Supplementary R Syntax – Data Preprocessing

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Variable Coding</th>
<th>Original Variables Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violence</td>
<td>Violence</td>
<td>F12VIOL</td>
</tr>
<tr>
<td>Predictor Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Age</td>
<td>AGE</td>
</tr>
<tr>
<td>BIS Non-Planning Subscale</td>
<td>BISnp</td>
<td>BISPLN</td>
</tr>
<tr>
<td>BPRS Activation Subscale</td>
<td>BPRSa</td>
<td>OACTV</td>
</tr>
<tr>
<td>BPRS Hostile-Suspiciousness Subscale</td>
<td>BPRSh</td>
<td>OHOST</td>
</tr>
<tr>
<td>BPRS Total Score</td>
<td>BPRSt</td>
<td>OBPRS</td>
</tr>
<tr>
<td>Child Abuse Seriousness</td>
<td>ChildAbuse</td>
<td>Q5.5.1, Q5.5.2, Q5.5.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q5.5.4, Q5.5.5, Q5.5.6</td>
</tr>
<tr>
<td>Loss of Consciousness (Head Injury)</td>
<td>Consc</td>
<td>NEU2A</td>
</tr>
<tr>
<td>Father Arrest History</td>
<td>DadArr</td>
<td>Q5.20A, Q5.20B</td>
</tr>
<tr>
<td>Father's Drug Use</td>
<td>DadDrug</td>
<td>Q5.19A, Q5.19B</td>
</tr>
<tr>
<td>Drug Abuse (DSM-III-R)</td>
<td>DrugAbuse</td>
<td>DSM16A, DSM16B,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSM17A, DSM17B</td>
</tr>
<tr>
<td>Employed Prior to Hospitalization</td>
<td>Emp</td>
<td>Q4.4</td>
</tr>
<tr>
<td>Violent Fantasies: Escalating Seriousness</td>
<td>FantEsc</td>
<td>Q7.1, Q7.7</td>
</tr>
<tr>
<td>Violent Fantasies: Single Target Focus</td>
<td>FantSing</td>
<td>Q7.1, Q7.6</td>
</tr>
<tr>
<td>Violent Fantasies: Target Present</td>
<td>FantTarg</td>
<td>Q7.1, Q7.8</td>
</tr>
<tr>
<td>Level of Functioning</td>
<td>Function</td>
<td>Q9.1, Q9.2, Q9.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q9.4, Q9.5, Q9.6</td>
</tr>
<tr>
<td>Grandiose Delusions</td>
<td>GranDel</td>
<td>DEL03.1</td>
</tr>
<tr>
<td>Previous Head Injuries</td>
<td>HeadInj</td>
<td>NEU4B.1, NEU4B.2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEU4B.3, NEU4B.4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEU4B.5, NEU4B.6,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEU4B.7, NEU4B.8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEU4B.9</td>
</tr>
<tr>
<td>Legal Status for Hospitalization</td>
<td>LegalStatus</td>
<td>LEGALR</td>
</tr>
<tr>
<td>Novaco Anger Scale Behavioral Subscale</td>
<td>NASb</td>
<td>NASBEH</td>
</tr>
<tr>
<td>Number of Negative Relationships</td>
<td>NegRel</td>
<td>Q10.10N, Q10.11N,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q10.12N, Q10.13N</td>
</tr>
<tr>
<td>Psychopathy Checklist: Screening Version</td>
<td>PCL</td>
<td>PCLTOT</td>
</tr>
<tr>
<td>MacArthur Perceived Coercion Scale</td>
<td>PCS</td>
<td>Q1.8, Q1.11, Q1.14,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1.21, Q1.22</td>
</tr>
<tr>
<td>Prior Arrest Frequency</td>
<td>PriorArr</td>
<td>FREQARR</td>
</tr>
<tr>
<td>Property Crime Arrest</td>
<td>PropCrime</td>
<td>PROPARR</td>
</tr>
<tr>
<td>Violent Before Hospitalized</td>
<td>RecViol12</td>
<td>VIOL</td>
</tr>
<tr>
<td>Schizophrenic</td>
<td>Schiz</td>
<td>DSM2A, DSM5A</td>
</tr>
<tr>
<td>Proportion of Social Network are Mental Health Professionals</td>
<td>SNMHP</td>
<td>SNMHP</td>
</tr>
<tr>
<td>Substance Abuse</td>
<td>SubAbuse</td>
<td>DSM14A, DSM14B, DSM15A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSM15B, DSM16A, DSM16B,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSM17A, DSM17B</td>
</tr>
<tr>
<td>Admission Reason: Suicide</td>
<td>Suicide</td>
<td>QREAS.02</td>
</tr>
<tr>
<td>Threat/Control Override Symptoms</td>
<td>tco</td>
<td>K1.1, K1.3, K2.1, K2.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K3.1, K3.3, K4.1, K4.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K8.1, K8.3, K9.1, K9.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K10.1, K10.3, K12.1, K12.3</td>
</tr>
<tr>
<td>Threats at Admission</td>
<td>Threats</td>
<td>QREAS.20, QREAS.21</td>
</tr>
</tbody>
</table>

Table 1: Variables used in analyses, from the MacArthur Violence Risk Assessment Study (Monahan et al., 2001).

Table 1 above displays the variables included in the initial analyses. The first column is a brief description; the second column is the coding used in the analysis; the third column consists of the variable codes used in the original VRAS dataset. All variables come from the SPSS file baseline.sav except F12VIOL and PCLTOT.
that were from the SPSS file follow_up_subjects.sav.

We begin by loading the necessary packages; this assumes the packages are installed. If not, use install.packages() (e.g., install.packages("dplyr") installs the dplyr package).

```r
# for reading in SPSS files
require(Hmisc)
# for data frame manipulation
library(dplyr)
# for creating data tables
library(data.table)
```

Data Preprocessing

First, we bring in the two data files and sort in order of STUDYID and then merge them into one master file data table called COVR.

```r
# read in data files
COVR1 = data.table(spss.get('baseline.sav'))
COVR2 = data.table(spss.get('follow_up_subjects.sav'))

# sort data, select desired variables, and merge into one master data table
COVR1 = COVR1 %>%
  select(STUDYID, BISNPLN, OACTV, OHOST, OBPRS, LEGALR, SNMHP, NOVBEH, NEU2A, NEU4B.1:NEU4B.9, TYPEARR, FREQARR, PROPARR, DEL03.1, VIOL, DSM2A, DSM5A, DSM14A:DSM17B, AGE, Q1.8, Q1.11, Q1.14, Q1.21, Q1.22, Q4.4, Q5.5.1:Q5.5.6, Q5.19A, Q5.19B, Q5.20A, Q5.20B, Q7.1, Q7.6:Q7.8, Q9.1:Q9.6, Q10.10N, Q10.11N, Q10.12N, Q10.13N, QREAS.02, QREAS.20, QREAS.21, K1.1, K1.3, K2.1, K2.3, K3.1, K3.3, K4.1, K4.3, K8.1, K8.3, K9.1, K9.3, K9.10N, K10.11N, K10.12N, K10.13N, QREAS.02, QREAS.20, QREAS.21, K1.1, K1.3, K2.1, K2.3, K3.1, K3.3, K4.1, K4.3, K8.1, K8.3, K9.1, K9.3, K10.1, K10.3, K12.1, K12.3) %>%
  arrange(STUDYID)

COVR2 = COVR2 %>%
  mutate(STUDYID = studyid, F12VIOL = f12viol, PCLTOT = pcltot) %>%
  select(STUDYID, F12VIOL, PCLTOT) %>%
  arrange(STUDYID)

COVRdata = inner_join(COVR1, COVR2, by = 'STUDYID')
rm('COVR1', 'COVR2')

# remove data with missing outcome variable
COVRdata = filter(COVRdata, !is.na(F12VIOL))
```

Preprocess the data to create the variables used in the VRAS study.

```r
ChildAbuseVars = COVRdata %>%
  select(Q5.5.1:Q5.5.6) %>%
  transmute(ChildAbuse = 5*(rowSums(cbind(Q5.5.4, Q5.5.5, Q5.5.6)) > 3) +
            3*(rowSums(cbind(Q5.5.2, Q5.5.3)) > 2) + (as.numeric(Q5.5.1) > 1))

SubAbVars = COVRdata %>%

DrugAbVars = COVRdata %>%
  select(DSM16A, DSM16B, DSM17A, DSM17B)

HeadInjVars = COVRdata %>%
```
COVRdata = COVRdata %>%
 transmute(
 Violence = factor(ifelse(F12VIOL == 'Yes', 1, 0)),
 Age = as.numeric(AGE),
 BISnpl = as.numeric(BISNPLN),
 BPRSt = as.numeric(DACTV),
 BPRSh = as.numeric(DHST),
 BPRsa = as.numeric(OACTV),
 DadArr = factor(ifelse(NEU2A == 'Yes', 1, ifelse(NEU2A == 'No', 0, NA))),
 ChildAbuse = ifelse(ChildAbuseVars$ChildAbuse >= 5, 3,
 ifelse(ChildAbuseVars$ChildAbuse >= 3, 2,
 ifelse(ChildAbuseVars$ChildAbuse >= 1, 1, 0)))),
 Consc = factor(ifelse(NEU2A == 'Yes', 1, ifelse(NEU2A == 'No', 0, NA))),
 DadDrug = factor(ifelse(((Q5.19A == 'DAILY' | Q5.19A == 'ONCE A WEEK' | Q5.19A == 'TWICE A WEEK') | (Q5.19B == 'DAILY' | Q5.19B == 'ONCE A WEEK' | Q5.19B == 'TWICE A WEEK')), 1,
 ifelse(((is.na(Q5.19A) | Q5.19A == 'NA') & (Q5.19B == 'NA' | Q5.19B == 'DK')), NA, 0)),
 DadArr = factor(ifelse((Q5.20A == 'NEVER' & (Q5.20B == 'NA' | Q5.20B == 'DK')) | (Q5.20B == 'NEVER' & (is.na(Q5.20A) | Q5.20A == 'NA')) | (is.na(Q5.20A) | Q5.20A == 'NA')) | (Q5.20A == 'NEVER' & Q5.20B == 'NEVER')), 0,
 ifelse(((is.na(Q5.20A) | Q5.20A == 'NA') & (Q5.20B == 'NA' | Q5.20B == 'DK')), NA, 1))),
 DrugAbuse = factor(ifelse(rowSums(DrugAbVars == 'UNCERTAIN') == 4, NA,
 ifelse(rowSums(DrugAbVars == 'PRESENT') > 0, 1, 0))),
 Emp = factor(ifelse(Q4.4 %in% c('YES - FULL-TIME', 'YES - PART-TIME'), 1,
 ifelse(Q4.4 == 'NO', 0, NA))),
 FantEsc = factor(ifelse((Q7.1 == 'YES' & Q7.7 == 'MORE SERIOUS'), 1, 0)),
 FantSing = factor(ifelse((Q7.1 == 'YES' & Q7.6 == 'SAME'), 1, 0)),
 FantTarg = factor(ifelse((Q7.1 == 'YES' & Q7.8 == 'YES'), 1, 0)),
 Function = ifelse(rowSums(is.na(cbind(Q9.1, Q9.2, Q9.3, Q9.4, Q9.5, Q9.6)) == 6, NA,
 rowSums(cbind(Q9.1, Q9.2, Q9.3, Q9.4, Q9.5, Q9.6) - 1,
 na.rm = T)),
 GranDel = factor(ifelse(DEL03.1 == 'YES - CHECKED', 1, 0)),
 HeadInj = factor(ifelse(rowSums(HeadInjVars == 'YES, HEAD INJURY',
 na.rm = T) > 0, 1,
 ifelse(rowSums(is.na(HeadInjVars)) == 9, NA, 0))),
 LegalStatus = factor(ifelse(LEGALR == 'INVOLUNTARY', 1, 0)),
 NASH = as.numeric(NOVBEH),
 NegRel = rowSums(cbind(Q10.10N, Q10.11N, Q10.12N, Q10.13N)),
 PCL = factor(ifelse(PCLTOT > 12, 1, 0)),
 PCS = ifelse(rowSums(is.na(cbind(Q1.8, Q1.11, Q1.14, Q1.21, Q1.22)) == 5, NA,
rowSums(-1*(cbind(Q1.8, Q1.11, Q1.14, Q1.21, Q1.22)) + 2, na.rm = T),
PriorArr = as.numeric(FREQARR) - 1,
PropCrime = factor(ifelse(PROPARR == 'Yes', 1, 0)),
RecViol2 = factor(ifelse(VIOL == 'Violence', 1, 0)),
Schiz = factor(ifelse(((DSM2A == 'ABSENT' | DSM2A == 'UNCERTAIN') & (DSM5A == 'ABSENT' | DSM5A == 'UNCERTAIN')), 0, 1)),
SNMHP = as.numeric(SNMHP),
SubAbuse = factor(ifelse(rowSums(SubAbVars == 'UNCERTAIN') == 8, NA, ifelse(rowSums(SubAbVars == 'PRESENT') > 0, 1, 0))),
Suicide = factor(ifelse(QREAS.02 == 'YES - CHECKED', 1, 0)),
tco = factor(ifelse(rowSums((tcoPatient == 'YES') == (tcoClinical == 'YES'), na.rm = T) > 0, 1, 0)),
Threats = factor(ifelse((QREAS.20 == 'YES - CHECKED' | QREAS.21 == 'YES - CHECKED'), 1, ifelse(rowSums(is.na(cbind(QREAS.20, QREAS.21))) == 2, NA, 0)))

rm(list = ls()[ls() != 'COVRdata'])

Save the data table for construction of classification models.
save.image('COVRdata.rda')

Compute correlations between predictor variables and the response.

R = data.frame(sapply(COVRdata, as.numeric))
COVRr = apply(select(R, Violence), 2, cor, select(R, -Violence), 'pairwise.complete.obs')
rownames(COVRr) = colnames(select(R, -Violence))
round(COVRr, 2)

<table>
<thead>
<tr>
<th>Violence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.07</td>
</tr>
<tr>
<td>BISnp</td>
<td>0.05</td>
</tr>
<tr>
<td>BPRSs</td>
<td>-0.08</td>
</tr>
<tr>
<td>BPRSh</td>
<td>0.08</td>
</tr>
<tr>
<td>BPRSt</td>
<td>-0.04</td>
</tr>
<tr>
<td>ChildAbuse</td>
<td>0.14</td>
</tr>
<tr>
<td>Consc</td>
<td>0.09</td>
</tr>
<tr>
<td>DadDrug</td>
<td>0.14</td>
</tr>
<tr>
<td>DadArr</td>
<td>0.15</td>
</tr>
<tr>
<td>DrugAbuse</td>
<td>0.16</td>
</tr>
<tr>
<td>Emp</td>
<td>-0.05</td>
</tr>
<tr>
<td>FantEsc</td>
<td>0.13</td>
</tr>
<tr>
<td>FantSing</td>
<td>0.10</td>
</tr>
<tr>
<td>FantTarg</td>
<td>0.12</td>
</tr>
<tr>
<td>Function</td>
<td>-0.01</td>
</tr>
<tr>
<td>GranDel</td>
<td>-0.01</td>
</tr>
<tr>
<td>HeadInj</td>
<td>0.03</td>
</tr>
<tr>
<td>LegalStatus</td>
<td>0.11</td>
</tr>
<tr>
<td>NASb</td>
<td>0.17</td>
</tr>
<tr>
<td>NegRel</td>
<td>0.05</td>
</tr>
<tr>
<td>Variable</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>PCL</td>
<td>0.26</td>
</tr>
<tr>
<td>PCS</td>
<td>0.03</td>
</tr>
<tr>
<td>PriorArr</td>
<td>0.24</td>
</tr>
<tr>
<td>PropCrime</td>
<td>0.11</td>
</tr>
<tr>
<td>RecViol2</td>
<td>0.14</td>
</tr>
<tr>
<td>Schiz</td>
<td>-0.12</td>
</tr>
<tr>
<td>SNMHP</td>
<td>-0.10</td>
</tr>
<tr>
<td>SubAbuse</td>
<td>0.18</td>
</tr>
<tr>
<td>Suicide</td>
<td>-0.01</td>
</tr>
<tr>
<td>tco</td>
<td>-0.09</td>
</tr>
<tr>
<td>Threats</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Supplementary R Syntax – Classification Modeling

First load the necessary packages; this assumes the packages are installed. If not, use `install.packages()` (e.g., `install.packages("dplyr")` installs the dplyr package).

```r
# for linear discriminant analysis
library(MASS)
# for imputation missing values
require(Hmisc)
# for cross-validation of models
library(boot)
# constructing ROC plots and computing AUC
library(ROCR)
# for data frame manipulation
library(dplyr)
# for plotting
library(ggplot2)
```

Next load preprocessed data.

```r
load('COVRdata.rda')
```

Calculate the base rate of violence in the sample.

```r
BR = mean(select(COVRdata, Violence) == 1)
```

Logistic Regression Model

Monahan et al. (2001) constructed a main effects logistic regression (MELR) model to predict violence that was fit with forward-stepwise variable selection with a \(p < .05 \)-threshold for retaining predictor variables. The present analysis constructs an MELR model but fitted with only the variables from the final model given by Monahan et al. The results are similar, but not exact (see Monahan et al., 2001, Table 5.1).

Before constructing the logistic regression model, we impute missing data by replacing all missing data with the mean of the non-missing data for continuous variables and the mode of the non-missing data for categorical variables, as was done by Monahan et al. (2001).

```r
# function for computing the mode
varMode <- function(x) return(factor(names(table(x))[table(x) == max(table(x))]))

# function for missing value imputation; the function impute() is from Hmisc package
imputeNA <- function(x) {
  if (is.factor(x)) {
    #impute mode for factor variables
    return(factor(impute(x, varMode)))
  }
  return(impute(x, mean))
}
```
impute missing data

COVRdata = COVRdata %>%
 summarise_each(funs(imputeNA))

First select variables used in Monahan et al.’s (2001) logistic regression model.

logRegData = COVRdata %>%
 select(Violence, BISnp, BPRSa, BPRSh, BPRSt, ChildAbuse, Consc, DadDrug, DrugAbuse,
 Emp, FantEsc, FantSing, GranDel, LegalStatus, NASb, PCL, PriorArr, SNMHP, tco)

Next construct the logistic regression model.

logisticModel = glm(Violence ~ ., data = logRegData, family = binomial(logit))

summary(logisticModel)

Call:
 glm(formula = Violence ~ ., family = binomial(logit), data = logRegData)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.741 -0.602 -0.400 -0.230 2.857

Coefficients: Estimate Std. Error z value Pr(>|z|)
 (Intercept) -2.8990 0.6714 -4.320 1.6e-05 ***
 BISnp -0.0280 0.0129 -2.170 0.02969 *
 BPRSa -0.1511 0.0633 -2.390 0.01691 *
 BPRSh 0.1175 0.0402 2.920 0.00348 **
 BPRSt -0.0331 0.0161 -2.060 0.03947 *
 ChildAbuse 0.3744 0.1042 3.586 0.00033 ***
 Consc1 0.5181 0.2612 1.979 0.04733 *
 DadDrug1 -0.4771 0.2001 -2.380 0.01710 *
 DrugAbuse1 0.3807 0.2296 1.659 0.09734 .
 Emp1 -0.4771 0.2001 -2.380 0.01710 *
 FantEsc1 0.6754 0.3262 2.074 0.03837 *
 FantSing1 0.5642 0.2588 2.160 0.02922 *
 GranDel1 0.7109 0.3436 2.074 0.03853 *
 LegalStatus1 0.5110 0.1986 2.585 0.01006 *
 NASb 0.0380 0.0151 2.520 0.01181 *
 PCL1 0.8982 0.2113 4.253 2.1e-05 ***
 PriorArr 0.2978 0.0820 3.630 0.00028 ***
 SNMHP -1.8550 0.7471 -2.480 0.01303 *
 tco1 -0.9003 0.3420 -2.630 0.00848 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 906.10 on 938 degrees of freedom
Residual deviance: 731.06 on 920 degrees of freedom
AIC: 769.1

Number of Fisher Scoring iterations: 5

We now compute the cross-validation error of logistic regression model, using leave-one-out cross-validation.

function for calculating error when using classification cutscore of .5
LRcost50 = function(x, p = 0) mean(abs(x - p) > .5)
estimated cross-validated error
cv.glm(logRegData, logisticModel, LRcost50)$delta[1]

[1] 0.1821

resubstitution error
LRpreds = predict(logisticModel, type = 'resp')
mean((LRpreds > .5) != (select(COVRdata, Violence) == 1))

[1] 0.1693

function for calculating error when using classification cutscore of .37
LRcost37 = function(x, p = 0) mean(abs(x - p) > .37)
estimated cross-validated error
cv.glm(logRegData, logisticModel, LRcost37)$delta[1]

[1] 0.2407

resubstitution error
mean((LRpreds > 2*BR) != (select(COVRdata, Violence) == 1))

[1] 0.1789

Next we plot an ROC curve and calculate the AUC. We want to use cross-validated results, not the results from the model. To do so, we need to manually compute the cross-validated estimates because cv.glm() unfortunately does not provide this.

err = double()
for (k in 1:939) {
 t = glm(Violence ~ ., data = logRegData, family = binomial(logit), subset = -k)
 # predicted probability of being violent
 err[k] = predict(t, COVRdata[k,], type = 'resp')
}

lrPreds = prediction(err, select(COVRdata, Violence))
lrPerf = performance(lrPreds, 'tpr', 'fpr')
AUC = round(performance(lrPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +
Discriminant Function Analysis

This section applies discriminant function analysis (DFA) to classify individuals as violent, for both a linear fit (i.e., assuming the covariances among the two populations—nonviolent and violent—are equal) and a quadratic fit (i.e., the covariances are allowed to be unequal). This was not done by Monahan et al. (2001) but allows comparison with the other methods used (logistic regression and classification trees).

The same data with missing value imputation that was used in the logistic regression model is used for the discriminant analyses. All the data are used.

First, a linear discriminant function is constructed, with equal costs and unequal costs. Before doing so, the workspace is cleared, the base rate for violence is calculated, and the prior probabilities are established such that unequal costs are applied.
Clear workspace
rm(list = ls())[!(ls() %in% c('BR', 'COVRdata'))]

Cost of FN to FP
fnCost = (1-2*BR)/(2*BR)

Priors
priors = c((1 - BR)/(BR*fnCost + (1-BR)), BR*fnCost/(BR*fnCost + (1-BR)))
rm(fnCost)

Resubstitution error and cross-validation error of linear discriminant model, using leave-one-out cross-validation. This is found for both the model with equal costs and the one with unequal costs.

Equal costs
Resubstitution error
ldaModel_equal = lda(Violence ~ ., data = COVRdata)
mean(predict(ldaModel_equal)$class != COVRdata$Violence)

[1] 0.1736

Estimated cross-validated error
ldaModel_equal = lda(Violence ~ ., data = COVRdata, CV = T)
mean(ldaModel_equal$class != COVRdata$Violence)

[1] 0.1885

Unequal costs
Resubstitution error
ldaModel_unequal = lda(Violence ~ ., data = COVRdata, prior = priors)
mean(predict(ldaModel_unequal)$class != COVRdata$Violence)

[1] 0.1842

Estimated cross-validated error
ldaModel_unequal = lda(Violence ~ ., data = COVRdata, CV = T, prior = priors)
mean(ldaModel_unequal$class != COVRdata$Violence)

[1] 0.2045

Next a quadratic discriminant function is constructed, again with equal costs and unequal costs.

Equal costs
Resubstitution error
qdaModel_equal = qda(Violence ~ ., data = COVRdata)
mean(predict(qdaModel_equal)$class != COVRdata$Violence)

[1] 0.1438

Estimated cross-validated error
qdaModel_equal = qda(Violence ~ ., data = COVRdata, CV = T)
mean(qdaModel_equal$class != COVRdata$Violence)

[1] 0.23
Unequal costs

resubstitution error
qdaModel_unequal = qda(Violence ~ ., data = COVRdata, prior = priors)
mean(predict(qdaModel_unequal)$class != COVRdata$Violence)

[1] 0.1523

estimated cross-validated error
qdaModel_unequal = qda(Violence ~ ., data = COVRdata, CV = T, prior = priors)
mean(qdaModel_unequal$class != COVRdata$Violence)

[1] 0.2513

Plotting ROC curve.

ldaPreds = prediction(ldaModel_equal$post[,2], select(COVRdata, Violence))
ldaPerf = performance(ldaPreds, 'tpr', 'fpr')
qdaPreds = prediction(qdaModel_equal$post[,2], select(COVRdata, Violence))
qdaPerf = performance(qdaPreds, 'tpr', 'fpr')
AUC = data_frame(lda = round(performance(ldaPreds, 'auc')@y.values[[1]], 2),
 qda = round(performance(qdaPreds, 'auc')@y.values[[1]], 2))

AUC for models
AUC

Source: local data frame [1 x 2]

 lda qda
 1 0.76 0.71

ROC plot
daStats = data_frame(x = c(ldaPerf@x.values[[1]], qdaPerf@x.values[[1]]),
y = c(ldaPerf@y.values[[1]], qdaPerf@y.values[[1]]),
 DFA = rep(c('Linear', 'Quadratic'),
 times = c(length(ldaPerf@x.values[[1]]),
 length(qdaPerf@x.values[[1]]))))
ggplot(data = daStats) +
 geom_line(aes(x = x, y = y, color = DFA)) +
 ggtitle('ROC Plot for Discriminant Function Analysis Models') +
 xlab('False Positive Rate') +
 ylab('True Positive Rate') +
 geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),
 linetype = 'dotted') +
 scale_color_manual(values = c('darkorange', 'darkblue'))
ROC Plot for Discriminant Function Analysis Models

- DFA
- Linear
- Quadratic

DFA

Linear

Quadratic
Supplementary R Syntax – Classification Trees

First load the necessary packages; this assumes the packages are installed. If not, use `install.packages()` (e.g., `install.packages("rpart")`) installs the `rpart` package.

```r
# for recursive partitioning trees
library(rpart)
# for plotting rpart trees
library(rpart.plot)
# for random forest model
library(randomForest)
# for plotting
library(ggplot2)
# for data frame manipulation
library(dplyr)
# for cross-validation and other machine learning tools
library(caret)
# for constructing ROC plots and computing AUC
library(ROCR)
```

Next load preprocessed data.

```r
load('COVRdata.rda')
```

Calculate the base rate of violence in the sample.

```r
BR = mean(select(COVRdata, Violence) == 1)
```

Classification Trees

Using leave-one-out cross-validated error, we determine the minimum leaf size; the range of the minimum leaf size is [1, 60]. The minimum leaf size is specified with the `minbucket` statement and the `cp = 0` requests that the tree is not pruned. In addition we set the minimum split to be twice the minimum leaf (the minimum split is the minimum number needed to make a split; the default is three times the minimum leaf). Note that the relative error (`rel error`) and the expected error (`xerror`) are multiplied by the base rate giving, respectively, the estimated resubstitution and cross-validated error. The base rate is the root node error and the relative and expected errors are with respect to the root node error. Note that the cross-validated and resubstitution errors are from the unpruned trees. Missing values are treated as suggested by Breimen et al. (1984) and as was done by Monahan et al. (2001); this is automatically implemented in `rpart` with the `rpart.control` option `usesurrogate` set equal to 2 (default). The `xval` option is set equal to the sample size (this gives the estimate for leave-one-out cross-validation; the default is ten-fold).

```r
CError = double() # cross-validated error
RSerror = double() # resubstitution error

for (j in 1:60) {
    t = rpart(Violence ~ ., COVRdata, control = rpart.control(minbucket = j,
                                                           msplit = 2*j, cp = 0,
                                                           xval = nrow(COVRdata)))
    # error estimates
```
CVerror[j] = t$cp[nrow(t$cp),4]*BR
RSError[j] = t$cp[nrow(t$cp),3]*BR

create data frame with errors and leaf sizes
misclassError = data_frame('minleaf' = rep(1:60, 2), merror = c(RSError, CVerror),
 Error = rep(c('resubsitution', 'cross-validated'), each = 60))

remove CVerror = 0
misclassError = misclassError %>%
 filter((merror != 0 & Error == 'cross-validated') | Error == 'resubsitution')

optimal minimum leaf size
minLeaf = misclassError %>%
 filter(Error == 'cross-validated') %>%
 filter(rank(merror, ties.method = 'first') == 1)

minLeaf

Source: local data frame [1 x 3]

 minleaf merror Error
 1 48 0.1789 cross-validated

plot error across minimum leaf size
ggplot(data = misclassError, aes(minleaf, merror, linetype = Error)) +
 geom_line() +
 geom_hline(yintercept = BR, lty = 2) +
 scale_y_continuous(breaks = c(0, .05, .1, .15, BR, .20, .25),
 labels = c('0', '.05', '.10', '.15', 'BR', '.20', '.25')) +
 theme(plot.title = element_text(size = 21, face = 'bold'),
 axis.title = element_text(size = 17, face = 'bold')) +
 xlab('Minimum Leaf Size') +
 labs(title = 'Min Leaf Size vs. Misclassification Error') +
 theme(legend.position = 'bottom') +
 geom_point(data = minLeaf, aes(y = merror, x = minleaf, size = 3), show_guide = F)
Now we construct a tree using the minimum leaf size that minimized the cross-validated error (this was found to be 48). A confusion matrix is given (the function `confusionMatrix()` is available through the `caret` package). The tree is then plotted using the `prp()` function that is available through the `rpart.plot` package.

```r
ctree = rpart(Violence ~ ., COVRdata, 
              control = rpart.control(minbucket = select(minLeaf, minleaf),
                                      minsplit = 2*select(minLeaf, minleaf, cp = 0))
# resubstitution error
mean(predict(ctree, COVRdata, type = 'class') != COVRdata$Violence)
[1] 0.181

# confusion Matrix
confusionMatrix(predict(ctree, type = 'class'), COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>742</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
</tr>
</tbody>
</table>

Accuracy : 0.819
95% CI : (0.793, 0.843)
No Information Rate : 0.813
P-Value [Acc > NIR] : 0.325

Kappa : 0.175
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.1534
Specificity : 0.9725
Pos Pred Value : 0.5625
Neg Pred Value : 0.8328
Prevalence : 0.1874
Detection Rate : 0.0288
Detection Prevalence : 0.0511
Balanced Accuracy : 0.5629

'Positive' Class : 1

# plot tree
prp(ctree, type = 4, extra = 1)

Next we implement unequal costs as implied by Monahan et al. (2001). We begin by creating a cost matrix; this is based on Monahan et al.’s (2001) choice of cutoff score equal to 0.37.
# Clear the workspace.
```r
rm(list = ls()[!ls() %in% c('BR', 'COVRdata')])
```

# cost matrix
```r
twoBR = (1-2*BR)/(2*BR)
costMatrix = matrix(c(0, twoBR, 1, 0), 2)
```

We again determine the minimum leaf size, as was done with equal costs. Note that the root node error is 0.31 (= BR*twoBR; that is, the number of false negatives at the root note weighted by the cost of false negatives to false positives, 1.67).

```r
CError = double() # cross-validated error
RSError = double() # resubstitution error

for (j in 1:60) {
 t = rpart(Violence ~ ., COVRdata, parms = list(loss = costMatrix),
 control = rpart.control(minbucket = j, msplit = 2*j, cp = 0,
 xval = nrow(COVRdata))

 # error estimates
 CError[j] = t$cp[nrow(t$cp),4]*BR*twoBR
 RSError[j] = t$cp[nrow(t$cp),3]*BR*twoBR
}

create data frame with error and leaf size
misclassError = data_frame('minleaf' = rep(1:60, 2), mcerror = c(RSError, CError),
 Error = rep(c('resubsitution', 'cross-validated'), each = 60))

optimal minimum leaf size
minLeaf = misclassError %>%
 filter(Error == 'cross-validated') %>%
 filter(rank(mcerror, ties.method = 'first') == 1)

plot error across minimum leaf size
ggplot(data = misclassError, aes(minleaf, mcerror, linetype = Error)) +
 geom_line() +
 geom_hline(yintercept = BR, linetype = 2) +
 geom_hline(yintercept = BR*twoBR, lty = 2) +
 scale_y_continuous(breaks = c(0, .1, BR, .2, BR*twoBR, .4),
 labels = c('0', '.10', 'BR', '.20', 'RNE', '.40')) +
 theme(plot.title = element_text(size = 21, face = 'bold'),
 axis.title = element_text(size = 17, face = "bold")) +
 xlab('Minimum Leaf Size') + ylab('Misclassification Error') +
 labs(title = 'Min Leaf Size vs. Misclassification Error') +
 theme(legend.position = 'bottom') +
 geom_point(data = minLeaf, aes(y = mcerror, x = minleaf, size = 3), show_guide = F)
Next we construct and plot the tree using minimum leaf size, which was found to be 48. *This is exactly the same as the tree with equal costs* aside from one slight difference which does not affect the classification results: the non-terminal node at SNMHP < .16 is classified as violent as opposed to nonviolent (as is the case when the costs were equal). A this node the proportion violent is 0.43 which is less than .5 but more than 0.37.

```r
ctree = rpart(Violence ~ ., COVRdata, parms = list(loss = costMatrix),
               control = rpart.control(minbucket = select(minLeaf, minleaf),
                                       msplit = 2*select(minLeaf, minleaf), cp = 0,
                                       xval = nrow(COVRdata)))
# resubstitution error
mean(predict(ctree, COVRdata, type = 'class') != COVRdata$Violence)
```

```
[1] 0.181
```

```
# confusion Matrix
confusionMatrix(predict(ctree, type = 'class'), COVRdata$Violence, positive = '1')
```

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>742</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy : 0.819
95% CI : (0.793, 0.843)
No Information Rate : 0.813
P-Value [Acc > NIR] : 0.325

Kappa : 0.175
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.1534
Specificity : 0.9725
Pos Pred Value : 0.5625
Neg Pred Value : 0.8328
Prevalence : 0.1874
Detection Rate : 0.0288
Detection Prevalence : 0.0511
Balanced Accuracy : 0.5629

'Positive' Class : 1

plot tree
prp(ctree, type = 4, extra = 1)

Now we construct a tree using unequal costs as suggested in Berk (2012). Here, the minimum leaf size is chosen (arbitrarily) to be 30, and pruned. The relative error (rel error) and expected error (xerror) are not appropriate to use for calculating resubstitution error and cross-validated error here because they are
in relation to the root node error, which is itself in relation to the specified priors and costs. Instead, we implement the `train()` function, an extremely versatile cross-validation tool from the `caret()` package.

```r
# clear workspace
m(list = ls()[!(ls() %in% c('BR', 'COVRdata', 'costMatrix'))])
# construct tree
ctree = train(select(COVRdata, -Violence), COVRdata$Violence, 
               method = 'rpart', parms = list(loss = matrix(c(0, 20, 1, 0), 2)),
               control = rpart.control(minbucket = 30, msplit = 60),
               trControl = trainControl('cv', 'LOOCV'), tuneLength = 20)

# leave-one-out cross-validated error
1 - ctree$results$Accuracy[which.max(ctree$results$Accuracy)]
[1] 0.5857

# resubstitution error
mean(predict(ctree) != COVRdata$Violence)
[1] 0.5698

Finally, to demonstrate overfitting with classification trees, we fit a tree with a minimum leaf of one and without pruning.

```r
equal costs
ctree = rpart(Violence ~ ., COVRdata, control = rpart.control(minbucket = 1, cp = 0,
 xval = nrow(COVRdata)))

leave-one-out cross-validated error
ctree$cp[nrow(ctree$cp),4]*BR
[1] 0.2961

resubstitution error
ctree$cp[nrow(ctree$cp),3]*BR
[1] 0.00852

Confusion Matrix
cTreePredClass = predict(ctree, COVRdata, type = 'class')
cconfusionMatrix(cTreePredClass, COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>761</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Accuracy : 0.991
95% CI : (0.983, 0.996)
No Information Rate : 0.813
P-Value [Acc > NIR] : <2e-16

Kappa : 0.972
Mcnemar's Test P-Value : 0.289

Sensitivity : 0.966
Specificity : 0.997
Pos Pred Value : 0.988
Neg Pred Value : 0.992
Prevalence : 0.187
Detection Rate : 0.181
Detection Prevalence : 0.183
Balanced Accuracy : 0.982

'Positive' Class : 1

# unequal costs
ctree2 = train(select(COVRdata, -Violence), COVRdata$Violence,
method = 'rpart', parms = list(loss = costMatrix),
control = rpart.control(minbucket = 1),
trControl = trainControl('cv', 'LOOCV'), tuneGrid = expand.grid(.cp = 0))

# leave-one-out cross-validated error
1 - ctree2$results$Accuracy

[1] 0.279

# resubstitution error
mean(predict(ctree2) != COVRdata$Violence)

[1] 0.01278

# Confusion Matrix
confusionMatrix(predict(ctree2), COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction  0 1
  0 751 0
  1 12 176

Accuracy : 0.987
95% CI : (0.978, 0.993)
No Information Rate : 0.813
P-Value [Acc > NIR] : <2e-16

Kappa : 0.959
McNemar's Test P-Value: 0.0015

Sensitivity: 1.000
Specificity: 0.984
Pos Pred Value: 0.936
Neg Pred Value: 1.000
Prevalence: 0.187
Detection Rate: 0.187
Detection Prevalence: 0.200
Balanced Accuracy: 0.992

'Positive' Class: 1

# ROC plot
ctreePredProbs = predict(ctree, COVRdata)[,2]
ctreePreds = prediction(ctreePredProbs, select(COVRdata, Violence))
ctreePerf = performance(ctreePreds, 'tpr', 'fpr')
AUC = round(performance(ctreePreds, 'auc')@y.values[[1]], 3)

ggplot(data = NULL) +
  geom_line(aes(x = ctreePerf@x.values[[1]],
                y = ctreePerf@y.values[[1]])) +
  ggtitle('ROC Plot for Classification Tree') +
  xlab('False Positive Rate') +
  ylab('True Positive Rate') +
  geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),
               linetype = 'dotted') +
  geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),
            size = 8)
Random Forests

The next step is to construct the random forest models. Begin by clearing the workspace. Random forest models can be generated using the `randomForest()` function from the `randomForest` package.

```r
rm(list = ls()[!(ls() %in% c('BR', 'COVRdata'))])
```

First we impute missing data. The function `rfImpute()` first imputes missing data by using the mean (for continuous data) or the mode (for categorical data). Next, a random forest is fit to the new dataset that no longer contains missing data. A proximity matrix is calculated such that the \((i,j)\)th entry contains the proportion of times that the \(i\)th and \(j\)th observation fall into the same terminal node. For continuous data, the missing values are imputed using the weighted (by proximity) average across the variable of the observations; for categorical data, the missing values are equal to the value with the largest proximity, averaged across all the observations for the variable in question. Random seeds are set for replication of results.

```r
set.seed(917)
COVRdataRF = rfImpute(Violence ~ ., COVRdata)
```

<table>
<thead>
<tr>
<th>ntree</th>
<th>OOB 1</th>
<th>OOB 2</th>
<th>OOB 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>300:</td>
<td>18.32%</td>
<td>0.92%</td>
<td>93.75%</td>
</tr>
<tr>
<td>300:</td>
<td>18.32%</td>
<td>1.18%</td>
<td>92.61%</td>
</tr>
<tr>
<td>300:</td>
<td>18.74%</td>
<td>1.83%</td>
<td>92.05%</td>
</tr>
</tbody>
</table>
The data are split into a training set and testing set. The testing set contains 282 (30%) observations; the training set contains the remaining 657 (70%) observations.

```r
set.seed(1983)
COVRtrain = sample_frac(COVRdataRF, .7)
COVRtest = COVRdataRF %>%
 filter(!([row_number()] %in% rownames(COVRtrain)))
```

Here, the random forest model is constructed using equal costs.

```r
set.seed(91783)
covrRF = randomForest(Violence ~ ., data = COVRtrain, ntree = 1000)
```

A confusion matrix for the training data is created; the misclassification error (i.e., the proportion along the off-diagonal) is the resubstitution error.

```r
confusionMatrix(predict(covrRF, COVRtrain), COVRtrain$Violence, positive = '1')
```

Confusion Matrix and Statistics

```
 Reference
Prediction 0 1
 0 538 0
 1 0 119

Accuracy : 1
95% CI : (0.994, 1)
No Information Rate : 0.819
P-Value [Acc > NIR] : <2e-16

Kappa : 1
Mcnemar's Test P-Value : NA

Sensitivity : 1.000
Specificity : 1.000
Pos Pred Value : 1.000
Neg Pred Value : 1.000
Prevalence : 0.181
Detection Rate : 0.181
Detection Prevalence : 0.181
Balanced Accuracy : 1.000

'Positive' Class : 1
```

The cross-validated error can be estimated using the testing dataset.
Confusion Matrix and Statistics

Reference
Prediction  0  1
  0  224  56
  1  1  1

Accuracy : 0.798
95% CI : (0.746, 0.843)
No Information Rate : 0.798
P-Value [Acc > NIR] : 0.535

Kappa : 0.02
Mcnemar's Test P-Value : 8.52e-13

Sensitivity : 0.01754
Specificity : 0.99556
Pos Pred Value : 0.50000
Neg Pred Value : 0.80000
Prevalence : 0.20213
Detection Rate : 0.00355
Detection Prevalence : 0.00709
Balanced Accuracy : 0.50655

'Positive' Class : 1

To visualize the separation between the violent and non-violent individuals, we construct parallel coordinate plots for the training data and the testing data.

```r
confusionMatrix(predict(covrRF, COVRtest), COVRtest$Violence, positive = '1')

data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtrain, type = 'prob'), select(COVRtrain, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +
 geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
 scale_x_continuous(breaks = c(0, 1),
 labels = c('Nonviolent', 'Violent')) +
 xlab('Predicted Outcome') +
 ylab('Estimated Probabilities') +
 scale_color_manual(values = c('darkorange', 'darkblue'),
 labels = c('No', 'Yes')) +
 ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)
Using Training Data')
```
Parallel Coordinate Plot for Random Forest Model (Equal Costs)
Using Training Data

# remove rfPreds
rm(rfPreds)

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtest, type = 'prob'),
                      select(COVRtest, Violence))
rfPreds = arrange(rfPreds, Preds.0)

ggplot(data = rfPreds) +
  geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
  scale_x_continuous(breaks = c(0, 1),
                     labels = c('Nonviolent', 'Violent')) +
  xlab('Predicted Outcome') +
  ylab('Estimated Probabilities') +
  scale_color_manual(values = c('darkorange', 'darkblue'),
                      labels = c('No', 'Yes')) +
  ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)
Using Testing Data')
Now the random forest model is constructed using unequal costs.

```r
Now the random forest model is constructed using unequal costs.
rm(covrRF, rfPreds)
set.seed(917)
covrRF = randomForest(Violence ~ ., data = COVRtrain, ntree = 1000,
cutoff = c(1-2*BR, 2*BR))
```

The misclassification rates:

```r
resubstitution error
confusionMatrix(predict(covrRF, COVRtrain), COVRtrain$Violence, positive = '1')
```

Confusion Matrix and Statistics

```
 Reference
Prediction 0 1
0 538 0
1 0 119

Accuracy : 1
95% CI : (0.994, 1)
No Information Rate : 0.819
P-Value [Acc > NIR] : <2e-16

Kappa : 1
```
McNemar's Test P-Value : NA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>1.000</td>
</tr>
<tr>
<td>Specificity</td>
<td>1.000</td>
</tr>
<tr>
<td>Pos Pred Value</td>
<td>1.000</td>
</tr>
<tr>
<td>Neg Pred Value</td>
<td>1.000</td>
</tr>
<tr>
<td>Prevalence</td>
<td>0.181</td>
</tr>
<tr>
<td>Detection Rate</td>
<td>0.181</td>
</tr>
<tr>
<td>Detection Prevalence</td>
<td>0.181</td>
</tr>
<tr>
<td>Balanced Accuracy</td>
<td>1.000</td>
</tr>
</tbody>
</table>

'Positive' Class : 1

```r
cross-validated error
c confusionMatrix(predict(covrRF, COVRtest), COVRtest$Violence, positive = '1')
```

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>217</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Accuracy : 0.823  
95% CI : (0.773, 0.865)  
No Information Rate : 0.798  
P-Value [Acc > NIR] : 0.168  

Kappa : 0.293  
McNemar's Test P-Value : 3.06e-06  

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.2632</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.9644</td>
</tr>
<tr>
<td>Pos Pred Value</td>
<td>0.6522</td>
</tr>
<tr>
<td>Neg Pred Value</td>
<td>0.8378</td>
</tr>
<tr>
<td>Prevalence</td>
<td>0.2021</td>
</tr>
<tr>
<td>Detection Rate</td>
<td>0.0532</td>
</tr>
<tr>
<td>Detection Prevalence</td>
<td>0.0816</td>
</tr>
<tr>
<td>Balanced Accuracy</td>
<td>0.6138</td>
</tr>
</tbody>
</table>

'Positive' Class : 1

And the parallel coordinate plots:

```r
data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtrain, type = 'prob'), select(COVRtrain, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) + geom_segment(aes(x = 0, xend = 1, y = Predict.0, yend = Preds.1, color = Violence)) + scale_x_continuous(breaks = c(0, 1),
```
Parallel Coordinate Plot for Random Forest Model (Unequal Costs)
Using Training Data

# remove rfPreds
rm(rfPreds)

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtest, type = 'prob'),
                     select(COVRtest, Violence))
rfPreds = arrange(rfPreds, Preds.0)

# remove rfPreds
rm(rfPreds)

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtest, type = 'prob'),
                     select(COVRtest, Violence))
rfPreds = arrange(rfPreds, Preds.0)
Now a random forest model with all the data and using the OOB error to estimate test error. First with equal costs.

```r
Clear workspace
rmlist = ls()[(ls() %in% c('BR', 'COVRdata', 'COVRdataRF'))]
Equal costs
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntree = 1000)
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')
```

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>749 166</td>
</tr>
<tr>
<td>TRUE</td>
<td>14 10</td>
</tr>
</tbody>
</table>

Accuracy : 0.808  
95% CI : (0.782, 0.833)  
No Information Rate : 0.813  
P-Value [Acc > NIR] : 0.649  

Kappa : 0.058  
Mcnemar's Test P-Value : <2e-16  
Sensitivity : 0.0568
Specificity : 0.9817  
Pos Pred Value : 0.4167  
Neg Pred Value : 0.8186  
Prevalence : 0.1874  
Detection Rate : 0.0106  
Detection Prevalence : 0.0256  
Balanced Accuracy : 0.5192

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVRdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +  
  geom_line(aes(x = rfPerf@x.values[[1]],
                y = rfPerf@y.values[[1]])) +  
  ggtitle('ROC Plot for Random Forest Model (Equal Costs)') +  
  xlab('False Positive Rate') +  
  ylab('True Positive Rate') +  
  geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),
               linetype = 'dotted') +  
  geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),
            size = 8)

ROC Plot for Random Forest Model (Equal Costs)

AUC = 0.75
```r
Parallel coordinate plot
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +
 geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
 scale_x_continuous(breaks = c(0, 1),
 labels = c('Nonviolent', 'Violent')) +
 xlab('Predicted Outcome') +
 ylab('Estimated Probabilities') +
 scale_color_manual(values = c('darkorange', 'darkblue'),
 labels = c('No', 'Yes')) +
 ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)
Using OOB Data')
```

Now with unequal costs.

```r
rm(covrRF, rfPreds, rfPerf, AUC)
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntree = 1000,
 cutoff = c(1-2*BR, 2*BR))
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')
```

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 748 163
TRUE 15 13

Accuracy : 0.81
95% CI : (0.784, 0.835)
No Information Rate : 0.813
P-Value [Acc > NIR] : 0.586

Kappa : 0.08
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.0739
Specificity : 0.9803
Pos Pred Value : 0.4643
Neg Pred Value : 0.8211
Prevalence : 0.1874
Detection Rate : 0.0138
Detection Prevalence : 0.0298
Balanced Accuracy : 0.5271

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) + 
  geom_line(aes(x = rfPerf@x.values[[1]], 
                  y = rfPerf@y.values[[1]])) +
  ggtitle('ROC Plot for Random Forest Model (Unequal Costs)') +
  xlab('False Positive Rate') +
  ylab('True Positive Rate') +
  geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),
               linetype = 'dotted') +
  geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),
             size = 8)
$AUC = 0.75$

ROC Plot for Random Forest Model (Unequal Costs)

# Parallel coordinate plot
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +
  geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
  scale_x_continuous(breaks = c(0, 1),
                    labels = c('Nonviolent', 'Violent')) +
  xlab('Predicted Outcome') +
  ylab('Estimated Probabilities') +
  scale_color_manual(values = c('darkorange', 'darkblue'),
                     labels = c('No', 'Yes')) +
  ggtitle('Parallel Coordinate Plot for Random Forest Model (Unequal Costs)
Using OOB Data')
Finally, using the OOB error to measure variable importance, we use a subset of variables for prediction, eliminating those that negatively affect or add very little to the accuracy. This is the “final model.”

```r
set.seed(1983917)
measuring variable importance
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntree = 1000, imp = T)

variable importance plots
varImp = data.frame(Variables = rownames(importance(covrRF)),
 Accuracy = importance(covrRF)[,3])
ggplot(data = varImp, aes(Accuracy, reorder(Variables, Accuracy))) +
 geom_point() +
 geom_vline(xintercept = 0, lty = 2) +
 xlab('Mean Decrease in Accuracy') +
 ylab('Variables') +
 ggtitle('Variable Importance Plot')
```
# select subset of variables that whose mean decrease in accuracy is greater than .5
COVRdataRF_Imp = select(COVRdataRF, Violence, (2:32)[select(varImp, Accuracy) > .5])

# final model
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF_Imp, ntrees = 1000)
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')

Confusion Matrix and Statistics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Prediction</th>
<th>FALSE</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALSE</td>
<td>747</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>TRUE</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Accuracy : 0.814
95% CI : (0.787, 0.838)
No Information Rate : 0.813
P-Value [Acc > NIR] : 0.487

Kappa : 0.11
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.0966
Specificity : 0.9790
Pos Pred Value : 0.5152
Neg Pred Value : 0.8245
Prevalence : 0.1874
Detection Rate : 0.0181
Detection Prevalence : 0.0351
Balanced Accuracy : 0.5378

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVRdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +
  geom_line(aes(x = rfPerf@x.values[[1]],
                 y = rfPerf@y.values[[1]])) +
  ggtitle('ROC Plot for Final Random Forest Model') +
  xlab('False Positive Rate') +
  ylab('True Positive Rate') +
  geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),
               linetype = 'dotted') +
  geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),
            size = 8)

ROC Plot for Final Random Forest Model

AUC = 0.75
# Parallel coordinate plot

```r
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +
 geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
 scale_x_continuous(breaks = c(0, 1),
 labels = c('Nonviolent', 'Violent')) +
 xlab('Predicted Outcome') +
 ylab('Estimated Probabilities') +
 scale_color_manual(values = c('darkorange', 'darkblue'),
 labels = c('No', 'Yes')) +
 ggtitle('Parallel Coordinate Plot for Final Random Forest Model')
```