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Multidimensional Scaling

Yoshio Takane, Sunho Jung,
and Yuriko Oshima-Takane

INTRODUCTION

The notion of similarity plays a fundamental
role in psychology, especially in cognitive
psychology. According to Tversky (1977),
similarity is an organizing principle by
which we categorize, generalize, and classify
objects. These activities are crucial for the
survival of species. Multidimensional scaling
(MDS) is a collection of data analysis
techniques for analysis of proximity data.
The word ‘proximity’ here refers to the
degree of similarity or dissimilarity among
stimuli (objects) of interest. (We use the
word ‘proximity’ as a superordinate term that
includes both similarity and dissimilarity.)
More specifically, MDS is a class of data
analysis techniques that represents a set of
stimuli as points in a multidimensional space
in such a way that the distances between them
best represent the observed proximity data
between the stimuli.

To illustrate, let us look at Figure 10.1A.
This is the Greek letter ψ . Ten points
on this letter were selected arbitrarily and
Euclidean distances between them were mea-
sured. The measured distances are presented
in Table 10.1. Measuring the inter-point
distances is straightforward using a rules.

But what about the reverse operation? Is it
as easy to recover relative locations of the ten
points based on the measured inter-point dis-
tances? We may use some geometric devices
(e.g., a pair of compasses). This, however,
is generally a much more difficult task than
measuring the inter-point distances. The role
of MDS is, roughly speaking, to perform
this reverse operation. That is, it recovers the
relative locations of points based on a set of
inter-point distances. Figure 10.1B presents
the ten points on the letterψ recovered by one
of the most basic algorithms for MDS. It can
be seen that the relative locations of the ten
points are almost perfectly recovered. Note
that the recovered configuration is ‘flipped’
and rotated relative to the original one. This
is because MDS uses only the interpoint
distance (usually Euclidean) information,
which has no information regarding the
‘right’ orientation of the coordinate axes.
(The remaining parts of Figure 10.1 will be
discussed later.)

What is the main purpose of MDS? In
essence, MDS obtains a graphical display of
stimuli (like the one given in Figure 10.1B)
based on their proximities (like those given
in Table 10.1). The pictorial representation
of the stimuli facilitates our understanding
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Figure 10.1 Recoveries of ten points sampled on letter ψ . (A) The original configuration.
(B) The configuration derived by the exact reverse operation (the Young–Householder
transformation followed by the eigenvalue and vector decomposition). (C) The configuration
derived from ranked distances by non-metric MDS. (D) Configurations in (B) and (C) rotated
into the best agreement with (A).

of the proximity relations between the
stimuli. By identifying meaningful direc-
tions and/or regions in the space, we may
be able to discover organizing principles
governing the proximity relations between
the stimuli. While this point may not
be so clear from the artificial example
given above, it will be made clearer in
more realistic applications of MDS to be
given later.

Does MDS make sense? Or, to be more
exact, does it make sense to represent the
proximity data by a distance model? In
MDS, stimuli are represented by points in a
multidimensional space in such a way that
the proximity relations between the stimuli
are best represented by the distances between
the points. This implies that, in order to apply
MDS to proximity data, the latter should in
some sense behave like distances.
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Table 10.1 Distances between 10 sampled
points on letter ψ

Label 1 2 3 4 5 6 7 8 9

2 7.18
3 10.32 3.13
4 4.58 4.53 2.74
5 3.42 4.85 7.80 1.17
6 3.28 4.30 7.36 1.70 .81
7 6.58 1.14 3.91 3.45 3.90 3.47
8 6.59 .98 3.85 4.60 4.68 4.00 1.68
9 2.51 5.49 8.54 4.72 3.71 3.02 5.23 4.70
0 2.84 6.04 9.02 5.52 4.50 3.82 5.89 5.19 .81

The distance is formally defined as any
function of two points satisfying three met-
ric axioms: minimality, symmetry, and the
triangular inequality. Minimality states that
the distance is always non-negative, and is
minimal (zero) when two points coincide.
Symmetry means that the distance from point
A to B is the same as the distance from
B to A. The triangular inequality means
that the distance from one point to another
by way of a third point is never smaller
than the straight distance (the shortest path)
between the two points. Do proximity data
have similar properties? We often observe
that: (1) a stimulus is most similar to itself
(minimality); (2) if stimulus A is similar to B,
stimulus B is also similar to A (symmetry);
and (3) if stimuli A and B are similar, and
stimuli B and C are similar, then stimuli
A and C are also reasonably similar to
each other (triangular inequality). That is,
in a majority of situations empirical simi-
larity data possess distance-like properties.
[however, see Tversky (1977), who presented
a number of counter examples]. This means
that MDS is a sensible method to apply
for analyzing similarity data at least as a
first approximation. (In the above, we only
referred to similarity data, but essentially
the same argument holds for dissimilarity
data as well.)

The rest of this chapter is organized as
follows. We first discuss several elements
that need to be addressed before applying
MDS. Specifically, we answer the following
questions in the next few sections: Which
distance models do we use? How do we collect

proximity data? How are proximity data and
distance models functionally related? How do
we measure the goodness of representation?
These methodological sections are followed
by examples of the application of MDS:
simple MDS, individual differences MDS,
and unfolding analysis. Throughout this
chapter, technical matters (e.g., optimization
algorithms) are kept to a minimum. The reader
is referred to Borg and Groenen (2005) for
discussions on more technical details.

DISTANCE MODELS

Many distance functions satisfy the three
metric axioms. Which distance functions
do we use in MDS? In this chapter, we
largely limit our attention to the Euclidean
distance model and its variants. [see Arabie
(1981), and Hubert, Arabie, and Hesson-
Mcinnis (1994) for applications of the city-
block distance model, the distance model next
most often discussed after Euclidian distance.]
The Euclidean distance is the most familiar
distance function in our everyday life, and
consequently allows relatively easy interpre-
tation of stimulus configurations derived by
MDS. It is also relatively easy to fit this model
compared to other distance functions.

The Euclidean distance model can easily
be parameterized in term of the Cartesian
coordinate system, which is another attractive
feature of this model. Let xir denote the
coordinate of point i on dimension r. Then
dij, the Euclidean distance between the points
i and j, is calculated by:

dij =
{

R∑
r=1

(xir − xjr)2

}1/2

(1)

where R is the dimensionality of the represen-
tation space. In MDS, the set of coordinate
values {xir} for i = 1, · · · , n (where n is
the number of points) and r = 1, · · · ,R are
determined in such a way that the set of dijs
calculated from the xirs are as close as possible
to the observed proximity data.

The Euclidean distance is invariant over
rotation of the coordinate axes and over
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translation (shift) of the origin. These inde-
terminacies are often handled by putting
the origin at the centroid of the stimulus
configuration and by placing the axes in the
principal axis directions (a set of orthogonal
directions in the space in which the variability
in coordinate values is successively largest).
These conventions are, however, essentially
arbitrary. The stimulus configuration may also
be rotated in such a way that the coordinate
axes have easier interpretations.

Aset of distances may be arranged in matrix
form D with dij as the ijth element (the element
in the ith row and the jth column). Matrix D is
symmetric, and hollow (the diagonal elements
are zero). The stimulus coordinates xir may
also be collected in matrix form denoted by
X. This matrix is n by R with xir representing
its irth element.

In many applications of MDS, proximity
data are collected from a group of subjects.
How are those proximity matrices related?
If no systematic individual differences are
suspected, a single common Euclidean dis-
tance model may be fitted to all of them
simultaneously. However, in many situations
the assumption of no systematic individual
differences is unrealistic. In such a case, each
proximity matrix may be analyzed separately,
yielding as many stimulus configurations
as there are proximity matrices. A natural
question is how they are related. In most cases,
there are both common and unique aspects in
proximity judgments obtained from different
individuals. If so, couldn’t there be a better
way of analyzing the data?

The individual differences (ID) MDS
model we discuss in this chapter is designed
to partially answer the above question. It
captures both commonality and individual
differences in a unified framework (Carroll
and Chang, 1970). More specifically, it
postulates a common stimulus configuration,
but that dimensions in the common configu-
ration are differentially weighted by different
individuals to give rise to differences in
proximity data by different individuals. To
illustrate, let us look at Figure 10.2, where the
same letter ψ as in Figure 10.1 is displayed.
The letter ψ depicted in Figure 10.2A may be

perceived differently by different individuals.
For example, subject 1 may perceive it as the
dashed ψ in Figure 10.2B, subject 2 as the
solid ψ in Figure 10.2B, subject 3 as depicted
in Figure 10.2C, and subject 4 as depicted
in Figure 10.2D. These configurations are
all related by differential weighting of
dimensions, uniform contraction or dilatation
(10.2B), vertical elongation (10.2C), and
horizontal elongation (10.2D). The particular
ID MDS technique we discuss in this chapter
assumes these kinds of relationships among
the stimulus configurations obtained from
different individuals.

The idea of differential weighting of dimen-
sions in a common stimulus configuration
can be captured by the weighted Euclidean
distance model written as:

dijk =
{

R∑
r=1

wkr(xir − xjr)2

}1/2

(2)

where dijk is the distance between stimuli i
and j for individual k, xir is the coordinate
of stimulus i on dimension r in the common
stimulus configuration, and wkr is the weight
attached to dimension r by subject k. Uniform
contraction can be captured by weights
smaller than one across all dimensions,
uniform stretching by weights uniformly
larger than one, vertical elongation by a
weight for the vertical dimension larger than
one, horizontal elongation by a weight for the
horizontal dimension larger than one, and so
on. The individual difference weights may be
arranged in a K by R matrix W , where K is
the total number of individuals.

To eliminate the size indeterminacy
between the stimulus configuration and
the individual difference weights, the
former is typically constrained to satisfy∑n

i=1 x2
ir/n = 1 for r = 1, · · · ,R. In contrast

to the simple Euclidean distance model, the
orientation of the coordinate axes is uniquely
determined (except for reflection and permu-
tation) in the weighted Euclidean model.

Individual differences are much more
prevalent in preference judgments. Preference
data are often analyzed by a variant of MDS
called unfolding analysis (Coombs, 1964).
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Figure 10.2 Letter ψ dimensionwise differentially weighted. (A) The original configuration.
(B) Uniformly dialated (dashed) and contracted (solid) configurations. (C) A vertically
elongated configuration. (D) A horizontally elongated configuration.

In unfolding analysis, each subject is assumed
to have an ideal stimulus represented as the
subject’s ideal point in the multidimensional
space in which actual stimuli are also
represented as points. The distances between
the ideal point and the stimulus points are
assumed inversely related to the subject’s
preferences on the stimuli. Let xir denote
the coordinate of stimulus i on dimension r,
and yjr the coordinate of subject j’s ideal
point on dimension r. The Euclidean distance
between stimulus point i and ideal point j is
calculated by:

dij =
{

R∑
r=1

(xir − yjr)2

}1/2

(3)

The coordinates of the ideal and stimulus
points are determined in such a way that the
preference values of stimuli for a particular
individual are a decreasing function of the

distances between the stimulus points and his
ideal point. This implies that the closer a
stimulus point is to his ideal, the more it is pre-
ferred by that subject. The preference relations
are thus regarded as representing proximity
relations between the subjects’ ideal stimuli
and actual stimuli. In unfolding analysis, we
are given an N by n data matrix obtained from
N subjects making preference judgments on
n stimuli. By subjecting the data matrix to
unfolding analysis, we obtain two coordinate
matrices, one for stimulus points (an n by R
matrix X with xir as the irth element), and
the other for subjects’ ideal points (an N by R
matrix Y with yjr as the jrth element).

DATA COLLECTION METHODS

There are a number of different ways of
collecting proximity data. In this section, we
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discuss some that are often used in MDS.
The methods can roughly be classified into
two groups. One involves direct judgments of
(dis)similarity, and the other involves indirect
judgments. In the latter, the investigator
typically asks the subjects to do a certain
task (e.g., discrimination between stimuli),
and how well (or badly) the subjects do in
the task is taken as a (dis)similarity measure
between stimuli.

Direct judgments

Amajority of data analyzed by MDS use direct
judgments of (dis) similarity.There are several
variants in this category.

Rating
The most straightforward method is to ask the
subject to rate the degree of (dis)similarity
between two stimuli at a time on a rating scale.
It is preferable to have as many categories as
possible in the rating scale, considering the
statistical efficiency of judgments. Consider,
as an example, a brand manager who wants
to collect dissimilarity data about 10 different
brands of chocolate using this method.
He may ask the subjects to record their
overall impression of the degree to which
each possible pair of chocolates differ on
10-point scale (i.e., 1 = extremely similar,
and 10 = extremely dissimilar). Most of the
example data sets analyzed in this chapter
were collected by this method.

Multiple ratio judgments
In addition to a set of experimental stimuli
(i.e., stimuli of direct interest to the investiga-
tor), a reference stimulus, which is not among
the experimental stimuli, is prepared. The
investigator chooses a stimulus as a standard
stimulus from the set of experimental stimuli,
and indicates the dissimilarity between the
standard and the reference stimuli by a phys-
ical distance. (He places the two stimuli at a
certain distance apart and tells the subject that
the physical distance between them represents
the dissimilarity between them.) The subject
is asked to judge dissimilarities between the
standard and all other experimental stimuli in

terms of the distance between the standard and
the reference stimuli. Once all dissimilarity
judgments are obtained for a fixed standard,
the standard stimulus is replaced, and the
whole process is repeated until all stimuli in
the experimental set have served as a standard.
Inukai (1981) used this method to collect
dissimilarity judgments on facial expressions
constructed by varying the curvature of lips
and eyes systematically [see Example 9 in
Takane (2007)].

Rank order
The subject is asked to rank the dissimilarities
between stimuli. The most representative
method in this class is the method of
conditional rank orders. In this method one
of the stimuli serves as a standard stimulus
at a time. The subject is asked to pick a
stimulus among the remaining stimuli that is
most (dis)similar to the standard, and after this
stimulus is excluded from the comparison set,
to pick the next most (dis)similar stimulus,
and so on until a complete rank ordering of
(dis)similarity is obtained for a fixed standard.
Then, the standard stimulus is switched and
the same procedure is followed until all
stimuli have served as a standard. The body
parts data analyzed by Takane, Young, and de
Leeuw (1977) were collected by this method
[see also Example 10 in Takane (2007)].

Sorting
A group of subjects is given a set of stimuli
and asked to sort them into as many categories
as they want in terms of (dis)similarity among
them, so that the stimuli within the same group
are more similar to each other than those
classified into different groups. In a fairly
standard format, the investigator prepares a
deck of 3-inch by 5-inch index cards with
stimuli printed on the cards. The subjects are
asked to sort them into several piles. The
frequency of two stimuli bring classified into
the same category is most commonly used as
a similarity measure between the stimuli. The
sorting method is very easy to use, particularly
when the number of stimuli involved is very
large. Because of its simplicity, it is a very
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popular method in social sciences. Dunn-
Rankin and Leton (1975) used this method
to collect similarity data on 46 Japanese
Kana characters (phonetic symbols). Results
of MDS are reported as Example 2 in
Takane (2007). Takane (1980) also developed
a special MDS technique that is specifically
designed to analyze sorting data. He applied
the method to 29 have words (e.g., ‘belong’,
‘lose’, etc.) sorted according to the similarity
of their meaning by 10 university students
[see also Example 3 in Takane (2007)]. Later
in this chapter (see the section ‘Example 2.
animals’, p.000), we present an example of
MDS analysis of sorting data.

Indirect methods

Confusion data
Clearly, the more similar two stimuli are,
the more confusable they are (the higher
the probability that the two stimuli will be
confused). Stimuli are presented in pairs and
the subject is asked to judge whether the two
stimuli are the same or different. (This is called
a same–different judgment.) The proportion of
the same judgments when a pair of different
stimuli are presented is taken as a measure
of similarity. Typically, equal numbers of
same and different pairs are presented not
to bias subjects’ responses in one way
or the other. Rothkopf (1957) obtained a
confusion matrix between 36 Morse code
signals [see Shepard (1963) for an analysis of
Rothkopf’s data by MDS]. Schneider (1972)
collected confusion data from pigeons, who
were trained to discriminate between two
simultaneously presented colors (to peck the
left lever when two colors were the same, and
the right lever when they were different), and
analyzed the data by MDS [see Examples 1
and 4 in Takane (2007)].

Another form of confusion data is called
stimulus identification (or recognition) data.
The subject is presented with one stimulus
at a time out of n possible stimuli, and
is asked to tell which of the n stimuli is
presented. The number (or the proportion)
of times the presented stimulus is misjudged
as another stimulus is used as a similarity

measure between the two [see Takane and
Shibayama (1986, 1992) for examples]. The
stimulus identification data are typically
asymmetric. There are special MDS methods
specifically designed to analyze this type
of data, incorporating bias parameters to
account for the asymmetry. When a general-
purpose MDS program is used, the data are
usually symmetrized by taking averages of the
corresponding elements.

Frequency of co-occurrences
The sorting data described above may be
viewed as a special case of co-occurrence
frequency data. An example is the frequency
with which two personality traits are used
to describe the same person. The more
frequently two traits are used to describe the
same person, the more similar they are. In the
same way, two individuals who share more
personality traits in common are more similar
to each other than those with fewer traits in
common.

Response latency (reaction time)
When two stimuli are similar, it takes more
time to discriminate between them. Thus,
the time required to tell the difference
between them may be used as a similarity
measure. Reaction time is usually measured
in the context of ‘same–different’ judgments
described above. Two stimuli are presented at
a time, and subjects are instructed to judge
whether the stimuli presented are the ‘same’
or ‘different’ as quickly as possible. Reaction
time data are usually very variable, and quite
a large number of replicated observations
are necessary to obtain a reliable stimulus
configuration by MDS. Takane and Sergent
(1983) used reaction time data for MDS of
line drawings of faces. Takane (1994) also
used this type of data for MDS of digits [see
Examples 7 and 8 in Takane (2007)].

Social interaction
The frequency of social interactions (e.g., the
number of times two persons have dinner
together) may be used as an indication of the
degree of intimacy in the relationship. The
degree of intimacy may be analyzed by MDS
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to derive an intimacy map for a group of
people.

Profile dissimilarity
Sometimes it happens that stimuli are rated on
a number of attributes (multivariate or profile
data). Then profile dissimilarity, defined by

oij =



J∑
p=1

(zip − zjp)2




1/2

(4)

where zip is the value of stimulus i on attribute
p, may be used as a dissimilarity measure
between stimuli i and j. The idea is that if the
profiles on various attributes are similar, the
stimuli must be similar overall. Alternatively,
a correlation coefficient between two stimuli
over the set of attributes may be calculated and
used as a similarity index between the stimuli.

Different (dis)similarity measures may rep-
resent different aspects of similarity relations
among stimuli. Thus, it is possible to obtain
somewhat different representations of the
same set of stimuli if different data collection
methods are used.

The observed proximity (similarity or
dissimilarity) between stimuli i and j is
denoted by oij. The oijs may be placed in
matrix O. This matrix is n by n, and has oij as
its ijth element. It is usually symmetric, and
hollow as the matrix of distances D. If it is
initially asymmetric, it is often symmetrized
by (O + O′)/2, where O′ indicates the
transpose of O. When there are more than
one replicated observation for each pair of
stimuli, we add a third subscript k to oij. Thus,
oijk denotes the observed proximity between
stimuli i and j in replication k. The matrix of
oijk is denoted by Ok .

We discuss a couple more kinds of
proximity data. So far proximity data have
been defined between stimuli within one set.
That is, a set of stimuli of interest is specified,
and proximity data are obtained for pairs of
stimuli drawn from this set. Proximity data
may be defined between ‘stimuli’ drawn from
two distinct sets. For example, suppose a
group of people are responding to a set of
questions in an opinion survey. In this case,

there are a set of respondents and a set of
question items. One element each is drawn at
a time from these two sets, and a proximity
relation (the degree of agreeableness to an
item) is observed between them. This kind of
proximity data may be analyzed by unfolding
analysis as described in the previous section.

Preference data
A group of people give preference judgments
on a set of stimuli. Preference data are
viewed as indicating similarities between
respondents’ ideal stimuli and actual stimuli.

Contingency tables
Entries in a contingency table indicate fre-
quencies of joint occurrences of row and
column categories, which may be considered
as representing similarities between them.
This type of proximity data have been
traditionally analyzed by a technique called
correspondence analysis (Greenacre, 1984;
Hwang, Tomiuk, and Takane, Chapter 11;
Nishisato, 1980). Takane (1987) and collab-
orators (Takane, Bozdogan, and Shibayama,
1987; van der Heijden, Mooijaart, and Takane,
1994) developed a maximum likelihood MDS
technique called ideal point discriminant
analysis (IPDA) specifically designed to
analyze this kind of proximity data.

SCALE LEVELS OF MEASUREMENT

As noted above, a variety of proximity mea-
sures can potentially be used in MDS. These
measures differ not only in their appearance,
but also in the type of functional relation-
ships they have with underlying distances.
The method of multiple-ratio judgments is
intended to collect dissimilarity data that are
linearly related to the distances, although
whether the subjects can meet the demand
is an empirical question. In some cases, an
explicit analytic function can be postulated,
which relates distances to observed proximity
data. These cases are rather rare, however, and
in most cases we may assume that the proxim-
ity data are only approximately monotonically
related to the underlying distances. In some
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cases, the data measure similarity rather
than dissimilarity. In such cases, the data
have to be transformed to make them more
directly (linearly) related to the underlying
distances. The transformation of the data may
be performed either before MDS is conducted
if an appropriate transformation is known in
advance, or may be done within the MDS
algorithm.

Approximate functional relationships bet-
ween observed data and models are called
scale levels of measurement. Five scale levels
are traditionally distinguished in psycholog-
ical literature: ratio, interval, log-interval,
ordinal, and nominal, of which only the first
four types are relevant in MDS. When the
dissimilarity data are roughly proportional to
underlying distances, i.e., oij ≈ adij, where
a is a positive constant, we say that the
observed data are measured on a ratio scale.
This type of relationship between distances
(dij) and dissimilarities (oij) is depicted in
Figure 10.3A. It is linear and passes through
the origin. (This is called the “similarity’
transformation in mathematics.) In the ratio-
scaled measurement, there is an intrinsic
origin (the 0 point), so that the ratio of two
numbers is meaningful. As a can be absorbed
by the size of stimulus configuration, we may
assume without loss of generality that it is
unity, and we can directly fit the distances
to observed dissimilarity data in this case.
However, it is rare to find dissimilarity data
measured on a ratio scale.

When the dissimilarity data are approxi-
mately linear but the zero distance does not
correspond to zero dissimilarity, i.e., oij ≈
adij +b for nonzero b, we say that the data are
measured on an interval scale. This is similar
to the ratio scale above, but the function
that relates distances to dissimilarity does
not pass through the origin, as depicted in
Figure 10.3B, where b is assumed positive.
(This type of transformation is called an
affine transformation.) In the interval-scaled
measurement the ratio of two numbers cannot
be meaningfully interpreted due to an arbitrary
origin, although the ratio of the differences
between two numbers is meaningful. The
difference effectively cancels out the effect

of an arbitrary origin. When b = 0, this
case reduces to the ratio-scaled measurement.
Some classical methods of collecting dis-
similarity data (e.g., the method of tetrads,
not mentioned in the previous section)
are believed to provide interval-scaled dis-
similarity data after appropriate scaling of
pair comparison judgments. However, these
methods are often very time consuming, and
have rarely been used in practice.

When the observed dissimilarity data and
the underlying distances are approximately
related by a power transformation, i.e.,
oij ≈ adb

ij, we say that that the data are
measured on an log-interval scale. This type
of functional relationship is depicted for b < 1
in Figure 10.3C, which is a negatively acceler-
ated monotonic function. (If b > 1, the power
transformation is positively accelerated.)
A power transformation reduces to an affine
transformation, if the log is taken of both sides
of the equation (i.e., ln oij ≈ b ln dij + ln a),
thus the name log-interval scale. When b = 1,
this transformation reduces to a similarity
transformation. Rating data often satisfy this
level of measurement scale.

When the observed data are only mono-
tonically related to underlying distances, i.e.,
oij ≥ oi′j′ implies dij ≥ di′j′ , or the observed
data are inversely monotonically related to
distances, i.e., oij ≥ oi′j′ implies dij ≤ di′j′ ,
we say that the data are measured on an
ordinal scale. (The monotonic relationships
between oij and dij cannot be expressed
by an explicit analytic function.) In the
former case, we have dissimilarity data,
while in the latter we have similarity data.
The case of ordinal dissimilarity data is
depicted in Figure 10.3D, and the case
of ordinal similarity data in Figure 10.3E.
Monotonic functions are sometimes called
order-preserving transformations. When the
observed data are measured on an ordinal
scale, an MDS algorithm has to be able to find
the best monotonic transformation of the data
as well as the stimulus configuration that best
fits to the monotonically transformed data.

The four types of scale are hierarchically
organized. The ratio scale is a special case
of both interval (b = 0) and log-interval
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Figure 10.3 Four scale levels of measurement. (A) Ratio scale (b = 0). (B) Interval scale
(b = 1). (C) Log-interval scale (a = .8, b = 1.2). (D) Ordinal scale (monotonically increasing),
indicating that o is dissimilarity. (E) Ordinal scale (monotonically decreasing), indicating that
o is similarity.

(b = 1) scales. All the transformations dis-
cussed are monotonic including the ratio,
interval, and log-interval scales. The ratio
scale is the most stringent, while the ordinal
scale is the least stringent and most flexible.
There is a trade-off between a more stringent

and a less stringent scale level assumption
in MDS. While the less stringent assumption
tends to produce estimates of parameters that
are less biased, but with larger variances, the
more stringent assumption tends to produce
just the opposite. It is recommended that
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one starts with a less stringent assumption,
but once an explicit functional relationship is
found, one may switch to a more stringent
assumption by incorporating the explicit
analytic form.

The distinctions among the different scales
is important as certain MDS procedures are
appropriate only for data collected on some
scales. MDS procedures which assume either
a ratio, interval, or log-interval scale are
called metric MDS. Others that assume only
an ordinal scale are called nonmetric MDS
(Kruskal, 1964a, 1964b; Shepard, 1962). In
nonmetric MDS, a stimulus configuration
is determined in such a way that the rank
order of distances between stimulus points
best agrees with the rank order of observed
dissimilarities. Nonmetric MDS is found to be
useful in psychology and related fields, where
proximity data based on ordinal measures are
prevalent.

To give an indication of how it is possible to
derive a stimulus configuration based on the
ordinal information about distances alone, let
us look at Table 10.2, which displays ranked
distances fromTable 10.1.The tabled numbers
are thus only monotonically related to the
underlying distances, and are considered
dissimilarity data measured on an ordinal
scale. A nonmetric MDS procedure was
applied to this data set. The derived stimulus
configuration is depicted in Figure 10.1C.
The derived configuration was then rotated to
match the original configuration as much as
possible in Figure 10.1D. Although there are
some distortions in the derived configuration
due to the loss of information, it can be
observed that the original configuration is
recovered remarkably well from rank-ordered
distances. This indicates that ordinal informa-
tion is often sufficient to recover a stimulus
configuration.

FITTING CRITERIA

Observed proximity data typically contain
a sizable amount of measurement errors,
which is why we described approximate
relationships between the observed data and

Table 10.2 Rank-ordered interpoint
distances between 10 sampled points on
letter ψ

No. 1 2 3 4 5 6 7 8 9

2 39
3 45 11
4 25 24 40
5 13 34 42 5
6 12 22 41 7 1
7 37 4 20 14 19 15
8 38 3 18 26 27 21 6
9 8 33 43 29 16 10 32 28
0 9 36 44 34 23 17 35 31 1

models in the previous section. In such cases,
we are not seeking an exact representation
of the input data, but rather an approximate
solution that ‘best’ represents the observed
proximity data. However, this requires an
explicit definition of how to measure the
discrepancy between the data and model
predictions. Parameters in the distance model
(i.e., stimulus coordinates) are then estimated
so as to minimize the discrepancy. There are
two classes of discrepancy functions tradi-
tionally used in MDS: the least squares (LS)
criterion, and the maximum likelihood (ML)
criterion. In this section, we briefly discuss
these criteria. We start with the simplest case
(i.e., the ratio scale, no replications), and
gradually introduce more complicated cases
(weaker measurement scales, replications,
individual differences, etc.).

Let us begin with LS estimation. It is
assumed for the moment that oij, the observed
dissimilarity between stimuli i and j, is
measured on a ratio scale. Let dij denote the
Euclidean distance between points i and j as
defined in (1). In the LS estimation, we find
stimulus coordinates X = {xir} that minimize
the discrepancy defined as:

φ(X) =
n∑

i<j

(oij − dij)
2 (5)

(The constant of proportionality a is assumed
to be unity without loss of generality.) Finding
such a solution presents some challenge.
A general strategy is to take the derivatives of
the above criterion with respect to the model
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parameters (X), which are set equal to zero.
This leads to a set of simultaneous equations
to be solved by an iterative algorithm in which
an initial estimate of X is gradually improved
according to the gradients (the derivatives of
a fitting criterion with respect to unknown
parameters evaluated at the current estimates
of parameters) until a sufficiently good
approximation to the solution is obtained [see
Borg and Groenen (2005) for a more detailed
explanation of optimization algorithms used
in MDS].

An LS criterion is sometimes defined in
terms of inner products derived from squared
Euclidean distances. Let:

pij = (d
2
i. + d

2
.j − d

2
.. − d2

ij)/2 (6)

where d
2
i. is the mean of d2

ij over j, d
2
.j is the

mean of d2
ij over i, and d

2
.. is the mean of d2

ij
over both i and j, and let:

p̂ij = (o2
i. + o2

.j − o2
.. − o2

ij)/2 (7)

where o2
i., o2

.j, and o2
.. are analogously defined.

[These transformations are called the Young–
Householder (1936) transformations.] Using
these quantities, we define a LS criterion:

ϕ(X) =
n∑

i>j

(p̂ij − pij)
2 (8)

which is minimized with respect to X as
before. One nice thing about this criterion
is that such an X can be obtained in closed
form. We simply obtain the eigenvalue and
vector decomposition of the matrix of p̂ij, and
retain only those portions of the matrix of
eigenvectors pertaining to the R largest eigen-
values. This procedure is called classical MDS
(Torgerson, 1952). The solution is simple and
straightforward, but the required scale level
assumption is rather stringent. Incidentally,
this was the method used to recover the ten
points configuration on the letter ψ discussed
in the introduction section, where oij is set
equal to dij.

If the dissimilarity data are measured on an
interval scale, (5) is modified to:

φ(X, b) =
n∑

i<j

(oij − dij − b)2 (9)

which is minimized with respect to both
X and the additive constant b. A similar
iterative procedure to the above may be
used to minimize this criterion. The Young–
Householder transformation may be used in
this case as well, but the resultant procedure
is more complicated, as the effect of the
transformation on b must be taken into
account. The estimation of b requires an
iterative solution in any case, although once
b is estimated, the stimulus coordinates can
be obtained in closed form as before.

When the dissimilarity data are measured
on a log-interval scale, we may take the log of
both oij and dij, and define:

ϑ(X, a, b) =
n∑

i<j

(ln oij − b ln dij − ln a)2

(10)

which is minimized with respect to X, a, and b
by an iterative method.Although this criterion
is rarely used in the context of LS estimation
per se, essentially the same criterion plays an
important role in ML estimation, as will be
explained below.

When the (dis)similarity data are measured
on an ordinal scale (nonmetric MDS), we
simultaneously transform the data mono-
tonically (or inverse monotonically), and
fit a distance model to the transformed
data. Let m(oij) represent the monotonically
transformed data, and define:

φ(X,m) =
n∑

i<j

(m(oij) − dij)
2 (11)

This is called the raw stress, and is minimized
with respect to both X and m subject to the nor-
malization restriction that

∑n
i<j m(oij)2 = c.

(The normalization restriction is necessary
because there is no intrinsic scale for trans-
formed data, and the raw stress can be made
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identically equal to zero by setting m(oij) = 0
for all i and j.)Alternatively, the normalization
restriction may be directly incorporated into
the stress function. That is, the raw stress can
be normalized as:

φ(1)(X,m) = φ(X,m)/
n∑

i<j

d2
ij (12)

or as:

φ(2)(X,m) = φ(X,m)/
n∑

i<j

(dij − d..)2 (13)

where d.. is the mean of dij. These are called
the normalized stress 1 and 2, respectively,
and can be minimized without any further
normalization restriction. The minimization
is done by a rather elaborate minimization
strategy, combining a monotonic regression
algorithm (Kruskal, 1964a, 1964b) with the
iterative optimization procedure described
earlier.

When there are replicated observations,
each of the above criteria may be modified
to include another summation (over repli-
cations). Let oijk denote the dissimilarity
between stimuli i and j in replication k.
Then (5), for example, may be extended to:

φ(X) =
K∑

k=1

n∑
i<j

(oijk − dij)
2 (14)

Other criteria mentioned above may also be
similarly extended. However, in (9), (10), and
(11), a, b, and m may be allowed to vary
across different replications. In that case, the
normalization restriction should be imposed
within each replication separately.

When the individual differences (ID) dis-
tance model (2) is fitted, we may simply
replace dij in (14) by dijk . Other criteria
tailored to various scale levels can be similarly
redefined. These criteria are minimized with
respect to both X and W . In ID MDS, however,
it is more popular to define a fitting criterion
in terms of inner products as follows: Let p̂ijk

and pijk denote the observed and model inner

products, respectively, derived analogously to
(6) and (7) for each k. Then:

ϑ(X,W ) =
K∑

k=1

n∑
i>j

(p̂ijk − pijk)2 (15)

This criterion is valid only for ratio-scaled
dissimilarity data.

In unfolding analysis (3), we may simply
replace the range of summation from

∑n
i<j

in (5), (9), (10), and (11) to
∑N

j
∑n

i ,
where i is the index of stimuli and j is
the index for subjects. The only difference
is that in unfolding analysis these criteria
are minimized with respect Y as well as
X and other data transformation parameters.
Experience has indicated that these criteria
often lead to so-called degenerate solutions in
unfolding analysis. The degenerate solutions
fit the data (or the transformed data) nearly
perfectly, but are substantively uninteresting.
The most common form of a degenerate
solution is one in which stimulus points
and ideal points are completely separated in
the space. To avoid this type of degenerate
solution, Busing, Groenen, and Heiser (2005)
proposed to penalize the LS criteria by
the coefficient of variation. The resultant
computer program, PREFMAP, does a good
job in avoiding degenerate solutions.

In the ML estimation, we make a specific
distributional assumption on oijk , based on
which we define the likelihood of observing
the set of proximity data at hand as a
function of X. We then find X that maximizes
the likelihood. Let us assume a log-normal
distribution on oijk measured on a log-interval
scale, as in Ramsay (1977, 1982). This
distribution has several desirable properties
as the distribution of observed dissimilarity
data. First of all, it is defined only for positive
values of oijk . Second, it is positively skewed,
indicating that large errors tend to occur on the
positive side. Finally, it has larger variances
for larger distances. It is convenient to take the
log of oijk , since the log-normal distribution
then reduces to a normal distribution. That is:

ln oijk ∼ N (bk ln dij + ln ak, σ
2) (16)
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Then, the log likelihood for an entire set of
observations can be stated as:

ln L(X, ak, bk, σ
2) = −1

2
(

S

σ 2
+ M ln σ 2)

(17)

where:

S =
K∑

k=1

n∑
i>j

(ln oijk − bk ln dij + ln ak)2

(18)

and M is the total number of observations.
Maximizing (17) with respect to σ 2 leads to:

σ̂ 2 = S/M. (19)

Let:

ln L∗(X, ak, bk)
def= ln L(X, ak, bk, σ̂

2) =
−

(
M

2

)
(ln S + 1 − ln M). (20)

Maximizing this criterion with respect to X,
ak , and bk is equivalent to minimizing ln S,
which in turn is equivalent to minimizing S.
(Note that S reduces to (10) when there is a
single replication per stimulus pair.) The S is
minimized with respect to X , ak , and bk by
a similar iterative optimization technique as
those used in the LS estimation.

The likelihood function in ML MDS varies
from one type of proximity data to another,
since it has to take into account a specific
response mechanism that generates a specific
type of proximity data. ML MDS procedures
have been developed for a variety of prox-
imity data by Takane and his collaborators
(Takane, 1978, 1981, 1987; Takane and
Carroll, 1981; Takane and Sergent, 1983;
Takane and Shibayama, 1986), each requiring
a different specification of the likelihood
function.

The MLestimation provides asymptotically
efficient estimates of parameters, when the
fitted model and the distributional assumption
are correct. It also provides information
regarding how reliably stimulus coordinates

are estimated, and some hypothesis testing
capabilities. The AIC statistic, defined by:

AICπ = −2 ln L∗
π + 2nπ (21)

may be used to identify the best fitting model,
where π indicates a specific model fitted, L∗

π

is the maximum likelihood of model π , and
nπ is the effective number of parameters. The
model associated with the smallest value of
AIC indicates the best fitting model. Note
that the above remarks should be taken
with some caution. The distance model is
never exactly correct, and the log-normal
assumption is often only approximately true.
In addition, in most applications there are not
enough observations to rely on the asymptotic
properties of ML estimators.

EXAMPLES OF APPLICATION: THE
SIMPLE EUCLIDEAN MODEL

In this section, we present two examples
of applications of MDS with the simple
Euclidean model to real data sets. The first
example pertains to dissimilarity judgments
made on visual characteristics of ten phonetic
symbols in Korean (representing vowels). The
second example concerns similarity data for
18 animals collected by the sorting method.

Example 1: similarity of shape
among ten Korean phonetic symbols

This study employed simple MDS (MDS
with the simple Euclidean model) to represent
the visual similarity between ten Korean
phonetic symbols in an MDS configuration.
The Korean alphabet (Hangul) has ten simple
vowels based on two distinctive elements: a
long line segment combined with zero, one,
or two short line segments. The ten stimuli
used are: , , , , , , , , , and .
The subjects were four university students
(one female and three males). All subjects
were English speakers (three native and
one bilingual (French/English)] with normal
vision, who had no previous Korean learning
experience. The visual dissimilarity among
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the 10 Korean phonetic symbols were rated on
a 9-point rating scale. They were allowed to
take as much time as they needed to make their
judgments. All pairs of stimuli were arranged
in random order, and presented to the subjects.
All participants completed a questionnaire
with 45 pairs of stimuli.

We used MULTISCALE (Ramsay, 1997), a
maximum likelihood MDS program, to derive
a multidimensional stimulus configuration.
The minimum AIC criterion indicated that the
two-dimensional solution is the best (AIC1 =
322.0; AIC2 = 290.2; AIC3 = 293.1). The
two-dimensional weighted Euclidean model
was also fitted, which turned out to be
not as good as the two-dimensional simple
Euclidean model (AIC = 296.0). Figure 10.4
displays the optimal two-dimensional stimu-
lus configuration. Dimension 1 (the horizontal
direction) contrasts symbols with a long
vertical line segments on the right and
those with a long horizontal line segment
on the left. Dimension 2, on the other
hand, roughly corresponds to the number of
small segments attached to the long segment.
Symbols with two short segments are located
at the top, those with one short segment
in the middle, and those with no short
segments toward the bottom. It seems that
the similarity relations among the 10 Korean

Figure 10.4 Two-dimensional configuration
of 10 Hangul symbols (vowels visually
presented). See text for further details.

phonetic symbols are organized around two
principal attributes: the orientation (horizontal
or vertical) of a long line segment, and the
number of short segments attached to the long
segment. This kind of information may be
useful for language acquisition researchers
in understanding how people perceive visual
relationships among the symbols.

Example 2: animals

The second example in this section involves
similarity judgments between 18 animals
collected from 20 subjects by the sorting
method. The subjects were asked to classify
the 18 animals into as many groups as
they wanted in terms of their similarity.
The number of groups into which stimuli
were sorted varied over the subjects. The
sorting data can be summarized in the form
of a subjects-by-stimuli table, such as in
Table 10.3, in which the rows represent the 20
subjects and columns the 18 stimuli. Entries
in the table indicate cluster numbers into
which stimuli were sorted. Which integers
are used to represent which sorting clusters
are essentially arbitrary within each subject.
From this table, the number of times each
pair of animals were sorted into the same
group was tabulated and used as a similarity
measure between them. Nonmetric MDS with
the simple Euclidean model was used to
analyze the data.

Figure 10.5 presents the derived three-
dimensional stimulus configuration. The
three-dimensional solution was chosen pri-
marily for ease of presentation. We drew
tick marks (along with animal names) on
each dimensional axis, so we could see
where the animals are located on each of
the three dimensions. In this figure, the 18
animals are labelled as: bear (be), camel
(cm), cat, (ct), cow (cw), dog (dg), elephant
(el), fox (fx), giraffe (gi), horse (ho), lion
(ln), monkey (mk), mouse (ms), pig (pg),
rabbit (rb), sheep (sh), squirrel (sq), tiger (tg),
and wolf (wf). (Symbols in parentheses are
plotting symbols used in Figure 10.5.) The
first dimension contrasts farm animals with
non-farm animals. Animals such as pig, cow,
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Table 10.3 Sorting data for 18 animals

Stimulus

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 2 2 2 2 1 3 1 2 3 1 4 2 4 2 4 3 3
2 1 2 3 4 3 2 1 2 2 1 3 3 4 3 4 3 1 1
3 1 2 3 4 3 2 1 2 4 2 5 6 4 1 4 1 2 1
4 1 2 3 4 5 6 5 2 2 3 6 7 4 8 9 7 3 5
5 1 2 3 4 5 6 5 6 2 3 6 7 4 4 4 7 3 5
6 1 2 3 4 5 6 5 7 4 3 1 8 6 8 4 1 3 5
7 1 2 3 4 3 2 5 2 4 6 7 3 4 1 4 7 6 5
8 1 2 3 4 3 2 1 5 2 6 7 8 4 8 4 8 6 1
9 1 2 3 2 4 5 4 5 2 1 3 3 2 3 2 3 1 4

10 1 2 3 4 5 2 5 2 4 3 1 6 4 7 4 6 3 5
11 1 2 3 3 3 2 1 2 3 1 2 4 5 4 3 4 1 1
12 1 2 3 4 3 5 6 5 4 1 2 5 4 6 5 3 1 6
13 1 2 3 2 4 5 4 2 6 3 7 8 9 8 9 8 3 4
14 1 2 3 4 3 2 5 6 2 1 7 5 4 5 4 5 1 1
15 1 2 3 4 3 5 6 5 4 7 5 8 4 9 4 10 7 6
16 1 2 3 4 3 2 1 5 2 1 3 3 4 3 4 6 1 1
17 1 2 3 4 3 2 1 2 4 2 2 5 4 5 4 5 2 1
18 1 2 3 4 3 2 1 2 4 1 5 6 4 7 8 6 1 1
19 1 2 3 4 5 6 5 7 8 3 9 10 11 12 13 10 3 5
20 1 2 3 4 3 2 1 2 4 2 2 3 4 1 4 1 2 1

The stimuli are: 1. Bear (be), 2. Camel (cm), 3. Cat (ct), 4. Cow (cw), 5. Dog (dg), 6. Elephant (el), 7. Giraffe (gf), 8. Fox (fx),
9. Horse (hs), 10. Lion (li), 11. Monkey (mk), 12. Mouse (ms), 13. Pig (pg), 14. Rabbit (rb), 15. Sheep (sh), 16. Squirrel (sq),
17. Tiger (tg), 18. Wolf (wf).

sheep, and horse are located on the left side,
while fox, wolf, tiger, cat, and so on are placed
on the opposite side. The second dimension
distinguishes two possible habitats of animals,
either a wild habitat or a habitat close to
people.Animals such as mouse, cow, pig, dog,
etc. are placed on the left towards the back,
while lion, tiger, elephant, etc. are located
toward the front side. The third dimension
separates animals at a higher level of the food
chain and those at a lower level. On this
dimension, animals such as mouse, squirrel,
rabbit, etc. are located at the top, with lion,
tiger, bear, wolf, and fox at the bottom. It is
interesting to find that similarity judgments
among these animals are organized around
these three dimensions, which could only be
uncovered by MDS.

EXAMPLES OF APPLICATION: THE
WEIGHTED EUCLIDEAN MODEL

As noted earlier, the particular kind of
individual differences MDS we use postulates
a stimulus configuration that is common

to all individuals, but that dimensions are
differentially weighted by different individu-
als to generate different proximity judgments.
In this section, we present two examples of
applications of ID MDS. The first example
involves a set of artificial toy-like objects.
The second example is concerned with dis-
similarity judgments on 14 consonant sounds
in Korean.

Example 3: the toy-like objects

The first example in this section pertains
to a set of dissimilarity judgments between
eight artificially created toy-like objects (still
pictures displayed in Figure 10.6) obtained
from three groups of subjects. These objects
were created for a study investigating whether
young children would learn a new object
name, “blick’, based on the function or on
the appearance (Nguyen and Oshima-Takane,
2008). ‘Blick’ was the name of the target
objects (A, D, E, G, and H), which had
the function of moving the center rod from
side to side in the main body of the object.
The objects B, C, and F were distracters,
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Figure 10.5 Three-dimensional configuration of 18 animals. See text for further details.

which had a function different from the ‘blick’
objects, although their overall appearance
looked similar to the ‘blicks’. The function
of the non-target objects B and C was to
revolve two bolts sticking out of the main
body. In F, the rods sticking out of the
main body was used as handles to open
up the space between the two body parts
such that the overall object looked like a
mouth opening and closing. Subjects were
first shown a movie with all eight objects, one
at a time. Then, they saw all the objects on
the same screen and were asked to select the
most similar and the most dissimilar pairs.
They were then presented with a pair of

objects side by side and were asked to rate
the degree of dissimilarity between the two
objects.

The first group of six subjects were asked
to judge the dissimilarity between the objects
by their appearance, the second group of
six subjects by their function (distinguished
by the movement of the center rod), and
the third group of six subjects according to
unspecified criteria. The data were collected
using an 11-point rating scale. Figure 10.7
shows the two-dimensional common stimulus
configuration derived by a nonmetric ID MDS
program. The two dimensions are interpreted
as follows: Dimension 1 (the horizontal
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(A)
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Figure 10.6 Still pictures of eight stimuli used in the ‘Blicks’ study. There are two groups of
objects distinguished by their function (the movement of the center rod). In (A), (D), (E), (G),
and (H), the center rod moved from side to side, whereas in (B), (C), and (F), the center rod
moved differently.

direction) represents ‘function’, separating
B, C, and F from the rest. Dimension 2
(the vertical axis) represents appearance,
contrasting the objects with a slender top (C,
D, and E) and those with a non-narrowing
top (A, B, F, G, and H). Figure 10.8 presents
the weights attached to these two dimensions
by the 18 different subjects. The six subjects
assigned to the first condition are labeled as
1 to 6, those in the second condition as 7 to
12, and those in the third condition as 13 to 18.
Quite naturally, the subjects in the first group
tend to put more emphasis on the appearance
dimension (dimension 2). (The only exception

is subject 2, who put more emphasis on the
function dimension.) The six subjects in the
second group tend to put more emphasis
on the ‘function’ dimension (dimension 1).
The weights are fairly tightly clustered on
dimension 1 with a slight exception of subject
10. The subjects in the third group tend to
vary between the first two groups, with a
majority of them putting similar emphasis on
both dimensions. This example shows that
the kind of ID MDS we used is working the
way it should, and is able to capture the kind
of individual differences in (dis)similarity
judgments that it is designed to capture.
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Figure 10.7 Two-dimensional stimulus
configuration of toy-like objects.
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Figure 10.8 Individual differences weights
attached to the two dimensions.

Example 4: Korean consonants

The second example in this section concerns
dissimilarity judgments between fourteen
consonants in Korean as they are pronounced
with a particular vowel ‘a’. These sounds
are: ‘ga’, ‘na’, ‘da’, ‘ra’, ‘ma’, ‘ba’, ‘sa’,
‘a’, ‘ja’, ‘cha’, ‘ka’, ‘ta’, ‘pa’, and ‘ha’.
These consonants have been classified by
phonologists according to two criteria: points
of articulation and methods of articulation.

The first criterion classifies them into: ‘ka’and
‘ga’ (palatal); ‘na’, ‘ra’, ‘ta’, and ‘da’ (lingual,
tongue); ‘ma’, ‘ba’, and ‘pa’(labial, lips); ‘sa’,
‘cha’, and ‘ja’ (dental, teeth); and ‘ha’ and
‘a’ (glottal, throat). The second classification
scheme, on the other hand, classifies them
into: ‘ka’, ‘ga’, ‘ta’, ‘da’, ‘pa’ and ‘ba’
(plosive); ‘sa’ and ‘ha’ (fricative); ‘cha’ and
‘ja’ (affricative); ‘na’ and ‘ma’ (nasal); and
‘ra’ (trill). The two classification schemes are
often combined into a two-way classification
table. It is interesting to see how well these
classification schemes fare in the subjective
judgments of similarities.

Subjects were three undergraduate stu-
dents at a large Canadian university. All
subjects were female and bilingual (French
and English) speakers with normal hearing.
A 9-point rating scale was used to record
dissimilarity judgments. The dissimilarity
data were analyzed by individual differences
MDS by ML (MULTISCALE).

In the present study, a three-dimensional
solution is chosen, partly for ease of pre-
sentation, although AIC decreased consis-
tently up to the six-dimensional solution.
(Due to the incidental parameters in the
weighted Euclidean model, the minimum
AIC criterion is not completely reliable.)
We also analyzed the data by the simple
Euclidean model. However, ID MDS consis-
tently outperformed simple MDS. There seem
to be systematic individual differences in the
way the three dimensions were evaluated
by the three subjects. Interestingly, all three
subjects put more emphasis on two of the
three dimensions, although the particular
two dimensions they put more emphasis on
varied among the three subjects. Subject
1 put more emphasis on the second and
the third dimensions, subject 2 on the first
and the second dimensions, and subject
3 on the first and the third dimensions.
Unfortunately, the source of these differen-
tial patterns cannot be investigated further
without additional information about the
subjects.

Figure 10.9 displays a common stimu-
lus configuration of the fourteen Korean
consonants. The first dimension separates
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Figure 10.9 Three-dimensional configuration of 14 Hangul consonants as they are
pronounced.

dental sounds (‘sa’, ‘cha’, and ‘ja’) on the
left hand side from a liquid (trill) sound
(‘ra’) and nasal sounds (‘na’ and ‘ma’) on
the right. You might also say that the sounds
on the left hand side of dimension 1 are
fricative (‘sa’ and ‘ha’) and affricative (‘cha’
and ‘ja’) consonants. The second dimension
contrasts palatal consonants (‘ka’ and ‘ga’)
in the front and glottal (throat) consonants
(‘a’ and ‘ha’) in the back. (The consonant
‘da’ is close to the front group, but it should
be noted that it is also one of the plosive
consonants like ‘ka’ and ‘ga’.) The third
dimension separates plosive sounds (‘ta’, ‘da’,
‘pa’, ‘ba’, ‘ka’, and ‘ga’) at the bottom from
all other consonants, but most notably from
nasal consonants (‘na’ and ‘ma’) at the top.
Thus, phonologists’ classification schemes
are useful, although the correspondence is
not exact between their schemes and the
psychological space.

AN EXAMPLE OF APPLICATION:
UNFOLDING ANALYSIS

In this section, we present an example
of unfolding analysis of preference data
collected on actual commercial products. As
has been noted earlier, unfolding analysis is a
special kind of MDS for the analysis of prefer-
ence data, construed as representing proximity
relations between subjects’ ideal and actual
stimuli. It attempts to account for individual
differences in preference judgments by map-
ping subjects’ideal and actual stimuli in a joint
multidimensional space in such a way that the
closer the stimulus is to one’s ideal, the more
it is preferred by the subject.

Example 5: MP3 players

This study was designed to investigate the
relationship between preferences on various
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Table 10.4 MP3 Players and the descriptive variables

Number Product Memory (mt) GB (mc) Price (pr) Volume (sz) Time (pt)

(ip) iPod HD 30 $299 70.9 14h
(no) iPod nano Flash 4 $229 25.2 24h
(st) iPod Shuffle Flash 1 $89 12.1 12h
(zn) Zune HD 30 $299 104.1 14h
(mv) Muvo V100 Flash 2 $79 41.6 18h
(zv) Zen Vision:M HD 30 $299 184.4 14h
(tr) TRIO Flash 1 $55 36.9 10h
(yk) YP-K5JZ Flash 1 $199 85.1 10h
(yz) YP-Z5 Flash 4 $229 44.1 35h
(wm) Walkman Flash 1 $149 40.7 18h

brands of portable MP3 (MPEG-1 Audio
Layer 3) players and their features. Stimuli
were ten different models of MP3 players
characterized by five descriptor variables such
as the memory type (either hard drive or Flash
drive), memory capacity, price, volume (size),
and playback time, as shown in Table 10.4.
The ten MP3 players are: (ip) iPod, (no) iPod
nano, (st) iPod shuffle, (zn) Zune, (mv) Muvo
V100, (zv) Zen Vision:M, (tr) TRIO MP3
player, (yk) YP-K5JZ, (yz) YP-Z5, and (wm)
NWS203FB Walkman.

A group of 20 subjects were asked to
rank order these products according to their
preferences by assigning 1 to the most
preferred model and 10 to the least preferred
model. When assessing their preferences,
subjects were shown pictures of the MP3
players, and listened to detailed descriptions.
The preference rankings collected from 20
subjects are shown in Table 10.5. The data
were analyzed by unfolding analysis using
PREFSCAL (Busing et al., 2005), and a joint
configuration of stimulus points and subjects’
ideal points was obtained.

Figure 10.10 displays the derived two-
dimensional stimulus and ideal point con-
figuration. Stimuli are labeled by two-letter
sequences, and subjects are labeled by num-
bers from 1 to 20. The five descriptor variables
are also mapped into the configuration as
vectors indicating the directions with which
these variables are most highly correlated.
These vectors are labeled by boldfaced
letter combinations: mt (memory type), mc
(memory capacity), sz (size), pr (price), and
pt (playback time). The incorporation of the

Table 10.5 Preference rankings on 10 MP3
players

MP3 Players∗

Subject ip no st zn mv zv tr yk yz wm

1 7 5 8 10 1 2 3 6 4 9
2 9 4 5 7 2 8 1 10 6 3
3 4 1 3 5 2 6 10 9 7 8
4 8 4 1 9 2 10 6 7 5 3
5 2 8 5 3 1 4 7 10 9 6
6 1 3 5 2 9 7 10 4 6 8
7 9 7 3 5 2 10 1 6 8 4
8 6 7 3 9 2 8 1 10 5 4
9 9 8 7 10 3 4 2 5 6 1

10 1 5 10 2 8 3 9 6 4 7
11 4 1 10 5 2 6 9 3 7 8
12 6 4 8 10 1 9 3 7 5 2
13 6 1 4 9 5 8 10 3 2 7
14 1 6 4 2 3 5 7 8 9 10
15 7 9 8 10 3 5 4 1 2 6
16 1 2 4 6 8 3 9 7 5 10
17 4 2 5 10 1 3 9 6 7 8
18 4 1 2 8 10 5 9 3 6 7
19 10 4 3 9 1 8 2 7 6 5
20 1 5 9 2 4 3 7 10 8 6
∗ See Table 10.4 for the definitions of the abbreviations.

descriptor information facilitates dimensional
interpretations of the derived configuration.
Hard drive memory, large memory capacity,
size, and price (mt, mc, sz, and pr), are
most highly correlated with the (upper) right-
hand side of the configuration. Products with
hard drive (HD) memory and high memory
capacity such as (ip) iPod, (zn) Zune, and (zv)
Zen Vision tend to be located toward the upper
right-hand side of the configuration. Subjects
6, 10, 16, and 20 have strong preferences
for this type of product. Products with Flash
memory, small memory capacity, relatively
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Figure 10.10 Two-dimensional configuration of the ten MP3 players and subjects’ ideal
points (1–20).

small, and less expensive models such as Trio
(tr), iPod Shuffle (st), Muvo V100 (mv), and
Walkman (wm), are located on the opposite
side. Subjects 2, 7, 8, and 19 are presumed
to have strong preferences for the first two
of these products, and subjects 4, 9, and 12
for the last two of these products. Playback
time (pt) is most highly correlated with the
bottom side of the configuration. Products
with long playback time such as YP-Z5 (yz)
and YP-K5JZ (yk) are located toward the
bottom of the configuration. Subjects 13 and
15 have strong preferences for this type of
product. iPod nano (no) is somewhat unique in
that it cannot be well characterized by the two
dimensions extracted. (The iPod nano might
have loaded highly on the third dimension
if the three-dimensional solution had been
obtained.) Still, subjects 1, 3, and 17 like this
type of of product (fairly expensive, small

sized, with small memory capacity but quite
a long playback time).

There may be weak relationships between
subjects’ demographic information and their
preferences. There are six female subjects
(subjects 7, 8, 9, 11, 13, and 19), none of
whom is in the upper right corner. In fact, four
of them are in the left-hand, side preferring
less expensive models. Two of them (subjects
7 and 8) are also mature subjects (of age
above 25). There are five mature male subjects
(subjects 2, 9, 5, 6, and 14), two of whom are
in the left-hand side of the configuration and
the remaining three in the upper right-hand
side; none of them is in the bottom portion of
the configuration.

Unfolding analysis is a very useful
technique in marketing research. It allows
us to understand patterns of individual
differences in preference judgments, and their
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relationships to product features and subjects’
background information. This kind of analysis
may eventually help marketing analysts to
develop practical marketing strategies.

CONCLUDING REMARKS

In this chapter, we have attempted to provide
an integrative overview of three representa-
tive MDS models: simple MDS, individual
differences MDS, and unfolding analysis.
A number of empirical examples reflect inter-
esting applications of MDS as a tool for spatial
representations of similarity/preference data.
In this brief overview of MDS, however, only
a few methods and examples of application
could be presented. In particular, algorithmic
details had to be left out almost entirely.
For more detailed explanations of how MDS
works, the reader should consult a monograph
focused on more technical aspects of MDS.
It is expected that MDS will generate further
interest with the development of more flexible
and reliable algorithms. MDS is expected to
remain a powerful and useful methodology in
social and behavioral sciences.

A number of popular software programs
are making MDS easily accessible to social
and behavioral science researchers. MULTI-
SCALE (Ramsay, 1997) is a suitable program
for MDS by ML estimation method. KYST
(Kruskal, Young, and Seery, 1978) is a
good and reliable program for nonmetric
MDS. INSCAL (Arabie, Caroll, and DeSarbo,
1987), ALSCAL (Schiffman, Reynolds, and
Young, 1981) and PROXSCAL (Busing,
Commandeur, and Heiser, 1997) is imple-
mented in SPSS to perform both simple
and individual differences MDS. PREFSCAL
(Busing et al. 2005) is also available in SPSS
for unfolding analysis.
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