '-dljet3';

For the full list of values for dev, see the Drivers section of the print
reference page.

Note If you set dev to be a graphics format, such as -djpeg, the figure is
exported to that type of file rather than being printing.

Figure Properties. Set the session-to-session default for a property by
including commands like the following in your startup.m file:

set(0, 'DefaultFigurepropertyname', 'value')

7-8

../ref/print.html#devices_target

Overview of Printing and Exporting

where propertyname is one of the named figure properties. For example,

set(0, 'DefaultFigureInvertHardcopy', 'off')

keeps the figure background in the screen color.

This is the same command you use to change a session default, except by
adding it to your startup.m file, it executes automatically every time you
launch MATLAB.

Note Options you specify in arguments to the print command override
properties set using MATLAB commands or the Print Preview dialog box,
which in turn override any MATLAB default settings specified in printopt.m
or startup.m.

7-9

7 Printing and Exporting

How to Print or Export

In this section...

“Using Print Preview” on page 7-10

“Printing a Figure” on page 7-13

“Printing to a File” on page 7-18

“Exporting to a File” on page 7-20

“Exporting to the Windows or Macintosh Clipboard” on page 7-32

Using Print Preview
Before you print or export a figure, preview the image by selecting Print
Preview from the figure window’s File menu. If necessary, you can use
the set function to adjust specific characteristics of the printed or exported
figure. Adjustments that you make in the Print Preview dialog also set figure
properties; these changes can affect the output you get should you print the
figure later with the print command. See “Changing a Figure’s Settings” on
page 7-44 for details.

7-10

How to Print or Export

Adding a Header to the Printed Page
You can add a header to the page you are about to print by clicking the
Lines/Text tab at the top of the Print Preview dialog box. At the bottom of
that panel are the Header controls, as shown here:

7-11

7 Printing and Exporting

The print header includes any text you want to appear at the top of the printed
page. It can also include the current date. In the Header Text edit box, enter
the text of the header. Under Date Type, select from a number of possible
formats with which to display the current date and/or time. The default is to
include no date. Click the Font button to change the font, font style, font size,
or script type for the header text and date format. If you don’t see the header
as you specified it, click the Refresh button over the preview pane. A page
containing a header plus date in bold italics is shown in the preview below:

7-12

How to Print or Export

Click Print to open the standard print dialog box to print the page. Click
Close to close the dialog box and apply these settings to your figure.

Printing a Figure
This section tells you how to print your figure to a printer:

• “Printing with the Print GUI on Microsoft Windows” on page 7-14

• “Printing with the Print GUI on UNIX Platforms” on page 7-15

• “Printing Using PostScript Commands” on page 7-18

7-13

7 Printing and Exporting

Printing with the Print GUI on Microsoft Windows
MATLAB printing on Windows platforms uses the standard Windows Print
dialog box, which most Windows software products share. To open the
Windows Print dialog box, select Print from the figure window’s File menu
or click the Print button in the Print Preview dialog box.

• To print a figure, first select a printer from the list box, then click OK.

• To save it to a file, click the Print to file check box, click OK, and when
the Print to File window appears, enter the filename you want to save the
figure to. The file is written to your current working folder.

Settings you can change in the Windows Print dialog box are as follows:

Properties. To make changes to settings specific to a printer, click the
Properties button. This opens the Windows Document Properties window.

Print range. You can only select All in this panel. The selection does not
affect your printed output.

Copies. Enter the number of copies you want to print.

7-14

How to Print or Export

You can also open the Print dialog programmatically via the printdlg
function.

Printing with the Print GUI on UNIX Platforms
MATLAB printing on UNIX platrforms has a Print dialog box containing
three tabs. To open the Print dialog box, select Print from the figure window’s
File menu. It opens showing the General tab’s contents:

To print a figure, click the Name button under Print Service and select
a printer from the list box.

7-15

7 Printing and Exporting

Note Printers accessed from the Print dialog are assumed to be
PostScript-enabled. If you want to print to a non-PostScript device, you will
need to use File > Save As and specify the Save as type or issue a print
command specifying the appropriate driver with the -d flag.

The Page Setup tab on the Print dialog looks like this:

You can set paper characteristics and margins with the controls on this tab.
You might want to use the Print Preview dialog instead, however, as it allows
you to do the same things and gives you visual feedback at the same time. For
details, see “Using Print Preview” on page 7-10.

The Appearance Print dialog tab lets you control several aspects of your
print jobs:

7-16

How to Print or Export

The Appearance options include Duplex and Tumble printing, whether a
banner page should precede the printed page, whether to print in color, and
what quality of printing to use. You can also use Print Preview to control
color.

Related settings in the Print Preview dialog box include

Printing in Color. Depending on the capabilities of the printer you are
using, you can print in black and white, grayscale, or color by selecting the
appropriate button in the Color Scale panel of the Print Preview Color
tab. You can also choose a background color that is the same or different
from the figure’s color.

Figure Size and Position on Printed Page. If you want the printed plot
to have the same size as it does on your screen, select Auto (Actual Size,
Centered) on the Layout tab. If you want the printed output to have a
specific size, select Use manual size and position.

7-17

7 Printing and Exporting

See “Setting the Figure Size and Position” on page 7-48 for more information.

Axes Limits and Ticks. To force the same number of ticks and the same
limit values for the axes as are used on the screen to be printed, select Keep
screen limits and ticks on the Advanced tab of the Print Preview dialog
box. To automatically scale the limits and ticks of the axes based on the size
of the printed figure, select Recompute limits and ticks.

See “Setting the Axes Ticks and Limits” on page 7-64 for more information.

Printing Using PostScript Commands
Use the print function to print from the PostScript command line or from
a program. See “Printing and Exporting with print” on page 7-4 for more
information.

To send the current or most recently active figure to a printer, simply type

print

The Printing Options table on the print reference page shows a full list of
options that you can use with the print function. For example, the following
command prints Figure No. 2 with 600 dpi resolution, using the Canon
BubbleJet BJ200 printer driver:

print -f2 -r600 -dbj200

Printing to a File
Instead of sending your figure to the printer right now, you have the option of
“printing” it to a file, and then sending the file to the printer later on. You can
also append additional figures to the same file using the print command.

Note When you print to a file, the file name must have fewer than 128
characters, including path name. When you print to a file in your current
folder, the filename must have fewer than 126 characters, because MATLAB
places './' or '.\'’ at the beginning of the filename when referring to it.

This section tells you how to save your figure to a file:

7-18

../ref/print.html#options_target

How to Print or Export

• “Printing to a File with the Print GUI on Windows Platforms” on page 7-19

• “Printing to a File with the Print GUI on UNIX Platforms” on page 7-19

• “Printing to a File Using MATLAB Commands” on page 7-19

Printing to a File with the Print GUI on Windows Platforms

1 To open the Print dialog box, select Print from the figure window’s Filemenu.

2 Select the check box labeled Print to file, and click the OK button.

3 The Print to file dialog box appears, allowing you to specify the output
folder and filename.

Printing to a File with the Print GUI on UNIX Platforms

1 To open the Print dialog box, select Print from the figure window’s Filemenu.

2 Select the radio button labeled File, and either fill in or browse for the folder
and filename.

Printing to a File Using MATLAB Commands
To print the figure to a PostScript file, type

print filename

If you don’t specify the filename extension, MATLAB uses an extension that
is appropriate for the print driver being used.

You can also include an -options argument when printing to a file. For
example, to append the current figure to an existing file, type

print -append filename

The only way to append to a file is by using the print function. There is no
dialog box that enables you to do this.

7-19

7 Printing and Exporting

Note If you print a figure to a file, the file can only be printed and cannot be
imported into another application. If you want to create a figure file that you
can import into an application, see the next section, “Exporting to a File”

Appending Additional Figures to a File. Once you have printed one
figure to a PostScript file, you can append other figures to that same file using
the -append option of the print function. You can only append using the
print function.

This example prints Figure No. 2 to PostScript file myfile.ps, and then
appends Figure No. 3 to the end of the same file:

print -f2 myfile
print -f3 -append myfile

Exporting to a File
Export a figure in a graphics format to a file if you want to import it into
another application, such as a word processor. You can export to a file from
the Windows or UNIX Export Setup dialog box or from the command line.

This section tells you how to export your figure to a file:

• “Using the Export Setup GUI” on page 7-21

• “Exporting Using MATLAB Commands” on page 7-28

It also covers

• “Exporting with getframe” on page 7-29

• “Saving Multiple Figures to an AVI File” on page 7-30

• “Importing MATLAB Graphics into Other Applications” on page 7-30

For further information, see “Choosing a Graphics Format” on page 7-77.

7-20

How to Print or Export

Note When you export to a file, the file name must have fewer than 128
characters, including path name. When you print to a file in your current
folder, the filename must have fewer than 126 characters, because MATLAB
places './' or '.\'’ at the beginning of the filename when referring to it.

Using the Export Setup GUI
The Export Setup GUI appears when you select Export Setup from the
File menu of a figure window. This GUI has four dialog boxes that enable
you to adjust the size, rendering, font, and line appearance of your figure
prior to exporting it. You select each of these dialog boxes by clicking Size,
Rendering, Fonts, or Lines from theProperties list. For a description
of each dialog box, see

• “Adjusting the Figure Size” on page 7-21

• “Changing the Rendering” on page 7-22

• “Changing Font Characteristics” on page 7-24

• “Changing Line Characteristics” on page 7-25

Adjusting the Figure Size
Click Size in the Export Setup dialog box to display this dialog box.

7-21

7 Printing and Exporting

The Size dialog box modifies the size of the figure as it will appear when
imported from the export file into your application. If you leave the Width
and Height settings on auto, the figure remains the same size as it appears
on your screen. You can change the size of the figure by entering new values
in theWidth and Height text boxes and then clicking Apply to Figure. To
go back to the original settings, click Restore Figure.

To save any settings that you change, or to load settings that you used earlier,
see “Saving and Loading Settings” on page 7-27.

Changing the Rendering
Click Rendering in the Export Setup dialog box to display this dialog box.

7-22

How to Print or Export

You can change the settings in this dialog box as follows:

Colorspace. Use the drop-down list to select a colorspace. Your choices are

• Black and white

• Grayscale

• RGB color

• CMYK color

Custom Color. Click the check box and enter a color to be used for the figure
background. Valid entries are

• white, yellow, magenta, red, cyan, green, blue, or black

• Abbreviated name for the same colors — w, y, m, r, c, g, b, k

• Three-element RGB value — See the help for colorspec for valid values.
Examples: [1 0 1] is magenta. [0 .5 .4] is a dark shade of green.

Custom Renderer. Click the check box and select a renderer from the
drop-down list:

7-23

7 Printing and Exporting

• painters (vector format)

• OpenGL (bitmap format)

• Z-buffer (bitmap format)

Resolution. You can select one of the following from the drop-down list:

• Screen— The same resolution as used on your screen display

• A specific numeric setting — 150, 300, or 600 dpi

• auto — UNIX selects a suitable setting

Keep axis limits. Click the check box to keep axis tick marks and limits as
shown. If unchecked, automatically adjust depending on figure size.

Show uicontrols. Click the check box to show all user interface controls in
the figure. If unchecked, hide user interface controls.

Changing Font Characteristics
Click Fonts in the Export Setup dialog box to display this dialog box.

7-24

How to Print or Export

You can change the settings in this dialog box as follows:

Custom Size. Click the check box and use the radio buttons to select a
relative or absolute font size for text in the figure.

• Scale font by N % — Increases or decreases the size of all fonts by a
relative amount, N percent. Enter the word auto to automatically select
the appropriate font size.

• With minimum of N points— You can specify a minimum font size when
scaling the font by a percentage.

• Use fixed font size N points — Sets the size of all fonts to an absolute
value, N points.

Custom Name. Click the check box and use the drop-down list to select a
font name from those offered in the drop-down list.

Custom Weight. Click the check box and use the drop-down list to select the
weight or thickness to be applied to text in the figure. Choose from normal,
light, demi, or bold.

Custom Angle. Click the check box and use the drop-down list to select
the angle to be applied to text in the figure. Choose from normal, italic,
or oblique.

Changing Line Characteristics
Click Lines in the Export Setup dialog box to display this dialog box.

7-25

7 Printing and Exporting

You can change the settings in this dialog box as follows:

Custom width. Click the check box and use the radio buttons to select a
relative or absolute line size for the figure.

• Scale line width by N % — Increases or decreases the width of all lines
by a relative amount, N percent. Enter the word auto to automatically
select the appropriate line width.

• With minimum of N points — Specify a minimum line width when
scaling the font by a percentage.

• Use fixed line width N points— Sets the width of all lines to an absolute
value, N points.

Convert solid lines to cycle through line styles. When colored graphics
are imported into an application that does not support color, lines that could
formerly be distinguished by unique color are likely to appear the same. For
example, a red line that shows an input level and a blue line showing output
both appear as black when imported into an application that does not support
colored graphics.

7-26

How to Print or Export

Clicking this check box causes exported lines to have different line styles,
such as solid, dotted, or dashed lines rather than differentiating between
lines based on color.

Saving and Loading Settings
If you think you might use these export settings at another time, you can
save them now and reload them later. At the bottom of each Export Setup
dialog box, there is a panel labeled Export Styles. To save your current
export styles, type a name into the Save as style named text box, and then
click Save.

If you then click the Load settings from drop-down list, the name of the
style you just saved appears among the choices of export styles you can load.
To load a style, select one of the choices from this list and then click Load.

To delete any style you no longer have use for, select that style name from the
Delete a style drop-down list and click Delete.

Exporting the Figure
When you finish setting the export style for your figure, you can export the
figure to a file by clicking the Export button on the right side of any of the
four Export Setup dialog boxes. As new window labeled Save As opens.

7-27

7 Printing and Exporting

Select a folder to save the file in from the Save in list at the top. Select a file
type for your file from the Save as type drop-down list at the bottom, and
then enter a file name in the File name text box. Click the Save button
to export the file.

For information on the graphics file formats supported by MATLAB, see
“Choosing a Graphics Format” on page 7-77.

Exporting Using MATLAB Commands
Use the print function to print from the MATLAB command line or from
a program. See “Printing and Exporting with print” on page 7-4 for basic
information on printing from the command line.

To export the current or most recently active figure, type

print -dfileformat filename

7-28

How to Print or Export

where fileformat is a supported graphics format and filename is the name
you want to give to the export file. MATLAB selects the filename extension,
if you don’t specify it.

You can also specify a number of options with the print function. These are
shown in the Printing Options table on the print reference page.

For example, to export Figure No. 2 to file spline2d.eps, with 600 dpi
resolution and using the EPS color graphics format, type

print -f2 -r600 -depsc spline2d

Graphics file formats are explained in more detail in the sections “Choosing
a Graphics Format” on page 7-77 and “Description of Selected Graphics
Formats” on page 7-84.

Exporting with getframe
You can use the getframe function with imwrite to export a graphic.
getframe is often used in a loop to get a series of frames (figures) with the
intention of creating a movie. No matter what the intrinsic resolution of the
graphics might be, getframe only captures them at screen resolution.

Some of the benefits of using this export method over using print are

• You can use getframe to capture a portion of the figure, rather than the
whole figure.

• imwrite offers greater flexibility for setting format-specific options, such
as the bit depth and compression.

The drawbacks of using this method are

• imwrite uses built-in MATLAB formats only

• getframe and imwrite are limited to screen resolution

.Consequently, you do not have access to the Ghostscript formats available to
you when exporting with the print function or Export menu.

7-29

../ref/print.html#options_target

7 Printing and Exporting

How to Use getframe and imwrite. Use getframe to capture a figure and
imwrite to save it to a file. getframe returns a structure containing the fields
cdata and colormap. The colormap field is empty on true color displays. The
following example captures the current figure and exports it to a PNG file.

I = getframe(gcf);
imwrite(I.cdata, 'myplot.png');

You should use the proper syntax of imwrite for the type of image captured.
In the example above, the image is captured from a true color display.
Because the colormap field is empty, it is not passed to imwrite.

Example — Exporting a Figure Using getframe and imwrite. This
example offers device independence—it works for either RGB-mode or
indexed-mode monitors.

X=getframe(gcf);
if isempty(X.colormap)

imwrite(X.cdata, 'myplot.bmp')
else

imwrite(X.cdata, X.colormap, 'myplot.tif')
end

For information about available file formats and format-specific options, see
the imwrite reference page. For information about creating a movie from
a series of frames, see the reference pages for getframe and movie, or see
“Movies” on page 5-87 in Chapter 5, “Creating Specialized Plots”.

Saving Multiple Figures to an AVI File
You can also save multiple figures to an AVI file using the MATLAB avifile
and addframe functions. AVI files can be used for animated sequences
and do not need MATLAB to run, but do require an AVI viewer. For more
information, see “Exporting to Audio and Video”.

Importing MATLAB Graphics into Other Applications
You can include MATLAB graphics in a wide variety of applications for
word processing, slide preparation, modification by a graphics program,
presentation on the Internet, and so on. In general, the process is the same
for all applications:

7-30

How to Print or Export

1 Use MATLAB graphics to create the figure you want to import into another
application.

2 Export the MATLAB figure to one of the supported graphics file formats,
selecting a format that is both appropriate for the type of figure and supported
by the target application. See “Choosing a Graphics Format” on page 7-77
for help.

3 Use the import features of the target application to import the graphics file.

Edit Before You Export. Vector graphics may be fully editable in a few
high-end applications, but most applications do not support editing beyond
simple resizing. Bitmaps cannot be edited with quality results unless you use
a software package devoted to image processing. In general, you should try to
make all the necessary settings while your figure is still in MATLAB.

Importing into Microsoft Applications. To import your exported figure
into a Microsoft application, select Picture from the Insert menu. Then
select From File and navigate to your exported file. If you use the clipboard to
perform your export operations, you can take advantage of the recommended
MATLAB settings for Microsoft Word and PowerPoint®.

Example — Importing an EPS Graphic into LaTeX. This example shows
how to import an EPS file named peaks.eps into LaTeX.

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\begin{figure}[h]
\centerline{\includegraphics[height=10cm]{peaks.eps}}
\caption{Surface Plot of Peaks}
\end{figure}

\end{document}

7-31

7 Printing and Exporting

EPS graphics can be edited after being imported to LaTeX. For example,
you can specify the height in any LaTeX-compatible dimension. To set the
height to 3.5 inches, use the command

height=3.5in

You can use the angle function to rotate the graph. For example, to rotate the
graph 90 degrees, add

angle=90

to the same line of code that sets the height, i.e., [height=10cm,angle=90].

Exporting to the Windows or Macintosh Clipboard
You can export a figure to the Windows or Macintosh clipboard. The formats
used are discussed below.

• “Windows Clipboard Format” on page 7-32

• “Macintosh Clipboard Format” on page 7-33

• “Exporting to the Clipboard Using GUIs” on page 7-33

• “Exporting to the Clipboard Using MATLAB Commands” on page 7-36

Windows Clipboard Format
You can copy graphic data to the system clipboard data on Windows in either
of two graphics formats: EMF color vector or BMP 8-bit color bitmap.

By default, the graphics format is automatically selected for you, based on
the rendering method used to display the figure. For figures rendered with
OpenGL® or Z-buffer, MATLAB uses the BMP format. For figures rendered
with Painter’s, the EMF format is used. For information about how rendering
methods are chosen, see “The Default MATLAB Renderer” on page 7-59.

To override the automatic selection, specify the format of your choice using
either the Windows Copy Options Preferences dialog box, or the -d switch
in the print command.

7-32

How to Print or Export

Macintosh Clipboard Format
On Macintosh platforms (using Java™ figures, the default), clipboard data
are always RGB truecolor bitmaps. Use Edit > Copy Figure to copy to the
clipboard, not the print command. The entire figure window is captured.

Exporting to the Clipboard Using GUIs
Before you export the figure to the clipboard, you can use the Copy Options
Preferences dialog box to select a nondefault graphics format, or to adjust
certain figure settings. These settings become the new defaults for all figures
exported to the clipboard.

Note When exporting to the clipboard in Windows metafile format (e.g.,
print -dmeta), the settings from the figure Copy Options Preferences
template are ignored.

To open the Copy Options Preferences dialog box, select Copy Options from
the figure window’s Edit menu. Any changes you make with this dialog box
affect only the clipboard copy of the figure; they do not affect the way the
figure looks on the screen.

7-33

7 Printing and Exporting

Settings you can change in the Copy Options Preferences dialog box are as
follows:

Clipboard format.

• To copy the figure in EMF color vector format, selectMetafile. This option
places a metafile on the system clipboard. If the figure uses features
that are not supported by the painters renderer, such as lighting or
transparency, then the metafile copied to the clipboard will contain a

7-34

How to Print or Export

bitmap representation of the figure; otherwise the metafile copied to the
clipboard will contain a vector representation of the figure.

• To automatically select the format for you, select Preserve information.
The “metafile if possible” path looks to see if the figure is using any
renderer features that are not supported by painters, such as lighting or
transparency. If it uses those features MATLAB generates a bitmap; if
it only uses painters features, MATLAB generates a metafile. MATLAB
clipboard data uses the metafile format whenever possible.

• To use BMP 8-bit color bitmap format, select Bitmap.

Note On Macintosh platforms, the Copy Options dialog box does not have
the Clipboard format options.

Figure background color. To keep the background color the same as it
appears on the screen, select Use figure color. To make the background
white, select Force white background. For a background that is
transparent, for example, a slide background to frame the axes part of a
figure, select Transparent background.

Size. Select Match figure screen size to copy the figure as it appears on
the screen, or leave it unselected to use theWidth and height options in the
Export Setup dialog to determine its size.

1 Open the Copy Options Preferences dialog box if you need to make any
changes to those preferences used in copying to the clipboard.

2 Click OK to see the new preferences. These will be used for all future
figures exported to the clipboard.

3 Select Copy Figure from the figure window’s Edit menu to copy the figure
to the clipboard.

7-35

7 Printing and Exporting

Exporting to the Clipboard Using MATLAB Commands
Export to the clipboard on Windows using the print function with a graphics
format, but no filename. You must use one of the following clipboard formats:
-dbitmap or -dmeta. These switches create a Windows bitmap (BMP) or an
enhanced metafile (EMF), respectively.

For example, to export the current figure to the clipboard in enhanced
metafile format, type

print -dmeta

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

You cannot use print -d to export graphics to a Macintosh system clipboard.

7-36

Examples of Printing and Exporting

Examples of Printing and Exporting

In this section...

“Printing a Figure at Screen Size” on page 7-37

“Printing with a Specific Paper Size” on page 7-38

“Printing a Centered Figure” on page 7-38

“Exporting in a Specific Graphics Format” on page 7-40

“Exporting in EPS Format with a TIFF Preview” on page 7-41

“Exporting a Figure to the Clipboard” on page 7-41

Printing a Figure at Screen Size
By default, your figure prints at 8-by-6 inches. This size includes the area
delimited by the background. This example shows how to print or export your
figure the same size it is displayed on your screen.

Using the Graphical User Interface

1 Resize your figure window to the size you want it to be when printed.

2 Select Print Preview from the figure window’s File menu, and select the
Layout tab.

3 In the Placement panel, select Auto (Actual Size, Centered).

4 Click Print in the upper right corner to print the figure.

5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands
Set the PaperPositionMode property to auto before printing the figure.

set(gcf, 'PaperPositionMode', 'auto');
print

7-37

7 Printing and Exporting

If later you want to print the figure at its original size, set PaperPositionMode
back to 'manual'.

Printing with a Specific Paper Size
The MATLAB default paper size is 8.5-by-11 inches. This example shows how
to change the paper size to 8.5-by-14 inches by selecting a paper type (Legal).

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu, and select
the Layout tab.

2 Select the Legal paper type from the list in the Paper panel. The Width
and Height fields update to 8.5 and 14, respectively.

3 Make sure that Units is set to inches.

4 Click Print in the upper right corner to print the figure.

5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands
Set the PaperUnits property to inches and the PaperType property to Legal.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperType', 'Legal');

Alternatively, you can set the PaperSize property to the size of the paper,
in the specified units.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperSize', [8.5 14]);

Printing a Centered Figure
This example sets the size of a figure to 5.5-by-3 inches and centers it on
the paper.

7-38

Examples of Printing and Exporting

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu, and select the
Layout tab.

2 Make sure Use manual size and position is selected.

3 Enter 5.5 in the Width field and 3 in the Height field.

4 Make sure that Units field is set to inches.

5 Click Center.

6 Click OK.

7 Click Print to open the Print dialog box and print the figure.

Using MATLAB Commands

1 Start by setting PaperUnits to inches.

set(gcf, 'PaperUnits', 'inches')

2 Use PaperSize to return the size of the current paper.

papersize = get(gcf, 'PaperSize')

papersize =
8.5000 11.0000

3 Initialize variables to the desired width and height of the figure.

width = 5.5; % Initialize a variable for width.
height = 3; % Initialize a variable for height.

4 Calculate a left margin that centers the figure horizontally on the paper. Use
the first element of papersize (width of paper) for the calculation.

left = (papersize(1)- width)/2

left =
1.5000

7-39

7 Printing and Exporting

5 Calculate a bottom margin that centers the figure vertically on the paper. Use
the second element of papersize (height of paper) for the calculation.

bottom = (papersize(2)- height)/2

bottom =
4

6 Set the figure size and print.

myfiguresize = [left, bottom, width, height];
set(gcf, 'PaperPosition', myfiguresize);
print

Exporting in a Specific Graphics Format
Export a figure to a graphics-format file when you want to import it at a later
time into another application such as a word processor.

Using the Graphical User Interface

1 Select Save As from the figure window’s File menu.

2 Use the Save in field to navigate to the folder in which you want to save
your file.

3 Select a graphics format from the Save as type list.

4 Enter a filename in the File name field. An appropriate file extension, based
on the format you chose, is displayed.

5 Click Save to export the figure.

Using MATLAB Commands
From the command line, you must specify the graphics format as an option.
See the print reference page for a complete list of graphics formats and their
corresponding option strings.

This example exports a figure to an EPS color file, myfigure.eps, in your
current folder.

7-40

../ref/print.html#export_formats

Examples of Printing and Exporting

print -depsc myfigure

This example exports Figure No. 2 at a resolution of 300 dpi to a 24-bit JPEG
file, myfigure.jpg.

print -djpeg -f2 -r300 myfigure

This example exports a figure at screen size to a 24-bit TIFF file,
myfigure.tif.

set(gcf, 'PaperPositionMode', 'auto') % Use screen size
print -dtiff myfigure

Exporting in EPS Format with a TIFF Preview
Use the print function to export a figure in EPS format with a TIFF preview.
When you import the figure, the application can display the TIFF preview in
the source document. The preview is color if the exported figure is color, and
black and white if the exported figure is black and white.

This example exports a figure to an EPS color format file, myfigure.eps,
and includes a color TIFF preview.

print -depsc -tiff myfigure

This example exports a figure to an EPS black-and-white format file,
myfigure.eps, and includes a black-and-white TIFF preview.

print -deps -tiff myfigure

Exporting a Figure to the Clipboard
Export a figure to the clipboard in graphics format when you want to paste it
into another Windows or Macintosh application such as a word processor.

Using the Graphical User Interface
This example exports a figure to the clipboard in enhanced metafile (EMF)
format. Figure settings are chosen that would make the exported figure
suitable for use in a Microsoft Word or PowerPoint slide. Changing the
settings modifies the figure displayed on the screen.

7-41

7 Printing and Exporting

1 Create a figure containing text. You can use the following code.

x = -pi:0.01:pi;
h = plot(x, sin(x));
title('Sine Plot');

2 Select Preferences from the File menu of either the figure or main desktop
window. Then select Figure Copy Template from the Preferences dialog
box.

3 In the Figure Copy Template Preferences panel, click the PowerPoint
button. The suggested settings for PowerPoint are added to the template.

����$����$��
�
�����
	���
������
��
����4���!��
�����
��	���
�
#�����������������,

���������$�
����������
���
	��������������	��
���

Note In Macintosh, the Figure Copy Template Preferences panel is not
displayed. For more information on how to export figures in Macintosh, see
“Exporting to the Windows or Macintosh Clipboard” on page 7-32.

4 In the Lines panel, change the Custom width to 4 points.

5 In the Uicontrols and axes panel, select Keep axes limits and tick
spacing to prevent tick marks and limits from possibly being rescaled when
you export.

6 Click Apply to Figure. The changes appear in the figure window.

If you don’t like the way your figure looks with the new settings, restore it to
its original settings by clicking the Restore Figure button.

7-42

Examples of Printing and Exporting

7 In the left pane of the Preferences dialog box, expand the Figure Copy
Template topic. Select Copy Options.

8 In the Copy Options panel, select Metafile to export the figure in EMF
format.

9 Check that Transparent background is selected. This choice makes the
figure background transparent and allows the slide background to frame
the axes part of the figure.

10 Clear the Match figure screen size check box so that you can use your
own figure size settings.

11 Click OK.

12 Select Export Setup from the figure window’s File menu.

13 Select the Size properties, and set Width to 6 and Height to 4.5. Make
sure that Units are set to inches.

14 Click Close.

15 Select Copy Figure from the Edit menu. Your figure is now exported to
the clipboard and can be pasted into another Windows application, such as
PowerPoint.

Using MATLAB Commands
Use the print function and one of two clipboard formats (-dmeta, -dbitmap)
to export a figure to the clipboard. Do not specify a filename.

This example exports a figure to the clipboard in enhanced metafile (EMF)
format.

print -dmeta

This example exports a figure to the clipboard in bitmap (BMP) 8-bit color
format.

print -dbitmap

7-43

7 Printing and Exporting

Changing a Figure’s Settings

In this section...

“Parameters that Affect Printing” on page 7-44

“Selecting the Figure” on page 7-46

“Selecting the Printer” on page 7-47

“Setting the Figure Size and Position” on page 7-48

“Setting the Paper Size or Type” on page 7-51

“Setting the Paper Orientation” on page 7-53

“Selecting a Renderer” on page 7-55

“Setting the Resolution” on page 7-61

“Setting the Axes Ticks and Limits” on page 7-64

“Setting the Background Color” on page 7-66

“Setting Line and Text Characteristics” on page 7-67

“Setting the Line and Text Color” on page 7-70

“Specifying a Colorspace for Printing and Exporting” on page 7-73

“Excluding User Interface Controls form Printed Output” on page 7-75

“Producing Uncropped Figures” on page 7-76

Parameters that Affect Printing
The table below shows parameters that you can set before submitting your
figure to the printer.

The Parameter column lists all parameters that you can change.

The Default column shows the MATLAB default setting.

The Dialog Box column shows which dialog box to use to set that parameter.
If you can make this setting on only one platform, this is noted in parentheses:
(W) for Windows, and (U) for UNIX.

7-44

Changing a Figure’s Settings

Some dialog boxes have tabs at the top to enable you to select a certain
category. These categories are denoted in the table below using the format
<dialogbox>/<tabname>. For example, Print Preview/Layout... in this
column means to use the Print Preview dialog box, selecting the Layout tab.

The print Command or set Property column shows how to set the parameter
using the MATLAB print or set function. When using print, the table
shows the appropriate command option (for example, print -loose). When
using set, it shows the property name to set along with the type of object
(for example, (Line) for line objects).

Parameter Default Dialog Box
print Command or
set Property

Select figure Last active window None print -fhandle

Select printer System default Print print -pprinter

Figure size 8-by-6 inches Print
Preview/Layout

PaperSize (Figure)
PaperUnits (Figure)

Position on page 0.25 in. from left, 2.5
in. from bottom

Print
Preview/Layout

PaperPosition
(Figure) PaperUnits
(Figure)

Position mode Manual Print
Preview/Layout

PaperPositionMode
(Figure)

Paper type Letter Print
Preview/Layout

PaperType (Figure)

Paper orientation Portrait Print
Preview/Layout

PaperOrientation
(Figure)

Renderer Selected
automatically

Print
Preview/Advanced

print -zbuffer
| -painters |
-opengl

Renderer mode Auto Print
Preview/Advanced

RendererMode
(Figure)

Resolution Depends on driver or
graphics format

Print
Preview/Advanced

print -rresolution

Axes tick marks Recompute Print
Preview/Advanced

XTickMode, etc.
(Axes)

7-45

7 Printing and Exporting

Parameter Default Dialog Box
print Command or
set Property

Background color Force to white Print Preview/Color Color (Figure)
InvertHardCopy
(Figure)

Font size As in the figure Print
Preview/Lines/Text

FontSize (Text)

Bold font Regular font Print
Preview/Lines/Text

FontWeight (Text)

Line width As in the figure Print
Preview/Lines/Text

LineWidth (Line)

Line style Black or white Figure Copy
Template

LineStyle (Line)

Line and text color Black and white Print
Preview/Lines/Text

Color (Line, Text)

CMYK color RGB color Print Preview/Color
(U)

print -cmyk

UI controls Printed Print
Preview/Advanced

print -noui

Bounding box Tight N/A print -loose

Copy background Transparent Copy Options (W) See “Background
color”

Copy size Same as screen size Copy Options (W) See “Figure Size”

Selecting the Figure
By default, the current figure prints. If you have more than one figure open,
the current figure is the last one that was active. To make a different figure
active, click it to bring it to the foreground.

7-46

Changing a Figure’s Settings

Using MATLAB Commands
Specify a figure handle using the command

print -fhandle

This example sends Figure No. 2 to the printer. A figure’s number is usually
its handle.

print -f2

Selecting the Printer
You can select the printer you want to use with the Print dialog box or with
the print function.

Using the Graphical User Interface

1 Select Print from the figure window’s File menu.

2 Select the printer from the list box near the top of the Print dialog box.

3 Click OK.

Using MATLAB Commands
You can select the printer using the -P switch of the print function.

This example prints Figure No. 3 to a printer called Calliope.

print -f3 -PCalliope

If the printer name has spaces in it, put single quotation marks around the -P
option, as shown here.

print '-Pmy local printer'

Using a Network Print Server. On Windows systems, you can print to a
network print server using the form shown here for a printer named trinity
located on a computer named PRINTERS.

print -P\\PRINTERS\trinity

7-47

7 Printing and Exporting

Note On Windows platforms, when you use the -P option to identify a printer
to use, if you specify any driver other than -dwin or -dwinc, MATLAB output
goes to a file with an appropriate extension but does not send it to the printer;
you can then copy that file to a printer.

Setting the Figure Size and Position
The default output figure size is 8 inches wide by 6 inches high, which
maintains the aspect ratio (width to height) of the MATLAB figure window.
The figure’s default position is centered both horizontally and vertically when
printed to a paper size of 8.5-by-11 inches.

You can change the size and position of the figure:

• “Using the Graphical User Interface” on page 7-48

• “Using MATLAB Commands” on page 7-50

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Click the Layout tab to make changes to the size and
position of your figure on the printed page.

Use the text edit boxes on the left to enter new dimensions for your figure.
Or, use the handlebars on the rulers in the right-hand pane to drag the
margins and location of your figure with the mouse. The outer handlebars
move the figure toward or away the nearest margin, while the central
handlebar repositions the figure on the page without changing its proportions.
Guidelines appear while you are using the handlebars.

7-48

Changing a Figure’s Settings

Settings you can change in the Layout tab are as follows:

Placement. Choose whether you want the figure to be the same size as it is
displayed on your screen, or you want to manually change its size using the
options in the Layout pane.

When you select the Use manual size and position mode, type the widths of
any of the four margins and the preview image responds after each entry you

7-49

7 Printing and Exporting

make. Select units of measure (inches/centimeters/points) with pushbuttons
on the Units section on the bottom of the pane.

You can use the four buttons at the bottom of the Placement section to expand
the figure to fill the page, make its aspect ratio (ratio of y-extent to x-extent)
as printed match that of the figure, center the figure on the page, or restore
the setup to what it was when you opened the Print Preview dialog. Selecting
Fill page can alter the aspect ratio of your image. To get the maximum figure
size without altering the aspect ratio, select Fix aspect ratio.

Auto (actual size, centered). Select this option to center the figure on the
page; it will be the same size as it is in the figure window. The four buttons
below the control are dimmed when you select this option.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
To print your figure with a specific size or position, make sure the
PaperPositionMode property is set to manual (the default). Then set the
PaperPosition property to the desired size and position.

The PaperPosition property references a four-element row vector that
specifies the position and dimensions of the printed output. The form of the
vector is

[left bottom width height]

where

• left specifies the distance from the left edge of the paper to the left edge
of the figure.

• bottom specifies the distance from the bottom of the paper to the bottom
of the figure.

• width and height specify the figure’s width and height.

7-50

../ref/figure_props.html#PaperPositionMode
../ref/figure_props.html#PaperPosition

Changing a Figure’s Settings

The default values for PaperPosition are

[0.25 2.5 8.0 6.0]

This example sets the figure size to a width of 4 inches and height of 2 inches,
with the origin of the figure positioned 2 inches from the left edge of the paper
and 1 inch from the bottom edge.

set(gcf, 'PaperPositionMode', 'manual');
set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperPosition', [2 1 4 2]);

Note PaperPosition specifies a bottom margin, rather than a top margin
as Print Preview does. When you set the top margin using Print Preview,
This setting is used to calculate the bottom margin, and updates the
PaperPosition property appropriately.

Setting the Paper Size or Type
Set the paper size by specifying the dimensions or by choosing from a list of
predefined paper types. If you do not set a paper size or type, the default
paper size of 8.5-by-11 inches is used.

Paper-size and paper-type settings are interrelated—if you set a paper type,
the paper size also updates. For example, if you set the paper type to US Legal,
the width of the paper updates to 8.5 inches and the height to 14 inches.

You can change the paper size and orientation:

• “Using the Graphical User Interface” on page 7-51

• “Using MATLAB Commands” on page 7-53

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Click the Layout tab to make changes to the paper type
and orientation of the figure on the printed page.

7-51

7 Printing and Exporting

Settings you can change in the Layout tab are as follows:

Paper Format, Units and Orientation. Select a paper type from the list
under Format. If there is no paper type with suitable dimensions, enter your
own dimensions in the Width and Height fields. Make sure Units is set
appropriately to inches, centimeters, or points. If you change units after
setting a paper width and height, theWidth and Height fields update to use
the units you just selected. The page region in the preview pane updates to
show the new paper format or size when you change them.

Use the Orientation buttons to select how you want the figure to be oriented
on the printed page. The illustration under “Setting the Paper Orientation”
on page 7-53 shows the three types of orientation you can choose from.

7-52

Changing a Figure’s Settings

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
Set the PaperType property to one of the built-in MATLAB paper types, or set
the PaperSize property to the dimensions of the paper.

When you select a paper type, the unit of measure is not automatically
updated. We recommend that you set the PaperUnits property first.

For example, these commands set the units to centimeters and the paper
type to A4.

set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperType', 'A4');

This example sets the units to inches and sets the paper size of 5-by-7 inches.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperSize', [5 7]);

If you set a paper size for which there is no matching paper type, the
PaperType property is automatically set to 'custom'.

Setting the Paper Orientation
Paper orientation refers to how the paper is oriented with respect to the
figure. The choices are Portrait (the default), Landscape, and Rotated.

You can change the orientation of the figure:

• “Using the Graphical User Interface” on page 7-54

• “Using MATLAB Commands” on page 7-54

The figure below shows the same figure printed using the three different
orientations.

7-53

../ref/figure_props.html#PaperType
../ref/figure_props.html#PaperSize

7 Printing and Exporting

$������� ��
������ %�������1�!�567���	����2

Note The Rotated orientation is not supported by all printers. When the
printer does not support it, landscape is used.

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu and select the
Layout tab. (See “Using the Graphical User Interface” on page 7-51).

2 Select the appropriate option button under Orientation.

3 Click Close.

Using MATLAB Commands
Use the PaperOrientation figure property or the orient function. Use the
orient function if you always want your figure centered on the paper.

The following example sets the orientation to landscape:

set(gcf, 'PaperOrientation', 'landscape');

7-54

Changing a Figure’s Settings

Centering the Figure. If you set the PaperOrientation property from
portrait to either of the other two orientation schemes, you might find that
what was previously a centered image is now positioned near the paper’s edge.
You can either adjust the position (use the PaperPosition property), or you
can use the orient function, which always centers the figure on the paper.

The orient function takes the same argument names as PaperOrientation.
For example,

orient rotated;

����
�����
��������8��������	8�
��
	
8
��	���
	����
��8��������!,

����
�����
��������8��������	8�
��
	
��
	����

����
,

Selecting a Renderer
A renderer is software and/or hardware that processes graphics data (such
as vertex coordinates) to display, print, or export a figure. You can change
the renderer from the one used to draw a figure to another renderer when
printing it:

• “Using the Graphical User Interface” on page 7-60

• “Using MATLAB Commands” on page 7-60

Supported Renderers
MATLAB supports three rendering methods with the following characteristics:

7-55

7 Printing and Exporting

Painter’s

• Draws figures using vector graphics

• Generally produces higher resolution results

• The fastest renderer when the figure contains only simple or small graphics
objects

• The only renderer possible when printing with the HPGL print driver or
exporting to an Adobe® Illustrator file

• The best renderer for creating PostScript or EPS files

• Cannot render figures that use RGB color for patch or surface objects

• Does not show lighting or transparency

Z-buffer

• Draws figures using bitmap (raster) graphics

• Faster and more accurate than Painter’s

• Can consume a lot of system memory when displaying a complex scene

• Shows lighting, but not transparency

OpenGL

• Draws figures using bitmap (raster) graphics

• Generally faster than Painter’s or Z-buffer

• Can access graphics rendering hardware available on some systems

• Shows both lighting and transparency

For more detailed information about changing rendering methods, see the
Figure Renderer property.

Hardware vs. Software OpenGL Implementations
There are two kinds of OpenGL implementations: hardware and software.

7-56

../ref/figure_props.html#Renderer

Changing a Figure’s Settings

• The hardware implementation uses special graphics hardware to increase
performance and is therefore significantly faster than the software version.
Many computers have this special hardware available as an option or may
come with this hardware right out of the box.

• Software implementations of OpenGL are much like the ZBuffer renderer
that is available on MATLAB Version 5.0 and later; however, OpenGL
generally provides superior performance to ZBuffer.

OpenGL Availability
OpenGL is available on all computers that run MATLAB. MATLAB
automatically finds hardware-accelerated versions of OpenGL if such versions
are available. If the hardware-accelerated version is not available, then
MATLAB uses the software version (except on Macintosh systems, which
do not support software OpenGL).

The following software versions are available:

• On UNIX systems, MATLAB uses the software version of OpenGL that is
included in the MATLAB distribution.

• On Windows, OpenGL is available as part of the operating system. If you
experience problems with OpenGL, contact your graphics driver vendor to
obtain the latest qualified version of OpenGL.

• On Macintosh systems, software OpenGL is not available.

MATLAB issues a warning if it cannot find a usable OpenGL library.

Selecting Hardware-Accelerated or Software OpenGL
MATLAB enables you to switch between hardware-accelerated and software
OpenGL. However, Windows and UNIX systems behave differently:

• On Windows systems, you can toggle between software and hardware
versions any time during the MATLAB session.

• On UNIX systems, you must set the OpenGL version before MATLAB
initializes OpenGL. Therefore, you cannot issue the opengl info command
or create graphs before you call opengl software. To reenable hardware
accelerated OpenGL, you must restart MATLAB.

7-57

7 Printing and Exporting

• On Macintosh systems, software OpenGL is not available.

If you do not want to use hardware OpenGL, but do want to use object
transparency, you can issue the following command.

opengl software

This command forces MATLAB to use software OpenGL. Software OpenGL
is useful if your hardware-accelerated version of OpenGL does not function
correctly and you want to use image, patch, or surface transparency, which
requires the OpenGL renderer. To reenable hardware OpenGL, use the
command:

opengl hardware

on Windows systems or restart MATLAB on UNIX systems.

By default, MATLAB uses hardware-accelerated OpenGL.

See the opengl reference page for additional information

Determining What Version You Are Using
To determine the version and vendor of the OpenGL library that MATLAB is
using on your system, type the following command at the MATLAB prompt:

opengl info

The returned information contains a line that indicates if MATLAB is using
software (Software = true) or hardware-accelerated (Software = false)
OpenGL.

This command also returns a string of extensions to the OpenGL specification
that are available with the particular library MATLAB is using. This
information is helpful to MathWorks, so please include this information if you
need to report bugs.

Note that issuing the opengl info command causes MATLAB to initialize
OpenGL.

7-58

Changing a Figure’s Settings

OpenGL vs. Other MATLAB Renderers
There are some differences between drawings created with OpenGL and those
created with other renderers. The OpenGL specific differences include

• OpenGL does not do colormap interpolation. If you create a surface or
patch using indexed color and interpolated face or edge coloring, OpenGL
interpolates the colors through the RGB color cube instead of through the
colormap.

• OpenGL does not support the phong value for the FaceLighting and
EdgeLighting properties of surfacesand patches.

• OpenGL does not support logarithmic-scale axes.

• OpenGL and Zbuffer renderers display objects sorted in front to back
order, as seen on the monitor, and lines always draw in front of faces when
at the same location on the plane of the monitor. Painters sorts by child
order (order specified).

If You Are Having Problems
Consult the OpenGL Technical Note if you are having problems using
OpenGL. This technical note contains a wealth of information on MATLAB
renderers.

The Default MATLAB Renderer
By default, OpenGL tries to optimize the rendering method based on the
attributes of the figure (its complexity and the settings of various Handle
Graphics properties) and in some cases, the printer driver or file format used.

In general, renderers are selected as follows:

• Painter’s, for line plots, area plots (bar graphs, histograms, etc.), and
simple surface plots

• Z-buffer, when the computer screen is not true color or when the opengl
function was called with selection_mode set to neverselect

• OpenGL, for complex surface plots using interpolated shading and any
figure using lighting

7-59

../ref/surface_props.html
../ref/patch_props.html
http://www.mathworks.com/support/tech-notes/1200/1201.html

7 Printing and Exporting

The RendererMode property describes whether to automatically select the
renderer based on the contents of the figure (when set to auto), or to use the
Renderer property that you have indicated (when set to manual).

Reasons for Manually Setting the Renderer
Two reasons to set the renderer yourself are

• To make your printed or exported figure look the same as it did on the
screen. The rendering method used for printing and exporting the figure is
not always the same method used to display the figure.

• To avoid unintentionally exporting your figure as a bitmap within a vector
format. For example, high-complexity MATLAB plots typically render
using OpenGL or Z-buffer. If you export a high-complexity figure to the
EPS or EMF vector formats without specifying a rendering method, either
OpenGL or Z-buffer might be used, each of which creates bitmap graphics.

Storing a bitmap in a vector file can generate a very large file that takes
a long time to print. If you use one of these formats and want to make
sure that your figure is saved as a vector file, be sure to set the rendering
method to Painter’s.

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu. Select the Advanced tab.

2 In the Renderer drop-down menu, select the desired rendering method from
the list box.

3 Click Close.

Using MATLAB Commands
You can use the Renderer property or a switch with the print function to set
the renderer for printing or exporting. These two lines each set the renderer
for the current figure to Z-buffer.

set(gcf, 'Renderer', 'zbuffer');

7-60

Changing a Figure’s Settings

or

print -zbuffer

The first example saves the new value of Renderer with the figure; the second
example only affects the current print or export operation.

When you set the Renderer property, the RendererMode property is
automatically reset from auto (the factory default) to manual.

Setting the Resolution
Resolution refers to how accurately your figure is rendered when printed or
exported. Higher resolutions produce higher quality output. The specific
definition of resolution depends on whether your figure is output as a bitmap
or as a vector graphic.

You can change the resolution used to print a figure:

• “Using the Graphical User Interface” on page 7-63

• “Using the Graphical User Interface on UNIX Platforms” on page 7-75

• “Using MATLAB Commands” on page 7-63

Default Resolution and When You Can Change It
The default resolution depends on the renderer used and the graphics format
or printer driver specified. The following two tables summarize the default
resolutions and whether you can change them.

Resolutions Used with Graphics Formats

Graphics Format Default Resolution Can Be Changed?

Built-in MATLAB export
formats, (except for EMF,
EPS, and ILL)

150 dpi (always use OpenGL
or Z-buffer)

Yes

EMF export format (Enhanced
Metafile)

150 dpi Yes

7-61

7 Printing and Exporting

Resolutions Used with Graphics Formats (Continued)

Graphics Format Default Resolution Can Be Changed?

EPS (Encapsulated PostScript) 150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

ILL export format (Adobe
Illustrator)

72 dpi (always uses Painter’s) No

Ghostscript export formats 72 dpi (always uses OpenGL
or Z-buffer)

No

Resolutions Used with Printer Drivers

Printer Driver Default Resolution Can Be Changed?

Windows and PostScript
drivers

150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

Ghostscript driver 150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

HPGL driver 1116 dpi (always uses
Painter’s)

Yes

Choosing a Setting
You might need to determine your resolution requirements through
experimentation, but you can also use the following guidelines.

For Printing. The default resolution of 150 dpi is normally adequate for
typical laser-printer output. However, if you are preparing figures for
high-quality printing, such as a textbook or color brochures, you might want
to use 200 or 300 dpi. The resolution you can use can be limited by the
printer’s capabilities.

7-62

Changing a Figure’s Settings

For Exporting. If you are exporting your figure, base your decision on the
resolution supported by the final output device. For example, if you will
import your figure into a word processing document and print it on a printer
that supports a maximum resolution setting of 300 dpi, you could export
your figure using 300 dpi to get a precise one-to-one correspondence between
pixels in the file and dots on the paper.

Note The only way to set resolution when exporting is with the print
function.

Impact of Resolution on Size and Memory Needed
Resolution affects file size and memory requirements. For both printing and
exporting, the higher the resolution setting, the longer it takes to render
your figure.

Using the Graphical User Interface
To set the resolution for built-in MATLAB printer drivers:

1 From the Print dialog box, click Properties. This opens a new dialog box.
(This box can differ from one printer to another.)

2 You may be able to set the resolution from this dialog. If not, then click
Advanced to get to a dialog box that enables you to do this.

3 Set the resolution, and then click OK. (The resolution setting might be labeled
by another name, such as “Print Quality.”)

Using MATLAB Commands
If you use a Windows printer driver, you can only set the resolution using the
Windows Document Properties dialog box.

Otherwise, to set the resolution for printing or exporting, the syntax is

print -rnumber

7-63

7 Printing and Exporting

where number is the number of dots per inch. To print or export a figure using
screen resolution, set number to 0 (zero).

This example prints the current figure with a resolution of 100 dpi:

print -r100

This example exports the current figure to a TIFF file using screen resolution:

print -r0 -dtiff myfile.tif

Setting the Axes Ticks and Limits
The default output size, 8-by-6 inches, is normally larger than the screen size.
If the size of your printed or exported figure is different from its size on the
screen, the number and placement of axes tick marks scale to suit the output
size. This section shows you how to lock them so that they are the same as
they were when displayed.

You can change the resolution used when printing a MATLAB figure:

• “Using the Graphical User Interface” on page 7-65

• “Using MATLAB Commands” on page 7-66

7-64

Changing a Figure’s Settings

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Advanced tab to make changes to the axes, UI
controls, or renderer settings.

Settings you can change in the Advanced tab are as follows, by panel:

Axes limits and ticks. If the size of your printed or exported figure is
different from its size on the screen, the number and placement of axes tick
marks scale to suit the output size. Select Keep screen limits and ticks
to lock them so that they are the same as they were when displayed. If you
want to automatically adjust the ticks and limits when scaling for printing,
select Recompute limits and ticks.

Miscellaneous. Use the Renderer drop-down menu to specify which
renderer to use in printing the figure. Set the renderer to Painters, Z-buffer,
or OpenGL, or select auto to automatically decide which one to use, depending
on the characteristics of the figure. (See “Selecting a Renderer” on page 7-55).

Use the Resolution drop-down menu to specify the resolution, in dots per
inch (DPI), at which to render and print the figure. You can select 150, 300, or
600 DPI, or type in a different value (positive integer).

7-65

7 Printing and Exporting

Figure UI Controls. By default, user interface controls are included in
your printed or exported figure. Clear the Print UIControls check box to
exclude them. (See “Excluding User Interface Controls form Printed Output”
on page 7-75).

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
To set the XTickMode, YTickMode, and ZTickMode properties to manual, type

set(gca, 'XTickMode', 'manual');
set(gca, 'YTickMode', 'manual');
set(gca, 'ZTickMode', 'manual');

Setting the Background Color
You can keep the background the same as is shown on the screen when
printed, or change the background to white. There are two types of
background color settings in a figure: the axes background and the figure
background. The default displayed color of both backgrounds is gray, but you
can set them to any of several colors.

Regardless of the background colors in your displayed figure, by default, they
are always changed to white when you print or export. This section shows you
how to retain the displayed background colors in your output.

Using the Graphical User Interface
To retain the background color on a per figure basis:

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu. Select the Color tab.

2 Select Same as figure.

3 Click Close.

7-66

Changing a Figure’s Settings

If you are exporting your figure using the clipboard, use the Copy Options
panel of the Preferences dialog box.

Using MATLAB Commands
To retain your background colors, use

set(gcf, 'InvertHardCopy', 'off');

The following example sets the figure background color to blue, the axes
background color to yellow, and then sets InvertHardCopy to off so that
these colors appear in your printed or exported figure.

set(gcf, 'color', 'blue');
set(gca, 'color', 'yellow');
set(gcf, 'InvertHardCopy', 'off');

Setting Line and Text Characteristics
If you transfer your figures to Microsoft Word or PowerPoint applications,
you can set line and text characteristics to values recommended for those
applications. The Figure Copy Template Preferences dialog box provides
Word and PowerPoint options to make these settings, or you can set certain
line and text characteristics individually.

You can change line and text characteristics:

• “Using the Graphical User Interface” on page 7-68

• “Using MATLAB Commands” on page 7-69

7-67

7 Printing and Exporting

Using the Graphical User Interface
To open Figure Copy Template Preferences, select Preferences from the File
menu, and then click Figure Copy Template in the left pane.

9���������������
���������
�
���
�	����������
��
���
,
0���
���
�	������������#����!�������	
����
�������	
�����
���,
0���
���
������������/��!�
���������
���,

7-68

Changing a Figure’s Settings

Settings you can change in the Figure Copy Template Preferences dialog
box are as follows:

Microsoft Word or PowerPoint. Click Word or PowerPoint to apply
recommended MATLAB settings.

Text. Use options under Text to modify the appearance of all text in the
figure. You can change the font size, change the text color to black and white,
and change the font style to bold.

Lines. Use the Lines options to modify the appearance of all lines in the
figure:

• Custom width — Change the line width.

• Change style (Black or white)— Change colored lines to black or white.

• Change style (B&W styles)— Change solid lines to different line styles
(e.g., solid, dashed, etc.), and black or white color.

UIControls and axes. If your figure includes user interface controls, you
can choose to show or hide them by clicking Show uicontrols. Also, to keep
axes limits and tick marks as they appear on the screen, click Keep axes
limits and tick spacing. To allow autoamtic scaling of axes limits and tick
marks based on the size of the printed figure, clear this box.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
You can use the set function on selected graphics objects in your figure to
change individual line and text characteristics.

For example, to change line width to 1.8 and line style to a dashed line, use

lineobj = findobj('type', 'line');
set(lineobj, 'linewidth', 1.8);
set(lineobj, 'linestyle', '--');

7-69

7 Printing and Exporting

To change the font size to 15 points and font weight to bold, use

textobj = findobj('type', 'text');
set(textobj, 'fontunits', 'points');
set(textobj, 'fontsize', 15);
set(textobj, 'fontweight', 'bold');

Setting the Line and Text Color
When colored lines and text are dithered to gray by a black-and-white printer,
it does not produce good results for thin lines and the thin lines that make up
text characters. You can, however, force all line and text objects in the figure
to print in black and white, thus improving their appearance in the printed
copy. When you select this setting, the lines and text are printed all black or
all white, depending on the background color.

The default is to leave lines and text in the color that appears on the screen.

Note Your background color might not be the same as what you see on
the screen. See the Color tab for an option that preserves the background
color when printing.

You can change the resolution used to print a figure:

• “Using the Graphical User Interface” on page 7-70

• “Using MATLAB Commands” on page 7-72

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Lines and Text tab to make changes to the
color of all lines and text on the printed page. The controls for the Lines and
Text tab are shown below:

7-70

Changing a Figure’s Settings

Settings you can change in Lines and Text are as follows:

7-71

7 Printing and Exporting

Lines. The default option in this panel causes lines to print at the same
width they are portrayed in the figure window. You can scale line width
from 0 percent upwards for printing using the Scale By field. To print lines
at a particular point size, select Custom. All lines on the plot will be the
same weight when you use the Custom option; the Scale By option respects
relative line weight.

When you scale lines downward, you can prevent them from becoming too
faint by setting theMin Width option to Custom and specifying a minimum
line width in points in that field.

Text. The default is to print text in the same font and at the same size as it
is in the figure. To change the font (for all text) select Custom and choose
a new font from the drop-down list that is then enabled. Scale the font size
using the Scale By option. To print text at a particular point size, select
Custom. All text on the plot will be printed at the point size you specify when
you use the Custom option; the Scale By option respects relative font size.
You can specify the Font Weight (normal, light, demi, or bold) and Font
Angle (normal, italic, or oblique) for all text as well, using the drop-down
menus at the bottom of the Text panel.

Header. Type any text that you want to appear at the top of the printed
figure in the Header Text edit field. If you want today’s date and/or time
appended to the header text, select the appropriate format from the Date
Style popup menu. To specify and style the header font (which is independent
of the font used in the figure), click the Font button and choose a font name,
size, and style from the Font selection window that appears.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
There is no equivalent MATLAB command that sets line and text color
depending on background color. Set the color of lines and text using the set
function on either line or text objects in your figure.

This example sets all lines and text to black:

7-72

Changing a Figure’s Settings

set(findobj('type', 'line'), 'color', 'black');
set(findobj('type', 'text'), 'color', 'black');

Specifying a Colorspace for Printing and Exporting
By default, color output is in the RGB color space (red, green, blue). If you
plan to publish and print MATLAB figures using printing industry standard
four-color separation, you might want to use the CMYK color space (cyan,
magenta, yellow, black).

Using the Windows Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Color tab to make changes to the color of
all lines and text on the printed page. The controls for the Color tab are
shown below:

7-73

7 Printing and Exporting

You can print the contents of your figure in color, grayscale, or
black-and-white by selecting the appropriate button in the panel. When you
select Color, you can choose between an RGB (red/green/blue) or a CMYK
(cyan/magenta/yellow/black) color specification, if your printer is capable of it.

7-74

Changing a Figure’s Settings

Independently of the Color Scale controls, you can specify a Background
color for printing. Select Same as figure to use the color used in the figure
itself (default is gray), or specify a Custom color from the combo box popup
menu. The choices are black, white, and several RGB color triplet values;
you type any valid MATLAB colorspec in this field as well, such as g, magenta,
or .3 .4 .5.

The background color you specify is respected even if you choose Black and
White or Gray Scale in the Color Scale panel.

Using the Graphical User Interface on UNIX Platforms

1 Select Print from the figure window’s File menu.

2 Click the Appearance tab.

3 In the Color Appearance panel, select Color.

4 Click Print.

On any platform, you can also indicate whether to print in color, grayscale or
black-and-white with the Print Preview dialog box.

Using MATLAB Commands
Use the -cmyk option with the print function. This example prints the
current figure in CMYK using a PostScript Level II color printer driver.

print -dpsc2 -cmyk

Excluding User Interface Controls form Printed
Output
User interface controls are objects that you create and add to a figure. For
example, you can add a button to a figure that, when clicked, conveniently
runs another MATLAB file. By default, user interface controls are included in
your printed or exported figure. This section shows how to exclude them.

7-75

7 Printing and Exporting

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu, and then select the Advanced tab.

2 Under Miscellaneous, clear the Print UIControls check box.

3 Click Close.

Using MATLAB Commands
Use the -noui switch. This example specifies a color PostScript driver and
excludes UI controls.

print -dpsc -noui

This example exports the current figure to a color EPS file and excludes UI
controls.

print -depsc -noui myfile.eps

Producing Uncropped Figures
In most cases, MATLAB crops the background tightly around the objects in
the figure. Depending on the printer driver or file format you use, you might
be able to produce uncropped output. An uncropped figure has increased
background area and is often desirable for figures that contain UI controls.

The setting you make changes the PostScript BoundingBox property saved
with the figure.

Using MATLAB Commands
Use the -loose option with the print function. On Windows platforms, the
uncropped option is only available if you print to a file.

This example exports the current figure, uncropped, to an EPS file.

print -deps -loose myfile.eps

7-76

Choosing a Graphics Format

Choosing a Graphics Format

In this section...

“What Are Graphic Formats?” on page 7-77

“Frequently Used Graphics Formats” on page 7-78

“Factors to Consider in Choosing a Format” on page 7-78

“Properties Affected by Choice of Format” on page 7-81

“Impact of Rendering Method on the Output” on page 7-83

“Description of Selected Graphics Formats” on page 7-84

“How to Specify a Format for Exporting” on page 7-87

What Are Graphic Formats?
A graphics file format is a specification for storing and organizing data in a
file. MATLAB support exists for many different graphics file formats. Some
are built-in and others are Ghostscript formats. File formats also differ in
color support, graphics style (bitmap or vector), and bit depth.

This section provides information to help you decide which graphics format to
use when exporting your figure to a file or to the Windows clipboard. It covers

Before deciding on a graphics format, check what formats are supported
by your target application and platform. See the print reference page for
a complete list of supported MATLAB graphics formats. Once you decide
on which format to use in exporting your figure, follow the instructions in
“Exporting to a File” on page 7-20 or “Exporting to the Windows or Macintosh
Clipboard” on page 7-32.

7-77

../ref/print.html#export_formats

7 Printing and Exporting

Frequently Used Graphics Formats
Here are some of the more frequently used graphics formats. For a complete
list, see the Graphics Format table on the print reference page. For a more
complete description of these formats, see “Description of Selected Graphics
Formats” on page 7-84.

Format Description
Command Line -device
Parameter

EPS color, and
black and white

Export line plots or simple graphs to a
file.

Note An EPS file does not display within
some applications unless you add a TIFF
preview image to it. See the example
“Exporting in EPS Format with a TIFF
Preview” on page 7-41.

-deps (black and white)

-depsc (color)

-depsc -tiff (TIFF preview)

JPEG 24-bit Export plots with surface lighting or
transparency to a file. This format can be
displayed by most Web browsers.

-djpeg

-djpegnumber,

where number is the
compression.

TIFF 24-bit
bitmap color

Export plots with surface lighting or
transparency to a file. Widely available.
A good format to choose if you are not sure
what formats your application supports.

-dtiff

BMP 8-bit color
bitmap

Export a figure to the clipboard (Windows
only).

-dbitmap

EMF color vector
format

Export a figure to the clipboard (Windows
only).

-dmeta

Factors to Consider in Choosing a Format
There are at least five main factors to consider when choosing a graphics
format to use in exporting a figure:

7-78

../ref/print.html#graphics_format_files

Choosing a Graphics Format

• Implementation — Is it a built-in MATLAB or Ghostscript format?

• Graphics Format — Is it bitmap or vector graphics format?

• Bit Depth — What bit depth does the format offer?

• Color Support — What color support does it have?

• Model/Publication — Is it a Simulink model or specific publication type?

The Graphics Format table on the print reference page provides information
on the first four of these factors for each format that MATLAB supports.

Built-In MATLAB or Ghostscript Formats
Some graphics formats are built-in MATLAB formats and others are provided
by Ghostscript. In some cases (such as the Windows Bitmap format), the
format is available both as a built-in format and a Ghostscript format. In
general, when this is the case, we recommend that you choose the MATLAB
format, especially if you plan to read the image back into Windows later.

The choice of MATLAB versus Ghostscript formats is important when any of
these properties affects your output:

• “Font Support” on page 7-81

• “Resolution” on page 7-81

• “Importing into the MATLAB Workspace” on page 7-82

Choosing Bitmap or Vector Graphic Output
Windows file formats are created using either bitmap or vector graphics.
Bitmap formats store graphics as 2-D arrays of pixels. Vector formats use
drawing commands to store graphics as geometric objects. Whether to use a
bitmap or vector format depends mostly on the type of objects in your figure.

The choice of bitmap versus vector graphics is important when any of these
properties or capabilities affects your output:

• “Degree of Complexity” on page 7-82

• “Lighting and Transparency” on page 7-82

7-79

../ref/print.html#graphics_format_files

7 Printing and Exporting

• Line and text quality

• “File Size” on page 7-83

• “Resizing After Import” on page 7-83

To create vector output, the Painters renderer is required. Under some
circumstances you might need to manually select it in the Print Preview
or Export Setup GUI. The painters renderer does not support lighting or
transparency.

To create bitmap output, either the OpenGL or the Z-buffer renderer is
required. Under some circumstances you might need to manually select one
of these in the Print Preview or Export Setup GUI. These renderers both
support lighting, but only OpenGL supports transparency.

See “Impact of Rendering Method on the Output” on page 7-83 for more
information.

Bit Depth
Bit depth is the number of bits a format uses to store each pixel. This
determines the number of colors the exported figure can contain.

Bit depth applies mostly to bitmap graphics. An 8-bit image uses 8 bits per
pixel (bpp), enabling it to define 28, or 256, unique colors. The other supported
bit depths are 1-bit (2 colors), 4-bit (16 colors), and 24-bit (16 million colors).

In vector files that don’t normally have a bit depth, the color of objects is
specified by drawing commands stored in the file. However, vector files can
contain bitmaps under the following conditions:

• Image objects saved in vector formats are always saved as bitmaps,
regardless of the rendering method used.

• For vector files created using the OpenGL or Z-buffer renderer, everything
in the figure is saved as a bitmap.

The Graphics Format table on the print reference page indicates the bit
depth of each format. If file size is not critical, make sure you choose a format
with a bit depth that supports the number of colors or shades of gray in your
displayed figure.

7-80

../ref/print.html#graphics_format_files

Choosing a Graphics Format

Color Support
Each graphics format can produce color, grayscale, or monochrome output.
Check the Graphics Format table to see the level of color support for each
format type. To preserve the color in your exported file, you must select a
color graphics format. Bit depth also affects color.

Exporting Simulink Models
Simulink models can only be exported to EPS or a Ghostscript format. You
can only use the print function to export a model, not the Export dialog box.

High Resolution or Web Publications
If you want to use a figure in a journal or other publication, use a format that
enables you to set a high resolution, such as TIFF or EPS.

If you want to use a figure in a Web publication, use either the PNG or the
JPEG format. If you need to save an image as a GIF file, you can use the
imwrite function. You need to convert M-by-N-by-3 truecolor CData (such as
the getframe function provides) to an M–by–N 8–bit array and a colormap
in order to write a GIF. Alternatively, you can export your figure as a TIFF
file and convert it to a GIF using another software application, or capture a
figure as an image using a screen capture utility and save it in formats the
utility supports.

Properties Affected by Choice of Format
The figure properties listed in this section are affected when you select a
graphics format when exporting to a file or the Windows clipboard.

Font Support
Ghostscript formats support a limited number of fonts. If you use an
unsupported font, Courier is substituted. See “PostScript and Ghostscript
Supported Fonts” on page 7-92 for more information.

Resolution
Generally, higher resolution means higher quality. Your choice of resolution
should be based in part on the device to which you will ultimately print it.
Experimentation with different resolution settings can be helpful.

7-81

../ref/print.html#graphics_format_files

7 Printing and Exporting

You cannot change the resolution of a Ghostscript format. The resolution is
low (72 dpi) and might not be appropriate for publications.

Importing into the MATLAB Workspace
If you want to read an exported figure back into the MATLAB environment,
it is best to use one of the built-in MATLAB formats. You should not use
PostScript or a proprietary format such as Adobe Illustrator (.ai), Windows
metafile (.emf), or portable document format (.pdf) files.

Degree of Complexity
Bitmaps are preferable for high-complexity plots, where complexity is
determined by the number of polygons, the number of polygons with
interpolated shading, the number of markers, the presence of truecolor
images, and other factors. An example of a high-complexity plot is a surface
plot that uses interpolated shading.

Vector formats are preferable for most 2-D plots and for some low-complexity
surface plots.

Lighting and Transparency
Surface lighting and transparency are only supported by bitmap graphics
formats. If you use a vector format, the lighting and transparency disappear.
Of the two renderers intended for bitmaps (OpenGL and Z-buffer) only
OpenGL supports transparency.

Note If you export to an EPS (vector) file using the Painters renderer and
include a TIFF preview, the preview image is a bitmap and shows lighting or
transparency when displayed on your screen. Remember that the underlying
format vector file, which is what normally gets printed, does not support
these features.

Lines and Text
Generally, vector formats create better lines and text than bitmap formats.
MATLAB renderers do not antialias lines or text.

7-82

Choosing a Graphics Format

File Size
In general, bitmap formats produce smaller files for complex plots than vector
formats, and vector formats produce smaller files for simple plots than bitmap
formats.

You can calculate the size of a figure exported to an uncompressed bitmap by
multiplying the figure size by its resolution and the bit depth of the chosen
format. For example, if a figure is 2 inches by 3 inches and has a resolution of
100 dpi (dots per inch), it will consist of (2x100)x(3x100), or 60,000 pixels. If
exported to an 8-bit file, it uses 480,000 bits, or 60 KB. If exported to a 24-bit
file, it uses three times the number of bytes, or 180 KB.

Vector format file size is affected by the complexity and number of objects in
your figure. As the complexity and number of objects increase, the number of
drawing commands increases.

Resizing After Import
You can resize a vector graphics figure after importing it into another software
application without losing quality. (Not all applications that support vector
formats enable you to resize them.)

This is not true of bitmap formats. Resizing a bitmap causes round-off
errors that result in jagged edges and degradation of picture quality. This
degradation is particularly obvious in lines and text and is highly discouraged.

Color
The Graphics Format table on the print reference page indicates the color
support and bit depth of each format. If file size is not critical, make sure
you choose a format with a bit depth that supports the number of colors or
shades of gray in your displayed figure.

Impact of Rendering Method on the Output
If you specify a bitmap format when exporting, the exported file always
contains a bitmap regardless of your current renderer setting. If you have
the renderer set to Painters, which normally produces a vector format, that
setting is ignored under these circumstances.

7-83

../ref/print.html#graphics_format_files

7 Printing and Exporting

Vector format files, however, can store your figure as a vector or bitmap
graphic depending on the renderer used to export it. If you do not specify a
rendering method and OpenGL or Z-buffer is chosen automatically, your
exported vector file contains a bitmap. If you want your figure exported as a
vector graphic, be sure to set the rendering method to Painter’s.

Description of Selected Graphics Formats
This section contains details about some of the export file formats MATLAB
supports. For information about formats not listed here, consult a graphics
file format reference.

Formats covered in this section are

• “Adobe Illustrator 88 Files” on page 7-84

• “EMF Files” on page 7-85

• “EPS Files” on page 7-85

• “TIFF Files” on page 7-86

• “JPEG Files” on page 7-87

Adobe Illustrator 88 Files
Adobe Illustrator (ILL) is a vector format that is fully compatible with Adobe
Illustrator software. An Illustrator file created in MATLAB can be further
processed with Adobe Illustrator running on any platform. (When you view
it in Illustrator, it has no template.)

By default, Illustrator files are color and saved in portrait orientation. The
Illustrator group command is used to give the illustrations a hierarchy similar
to that of the Handle Graphics or Simulink graphic.

Some limitations of the Illustrator format are

• Interpolated patches and surfaces cannot be created. The color of each
polygon is determined by the average of the CData values for all of the
polygon’s vertices.

• Images cannot be exported in this format.

7-84

Choosing a Graphics Format

• The resolution setting of 72 dpi cannot be changed.

• No fonts are downloaded to the Illustrator file. Any unavailable fonts are
replaced with fonts that are available.

EMF Files
Enhanced Metafiles (EMF) are vector files similar in nature to Encapsulated
PostScript (EPS), capable of producing near publication-quality graphics.
EMF is an excellent format to use if you plan to import your image into a
Microsoft application and want the flexibility to edit and resize your image
once it has been imported. It is the only supported MATLAB vector format
you can edit from within a Microsoft application. (Your editing ability is
limited. For the best results, do all your editing in Microsoft.)

A drawback of using EMF files is that they are generally only supported by
Windows based applications.

EPS Files
The Encapsulated PostScript (EPS) vector format is the most reliable and
consistent file format that MATLAB printing and export supports. It is widely
recognized in desktop publishing and word processing packages on both UNIX
and Windows platforms. EPS is the only MATLAB supported export format
that can produce CMYK output. (PostScript printer drivers also support
this feature.)

This format is your best choice for producing publication-quality graphics. It
might not be appropriate for figures containing interpolated shading because
it creates a very large file that is difficult to print. For such figures, use the
TIFF format with a high-resolution setting. For more information about
format choices, see “Choosing Bitmap or Vector Graphic Output” on page 7-79.

When imported into Microsoft applications, an EPS file does not display
unless you add a TIFF preview image to it.

The preview image is simple to add (see the next section, “Creating a Preview
Image”). However, if you print your file to a non-PostScript printer, the TIFF
preview is used as the printed image. The resolution of the preview image is
72 dpi, resulting in much lower quality than the EPS image. If there is no
preview image, your printout to a non-PostScript printer contains an error

7-85

7 Printing and Exporting

message in place of the graphic. Many high-end graphics packages, like Adobe
Illustrator, can print an EPS file to a non-PostScript printer.

You cannot edit figures when using EPS files in Microsoft applications; they
can only be annotated.

Note The best vector format to use with Microsoft applications is EMF. See
“EMF Files” on page 7-85.

EPS format has limited font support. When you export a graphic to the EPS
file format, ino attempt is made to determine whether the fonts you have used
in your axes text objects are supported by the EPS format. Unsupported fonts
are replaced with Courier.

Creating a Preview Image. You cannot create TIFF preview images
using the graphical user interface. Use the print command with the -tiff
switch. For example, to create an EPS Level 2 image with TIFF preview in
file myfile.eps, type

print -depsc2 -tiff myfile.eps

TIFF Files
The Tagged Image File Format (TIFF) is a very widely used bitmap format
and can produce publication-quality graphics if you use a high-resolution
setting (such as 200 or 300 dpi).

TIFF is a good format to choose if you are not sure what formats your target
application supports, or if you want to import the graphic into more than one
application without having to export it to several different formats. It can also
be imported into most image-processing applications and converted to other
formats, if necessary. For example, the print command does not produce GIF
files, but there are many applications that can convert TIFF files to GIF.
You can also use getframe to create a snapshot of a figure and imwrite to
save that image as a GIF file.

7-86

Choosing a Graphics Format

JPEG Files
The Joint Photographic Experts Group (JPEG) bitmap format is one of the
dominant formats used in Web graphics. The 24-bit version that MATLAB
supports carries more color information than the popular GIF format.

JPEG files always use JPEG compression. This is a lossy compression scheme,
meaning that some data is thrown away during compression. When you
export to a JPEG image, you can set the amount of compression to use. The
more compression you use, the more data is thrown away. The compression
amount is referred to as JPEG quality, where the highest setting results in
the highest quality image, but the lowest amount of compression.

Setting JPEG Quality. You cannot set the quality using the graphical user
interface. Use the print command with the -djpeg format switch, including
the desired quality value as a suffix. This example exports to a JPEG file
using a quality setting of 100.

print -djpeg100 myfile.jpg

By default, a quality setting of 75 is used. Possible values are from 1 to 100.
The highest setting of 100 still results in some data loss, although the result
is usually visually indistinguishable from the original.

How to Specify a Format for Exporting
To select a graphics format to use when exporting, choose a format from the
Graphics Format table on the print reference page, and specify that format
in either the Export dialog box or in the MATLAB print function.

Using the Graphical User Interface
When exporting your figure to a file:

1 Select Export from the figure window’s File menu.

2 Select a format from the Save as type list box.

3 Enter the filename you want to use and browse for the folder to save the file in.

4 Click Save.

7-87

../ref/print.html#graphics_format_files

7 Printing and Exporting

Using MATLAB Commands
To specify a nondefault graphics format for the figure you are exporting,
include the -d switch with the print command. For example, to export the
current figure to file spline2d.eps, with 600 dpi resolution, and using the
EPS color graphics format, type

print -r600 -depsc spline2d

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

7-88

Choosing a Printer Driver

Choosing a Printer Driver

In this section...

“What Are Printer Drivers?” on page 7-89

“Factors to Consider in Choosing a Driver” on page 7-90

“Driver-Specific Information” on page 7-93

“How to Specify the Printer Driver to Use” on page 7-97

What Are Printer Drivers?
A printer driver formats your figure into instructions that your printer
understands. There are two main types of MATLAB printer drivers: built-in
and Ghostscript. See the Printer Driver table on the print reference page for
a complete list of supported drivers. Specifying the printer driver does not
change the selected printer. This following sections provide information to
help you decide which printer driver to use when printing your figure.

Built-in MATLAB Drivers
Built-in MATLAB drivers are written specifically for it and include Windows,
PostScript, and HPGL output formats.

The built-in Windows printer drivers enable your print requests to work with
the Windows Print Manager. The Print Manager enables you to monitor
printer queues and control various aspects of the printing process.

HPGL support is provided for the HP 7475A plotter and fully compatible
plotters. HPGL files can also be imported into documents of other applications,
such as Microsoft Word, although add-on filters for them may be needed.

Ghostscript Drivers
Ghostscript drivers use Ghostscript to convert your figure into
printer-model-specific instructions. MATLAB generates a PostScript
representation of the figure and Ghostscript generates the printer instructions
from that. Examples of Ghostscript drivers are Epson and HP.

7-89

../ref/print.html#devices_target

7 Printing and Exporting

Factors to Consider in Choosing a Driver
The choice of printer driver depends upon several considerations:

• What platform you are using

• What kind of printer you have

• What color model you want to use

• What font support you need

• Any driver-specific settings you need

The following flowchart gives an overview of how to choose a driver based on
the platform you are using and the type of printer you have.

���������	
����
�
����
����

�������	
��������
��
�
����

����
����	
��
��������	�����

������
���������
��������

�
��
�������

����
��
��������
��������	�����

����
���
��������
��������	�����

���

���

�

�

���

�

Deciding What Type of Printer Driver to Use

7-90

Choosing a Printer Driver

Platform Considerations
On Windows systems, you can use any of the driver types shown in the
flowchart. If you use the Windows driver, you can use the Windows Print
Manager.

On UNIX, you can use either PostScript or Ghostscript drivers.

On either platform, if you have a PostScript-compatible printer, it is better
to use a PostScript driver than a Ghostscript driver, because doing so avoids
the unnecessary Ghostscript conversion step and is likely to create more
accurate renditions.

Printer Type
Printer support is different among the Windows, PostScript, and Ghostscript
drivers. Consult the manual for your printer to see what driver to use.

Windows drivers support most printer models, but sometimes the printer’s
native driver is incompatible with the MATLAB Windows driver. If you are
getting printing errors, see “Trouble with Windows Native Drivers” on page
7-95.

Some Ghostscript drivers are specific to certain printer models. For example,
different drivers support the HP DeskJet 500, 500C, and 550C models, plus
a generic driver for the series. When this is the case, try the model-specific
driver first. If that doesn’t work, try the generic driver.

Color Model
By default, a black-and-white driver is used. The built-in MATLAB and
Ghostscript drivers print both color and black and white. The Printer Drivers
table on the print reference page indicates which drivers are color.

Colored surfaces and images print in grayscale when you use a
black-and-white driver. Colored lines and text can be printed in color,
grayscale, or black and white, depending on the color support of the driver
and color capability of your printer. Results can vary depending on whether
images, text, lines, patches, or surfaces are being printed.

7-91

../ref/print.html#devices_target

7 Printing and Exporting

Font Support
In MATLAB, the fonts supported for printing depend upon the MATLAB
printer driver you specify and sometimes upon which platform you are using.

PostScript and Ghostscript Supported Fonts. The table below lists the
fonts supported by the MATLAB PostScript and Ghostscript drivers when
generated with the Painters renderer (fully vectorized output). This same set
of fonts is supported on both Windows and UNIX.

AvantGarde Helvetica-Narrow Times-Roman

Bookman NewCenturySchlbk ZapfChancery

Courier Palatino ZapfDingbats

Helvetica Symbol

Any font not on the previous list is replaced with Courier, with the exception
of the fonts listed below. This table shows the replacement rules which apply
to the specified fonts:

This font in MATLAB Becomes this in output generated
using the Painters renderer

Arial Helvetica

TimesNewRoman TimesRoman

NewCenturySchoolbook NewCenturySchlbkRoman

If you set the font using the set function, use the names exactly as
shown above. This example sets the font of the current text object to
Helvetica-Narrow using MATLAB commands.

set(gca, 'FontName', 'Helvetica-Narrow');

If you use the Property Editor dialog box (available under Axes Properties
or Current Object Properties on the Edit menu) to set the font, the list of
available fonts shows those that are supported by your system. If you choose
one that is not in the table above, your resulting file uses Courier.

7-92

Choosing a Printer Driver

Windows Drivers Supported Fonts. The MATLAB Windows drivers
support any system-supported font. To see the list of fonts installed on your
system, open the Font name list on the Text or Style tab of the Property
Editor.

If you use the set function to set fonts, type in the name exactly as it appears
in the Property Editor. For example, if you have the Script font installed on
your system, set the title of your figure to Script using the following code.

h = get(gca, 'Title');
set(h, 'FontName', 'Script');

If you specify a font supplied with MATLAB that is not available on your
platform as a system font, figures might not print or export properly.

HPGL Driver Supported Fonts. HPGL drivers support only one font.
However, you can set its size and color.

Settings That Are Driver Specific
Some print settings are only supported by specific drivers. This table
summarizes the settings and which driver supports them.

Setting Driver(s)

Appending figures to a PostScript file PostScript

BoundingBox (setting figure to print
uncropped)

PostScript, Ghostscript

CMYK PostScript

Resolution set with user interface PostScript, Windows

Resolution set with print function PostScript

Driver-Specific Information
This section provides additional information about the various types of printer
drivers available to MATLAB users. It covers the following topics:

• “Setting the Windows Driver” on page 7-94

7-93

7 Printing and Exporting

• “Trouble with Windows Native Drivers” on page 7-95

• “Level 1 or Level 2 PostScript Drivers” on page 7-95

• “Early PostScript 1 Printers” on page 7-95

• “Background Fills in HPGL Drivers” on page 7-96

• “Color Selection in HPGL Drivers” on page 7-96

• “Limitations of HPGL Drivers” on page 7-96

Setting the Windows Driver
When you specify a Windows driver (-dwin or -dwinc), this is interpreted
to mean that the print request will use the Windows Print Manager. It
also means that the default Windows driver will be assigned based on your
current printer’s color property setting. In other words, MATLAB does not
differentiate between -dwin or -dwinc in printopt.m and you might not
get the expected output color: if you choose -dwin, lines and text will print
in black and white; with -dwinc, lines and text print in their screen colors
(assuming your printer does print in color).

There are two ways to ensure that -dwin or -dwinc are used: specify the
driver when you print, or use the printer’s Document Properties dialog box to
set the default driver.

You can use the printer’s Document Properties dialog box to set the default
driver for all print requests. This dialog box sets the printer’s color property,
which in turn sets the default Windows driver.

To access this dialog box, click the Properties button on the Windows Print
or Print Setup dialog box. See your Windows and printer’s documentation if
you need help with this dialog box. Document Properties dialog boxes vary
from printer to printer.

Sometimes, even when you use the Windows Document Properties dialog box,
you can receive incorrect color results because some Windows printers return
inaccurate information about their color property setting.

7-94

Choosing a Printer Driver

Trouble with Windows Native Drivers
Occasionally, printing problems are due to a bug in the native printer driver or
an incompatibility between the native printer driver and the MATLAB driver.

If you are having trouble, try installing a different native printer driver. A
newer version might be available from the manufacturer or reseller. You may
also be able to use the native driver from a different printer, such as an earlier
model from the same manufacturer.

If this doesn’t help, try using a PostScript or Ghostscript driver.

Level 1 or Level 2 PostScript Drivers
Choosing between the Level 1 and Level 2 MATLAB PostScript drivers does
not affect the quality of your output. Make the choice based on what your
printer supports and on any file size or speed concerns.

Level 1 PostScript produces good results on a Level 2 printer, but Level 2
PostScript does not print properly on a Level 1 printer.

Level 2 PostScript files are generally smaller and render more quickly than
Level 1 files. If your printer supports Level 2 PostScript, use one of the Level
2 drivers. If your printer does not support Level 2, or if you’re not sure, use
a Level 1 driver.

In the future PostScript Level 1 support will be removed and MATLAB will
generate PostScript Level 2 instead.

Early PostScript 1 Printers
If you have an early PostScript 1 printer, such as some of the PostScript
printers manufactured before 1990, you may notice problems in the text of
PostScript printouts. Your printer might not support the ISOLatin1Encoding
operator that the MATLAB driver uses for PostScript files. If this is the case,
use the Adobe PostScript default character-set encoding. You can specify this
by using the -adobecset option with the print command.

7-95

7 Printing and Exporting

Background Fills in HPGL Drivers
The HPGL driver cannot do background fills. Therefore, you should ensure
that your figure is set to print with a white background (the default), and that
any lines and text in your figure are drawn in a color dark enough to be seen
on a white background. For more information about background color, see
“Setting the Background Color” on page 7-66.

Color Selection in HPGL Drivers
The HP 7475A plotter supports six pens, none of which can be white. If the
MATLAB driver tries to draw in white while rendering in HPGL mode, the
driver ignores all drawing commands until a different color is chosen.

Pen 1, which is assumed to be black, is used for drawing axes. The remaining
pens are used for the first five colors specified in the ColorOrder property of
the current axes object. If ColorOrder specifies fewer than five colors, the
unspecified pens are not used.

For Simulink systems, which ordinarily use a maximum of eight colors, the
six pens available on the plotter are assumed to be

• Pen 1: black

• Pen 2: red

• Pen 3: green

• Pen 4: blue

• Pen 5: cyan

• Pen 6: magenta

If you attempt to draw a MATLAB graphic object containing a color that is
not a known pen color, the driver chooses the nearest approximation to the
unlisted color.

Limitations of HPGL Drivers
The HPGL driver has these limitations:

• Display colors and plotted colors sometimes differ.

7-96

Choosing a Printer Driver

• Areas (faces on mesh and surface plots, patches, blocks, and arrowheads)
are not filled.

• There is no hidden line or surface removal.

• Text is printed in the plotter’s default font.

• Line width is determined by pen width.

• Images and UI controls cannot be plotted.

• Interpolated edge lines between two vertices are drawn with the pen whose
color best matches the average color of the two vertices.

• Figures cannot be rendered using Z-buffer or OpenGL; this driver always
uses the Painter’s algorithm.

How to Specify the Printer Driver to Use
If you need to use a driver other than the default driver for your system, choose
a new driver from the Printer Driver table on the print reference page, and
set it either as a new default or just for the current figure you are working on.

Setting the Default Driver for All Figures
If you do not indicate a specific printer driver, MATLAB uses the default
driver specified by the variable dev in the printopt.m file. The factory default
driver depends on the platform.

Platform Factory Default Printer Driver Driver Code

Windows Black-and-white Windows -dwin

UNIX &
Macintosh

Black-and-white Level II
PostScript

-dps2

To change the default driver for all figures, edit printopt.m and change the
value for dev to match one of the driver codes listed in the Printer Drivers
table on the print reference page (printopt.m contains instructions for
modifying it). See “Setting Defaults Across Sessions” on page 7-8 for details.

7-97

../ref/print.html#devices_target

7 Printing and Exporting

Setting a Driver for the Current Figure Only
You can change the printer driver from the MATLAB command line. To
specify a nondefault printer driver for the figure you are printing, include the
-d switch with the print command. For example, to print the current figure
using the MATLAB built-in Windows color printer driver winc, type

print -dwinc

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

7-98

Troubleshooting

Troubleshooting

In this section...

“Introduction” on page 7-99

“Common Problems” on page 7-99

“Printing Problems” on page 7-100

“Exporting Problems” on page 7-103

“General Problems” on page 7-107

Introduction
This section describes some common problems you might encounter when
printing or exporting your figure. If you don’t find your problem listed here,
try searching the Knowledge Base maintained by MathWorks Technical
Support Department. Go to http://www.mathworks.com/support and enter
a topic in the search field.

Common Problems

• Printing Problems

- “Printer Drivers” on page 7-100

- “Default Settings” on page 7-101

- “Color vs. Black and White” on page 7-102

- “Printer Selection” on page 7-102

- “Rotated Text” on page 7-103

- “ResizeFcn Warning” on page 7-103

• Exporting Problems

- “Background Color” on page 7-103

- “Default Settings” on page 7-104

- “Microsoft Word” on page 7-104

- “File Format” on page 7-105

7-99

http://www.mathworks.com/support

7 Printing and Exporting

- “Size of Exported File” on page 7-106

- “Making Movies” on page 7-106

- “Extended Operations” on page 7-106

• General Problems

- “Background Color” on page 7-107

- “Default Settings” on page 7-107

- “Dimensions of Output” on page 7-108

- “Axis and Tick Labels” on page 7-108

- “UI Controls” on page 7-109

- “Cropping” on page 7-109

- “Text Object Font” on page 7-109

Printing Problems

Printer Drivers
I am using a Windows printer driver and encountering problems such
as segmentation violations, general protection faults, application
errors, and unexpected output.

Try one of the following solutions:

• Check the table of drivers in the print reference page to see if there are
other drivers you can try.

- If your printer is PostScript-compatible, try printing with one of the
MATLAB built-in PostScript drivers.

- If your printer is not PostScript-compatible, see if one of the MATLAB
built-in Ghostscript devices is appropriate for your printer model. These
devices use Ghostscript to convert PostScript files into other formats,
such as HP LaserJet and Canon BubbleJet.

• Contact the printer vendor to obtain a different native printer driver. The
behavior you are experiencing might occur only with certain versions of
the native printer driver. If this doesn’t help and you are on a Windows

7-100

Troubleshooting

system, try reinstalling the drivers that were shipped with your Windows
installation disk.

• Export the figure to a graphics-format file, and then import it into another
application before printing it. For information about exporting MATLAB
figures, see “Exporting to a File” on page 7-20.

PostScript Output
When I use the print function with the -deps switch, I receive this
error message.

Encapsulated PostScript files cannot be sent to the printer.
File saved to disk under name 'figure2.eps'

As the error message indicates, your figure was saved to a file. EPS is a
graphics file format and cannot be sent to a printer using a printer driver. To
send your figure directly to a printer, try using one of the PostScript driver
switches. See the table of drivers in the print reference page. To print an EPS
file, you must first import it into a word processor or other software program.

Default Settings
My printer uses a different default paper type than the MATLAB
default type of letter. How can I change the default paper type so
that I don’t have to set it for each new figure?

You can set the default value for any property by adding a line to startup.m.
Adding the following line sets the default paper type to A4.

set(0, 'DefaultFigurePaperType', 'A4');

In your call to set, combine the word Default with the name of the object
Figure and the property name PaperType.

I set the paper orientation to landscape, but each time I go to print
a new figure, the orientation setting is portrait again. How can I
change the default orientation so that I won’t have to set it for each
new figure?

7-101

../ref/print.html#drivers

7 Printing and Exporting

See the explanation for the previous question. Adding the following line to
startup.m sets the default paper orientation to landscape.

set(0, 'DefaultFigurePaperOrient', 'landscape')

Color vs. Black and White
I want the lines in my figure to print in black, but they keep printing
in color.

You must be using a color printer driver. You can specify a black-and-white
driver using the print function or the Print Preview dialog box to force the
lines for the current figure to print in black. See “Setting the Line and Text
Color” on page 7-70 for instructions.

A white line in my figure keeps coming out black when I print it.

There are two things that can cause this to happen. Most likely, the line is
positioned over a dark background. The MATLAB default is to invert your
background to white when you print, and changes any white lines over the
background to black. To avoid this, retain your background color when you
print. See “Setting the Background Color” on page 7-66.

The other possibility is that you are using a Windows printer driver and the
printer is sending inaccurate color information to MATLAB.

I am using a color printer, but my figure keeps printing in black
and white.

By default, MATLAB uses a black-and-white printer driver. You need to
specify a color printer driver. For instructions, see “Choosing a Printer
Driver” on page 7-89. If you are already using a Windows color driver, the
printer might be returning inaccurate information about its color property.
See “Driver-Specific Information” on page 7-93.

Printer Selection
I have more than one printer connected to my system. How do I
specify which one to print my figure with?

7-102

Troubleshooting

You can use either the Print dialog box, or the MATLAB print function,
specifying the printer with the -P switch. For instructions using either
method, see “Selecting the Printer” on page 7-47.

Rotated Text
I have some rotated text in my figure. It looks fine on the screen, but
when I print it, the resolution is poor.

You are probably using bitmapped fonts, which don’t rotate well. Try using
TrueType® fonts instead.

ResizeFcn Warning
I get a warning about my ResizeFcn being used when I print my figure.

By default, MATLAB resizes your figure when converting it to printer
coordinates. That means it calls any ResizeFcn you have created for the
figure and issues a warning. You can avoid this warning by setting the figure
to print at screen size.

Exporting Problems

Background Color
I generated a figure with a black background and selected “Use figure
color” from the Copy Options panel of the Preferences dialog box.
But when I exported my figure, its background was changed to white.

You must have exported your figure to a file. The settings in Copy Options
only apply to figures copied to the clipboard.

There are two ways to retain the displayed background color: use the Print
Preview dialog box or set the InvertHardCopy property to off. See “Setting
the Background Color” on page 7-66 for instructions on either method.

7-103

7 Printing and Exporting

Default Settings
I want to export all of my figures using the same size. Is there some
way to do this so that I don’t have to set the size for each individual
figure?

You can set the default value for any property by adding a line to startup.m.
Adding the following line sets the default figure size to 4-by-3 inches.

set(0, 'DefaultFigurePaperPosition', [0 0 4 3]);

In your call to set, combine the word Default with the name of the object
Figure and the property name PaperPosition.

I use the clipboard to export my figures as metafiles. Is there some
way to force all of my copy operations to use the metafile format?

On Windows systems, use the Copy Options panel of the Preferences dialog
box. Any settings made here, including whether your figure is copied as
a metafile or bitmap, apply to all copy operations. See “Exporting to the
Windows or Macintosh Clipboard” on page 7-32 for instructions.

Microsoft Word
I exported my figure to an EPS file, and then tried to import it into
my Word document. My printout has an empty frame with an error
message saying that my EPS picture was not saved with a preview
and will only print to a PostScript printer. How do I include a TIFF
preview?

Use the print command with the -tiff switch. For example,

print -deps -tiff filename

If you print to a non-PostScript printer with Word, the preview image is used
for printing. This is a low-resolution image that lacks the quality of an EPS
graphic. For more information about preview images and other aspects of
EPS files, see “EPS Files” on page 7-85.

When I try to resize my figure in Word, its quality suffers.

7-104

Troubleshooting

You must have used a bitmap format. Bitmap files generally do not resize
well. If you are going to export using a bitmap format, try to set the figure’s
size while it’s still in MATLAB. See “Setting the Figure Size and Position”
on page 7-48 for instructions.

As an alternative, you can use one of the vector formats, EMF or EPS. Figures
exported in these formats can be resized in Word without affecting quality.

I exported my figure as an EMF to the clipboard. When I paste it into
Word, some of the labels are printed incorrectly.

This problem occurs with some Microsoft Word and Windows versions. Try
editing the labels in Word.

File Format
I tried to import my exported figure into a word processing
document, but I got an error saying the file format is unrecognized.

There are two likely causes: you used the print function and forgot to specify
the export format, or your word processing program does not support the
export format. Include a format switch when you use the print function;
simply including the file extension is not sufficient. For instructions, see
“Exporting to a File” on page 7-20.

If this does not solve your problem, check what formats the word processor
supports.

I tried to append a figure to an EPS file, and received an error
message

You cannot append figures to an EPS file. The -append option is only valid
for PostScript files, which should not be confused with EPS files. PostScript
is a printer driver; EPS is a graphics file format.

Of the supported export formats, only HDF supports storing multiple figures,
but you must use the imwrite function to append them. For an example,
see the reference page for imwrite.

7-105

7 Printing and Exporting

Size of Exported File
I’ve always used the EPS format to export my figures, but recently
it started to generate huge files. Some of my files are now several
megabytes!

Your graphics have probably become complicated enough that MATLAB is
using the OpenGL or Z-buffer renderer instead of the Painter’s renderer.
It does this to improve display time or to handle attributes that Painter’s
cannot, such as lighting. However, using OpenGL or Z-buffer causes a bitmap
to be stored in your EPS file, which with large figures leads to a large file.

There are two ways to fix the problem. You can specify the Painter’s renderer
when you export to EPS, or you can use a bitmap format, such as TIFF.
The best renderer and type of format to use depend upon the figure. See
“Choosing Bitmap or Vector Graphic Output” on page 7-79 if you need help
deciding. For information about the rendering methods and how to set them,
see “Selecting a Renderer” on page 7-55.

Making Movies
I am using MATLAB functions to process a large number of frames.
I would like these frames to be saved as individual files for later
conversion into a movie. How can I do this?

Use getframe to capture the frames, imwrite to write them to a file, and
movie to create a movie from the files. For more information about using
getframe and imwrite to capture and write the frames, see “Exporting with
getframe” on page 7-29. For more information about creating a movie from
the captured frames, see the reference page for movie.

You can also save multiple figures to an AVI file. AVI files can be used for
animated sequences that do not need MATLAB to run. However, they do
require an AVI viewer. For more information, see “Exporting to Audio and
Video” in the MATLAB Programming Fundamentals documentation.

Extended Operations
There are some export operations that cannot be performed using
the Export dialog box.

7-106

Troubleshooting

You need to use the print function to do any of the following operations:

• Export to a supported file format not listed in the Export dialog box. The
formats not available from the Export dialog box include HDF, some
variations of BMP and PCX, and the raw data versions of PBM, PGM,
and PPM.

• Specify a resolution.

• Specify one of the following options:

- TIFF preview

- Loose bounding box for EPS files

- Compression quality for JPEG files

- CMYK output on Windows platforms

• Perform batch exporting.

General Problems

Background Color
When I output my figure, its background is changed to white. How
can I get it to have the displayed background color?

By default, when you print or export a figure, the background color inverts
to white. There are two ways to retain the displayed background color: use
the Print Preview dialog box or set the InvertHardCopy property to off. See
“Setting the Background Color” on page 7-66 for instructions on either method.

If you are exporting your figure to the clipboard, you can also use the Copy
Options panel of the Preferences dialog box. Setting the background here
sets it for all figures copied to the clipboard.

Default Settings
I need to produce diagrams for publications. There is a list of
requirements that I must meet for size of the figure, fonts types, etc.
How can I do this easily and consistently?

7-107

7 Printing and Exporting

You can set the default value for any property by adding a line to startup.m.
As an example, the following line sets the default axes label font size to 12.

set(0, 'DefaultAxesFontSize', 12);

In your call to set, combine the word Default with the name of the object
Axes and the property name FontSize.

Dimensions of Output
The dimensions of my output are huge. How can I make it smaller?

Check your settings for figure size and resolution, both of which affect the
output dimensions of your figure.

The default figure size is 8-by-6 inches. You can use the Print Preview dialog
box or the PaperPosition property to set the figure size. See “Setting the
Figure Size and Position” on page 7-48.

The default resolution depends on the export format or printer driver used.
For example, built-in MATLAB bitmap formats, like TIFF, have a default
resolution of 150 dpi. You can change the resolution by using the print
function and the -r switch. For default resolution values and instructions on
how to change them, see “Setting the Resolution” on page 7-61.

I selected “Auto (actual size, centered)” from the Print Preview menu,
but my output looks a little bigger, and my font looks different.

You probably output your figure using a higher resolution than your screen
uses. Set your resolution to be the same as the screen’s.

As an alternative, if you are exporting your figure, see if your application
enables you to select a resolution. If so, import the figure at the same
resolution it was exported with. For more information about resolution and
how to set it when exporting, see “Setting the Resolution” on page 7-61.

Axis and Tick Labels
When I resize my figure below a certain size, my x-axis label and the
bottom half of the x-axis tick labels are missing from the output.

7-108

Troubleshooting

Your figure size might be too small to accommodate the labels. Labels are
positioned a fixed distance from the x-axis. Since the x-axis itself is positioned
a relative distance away from the window’s edge, the label text might not fit.
Try using a larger figure size or smaller fonts. For instructions on setting the
size of your figure, see “Setting the Figure Size and Position” on page 7-48. For
information about setting font size, see the Text Properties reference page.

In my output, the x-axis has fewer ticks than it did on the screen.

MATLAB has rescaled your ticks because the size of your output figure is
different from its displayed size. There are two ways to prevent this: select
Keep screen limits and ticks from the Advanced tab of the Print Preview
dialog box, or set the XTickMode, YTickMode, and ZTickMode properties to
manual. See “Setting the Axes Ticks and Limits” on page 7-64 for details.

UI Controls
My figure contains UI controls. How do I prevent them from
appearing in my output?

Use the print function with the -noui switch. For details, see “Excluding
User Interface Controls form Printed Output” on page 7-75.

Cropping
I can’t output my figure using the uncropped setting (i.e., a loose
BoundingBox).

Only PostScript printer drivers and the EPS export format support uncropped
output. There is a workaround for Windows printer drivers, however. Using
the print function, save your figure to a file that can be printed later. For an
example see “Producing Uncropped Figures” on page 7-76.

Text Object Font
I have a problem with text objects when printing with a PostScript
printer driver or exporting to EPS. The fonts are correct on the
screen, but are changed in the output.

7-109

7 Printing and Exporting

You have probably used a font that is not supported by EPS and PostScript.
All unsupported fonts are converted to Courier. See “PostScript and
Ghostscript Supported Fonts” on page 7-92 for the list of the supported fonts.

7-110

8

Handle Graphics Objects

• “Organization of Graphics Objects” on page 8-3

• “Types of Graphics Objects” on page 8-4

• “Graphics Windows — the Figure” on page 8-6

• “Core Graphics Objects” on page 8-10

• “Plot Objects” on page 8-19

• “Linking Graphs to Variables — Data Source Properties” on page 8-23

• “Annotation Objects” on page 8-25

• “Group Objects” on page 8-30

• “Example — Transforming a Hierarchy of Objects” on page 8-39

• “Object Properties” on page 8-44

• “Setting and Querying Property Values” on page 8-48

• “Factory-Defined Property Values” on page 8-53

• “Setting Default Property Values” on page 8-54

• “Accessing Object Handles” on page 8-61

• “Controlling Graphics Output” on page 8-72

• “The Figure Close Request Function” on page 8-83

• “Saving Handles in Files” on page 8-87

• “Properties Changed by Built-In Functions” on page 8-89

• “Objects That Can Contain Other Objects” on page 8-92

• “Using Panel Containers in Figures — Uipanels” on page 8-93

• “Grouping Objects Within Axes — hgtransform” on page 8-99

8 Handle Graphics® Objects

• “Controlling Legends” on page 8-103

• “Callback Properties for Graphics Objects” on page 8-111

• “Function Handle Callbacks” on page 8-113

• “Optimizing Graphics Performance” on page 8-122

8-2

Organization of Graphics Objects

Organization of Graphics Objects
Graphics objects are the basic drawing elements used by MATLAB to display
data. Each instance of an object has a unique identifier called a handle. Using
this handle, you can manipulate the characteristics (called object properties)
of an existing graphics object. You can also specify values for properties when
you create a graphics object.

These objects are organized into a hierarchy, as shown by the following
diagram.

The hierarchical nature of the Handle Graphics technology is based on the
interdependencies of the various graphics objects. For example, to draw a
line object, MATLAB needs an axes object to orient and provide a frame of
reference to the line. The axes, in turn, needs a figure window to display
the axes and its child objects.

8-3

8 Handle Graphics® Objects

Types of Graphics Objects

In this section...

“Introduction” on page 8-4

“Information on Specific Graphics Objects” on page 8-4

Introduction
There are two basic types of graphics objects:

• Core graphics objects — Used by high-level plotting functions and by
composite objects to create plot objects.

• Composite objects — Composed of core graphics objects that have been
grouped together to provide a more convenient interface.

Composite objects form the basis for four subcategories of graphics objects.

• Plot objects — Composed of basic graphics objects, but enable properties to
be set on plot object level.

• Annotation objects — Exist on a layer separate from other graphics objects.

• Group objects — Create groups of objects that can behave as one in certain
respects. You can parent any axes child object (except light) to a group
object, including other group object.

• UI objects — User interface objects are used to construct graphical user
interfaces.

Graphics objects are interdependent, so the graphics display typically
contains a variety of objects that, in conjunction, produce a meaningful graph
or picture.

Information on Specific Graphics Objects
See the following sections for more information on the various types of
graphics objects:

• “Graphics Windows — the Figure” on page 8-6

8-4

Types of Graphics Objects

• “Core Graphics Objects” on page 8-10

• “Plot Objects” on page 8-19

• “Annotation Objects” on page 8-25

• “Group Objects” on page 8-30

• “Object Properties” on page 8-44

For information on user interface objects and their application, see “Creating
Graphical User Interfaces”.

8-5

8 Handle Graphics® Objects

Graphics Windows — the Figure

In this section...

“Introduction” on page 8-6

“Figures Used for Graphing Data” on page 8-7

“Figures Used for GUIs” on page 8-8

“Root Object — The Figure Parent” on page 8-9

“More Information on Figures” on page 8-9

Introduction
Figures are the windows in which MATLAB displays graphics. Figures
contain menus, toolbars, user-interface objects, context menus, axes and, as
axes children, all other types of graphics objects.

MATLAB places no limits on the number of figures you can create. (Your
computer systems might impose limitations, however.)

Figures play two distinct roles in MATLAB:

• Containing data graphs

• Containing graphical user interfaces

Figures can contain both graphs and GUIs components at the same time. For
example, a GUI might be designed to plot data and therefore contain an axes
as well as user interface objects. See “Example — Using Figure Panels” on
page 8-94 for an example of such a GUI.

The following diagram illustrates the types of objects that figures can contain.

8-6

Graphics Windows — the Figure

Both figures and axes have children that act as containers. A uipanel can
contain user interface objects and be parented to a figure and group objects
(hggroup and hgtransform) can contain axes children (except light objects)
and be parented to an axes.

See “Objects That Can Contain Other Objects” on page 8-92 for more
information.

Figures Used for Graphing Data
MATLAB functions that draw graphics (e.g., plot and surf) create figures
automatically if none exist. If there are multiple figures open, one figure
is always designated as the “current” figure, and is the target for graphics
output.

The gcf command returns the handle of the current figure or creates a new
figure if one does not exist. For example, enter the following command to
see a list of figure properties:

get(gcf)

The root object CurrentFigure property returns the handle of the current
figure, if one exists, or returns empty if there are no figures open:

get(0,'CurrentFigure')
ans =
[]

8-7

../ref/rootobject_props.html#CurrentFigure

8 Handle Graphics® Objects

See “Controlling Graphics Output” on page 8-72 for more information on how
MATLAB determines where to display graphics.

Figure Children for Graphs
Figures that display graphs need to contain axes to provide the frame of
reference for objects such as lines and surfaces, which are used to represent
data. These data representing objects can be contained in group objects or
contained directly in the axes. See “Example — Transforming a Hierarchy of
Objects” on page 8-39 for an example of how to use group objects.

Figures can contain multiple axes arranged in various locations within the
figure and can be of various sizes. See “Automatic Axes Resize” on page 10-9
and “Multiple Axes per Figure” on page 10-15 for more information on axes.

Figures Used for GUIs
GUIs range from sophisticated applications to simple warning dialog boxes.
You can modify many aspects of the figure to fit the intended use by setting
figure properties. For example, the following figure properties are often
useful when creating GUIs:

• Show or hide the figure menu, while displaying custom-designed menus
(MenuBar).

• Change the figure title (Name).

• Control user access to the figure handle (HandleVisibility).

• Create a callback that executes whenever the user resizes the figure
(ResizeFcn).

• Control display of the figure toolbar (Toolbar).

• Assign a context menu (UIContextMenu).

• Define callbacks that execute when users click drag or release the
mouse over the figure (WindowButtonDownFcn, WindowButtonMotionFcn,
WindowButtonUpFcn). See also the ButtonDownFcn property.

• Specify whether the figure is modal (WindowStyle).

8-8

../ref/figure_props.html#MenuBar
../ref/figure_props.html#Name
../ref/figure_props.html#HandleVisibility
../ref/figure_props.html#ResizeFcn
../ref/figure_props.html#Toolbar
../ref/figure_props.html#UIContextMenu
../ref/figure_props.html#WindowButtonDownFcn
../ref/figure_props.html#WindowButtonMotionFcn
../ref/figure_props.html#WindowButtonUpFcn
../ref/figure_props.html#ButtonDownFcn
../ref/figure_props.html#WindowStyle

Graphics Windows — the Figure

See the Figure Properties reference page for more information on figure
characteristics you can specify.

See the “Creating Graphical User Interfaces” documentation for more
information about using figure to create GUIs.

Root Object — The Figure Parent
The parent of a figure is the root object. You cannot instantiate the root object
because its purpose is only to store information. It maintains information on
the state of MATLAB, your computer system, and some MATLAB defaults.

There is only one root object, and all other objects are its descendants. You do
not create the root object; it exists when you start MATLAB. You can, however,
set the values of root properties and thereby affect the graphics display.

For more information, see Root Properties object properties.

Note The handle of the root object is always 0 (the number zero).

More Information on Figures
See the figure reference page for information on creating figures.

See “Callback Properties for Graphics Objects” on page 8-111 for information
on figure events for which you can define callbacks.

See Chapter 9, “Using Figure Properties” for information on other figure
properties.

8-9

../ref/figure_props.html
../ref/rootobject.html

8 Handle Graphics® Objects

Core Graphics Objects

In this section...

“Introduction” on page 8-10

“Core Graphics Objects” on page 8-13

“Example — Creating Core Graphics Objects” on page 8-14

“Parenting” on page 8-16

“High-Level Versus Low-Level Functions” on page 8-17

“Simplified Calling Syntax” on page 8-17

Introduction
Core graphics objects include basic drawing primitives:

• Line, text, and polygon shells (patch objects)

• Specialized objects like surfaces, which are composed of a rectangular
grid of vertices

• Images

• Light objects, which are not visible but affect the way some objects are
colored

Axes contain objects that represent data, such as line, surfaces, contourgroups,
etc.

The following table lists the core graphics objects and contains links to the
reference pages of the functions used to create each object.

8-10

Core Graphics Objects

Core Graphics Objects

Function Purpose

axes Axes objects define the coordinate system for
displaying graphs. Axes are always contained within
a figure.

image 2-D representation of a matrix where numeric values
are mapped to colors. Images can also be 3-D arrays
of RGB values.

light Directional light source located within the axes.
Lights affect patches and surfaces, but cannot
themselves be seen.

line A line is drawn by connecting the data points that
define it.

patch Filled polygons with separate edge properties. A
single patch can contain multiple faces, each colored
independently with solid or interpolated colors.

rectangle 2-D object that has settable edge and face color, and
variable curvature (can draw ellipses).

surface 3-D grid of quadrilaterals created by plotting the
value of each element in a matrix as a height above
the x-y plane.

text Character strings positioned in the coordinate
system defined by the axes.

8-11

8 Handle Graphics® Objects

The following picture illustrates some typical core graphics objects.

8-12

Core Graphics Objects

Core Graphics Objects
This section describes the core graphics objects.

Axes
Axes objects define a frame of reference in a figure window for the display
objects that are generally defined by data. For example, MATLAB creates a
line by connecting each data point with a line segment. The axes determines
the location of each data point in the figure by defining axis scales (x, y, and
z, or radius and angle, etc.)

Axes are children of figures and are parents of core, plot, and group objects.

While annotation objects are also children of axes, they can be parented
only to the hidden annotation axes. (See the annotation function for more
information.)

All functions that draw graphics (e.g., plot, surf, mesh, and bar) create an
axes object if one does not exist. If there are multiple axes within the figure,
one axes is always designated as the “current” axes, and is the target for
display of the above-mentioned graphics objects. (Uicontrols and uimenus are
not children of axes.)

Image
A MATLAB image consists of a data matrix and possibly a colormap. There
are three basic image types that differ in the way that data matrix elements
are interpreted as pixel colors—indexed, intensity, and truecolor. Since
images are strictly 2-D, you can view them only at the default 2-D view.

Light
Light objects define light sources that affect all patch and surface objects
within the axes. You cannot see lights, but you can set properties that control
the style of light source, color, location, and other properties common to all
graphics objects.

Line
Line objects are the basic graphics primitives used to create most 2-D and
some 3-D plots. High-level functions plot, plot3, and loglog (and others)

8-13

8 Handle Graphics® Objects

create line objects. The coordinate system of the axes positions and orients
the line.

Patch
Patch objects are filled polygons with edges. A single patch can contain
multiple faces, each colored independently with solid or interpolated colors.
fill, fill3, and contour3 create patch objects. The coordinate system of the
axes positions and orients the patch.

Rectangle
Rectangle objects are 2-D filled areas having a shape that can range from
a rectangle to an ellipse. Rectangles are useful for creating flowchart-type
drawings.

Surface
Surface objects are 3-D representations of matrix data created by plotting the
value of each matrix element as a height above the x-y plane. Surface plots
are composed of quadrilaterals whose vertices are specified by the matrix
data. MATLAB can draw surfaces with solid or interpolated colors or with
only a mesh of lines connecting the points. The coordinate system of the axes
positions and orients the surface.

The high-level function pcolor and the surf and mesh group of functions
create surface objects.

Text
Text objects are character strings. The coordinate system of the parent axes
positions the text. The high-level functions title, gtext, xlabel, ylabel,
and zlabel create text objects.

Example — Creating Core Graphics Objects
Object creation functions have a syntax of the form

handle = function('propertyname',propertyvalue,...)

8-14

Core Graphics Objects

You can specify a value for any object property (except those that are read
only) by passing property name/value pairs as arguments. The function
returns the handle of the object it creates, which you can use to query and
modify properties after creating the object.

This example evaluates a mathematical function and creates three graphics
objects using the property values specified as arguments to the figure, axes,
and surface commands. MATLAB uses default values for all other properties.

[x,y] = meshgrid([-2:.4:2]);
Z = x.*exp(-x.^2-y.^2);
fh = figure('Position',[350 275 400 300],'Color','w');
ah = axes('Color',[.8 .8 .8],'XTick',[-2 -1 0 1 2],...

'YTick',[-2 -1 0 1 2]);
sh = surface('XData',x,'YData',y,'ZData',Z,...

'FaceColor',get(ah,'Color')+.1,...
'EdgeColor','k','Marker','o',...
'MarkerFaceColor',[.5 1 .85]);

The surface function does not use a 3-D view like the high-level surf
functions. Object creation functions simply add new objects to the current
axes without changing axes properties, except the Children property, which

8-15

../ref/axes_props.html#Children

8 Handle Graphics® Objects

now includes the new object and the axis limits (XLim, YLim, and ZLim), if
necessary.

You can change the view using the camera commands or use the view
command.

view(3)

Parenting
By default, all statements that create graphics objects do so in the current
figure and the current axes (if the object is an axes child). However, you can
specify the parent of an object when you create it. For example,

axes('Parent',figure_handle,...)

creates an axes in the figure identified by figure_handle. You can also move
an object from one parent to another by redefining its Parent property:

set(gca,'Parent',figure_handle)

8-16

../ref/axes_props.html#XLim
../ref/axes_props.html#YLim
../ref/axes_props.html#ZLim

Core Graphics Objects

High-Level Versus Low-Level Functions
Many MATLAB graphics functions call the object creation functions to draw
graphics objects. However, high-level routines also clear the axes or create
a new figure, depending on the settings of the axes and figure NextPlot
properties.

In contrast, core object creation functions simply create their respective
graphics objects and place them in the current parent object. They do not
respect the settings of the figure or axes NextPlot property.

For example, if you call the line function,

line('XData',x,'YData',y,'ZData',z,'Color','r')

MATLAB draws a red line in the current axes using the specified data values.
If there is no axes, MATLAB creates one. If there is no figure window in
which to create the axes, MATLAB creates it as well.

If you call the line function a second time, MATLAB draws the second line
in the current axes without erasing the first line. This behavior is different
from high-level functions like plot that delete graphics objects and reset all
axes properties (except Position and Units). You can change the behavior of
high-level functions by using the hold command or by changing the setting of
the axes NextPlot property.

See “Controlling Graphics Output” on page 8-72 for more information on this
behavior and on using the NextPlot property.

Simplified Calling Syntax
Object creation functions have convenience forms that allow you to use a
simpler syntax. For example,

text(.5,.5,.5,'Hello')

is equivalent to

text('Position',[.5 .5 .5],'String','Hello')

8-17

../ref/figure_props.html#NextPlot
../ref/axes_props.html#Position
../ref/axes_props.html#Units
../ref/axes_props.html#NextPlot

8 Handle Graphics® Objects

Using the convenience form of an object creation function can cause subtle
differences in behavior when compared to formal property name/property
value syntax.

A Note About Property Names
By convention, MATLAB documentation capitalizes the first letter of each
word that makes up a property name, such as LineStyle or XTickLabelMode.
While this makes property names easier to read, MATLAB does not check for
uppercase letters. In addition, you need to use only enough letters to identify
the name uniquely, so you can abbreviate most property names.

In your code, however, using the full property name can prevent problems
with futures releases of MATLAB if a shortened name is no longer unique
because of the addition of new properties.

8-18

Plot Objects

Plot Objects

In this section...

“Introduction” on page 8-19

“Creating a Plot Object” on page 8-20

“Identifying Plot Objects Programmatically” on page 8-21

“Plot Objects and Backward Compatibility” on page 8-22

Introduction
A number of high-level plotting functions create plot objects. The properties
of plot objects provide easy access to the important properties of the core
graphics objects that the plot objects contain.

Plot object parents can be axes or group objects (hggroup or hgtransform).
See “Objects That Can Contain Other Objects” on page 8-92 for examples.

This table lists the plot objects and the graphing functions that use them.
Click the object names to see a description of their properties.

Plot Objects

Object Purpose

areaseries Used to create area graphs.

barseries Used to create bar graphs.

contourgroup Used to create contour graphs.

errorbarseries Used to create errorbar graphs.

8-19

../ref/areaseriesproperties.html
../ref/barseriesproperties.html
../ref/contourgroupproperties.html
../ref/errorbarseriesproperties.html

8 Handle Graphics® Objects

Plot Objects (Continued)

Object Purpose

lineseries Used by line plotting functions (plot, plot3, etc.).

quivergroup Used to create quiver and quiver3 graphs.

scattergroup Used to create scatter and scatter3 graphs.

stairseries Used to create stairstep graphs (stairs).

stemseries Used to create stem and stem3 graphs.

surfaceplot Used by the surf and mesh group of functions.

Creating a Plot Object
For example, the following statements create a contour graph of the peaks
function and then set the line style and width of the contour lines:

[x,y,z] = peaks;
[c,h] = contour(x,y,z);
set(h,'LineWidth',3,'LineStyle',':')

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

8-20

../ref/lineseriesproperties.html
../ref/quivergroupproperties.html
../ref/scattergroupproperties.html
../ref/stairseriesproperties.html
../ref/stemseriesproperties.html
../ref/surfaceplotproperties.html

Plot Objects

The contour plot object lets you set the line width and style of the contour
graph by setting two properties. Looking at the core objects contained in
the contour plot object reveals a number of patch objects whose edges are
used to implement the contour line, which you would otherwise need to set
individually.

child_handles = get(h,'Children');
get(child_handles,'Type')
ans =

'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'

Identifying Plot Objects Programmatically
Plot objects all return hggroup as the value of the Type property. If you want
to be able to identify plot objects programmatically but do not have access to
the object’s handle, set a value for the object’s Tag property.

For example, the following statements create a bar graph with five barseries
objects and assign a different value for the Tag property on each object:

h = bar(rand(5));
set(h,{'Tag'},{'bar1','bar2','bar3','bar4','bar5'}')

The cell array of property values must be transposed (') to have the proper
shape. See the set function for more information on setting properties.

No User Default Values
You cannot define default values for plot objects.

8-21

8 Handle Graphics® Objects

Plot Objects and Backward Compatibility

Note The v6 option discussed in this section is now obsolete and will be
removed in a future version of MATLAB.

Plotting functions that create plot objects can introduce incompatibilities with
code written before MATLAB Version 7.x. However, all plotting functions that
return handles to plot objects support an optional argument ('v6') that forces
the functions to use core objects, as was the case in MATLAB before Version 7.

• See “Plot Objects” on page 8-19 for a list of functions that create plot objects.

• See “Core Graphics Objects” on page 8-10 for a list of core graphics objects.

Saving Figures That Are Compatible with Previous Version
of MATLAB
Create backward-compatible FIG-files by following these two steps:

• Ensure that any plotting functions used to create the contents of the figure
are called with the 'v6' argument, where applicable.

• Use the '-v6' option with the hgsave command.

For example:

h = figure;
t = 0:pi/20:2*pi;
plot('v6',t,sin(t).*2)
hgsave(h,'myFigFile','-v6')

You can set a general MATLAB preference to ensure that figures saved
by selecting File>Save are backward compatible. To access MATLAB
preferences, select Preferences from the Desktop File menu. Expand the
General node and select MAT Files. Click MATLAB Version 5 or later
(save -v6). This setting affects all FIG-files and MAT-files that you create.

8-22

Linking Graphs to Variables — Data Source Properties

Linking Graphs to Variables — Data Source Properties

In this section...

“Introduction” on page 8-23

“Data Source Example” on page 8-23

“Changing the Size of Data Variables” on page 8-24

Introduction
Plot objects let you link a MATLAB expression with properties that contain
data. For example, the lineseries object has data source properties
associated with the XData, YData, and ZData properties. These properties are
called XDataSource, YDataSource, and ZDataSource.

To use a data source property:

1 Assign the name of a variable to the data source property that you want
linked to an expression.

2 Calculate a new value for the variable.

3 Call refreshdata to update the plot object data.

refreshdata lets you specify whether to use a variable in the base workspace
or the workspace of the function from which you call refreshdata.

Data Source Example
The following example illustrates how to use this technique:

function datasource_ex
t = 0:pi/20:2*pi;
y = exp(sin(t));
h = plot(t,y,'YDataSource','y');
for k = 1:.1:10
y = exp(sin(t.*k));
refreshdata(h,'caller') % Evaluate y in the function workspace
drawnow; pause(.1)

end

8-23

8 Handle Graphics® Objects

Changing the Size of Data Variables
If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties
to appropriate values.

8-24

Annotation Objects

Annotation Objects

In this section...

“Introduction” on page 8-25

“Annotation Object Properties” on page 8-25

“Annotation Layer” on page 8-26

“Example — Enclosing Subplots with an Annotation Rectangle” on page
8-27

Introduction
Users typically create annotation objects from the Plot Edit toolbar or
the Insert menu (select Plot Edit in the View menu to display the Plot
Edit toolbar). However, you can also create annotation objects using the
annotation function.

Annotation objects are created in a hidden axes that extends the full width
and height of the figure. This lets you specify the locations of annotation
objects anywhere in the figure using normalized coordinates (the lower-left
corner is the point 0,0, the upper-right corner is the point 1,1).

Annotation Object Properties

Note Don’t change any of the properties of the annotation axes or parent any
graphics objects to this axes. Use the annotation function or the graphics
tools to create annotation objects.

The following links access descriptions of the properties you can set on the
respective annotation objects:

• Annotation arrow properties

• Annotation doublearrow properties

• Annotation ellipse properties

• Annotation line properties

8-25

../ref/annotationarrowproperties.html
../ref/annotationdoublearrowproperties.html
../ref/annotationellipseproperties.html
../ref/annotationlineproperties.html

8 Handle Graphics® Objects

• Annotation rectangle properties

• Annotation textarrow properties

• Annotation textbox properties

To modify the appearance of annotation objects created with the plotting
tools, use “The Property Editor” on page 1-29.

Annotation Layer
All annotation objects are displayed in an overlay axes that covers the figure.
This layer is designed to display only annotation objects. You should not
parent objects to this axes nor set any properties of this axes.

Objects in the Plotting Axes
You can create lines, text, rectangles, and ellipses in data coordinates in
the axes of a graph using the line, text, and rectangle functions. These
objects are not placed in the annotation axes and must be located inside their
parent axes.

Deleting Annotations
Existing annotations persist on a plot when you replace its data. This
might not be what you want to do. If it is not, or if you want to remove
annotation objects for any reason, you can do so manually, or sometimes
programmatically, in several ways:

• To manually delete, click the Edit Plot tool or invoke plottools, select
the annotation(s) you want to remove, and do one of the following:

- Press the Delete key.

- Press the Backspace key.

- Select Delete from the Edit menu.

- Select Delete from the context menu (one annotation at a time).

• If you obtained a handle for the annotation when you created it, use the
delete function:

delete(anno_obj_handle)

8-26

../ref/annotationrectangleproperties.html
../ref/annotationtextarrowproperties.html
../ref/annotationtextboxproperties.html

Annotation Objects

There is no reliable way to obtain handles for annotations from a figure’s
property set; you must keep track of them yourself.

• To delete all annotations at once (as well as all plot contents), type

clf

Normalized Coordinates
By default, annotation objects use normalized coordinates to specify locations
within the figure. In normalized coordinates, the point 0,0 is always the lower
left corner and the point 1,1 is always the upper right corner of the figure
window, regardless of the figure size and proportions. Set the Units property
of annotation objects to change their coordinates from normalized to inches,
centimeters, points, pixels, or characters.

When their Units property is other than normalized, annotation objects
have absolute positions with respect to the figure’s origin, and fixed sizes.
Therefore, they will shift position with respect to axes when you resize figures.
When units are normalized, annotations shrink and grow when you resize
figures; this can cause lines of text in textbox annotations to wrap. However, if
you set the FontUnits property of an annotation textbox object to normalized,
the text changes size rather than wraps if the textbox size changes.

You can use either the set command or the Inspector to change a selected
annotation object’s Units property:

set(gco,'Units','inches') % or
inspect(gco)

For more information see “Positioning Annotations in Data Space” on page
3-69 in the MATLAB Graphics documentation.

Example — Enclosing Subplots with an Annotation
Rectangle
The following example shows how to create a rectangle annotation object
and use it to highlight two subplots in a figure. This example uses the axes
properties Position and TightInset to determine the location and size of the
annotation rectangle.

8-27

../ref/axes_props.html#Position
../ref/axes_props.html#TightInset

8 Handle Graphics® Objects

1 Create an array of subplots:

x = -2*pi:pi/12:2*pi;
y = x.^2;
subplot(2,2,1:2)
plot(x,y)
h1=subplot(223);
y = x.^4;
plot(x,y)
h2=subplot(224);
y = x.^5;
plot(x,y)

2 Determine the location and size of the annotation rectangle required to
enclose axes, tick mark labels, and title using the axes Position and
TightInset properties:

p1 = get(h1,'Position');
t1 = get(h1,'TightInset');
p2 = get(h2,'Position');
t2 = get(h2,'TightInset');
x1 = p1(1)-t1(1); y1 = p1(2)-t1(2);
x2 = p2(1)-t2(1); y2 = p2(2)-t2(2);
w = x2-x1+t1(1)+p2(3)+t2(3); h = p2(4)+t2(2)+t2(4);

3 Create the annotation rectangle to enclose the lower two subplots. Make the
rectangle a translucent red with a solid border:

annotation('rectangle',[x1,y1,w,h],...
'FaceAlpha',.2,'FaceColor','red','EdgeColor','red');

8-28

Annotation Objects

8-29

8 Handle Graphics® Objects

Group Objects

In this section...

“Introduction” on page 8-30

“Creating a Group” on page 8-30

“Transforming Objects” on page 8-31

Introduction
Group objects enable you to treat a number of axes child objects as one group.
For example, you can make the entire group visible or invisible, select all
objects when only one is clicked, or apply a transform matrix to reposition the
objects by setting only one property on the group object.

There are two group objects:

• hggroup — Use when you want to create a group of objects and control
the visibility or selectability of the group based on what happens to any
individual object in the group. Create hggroup objects with the hggroup
function.

• hgtransform — Use when you want to transform a group of objects.
Transforms include rotation, translation, scaling, etc. See “Example —
Transforming a Hierarchy of Objects” on page 8-39 for an example. Create
hgtransform objects with the hgtransform function.

The difference between the hggroup and hgtransform objects is the ability of
the hgtransform object to apply a transform matrix (via its Matrix property)
to all objects for which it is the parent.

Note You cannot parent light objects to hggroup or hgtransform objects.

Creating a Group
You create a group by parenting axes children to an hggroup or hgtransform
object:

8-30

../ref/hgtransformproperties.html#Matrix

Group Objects

hb = bar(rand(5)); % creates 5 barseries objects
hg = hggroup;
set(hb,'Parent',hg) % parent the barseries to the hggroup
set(hg,'Visible','off') % makes all barseries invisible

Group objects can be the parent of any number of axes children, including
other group objects.

Note Many plotting functions clear the axes (i.e., remove axes children)
before drawing the graph. Clearing the axes also deletes any hggroup or
hgtransform objects in the axes.

Transforming Objects
The hgtransform object’s Matrix property lets you apply a transform to all
the hgtransform’s children in unison. Typical transforms include rotation,
translation, and scaling. You define a transform with a four-by-four
transformation matrix, which is described in the following sections.

Creating a Transform Matrix
The makehgtform function simplifies the construction of matrices to perform
rotation, translation, and scaling. See the “Example — Transforming a
Hierarchy of Objects” on page 8-39 section for information on creating
transform matrices using makehgtform.

Rotation
Rotation transforms rotate objects about the x-, y-, or z-axis, with positive
angles rotating counterclockwise while sighting along the respective axis
toward the origin. If the desired angle of rotation is [[THETA]], the following
matrices define this rotation about the respective axis.

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

 
 

x x

x x

−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

8-31

8 Handle Graphics® Objects

To create a transform matrix for rotation about an arbitrary axis, use the
makehgtform function.

Translation
Translation transforms move objects with respect to their current locations.
Specify the translation as distances tx, ty, and tz in data space units. The
following matrix shows the location of these elements in the transform matrix.

1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Scaling
Scaling transforms change the sizes of objects. Specify scale factors sx,sy, and
sz and construct the following matrix:

s

s

s

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

You cannot use scale factors less than or equal to zero.

The Default Transform
The default transform is the identity matrix, which you can create with the
eye function. Here is the identity matrix:

8-32

Group Objects

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

See “Undoing Transform Operations” on page 8-35 for related information.

Disallowed Transforms: Perspective
Perspective transforms change the distance at which you view an object.
The following matrix is an example of a perspective transform matrix, which
Handle Graphics does not allow:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0px

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

In this case, py is the perspective factor.

Disallowed Transforms: Shear
Shear transforms keep all points along a given line (or plane, in 3-D
coordinates) fixed while shifting all other points parallel to the line (plane)
proportional to their perpendicular distance from the fixed line (plane). The
following matrix is an example of a shear transform matrix, which Handle
Graphics does not allow:

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

sx⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

In this case, sy is the shear factor and can replace any zero element in an
identity matrix.

8-33

8 Handle Graphics® Objects

Absolute vs. Relative Transforms
Transforms are specified in absolute terms, not relative to the current
transform. For example, if you apply a transform that translates the
hgtransform object 5 units in the x direction and then you apply another
transform that translates it 4 units in the y direction, the resulting position of
the object is 4 units in the y direction from its original position.

If you want transforms to accumulate, you must concatenate the individual
transforms into a single matrix. See “Combining Transforms into One Matrix”
on page 8-34 for more information.

Combining Transforms into One Matrix
It is usually more efficient to combine various transform operations into one
matrix by concatenating (multiplying) the individual matrices and setting the
Matrix property to the result. Matrix multiplication is not commutative, so
the order in which you multiply the matrices affects the result. For example,
suppose you want to perform an operation that scales, translates, and then
rotates. You multiply the matrices as follows:

C = R*T*S % operations are performed from right to left

where S is the scaling matrix, T is the translation matrix, R is the rotation
matrix, and C is the composite of the three operations. You then set the
hgtransform object’s Matrix property to C:

set(hgtransform_handle,'Matrix',C)

The following sets of statements are not equivalent:

set(hgtransform_handle,'Matrix',C)% Transform as above
set(hgtransform_handle,'Matrix',eye(4)) % Undo transform

versus

C = eye(4)*R*T*S % Multiply identity matrix as last step
set(hgtransform_handle,'Matrix',C)

Concatenating the identity matrix to other matrices has no effect on the
composite matrix.

8-34

Group Objects

Undoing Transform Operations
Since transform operations are specified in absolute terms (not relative to the
current transform), you can undo a series of transforms by setting the current
transform to the identity matrix. For example,

set(hgtransform_handle,'Matrix',eye(4))

returns the object hgtransform_handle to its untransformed orientation.

Rotations Away From the Origin
Since rotations are performed about the origin, it is often necessary to
translate the hgtransform object so that the desired axis of rotation is
temporarily at the origin. After applying the rotation transform matrix,
you then translate the hgtransform object back to its original position. The
following example illustrates how to do this.

Suppose you want to rotate a surface about the y-axis at the center of the
surface (the y-axis that passes through the point x = 20 in this example).

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

1 Create a surface and an hgtransform object. Parent the surface to the
hgtransform object:

h = surf(peaks(40)); view(-20,30)
t = hgtransform;
set(h,'Parent',t)

8-35

8 Handle Graphics® Objects

The following picture shows the surface.

2 Create and set a y-axis rotation matrix to rotate the surface by –15 degrees:

ry_angle = -15*pi/180; % Convert to radians
Ry = makehgtform('yrotate',ry_angle);
set(t,'Matrix',Ry)

8-36

Group Objects

Notice that the surface rotated –15 degrees about the y-axis that passes
through the origin. However, to rotate about the y-axis that passes through
the point x = 20, you must translate the surface in x by 20 units.

3 Create two translation matrices, one to translate the surface –20 units in x
and another to translate 20 units back. Concatenate the two translation
matrices with the rotation matrix in the correct order and set the transform:

Tx1 = makehgtform('translate',[-20 0 0]);
Tx2 = makehgtform('translate',[20 0 0]);
set(t,'Matrix',Tx2*Ry*Tx1)

8-37

8 Handle Graphics® Objects

8-38

Example — Transforming a Hierarchy of Objects

Example — Transforming a Hierarchy of Objects
This example creates a hierarchy of hgtransform objects, which are then
transformed in sequence to create a cube from six squares. The example
illustrates how you can parent hgtransform objects to other hgtransform
objects to create a hierarchy and how transforming members of a hierarchy
affects subordinate members.

The following picture illustrates the hierarchy.

8-39

8 Handle Graphics® Objects

8-40

Example — Transforming a Hierarchy of Objects

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB Editor.

1 Set the figure Renderer property to zbuffer so MATLAB uses double
buffering to prevent flashing during the loop. Set up the figure and the view:

set(gcf,'Renderer','zbuffer');
% Set axis limits and view
set(gca,'XLim',[0 4], 'YLim',[0 4], 'ZLim', [0 3]);
view(3); axis equal; grid on

2 Define a hierarchy of hgtransform objects:

t(1) = hgtransform;
t(2) = hgtransform('parent',t(1));
t(3) = hgtransform('parent',t(2));
t(4) = hgtransform('parent',t(3));
t(5) = hgtransform('parent',t(4));
t(6) = hgtransform('parent',t(5));

3 Create the patch and text objects and parent each pair to the respective
hgtransform object.

The data defining each patch object and the locations of all text objects are the
same and are assigned by a single call to set. The objects are then translated
to the desired positions on screen.

% Patch data
X = [0 0 1 1];
Y = [0 1 1 0];
Z = [0 0 0 0];
% Text data
Xtext = .5;
Ytext = .5;
Ztext = .15;
% Parent corresponding pairs of objects (patch and text)
% into the object hierarchy
p(1) = patch('FaceColor','red','Parent',t(1));
txt(1) = text('String','Bottom','Parent',t(1));

8-41

8 Handle Graphics® Objects

p(2) = patch('FaceColor','green','Parent',t(2));
txt(2) = text('String','Right','Parent',t(2));
p(3) = patch('FaceColor','blue','Parent',t(3));
txt(3) = text('String','Back','Color','white','Parent',t(3));
p(4) = patch('FaceColor','yellow','Parent',t(4));
txt(4) = text('String','Top','Parent',t(4));
p(5) = patch('FaceColor','cyan','Parent',t(5));
txt(5) = text('String','Left','Parent',t(5));
p(6) = patch('FaceColor','magenta','Parent',t(6));
txt(6) = text('String','Front','Parent',t(6));
% Set the patch x, y, and z data
set(p,'XData',X,'YData',Y,'ZData',Z)
% Set the position and alignment of the text
set(txt,'Position',[Xtext Ytext Ztext],...

'HorizontalAlignment','center',...
'VerticalAlignment','middle')

4 Translate the squares (patch objects) to the desired locations. As hgtransform
object 2 is translated, all its children (including hgtransform objects 3 through
6) are also translated. Therefore, each translation requires moving the square
by only one unit in either the x or y direction. hgtransform object 1 is left at
its original position.

% Set up initial translation transform matrices
% Translate 1 unit in x
Tx = makehgtform('translate',[1 0 0]);
% Translate 1 unit in y
Ty = makehgtform('translate',[0 1 0]);
% Set the Matrix property of each hgtransform object (2-6)
set(t(2),'Matrix',Tx);
drawnow
set(t(3),'Matrix',Ty);
drawnow
set(t(4),'Matrix',Tx);
drawnow
set(t(5),'Matrix',Ty);
drawnow
set(t(6),'Matrix',Tx);

5 Specify the rotation angle and perform transforms:

8-42

Example — Transforming a Hierarchy of Objects

% Specify rotation angle (pi/2 radians = 90 degrees)
fold = pi/2;
% Rotate -y, translate x
Ry = makehgtform('yrotate',-fold);
RyTx = Tx*Ry;
% Rotate x, translate y
Rx = makehgtform('xrotate',fold);
RxTy = Ty*Rx;

6 Set the transforms and draw after each group transform with a slight pause:

set(t(6),'Matrix',RyTx);
pause(.5)
set(t(5),'Matrix',RxTy);
pause(.5)
set(t(4),'Matrix',RyTx);
pause(.5)
set(t(3),'Matrix',RxTy);
pause(.5)
set(t(2),'Matrix',RyTx);
pause(.5)

8-43

8 Handle Graphics® Objects

Object Properties

In this section...

“Introduction” on page 8-44

“Storing Object Information” on page 8-44

“Changing Values” on page 8-45

“Order Dependence of Setting Property Values” on page 8-45

“Default Values” on page 8-46

“Properties Common to All Objects” on page 8-46

Introduction
A graphics object’s properties control many aspects of its appearance and
behavior. Properties include general information such as the object’s type, its
parent and children, and whether it is visible, as well as information unique
to the particular class of object.

For example, from any given figure object you can obtain the identity of the
last key pressed in the window, the location of the pointer, or the handle
of the most recently selected menu.

Note The simplest way to access the documentation of all object properties
is using the Handle Graphics Property Browser.

Storing Object Information
MATLAB organizes graphics information into a hierarchy and stores
information about objects in properties. For example, root properties contain
the handle of the current figure and the current location of the pointer
(cursor), figure properties maintain lists of their descendants and keep track
of certain events that occur within the window, and axes properties contain
information about how each child object uses the figure colormap and the
color order used by the plot function.

8-44

../infotool/hgprop/doc_frame.html

Object Properties

Changing Values
You can query the current value of any property and specify most property
values (although some are set by MATLAB and are read only). Property
values apply uniquely to a particular instance of an object; setting a value for
one object does not change this value for other objects of the same type.

Order Dependence of Setting Property Values
MATLAB sets the values of properties in the order in which properties are
assigned values in a statement. For example, the following calls to the figure
function create very different results. This statement,

figure('Position',[1 1 400 300],'Units','inches')

creates a figure in the lower-left corner of the screen that is 400 pixels in
width and 300 pixels in height. If you reverse the order of the Position
and Units properties, MATLAB creates a figure that is too large to display
(400 by 300 inches):

figure('Units','inches','Position',[1 1 400 300])

Properties Are Interpreted from Left to Right
In the first figure above, MATLAB creates a figure of the specified size using
the default Units (pixels) and then sets the Units to inches. In the second
case MATLAB sets the Units to inches and uses these units to interpret the
specified figure Position. MATLAB interprets the property values from
left to right:

set(gcf,'Units','pixels')
get(gcf,'Position')
ans =

1.0e+004 *
0.0097 2.7760 0.1924 0.1137

% Change the Units, set the Position,
% and change Units again in one statement
set(gcf,'Units','pixels','Position',[1 1 400 300],'Units',...

'inches')
get(gcf,'Position')
ans =

0 0 4.1667 3.1250

8-45

8 Handle Graphics® Objects

Default Values
You can set default values that affect all subsequently created objects.
Whenever you do not define a value for a property, either as a default or when
you create the object, MATLAB uses “factory-defined” values.

Plot objects do not allow you to set default values.

The reference entry for each object creation function provides a complete list
of the properties associated with the graphics object.

Properties Common to All Objects
Some properties are common to all graphics objects, as illustrated in the
following table.

Property Description

BeingDeleted Has a value of on when object’s DeleteFcn has been called.

BusyAction Controls the way MATLAB handles callback routine interruption
defined for the particular object.

ButtonDownFcn Callback routine that executes when button press occurs.

Children Handles of all this object’s child objects.

Clipping Mode that enables or disables clipping (meaningful only for axes
children).

CreateFcn Callback routine that executes when this type of object is created.

DeleteFcn Callback routine that executes when you issue a command that
destroys the object.

HandleVisibility Allows you to control the availability of the object’s handle from the
command line and from within callback routines.

HitTest Determines if object can become the current object when selected by
a mouse click.

Interruptible Determines whether a callback routine can be interrupted by a
subsequently invoked callback routine.

Parent The object’s parent.

Selected Indicates whether object is selected.

8-46

Object Properties

Property Description

SelectionHighlight Specifies whether object visually indicates the selection state.

Tag User-specified object label.

Type The type of object (figure, line, text, etc.).

UserData Any data you want to associate with the object.

Visible Determines whether or not the object is visible.

8-47

8 Handle Graphics® Objects

Setting and Querying Property Values

In this section...

“Using set and get” on page 8-48

“Setting Property Values” on page 8-48

“Querying Property Values” on page 8-50

Using set and get
The set and get functions specify and retrieve the value of existing graphics
object properties. They also enable you to list possible values for properties
that have a fixed set of values. (You can also use the Property Editor to set
many property values.)

The basic syntax for setting the value of a property on an existing object is

set(object_handle,'PropertyName','NewPropertyValue')

To query the current value of a specific object’s property, use a statement like

returned_value = get(object_handle,'PropertyName');

Property names are always quoted strings. Property values depend on the
particular property.

See “Accessing Object Handles” on page 8-61 and the findobj command for
information on finding the handles of existing objects.

Setting Property Values
Change the properties of an existing object using the set function and the
handle returned by the creating function. For example, this statement moves
the y-axis to the right side of the plot on the current axes:

set(gca,'YAxisLocation','right')

If the handle argument is a vector, MATLAB sets the specified value on all
identified objects.

8-48

Setting and Querying Property Values

Specify property names and property values using structure arrays or cell
arrays. This can be useful if you want to set the same properties on a number
of objects. For example, define a structure to set axes properties appropriately
to display a particular graph:

view1.CameraViewAngleMode = 'manual';
view1.DataAspectRatio = [1 1 1];
view1.Projection = 'Perspective';

To set these values on the current axes, type

set(gca,view1)

Listing Possible Values
Use set to display the possible values for many properties without actually
assigning a new value. For example, this statement obtains the values you
can specify for line object markers:

set(obj_handle,'Marker')

MATLAB returns a list of values for the Marker property for the type of object
specified by obj_handle. Braces indicate the default value:

[+ | o | * | . | x | square | diamond | v | ^ | > | < |
pentagram | hexagram | {none}]

To see a list of all settable properties along with possible values of properties
that accept string values, use set with just an object handle:

set(object_handle)

For example, for a surface object, MATLAB returns

CData
CDataScaling: [{on} | off]
EdgeColor: [none | {flat} | interp] ColorSpec.
EraseMode: [{normal} | background | xor | none]
FaceColor: [none | {flat} | interp | texturemap] ColorSpec.
LineStyle: [{-} | -- | : | -. | none]

.

.

8-49

8 Handle Graphics® Objects

.
Visible: [{on} | off]

If you assign the output of the set function to a variable, MATLAB returns
the output as a structure array:

a = set(gca);

The field names in a are the object’s property names and the field values are
the possible values for the associated property:

a.GridLineStyle
ans =

'-'
'--'
':'
'-.'
'none'

returns the possible values for the axes grid line styles. While property names
are not case sensitive, MATLAB structure field names are:

a.gridlinestyle
??? Reference to non-existent field 'gridlinestyle'.

returns an error.

Querying Property Values
Use get to query the current value of a property or of all the object’s properties.
For example, check the value of the current axes PlotBoxAspectRatio
property:

get(gca,'PlotBoxAspectRatio')
ans =

1 1 1

MATLAB lists the values of all properties, where practical. However, for
properties containing data, MATLAB lists the dimensions only (for example,
CurrentPoint and ColorOrder).

8-50

Setting and Querying Property Values

AmbientLightColor = [1 1 1]
Box = off
CameraPosition = [0.5 0.5 2.23205]
CameraPositionMode = auto
CameraTarget = [0.5 0.5 0.5]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
CameraUpVectorMode = auto
CameraViewAngle = [32.2042]
CameraViewAngleMode = auto
CLim: [0 1]
CLimMode: auto
Color: [0 0 0]
CurrentPoint: [2x3 double]
ColorOrder: [7x3 double]

.

.

.
Visible = on

Querying Individual Properties
You can obtain the data from the property by getting that property
individually:

get(gca,'ColorOrder')
ans =

0 0 1.0000
0 0.5000 0

1.0000 0 0
0 0.7500 0.7500

0.7500 0 0.7500
0.7500 0.7500 0
0.2500 0.2500 0.2500

Returning a Structure
If you assign the output of get to a variable, MATLAB creates a structure
array whose field names are the object property names and whose field values
are the current values of the named property.

8-51

8 Handle Graphics® Objects

For example, if you plot some data, x and y,

h = plot(x,y);

and get the properties of the line object created by plot,

a = get(h);

you can access the values of the line properties using the field name. This call
to the text command places the string 'x and y data' at the first data point
and colors the text to match the line color:

text(x(1),y(1),'x and y data','Color',a.Color)

If x and y are matrices, plot draws one line per column. To label the plot of
the second column of data, reference that line:

text(x(1,2),y(1,2),'Second set of data','Color',a(2).Color)

Querying Groups of Properties
You can define a cell array of property names and conveniently use it to obtain
the values for those properties. For example, suppose you want to query the
values of the axes “camera mode” properties. First, define the cell array:

camera_props(1) = {'CameraPositionMode'};
camera_props(2) = {'CameraTargetMode'};
camera_props(3) = {'CameraUpVectorMode'};
camera_props(4) = {'CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these
properties:

get(gca,camera_props)
ans =

'auto' 'auto' 'auto' 'auto'

8-52

Factory-Defined Property Values

Factory-Defined Property Values
MATLAB defines values for all properties, which are used if you do not specify
values as arguments or as defaults. You can obtain a list of all factory-defined
values with the statement

a = get(0,'Factory');

get returns a structure array whose field names are the object type and
property name concatenated, and field values are the factory value for the
indicated object and property. For example, this field,

UimenuSelectionHighlight: 'on'

indicates that the factory value for the SelectionHighlight property on
uimenu objects is on.

You can get the factory value of an individual property with

get(0,'FactoryObjectTypePropertyName')

For example:

get(0,'FactoryTextFontName')

8-53

8 Handle Graphics® Objects

Setting Default Property Values

In this section...

“Factory- and User-Defined Values” on page 8-54

“How MATLAB Searches for Default Values” on page 8-54

“Defining Default Values” on page 8-56

“Examples — Setting Default Line Styles” on page 8-57

Factory- and User-Defined Values
All object properties have values built into MATLAB (i.e., factory-defined
values). You can also define your own default values at any point in the
object hierarchy.

You cannot define default values for plot objects.

How MATLAB Searches for Default Values
MATLAB searches for a default value beginning with the current object and
continuing through the object’s ancestors until it finds a user-defined default
value or until it reaches the factory-defined value. Therefore, a search for
property values is always satisfied.

The closer to the root of the hierarchy you define the default, the broader its
scope. If you specify a default value for line objects on the root level, MATLAB
uses that value for all lines because the root is at the top of the hierarchy. If
you specify a default value for line objects on the axes level, MATLAB uses
that value for line objects drawn only in that axes.

If you define default values on more than one level, the value defined on the
closest ancestor takes precedence because MATLAB terminates the search
as soon as it finds a value.

Setting default values affects only those objects created after you set the
default. Existing graphics objects are not affected.

8-54

Setting Default Property Values

This diagram shows the steps MATLAB follows in determining the value of
a graphics object property.

8-55

8 Handle Graphics® Objects

Defining Default Values
To specify default values, create a string beginning with the word Default,
followed by the object type, and finally, by the object property. For example,
to specify a default value of 1.5 points for the line property LineWidth at the
level of the current figure, use the statement

set(gcf,'DefaultLineLineWidth',1.5)

The string DefaultLineLineWidth identifies the property as a line property.
To specify the figure color, use DefaultFigureColor. It is meaningful to
specify a default figure color only on the root level.

set(0,'DefaultFigureColor','b')

Use get to determine what default values are currently set on any given
object level:

get(gcf,'default')

returns all default values set on the current figure.

Setting Properties to the Default
Specifying a property value of 'default' sets the property to the first
encountered default value defined for that property. For example, these
statements result in a green surface EdgeColor:

set(0,'DefaultSurfaceEdgeColor','k')
h = surface(peaks);
set(gcf,'DefaultSurfaceEdgeColor','g')
set(h,'EdgeColor','default')

Because a default value for surface EdgeColor exists on the figure level,
MATLAB encounters this value first and uses it instead of the default
EdgeColor defined on the root.

Removing Default Values
Specifying a property value of 'remove' gets rid of user-defined default
values. The statement

8-56

Setting Default Property Values

set(0,'DefaultSurfaceEdgeColor','remove')

removes the definition of the default Surface EdgeColor from the root.

Setting Properties to Factory-Defined Values
Specifying a property value of 'factory' sets the property to its
factory-defined value. (The property descriptions provides access to the
factory settings for properties having predefined sets of values.)

For example, these statements set the EdgeColor of surface h to black (its
factory setting), regardless of what default values you have defined:

set(gcf,'DefaultSurfaceEdgeColor','g')
h = surface(peaks);
set(h,'EdgeColor','factory')

Reserved Words
Setting a property value to default, remove, or factory produces the effects
described in the previous sections. To set a property to one of these words
(e.g., a text or uicontrol String property set to the word default), you must
precede the word with the backslash character:

h = uicontrol('Style','edit','String','\default');

Examples — Setting Default Line Styles
The plot function cycles through the colors defined by the axes ColorOrder
property when displaying multiline plots. If you define more than one value
for the axes LineStyleOrder property, MATLAB increments the line style
after each cycle through the colors.

You can set default property values that cause the plot function to produce
graphs using varying line styles, but not varying colors. This is useful when
you are working on a monochrome display or printing on a black and white
printer.

First Example
This example creates a figure with a white plot (axes) background color, and
then sets default values for axes objects on the root level:

8-57

../infotool/hgprop/doc_frame.html
../ref/axes_props.html#ColorOrder
../ref/axes_props.html#LineStyleOrder

8 Handle Graphics® Objects

whitebg('w') %create a figure with a white color scheme
set(0,'DefaultAxesColorOrder',[0 0 0],...

'DefaultAxesLineStyleOrder','-|--|:|-.')

Whenever you call plot,

Z = peaks; plot(1:49,Z(4:7,:))

it uses one color for all data plotted because the axes ColorOrder contains only
one color, but it cycles through the line styles defined for LineStyleOrder.

0 10 20 30 40 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Second Example
This example sets default values on more than one level in the hierarchy.
These statements create two axes in one figure window, setting default values
on the figure level and the axes level:

t = 0:pi/20:2*pi;
s = sin(t);
c = cos(t);
% Set default value for axes Color property

8-58

Setting Default Property Values

figh = figure('Position',[30 100 800 350],...
'DefaultAxesColor',[.8 .8 .8]);

axh1 = subplot(1,2,1); grid on
% Set default value for line LineStyle property in first axes
set(axh1,'DefaultLineLineStyle','-.')
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 -.3],'String','Cosine',...

'HorizontalAlignment','right')

axh2 = subplot(1,2,2); grid on
% Set default value for text Rotation property in second axes
set(axh2,'DefaultTextRotation',90)
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 -.3],'String','Cosine',...

'HorizontalAlignment','right')

Issuing the same line and text statements to each subplot region results in
a different display, reflecting different default settings.

8-59

8 Handle Graphics® Objects

0 2 4 6 8
−1

−0.5

0

0.5

1

Sine

Cosine

0 2 4 6 8
−1

−0.5

0

0.5

1

S
in

e

C
os

in
e

Because the default axes Color property is set on the figure level of the
hierarchy, MATLAB creates both axes with the specified gray background
color.

The axes on the left (subplot region 121) defines a dash-dot line style (-.) as
the default, so each call to the line function uses dash-dot lines. The axes
on the right does not define a default line style, so MATLAB uses solid lines
(the factory setting for lines).

The axes on the right defines a default text Rotation of 90 degrees, which
rotates all text by this amount. MATLAB obtains all other property values
from their factory settings, which results in nonrotated text on the left.

To install default values whenever you run MATLAB, specify them in your
startup.m file. MATLAB might install default values for some appearance
properties when started by calling the colordef command.

8-60

../ref/axes_props.html#Color
../ref/text_props.html#Rotation

Accessing Object Handles

Accessing Object Handles

In this section...

“Introduction” on page 8-61

“Special Object Handles” on page 8-61

“The Current Figure, Axes, and Object” on page 8-62

“Searching for Objects by Property Values — findobj” on page 8-63

“Copying Objects” on page 8-68

“Deleting Objects” on page 8-70

Introduction
MATLAB assigns a handle to every graphics object it creates. All object
creation functions optionally return the handle of the created object. If you
want to access the object’s properties (e.g., from a function or script), assign
its handle to a variable at creation time to avoid searching for it later.

You can always obtain the handle of an existing object with the findobj
function or by listing its parent’s Children property.

See “Searching for Objects by Property Values — findobj” on page 8-63 for
examples.

See “Protecting Figures and Axes” on page 8-80 for more information on how
object handles are hidden from normal access.

Special Object Handles
The root object’s handle is always zero. The handle of a figure is either:

• An integer that, by default, is displayed in the window title bar

• A floating point number requiring full MATLAB internal precision

The figure IntegerHandle property controls the type of handle the figure
receives.

8-61

../ref/figure_props.html#IntegerHandle

8 Handle Graphics® Objects

All other graphics object handles are floating-point numbers. You must
maintain the full precision of these numbers when you reference handles.
Rather than attempting to read handles off the screen and retype them, you
must store the value in a variable and pass that variable whenever MATLAB
requires a handle.

The Current Figure, Axes, and Object
An important concept in the Handle Graphics technology is that of being
current. The current figure is the window designated to receive graphics
output. Likewise, the current axes is the target for commands that create
axes children. The current object is the last graphics object created or clicked
on by the mouse.

MATLAB stores the three handles corresponding to these objects in the
ancestor’s property list.

%���)
���
��-�	
��)
���
������

)
���
����+���

����	���
���	 ����	����	�
����	�����	��

These properties enable you to obtain the handles of these key objects:

get(0,'CurrentFigure');
get(gcf,'CurrentAxes');
get(gcf,'CurrentObject');

The following commands are shorthand notation for the get statements:

• gcf— Returns the value of the root CurrentFigure property.

• gca— Returns the value of the current figure’s CurrentAxes property.

• gco— Returns the value of the current figure’s CurrentObject property.

8-62

../ref/rootobject_props.html#CurrentFigure
../ref/figure_props.html#CurrentAxes
../ref/figure_props.html#CurrentObject

Accessing Object Handles

Use these commands as input arguments to functions that require object
handles. For example, you can click a line object and then use gco to specify
the handle to the set command,

set(gco,'Marker','square')

or list the values of all current axes properties with

get(gca)

You can get the handles of all the graphic objects in the current axes (except
those with hidden handles),

h = get(gca,'Children');

and then determine the types of the objects.

get(h,'type')
ans =

'text'
'patch'
'surface'
'line'

While gcf and gca provide a simple means of obtaining the current figure
and axes handles, they are less useful in code files. This is particularly true
if your code is part of an application layered on MATLAB where you do not
necessarily have knowledge of user actions that can change these values.

See “Controlling Graphics Output” on page 8-72 for information on how to
prevent users from accessing the handles of graphics objects that you want to
protect.

Searching for Objects by Property Values — findobj
The findobj function provides a means to traverse the object hierarchy
quickly and obtain the handles of objects having specific property values.
To serve as a means of identification, all graphics objects have a Tag
property that you can set to any string. You can then search for the specific
property/value pair.

8-63

8 Handle Graphics® Objects

For example, suppose you create a checkbox that is sometimes inactivated in
the GUI. By assigning a unique value for the Tag property, you can always
find that particular instance and set its properties:

uicontrol('Style','checkbox','Tag','save option')

Use findobj to locate the object whose Tag property is set to 'save option’
and disable it:

set(findobj('Tag','save option'),'Enable','off')

If you do not specify a starting object, findobj searches from the root object,
finding all occurrences of the property name/property value combination that
you specify.

Example — Finding Objects
This plot of the sine function contains text objects labeling particular values
of the function.

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t = 0 to 2pi

si
n(

t)

Value of the Sine from Zero to Two Pi

←sin(t) = .707

←sin(t) = 0

sin(t) = −.707 →

←sin(t) = .707

8-64

Accessing Object Handles

Suppose you want to move the text string labeling the value sin(t) = .707 from
its current location at [pi/4,sin(pi/4)], to the point [3*pi/4,sin(3*pi/4)]
where the function has the same value (shown grayed out in the picture). To
do this, determine the handle of the text object labeling that point and change
its Position property.

To use findobj, pick a property value that uniquely identifies the object. This
example uses the text String property:

text_handle = findobj('String','\leftarrowsin(t) = .707');

Move the object to the new position, defining the text Position in axes units.

set(text_handle,'Position',[3*pi/4,sin(3*pi/4),0])

findobj lets you restrict the search by specifying a starting point in the
hierarchy, instead of beginning with the root object. This results in faster
searches if there are many objects in the hierarchy. In the previous example,
you know the text object of interest is in the current axes, so you can type

text_handle = findobj(gca,'String','\leftarrowsin(t) = .707');

Example — Using Logical Operators and Regular Expression
Suppose you create the following graph and want to modify certain properties
of the objects created:

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
set(h(1),'Color','black',...

'Marker','o',...
'Tag','Decaying Exponential')

set(h(2),'Color','black',...
'Marker','square',...
'Tag','Growing Exponential')

set(h(3),'Color','black',...
'Marker','*',...
'Tag','Steady State')

8-65

../ref/text_props.html#String

8 Handle Graphics® Objects

−5 0 5 10 15 20 25 30 35
−4

−3

−2

−1

0

1

2

3

4

5

The following instance diagram shows the graphics objects created in the
graph. Each of the three sets of data produces a stemseries object, which
in turn uses two lines to create the stem graph: one line for the stems and
one for the markers that terminate each stem. There is also a line used for
the baseline.

8-66

Accessing Object Handles

Controlling the Depth of the Search. Make the baseline into a dashed
line. Because it is parented directly to the axes, use the following statement
to access only this line:

set(findobj(gca,'-depth',1,'Type','line'),'LineStyle','--')

By setting -depth to 1, findobj searches only the axes and its immediate
children. As you can see from the above instance diagram, the baseline is the
only line object parented directly to the axes.

Limiting the Search with Regular Expressions. Increase the value of the
MarkerSize property by 2 points on all stemseries objects that do not have
their property Tag set to 'Steady State':

h = findobj('-regexp','Tag','^(?!Steady State$).');
set(h,{'MarkerSize'},num2cell(cell2mat(get(h,'MarkerSize'))+2))

See the regexp function for more information on using regular expressions
in MATLAB.

Using Logical Operators. Change the color of the stem lines, but not the
stem markers. To do this, you must access the line objects contained by the
three stemseries objects. You cannot just set the stemseries Color property
because it sets both the line and marker colors.

Search for objects that are of Type line, have Marker set to none, and do not
have LineStyle set to '--', which is the baseline:

h = findobj('type','line','Marker','none',...
'-and','-not','LineStyle','--');

set(h,'Color','red')

The following picture shows the graph after making these changes.

8-67

../ref/regexp.html

8 Handle Graphics® Objects

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

Copying Objects
You can copy objects from one parent to another using the copyobj function.
The new object differs from the original object only in the value of its Parent
property and its handle; otherwise it is a clone of the original. You can copy a
number of objects to a new parent, or one object to a number of new parents,
as long as the result maintains the correct parent/child relationship.

When you copy an object having child objects, MATLAB copies all children
as well.

Example — Copying Objects
Suppose you are plotting a variety of data and want to label the point having
the x- and y-coordinates determined by 5π÷4,sin(5π÷4) in each plot. The text
function allows you to specify the location of the label in the coordinates
defined by the x- and y-axis limits, simplifying the process of locating the text:

8-68

Accessing Object Handles

text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...
'Position',[5*pi/4,sin(5*pi/4),0],...
'HorizontalAlignment','right')

In this statement, the text function:

• Labels the data point with the string {5π÷4,sin(5π÷4)} using TeX commands
to draw a right-facing arrow and mathematical symbols.

• Specifies the Position in terms of the data being plotted.

• Places the data point to the right of the text string by changing the
HorizontalAlignment to right (the default is left).

To label the same point with the same string in another plot, copy the text
using copyobj. Because the last statement did not save the handle to the text
object, you can find it using findobj and the 'String' property:

text_handle = findobj('String',...
'\{5\pi\div4,sin(5\pi\div4)\}\rightarrow');

After creating the next plot, add the label by copying it from the first plot:

copyobj(text_handle,gca).

8-69

../ref/text_props.html#Position

8 Handle Graphics® Objects

This particular example takes advantage of the fact that text objects define
their location in the axes data space. Therefore, the text Position property
did not need to change from one plot to another.

Deleting Objects
You can remove a graphics object with the delete command, using the
object’s handle as an argument. For example, you can delete the current axes
(and all of its descendants) with the statement

delete(gca)

You can use findobj to get the handle of a particular object you want to
delete. For example, to find the handle of the dotted line in this multiline plot,

8-70

Accessing Object Handles

use findobj to locate the object whose LineStyle property is ':'

line_handle = findobj('LineStyle',':');

Use this handle with the delete command:

delete(line_handle)

You can combine these two statements, substituting the findobj statement
for the handle:

delete(findobj('LineStyle',':'))

8-71

8 Handle Graphics® Objects

Controlling Graphics Output

In this section...

“Figure Targets” on page 8-72

“Specifying the Target for Graphics Output” on page 8-72

“Preparing Figures and Axes for Graphics” on page 8-74

“Targeting Graphics Output with newplot” on page 8-75

“Example — Using newplot” on page 8-77

“Testing for Hold State” on page 8-79

“Protecting Figures and Axes” on page 8-80

Figure Targets
MATLAB allows many figure windows to be open simultaneously during a
session. A MATLAB application might create figures to display graphical user
interfaces and plotted data. You need to protect some figures from becoming
the target for graphics display and to prepare (e.g., reset properties and clear
existing objects from) others before receiving new graphics.

Specifying the Target for Graphics Output
By default, MATLAB functions that create graphics objects display them in
the current figure and current axes (if it is an axes child). You can direct the
output to another parent by explicitly specifying the Parent property with
the creating function. For example,

plot(1:10,'Parent',axes_handle)

where axes_handle is the handle of the target axes. The uicontrol and
uimenu functions have a convenient syntax that lets you specify the parent
as the first argument,

uicontrol(figure_handle,...)
uimenu(parent_menu_handle,...)

or you can set the Parent property. Many plotting functions accept an axes
handle as the first argument as well.

8-72

Controlling Graphics Output

Making a Figure and Axes Current
You can specify which figure and which axes within the figure are the target
for graphics output. There are two ways to do this.

Making Current and Update. If figure_handle is the handle to an
existing figure, then the statement

figure(figure_handle)

• Makes figure_handle the current figure.

• Restacks figure_handle to be the front-most figure displayed.

• Makes figure_handle visible if it was not.

• Refreshes figure_handle and process all pending window events.

The same behavior applies to axes. The statement

axes(axes_handle)

• Makes axes_handle the current axes.

• Restacks axes_handle to be the front-most axes displayed.

• Makes axes_handle visible if it was not.

• Refreshes the figure containing the axes and process all pending window
events for that figure.

Make Current Without Changing State. You can make a figure or axes
current without causing MATLAB to change the object’s state by setting the
figure’s root object CurrentFigure property or the figure object’s CurrentAxes
property to the handle of the figure or axes you want to accept graphics output.

If figure_handle is the handle to an existing figure, the statement

set(0,'CurrentFigure',figure_handle)

makes figure_handle the current figure without changes its state. Similarly,
if axes_handle is the handle of an axes object, the statement

set(h,'CurrentAxes',axes_handle)

8-73

8 Handle Graphics® Objects

makes it the current axes, assuming h is the handle of the figure that contains
it.

Preparing Figures and Axes for Graphics
By default, commands that generate graphics output display the graphics
objects in the current figure without clearing or resetting figure properties.
However, if the graphics objects are axes children, MATLAB clears the axes
and resets most axes properties to their default values before displaying the
objects.

You can change this behavior by setting the figure and axes NextPlot
properties.

Using NextPlot to Control Output Target
MATLAB high-level graphics functions check the values of the NextPlot
properties to determine whether to add, clear, or clear and reset the figure
and axes before drawing. Low-level object-creation functions do not check the
NextPlot properties. They simply add the new graphics objects to the current
figure and axes.

Low-level functions are designed primarily for use in code files where you can
implement whatever drawing behavior you want. However, when you develop
a MATLAB-based application, controlling MATLAB drawing behavior is
essential to creating a program that behaves predictably.

This table summarizes the possible values for the NextPlot property.

NextPlot Figure Axes

new Create a new figure and
use it as the current
figure.

Not an option for axes.

add Add new graphics
objects without clearing
or resetting the current
figure. (Default)

Add new graphics
objects without clearing
or resetting the current
axes.

8-74

Controlling Graphics Output

NextPlot Figure Axes

replacechildren Remove all child
objects, but do not
reset figure properties.
Equivalent to clf.

Remove all child
objects, but do not
reset axes properties.
Equivalent to cla.

replace Remove all child
objects and reset figure
properties to their
defaults. Equivalent to
clf reset.

Remove all child
objects and reset axes
properties to their
defaults. Equivalent to
cla reset. (Default)

A reset returns all properties, except Position and Units, to their default
values.

The hold command provides convenient access to the NextPlot properties.
The statement

hold on

sets both figure and axes NextPlot properties to add.

The statement

hold off

sets the axes NextPlot property to replace.

Targeting Graphics Output with newplot
MATLAB provides the newplot function to simplify the process of writing
graphics code files that conform to the settings of the NextPlot properties.

newplot checks the values of the NextPlot properties and takes the
appropriate action based on these values. Place newplot at the beginning of
any code file that calls object creation functions.

When your file calls newplot, the following possible actions occur:

1 newplot checks the current figure’s NextPlot property:

8-75

8 Handle Graphics® Objects

• If there are no figures in existence, newplot creates one and makes it
the current figure.

• If the value of NextPlot is add, newplot makes the figure the current
figure.

• If the value of NextPlot is new, newplot creates a new figure and makes
it the current figure

• If the value of NextPlot is replacechildren, newplot deletes the
figure’s children (axes objects and their descendants) and makes this
figure the current figure.

• If the value of NextPlot is replace, newplot deletes the figure’s
children, resets the figure’s properties to the defaults, and makes this
figure the current figure.

2 newplot checks the current axes’ NextPlot property:

• If there are no axes in existence, newplot creates one and makes it the
current axes.

• If the value of NextPlot is add, newplotmakes the axes the current axes.

• If the value of NextPlot is replacechildren, newplot deletes the axes’
children and makes this axes the current axes.

• If the value of NextPlot is replace, newplot deletes the axes’ children,
resets the axes’ properties to the defaults, and makes this axes the
current axes.

MATLAB Default Behavior
Consider the default situation where the figure NextPlot property is add and
the axes NextPlot property is replace. When you call newplot, it:

1 Checks the value of the current figure’s NextPlot property (which is add)
and determines MATLAB can draw into the current figure with no further
action. If there is no current figure, newplot creates one, but does not recheck
its NextPlot property.

2 Checks the value of the current axes’ NextPlot property (which is replace),
deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the current
axes.

8-76

Controlling Graphics Output

Example — Using newplot
To illustrate the use of newplot, this example creates a function similar to
the plot function, except it automatically cycles through different line styles
instead of using different colors for multiline plots.

function my_plot(x,y)
cax = newplot; % newplot returns handle of current axes
LSO = ['- ';'--';': ';'-.'];
set(cax,'FontName','Times','FontAngle','italic')
set(get(cax,'Parent'),'MenuBar','none')
line_handles = line(x,y,'Color','b');
style = 1;
for i = 1:length(line_handles)

if style > length(LSO), style = 1;end
set(line_handles(i),'LineStyle',LSO(style,:))
style = style + 1;

end
grid on

The my_plot function uses the high-level line function syntax to plot the
data. This provides the same flexibility in input argument dimension that
the plot function supports. The line function does not check the value of the
figure or axes NextPlot property. However, because my_plot calls newplot, it
behaves the same way the high-level plot function does—with default values
in place, my_plot clears and resets the axes each time you call it.

my_plot uses the handle returned by newplot to access the target figure and
axes. This example sets axes font properties and disables the figure’s menu
bar. You obtain the figure handle via the axes Parent property.

This picture shows typical output for the my_plot function.

my_plot(1:10,peaks(10))

8-77

../ref/axes_props.html#Parent

8 Handle Graphics® Objects

Basic Plotting File Structure
This example:

• Calls newplot early to conform to the NextPlot properties and to obtain
the handle of the target axes.

• References the axes handle returned by newplot to set any axes properties
or to obtain the figure’s handle.

• Calls object creation functions to draw graphics objects with the desired
characteristics.

The MATLAB default settings for the NextPlot properties facilitate writing
function files that adhere to the standard behavior: reuse the figure window,
but clear and reset the axes with each new graph. Other values for these
properties allow you to implement different behaviors.

8-78

Controlling Graphics Output

Replacing Only the Child Objects — replacechildren
The replacechildren value for NextPlot causes newplot to remove child
objects from the figure or axes, but does not reset any property values (except
the list of handles contained in the Children property).

This can be useful after setting properties you want to use for subsequent
graphs without having to reset properties. For example, if you type at the
command line

set(gca,'ColorOrder',[0 0 1],'LineStyleOrder','-|--|:|-.',...
'NextPlot','replacechildren')

plot(x,y)

plot produces the same output as the my_plot file in the previous section, but
only within the current axes. Calling plot still erases the existing graph (i.e.,
deletes the axes children), but it does not reset axes properties. The values
specified for the ColorOrder and LineStyleOrder properties remain in effect.

Testing for Hold State
In some situations your function should change the visual appearance of the
axes to accommodate new graphics objects. For example, if you want the
my_plot function from the previous example to accept 3-D data, it makes
sense to set the view to 3-D when the input data has z-coordinates.

However, to be consistent with the behavior of the MATLAB high-level
routines, it is good practice to test whether hold is on before changing parent
axes or figure properties. When hold is on, the axes and figure NextPlot
properties are both set to add.

The function my_plot3 accepts 3-D data and also checks the hold state, using
ishold, to determine whether it should change the view.

function my_plot3(x,y,z)
cax = newplot;
hold_state = ishold; % ishold tests the current hold state
LSO = ['- ';'--';': ';'-.'];
if nargin == 2

hlines = line(x,y,'Color','k');
if ~hold_state % Change view only if hold is off

8-79

../ref/axes_props.html#ColorOrder
../ref/axes_props.html#LineStyleOrder

8 Handle Graphics® Objects

view(2)
end

elseif nargin == 3
hlines = line(x,y,z,'Color','k');
if ~hold_state % Change view only if hold is off

view(3)
end

end
ls = 1;
for hindex = 1:length(hlines)

if ls > length(LSO),ls = 1;end
set(hlines(hindex),'LineStyle',LSO(ls,:))
ls = ls + 1;

end

If hold is on when you call my_plot3, it does not change the view. If hold is
off, my_plot3 sets the view to 2-D or 3-D, depending on whether there are
two or three input arguments.

Protecting Figures and Axes
In some situations it is important to prevent particular figures or axes
from becoming the target for graphics output (i.e., preventing them from
becoming the gcf or gca). An example is a figure containing the uicontrols
that implement a user interface.

You can prevent MATLAB from drawing into a particular figure or axes
by removing its handle from the list of handles that are visible to the
newplot function, as well as any other functions that either return or
implicitly reference handles (i.e., gca, gcf, gco, cla, clf, close, and
findobj). Two properties control handle hiding: HandleVisibility and
ShowHiddenHandles.

HandleVisibility Property
HandleVisibility is a property of all objects. It controls the scope of handle
visibility within three different ranges. Property values can be:

• on — The object’s handle is available to any function executed on the
MATLAB command line or from a file. This is the default.

8-80

Controlling Graphics Output

• callback— The object’s handle is hidden from all functions executing at
the command line, even if it is on the top of the screen stacking order.
However, during callback routine execution (MATLAB statements or
functions that execute in response to user action), the handle is visible to
all functions, such as gca, gcf, gco, findobj, and newplot. This setting
enables callback routines to take advantage of the MATLAB handle access
functions, while ensuring that users typing at the command line do not
inadvertently disturb a protected object.

• off — The object’s handle is hidden from all functions executing on the
command line and in callback routines. This setting is useful when you
want to protect objects from possibly damaging user commands.

For example, if a GUI accepts user input in the form of text strings, which are
then evaluated (using the eval function) from within the callback routine, a
string such as 'close all' could destroy the GUI. To protect against this
situation, you can temporarily set HandleVisibility to off on key objects:

user_input = get(editbox_handle,'String');
set(gui_handles,'HandleVisibility','off')
eval(user_input)
set(gui_handles,'HandleVisibility','on')

Functions Affected by Handle Visibility. When a handle is not visible in
its parent’s list of children, functions that obtain handles by searching the
object hierarchy or querying handle properties cannot return it. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility. When you restrict a handle’s
visibility using callback or off

• The object’s handle does not appear in its parent’s Children property

• Figures do not appear in the root’s CurrentFigure property

• Objects do not appear in the figure’s CurrentObject property

• Axes do not appear in the containing figure’s CurrentAxesproperty

8-81

../ref/rootobject_props.html#CurrentFigure
../ref/figure_props.html#CurrentObject
../ref/figure_props.html#CurrentAxes

8 Handle Graphics® Objects

Making All Handles Visible. You can set the root ShowHiddenHandles
property to on to make all handles visible, regardless of their
HandleVisibility settings (this does not affect the values of the
HandleVisibility properties).

Values Returned by gca and gcf. When a protected figure is topmost
on the screen, but has unprotected figures stacked beneath it, gcf returns
the topmost unprotected figure in the stack. The same is true for gca. If
no unprotected figures or axes exist, calling gcf or gca causes MATLAB to
create one in order to return its handle.

Handle Validity Versus Handle Visibility. All handles remain valid
regardless of whether they are visible or not. If you know an object’s handle,
you can set and get its properties. By default, figure handles are integers that
are displayed at the top of the window.

You can provide further protection to figures by setting the IntegerHandle
property to off. MATLAB then uses a floating-point number for figure
handles.

Accessing Protected Objects
The root ShowHiddenHandlesproperty enables and disables handle visibility
control. By default, ShowHiddenHandles is off, which means MATLAB obeys
the setting of the HandleVisibility property. When ShowHiddenHandles is
set to on, all handles are visible from the command line and within callback
routines. This can be useful when you want access to all graphics objects
that exist at a given time, including the handles of axes text labels, which
are normally hidden.

The close function also allows access to nonvisible figures using the hidden
option. For example,

close('hidden')

closes the topmost figure on the screen, even if it is protected. Combining all
and hidden options,

close('all','hidden')

closes all figures.

8-82

../ref/rootobject_props.html#ShowHiddenHandles
../ref/figure_props.html#IntegerHandle
../ref/rootobject_props.html#ShowHiddenHandles

The Figure Close Request Function

The Figure Close Request Function

In this section...

“Introduction” on page 8-83

“Quitting the MATLAB Environment” on page 8-84

“Errors in the Close Request Function” on page 8-84

“Overriding the Close Request Function” on page 8-85

“Redefining the CloseRequestFcn” on page 8-85

Introduction
MATLAB executes a callback routine defined by the figure’s CloseRequestFcn
whenever you:

• Issue a close command on a figure.

• Quit MATLAB while there are visible figures. (If a figure’s Visible
property is set to off, MATLAB does not execute its close request function
when you quit MATLAB; the figure is just deleted.)

• Close a figure from the windowing system using a close box or a close
menu item.

The close request function lets you prevent or delay the closing of a figure or
the termination of a MATLAB session. This is useful to perform such actions
as

• Displaying a dialog box requiring the user to confirm the action.

• Saving data before closing.

• Preventing unintentional command-line deletion of a graphical user
interface built with MATLAB.

The default callback routine for the CloseRequestFcn is a function called
closereq. It contains the statements

if isempty(gcbf)

if length(dbstack) == 1

8-83

../ref/figure_props.html#CloseRequestFcn
../ref/figure_props.html#Visible

8 Handle Graphics® Objects

warning('MATLAB:closereq',...

'Calling closereq from the command line is now obsolete,...

use close instead');

end

close force

else

delete(gcbf);

end

This callback honors HandleVisibility and therefore does not delete the
figure when you use the close command without specifying the figure handle.
For example:

h = figure('HandleVisibility','off')
close % figure does not close
close all % figure does not close
close(h) % figure closes

Quitting the MATLAB Environment
When you quit MATLAB, the current figure’s CloseRequestFcn is called,
and if the figure is deleted, the next figure in the root’s list of children
(i.e., the root’s Children property) becomes the current figure, and its
CloseRequestFcn is in turn executed, and so on. You can use gcbf to specify
the figure handle from within a user-written close request function.

If you change a figure’s CloseRequestFcn so that it does not delete the figure,
issuing the close command on that figure does not cause it to be deleted.
Furthermore, if you attempt to quit MATLAB, the quit is aborted because
MATLAB does not delete the figure.

Errors in the Close Request Function
If the CloseRequestFcn generates an error when executed, MATLAB aborts
the close operation. However, errors in the CloseRequestFcn do not abort
attempts to quit MATLAB. If an error occurs in a figure’s CloseRequestFcn,
MATLAB closes the figure unconditionally following a quit or exit command.

8-84

../ref/rootobject_props.html#ShowHiddenHandles
../ref/rootobject_props.html#Children

The Figure Close Request Function

Overriding the Close Request Function
The delete command always deletes the specified figure, regardless of the
value of its CloseRequestFcn. For example, the statement

delete(get(0,'Children'))

deletes all figures whose handles are not hidden (i.e., the figures’
HandleVisibility property is not set to off). If you want to delete all
figures regardless of whether their handles are hidden, you can set the root
ShowHiddenHandles property to on. The root Children property then contains
the handles of all figures. For example, the statements

set(0,'ShowHiddenHandles','yes')
delete(get(0,'Children'))

unconditionally delete all figures.

Redefining the CloseRequestFcn
Define the CloseRequestFcn as a function handle. For example,

set(gcf,'CloseRequestFcn',@my_closefcn)

Where @my_closefcn is a function handle referencing function my_closefcn.

Unless the close request function calls delete or close, MATLAB never
closes the figure. (Note that you can always call delete(figure_handle)
from the command line if you have created a window with a nondestructive
close request function.)

A useful application of the close request function is to display a question
dialog box asking the user to confirm the close operation. The following
function illustrates how to do this.

• Click to view code in editor — View the MATLAB Editor showing the
following example.

• Click to run example — Ctrl-click the figure to create a new figure.

function my_closereq(src,evnt)
% User-defined close request function

8-85

8 Handle Graphics® Objects

% to display a question dialog box
selection = questdlg('Close This Figure?',...

'Close Request Function',...
'Yes','No','Yes');

switch selection,
case 'Yes',

delete(gcf)
case 'No'
return

end
end

Now create a figure using the CloseRequestFcn:

figure('CloseRequestFcn',@my_closereq)

To make this function your default close request function, set a default value
on the root level.

set(0,'DefaultFigureCloseRequestFcn',@my_closereq)

MATLAB then uses this setting for the CloseRequestFcn of all subsequently
created figures.

8-86

Saving Handles in Files

Saving Handles in Files

In this section...

“About Saving Handles” on page 8-87

“Save Information First” on page 8-87

About Saving Handles
Graphics functions frequently use handles to access property values and
to direct graphics output to a particular target. MATLAB provides utility
routines that return the handles to key objects (such as the current figure and
axes). In function files, however, these utilities might not be the best way
to obtain handles because:

• Querying MATLAB for the handle of an object or other information is less
efficient than storing the handle in a variable and referencing that variable.

• The current figure, axes, or object might change during function execution
because of user interaction.

Save Information First
It is good practice to save relevant information about the MATLAB state in
the beginning of your file. For example, you can begin a script with

cax = newplot;
cfig = get(cax,'Parent');
hold_state = ishold;

rather than querying this information each time you need it. Remember
that utility commands like ishold obtain the values they return whenever
called. (The ishold command issues a number of get commands and string
compares (strcmp) to determine the hold state.)

If you are temporarily going to alter the hold state within the code, save the
current values of the NextPlot properties so you can reset them later:

ax_nextplot = lower(get(cax,'NextPlot'));
fig_nextplot = lower(get(cfig,'NextPlot'));
.

8-87

8 Handle Graphics® Objects

.

.
set(cax,'NextPlot',ax_nextplot)
set(cfig,'NextPlot',fig_nextplot)

8-88

Properties Changed by Built-In Functions

Properties Changed by Built-In Functions
To achieve their intended effect, many built-in functions change axes
properties, which can then affect the workings of your function. This table
lists the MATLAB built-in graphics functions and the properties they change.
These properties change only if hold is off.

Function Axes Property: Set To

fill Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

fill3 CameraPosition: 3-D view

CameraTarget: 3-D view

CameraUpVector: 3-D view

CameraViewAngle: 3-D view

XScale: linear

YScale: linear

ZScale: linear

image
(high-level)

Box: on

Layer: top

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XDir: normal

XLim: [0 size(CData,2)]+0.5

XLimMode: manual

8-89

8 Handle Graphics® Objects

Function Axes Property: Set To

YDir: reverse

YLim: [0 size(CData,1)]+0.5YLimMode: manual

loglog Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: log

YScale: log

plot Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

plot3 CameraPosition: 3-D view

CameraTarget: 3-D view

CameraUpVector: 3-D view

CameraViewAngle: 3-D view

XScale: linear

YScale: linear

ZScale: linear

8-90

Properties Changed by Built-In Functions

Function Axes Property: Set To

semilogx Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: log

YScale: linear

semilogy Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: linear

YScale: log

8-91

8 Handle Graphics® Objects

Objects That Can Contain Other Objects
Certain graphics objects can contain other objects. Consider a graph, for
example. In a graph, an object like a line represents data . Normally, the
parent of the line is an axes (i.e., the handle of the line’s Parent property is
set to the handle of the axes that contains it). A figure is normally the parent
of an axes. A typical object diagram of a graph looks like the next figure.

When graphs become more complicated and represent data with multiple
objects, you can group these objects together so you can perform operations on
the group as a whole.

The following sections discuss how to use two container objects that group
axes children within a graph and user interface components within a figure.

8-92

Using Panel Containers in Figures — Uipanels

Using Panel Containers in Figures — Uipanels

In this section...

“Introduction” on page 8-93

“Figure Resize Functions” on page 8-93

“Example — Using Figure Panels” on page 8-94

Introduction
Figures can contain axes and user interface objects directly, or you can parent
these objects to uipanels, which you then parent to a figure. Uipanels are
useful for the design of GUIs because they enable you to define subregions
in a figure in which you can lay out components.

MATLAB interprets the Position property of all objects parented to a uipanel
relative to the uipanel’s position. If you move the uipanel, the children
automatically move with it.

Uipanels can also contain other uipanels, as well as axes, uicontrols, and
uibuttongroups. See the uipanel reference page for more information on
uipanels.

You can create multiple axes in a uipanel and direct plotting into any of them.
However, some plotting functions do not allow you to specify the parent of
the graphics objects they create, so they create a new axes (and possibly a
figure). To include such a graph in a uipanel, reparent the axes to the panel
once the plot is made.

Figure Resize Functions
Containing various parts of a GUI in uipanels simplifies the process of
programming figure resize behavior because you can write a separate resize
function for each panel. The following example illustrates how to do this.

8-93

8 Handle Graphics® Objects

Example — Using Figure Panels
This example uses three uipanel objects as containers for the GUI’s
components. All three uipanels are then parented to the figure, as shown in
the following containment hierarchy.

Here is a GUI with some data plotted in the axes.

8-94

Using Panel Containers in Figures — Uipanels

Complete Example Code

Note If you are using the MATLAB Help browser, run this example or open it
in the MATLAB editor.

This GUI lets you select workspace variables from a list box and select a
plot type from a pop-up menu. You can add plots to the existing graph by
clicking the Hold toggle button and initiate the plot by clicking the Create
Plot button.

Use the link above to run the example and open the GUI code in the MATLAB
editor.

8-95

8 Handle Graphics® Objects

Creating the Uipanels
The following code shows the definition of the figure and the bottom panel.
Setting Units to characters ensures that your GUI is properly sized on
different computer systems. The Position property specifies the location and
size of each component in units set by the Units property.

% Create the figure
f = figure('Units','characters',...

'Position',[30 30 120 35],...
'Color',panelColor,...
'HandleVisibility','callback',...
'IntegerHandle','off',...
'Renderer','painters',...
'ResizeFcn',@figResize);

% Create the bottom uipanel
botPanel = uipanel('BorderType','etchedin',...

'BackgroundColor',panelColor,...
'Units','characters',...
'Position',[1/20 1/20 119.9 8],...
'Parent',f,...
'ResizeFcn',@botPanelResize);

Programming the Resize Functions
As you resize the figure, MATLAB calls the figure resize function (specified
by the object’s ResizeFcn property), which, in this example, computes a new
size for each uipanel. Because the figure resize function resizes the uipanels,
MATLAB automatically calls the resize function of each uipanel once the
figure resize function completes execution. The uipanel resize functions then
adjust the sizes and locations of the components they contain.

8-96

../ref/figure_props.html#Units
../ref/figure_props.html#Position
../ref/figure_props.html#ResizeFcn

Using Panel Containers in Figures — Uipanels

The following diagram illustrates the sequence of events that occurs when a
user resizes the figure.

The following code shows the figure, bottom panel, and right panel resize
functions. As each function is called, it sets the object’s size and position to
values that are proportional to the original layout.

See “Nested Functions” for more information.

% Figure resize function
function figResize(src,evt)
fpos = get(f,'Position');

8-97

8 Handle Graphics® Objects

set(botPanel,'Position',...
[1/20 1/20 fpos(3)-.1 fpos(4)*8/35])

set(rightPanel,'Position',...
[fpos(3)*85/120 fpos(4)*8/35 fpos(3)*35/120 fpos(4)*27/35])

set(centerPanel,'Position',...
[1/20 fpos(4)*8/35 fpos(3)*85/120 fpos(4)*27/35]);

end
% Bottom panel resize function
function botPanelResize(src,evt)
bpos = get(botPanel,'Position');
set(plotButton,'Position',...
[bpos(3)*10/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(holdToggle,'Position',...
[bpos(3)*45/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(popUp,'Position',...
[bpos(3)*80/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(popUpLabel,'Position',...
[bpos(3)*80/120 bpos(4)*4/8 bpos(3)*24/120 2])

end
% Right panel resize function
function rightPanelResize(src,evt)
rpos = get(rightPanel,'Position');
set(listBox,'Position',...
[rpos(3)*4/32 rpos(4)*2/27 rpos(3)*24/32 rpos(4)*20/27]);

set(listBoxLabel,'Position',...
[rpos(3)*4/32 rpos(4)*24/27 rpos(3)*24/32 rpos(4)*2/27]);

end

The center panel does not need a resize function because the axes
automatically resize to fit the container (either a figure or uipanel).

To see the complete code listing for this example, see “Complete Example
Code” on page 8-95.

8-98

Grouping Objects Within Axes — hgtransform

Grouping Objects Within Axes — hgtransform

In this section...

“Introduction” on page 8-99

“Example — Translating Grouped Objects” on page 8-99

Introduction
MATLAB provides two objects designed to group any of the objects normally
parented to axes:

• Hggroup — Parent objects to an hggroup object when you want to reference
the objects as a group, for example, to select or control visibility of all the
group members.

• hgtransform — This object also lets you transform (rotate, translate, etc.)
the objects as a group.

See “Group Objects” on page 8-30 for more information about hggroup and
hgtransform objects.

Example — Translating Grouped Objects
This example shows how using a hierarchy of hgtransform objects makes it
possible to translate the contained graphics objects both independently and as
a group. The example creates a cross-like cursor with a text readout in the
center, which displays data values.

Two surfaces, each contained in an hgtransform object to allow independent
translation and overlap, construct the cursor. A third hgtransform object
contains these two hgtransform objects as well as a text object. This third
hgtransform (with handle T in the diagram and code) lets you transform the
cursor as a group.

The following diagram shows the containment hierarchy for this example.
The axes contains a line, which is used to plot the data that the cursor moves
along. The axes also contains the hierarchy of hgtransform objects that
construct the cursor.

8-99

8 Handle Graphics® Objects

Note If you are using the MATLAB Help browser, run this example or open it
in the MATLAB editor.

Set Up the Axes and Figure
The first step is to create an axes with fixed limits so MATLAB does not
rescale the limits as the cursor moves along the line. Creating the axes
automatically creates a figure to contain it.

Set figure properties to use the OpenGL renderer:

h_axes = axes('XLim',[-10 10],'YLim',[-5 5]);
set(get(h_axes,'Parent'),'Renderer','opengl')

Define the Transform Matrices and hgtransform Objects
The cross part of the cursor is formed from two surface objects, which are
translated to overlap. Each surface is contained in its own hgtransform
object (handles t1 and t2) because they are translated in different directions.
Both hgtransform objects are themselves contained in another hgtransform
object (handle T).

See makehgtform, hgtransform.

% Create transform matrices

8-100

Grouping Objects Within Axes — hgtransform

tmtx1 = makehgtform('translate',[-.5 0 0]);
tmtx2 = makehgtform('translate',[0 -.5 0]);

% Create hgtransform objects
T = hgtransform('Parent',h_axes); % Contains the cursor
t1 = hgtransform('Parent',T,'Matrix',tmtx1);
t2 = hgtransform('Parent',T,'Matrix',tmtx2);

Create the Surface and Text Objects
The cursor is composed of two surface objects and a text object (to display
data values). The two surfaces are parented to their respective hgtransform
objects. The text is parented directly to the top-level hgtransform. The text
object does not need coordinates because it is translated along with the
surfaces in the top-level hgtransform object (T).

See cylinder, surface, text.

% Define surfaces and text
[sx,sy,sz] = cylinder([0 2 0]); % Use cylinder to generate data
surface(sz,sy,sx,'FaceColor','green',...

'EdgeColor','none','FaceAlpha',.2,'Parent',t1);
surface(sx,sz./1.5,sy,'FaceColor','blue',...

'EdgeColor','none','FaceAlpha',.2,'Parent',t2);
h_text = text('FontSize',12,'FontWeight','bold',...

'HorizontalAlignment','center',...
'VerticalAlignment','Cap','Parent',T);

Generate Data and Plot a Line
This example uses a line plot of a mathematical function to create a path
along which to move the cursor.

% Plot the data x, y, and z
x = -10:.05:10;
y = cos(x) + exp(-.01*x).*cos(x) + exp(.07*x).*sin(3*x);
z = ones(length(x));
line(x,y,z)

8-101

8 Handle Graphics® Objects

Translate the Cursor Along the Plotted Line
To move the cursor along the line, a new transform matrix is calculated using
each set of x, y, and z data points and used to set the Matrix property of the
top-level hgtransfrom T. At the same time, the text object String property is
updated to display the value of the current y data point.

The surfaces and the text translate together because they are allcontained
in the top-level hgtransform object.

% Loop through the line data to move the cursor
for ind = 1:length(x)

set(T,'Matrix',...
makehgtform('translate',[x(ind) y(ind) z(ind)]))

set(h_text,'String',num2str(y(ind)))
pause(.01)

end

8-102

../ref/hgtransformproperties.html#Matrix
../ref/text_props.html#String

Controlling Legends

Controlling Legends

In this section...

“Legend Control Options” on page 8-103

“Properties for Controlling Legend Content” on page 8-103

“Updating a Legend” on page 8-104

“Example — Excluding a Particular Object From a Legend” on page 8-105

“Example — One Legend Entry for a Group of Objects” on page 8-106

“Example — Showing Children of Group Objects in Legend” on page 8-107

“Example — Grouping Objects to Reduce the Legend Entries” on page 8-109

Legend Control Options
Graphics objects that represent data, such as lines, surfaces, patches, etc.,
can be represented in figure legends (see legend for information on creating
legends). By setting object properties, you can:

• Include a particular graphics object in the legend (the default).

• Exclude a particular graphics object from the legend.

• Group graphics object together by parenting them to an hggroup or
hgtransform object and represent the group as a single item in the legend
(“Group Objects” on page 8-30).

• Display only the children of an object and not the parent in the legend. This
is useful when the graph contains plot objects (“Plot Objects” on page 8-19).

• Specify the text label used in the legend for any object.

Properties for Controlling Legend Content
Graphics objects have two properties that control these options:

• Annotation— Controls whether the graphics object appears in the legend
and determines if the object or its children appear in the legend.

8-103

../ref/legend.html

8 Handle Graphics® Objects

• DisplayName— Specifies the text label used by the legend for the object.
However, specifying a string with the legend commands resets the value of
DisplayName property.

Accessing the Annotation Control Objects

�	,�

������

��	�
��
���#����

�������!

�	,��	�
�"
��!

���
������!*�!��
�������!

	����������+���

�

������

�������!

)�
���������	���������+���
���������!����
���	�
�

Querying the Annotation property returns the handle of an hg.Annotation
object. The hg.Annotation object has a property called LegendInformation,
which contains an hg.LegendEntry object. The hg.LegendEntry object has a
property called IconDisplayStyle that you can set to one of three values.

IconDisplayStyle
Value

Behavior

on Represent this object in a figure legend.

off Do not include this object in a figure legend .

children Display legend entries for this object’s children and
not the object itself (applies only to objects that have
children, otherwise, the same as on).

For example, if object_handle is the handle of a graphics object, use the
following statements to set the object’s IconDisplayStyle. In this case, the
graphics object, object_handle, is not included in the legend because its
IconDisplayStyle property is off.

hAnnotation = get(object_handle,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Updating a Legend
If a legend exists and you change its IconDisplayStyle setting, you must
call legend to update the display. See the legend command for the options
available.

8-104

Controlling Legends

Example — Excluding a Particular Object From a
Legend
This example creates a graph of random data values and draws a line at the
mean y value. The blue data line does not appear in the legend because that
line object has its IconDisplayStyle property of the associated LegendEntry
object set to off. See “Properties for Controlling Legend Content” on page
8-103 for more information.

To execute the following code, copy it into a separate function file, save it as
annotation_property_line.m, and run it from the Command Window.

function annotation_property_line
dat = rand(50,1);
hLine = plot(dat);
plotMean % Nested function draws a line at mean value
set(get(get(hLine,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','off'); % Exclude line from legend
legend('mean')

function plotMean
xlimits = get(gca,'XLim');
meanValue = mean(dat);
meanLine = line([xlimits(1) xlimits(2)],...

[meanValue meanValue],'Color','k','LineStyle','-.');
end

end

Here is the resulting graph.

8-105

8 Handle Graphics® Objects

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mean

Example — One Legend Entry for a Group of Objects
You can group graphics objects in an hggroup or hgtransform object and
represent the whole group as one item in a legend. This example creates two
series of graphs (sines and cosines of the same data).

• The lines drawn to represent the sine are parented to one hggroup object.

• The lines drawn to represent the cosine are parented to another hggroup
object.

• Both hggroup objects need their associated IconDisplayStyle property
set to on.

• The legend then displays entries for both hggroup objects, but not their
children (the plotted lines).

t = 0:.1:2*pi;
for k=1:5

offset = k/7;
m(:,k) = t+offset';

end

8-106

Controlling Legends

hSLines = plot(t,sin(m),'Color','b');hold on
hCLines = plot(t,cos(m),'Color','g');
hSGroup = hggroup;
hCGroup = hggroup;
set(hSLines,'Parent',hSGroup)
set(hCLines,'Parent',hCGroup)
% Include these hggroups in the legend:
set(get(get(hSGroup,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');
set(get(get(hCGroup,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on');
legend('Sine','Cosine')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine
Cosine

Example — Showing Children of Group Objects in
Legend
You can include the children of a group in the legend by setting the group
object’s IconDisplayStyle to children. This step is useful when graphs
contain plot objects, which are groups of core graphics objects. For example,
consider the following contour graph:

8-107

8 Handle Graphics® Objects

[X,Y] = meshgrid(-2:.1:2);
Z = X.*exp(-X.^2-Y.^2);
[mC hC] = contour(X,Y,Z);
set(get(get(hC,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','Children');
%{
Assigns each line object's DisplayName property a string
based on the value of the contour interval it represents
%}
k =1; ind = 1; hLines = get(hC,'Children');
while k < size(mC,2),

set(hLines(ind),'DisplayName',num2str(mC(1,k)))
k = k+mC(2,k)+1; ind = ind+1;

end
% Display the legend using DisplayName labels
legend('show')

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0.4
0.3
0.2
0.1
0
−0.1
−0.2
−0.3
−0.4

8-108

Controlling Legends

Example — Grouping Objects to Reduce the Legend
Entries
Some functions that visualize large data sets create many objects to render
graphs. For example, contourslice uses patch objects to generate contour
slices of volume data. This example groups the 1829 patch objects into
hggroup objects according to which plane the objects represent and sets
corresponding values for the DisplayName property, resulting in a legend
with only three items.

load mri
D = squeeze(D);
phandles = contourslice(D,[],[],[1,15,27],8);view(3)
gh(1) = hggroup; gh(2) = hggroup; gh(3) = hggroup;
%set(gh,'Parent',gca)
for k=1:length(phandles)

zd = get(phandles(k),'ZData');
plane = num2str(zd(1));
switch plane

case '1'
set(phandles(k),'Parent',gh(1),'EdgeColor','r')

case '15'
set(phandles(k),'Parent',gh(2),'EdgeColor','g')

case '27'
set(phandles(k),'Parent',gh(3),'EdgeColor','b')

otherwise
disp('Don''t know what to do with it')

end
end
hA = get(gh,'Annotation');
hLL = get([hA{:}],'LegendInformation');
set([hLL{:}],{'IconDisplayStyle'},...

{'on','on','on'}')
set(gh,{'DisplayName'},{'Level=1','Level=15','Level=27'}')
legend show

8-109

8 Handle Graphics® Objects

0
20

40
60

80
100

120

0

50

100

150
0

5

10

15

20

25

30

Level=1
Level=15
Level=27

8-110

Callback Properties for Graphics Objects

Callback Properties for Graphics Objects

In this section...

“What is a Callback?” on page 8-111

“Graphics Object Callbacks” on page 8-111

“User Interface Object Callbacks” on page 8-112

“Figure Callbacks” on page 8-112

What is a Callback?
A callback is a function that executes when a specific event occurs on a
graphics object. You specify a callback by setting the appropriate property
of the object. This section describes the events (specified via properties) for
which you can define callbacks. See “Function Handle Callbacks” on page
8-113 for information on how to define callbacks.

Note When you call a plotting function, such as plot, bar, contour, and so
on, MATLAB creates new graphics objects and resets most figure and axes
properties. Therefore, callback functions you have defined for graphics objects
can be removed. See “Controlling Graphics Output” on page 8-72 for more
information.

Graphics Object Callbacks
All graphics objects have three properties for which you can define callback
routines:

• ButtonDownFcn— Executes when you click the left mouse button while the
cursor is over the object or within a 5-pixel border around the object.

• CreateFcn— Executes during object creation after you set all properties.

• DeleteFcn— Executes just before deleting the object.

8-111

8 Handle Graphics® Objects

User Interface Object Callbacks
User interface objects (e.g., uicontrol and uimenu) have a Callback property
through which you define the function to execute when you activate these
devices (e.g., click a push button or select a menu).

Figure Callbacks
Figures have additional properties that execute callback routines with the
appropriate user action. Only the CloseRequestFcn property has a callback
defined by default:

• CloseRequestFcn— Executes when a request is made to close the figure
(by a close command, by the window manager menu, or by quitting
MATLAB).

• KeyPressFcn— Executes when you press a key while the cursor is within
the figure window.

• ResizeFcn— Executes when you resize the figure window.

• WindowButtonDownFcn — Executes when you click a mouse button while
the cursor is over the figure background, a disabled uicontrol, or the axes
background.

• WindowButtonMotionFcn — Executes when you move the mouse button
within the figure window (but not over menus or title bar).

• WindowButtonUpFcn— Executes when you release the mouse button, after
having pressed the mouse button within the figure.

8-112

../ref/figure_props.html#CloseRequestFcn
../ref/figure_props.html#KeyPressFcn
../ref/figure_props.html#ResizeFcn
../ref/figure_props.html#WindowButtonDownFcn
../ref/figure_props.html#WindowButtonMotionFcn
../ref/figure_props.html#WindowButtonUpFcn

Function Handle Callbacks

Function Handle Callbacks

In this section...

“Introduction” on page 8-113

“Function Handle Syntax” on page 8-114

“Why Use Function Handle Callbacks” on page 8-115

“Example — Using Function Handles in GUIs” on page 8-117

Introduction
Handle Graphics objects have many properties for which you can define
callback functions. When a specific event occurs (e.g., you click a push button
or delete a figure), the corresponding callback function executes. You can
specify the value of a callback property as a

• String that is a MATLAB command or the name of a function

• Cell array of strings

• Function handle or a cell array containing a function handle and additional
arguments

The following sections illustrate how to define function handle callbacks for
Handle Graphics objects.

• “Introduction” on page 8-113 describes how to define a function handle
callback.

• “Why Use Function Handle Callbacks” on page 8-115 provides information
on the advantages of using function handle callbacks.

• “Example — Using Function Handles in GUIs” on page 8-117 shows how to
create a simple GUI that uses function handle callbacks.

For general information on function handles, see the function handle
reference page.

8-113

../ref/function_handle.html

8 Handle Graphics® Objects

Function Handle Syntax
In Handle Graphics technology, functions that you want to use as function
handle callbacks must define at least two input arguments in the function
definition:

• The handle of the object generating the callback (the source of the event)

• The event data structure (can be empty for some callbacks)

MATLAB passes these two arguments implicitly whenever the callback
executes. For example, consider the following statements, which are in a
single file.

function myGui
% Create a figure and specify a callback
figure('WindowButtonDownFcn',@myCallback)

.

.

.
% Callback subfunction defines two input arguments
function myCallback(src,eventdata)

.

.

.

The first statement creates a figure and assigns a function handle to its
WindowButtondownFcn property (created by using the @ symbol before the
function name). This function handle points to the subfunction myCallback.
The definition of myCallback must specify the two required input arguments
in its function definition line.

Passing Additional Input Arguments
You can define the callback function to accept additional input arguments by
adding them to the function definition:

function myCallback(src,eventdata,arg1,arg2)

When using additional arguments for the callback function, you must set the
value of the property to a cell array (i.e., enclose the function handle and
arguments in curly braces):

8-114

Function Handle Callbacks

figure('WindowButtonDownFcn',{@myCallback,arg1,arg2})

Defining Callbacks as a Cell Array of Strings — Special Case
Defining a callback as a cell array of strings is a special case because MATLAB
treats it differently from a simple string. Setting a callback property to a
string causes MATLAB to evaluate that string in the base workspace when
the callback is invoked. However, setting a callback to a cell array of strings
requires the following:

• The cell array must contain the name of a file that is on the MATLAB path
as the first string element.

• The callback must define at least two arguments (the handle of the callback
object and an empty matrix).

• Any additional strings in the cell array are passed to the callback as
arguments.

For example,

figure('WindowButtonDownFcn',{myCallback,arg1})

requires you to define a function file that uses three arguments:

function myCallback(src,eventdata,arg1)

Why Use Function Handle Callbacks
Using function handles to specify callbacks provides some advantages over
the use of strings, which must be either MATLAB commands or the name of a
file that will be on the MATLAB path at run time.

Single File for All Code
Function handles let you use a single file for all callbacks. This functionality
is useful when you are creating graphical user interfaces, because you can
include both the layout commands and callbacks in one file.

For information on how to access subfunctions, see “Calling Subfunctions”.

8-115

8 Handle Graphics® Objects

Keeping Variables in Scope
When MATLAB evaluates function handles, the same variables are in scope
as when the function handle was created. (In contrast, callbacks specified as
strings are evaluated in the base workspace.) This simplifies the process of
managing global data, such as object handles, in a GUI.

For example, suppose you create a GUI with a list box that displays workspace
variables and a push button whose callback creates a plot using the variables
selected in the list box. The push button callback needs the handle of the list
box to query the names of the selected variables. Here’s what to do:

1 Create the list box and save the handle:

h_listbox = uicontrol('Style','listbox',... etc.);

2 Pass the list box handle to the push button’s callback, which is defined in
the same file:

h_plot_button = uicontrol('Style','pushbutton',...
'Callback',{@plot_button_callback,h_listbox},...,etc.);

The handle of the list box is now available in the plot button’s callback
without relying on global variables or using findobj to search for the handle.
See “Example — Using Function Handles in GUIs” on page 8-117 for an
example that uses this technique.

Callback Object Handle and Event Data
MATLAB passes additional information to the callback when it executes.
This information includes the handle of the callback object (the source of
the callback event) and event data that is specific to the particular callback
property.

For example, the event data returned for the figure KeyPressFcn property is a
structure that contains information about which keys were pressed.

Information about the event data associated with any given callback property
is included with the property’s documentation. Use the Handle Graphics
Property Browser to access property documentation.

8-116

../ref/figure_props.html#KeyPressFcn

Function Handle Callbacks

Function Handles Stay in Scope
A function handle can point to a function that is not in scope at the time of
execution. For example, the function can be a subfunction in another file.

For a general discussion of function handles, see the “Function Handles” and
“Anonymous Functions” in the MATLAB documentation.

Example — Using Function Handles in GUIs
This example creates a simple GUI that plots workspace variables. It is
defined in a single file that contains both the layout commands and the
callbacks. This example uses function handles to specify callback functions.
Callbacks are implemented as nested functions to reduce the need to pass
variables as arguments.

Complete Example Code
The documentation for this example does not list all the code used to lay out
and program the GUI. To see a complete code listing, use the links in the Note.

Note If you are using the MATLAB Help browser, run this example or open it
in the MATLAB editor.

See “Function Handle Callbacks” on page 8-113 for more information on the
use of function handle callbacks.

The GUI Layout
The following graphic shows the GUI after running the example code.
The program creates two variables (testvarX and testVarY) in the base
workspace for testing purposes.

8-117

8 Handle Graphics® Objects

The GUI layout is split among three uipanel containers. The left-hand
panel contains the axes, the right-hand panel contains a list box to display
workspace variables, and the bottom panel contains the plot and hold buttons
and the plot type pop-up menu.

Initialize the GUI
The list box and the hold toggle button need to be initialized before the GUI
is ready to use. This is accomplished by executing their callbacks. Because
you are calling these functions directly, MATLAB does not implicitly pass the
first two arguments, as it would if these functions were executed as callbacks
in response to an event. Therefore you must explicitly pass all arguments in
these function calls:

8-118

Function Handle Callbacks

% Initialize list box and make sure
% the hold toggle is set correctly
listBoxCallback(listBox,[])
holdToggleCallback(holdToggle,[])

The Callback Functions
The GUI components that have callbacks are the list box, toggle button,
and plot push button. In addition, the figure’s three uipanels define resize
functions that MATLAB executes whenever users resize the figure.

See “Programming the Resize Functions” on page 8-96 for information on
writing callback functions for the figure and uipanel ResizeFcn properties.

List Box Callback. The list box callback generates a list of the current
variables in the base workspace using the evalin and who functions. It then
assigns this list to the list box String property so that it displays these
variable names.

The function takes advantage of the fact that the first argument passed to the
callback is the handle of the callback object (i.e., the source of the callback
event, which is the list box). Therefore, whenever you click in the list box,
MATLAB updates the list to display the current workspace variables.

%% Callback for list box
function listBoxCallback(src,evt)
% Load workspace vars into list box
vars = evalin('base','who');
set(src,'String',vars)

end % listBoxCallback

Plot Button Callback. The plot button callback performs three tasks:

• Gets the names of the variables selected by the user in the list box.

• Gets the type of plot selected by the user in the pop-up menu.

• Constructs and evaluates the plotting command in the base workspace:

%% Callback for plot button
function plotButtonCallback(src,evt)
% Get workspace variables

8-119

8 Handle Graphics® Objects

vars = get(listBox,'String');
var_index = get(listBox,'Value');
if length(var_index) ~= 2
errordlg('You must select two variables',...
'Incorrect Selection','modal')
return

end
% Get data from base workspace
x = evalin('base',vars{var_index(1)});
y = evalin('base',vars{var_index(2)});
% Get plotting command
selected_cmd = get(popUp,'Value');
% Make the GUI axes current and create plot
axes(a)
switch selected_cmd
case 1 % user selected plot
plot(x,y)

case 2 % user selected bar
bar(x,y)

case 3 % user selected stem
stem(x,y)

end
end % plotButtonCallback

Hold State Toggle Button Callback. The toggle button callback requires
the handles of the GUI figure and axes. Because these callbacks are written
as nested functions, the figure handle (f) and the axes handle (a) are in scope
within the callback.

You want the GUI to toggle the hold state, but the GUI figure handle is
hidden. It is necessary, therefore, to use the axes handle as the first argument
to the hold function.

%% Callback for hold state toggle button
function holdToggleCallback(src,evt)

button_state = get(src,'Value');
if button_state == get(src,'Max')

% toggle button is depressed
hold(a,'on')
set(src,'String','Hold On')

8-120

Function Handle Callbacks

elseif button_state == get(src,'Min')
% toggle button is not depressed
hold(a,'off')
set(src,'String','Hold Off')

end
end % holdToggleCallback

8-121

8 Handle Graphics® Objects

Optimizing Graphics Performance

In this section...

“Introduction” on page 8-122

“General Performance Guidelines” on page 8-122

“Disabling Automatic Modes” on page 8-123

“Changing Graph Data Rapidly” on page 8-125

“Specify Axes with Plotting Function for Better Performance” on page 8-128

“Performance of Bit-Mapped Images” on page 8-129

“Performance of Patch Objects” on page 8-130

“Performance of Surface Objects” on page 8-131

Introduction
This section discusses techniques that can help increase the speed with which
MATLAB creates graphs. These techniques apply to cases when you are
creating many graphs of similar data and can improve rendering speed by
preventing MATLAB from performing unnecessary operation.

Whether a given technique improves performance depends on the particular
application. The profile function can help you determine where your code
is consuming the most time.

General Performance Guidelines
The following list provides some general guidelines for optimizing
performance:

• Set automatic-mode properties to manual whenever possible to prevent
MATLAB from performing unnecessary operations.

• Modify existing objects instead of creating new ones.

• Use low-level core objects when creating objects repeatedly.

• Do not recreate legends or other annotations in a program loop; add these
after you finish modifying the graph.

8-122

Optimizing Graphics Performance

• Set the text Interpreter property to none if you are not using TeX
characters.

• Try various renderers and erase modes. MATLAB might not have
auto-selected the fastest renderer for your application.

The remainder of this section provides more details on these and other
techniques.

• “Disabling Automatic Modes” on page 8-123 — Optimizing the use of axes
objects.

• “Changing Graph Data Rapidly” on page 8-125 — Techniques for
interactive plotting.

• “Performance of Bit-Mapped Images” on page 8-129 — Optimizing the
use of image objects.

• “Performance of Patch Objects” on page 8-130 — Optimizing the use of
patch objects.

• “Performance of Surface Objects” on page 8-131 — Optimizing the use of
surface objects.

Disabling Automatic Modes
Graphics objects have properties that control many aspects of their behavior
and appearance. The axes object in particular has many mode properties that
enable it to respond to changes in the data represented in a graph.

For example, when you plot data, the axes determines appropriate axis limits,
tick-mark placement, and labeling. Any changes you make to the plotted data
(adding another line graph, for example) cause the axes to recompute the axis
limits and to determine what values to use for the tick marks.

Fixing Axis Limits
The process of recalculating axis limits and the locations of the tick marks
along each axis contributes to the time it takes to create a graph. If you are
plotting data into the same axes repeatedly, you can improve performance
by manually setting some or all of the axis limits, which, in turn, disables
axis scaling and tick picking.

8-123

8 Handle Graphics® Objects

For example, suppose you are plotting time-series graphs in which you always
view a 200-second time interval along the x-axis and your data ranges from –1
to 1. The following statement creates an axes with these limits and, in the
process, sets the limit-picking mode to manual. Thereafter, MATLAB does
not change the limits or recalculate tick mark locations (as long as you do not
call a high-level plotting function like plot):

axes('XLim',[0 200],'YLim',[-1 1])

Setting All Modes to Manual
To maximize the efficiency with which MATLAB can update your graphs,
disable all automatic operation so that MATLAB does not need to spend
time determining if it is even necessary to recalculate a property value. The
following steps illustrate this technique:

1 Create a figure and select the renderer you want to use. Line graphs should
use painters to take advantage of its line thinning algorithm:

figure('Renderer','painters')

Setting a property automatically sets its associated mode property to manual.

2 Create an axes explicitly and set all properties (such as the axis limits) for
which you can predetermine the appropriate value.

3 Set all other mode property values to manual (see the next table).

4 If you are creating line graphs using the painters renderer, set the axes
DrawMode property to fast.

5 If you cannot determine the appropriate value for all mode properties, create
your first graph and then use the set command to set mode properties to
manual. See “Changing Graph Data Rapidly” on page 8-125 for an example.

The following table lists the axes mode properties and provides an explanation
of what the mode controls.

8-124

Optimizing Graphics Performance

Mode Property What It Controls

ALimMode Transparency limits mode

CameraPositionMode Positioning of the viewpoint

CameraTargetMode Positioning of the camera target in the axes

CameraUpVectorMode The direction of “up” in 2-D and 3-D views

CameraViewAngleMode The size of the projected scene and
stretch-to-fit behavior

CLimMode Mapping of data values to colors

DataAspectRatioMode Relative scaling of data units along x-, y-,
and z-axes and stretch-to-fit behavior

DrawMode Controls the way MATLAB renders graphics
objects (use with line graphs)

PlotBoxAspectRatioMode Relative scaling of plot box along x-, y-, and
z-axes and stretch-to-fit behavior

TickDirMode Direction of axis tick marks (in for 2-D, out
for 3-D)

XLimMode

YLimMode

ZLimMode

Limits of the respective x-, y-, and z-axes

XTickMode

YTickMode

ZTickMode

Tick mark spacing along the respective x-,
y-, and z-axes

XTickLabelMode

YTickLabelMode

ZTickLabelMode

Tick mark labels along the respective x-, y-,
and z-axes

Changing Graph Data Rapidly
MATLAB plotting functions perform a wide variety of operations in the
process of creating a graph to make plotting easier. For example, the plot

8-125

../ref/axes_props.html#CameraPositionMode
../ref/axes_props.html#CameraTargetMode
../ref/axes_props.html#CameraUpVectorMode
../ref/axes_props.html#CameraViewAngleMode
../ref/axes_props.html#CLimMode
../ref/axes_props.html#DataAspectRatioMode
../ref/axes_props.html#PlotBoxAspectRatioMode
../ref/axes_props.html#TickDirMode
../ref/axes_props.html#XLimMode
../ref/axes_props.html#YLimMode
../ref/axes_props.html#ZLimMode
../ref/axes_props.html#XTickMode
../ref/axes_props.html#YTickMode
../ref/axes_props.html#ZTickMode
../ref/axes_props.html#XTickLabelMode
../ref/axes_props.html#YTickLabelMode
../ref/axes_props.html#ZTickLabelMode

8 Handle Graphics® Objects

function clears the current axes before drawing new lines, selects a line color
or a marker type, searches for user-defined default values, and so on.

Low-Level Functions for Speed
The features that make plotting functions easy to use also consume computer
resources. If you want to maximize graphing performance, use low-level
functions and disable certain automatic features.

Low-level graphics functions (e.g., line vs. plot, surface vs. surf) perform
fewer operation and therefore can be faster when you are creating many
graphics objects. See “High-Level Versus Low-Level Functions” on page 8-17
for more information on how these functions differ.

Avoid Creating Graphics Objects
Each graphics object requires a certain amount of the computer’s resources to
create and store information, such as the value of all the object’s properties. It
is more efficient to use fewer graphics objects, if possible.

For example, add NaNs to vertex data (which causes that vertex to not be
rendered) to create line segments that look like separate lines. Place the
NaNs at identical locations in each vector of data:

x = [rand(5,1);nan;rand(4,1);nan;rand(6,1)];
y = [rand(5,1);nan;rand(4,1);nan;rand(6,1)];
line(x,y);

8-126

Optimizing Graphics Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Update the Object’s Data
To view different data on what is basically the same graph, it is more efficient
to update the data of the existing objects (lines, text, etc.) rather than
recreating the entire graph.

For example, suppose you want to visualize the effect on your data of varying
certain parameters. Follow these steps:

1 Set the limits of any axis that can be determined in advance, use max and min
to determine the range of your data.

2 Recalculate the data using the new parameters.

3 Use the new data to update the data properties of the lines, text, etc. objects
used in the graph.

8-127

8 Handle Graphics® Objects

4 Call drawnow to flush the event queue and update the figure (and all child
objects in the figure).

The following example illustrates the use of these techniques in a GUI that
uses sliders to vary two parameters in a mathematical expression, which is
then plotted.

Note If you are using the MATLAB Help browser, run this example or open it
in the MATLAB editor.

Specify Axes with Plotting Function for Better
Performance
Most plotting functions accept an axes handle as an argument. This handle
determines the target axes for the plot. Specifying the parent axes as an
argument is often faster than using the axes function to make a particular

8-128

Optimizing Graphics Performance

axes the current axes. For example, suppose you want six subplot in one
figure and want to plot to each one in sequence:

x = 0:.05:2*pi;
for k=1:6

h(k) = subplot(6,1,k);
end
for k=1:6

y = sin(x*100*rand)*rand;
plot(h(k),x,y) % Specify target axes in plotting function
% Avoid using axes(h(k); plot(x,y) in a loop

end

Keeping Track of the Target Figure and Axes
You can explicitly set the figure CurrentAxes property to avoid specifying the
axes handle with a number of functions that can operate on the current axes
by default. For example, in the following code, both stem and axis operate on
the current axes if you do not specify an axes as an argument:

fHandle = figure;
for k=1:6

h(k) = subplot(6,1,k);
end
x = 0:.1:2*pi;
for k=1:6

y = sin(x*100*rand)*rand;
% Explicitly set current axes as a figure property
set(fHandle,'CurrentAxes',h(k)); stem(x,y);
axis([0 6.28 -1 1])

end

Both techniques give better performance than calling the axes function to
control the current axes.

Performance of Bit-Mapped Images
Images can be defined with lower precision (than double) values to reduce
the total amount of data required. MATLAB performs many operations on
nondouble data types so you can use smaller image data without converting

8-129

8 Handle Graphics® Objects

the data to type double. See “Working with 8-Bit and 16-Bit Images” on page
6-10 for more information.

Direct Color Mapping
Where possible, use indexed images, because indexed images can apply direct
mapping of pixel values to colormap values (CDataMapping set to direct).
With direct mapping, MATLAB does not need to scale the data and then map
it to values in the colormap.

See the CDataMapping image property for more information.

Use Truecolor for Smaller Images
The use of truecolor (red, green, and blue values) eliminates the need for
color mapping. However, with very large images, the data can be quite large
and slow performance.

Direct Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none).

See the AlphaDataMapping image property for more information.

Performance of Patch Objects
Improve the speed with which MATLAB renders patch objects using the
following techniques.

Define Patch Faces as Triangles
If you are using patch objects that have many vertices per patch face, modify
your data so that each face has only three vertices, but still looks like your
original object. This eliminates the tessellation step from the rendering
process.

8-130

../ref/image_props.html#CDataMapping
../ref/image_props.html#AlphaDataMapping

Optimizing Graphics Performance

Use Data Thinning
It is sometimes possible (or even desirable) to reduce the number of vertices in
a patch and still produce the desired results.

See the reducepatch and reducevolume functions for more information.

Direct Color Mapping
Where possible, use direct color mapping for coloring patches. (CDataMapping
set to direct). With direct mapping, MATLAB does not need to scale the data
and then map it to values in the colormap.

See the CDataMapping patch property for more information.

Use Truecolor for Smaller Patches
The use of truecolor (red, green, and blue values) eliminates the need for
color mapping. However, with very large patches the data can be quite large
and slow performance.

Direct Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none).

See the AlphaDataMapping patch property for more information.

Performance of Surface Objects
Improve the speed with which MATLAB renders surface objects using the
following techniques.

Direct Color Mapping
Where possible, use direct color mapping for coloring surfaces (CDataMapping
set to direct). With direct mapping, MATLAB does not need to scale the data
and then map it to values in the colormap.

See the CDataMapping surface property for more information.

8-131

../ref/patch_props.html#CDataMapping
../ref/patch_props.html#AlphaDataMapping
../ref/surface_props.html#CDataMapping

8 Handle Graphics® Objects

Use Truecolor for Smaller Surfaces
The use of truecolor (red, green, and blue values) eliminates the need for color
mapping. However, with very large surfaces, the data can be quite large
and slow performance.

Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none)

See the AlphaDataMapping surface property for more information.

Use Texture-Mapped Face Color
If you are using surface objects in an animation or want to be able to pan and
rotate them quickly, you can achieve better rendering performance with large
surfaces by setting EdgeColor to none and FaceColor to texture.

This technique is particularly useful if you want a high resolution surface
without creating an objects whose data is large and therefore, very slow to
transform. For example:

h1 = surf(peaks(1000));
shading interp
cd1 = get(h1,'CData');
surf(peaks(24),'FaceColor','Texture','EdgeColor','none',...
'CData',cd1)

8-132

../ref/surface_props.html#AlphaDataMapping

9

Using Figure Properties

• “Figure Objects” on page 9-2

• “Docking Figures in the Desktop” on page 9-3

• “Positioning Figures” on page 9-6

• “Figure Colormaps — The Colormap Property” on page 9-12

• “Selecting Drawing Methods” on page 9-14

• “Specifying the Figure Pointer” on page 9-17

9 Using Figure Properties

Figure Objects
Figure graphics objects are the windows in which MATLAB software displays
graphics. Figure properties enable you to control many aspects of these
windows, such as their size and position on the screen, the coloring of graphics
objects displayed within them, and the scaling of printed pictures.

This section discusses some of the features that are implemented through
figure properties and provides examples of how to use these features.

See Figure Properties for a description of each individual property.

Related Information About Figures
For more information about figures, see the following links:

• “Graphics Windows — the Figure” on page 8-6

• “Preparing Figures and Axes for Graphics” on page 8-74

• “Protecting Figures and Axes” on page 8-80

• “The Figure Close Request Function” on page 8-83

• “Using Panel Containers in Figures — Uipanels” on page 8-93

• “Programming the Resize Functions” on page 8-96

• “Figure Callbacks” on page 8-112

• “Introduction” on page 10-36

• “Displaying Multiple Plots per Figure” on page 4-2

9-2

../ref/figure_props.html

Docking Figures in the Desktop

Docking Figures in the Desktop

In this section...

“Introduction” on page 9-3

“Figure Properties That Affect Docking” on page 9-4

“Creating a Nondockable Figure” on page 9-5

Introduction
You can dock figures in the MATLAB desktop by clicking the dock button,
, which appears on the right end of the menu bar. Once docked, figures are

placed in a figure group container, which you can also dock and undock.

You can select from a variety of arrangements of the figures in the container.
The following picture shows how to select various figure arrangements. Once
docked, the figure container displays the toolbar and menubar of the figure
with focus.

9-3

9 Using Figure Properties

Figure Properties That Affect Docking
There are two figure properties that are related to figure docking —
DockControls and WindowStyle.

9-4

Docking Figures in the Desktop

DockControls
The DockControls property controls the display of the controls used to dock
figures. Setting DockControls to off removes the dock button from the
menubar and disables docking from the figure Desktop menu.

WindowStyle
When you set the WindowStyle property to docked, MATLAB docks the
figure in the desktop within a figure group container.

If WindowStyle is set to docked,

• MATLAB automatically sets DockControls to on.

• You cannot set the DockControls property to off.

• You cannot set the figure Position property.

Docking Figures Automatically
If you want MATLAB to always dock figures, set the default value of the
WindowStyle property to docked. The following statement,

set(0,'DefaultFigureWindowStyle','docked')

creates a default value for the WindowStyle property on the root level. Issuing
this statement on the command line sets the WindowStyle of all figures for
the duration of your MATLAB session (unless you change the value).

Place this statement in your startup.m file to make MATLAB always dock
figures. See startup for more information on startup.m.

Creating a Nondockable Figure
In cases where you do not want users to be able to dock figures (e.g., figures
used for GUIs), you should set figure properties as follows:

• DockControls to off

• WindowStyle to normal or modal

• HandleVisibility to off or callback

9-5

../ref/figure_props.html#DockControls
../ref/figure_props.html#WindowStyle

9 Using Figure Properties

Positioning Figures

In this section...

“Introduction” on page 9-6

“The Position Vector” on page 9-6

“Example — Specifying Figure Position” on page 9-9

Introduction
The figure Position property controls the size and location of the figure
window on the screen. Monitor screen size is a property of the root Handle
Graphics object. At startup, the MATLAB software determines the size of
your computer screen and defines a default value for Position. This default
creates figures about one-quarter of the screen’s minimum extent and places
them centered left to right, in the top half of the screen.

The Position Vector
MATLAB defines the figure Position property as a vector.

[left bottom width height]

left and bottom define the position of the first addressable pixel in the lower
left corner of the window, specified with respect to the lower left corner of
the screen. width and height define the size of the interior of the window
(i.e., exclusive of the window border).

9-6

../ref/figure_props.html#Position

Positioning Figures

MATLAB does not measure the window border when placing the figure; the
Position property defines only the internal active area of the figure window.

Because figures are windows under the control of your computer’s windowing
system, you can move and resize figures as you would any other windows.
MATLAB automatically updates the Position property to the new values.

Figure Position and Window Managers
Your computer’s window manager controls the layout of windows on monitors
and on virtual desktops. It might not honor a request to place a figure window
that would cause the entire figure or its top border to be located off-screen.
A window manager also might force windows to have a certain minimum or
maximum width or height. Such actions can cause a figure’s position to differ
from what you specify, and results can vary across platforms and window
managers.

9-7

9 Using Figure Properties

Figure Position for Docked Figures
When a figure is docked in the MATLAB desktop, the Position property is
defined with respect to the figure group container within the desktop. See
“Docking Figures in the Desktop” on page 9-3 for more information.

Units
The figure’s Units property determines the units of the values with which you
specify its position on the screen. Possible values for the Units property are

set(gcf,'Units')
[inches | centimeters | normalized | points | {pixels} |
characters]

with pixels being the default. These choices allow you to specify the figure
size and location in absolute units (such as inches) if you want the window
always to be a certain size, or in units relative to the screen size (such as
pixels).

Characters are units that enable you to define the location and size of the
figure in units that are based on the size of the default system font. Ffor an
example that uses character units, see “Example — Using Figure Panels”
on page 8-94.

Determining Screen Size
Whatever units you use, it is important to know the extent of the screen
in those units. You can obtain this information from the root ScreenSize
property. For example:

get(0,'ScreenSize')
ans =

1 1 1152 900

In this case, the screen is 1152 by 900 pixels. MATLAB returns the
ScreenSize in the units determined by the root Units property. For example,

set(0,'Units','normalized')

normalizes the values returned by ScreenSize.

9-8

../ref/figure_props.html#Units
../ref/rootobject_props.html#ScreenSize

Positioning Figures

get(0,'ScreenSize')
ans =

0 0 1 1

MATLAB determines the screen size in absolute units (e.g., inches) by
dividing the number of pixels in width and height by the screen DPI (see the
ScreenPixelsPerInch property). This value is approximate and might not
represent the actual size of the screen.

Defining the figure Position in terms of the ScreenSize in normalized units
makes the specification independent of variations in screen size. This is
useful if you are writing a MATLAB file to use on different computer systems.
It does, however, result in differently-shaped figures on monitors having
different aspect ratios.

The ScreenSize property is static. Its values are read only at MATLAB
startup and not updated if system display settings change. Also, the values
returned might not represent the usable screen size for application developers
due to the presence of other GUIs, such as the Microsoft Windows taskbar.

Example — Specifying Figure Position
Suppose you want to define two figure windows that occupy the upper third of
the computer screen (e.g., one for uicontrols and the other for displaying data).
To position the windows precisely, you must take into account the window
borders (which can include a menu bar and toolbars) when calculating the
size and offsets. For this purpose, use the windows’ OuterPosition rather
than their Position property.

1 Ensure root units are pixels and get the size of the screen and create a figure
window:

set(0,'Units','pixels')
scnsize = get(0,'ScreenSize');
fig1 = figure;

2 The figure Position property only includes the drawable extent of the
window, exclusive of the window borders. Obtain the entire window’s size
from the OuterPosition property, and compare the two:

position = get(fig1,'Position')

9-9

../ref/rootobject_props.html#ScreenPixelsPerInch
../ref/figure_props.html#OuterPosition
../ref/figure_props.html#Position

9 Using Figure Properties

outerpos = get(fig1,'OuterPosition')
borders = outerpos - position

position =
560 528 560 420

outerpos =
556 524 568 495

borders =
-4 -4 8 75

The left, right, and bottom borders are each 4 pixels wide. The top border,
which contains a menu bar and a figure toolbar is 75-4, or 71 pixels wide.

3 Create a second figure, which defaults to the same size as the first one:

fig2 = figure;

4 Define the desired size and location of the figures. Leave a space equal to
their border width between them:

edge = -borders(1)/2;
pos1 = [edge,...

scnsize(4) * (2/3),...
scnsize(3)/2 - edge,...
scnsize(4)/3];

pos2 = [scnsize(3)/2 + edge,...
pos1(2),...
pos1(3),...
pos1(4)];

5 Reposition the two figures by changing both of their OuterPosition
properties:

set(fig1,'OuterPosition',pos1)
set(fig2,'OuterPosition',pos2)

The two figures now occupy the top third of the screen.

9-10

Positioning Figures

9-11

9 Using Figure Properties

Figure Colormaps — The Colormap Property

In this section...

“Introduction” on page 9-12

“Specifying the Figure Colormap” on page 9-12

Introduction
The MATLAB software defines a colormap as a three-column array. Each row
of the array defines a particular color by giving three values in the range
[0...1]. These values specify the RGB values; the intensity of the red, green,
and blue video components.

Colormaps enable you to control how MATLAB maps data values to colors
in surfaces, patches, images, and plotting functions that are based on these
objects. See the following sections for more information.

• “Coloring Mesh and Surface Plots” in 3-D Visualization

• “Specifying Patch Coloring” in 3-D Visualization

• “The Image Object and Its Properties” on page 6-27

Specifying the Figure Colormap
The figure Colormap property contains the colormap array. You can specify
the figure colormap by setting this property to an m-by-3 array, where m is
the number of colors in the colormap.

For example, the following statement creates a figure with a colormap having
128 random colors.

figure('Colormap',rand(128,3));

The colormap function is an easy way to specify the colormap. MATLAB also
provides a number of functions that generate colormaps. For example,

colormap(hsv(96))

9-12

Figure Colormaps — The Colormap Property

sets the colormap of the current figure to a 96 element version of the hsv
colormap. See the colormap reference page for a list of predefined colormaps.
The default colormap is jet(64).

9-13

9 Using Figure Properties

Selecting Drawing Methods

In this section...

“Double Buffering” on page 9-14

“Selecting a Renderer” on page 9-14

Double Buffering

Overview
Set DoubleBuffer to on when you are animating lines rendered in painters
with EraseMode set to normal.

More Details
Double buffering is the process of drawing into an offscreen pixel buffer and
then blitting the buffer contents to the screen once the drawing is complete
(instead of drawing directly to the screen, where the process of drawing
is visible as it progresses). Double buffering generally produces flash-free
rendering for simple animations (such as those involving lines, as opposed
to objects containing large numbers of polygons).

The figure DoubleBuffer property accepts the values on and off, with
on being the default. You can select double buffering only when the figure
Renderer property is set to painters. zbuffer and opengl always use double
buffering and ignore this property.

Use double buffering with the animated object’s EraseMode property set to
normal.

Selecting a Renderer

Overview
The MATLAB software automatically selects the best renderer based on the
complexity of the graphics objects and the options available on your system.

9-14

../ref/figure_props.html#DoubleBuffer

Selecting Drawing Methods

More Details
A renderer is the software that processes graphics data (such as vertex
coordinates) into a form that MATLAB can use to draw into the figure.
MATLAB supports three renderers:

• Painters

• Z-buffer

• OpenGL

Painters
Painters method is faster when the figure contains only simple or small
graphics. It cannot be used with lighting.

Z-Buffer
Z-buffering is the process of determining how to render each pixel by drawing
only the front-most object, as opposed to drawing all objects back to front,
redrawing objects that obscure those behind. The pixel data is buffered and
then blitted to the screen all at once.

Z-buffering is generally faster for more complex graphics, but can be slower
for very simple graphics. You can set the Renderer property to whatever
produces the fastest drawing (either zbuffer or painters), or let MATLAB
decide which method to use by setting the RendererMode property to auto
(the default).

Printing from Z-Buffer. You can select the resolution of the PostScript file
produced by the print command using the -r option. By default, MATLAB
prints Z-buffered figures at a medium resolution of 150 dpi (the default with
Renderer set to painters is 864 dpi).

The size of the file generated from a Z-buffer figure does not depend on its
contents, just the size of the figure. To decrease the file size, make the
PaperPosition property smaller before printing (or set PaperPositionMode
to auto and resize the figure window).

9-15

9 Using Figure Properties

OpenGL
OpenGL is available on many computer systems. It is generally faster than
either painters or Z-buffer and in some cases enables MATLAB to use the
system’s graphics hardware (which results in significant speed increase). See
the figure Renderer property for more information.

Limitations of OpenGL. OpenGL has two limitations when compared to
painters and Z-buffer:

• OpenGL does not interpolate colors within the figure colormap; all color
interpolation is performed through the RGB color cube, which can produce
unexpected results.

• OpenGL does not support Phong lighting.

9-16

../ref/figure_props.html#Renderer

Specifying the Figure Pointer

Specifying the Figure Pointer

In this section...

“Predefined Figure Pointer Symbols” on page 9-17

“Defining Custom Pointers” on page 9-18

Predefined Figure Pointer Symbols
The MATLAB software indicates the position of the pointer (cursor) within
the figure window using a graphical symbol. You can select a pointer from 15
predefined symbols (see table below) or you can define your own symbol. By
convention, each of the predefined symbols has a purpose associated with it
(although MATLAB enforces no rules for the use of any symbols).

You specify the pointer symbol by setting the value of the figure Pointer
property. For example, this statement sets the pointer in the current figure
(gcf) to an arrow.

set(gcf,'Pointer','arrow')

The following table shows the predefined symbols, the associated specifier,
and describes typical use.

Purpose Specifier Typical Symbol

Use for editing text ibeam

Locate a point on a graphics object crosshair

Select a point anywhere in the figure arrow

Indicate the system is busy watch

Resize an object from the top-left
corner

topl

Resize an object from the top-right
corner

topr

9-17

../ref/figure_props.html#Pointer

9 Using Figure Properties

Purpose Specifier Typical Symbol

Resize an object from the bottom-left
corner

botl

Resize an object from the
bottom-right corner

botr

View the actual hot spot circle

Locate a point cross

Use as popular symbol fleur

Resize an object from the left side left

Resize an object from the right side right

Resize an object from the top top

Resize an object from the bottom bottom

Align a point with other objects on
the display

fullcross

Clickable icon hand

See the next section for information
on defining your own pointer shape

custom

Defining Custom Pointers
When you set the Pointer property to custom, MATLAB displays the pointer
you define using the PointerShapeCData and the PointerShapeHotSpot
properties. Custom pointers are 16-by-16 pixels, where each pixel can be
either black, white, or transparent.

Specify the pointer by creating a 16-by-16 matrix containing elements that are

• 1’s where you want the pixel black

• 2’s where you want the pixel white

9-18

../ref/figure_props.html#PointerShapeCData
../ref/figure_props.html#PointerShapeHotSpot

Specifying the Figure Pointer

• NaNs where you want the pixel transparent

Assign the matrix to the figure PointerShapeCData property. MATLAB
displays the defined pointer whenever the pointer is in the figure window.

The PointerShapeHotSpot property specifies the pixel that indicates
the pointer location. MATLAB then stores this location in the root
PointerLocation property. Set the PointerShapeHotSpot property
to a two-element vector specifying the row and column indices in the
PointerShapeCData matrix that correspond to the pixel specifying the
location. The default value for this property is [1 1], which corresponds to
the upper left corner of the pointer.

Example — Two Custom Pointers
One way to create a custom pointer is to assign values to a 16-by-16 matrix
by hand, as illustrated in the following example.

First, initialize the matrix, setting all values to 2. Create a black border 1
pixel wide. Add alignment marks.

P = ones(16)+1;
P(1,:) = 1; P(16,:) = 1;
P(:,1) = 1; P(:,16) = 1;
P(1:4,8:9) = 1; P(13:16,8:9) = 1;
P(8:9,1:4) = 1; P(8:9,13:16) = 1;
P(5:12,5:12) = NaN; % Create a transparent region in the center
set(gcf,'Pointer','custom','PointerShapeCData',P,...

'PointerShapeHotSpot',[9 9])

The last statement sets the Pointer property to custom, assigns the matrix to
the PointerShapeCData property, and selects element (9,9) as the “hot spot.”

MATLAB now uses the custom pointer within the figure window.

9-19

9 Using Figure Properties

Creating Pointers from Functions. You can use a mathematical function to
define the PointerShapeCData matrix. For example, evaluating the function

2 2 2sin x y+⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

g = 0:.2:20;
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
mesh(Z);

produces an interesting surface.

0

10

20

0

5

10

15

20
−2

0
2

Use the values of Z to create a pointer sampling fewer points so that Z is a
16-by-16 matrix.

9-20

Specifying the Figure Pointer

g = linspace(0,20,16);
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
set(gcf,'Pointer','custom',...

'PointerShapeCData',flipud((Z>0) + 1))

The statement flipud((Z>0) + 1) sets all values in Z that are greater than
0 to 2 (in MATLAB, true + 1 = 2), less than 0 to 1 (false + 1 = 1) and then flips
the data around so that element (1,1) is the upper left corner.

9-21

9 Using Figure Properties

9-22

10

Using Axes Properties

• “Axes Objects — Defining Coordinate Systems for Graphs” on page 10-2

• “Labeling and Appearance Properties” on page 10-3

• “Positioning Axes” on page 10-6

• “Automatic Axes Resize” on page 10-9

• “Multiple Axes per Figure” on page 10-15

• “Individual Axis Control” on page 10-18

• “Using Multiple X- and Y-Axes” on page 10-25

• “Automatic-Mode Properties” on page 10-29

• “Colors Controlled by Axes” on page 10-32

• “Axes Color Limits — the CLim Property” on page 10-36

• “Defining the Color of Lines for Plotting” on page 10-41

10 Using Axes Properties

Axes Objects — Defining Coordinate Systems for Graphs
MATLAB software uses graphics objects to create visual representations of
data. For example, a two-dimensional array of numbers can be represented
as lines connecting the data points defined by each column, as a surface
constructed from a grid of rectangles whose vertices are defined by each
element of the array, as a contour graph where equal values in the array are
connected by lines, and so on.

In all these cases, there must be a frame of reference that defines where to
place each data point on the graph. This frame of reference is the coordinate
system defined by the axes. Axes orient and scale graphs to produce the view
of the data that you see on screen.

MATLAB creates axes to define the coordinate system of each graph. Axes are
always contained within a figure object and themselves contain the graphics
objects that make up the graph.

Axes properties control many aspects of how MATLAB displays graphical
information. This section discusses some of the features that are implemented
through axes properties and provides examples of how to uses these features.

The Axes Properties list all axes properties and provide an overview of the
characteristics that are affected by each property.

10-2

../ref/axes_props.html

Labeling and Appearance Properties

Labeling and Appearance Properties

In this section...

“Introduction” on page 10-3

“Creating Axes with Specific Characteristics” on page 10-3

“Axis Labels” on page 10-4

Introduction
MATLAB software provides a number of properties for labeling and
controlling the appearance of axes. For example, this surface plot shows some
of the labeling possibilities and indicates the controlling property.

Creating Axes with Specific Characteristics
To create this axes, specify values for the indicated properties.

h = axes('Color',[.9 .9 .9],...
'GridLineStyle','--',...
'ZTickLabel','-1|Z = 0 Plane|+1',...

10-3

10 Using Axes Properties

'FontName','times',...
'FontAngle','italic',...
'FontSize',14,...
'XColor',[0 0 .7],...
'YColor',[0 0 .7],...
'ZColor',[0 0 .7]);

Axis Labels
The individual axis labels are text objects whose handles are normally hidden
from the command line (their HandleVisibility property is set to callback).
You can use the xlabel, ylabel, zlabel, and title functions to create axis
labels. However, these functions affect only the current axes. If you are
labeling axes other than the current axes by referencing the axes handle, then
you must obtain the text object handle from the corresponding axes property.

Getting the Text Object Handle
For example,

get(axes_handle,'XLabel')

returns the handle of the text object used as the x-axis label. Obtaining the
text handle from the axes is useful in MATLAB files and applications where
you cannot be sure the intended target is the current axes.

The following statements define the x- and y-axis labels and title for the
axes above.

set(get(axes_handle,'XLabel'),'String','Values of X')
set(get(axes_handle,'YLabel'),'String','Values of Y')
set(get(axes_handle,'Title'),'String','\fontname{times}\itZ =
f(x,y)')

Because the labels are text, you must specify a value for the String property,
which is initially set to the empty string (i.e., there are no labels).

MATLAB overrides many of the other text properties to control positioning
and orientation of these labels. However, you can set the Color, FontAngle,
FontName, FontSize, FontWeight, and String properties.

10-4

Labeling and Appearance Properties

Specifying Axis Label Fonts
Both axes objects and text objects have font specification properties. The
call to the axes function on the previous page set values for the FontName,
FontAngle, and FontSize properties.

If you want to specify the font for the labels and title, set the font property
values when defining their String property. For example, the x-axis label
statement would be

set(get(h,'XLabel'),'String','Values of X',...
'FontName','times',...
'FontAngle','italic',...
'FontSize',14)

Bitmapped Vs. Truetype Fonts — Text Does Not Rotate
Bitmapped fonts (e.g., Courier) cannot be rotated on the display. Therefore,
when you specify a bitmapped font with the FontName property, this text
might not be rotated correctly, for example, when used as the y-axis label.

To avoid problems with bitmapped fonts, use TrueType fonts. For example,
you might have a TrueType font named Courier New that you can use instead
of Courier. See your system documentation for information on which fonts
are installed on your system.

10-5

10 Using Axes Properties

Positioning Axes

In this section...

“Introduction” on page 10-6

“The Position Vector” on page 10-6

“Position Units” on page 10-8

Introduction
The axes Position property controls the size and location of an axes within a
figure. The default axes has the same aspect ratio (ratio of width to height)
as the default figure and fills most of the figure, leaving a border around the
edges. However, you can define the axes position as any rectangle and place it
wherever you want within a figure.

The Position Vector
The MATLAB software defines the axes Position property as a vector.

[left bottom width height]

left and bottom define a point in the figure that locates the lower left corner
of the axes rectangle. width and height specify the dimensions of the axes
rectangle. Viewing the axes in 2-D (azimuth = 0°, elevation = 90°) orients
the x-axis horizontally and the y-axis vertically. From this angle, the plot
box (the area used for plotting, exclusive of the axis labels) coincides with
the axes rectangle.

10-6

../ref/axes_props.html#Position

Positioning Axes

10-7

10 Using Axes Properties

By default, MATLAB draws the plot box to fill the axes rectangle, regardless
of its shape. However, axes properties enable control over the shape and
scaling of the plot box.

Position Units
The axes Units property determines the units of measurement for the
Position property. Possible values for this property are

set(gca,'Units')
[inches | centimeters | {normalized} | points | pixels]

with normalized being the default. Normalized units map the lower left
corner of the figure to the point (0,0) and the upper right corner to (1.0,1.0),
regardless of the size of the figure. Normalized units cause axes to resize
automatically whenever you resize the figure. All other units are absolute
measurements that remained fixed as you resize the figure.

10-8

../ref/axes_props.html#Units

Automatic Axes Resize

Automatic Axes Resize

In this section...

“Properties Controlling Axes Size” on page 10-9

“Using OuterPosition as the ActivePositionProperty” on page 10-11

“ActivePositionProperty = OuterPosition” on page 10-12

“ActivePositionProperty = Position” on page 10-12

“Axes Resizing in Subplots” on page 10-13

Properties Controlling Axes Size
When you create a graph, MATLAB automatically creates an axes to display
the graph. The axes is sized to fit in the figure and automatically resizes
as you resize the figure. However, MATLAB applies the automatic resize
behavior only when the axes Units property is set to normalized (the default).

Note MATLAB changes only the current axes’ properties by default. If your
plot has multiple axes, MATLAB will not automatically resize any secondary
axes.

You can control the resize behavior of the axes using the following axes
properties:

• OuterPosition — The boundary of the axes including the axis labels,
title, and a margin. For figures with only one axes, this is the interior
of the figure.

• Position— The boundary of the axes, excluding the tick marks and labels,
title, and axis labels.

• ActivePositionProperty— Specifies whether to use the OuterPosition
or the Position property as the size to preserve when resizing the figure
containing the axes.

10-9

../ref/axes_props.html#Units

10 Using Axes Properties

• TightInset — The margins MATLAB automatically adds to the width
and height of the Position property to include text labels, title, and axis
labels. This property is read only.

• Units— Keep this property set to normalized to enable automatic axes
resizing.

The following graph shows the areas defined by the OuterPosition, Position
expanded by TightInset , and Position properties.

When you add axis labels and a title, the TightInset changes to accommodate
the additional text, as shown in the following graph.

10-10

Automatic Axes Resize

Now the size of the rectangle defined by the TightInset and Position
properties includes all graph text. The Position and OuterPosition
properties remain unchanged.

Using OuterPosition as the ActivePositionProperty
As you resize the figure, MATLAB maintains the area defined by the
TightInset and Position so the text is not cut off. Compare the next two
graphs, which have both been resized to the same figure size.

10-11

10 Using Axes Properties

ActivePositionProperty = OuterPosition

ActivePositionProperty = Position

10-12

Automatic Axes Resize

The following picture shows how these properties apply to 3-D graphs.

Axes Resizing in Subplots
Using the OuterPosition property as the ActivePositionProperty is an
effective way to prevent titles and labels from being overwritten when there
are multiple axes in a figure.

The following picture illustrates how MATLAB resizes the axes to
accommodate the multiline titles on the lower two axes.

10-13

10 Using Axes Properties

The default 3-D view is azimuth = -37.5°, elevation = 30°.

10-14

Multiple Axes per Figure

Multiple Axes per Figure

In this section...

“Introduction” on page 10-15

“Placing Text Outside the Axes” on page 10-15

“Multiple Axes for Different Scaling” on page 10-16

Introduction
The subplot function creates multiple axes in one figure by computing values
for Position that produce the specified number of axes.

The subplot function is useful for laying out a number of graphs equally
spaced in the figure. However, overlapping axes can create some other useful
effects. The following sections provide examples.

Placing Text Outside the Axes
The MATLAB software always displays text objects within an axes. If you
want to create a graph and provide a description of the information alongside
the graph, you must create another axes to position the text. If you create an
axes that is the same size as the figure and then create a smaller axes to draw
the graph, you can then display text anywhere independently of the graph.

For example, define two axes.

h = axes('Position',[0 0 1 1],'Visible','off');
axes('Position',[.25 .1 .7 .8])

Because the axes units are normalized to the figure, specifying the Position
as [0 0 1 1] creates an axes that encompasses the entire window.

Now plot some data in the current axes. The last axes created is the current
axes, so MATLAB directs graphics output there.

t = 0:900;
plot(t,0.25*exp(-0.005*t))

10-15

10 Using Axes Properties

Define the text and display it in the full-window axes.

str(1) = {'Plot of the function:'};
str(2) = {' y = A{\ite}^{-\alpha{\itt}}'};
str(3) = {'With the values:'};
str(3) = {' A = 0.25'};
str(4) = {' \alpha = .005'};
str(5) = {' t = 0:900'};
set(gcf,'CurrentAxes',h)
text(.025,.6,str,'FontSize',12)

Multiple Axes for Different Scaling
You can create multiple axes to display graphics objects with different scaling
without changing the data that defines these objects (which would be required
to display them in a single axes).

10-16

Multiple Axes per Figure

h(1) = axes('Position',[0 0 1 1]);
sphere
h(2) = axes('Position',[0 0 .4 .6]);
sphere
h(3) = axes('Position',[0 .5 .5 .5]);
sphere
h(4) = axes('Position',[.5 0 .4 .4]);
sphere
h(5) = axes('Position',[.5 .5 .5 .3]);
sphere
set(h,'Visible','off')

Each sphere is defined by the same data. However, because the parent
axes occupy regions of different size and location, the spheres appear to be
different sizes and shapes.

10-17

10 Using Axes Properties

Individual Axis Control

In this section...

“Properties Controlling Axis Limits” on page 10-18

“Setting Axis Limits” on page 10-19

“Setting Tick Mark Locations” on page 10-20

“Changing Axis Direction” on page 10-22

Properties Controlling Axis Limits
The MATLAB software automatically determines axis limits, tick mark
placement, and tick mark labels whenever you create a graph. However, you
can specify these values manually by setting the appropriate property.

When you specify a value for a property controlled by a mode (e.g., the XLim
property has an associated XLimMode property), MATLAB sets the mode to
manual, enabling you to override automatic specification. Because the default
values for these mode properties are automatic, calling high-level functions
such as plot or surf resets these modes to auto.

This section discusses the following properties.

Property Purpose

XLim,YLim,ZLim Sets the axis range

XLimMode,

YLimMode,

ZLimMode

Specifies whether axis limits are determined
automatically by MATLAB or specified
manually by the user

XTick,

YTick,

ZTick

Sets the location of the tick marks along the
axis

10-18

Individual Axis Control

Property Purpose

XTickMode,

YTickMode,

ZTickMode

Specifies whether tick mark locations are
determined automatically by MATLAB or
specified manually by the user

XTickLabel,

YTickLabel,

ZTickLabel

Specifies the labels for the axis tick marks

XTickLabelMode

YTickLabelMode

ZTickLabelMode

Specifies whether tick mark labels are
determined automatically by MATLAB or
specified manually by the user

XDir,YDir,ZDir Sets the direction of increasing axis values

Setting Axis Limits
MATLAB determines the limits automatically for each axis based on the
range of the data. You can override the selected limits by specifying the XLim,
YLim, or ZLim property. For example, consider a plot of the function Ae-αt

evaluated with A = 0.25, α = 0.05, and t = 0 to 900.

t = 0:900;
plot(t,0.25*exp(-0.05*t))

The plot on the left shows the results. MATLAB selects axis limits that
encompass the range of data in both x and y. However, because the plot
contains little information beyond t = 100, changing the x-axis limits improves
the usefulness of the plot. If the handle of the axes is axes_handle, then the
following statement,

set(axes_handle,'XLim',[0 100])

creates the plot on the right.

10-19

../ref/axes_props.html#XLim
../ref/axes_props.html#YLim
../ref/axes_props.html#ZLim

10 Using Axes Properties

You can use the axis command to set limits on the current axes only.

Semiautomatic Limits
You can specify either the minimum or maximum value for an axis limit and
allow the other limit to autorange. Do this by setting an explicit value for the
manual limit and Inf for the automatic limit. For example, the statement

set(axes_handle,'XLim',[0 Inf])

allows MATLAB to determine the maximum x-limit value based on XData.
Similarly, the statement

set(axes_handle,'XLim',[-Inf 800])

allows MATLAB to determine the minimum x-limit value based on XData.

Setting Tick Mark Locations
MATLAB selects the tick mark location based on the data range to produce
equally spaced ticks (for linear graphs). You can specify alternative locations
for the tick marks by setting the XTick, YTick, and ZTick properties.

For example, if the value 0.075 is of interest for the amplitude of the function
Ae-αt, specify tick marks to include that value.

set(gca,'YTick',[0 0.05 0.075 0.1 0.15 0.2 0.25])

10-20

../ref/axes_props.html#XTick
../ref/axes_props.html#YTick
../ref/axes_props.html#ZTick

Individual Axis Control

0 20 40 60 80 100
0

0.05

0.075

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time μsec.

You can change tick labeling from numbers to strings using the XTickLabel,
YTickLabel, and ZTickLabel properties.

For example, to label the y-axis value of 0.075 with the string Cutoff, you
can specify all y-axis labels as a string, separating each label with the “|”
character.

set(gca,'YTickLabel','0|0.05|Cutoff|0.1|0.15|0.2|0.25')

10-21

../ref/axes_props.html#XTickLabel
../ref/axes_props.html#YTickLabel
../ref/axes_props.html#ZTickLabel

10 Using Axes Properties

0 20 40 60 80 100
0

0.05

Cutoff

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time μsec.

Changing Axis Direction
The XDir, YDir, and ZDir properties control the direction of increasing values
on the respective axis. In the default 2-D view, the x-axis values increase from
left to right and the y-axis values increase from bottom to top. The z-axis
points out of the screen.

You can change the direction of increasing values by setting the associated
property to reverse. For example, setting XDir to reverse,

set(gca,'XDir','reverse')

produces a plot whose x-axis decreases from left to right.

10-22

../ref/axes_props.html#XDir
../ref/axes_props.html#YDir
../ref/axes_props.html#ZDir

Individual Axis Control

050100150200
0

10

20

30

40

50

60

70

80

90

100

Years Ago

P
er

ce
nt

 o
f T

od
ay

’s
 R

at
e

Frog Road Kills

In the 3-D view, the y-axis increases from front to back and the z-axis
increases from bottom to top.

0

0.5

1

0

0.5

1
0

0.5

1

Increasing Values →

Normal Axis Direction

← Increasing Values

In
cr

ea
si

ng
 V

al
ue

s
→

Setting the x-, y-, and z-directions to reverse,

10-23

10 Using Axes Properties

set(gca,'XDir','rev','YDir','rev','ZDir','rev')

yields

0

0.5

1

0

0.5

1

0

0.5

1

← Increasing Values

Reverse Axis Direction

Increasing Values →

←
 In

cr
ea

si
ng

 V
al

ue
s

10-24

Using Multiple X- and Y-Axes

Using Multiple X- and Y-Axes

In this section...

“Introduction” on page 10-25

“Example — Double Axis Graphs” on page 10-25

Introduction
The XAxisLocation and YAxisLocation properties specify on which side
of the graph to place the x- and y-axes. You can create graphs with two
different x-axes and y-axes by superimposing two axes objects and using
XAxisLocation and YAxisLocation to position each axis on a different side of
the graph. This technique is useful to plot different sets of data with different
scaling in the same graph.

Example — Double Axis Graphs
This example creates a graph to display two separate sets of data using the
bottom and left sides as the x- and y-axis for one, and the top and right sides
as the x- and y-axis for the other.

Suppose you have two sets of data having different x- and y-ranges:

x1 = [0:.1:40];
y1 = 4.*cos(x1)./(x1+2);
x2 = [1:.2:20];
y2 = x2.^2./x2.^3;

Using low-level line and axes routines allows you to superimpose objects
easily. Plot the first data, making the color of the line and the corresponding
x- and y-axis the same to more easily associate them.

hl1 = line(x1,y1,'Color','r');
ax1 = gca;
set(ax1,'XColor','r','YColor','r')

Next, create another axes at the same location as the first, placing the x-axis
on top and the y-axis on the right. Set the axes Color to none to allow the
first axes to be visible and color code the x- and y-axis to match the data.

10-25

../ref/axes_props.html#XAxisLocation
../ref/axes_props.html#YAxisLocation

10 Using Axes Properties

ax2 = axes('Position',get(ax1,'Position'),...
'XAxisLocation','top',...
'YAxisLocation','right',...
'Color','none',...
'XColor','k','YColor','k');

Draw the second set of data in the same color as the x- and y-axis.

hl2 = line(x2,y2,'Color','k','Parent',ax2);

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Creating Coincident Grids
Since the two axes are completely independent, the MATLAB software
determines tick mark locations according to the data plotted in each. It is
unlikely the gridlines will coincide. This produces a somewhat confusing
looking graph, even though the two grids are drawn in different colors.
However, if you manually specify tick mark locations, you can make the grids
coincide.

10-26

Using Multiple X- and Y-Axes

The key is to specify the same number of tick marks along corresponding axis
lines (it is also necessary for both axes to be the same size). The following
graph of the same data uses six tick marks per axis, equally spaced within
the original limits. To calculate the tick mark locations, obtain the limits of
each axis and calculate an increment.

xlimits = get(ax1,'XLim');
ylimits = get(ax1,'YLim');
xinc = (xlimits(2)-xlimits(1))/5;
yinc = (ylimits(2)-ylimits(1))/5;

Now set the tick mark locations.

set(ax1,'XTick',[xlimits(1):xinc:xlimits(2)],...
'YTick',[ylimits(1):yinc:ylimits(2)])

Perform this calculation and set the axis limits for both axes. The resulting
graph is visually simpler, even though the y-axis on the left has rather odd
tick mark values.

10-27

10 Using Axes Properties

0 8 16 24 32 40
−1

−0.4

0.2

0.8

1.4

2
0 4 8 12 16 20

0

0.2

0.4

0.6

0.8

1

If your data shares an x-axis, you can also use the plotyy function. For
more information on linking axes or properties, see linkaxes or linkprop,
respectively.

10-28

Automatic-Mode Properties

Automatic-Mode Properties
While object creation routines that create axes children do not explicitly
change axes properties, some axes properties are under automatic control
when their associated mode property is set to auto (which is the default). The
following table lists the automatic-mode properties.

Mode Property What It Controls

CameraPositionMode Positioning of the viewpoint

CameraTargetMode Positioning of the camera target in the axes

CameraUpVectorMode The direction of “up” in 2-D and 3-D views

CameraViewAngleMode The size of the projected scene and stretch-to-fit behavior

CLimMode Mapping of data values to colors

DataAspectRatioMode Relative scaling of data units along x-, y-, and z-axes and
stretch-to-fit behavior

PlotBoxAspectRatioMode Relative scaling of plot box along x-, y-, and z-axes and
stretch-to-fit behavior

TickDirMode Direction of axis tick marks (in for 2-D, out for 3-D)

XLimMode

YLimMode

ZLimMode

Limits of the respective x, y, and z axes

XTickMode

YTickMode

ZTickMode

Tick mark spacing along the respective x-, y-, and z-axes

XTickLabelMode

ZTickLabelMode

YTickLabelMode

Tick mark labels along the respective x-, y-, and z-axes

For example, if all property values are set to their defaults and you enter
these statements,

line(1:10,1:10)

10-29

../ref/axes_props.html#CameraPositionMode
../ref/axes_props.html#CameraTargetMode
../ref/axes_props.html#CameraUpVectorMode
../ref/axes_props.html#CameraViewAngleMode
../ref/axes_props.html#CLimMode
../ref/axes_props.html#DataAspectRatioMode
../ref/axes_props.html#PlotBoxAspectRatioMode
../ref/axes_props.html#TickDirMode
../ref/axes_props.html#XLimMode
../ref/axes_props.html#YLimMode
../ref/axes_props.html#ZLimMode
../ref/axes_props.html#XTickMode
../ref/axes_props.html#YTickMode
../ref/axes_props.html#ZTickMode
../ref/axes_props.html#XTickLabelMode
../ref/axes_props.html#ZTickLabelMode
../ref/axes_props.html#YTickLabelMode

10 Using Axes Properties

line(1:10,[1:10].^2)

the second line statement causes the YLim property to change from [0 10]
to [0 100].

This is because YLimMode is auto, which always causes the MATLAB software
to recompute the axis limits.

If you set the value controlled by an automatic-mode property, MATLAB sets
the mode to manual and does not automatically recompute the value.

For example, in the statements

line(1:10,1:10)
set(gca,'XLim',[1 10],'YLim',[1 20])
line(1:10,[1:10].^2)

the set statement sets the x- and y-axis limits and changes the XLimMode and
YLimMode properties to manual. The second line statement now draws a
line that is clipped to the axis limits [1 12] instead of causing the axes to
recompute its limits.

10-30

Automatic-Mode Properties

10-31

10 Using Axes Properties

Colors Controlled by Axes

In this section...

“Introduction” on page 10-32

“Specifying Axes Colors” on page 10-32

Introduction
Axes properties specify the color of the axis lines, tick marks, labels, and the
background. Properties also control the colors of the lines drawn by plotting
routines and how image, patch, and surface objects obtain colors from the
figure colormap.

The axes properties discussed in this section are listed in the following table.

Property Characteristic it Controls

Color Axes background color

XColor, YColor,
ZColor

Color of the axis lines, tick marks, gridlines, and
labels

Title Title text object handles

XLabel, YLabel,
Zlabel

Axis label text object handles

CLim Controls mapping of graphic object CData to the
figure colormap

CLimMode Automatic or manual control of CLim property

ColorOrder Line color autocycle order

LineStyleOrder Line styles autocycle order (not a color, but related
to ColorOrder)

Specifying Axes Colors
The default axes background color is set up by the colordef command, which
is called in your startup file. However, you can easily define your own color
scheme.

10-32

Colors Controlled by Axes

Changing the Color Scheme
Suppose you want an axes to use a “black-on-white” color scheme. First,
change the background to white and the axis lines, grid, tick marks, and tick
mark labels to black.

set(gca,'Color','w',...
'XColor','k',...
'YColor','k',...
'ZColor','k')

Next, change the color of the text objects used for the title and axis labels.

set(get(gca,'Title'),'Color','k')
set(get(gca,'XLabel'),'Color','k')
set(get(gca,'YLabel'),'Color','k')
set(get(gca,'ZLabel'),'Color','k')

Changing the figure background color to white completes the new color
scheme.

set(gcf,'Color','w')

When you are done, a figure containing a mesh plot looks like the following
figure.

10-33

10 Using Axes Properties

You can define default values for the appropriate properties and put these
definitions in your startup.m file. Titles and axis labels are text objects, so
you must set a default color for all text objects, which is a good idea anyway
because the default text color of white is not visible on the white background.
Lines created with the low-level line function (but not the plotting routines)
also have a default color of white, so you should change the default line color
as well.

10-34

Colors Controlled by Axes

To set default values on the root level, use

set(0,'DefaultFigureColor','w'
'DefaultAxesColor','w',...
'DefaultAxesXColor','k',...
'DefaultAxesYColor','k',...
'DefaultAxesZColor','k',...
'DefaultTextColor','k',...
'DefaultLineColor','k')

The MATLAB software colors other axes children (i.e., image, patch, and
surface objects) according to the values of their CData properties and the
figure colormap.

10-35

10 Using Axes Properties

Axes Color Limits — the CLim Property

In this section...

“Introduction” on page 10-36

“Simulating Multiple Colormaps in a Figure” on page 10-37

“Complete Example Code” on page 10-37

“Calculating Color Limits” on page 10-38

Introduction
Many 3-D plotting functions produce graphs that use color as another data
dimension. For example, surface plots map surface height to color. The color
limits control the limits of the color dimension in a way analogous to setting
axis limits.

The axes CLim property controls the mapping of image, patch, and surface
CData to the figure colormap. CLim is a two-element vector [cmin cmax]
specifying the CData value to map to the first color in the colormap (cmin) and
the CData value to map to the last color in the colormap (cmax). Data values
in between are linearly transformed from the second to the penultimate color,
using the expression

colormap_index = fix((CData-cmin)/(cmax-cmin)*cm_length)+1

cm_length is the length of the colormap. When the axes CLimMode property
is auto, the MATLAB software sets CLim to the range of the CData of all
graphics objects within the axes. However, you can set CLim to span any
range of values. This enables individual axes within a single figure to use
different portions of the figure’s colormap. You can create colormaps with
different regions, each used by a different axes.

See the caxis command for more information on color limits.

See “Introduction” on page 10-36 for an example that calculates color limits.

10-36

../ref/axes_props.html#CLim

Axes Color Limits — the CLim Property

Simulating Multiple Colormaps in a Figure
Suppose you want to display two different images in the same figure. Images
typically have their own colormaps, but you can specify only one colormap per
figure. The solution is to concatenate the two colormaps and then setting the
CLim property of each axes so that the two images map into different portions
of the colormap.

This example displays two images in one figure and maps the data in each
image to the appropriate sections of the colormap, which has been created
by concatenating the two colormaps together. The colorbar below the two
images shows the entire colormap.

Complete Example Code
If you are using the MATLAB Help browser, you can:

10-37

10 Using Axes Properties

• Run example

• Open the file in the editor

Calculating Color Limits
The key to this example is calculating values for CLim that cause each surface
to use the section of the colormap containing the appropriate colors.

To calculate the new values for CLim, you need to know

• The total length of the colormap (CmLength)

• The beginning colormap slot to use for each axes (BeginSlot)

• The ending colormap slot to use for each axes (EndSlot)

• The minimum and maximum CData values of the graphic objects contained
in the axes. That is, the values of the axes CLim property determined by
MATLAB when CLimMode is auto (CDmin and CDmax).

First, define subplot regions and plot the surfaces.

im1 = load('cape.mat');
im2 = load('flujet.mat');
ax1 = subplot(1,2,1);
imagesc(im1.X)
axis(ax1,'image')
ax2 = subplot(1,2,2);
imagesc(im2.X)
axis(ax2,'image')

Concatenate two colormaps and install the new colormap.

colormap([im1.map;im2.map])

Obtain the data you need to calculate new values for CLim.

CmLength = length(colormap); % Colormap length
BeginSlot1 = 1; % Beginning slot
EndSlot1 = length(im1.map); % Ending slot
BeginSlot2 = EndSlot1 + 1;
EndSlot2 = CmLength;

10-38

Axes Color Limits — the CLim Property

CLim1 = get(ax1,'CLim'); % CLim values for each axis
CLim2 = get(ax2,'CLim');

Defining a Function to Calculate CLim Values
Computing new values for CLim involves determining the portion of the
colormap you want each axes to use relative to the total colormap size and
scaling its Clim range accordingly. You can define a MATLAB function to
do this.

function CLim = newclim(BeginSlot,EndSlot,CDmin,CDmax,CmLength)
% Convert slot number and range
% to percent of colormap
PBeginSlot = (BeginSlot - 1) / (CmLength - 1);
PEndSlot = (EndSlot - 1) / (CmLength - 1);
PCmRange = PEndSlot - PBeginSlot;
% Determine range and min and max
% of new CLim values
DataRange = CDmax - CDmin;
ClimRange = DataRange / PCmRange;
NewCmin = CDmin - (PBeginSlot * ClimRange);
NewCmax = CDmax + (1 - PEndSlot) * ClimRange;
CLim = [NewCmin,NewCmax];

end

The input arguments are identified in the bulleted list above. The function
first computes the percentage of the total colormap you want to use for a
particular axes (PCmRange) and then computes the CLim range required to use
that portion of the colormap given the CData range in the axes. Finally, it
determines the minimum and maximum values required for the calculated
CLim range and returns these values. These values are the color limits for
the given axes.

Using the Function
Use the newclim function to set the CLim values of each axes. The statement

set(ax1,'CLim',newclim(BeginSlot1,EndSlot1,CLim1(1),...
CLim1(2),CmLength))

10-39

10 Using Axes Properties

sets the CLim values for the first axes so the surface uses color slots 65 to 120.
The lit surface uses the lower 64 slots. You need to reset its CLim values
as well.

set(ax2,'CLim',newclim(BeginSlot2,EndSlot2,CLim2(1),...
CLim2(2),CmLength))

How the Function Works
MATLAB enables you to specify any values for the axes CLim property, even if
these values do not correspond to the CData of the graphics objects displayed
in the axes. The minimum CLim value is always mapped to the first color in
the colormap and the maximum CLim value is always mapped to the last
color in the colormap, whether or not there are really any CData values
corresponding to these colors. Therefore, if you specify values for CLim that
extend beyond the object’s actual CData minimum or maximum, MATLAB
colors the object with only a subset of the colormap.

The newclim function computes values for CLim that map the graphics
object’s actual CData values to the beginning and ending colormap slots
that you specify. It does this by defining a “virtual” graphics object having
the computed CLim values.

10-40

Defining the Color of Lines for Plotting

Defining the Color of Lines for Plotting

In this section...

“Introduction” on page 10-41

“Defining Your Own ColorOrder” on page 10-41

“Line Styles Used for Plotting — LineStyleOrder” on page 10-43

Introduction
The axes ColorOrder property determines the color of the individual lines
drawn by the plot and plot3 functions. For multiline graphs, these functions
cycle through the colors defined by ColorOrder, repeating the cycle when
they reach the end of the list.

The colordef command defines various color order schemes for different
background colors. colordef is typically called in the matlabrc file, which is
executed during the MATLAB software startup.

Defining Your Own ColorOrder
You can redefine ColorOrder to be any m-by-3 matrix of RGB values, where
m is the number of colors. However, high-level functions like plot and plot3
reset most axes properties (including ColorOrder) to the defaults each time
you call them. To use your own ColorOrder definition you must do one of
the following three things:

• Define a default ColorOrder on the figure or root level

• Change the axes NextPlot property to add or replacechildren

• Use the informal form of the line function, which obeys the ColorOrder
but does not clear the axes or reset properties

Changing the Default ColorOrder
You can define a new ColorOrder that MATLAB uses within a particular
figure, for all axes within any figures created during the MATLAB session, or
as a user-defined default that MATLAB always uses.

10-41

../ref/axes_props.html#ColorOrder

10 Using Axes Properties

To change the ColorOrder for all plots in the current figure, set a default in
that figure. For example, to set ColorOrder to the colors red, green, and
blue, use the statement

set(gcf,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB uses for all plotting during your
entire MATLAB session, set a default on the root level so axes created in
any figure use your defaults.

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB always uses, place the previous
statement in your startup.m file.

Setting the NextPlot Property
The axes NextPlot property determines how high-level graphics functions
draw into an existing axes. You can use this property to prevent plot and
plot3 from resetting the ColorOrder property each time you call them, but
still clear the axes of any existing plots.

By default, NextPlot is set to replace, which is equivalent to a cla reset
command (i.e., delete all axes children and reset all properties, except
Position, to their defaults). If you set NextPlot to replacechildren,

set(gca,'NextPlot','replacechildren')

MATLAB deletes the axes children, but does not reset axes properties. This is
equivalent to a cla command without the reset.

After setting NextPlot to replacechildren, you can redefine the ColorOrder
property and call plot and plot3 without affecting the ColorOrder.

Setting NextPlot to add is the equivalent of issuing the hold on command.
This setting prevents MATLAB from resetting the ColorOrder property, but
it does not clear the axes children with each call to a plotting function.

10-42

Defining the Color of Lines for Plotting

Using the line Function
The behavior of the line function depends on its calling syntax. When you use
the informal form (which does not include any explicit property definitions),

line(x,y,z)

line obeys the ColorOrder property, but does not clear the axes with each
invocation or change the view to 3-D (as plot3 does). However, line can be
useful for creating your own plotting functions where you do not want the
automatic behavior of plot or plot3, but you do want multiline graphs to
use a particular ColorOrder.

Line Styles Used for Plotting — LineStyleOrder
The axes LineStyleOrder property is analogous to the ColorOrder property.
It specifies the line styles to use for multiline plots created with the plot and
plot3 functions. MATLAB increments the line style only after using all of the
colors in the ColorOrder property. It then uses all the colors again with the
second line style, and so on.

For example, define a default ColorOrder of red, green, and blue and a default
LineStyleOrder of solid, dashed, and dotted lines.

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...
'DefaultAxesLineStyleOrder','-|--|:')

Then plot some multiline data.

t = 0:pi/20:2*pi;
a = ones(length(t),9);
for i = 1:9

a(:,i) = sin(t-i/5)';
end
plot(t,a)

10-43

../ref/axes_props.html#LineStyleOrder

10 Using Axes Properties

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MATLAB cycles through all colors for each line style.

10-44

Index

IndexA
ActivePositionProperty property 10-9
adding data to axes 1-27
animation 5-86

by changing axis data 5-88
movies 5-87

annotating graphs 3-1
adding a title 3-33
adding labels 3-38
adding text 3-45
deleting annotations 8-26
how to 3-2

annotation
adding to plots 3-1

annotations, pinning to axes 3-69
area 5-2 5-21 to 5-22
area graphs 5-2 5-21
arrays, storing images 6-2
arrows

adding to a graph 3-66
aspect ratio of figures 7-48

See also printing
axes

adding labels 3-38
adding text 3-48
aspect ratio

2-D 4-34
automatic modes 10-29
axis control 10-18
axis direction 10-22
CLim property 10-36
color limits 10-36
ColorOrder property 10-41
colors 10-32
cutting and copying 1-64
individual axis control 10-18
labeling 3-42
labels

font properties 10-4
using TeX characters 3-54

locking position 1-67
making grids coincident 10-26
multiaxis 10-25
multiple 4-2 10-15
NextPlot property 8-74
overlapping 10-15
pasting 1-64
positioning 10-6 10-17
preparing to accept graphics 8-74
properties

for labeling 10-3
protecting from output 8-80
scaling

independent 10-16
setting

limits 10-19
line styles used for plotting 10-43

setting limits 4-29
standard plotting behavior 8-78
target for graphics 4-5
tick marks 4-31

locating 10-20
units 10-8
unlocking position 1-67
with two x- and y-axes 10-25

axis 6-4
equal 4-35
illustrated examples, 2-D 4-35
image 6-25
square 4-34
tight 4-35

axis labels, rotating 3-41

B
background color, of text 3-64
bar 5-2 to 5-3
bar graphs 5-2 5-21

3-D 5-4
coloring 2-D bars by height 5-6

Index-1

Index

coloring 3-D bars by height 5-10
grouped

2-D 5-3
3-D 5-5

horizontal 5-14
labeling 5-5 5-14
overlaid with bar graphs 5-16
overlaid with plots 5-17
stacked 5-12

bar3 5-2 5-4
bar3h 5-2
barh 5-2
binary images 6-7
bins, specifying for histogram 5-36
BMP 6-4
buttons on toolbar 3-66

C
callbacks

function handles used for 8-113
using function handles for 8-113

CData property
images 6-27

CDataMapping property
images 6-28

cla 8-75
clabel 5-61 5-63
clf 8-75
close 8-83
close request function

default 8-83
closereq.m 8-83
CloseRequestFcn property 8-83

default value 8-83
errors in 8-84
overriding 8-85

closing figures 8-83
closing MATLAB, errors occurring when 8-84
code, saving a graph as 1-73

color limits, calculating 10-38
colorbars

adding to graphs 3-15
labeling ticks 3-16
positioning 3-16

colordef 4-5
colormaps

selection of 3-19
shifting interactively 3-19
simulating multiple 10-37

ColorOrder 10-41
colors

changing color scheme 10-33
controlled by axes 10-32
mapping to data 10-36
specifying figure colors 4-5
used for plotting 10-41

compass 5-51
compass plots 5-52
complex numbers, plotting 4-23

with feather 5-55
containers for graphics objects 8-92
contour 5-60
contour plots 5-60

algorithm 5-73
changing offsets in 5-76
data preparation 5-80
filled 5-65
filtering noisy data for 5-81
in polar coordinates 5-77
indexing contours 5-70
labeling 5-63
specifying contour levels 5-66

contour3 5-60
contourc 5-60 5-73
contourf 5-60

using 5-65
contouring algorithm

explained 5-73
visualizing 5-67

Index-2

Index

converting the data class of an indexed
image 6-11

copying
figures 1-71 to 1-72
options 1-72

copying graphics objects 8-68
current

axes 8-62
figure 8-62
object 8-62

current figure 8-7
cursors. See pointers

D
data cursor 2-10
data sources

and animation 5-88
data tips 2-10 2-20

See also data cursor
data types

8-bit integers 6-3
double-precision 6-3

DataAspectRatio property
images 6-25

datatips
for histograms 5-38

default
aspect ratio

of figure windows 7-48
CloseRequestFcn 8-83
factory 8-53
figure color scheme 4-5
property values 8-54 8-60

removing 8-56
search path, diagram 8-55
setting to factory defaults 8-57

default line styles, setting and removing 4-18
deleting graphics objects 8-70
deselecting objects 1-64

discrete data graphs 5-40 5-49
stairstep plots 5-48
stem plots 5-40

double
converting image data to double 6-37
converting to uint16 6-11
converting to uint8 6-12
converting to uint8 or uint16 6-11

double buffering 9-14

E
editing plots 1-59

interactively 1-61
efficient programming 8-87 8-89
ending plot edit mode 1-62
errors closing MATLAB 8-84
examples

area graphs 5-21
bar graphs 5-3
contour plots 5-60
copying graphics objects 8-68
custom pointers 9-19
direction and velocity graphs 5-51
discrete data graphs 5-40
double axis graphs 10-25
finding object handles 8-64
hold 8-80
LaTeX equations 3-60
line 8-77
movies 5-87
multiline text 3-59
newplot 8-77
object creation functions 8-14
overlapping axes 10-15
pie charts 5-28
plot 4-9

complex data 4-23
plotting line styles 10-43
ScreenSize property 9-9

Index-3

Index

setting default property values 8-57
simulating multiple colormaps 10-37
specifying figure position 9-9
subplot 4-2
text 3-46

exporting
Enhanced Metafiles 7-85
using getframe 7-29

exporting figures 1-71
Adobe Illustrator 7-87
EPS files 7-85
formats

choosing a format 7-77
MATLAB and GhostScript 7-79
vector or bitmap 7-79

JPEG files 7-87
LaTeX

importing example 7-31
lighting 7-82
publication quality 7-85
TIFF files 7-86
transparency 7-82

extent of computer screen 9-8

F
factory defaults 8-53
feather 5-51 5-53
feather plots 5-53
figure

colormap 9-12
palette 1-19
toolbar 1-5

figure coordinates, for annotations 3-69
figure files 1-70 to 1-71
figures

CloseRequestFcn 8-83
closing 8-83
copying 1-71 to 1-72
defining custom pointers 9-18

defining pointers 9-17
defining the color of 4-5
exporting 1-71
for plotting 4-2
introduction to 9-2
NextPlot property 8-74
opening 1-71
positioning 9-6
positioning example 9-9
preparing to accept graphics 8-74
printing

default figure size for printing 7-48
protecting from output 8-80
rendering properties 9-14
saving 1-70
saving to other formats 1-71
specifying pointers 9-17
standard plotting behavior 8-78
units 9-8
visible property 8-83
with multiple axes 4-2

files
exporting 1-71
figure .fig 1-70
formats for figures 1-71
opening 1-71
printing 1-72
saving 1-70
to set color mapping 10-39
writing efficient 8-87

fill, properties changed by 8-89
fill3, properties changed by 8-89
findobj 8-63
fonts

axis labels 10-4
formats for figures 1-71
function

basic structure of graphics 8-78
function handles

Handle Graphics callbacks 8-113

Index-4

Index

functions
closereq 8-83
convenience forms 8-17
high-level vs. low-level 8-17

G
gca 8-62

handle visibility 8-82
gcf 8-62

handle visibility 8-82
gco 8-62
get 8-48
getframe 5-87
GIF 6-4
GIF graphic file format 7-86
ginput 5-84
gradient 5-56
graphical input 5-84
graphics

improving performance of 8-122
graphics file formats

list of formats supported by MATLAB 6-4
graphics function

structure of 8-78
graphics images 6-19

16-bit
intensity 6-11

8-bit
intensity 6-11
RGB 6-11

converting from one format to another 6-37
converting to RGB 6-37
reading from file 6-19
writing to file 6-19
See also BMP, HDF, JPG, PCX, PNG, TIFF,

XWD
graphics objects

accessing handles 8-61
accessing hidden handles 8-82

axes 8-13
controlling where they draw 8-72
copying 8-68
deleting 8-70
function handle callbacks 8-113
functions that create

convenience forms 8-17
handle validity versus visibility 8-82
HandleVisibility property 8-80
images 8-13
invisible handles 8-80
lights 8-13
line 8-13
patches 8-14
properties 8-44

changed by functions 8-89
changed when created 8-15
common to all objects 8-46
factory defined 8-53
getting current values 8-50
listing possible values 8-49
querying in groups 8-52
search path for default values 8-54
searching for 8-63
setting values 8-48

property names 8-18
rectangle 8-14
setting parent of 8-16
surface 8-14
text 8-14

graphs
2–D types 1-6
3-D types 1-8
annotating 3-2
area 5-21 5-26
bar 5-2 5-21

horizontal 5-14
compass plots 5-52
contour plots 5-60 5-79
direction and velocity 5-51 5-58

Index-5

Index

discrete data 5-40 5-49
feather plots 5-53
generating code for 1-73
histograms 5-33 5-37
labeling 3-1
pie charts 5-28 5-31
quiver plots 5-55
stairstep plots 5-48
with double axes 10-25

grayscale 6-21
See also intensity images

Greek characters 3-54
using to annotate 3-43
See also text function

grids, coincident 10-26
gtext

annotating a graph with 5-26

H
handles to graphics objects 8-61

finding 8-63
handles, saving in files 8-87
HandleVisibility property 8-80
HDF 6-4
high-level functions 8-17
hist 5-33
histograms 5-33

in polar coordinates 5-35
labeling the bins 5-36
specifying number of bins 5-36
types of 5-33

hold 4-14
and NextPlot 8-75
testing state of 8-79

hold state, testing for 8-79
HorizontalAlignment property 3-51

I
image 6-4 6-24

properties changed by 8-90
image types

binary 6-7
images 6-11

16-bit 6-10
indexed 6-10

8-bit 6-10
indexed 6-10

data types 6-3
indexed 6-5
information about files 6-21
intensity 6-7
numeric classes 6-4
printing 6-36
properties 6-27

CData 6-27
CDataMapping 6-28
XData and YData 6-28

RGB 6-8
size and aspect ratio 6-24
storing in MATLAB 6-2
truecolor 6-8
types 6-5
See also graphics images

imagesc 6-4 6-7
imfinfo 6-4 6-21
imread 6-4 6-19
imwrite 6-4 6-19
ind2rgb 6-37
indexed images

converting the data class of 6-11
indirgb 6-4
intensity images

converting the data class of 6-11
interpreter property 3-56
ishold 8-79

Index-6

Index

J
JPEG 6-4

L
labeling

axes 3-38
labeling graphs 3-1 3-38
LaTeX

for math equations 3-60
. See TeX

legend 5-44
limits

axes 4-29 10-19
line styles

used for plotting 4-12
redefining 10-43

lines
adding as annotations 3-66
adding to existing graph 4-14
marker types 4-12
styles 4-12

LineStyleOrder property 10-43
locking axes position 1-67
loglog, properties changed by 8-90
low-level functions 8-17

M
mapping data to color 10-36
markers used for plotting 4-12
MATLAB

2–D plot types 1-6
3-D plot types 1-8

MATLAB 4 color scheme 4-6
MATLAB, quitting 8-84
matrix

displaying contours 5-62
plotting 4-20
representing as

area graph 5-21
bar graph 5-4
histogram 5-34

storing images 6-2
meshc 5-76
mouse scrollwheel

callback example 2-4
movie 5-87 to 5-88
movies 5-87

example 5-87
moving

objects 1-67
multiaxis axes 10-25
multiline text 3-59

N
newplot 8-75

example using 8-77
NextPlot property 8-74

add 8-74
new 8-74
replace 8-75
replacechildren 8-75 8-79
setting plotting color order 10-42

O
open 1-71
OpenGL 9-15 to 9-16

printing 7-59
opening figures 1-71
options for copying 1-72
organization of Handle Graphics 8-3
orient

example 7-55
OuterPosition property 10-9

P
painters algorithm 9-15

Index-7

Index

pan
using 2-29

panels
contained in figures 8-93

panning on figures 2-29
paper type

setting from the command line 7-53
paper type for printing

setting from the command line 7-53
PaperPosition property

example 7-51
PaperType property

example 7-53
parent, of graphics object 8-16
PCX 6-4
pie charts 5-28

labeling 5-29
offsetting a slice 5-28
removing a piece 5-31

plot 4-9
properties changed by 8-90

plot browser 1-24
Plot Catalog 1-22
plot edit mode

overview 1-61
selecting objects 1-63
starting and ending 1-62

plot edit toolbar 3-3
plot objects

cutting and copying 1-64
pasting 1-64

plot3
properties changed by 8-90

plotedit 1-62
plots

2–D catalog 1-6
3-D catalog 1-8
editing 1-59

plotting
adding to existing graph 4-14

annotating graphs 3-1
area graphs 5-21
bar graphs 5-2
compass plots 5-52
complex data 4-23
contour plots 5-60
contours, labeling 5-63
creating a plot 4-9
data-point markers 4-12
elementary functions for 4-7
feather plots 5-53
interactive 5-84
line colors 10-41
line styles 4-12
matrices 4-20
multiple bar graphs 5-16
multiple graphs 4-10
overlaying bar graphs 5-17
quiver plots 5-55
specifying line styles 4-11 10-43
stairstep plots 5-48
stem plots 5-40
to subaxis 4-2
vector data 4-7
windows for 4-2

plotting functions
in MATLAB 1-6

plotting tools 1-11
PNG 6-4

writing as 16-bit using imwrite 6-19
Pointer property 9-18
pointers

custom 9-18
example defining 9-19

specifying 9-17
PointerShapeCData property 9-18
PointerShapeHotSpot property 9-18
polar 5-79
polar coordinates

contour plots 5-77

Index-8

Index

rose plot 5-35
position of figure 9-6
Position property 10-9

axes 10-6
figure 9-6

positioning axes 1-67
positioning of axes 10-6
positioning text on a graph 3-48
preferences 1-72
print preview 1-72
printing

and renderer settings 7-83
aspect ratio 7-48

default 7-48
background color 7-66
figure size

setting from the command line 7-47 7-50
7-98

fonts
supported for HPGL 7-93
supported for PostScript and

GhostScript 7-92
supported for Windows drivers 7-93

images 6-36
MATLAB printer driver

definition 7-89
OpenGL 7-59
paper type

setting from the command line 7-53
PaperType property

example 7-53
PostScript

fonts supported for 7-92
quick start 7-37
rendering methods 7-55
resolution

with painters renderer 9-15
with Z-buffer renderer 9-15

troubleshooting 7-99
Z-buffer 9-15

printing figures 1-72
properties 8-48

automatic axes 10-29
changed by built-in functions 8-89
changed by object creation functions 8-15
defining in startup.m 8-60
for labeling axes 10-3
naming convention 8-18
specifying default values 8-56
See also graphics objects

Property Editor 1-29
property values

defaults 8-54
defined by MATLAB 8-53
getting 8-48
resetting to default 8-56
setting 8-48
specifying defaults 8-56
user defined 8-54

Q
quiver 5-51 5-55
quiver plots 5-55

2-D 5-55
3-D 5-57
combined with contour plot 5-57
displaying velocity vectors 5-58

quiver3 5-51

R
refreshdata

animating plots with 5-88
renderer

choosing 7-55
impact on printing 7-83

Renderer property
and printing 9-15

rendering

Index-9

Index

options 9-14
Z-buffer 9-15

reset 8-75
resizing objects 1-67
RGB

converting to 6-37
images 6-8

converting the data class of 6-11
rose 5-35
rotating 3-D views 2-31
rotating axis labels 3-41

S
saveas 1-71
saving figures 1-70
saving graphs 1-70
screen extent, determining 9-8
ScreenSize property 9-8

example 9-9
selecting multiple objects 1-63
selection

of plot objects 1-63
selection button 1-62
semilogx, properties changed by 8-91
semilogy, properties changed by 8-91
set 8-48
ShowHiddenHandles property 8-82
size of computer screen 9-8
spline 5-84
stairs 5-40 5-49
stairstep plot 5-48
starting plot edit mode 1-62
stem 5-40
stem plots 5-40

3-D 5-45
overlaid with line plot 5-44

stem3 5-40 5-45
string variable, in text 3-58
subplot 4-3

subscripts
in text strings 3-57

superscripts
in text strings 3-57

surfc 5-76
symbols, TeX characters 3-55

T
Tag property use 8-64
TeX

available characters 3-55
creating mathematical symbols 3-54
symbols in text 3-43 3-56

text
adding to axes 3-46 3-54
for labeling plots 3-46
horizontal and vertical alignment 3-51
multiline 3-59
placing dynamically, example 3-52
placing outside of axes 10-15
positioning 3-50
subscripts 3-57
superscripts 3-57
TeX characters 3-56
using variables in 3-58

text annotations 3-8
tick marks, on axes 4-31 10-20
TIFF 6-4
TightInset property 10-10
title

adding to a graph 3-33
toolbar

buttons 3-66

U
uint16 arrays

converting to double 6-11
operations supported on 6-13

Index-10

Index

storing images 6-3
uint8 arrays

converting to double 6-11 to 6-12
operations supported on 6-13
storing images 6-3

uipanels 8-93
undo/redo 1-68 2-34
units

axes 10-8
used by figures 9-8

Units property 10-10
unlocking axes position 1-67
unselecting objects 1-64

V
vectors

displaying velocity 5-58
velocity vectors displayed with quiver 5-58

VerticalAlignment property 3-51
visibility of graphics objects 1-26 8-82

W
WindowScrollWheelFcn

example 2-4

X
XWD 6-4

Z
Z-buffer 9-15

printing 9-15
zoom

using 2-25

Index-11

	toc
	Plots and Plotting Tools
	Figures, Plots, and Graphs
	What Is a MATLAB Graph?
	Anatomy of a Graph
	Figure Toolbars
	Types of MATLAB Plots
	Two-Dimensional Plotting Functions
	Three-Dimensional Plotting Functions
	Choosing a Plot Type Interactively

	Plotting Tools — Interactive Plotting
	What Are Plotting Tools?
	Plotting Tools Interface Overview
	Activating Plotting Tools
	Managing Plotting Tools

	The Figure Palette
	Adding Subplot Axes
	Plotting Workspace Variables
	Drag and Drop Plotting
	The Plot Catalog Tool
	Adding Annotations to Graphs

	The Plot Browser
	Controlling Object Visibility
	Deleting Objects
	Adding Data to Axes

	The Property Editor
	Ways to Display the Property Editor
	Changing Plot Types

	Accessing Object Properties with the Property Inspector
	Getting Help for Object Properties
	Accessing Objects You Cannot Click

	Example — Plotting Workspace Variables
	Identifying Workspace Data to Plot
	Adding a Subplot
	Setting Axis Limits
	Adding Titles and Labels

	Example — Choosing a Graph Type
	Selecting a Graph from the Plot Catalog
	Plotting Expressions

	Example — Specifying a Data Source
	Creating the Graph
	Varying the Data Source
	Data Sources for Multiobject Graphs

	Example — Generating MATLAB Code to Reproduce a Graph
	Create a Stem Plot and Generate Code for It
	Data Arguments
	Limitations

	Editing Plots
	Why Edit Plots?
	Interactive Plot Editing
	Using Functions to Edit Graphs

	Working in Plot Edit Mode
	Figure Windows in Plot Edit Mode
	Starting Plot Edit Mode
	Exiting Plot Edit Mode
	Selecting Objects in a Graph
	Selecting Multiple Objects
	Deselecting Objects

	Cutting, Copying, and Pasting Plot Objects
	Copying and Pasting Multiple Objects
	Copying and Pasting Annotation Objects

	Moving and Resizing Objects
	Setting Object Properties
	Undo/Redo — Eliminating Mistakes

	Saving Your Work
	Saving a Graph in FIG-File Format
	Opening a Figure File

	Saving to a Different Format — Exporting Figures
	Copying a Figure to the Clipboard

	Printing Figures
	Generating a MATLAB File to Recreate a Graph
	Running the Saved File

	Data Exploration Tools
	Ways to Explore Graphical Data
	Introduction
	Types of Tools
	Customizing Data Exploration Tools
	Example — Programming the Mouse Scroll Wheel to Explore Graphics

	Data Cursor — Displaying Data Values Interactively
	What Is a Data Cursor?
	Enabling Data Cursor Mode
	Moving the Marker
	Positioning the Datatip Text Box
	Dragging the Datatip to Different Locations
	Datatips on Image Objects
	Datatips on 3-D Objects
	Creating Multiple Data Tips
	Deleting Datatips
	Customizing Data Cursor Text

	Display Style — Datatip or Cursor Window
	Selection Style — Select Data Points or Interpolate Points on Gr
	Enabling Interpolation Mode

	Exporting Data Value to Workspace Variable

	Enlarging the View
	Zooming in 2-D and 3-D
	Zooming in 2-D Views
	Undoing Zoom Actions
	Zoom Constrained to Horizontal or Vertical
	Zooming in 3-D Views

	Panning — Shifting Your View of the Graph
	Rotate 3D — Interactive Rotation of 3-D Views
	Enabling 3-D Rotation
	Selecting Predefined Views
	Rotation Style for Complex Graphs
	Axes Behavior During Rotation

	Undo/Redo — Eliminating Mistakes

	Annotating Graphs
	How to Annotate Graphs
	Graph Annotation Features
	Annotation Tools on the Plot Edit Toolbar
	Annotation Tools on the Figure Palette
	Adding Annotations from the Insert Menu
	Command Interface
	Removing Annotations

	Enclosing Regions of a Graph in a Rectangle or an Ellipse
	Pinning Rectangles and Ellipses
	Modifying the Rectangle or Ellipse from the Context Menu
	Setting Rectangle and Ellipse Properties

	Textbox Annotations
	Selecting Textbox Objects
	Pinning the Textbox
	Modifying the Textbox from the Context Menu
	Setting Textbox Properties

	Annotation Lines and Arrows
	Inserting a Text Arrow
	Pinning the Arrowhead End
	Modifying the Text Arrow from the Context Menu
	Setting Line and Arrow Properties

	Adding a Colorbar to a Graph
	Positioning Options for Colorbars
	Labeling Colorbar Ticks
	Selecting a Different Colormap
	Modifying the Colormap

	Adding a Legend to a Graph
	Specifying the Text
	Positioning the Legend
	Changing the Appearance of the Legend
	Controlling the Appearance of Grouped Objects on a Legend

	Pinning — Attaching to a Point in the Graph
	Pinning Objects

	Alignment Tool — Aligning and Distributing Objects
	Alignment Tool Functionality
	Example — Vertical Distribute, Horizontal Align
	Align/Distribute Menu Options
	Snap to Grid — Aligning Objects on a Grid

	Adding Titles to Graphs
	What Is a Title?
	Using the Title Option on the Insert Menu
	Using the Property Editor to Add a Title
	Using the title Function

	Adding Axis Labels to Graphs
	What Are Axis Labels?
	Using the Label Options on the Insert Menu
	Using the Property Editor to Add Axis Labels
	Rotating Axis Labels

	Using Axis-Label Commands
	Rotating Axis Labels Using Commands
	Repositioning Axis Labels

	Adding Text Annotations to Graphs
	What Are Text Annotations?
	Creating Text Annotations with the text or gtext Function
	Calculating the Positions of Text Annotations

	Text Alignment
	Example — Aligning Text
	Editing Text Objects
	Mathematical Symbols, Greek Letters, and TeX Characters
	Two Levels of MATLAB TeX Support
	Available Symbols and Greek Letters
	Example — Using a Mathematical Expression to Title a Graph
	Controlling the Interpretation of TeX Characters
	Specifying Text Color in TeX Strings
	Specifying Subscript and Superscript Characters

	Using Character and Numeric Variables in Text
	Text in Character Arrays
	Text in Cell Arrays
	Numeric Variables

	Example — Multiline Text
	Example — Using LaTeX to Format Math Equations
	Drawing Text in a Box

	Adding Arrows and Lines to Graphs
	Creating Arrows and Lines in Plot Editing Mode
	Editing Arrows and Line Annotations

	Positioning Annotations in Data Space
	Example — Pinning Text Arrows and Ellipses
	Anchoring Annotations to Data Points

	Basic Plotting Commands
	Setting Up Figures
	Creating Figure Windows
	Displaying Multiple Plots per Figure
	Specifying the Target Axes
	Default Color Scheme

	Using High-Level Plotting Functions
	Functions for Plotting Line Graphs
	Programmatic Plotting
	Creating Line Plots
	Specifying Line Style
	Colors, Line Styles, and Markers
	Specifying the Color and Size of Lines
	Adding Plots to an Existing Graph
	Plotting Only the Data Points
	Plotting Markers and Lines
	Line Styles for Black and White Output
	Setting Default Line Styles

	Line Plots of Matrix Data
	Plotting Imaginary and Complex Data
	Plotting with Two Y-Axes
	Introduction
	Combining Linear and Logarithmic Axes

	Setting Axis Parameters
	Axis Scaling and Ticks
	Axis Limits and Ticks
	Semiautomatic Limits
	Axis Tick Marks

	Example — Specifying Ticks and Tick Labels
	Setting Line Properties on an Existing Plot

	Setting Aspect Ratio

	Creating Specialized Plots
	Bar and Area Graphs
	Types of Bar Graphs
	Grouped Bar Graph
	Detached 3-D Bars
	Grouped 3-D Bars

	Coloring 2-D Bars According to Height
	Coloring 3-D Bars According to Height
	Stacked Bar Graphs to Show Contributing Amounts
	Redefining Y
	Horizontal Bar Graphs

	Specifying X-Axis Data
	Setting Y-Axis Limits

	Overlaying Bar Graphs
	Overlaying Other Plots on Bar Graphs
	Overlaying a Line Plot on the Bar Graph

	Area Graphs
	Area Graphs Showing Contributing Amounts

	Comparing Data Sets with Area Graphs

	Pie Charts
	Creating a Pie Chart
	Labeling the Pie Chart
	Removing a Piece from a Pie Chart

	Histograms
	Functions for Creating Histograms
	Histograms in Cartesian Coordinates
	Matrix Input Argument

	Histograms in Polar Coordinates
	Specifying Number of Bins
	Using Data Cursors with Histograms

	Discrete Data Graphs
	Functions for Creating Graphs of Discrete Data
	Two-Dimensional Stem Plots
	Customizing the Graph

	Combining Stem Plots with Line Plots
	Three-Dimensional Stem Plots
	Example — 3-D Stem Plot of an FFT
	Label the Graph
	Example — Combining Stem and Line Plots
	Label the Graph

	Stairstep Plots
	Example — Stairstep Plot of a Function

	Direction and Velocity Vector Graphs
	Functions for Graphing Vector Quantities
	Compass Plots
	Example — Compass Plot of Wind Direction and Speed

	Feather Plots
	Plotting Complex Numbers
	Printing the Graph

	Two-Dimensional Quiver Plots
	Three-Dimensional Quiver Plots

	Contour Plots
	Functions for Creating Contour Displays
	Creating Simple Contour Plots
	Contour Plot of the Peaks Function

	Labeling Contours
	Filled Contours
	Specifying Contour Levels
	Drawing a Single Contour
	Example — Visualizing Contour Construction

	Index Contours
	Example — Specifying Index Contours

	The Contouring Algorithm
	Changing the Offset of a Contour
	Displaying Contours in Polar Coordinates
	Contours in Cartesian Coordinates
	Contours on a Polar Axis

	Preparing Data for Contouring
	Example — Smoothing a Matrix for Plotting Contours

	Interactive Plotting
	Example — Selecting Plotting Points from the Screen

	Animation
	Ways to Animate Plots
	Movies
	Example — Visualizing an FFT as a Movie
	Creating the Movie
	Running the Movie
	Movies that Include the Entire Figure

	Updating Plot Object Axis and Color Data
	Updating Graphs with linkdata Versus refreshdata

	Displaying Bit-Mapped Images
	Working with Images in MATLAB Graphics
	What Is Image Data?
	Data Types
	Bit Depth

	Supported Image Formats
	Functions for Reading, Writing, and Displaying Images

	Image Types
	Indexed Images
	Intensity Images
	RGB (Truecolor) Images

	Working with 8-Bit and 16-Bit Images
	8-Bit and 16-Bit Indexed Images
	8-Bit and 16-Bit Intensity Images
	8-Bit and 16-Bit RGB Images
	Mathematical Operations Support for uint8 and uint16
	MATLAB Integer Mathematics

	Other 8-Bit and 16-Bit Array Support
	Converting an 8-Bit RGB Image to Grayscale
	Related Information

	Summary of Image Types and Numeric Classes

	Reading, Writing, and Querying Graphics Image Files
	Working with Image Formats
	Reading a Graphics Image
	Writing a Graphics Image
	Subsetting a Graphics Image (Cropping)
	Obtaining Information About Graphics Files

	Displaying Graphics Images
	Image Types and Display Methods
	Controlling Aspect Ratio and Display Size

	The Image Object and Its Properties
	Image CData
	Image CDataMapping
	XData and YData
	Adding Text to Images
	Additional Techniques for Fast Image Updating

	Printing Images
	Converting the Data or Graphic Type of Images

	Printing and Exporting
	Overview of Printing and Exporting
	Print and Export Operations
	Graphical User Interfaces
	Command Line Interface
	Modifying Properties with set
	Examining Properties with get
	Printing and Exporting with print
	Printing on UNIX Platforms without a Display

	Specifying Parameters and Options
	Default Settings and How to Change Them
	Setting Defaults for a Figure
	Setting Defaults for the Session
	Setting Defaults Across Sessions

	How to Print or Export
	Using Print Preview
	Adding a Header to the Printed Page

	Printing a Figure
	Printing with the Print GUI on Microsoft Windows
	Printing with the Print GUI on UNIX Platforms
	Printing Using PostScript Commands

	Printing to a File
	Printing to a File with the Print GUI on Windows Platforms
	Printing to a File with the Print GUI on UNIX Platforms
	Printing to a File Using MATLAB Commands

	Exporting to a File
	Using the Export Setup GUI
	Adjusting the Figure Size
	Changing the Rendering
	Changing Font Characteristics
	Changing Line Characteristics
	Saving and Loading Settings
	Exporting the Figure
	Exporting Using MATLAB Commands
	Exporting with getframe
	Saving Multiple Figures to an AVI File
	Importing MATLAB Graphics into Other Applications

	Exporting to the Windows or Macintosh Clipboard
	Windows Clipboard Format
	Macintosh Clipboard Format
	Exporting to the Clipboard Using GUIs
	Exporting to the Clipboard Using MATLAB Commands

	Examples of Printing and Exporting
	Printing a Figure at Screen Size
	Using the Graphical User Interface
	Using MATLAB Commands

	Printing with a Specific Paper Size
	Using the Graphical User Interface
	Using MATLAB Commands

	Printing a Centered Figure
	Using the Graphical User Interface
	Using MATLAB Commands

	Exporting in a Specific Graphics Format
	Using the Graphical User Interface
	Using MATLAB Commands

	Exporting in EPS Format with a TIFF Preview
	Exporting a Figure to the Clipboard
	Using the Graphical User Interface
	Using MATLAB Commands

	Changing a Figure's Settings
	Parameters that Affect Printing
	Selecting the Figure
	Using MATLAB Commands

	Selecting the Printer
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Figure Size and Position
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Paper Size or Type
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Paper Orientation
	Using the Graphical User Interface
	Using MATLAB Commands

	Selecting a Renderer
	Supported Renderers
	Hardware vs. Software OpenGL Implementations
	OpenGL Availability
	Selecting Hardware-Accelerated or Software OpenGL
	Determining What Version You Are Using
	OpenGL vs. Other MATLAB Renderers
	If You Are Having Problems
	The Default MATLAB Renderer
	Reasons for Manually Setting the Renderer
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Resolution
	Default Resolution and When You Can Change It
	Choosing a Setting
	Impact of Resolution on Size and Memory Needed
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Axes Ticks and Limits
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Background Color
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting Line and Text Characteristics
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Line and Text Color
	Using the Graphical User Interface
	Using MATLAB Commands

	Specifying a Colorspace for Printing and Exporting
	Using the Windows Graphical User Interface
	Using the Graphical User Interface on UNIX Platforms
	Using MATLAB Commands

	Excluding User Interface Controls form Printed Output
	Using the Graphical User Interface
	Using MATLAB Commands

	Producing Uncropped Figures
	Using MATLAB Commands

	Choosing a Graphics Format
	What Are Graphic Formats?
	Frequently Used Graphics Formats
	Factors to Consider in Choosing a Format
	Built-In MATLAB or Ghostscript Formats
	Choosing Bitmap or Vector Graphic Output
	Bit Depth
	Color Support
	Exporting Simulink Models
	High Resolution or Web Publications

	Properties Affected by Choice of Format
	Font Support
	Resolution
	Importing into the MATLAB Workspace
	Degree of Complexity
	Lighting and Transparency
	Lines and Text
	File Size
	Resizing After Import
	Color

	Impact of Rendering Method on the Output
	Description of Selected Graphics Formats
	Adobe Illustrator 88 Files
	EMF Files
	EPS Files
	TIFF Files
	JPEG Files

	How to Specify a Format for Exporting
	Using the Graphical User Interface
	Using MATLAB Commands

	Choosing a Printer Driver
	What Are Printer Drivers?
	Built-in MATLAB Drivers
	Ghostscript Drivers

	Factors to Consider in Choosing a Driver
	Platform Considerations
	Printer Type
	Color Model
	Font Support
	Settings That Are Driver Specific

	Driver-Specific Information
	Setting the Windows Driver
	Trouble with Windows Native Drivers
	Level 1 or Level 2 PostScript Drivers
	Early PostScript 1 Printers
	Background Fills in HPGL Drivers
	Color Selection in HPGL Drivers
	Limitations of HPGL Drivers

	How to Specify the Printer Driver to Use
	Setting the Default Driver for All Figures
	Setting a Driver for the Current Figure Only

	Troubleshooting
	Introduction
	Common Problems
	Printing Problems
	Printer Drivers
	PostScript Output
	Default Settings
	Color vs. Black and White
	Printer Selection
	Rotated Text
	ResizeFcn Warning

	Exporting Problems
	Background Color
	Default Settings
	Microsoft Word
	File Format
	Size of Exported File
	Making Movies
	Extended Operations

	General Problems
	Background Color
	Default Settings
	Dimensions of Output
	Axis and Tick Labels
	UI Controls
	Cropping
	Text Object Font

	Handle Graphics Objects
	Organization of Graphics Objects
	Types of Graphics Objects
	Introduction
	Information on Specific Graphics Objects

	Graphics Windows — the Figure
	Introduction
	Figures Used for Graphing Data
	Figure Children for Graphs

	Figures Used for GUIs
	Root Object — The Figure Parent
	More Information on Figures

	Core Graphics Objects
	Introduction
	Core Graphics Objects
	Axes
	Image
	Light
	Line
	Patch
	Rectangle
	Surface
	Text

	Example — Creating Core Graphics Objects
	Parenting
	High-Level Versus Low-Level Functions
	Simplified Calling Syntax
	A Note About Property Names

	Plot Objects
	Introduction
	Creating a Plot Object
	Identifying Plot Objects Programmatically
	No User Default Values

	Plot Objects and Backward Compatibility
	Saving Figures That Are Compatible with Previous Version of MATL

	Linking Graphs to Variables — Data Source Properties
	Introduction
	Data Source Example
	Changing the Size of Data Variables

	Annotation Objects
	Introduction
	Annotation Object Properties
	Annotation Layer
	Objects in the Plotting Axes
	Deleting Annotations
	Normalized Coordinates

	Example — Enclosing Subplots with an Annotation Rectangle

	Group Objects
	Introduction
	Creating a Group
	Transforming Objects
	Creating a Transform Matrix
	Rotation
	Translation
	Scaling
	The Default Transform
	Disallowed Transforms: Perspective
	Disallowed Transforms: Shear
	Absolute vs. Relative Transforms
	Combining Transforms into One Matrix
	Undoing Transform Operations
	Rotations Away From the Origin

	Example — Transforming a Hierarchy of Objects
	Object Properties
	Introduction
	Storing Object Information
	Changing Values
	Order Dependence of Setting Property Values
	Properties Are Interpreted from Left to Right

	Default Values
	Properties Common to All Objects

	Setting and Querying Property Values
	Using set and get
	Setting Property Values
	Listing Possible Values

	Querying Property Values
	Querying Individual Properties
	Returning a Structure
	Querying Groups of Properties

	Factory-Defined Property Values
	Setting Default Property Values
	Factory- and User-Defined Values
	How MATLAB Searches for Default Values
	Defining Default Values
	Setting Properties to the Default
	Removing Default Values
	Setting Properties to Factory-Defined Values
	Reserved Words

	Examples — Setting Default Line Styles
	First Example
	Second Example

	Accessing Object Handles
	Introduction
	Special Object Handles
	The Current Figure, Axes, and Object
	Searching for Objects by Property Values — findobj
	Example — Finding Objects
	Example — Using Logical Operators and Regular Expression

	Copying Objects
	Example — Copying Objects

	Deleting Objects

	Controlling Graphics Output
	Figure Targets
	Specifying the Target for Graphics Output
	Making a Figure and Axes Current

	Preparing Figures and Axes for Graphics
	Using NextPlot to Control Output Target

	Targeting Graphics Output with newplot
	MATLAB Default Behavior

	Example — Using newplot
	Basic Plotting File Structure
	Replacing Only the Child Objects — replacechildren

	Testing for Hold State
	Protecting Figures and Axes
	HandleVisibility Property
	Accessing Protected Objects

	The Figure Close Request Function
	Introduction
	Quitting the MATLAB Environment
	Errors in the Close Request Function
	Overriding the Close Request Function
	Redefining the CloseRequestFcn

	Saving Handles in Files
	About Saving Handles
	Save Information First

	Properties Changed by Built-In Functions
	Objects That Can Contain Other Objects
	Using Panel Containers in Figures — Uipanels
	Introduction
	Figure Resize Functions
	Example — Using Figure Panels
	Complete Example Code
	Creating the Uipanels
	Programming the Resize Functions

	Grouping Objects Within Axes — hgtransform
	Introduction
	Example — Translating Grouped Objects
	Set Up the Axes and Figure
	Define the Transform Matrices and hgtransform Objects
	Create the Surface and Text Objects
	Generate Data and Plot a Line
	Translate the Cursor Along the Plotted Line

	Controlling Legends
	Legend Control Options
	Properties for Controlling Legend Content
	Accessing the Annotation Control Objects

	Updating a Legend
	Example — Excluding a Particular Object From a Legend
	Example — One Legend Entry for a Group of Objects
	Example — Showing Children of Group Objects in Legend
	Example — Grouping Objects to Reduce the Legend Entries

	Callback Properties for Graphics Objects
	What is a Callback?
	Graphics Object Callbacks
	User Interface Object Callbacks
	Figure Callbacks

	Function Handle Callbacks
	Introduction
	Function Handle Syntax
	Passing Additional Input Arguments
	Defining Callbacks as a Cell Array of Strings — Special Case

	Why Use Function Handle Callbacks
	Single File for All Code
	Keeping Variables in Scope
	Callback Object Handle and Event Data
	Function Handles Stay in Scope

	Example — Using Function Handles in GUIs
	Complete Example Code
	The GUI Layout
	Initialize the GUI
	The Callback Functions

	Optimizing Graphics Performance
	Introduction
	General Performance Guidelines
	Disabling Automatic Modes
	Fixing Axis Limits
	Setting All Modes to Manual

	Changing Graph Data Rapidly
	Low-Level Functions for Speed
	Avoid Creating Graphics Objects
	Update the Object's Data

	Specify Axes with Plotting Function for Better Performance
	Keeping Track of the Target Figure and Axes

	Performance of Bit-Mapped Images
	Direct Color Mapping
	Use Truecolor for Smaller Images
	Direct Mapping of Transparency Values

	Performance of Patch Objects
	Define Patch Faces as Triangles
	Use Data Thinning
	Direct Color Mapping
	Use Truecolor for Smaller Patches
	Direct Mapping of Transparency Values

	Performance of Surface Objects
	Direct Color Mapping
	Use Truecolor for Smaller Surfaces
	Mapping of Transparency Values
	Use Texture-Mapped Face Color

	Using Figure Properties
	Figure Objects
	Related Information About Figures

	Docking Figures in the Desktop
	Introduction
	Figure Properties That Affect Docking
	DockControls
	WindowStyle
	Docking Figures Automatically

	Creating a Nondockable Figure

	Positioning Figures
	Introduction
	The Position Vector
	Figure Position and Window Managers
	Figure Position for Docked Figures
	Units
	Determining Screen Size

	Example — Specifying Figure Position

	Figure Colormaps — The Colormap Property
	Introduction
	Specifying the Figure Colormap

	Selecting Drawing Methods
	Double Buffering
	Overview
	More Details

	Selecting a Renderer
	Overview
	More Details
	Painters
	Z-Buffer
	OpenGL

	Specifying the Figure Pointer
	Predefined Figure Pointer Symbols
	Defining Custom Pointers
	Example — Two Custom Pointers

	Using Axes Properties
	Axes Objects — Defining Coordinate Systems for Graphs
	Labeling and Appearance Properties
	Introduction
	Creating Axes with Specific Characteristics
	Axis Labels
	Getting the Text Object Handle
	Specifying Axis Label Fonts
	Bitmapped Vs. Truetype Fonts — Text Does Not Rotate

	Positioning Axes
	Introduction
	The Position Vector
	Position Units

	Automatic Axes Resize
	Properties Controlling Axes Size
	Using OuterPosition as the ActivePositionProperty
	ActivePositionProperty = OuterPosition
	ActivePositionProperty = Position
	Axes Resizing in Subplots

	Multiple Axes per Figure
	Introduction
	Placing Text Outside the Axes
	Multiple Axes for Different Scaling

	Individual Axis Control
	Properties Controlling Axis Limits
	Setting Axis Limits
	Semiautomatic Limits

	Setting Tick Mark Locations
	Changing Axis Direction

	Using Multiple X- and Y-Axes
	Introduction
	Example — Double Axis Graphs
	Creating Coincident Grids

	Automatic-Mode Properties
	Colors Controlled by Axes
	Introduction
	Specifying Axes Colors
	Changing the Color Scheme

	Axes Color Limits — the CLim Property
	Introduction
	Simulating Multiple Colormaps in a Figure
	Complete Example Code
	Calculating Color Limits
	Defining a Function to Calculate CLim Values
	Using the Function
	How the Function Works

	Defining the Color of Lines for Plotting
	Introduction
	Defining Your Own ColorOrder
	Changing the Default ColorOrder
	Setting the NextPlot Property
	Using the line Function

	Line Styles Used for Plotting — LineStyleOrder

	Index

	tables
	MATLAB Functions for Creating Annotations
	Resolutions Used with Graphics Formats
	Resolutions Used with Printer Drivers
	Core Graphics Objects
	Plot Objects

