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I. I N T R O D U C T I O N  

This technique comprises a family of geometric models for representation 
of data in one or, more frequently, two or more dimensions and a corre- 
sponding set of methods for fitting such models to actual data. A much 
narrower definition would limit the term to spatial distance models for 
similarities, dissimilarities, or other proximity data. The usage we espouse 
includes nonspatial (e.g., such discrete geometric models as tree structures) 
and nondistance (e.g., scalar product or projection) models that apply to 
nonproximity (e.g., preference or other dominance) data as well as to prox- 
imities. As this chapter demonstrates, a large class of these nonspatial mod- 
els can still be characterized as dimensional modelsmbut with discrete rath- 
er than continuously valued dimensions. 

The successful development of any multivariate technique and its incor- 
poration in widely available statistical software inevitably lead to substan- 
tive applications over an increasingly wide range both within and among 
disciplines. Multidimensional scaling (MDS) is no exception, and within 
psychology and closely related areas we could catalog an immense variety of 
different applications (not all of them cause for celebration, however); sev- 
eral thousand are given in the annual bibliographic survey SER VICE (Mur- 
tagh, 1997) published by the Classification Society of North America. 
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Further evidence of the vitality of developments in MDS can be found in 
the numbers of recent (1) books and edited volumes and (2) review chapters 
and articles on the topic. In the former category, we note Arce (1993); 
Ashby (1992); Cox and Cox (1994); de Leeuw, Heiser, Meulman, and Crit- 
chley (1986); De Soete, Feger, and Klaucr (1989); Gower and Hand (1996); 
Green, Carmone, and Smith (1989); Okada and lmaizumi (1994); and Van 
Cutsem (1994). The conference proceedings volumes are too numerous 
even to cite, and the monograph series of DSWO Press at the University of 
Leiden has many noteworthy contributions. Concerning review chapters 
and articles, the subareas of psychology recently targeted include counseling 
(Fitzgerald & Hubert, 1987), developmental (Miller, 1987), educational 
(Weinberg & Carroll, 1992), experimental (L. E. Jones & Koehly, 1993; 
Luce & Krumhansl, 1988), and cognitive (Nosofsky, 1992; Shoben & Ross, 
1987). Multivariate statistical textbooks also continue to pay due attention 
to MDS (e.g., Krzanowski & Marriott, 1994, chap. 5). lverson and Luce's 
chapter in this volume focuses on a complementary aspect of measurement 
in psychology and the behavioral sciences, measurement (primarily, but not 
exclusively, unidimensional) based on subjects' orderings of stimuli, where- 
as we are concerned with measurement (primarily, but not exclusively, 
multidimensional, or multiattributc) based on proximity data on pairs of 
stimuli or other entities. 

In this chapter we focus almost exclusively on that substantive area where 
we see the strongest bonds to MDS and its underpinnings and that seems 
most likely to spur new methodological developments in MDS, namely 
that answering fundamental questions about the psychological representa- 
tion of structure underlying perception and judgment, especially in terms of 
similarities and dissimilarities. From its inception (Shepard, 1962a, 1962b), 
nonmetric MDS has been used to provide visualizable depictions of such 
structure, but current research focuses on much more incisive queries. 
Question 1 is whether any particular stimulus domain is better fitted by a 
discrete than by a continuous (usually) spatial model. The latter possibility 
gives rise to Question 2, which concerns the nature of the metric of the 
multidimensional stimulus space (often assumed to be either Euclidean or 
city-block, as defined later). 

Question 1, of course, is at the heart of such controversies in experimen- 
tal psychology as categorical perception (Tartter, in press, chap. 7) and 
neural quantum theory (Stevens, 1972). With the advent of increasingly 
general models (discussed later) for discrete structure and associated algo- 
rithms for fitting them, it has become possible in some cases to run empiri- 
cal comparisons of selected discrete versus spatial models for given data sets 
(cf. Carroll, 1976; De Soete & Carroll, 1996). Pruzansky, Tversky, and 
Carroll (1982) compared data from several stimulus domains and concluded 
that: "In general, colors, sounds and factorial structures were better repre- 
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sented by a plane [i.e., a two-dimensional MDS solution], whereas concep- 
tual stimuli from various semantic fields were better modelled by a[n] addi- 
tive] tree" (p. 17). 

Within the literature of experimental psychology, Question 2 effectively 
begins with Attneave's (1950, p. 521) reflections on "the exceedingly precar- 
ious assumption that psychological space is Euclidean" (1950, p. 521). He 
instead argued: "The psychological implication is that there is a unique 
coordinate system in psychological space, upon which 'distances' between 
stimuli are strictly dependent [as opposed to rotation invariant]; and thus 
our choice of axes is to be dictated, not by linguistic expediency, but by 
psychological fact." Moreover, Attncave (1950, p. 555) began the tradition 
of distinguishing between integral and analyzable stimulus domains with 
his sharp contrast between Euclidean and city-block metrics: "Perhaps the 
most significant psychological difference between these two hypotheses is 
that the former assumes one frame of reference to be as good as any other, 
whereas the latter implies a unique set of psychological axes." For the 
development of theoretical positions on this distinction between integral 
and analyzable stimuli, see Shcpard's (1991) and other chapters in Lockhead 
and Pomerantz's (1991) Festschrift for W. R. Garner. For a review of theo- 
retical and algorithmic approaches to city-block spaccs, see Arabie (1991). 

Since the mid-1980s, the most innovative and significant results pertain- 
ing to Question 2 have come from Nosofsky (e.g., 1992) and from Shepard 
(1987, 1988). In the latter papers, Shcpard returned to his earlier interest in 
stimulus generalization to formulate and derive a universal law of general- 
ization based on the distinctions between analyzable and integral stimuli and 
between the Euclidean and city-block metrics. 

Reviewing recent work on "models for predicting a variety of perfor- 
mances, including generalization, identification, categorization, recogni- 
tion, same-different accuracy and reaction time, and similarity judgment," 
Nosofsky (1992, p. 40) noted that "The MDS-based similarity representa- 
tion is a fundamental component of these models." Additionally (Nosofsky, 
1992, p. 34), "The role of M D S  in developing these theoretical relations is critical 
[italics added]." The literature on Question 2 has become quite extensive; 
for example, see chapters in Ashby (1992) and work by Ennis and his 
collaborators (e.g., Ennis, Palen, & Mullen, 1988). 

To explain how MDS can be used to address Questions 1 and 2, we must 
immediately make some distinctions among types of data matrices, and we 
do so by summarizing a lengthier taxonomy found in Carroll and Arabie 
(1980, pp. 610-611). Consider two matrices: one with n rows and the same 
number of columns (with entries depicting direct judgments of pairwise 
similarities for all distinct pairs of the n stimuli) and the other matrix with n 
rows of stimuli and K columns of attributes of the stimuli. Although both 
matrices have two ways (namely, rows and columns), the former is said to 
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have one mode because both its ways correspond to the same set of entities 
(i.e., the n stimuli). But the matrix of stimuli by their attributes has two 
disjoint sets (and thus two modes; Tucker, 1964) of entities corresponding to 
the ways. For a one-mode two-way matrix, an additional consideration is 
whether conjugate off-diagonal entries are always equal, in which case the 
matrix is symmetric; otherwise it is nonsymmetric. 

Another important distinction concerns whether the data are conditional 
(i.e., noncomparable) between rows/columns or among matrices. Row 
conditional data arise most commonly when a subject is presented with each 
of n stimuli in turn and asked to rank the remaining n - 1 according to their 
similarity to the standard. If the ranks are entered as a row/column for each 
successive standard stimulus in a two-way one-mode matrix, the entries are 
comparable within but not between rows/columns, and such data are there- 
fore called row/column conditional (Coombs, 1964). If the data are a collec- 
tion of I one-mode, two-way matrices, all n • n for the same set of n 
stimuli, a more general question is whether numerical entries are compara- 
ble among the matrices. If not, such three-way data are said to be matrix 
conditional (Takane, Young, & de Leeuw, 1977). 

It is not our intention to dwell on traditional methods of collecting data 
for multidimensional scaling, given the excellent summaries already avail- 
able (e.g., Kruskal & Wish, 1978; Coxon, 1982, chap. 2; Rosenberg, 1982, 
for the method of sorting; L. E. Jones & Koehly, 1993, pp. 104-108). An 
important distinction offered by Shepard (1972) is whether the input data 
are the result of direct judgments (e.g., from subjects' judging all distinct 
pairs of stimuli~say, on a 9-point scale of similarity/dissimilarity~or con- 
fusions data) or of indirect or profile data, as result when the data at hand are 
two-mode, but the model to be fitted requires one-mode data. In such 
cases, the user typically preprocesses the data by computing an indirect 
measure of proximity (e.g., squared Euclidean distances) between all pairs 
of rows or columns to obtain a one-mode matrix of pairwise similarities/ 
dissimilarities. Although Shepard's (1962a, 1962b) original development of 
nonmetric MDS greatly emphasized applications to one-mode two-way 
direct similarities, applications of various MDS models to indirect or profile 
data are quite common. 

A noteworthy development of recent years is that of models and associ- 
ated algorithms for the direct analysis of types of data not previously amen- 
able to MDS without preprocessing: free recall sequences (Shiina, 1986); 
row conditional rank-order data (Takane & Carroll, 1982): sim- 
ilarity/dissimilarity judgments based on triples (Daws, 1993, 1996; Joly & 
Le Calve, 1995; Pan & Harris, 1991) or even n-tuples of stimuli (T. F. Cox, 
M. A. A. Cox, & Branco, 1991); triadic comparisons (Takane, 1982); and 
sorting data (Takane, 1981, 1982). 

Carroll and Arabie (1980) organized their Annual Review chapter on 
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MDS around the typology of ways and modes for data and for correspond- 
ing algorithms. Although these distinctions remain crucial in considering 
types of data, the typology is now less clear-cut for algorithms. As we 
predicted in that chapter (p. 638), there has been intensive development of 
three-way algorithms, and the two-way special cases are often by-products. 
Thus, in our present coverage, the two-way algorithms and models are 
mentioned only as they are subsumed in the more general three-way ap- 
proaches. 

II. O N E - M O D E  TWO-WAY DATA 

The inventor of the modern approach to nonmetric MDS (Shepard, 1962a, 
1962b) began by considering a single one-mode two-way matrix, typically 
some form of similarity, dissimilarity, or other proximity data (sometimes 
also referred to as "relational" data). Another type of ostensibly dyadic data 
is so-called paired comparisons data depicting preferences or other forms of 
dominance relations on members of pairs of stimuli. However, such data are 
seldom utilized in multidimensional (as opposed to unidimensional) scaling. 
We do not cover paired comparisons data in this chapter because we view 
such data not as dyadic but as replicated monadic data (having n - 2 missing 
data values within each replication); see Carroll (1980) for an overview. 

III. SPATIAL DISTANCE MODELS (FOR O N E - M O D E  
TWO-WAY DATA) 

The most widely used MDS procedures are based on geometric spatial 
distance models in which the data are assumed to relate in a simple and well- 
defined manner to recovered distances in an underlying spatial representation. 
If the data are interval scale, the function relating the data to distances is 
generally assumed to be inhomogeneously linearmthat is, linear with an 
additive constant as well as a slope coefficient. Data of interval or stronger 
(ratio, positive ratio, or absolute) scale are called metric, and the correspond- 
ing models and analyses are collectively called metric MDS.  In the case of 
ordinal data, the functional relationship is generally assumed to be monoto- 
n ic -e i the r  monotonic nonincreasing (in the case of similarities) or mono- 
tonic nondecreasing (for dissimilarities). Ordinal data are often called non- 
metric data, and the corresponding MDS models and analyses are also 
referred to as nonmetric MDS.  The distinction between metric and non- 
metric approaches is based on the presence or absence of metric properties 
in the data (not in the solution, which almost always has metric properties; 
Holman, 1978, is an exception). 

Following Kruskal's (1964b, 1965) innovative work in monotone regres- 
sion (as the basic engine for fitting any of the ordinal models considered in 
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this review), first devised by Ayer, Brunk, Ewing, Reid, and Silverman 
(1955), there has been much activity in this area of statistics. In addition to 
Shepard's (1962a, 1962b) early approach and Guttman's (1968) later ap- 
proach based on the rank image principle, alternative and related methods 
have been proposed by R. M. Johnson (1975), Ramsay (1977a), Srinivasan 
(1975), de Leeuw (1977b), de Leeuw and Heiser (1977, 1980, in developing 
their SMACOF algorithm, considered later), and Heiser (1988, 1991). 
McDonald (1976) provided a provocative comparison between the ap- 
proaches of Kruskal (1964b) and Guttman (1968), and the two methods are 
subsumed as special cases of Young's (1975) general formulation. More 
recently, Winsberg and Ramsay (1980, 1983), Ramsay (1988), Winsberg and 
Carroll (1989a, 1989b), and Carroll and Winsberg (1986, 1995) have intro- 
duced the use of monotone splines as an alternative to the totally general 
monotone functions introduced by Kruskal, while other authors (e.g., 
Heiser, 1989b) have proposed using other not completely general mono- 
tonic functions, which, like monotone splines, can be constrained to be 
continuous and to have continuous derivatives, if desired. (Carroll and 
Winsberg, 1986, 1995, and Winsberg and Carroll, 1989a, 1989b, have used 
monotone splines in a somewhat unique mannermpredicting data as mono- 
tone function(s) of distances, rather than vice versa as is typically the case in 
fully nonmetric approaches. As discussed later, these authors argue that this 
quasi-nonmetric approach avoids degeneracies that occur with fully non- 
metric approaches.) 

A. Unconstrained Symmetric Distance Models (for One-Mode 
Two-Way Data) 

Although one of the more intensely developed areas in rcccnt years has been 
the treatment of nonsymmetric data (discussed in detail later), most of the 
extant data relevant to MDS are symmetric, owing in part to the previous 
lack of models allowing for nonsymmetric data and the ongoing absence of 
readily available software for fitting such models. Therefore, we first con- 
sider recent developments in the scaling of symmetric data, that is, where 
the proximity ofj to k is assumed identical to that obtained when the stimuli 
are considered in the reverse order. 

The most widely assumed metric in MDS is the Euclidean, in which the 
distance between two points j and k is defined as 

R 

r = 1 

1 / 2  

where Xjr and Xkr are the rth coordinates of points j and k, respectively, in an 
R-dimensional spatial representation. Virtually all two-way MDS proce- 
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dures use either the Euclidean metric or the Minkowski p (or Lp) metric, 
which defines distances as 

R l /p  

r = l  

and so includes Euclidean distance as a special case in which p = 2. (Because 
a variable that later will appear extensively in this chapter will be labeled 
"p," we are using the nontraditional p for Minkowski's exponent.) 

B. Applications and Theoretical Investigations of  the Euclidean 
and Minkowski p Metrics (for One-Mode Two-Way Symmetric 
Data) 

1. Seriation 

A psychologist who harbors proximity data suspected of being unidimen- 
sional is caught between a Scylla of substantive tradition and a Charybdis of 
deficient software. Concretely, the custom in experimental psychology has 
been to discount unidimensionality and seek only higher-dimensional solu- 
tions. For example, Levelt, van de Geer, and Plomp (1966) developed an 
elaborate two-dimensional substantive interpretation of data later shown to 
be unidimensional by Shepard (1974) and Hubert and Arabie (1989, pp. 308- 
310). Similarly, Rodieck (1977) undermined a multidimensional theory of 
color vision proposed by Tansley and Boynton (1976, 1977). 

But a data analyst willing to counter the tradition of overfitting imme- 
diately encountered a suspicion that gradient-based algorithms for non- 
metric MDS could not reliably yield solutions faithful to an underlying 
unidimensional structure in a proximities matrix (cf. Shepard, 1974). De 
Leeuw and Heiser (1977) pointed out that this is in fact a discrete problem of 
analysis masquerading as a continuous one. Hubert and Arabie (1986, 1988) 
demonstrated analytically why gradient methods fail in the unidimensional 
case and then provided an alternative algorithm based on dynamic program- 
ming, guaranteed to find the globally optimal unidimensional solution. 
Pliner (1996) has provided a different algorithm that can handle much larger 
analyses. Also see related work by Hubert and Arabie (1994, 1995a); Hu- 
bert, Arabie, and Meulman (1997); Mirkin (1996); and Mirkin and Much- 
nik (1996, p. 319). 

2. Algorithms 

Kruskal's (1964a, 1964b) option to allow the user to specify p #= 2.0 in Eq. 
(1) ostensibly made it much easier for experimenters to decide which Min- 
kowski metric was most suitable for their data. But evidence (Arabie, 1973) 
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and hearsay soon accumulated that, at least in the city-block case (where p = 
1), the algorithm found suboptimal solutions, and there was a suspicion 
(e.g., Shepard, 1974) that the same conclusion was true for unidimensional 
solutions (no matter what value of p was used, because all are mathe- 
matically equivalent in the case of one dimension). 

As noted earlier, de Leeuw and Heiser (1977) made the crucial observa- 
tion that the unidimensional case of gradient-based two-way MDS is in fact 
a discrete problem, and Hubert and Arabie (1986) provided an appropriately 
discrete algorithm to solve it. Hubert and Arable (1988) then analytically 
demonstrated that the same discreteness underlies the problem of city-block 
scaling in two dimensions and conjectured that the result is actually much 
more general. Hubert, Arabie, and Hesson-Mcinnis (1992)provided a com- 
binatorial nonmetric algorithm for city-block scaling in two and three di- 
mensions (for the two-way case) and demonstrated the highly inferior fits 
typically obtained when traditional gradient methods were used instead on 
the same data sets. Nonetheless, such misguided and clearly suboptimal 
analyses continue to appear in the experimental psychology literature (e.g, 
Ashby, Maddox, & Lee, 1994). Using a majorization technique, Heiser 
(1989a) provided a metric three-way city-block MDS algorithm. Neither 
the approach of Hubert and colleagues (1992) nor that of Heiser can guaran- 
tee a global optimum, but they generally do much better than their gradient 
counterparts. 

In MDS the city-block metric has received more attention during the past 
two decades than any other non-Euclidean Minkowski metric (see Arabie, 
1991, for a review), but more general algorithmic approaches are also avail- 
able. For example, Okada and Imaizumi (1980b) provided a three-way 
nonmetric generalization of the INDSCAL model, as in Eq. (5) (where a 
monotone function is fitted to the right side of that equation). Groenen 
(1993; also see Groenen, Mathar, & Heiser, 1995) has extended the majoriz- 
ation approach for 1 < p -< 2 in Eq. (1). His impressive results have usually 
been limited to two-way metric MDS but appear to have considerably 
greater generality. There have been some attempts at fitting even more 
general non-Euclidean metrics such as Riemannian metrics (see the review 
in Carroll & Arabie, 1980, pp. 618-619), but none have demonstrated any 
lasting impact on the field. Although Indow (1983, pp. 234-235) demon- 
strated, with great difficulty, that a Riemannian metric with constant curva- 
ture fits certain visual data slightly better than a Euclidean metric, lndow 
concluded that the increase in goodness of fit was not sufficient to justify the 
effort involved and that, in practice, Euclidean representations accounted 
exceedingly well for the data he and his colleagues were considering. In later 
work, however, Indow (1995; see also Suppes, Krantz, Luce, & Tversky, 
1989, pp. 131-153, for discussion) has shown that careful scrutiny of the 
geometric structure of these visual stimuli within different planes of a three- 
dimensional representation reveals that the curvature is dependent on the 
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specific plane being considered. This discovery suggests that a more general 
Riemannian metric with nonconstant curvature may provide an even more 
appropriate representation of the geometry of visual space. 

3. Algebraic and Geometric Foundations of MDS 
in Non-Euclidean Spaces 

Confronted with the counterintuitive nature of non-Euclidean and/or high- 
dimensional spaces, psychologists have regularly culled (and occasionally 
contributed to) the vast mathematical literature on the topic, seeking results 
relevant to data analyses in such spaces (see, for example, Carroll & Wish, 
1974a; Critchley & Fichet, 1994; de Leeuw & Heiser, 1982; Suppes et al., 
1989, chaps. 12-14). Linkages to that literature are impeded by its typical 
and unrealistic assumptions of (1) a large or even infinite number of stimuli, 
(2) error-free data, and (3) indifference toward substantively insupportable 
high dimensionalities. The axiomatic literature in psychology does not al- 
ways treat these problems satisfactorily, because it postulates systems re- 
quiring errorless measurement structures that in turn entail an infinite num- 
ber of (actual or potential) stimuli. For example, testing of the axiom of 
segmental additivity for geometric representations of stimuli would be ex- 
ceedingly difficult in a practical situation in which only a finite number of 
stimuli are available, and the proximity data are subject to measurement or 
other error of various types, because, in principle, one has to demonstrate 
that an intermediate stimulus exists precisely between each pair of stimuli so 
that the distances sum along the implicit line connecting the three. (As a 
further complication, these distances may be only monotonically related to 
the true proximities, whereas observed proximities are, at best, measured 
subject to measurement or experimental error.) Given a finite sample of 
"noisy" stimuli, it is highly unlikely that, even under the best of circum- 
stances (e.g., errorless data entailing distances measured on a ratio scale), 
one would find a requisite third stimulus lying precisely, or even approx- 
imately, between each pair of stimuli. This instance is but one extreme case 
illustrating the general difficulty of testing scientific models, whether geo- 
metric or otherwise, with finite samples of data subject to measurement or 
experimental error. For example, it would be equally difficult, in principle, 
to test the hypothesis that noisy proximity data on a finite sample of stimuli 
are appropriately modeled via a Euclidean (or city-block, or other metric) 
spatial model in a specified number of dimensions. In practice, we are often 
forced to rely on the principle of parsimony (or "Occam's razor"), that is, to 
choose, among a large set of plausible models for such a set of data, the most 
parsimonious model, which appears to account adequately for a major por- 
tion of the variance (or other measure of variation) in the empirical prox- 
imity data. This approach hardly qualifies as a rigorous scientific test of such 
a geometric model; rather it is more appropriately characterized as a practical 



188 J. Douglas Carroll and Phipps Arabie 

statistical rule of thumb for choosing the best among a large family of 
plausible models. The axiomatic approach, as exemplified by Suppes and 
colleagues (1989), focuses more on thc precise testing of a very specific 
scientific model and constitutes an ideal toward which researchers in multi- 
dimensional scaling and other measurement models for the analysis of prox- 
imity data can, at the moment, only aspire. We hope that a stronger nexus 
can be formed between the axiomatic and the empirical camps in future 
work on such measurement models, effecting a compromise that allows 
development of practical measurement models for real-world data analysis 
in the psychological and other behavioral sciences while, at the same time, 
approaching more closely the ideal of testing such models with a sufficiently 
well-defined rigor. 

IV. MODELS AND METHODS FOR PROXIMITY DATA: 
REPRESENTING INDIVIDUAL DIFFERENCES 
IN PERCEPTION AND COGNITION 

The kind of differential attention to, or differential salience of, dimensions 
observed by Shepard (1964) illustrates a very important and pervasive 
source not only of intraindividual variation but also of interindividual dif- 
ferences in perception. Although people seem to perceive the world using 
nearly the same dimensions or perceptual variables, they evidently differ 
enormously with respect to the relative importance (perceptually, cog- 
nitively, or behaviorally) of" these dimensions. 

These differences in sensitivity or attention presumably result in part 
from genetic differences (for example, differences between color-blind and 
color-normal individuals) and in part from the individual's particular devel- 
opmental history (witness the well-known but possibly exaggerated exam- 
ple of the Eskimos' presumably supersensitive perception of varieties, tex- 
tures, and colors of snow and ice). Although some attentional shifts might 
result simply from instructional or contextual factors, studies by Cliff, 
Pennell, and Young (1966) have indicated that it is not so easy to manipulate 
saliences of dimensions. If a more behavioral measure of proximity were 
used, for example, one based on confusions in identification learning, the 
differential weighting could result at least in part from purely behavioral (as 
opposed to sensory or central) processes, such as differential gradients of 
response generalization. Nosofsky (1992) and Shepard (1987) have posited 
mechanisms underlying such individual differences. 

A. Differential  At tent ion  or Salience o f  Dimens ions :  
The  I N D S C A L  Model  

The INDSCAL (for INdividual Differences SCALing) model (Carroll & 
Chang, 1970; Carroll, 1972; Carroll & Wish, 1974a, 1974b; Wish & Carroll, 
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1974; Arabie, Carroll, & DeSarbo, 1987) explicitly incorporates this notion 
of individual differences in the weights, or perceptual importances, of di- 
mensions. The central assumption of the model is the definition of distances 
for different individuals. As with ordinary, or two-way, scaling, these recov- 
ered distances are assumed to relate in some simple way- - fo r  example, 
linearly or monoton ica l ly~ to  the input similarities or other proximities. 
INDSCAL,  however, assumes a different set of distances for each subject. 
The distance between stimuli j and k for subject i, d!9, is related to the 

I/e 
dimensions of a group (or common) stimulus space b y t h e  equation 

R 

r = l  

1 / 2  

(2) 

where R is the dimensionality of the stimulus space, Xir is the coordinate of 
stimulus j on the rth dimension of the group stimulus space, and wit is the 
weight (indicating salience or perceptual importance) of the rth dimension 
for the ith subject. This equation is simply a weighted generalization of the 
Euclidean distance formula. 

Another way of expressing the same model is provided by the following 
equations. We first define coordinates of what might be called a "private 
perceptual space" for subject i by the equation 

,(i) 1/2,~ 
i, - ( w i ,  ,Xi, (3) 

and then calculate ordinary Euclidean distances according to these idio- 
syncratic or private spaces, as defined in 

R 1 /2  R 1 /2  

r = l  r = l  

[The expression on the right was derived by substituting the definition of 
),!~) in Eq. (3) into the middle expression in Eq. (4) defining d!~).] Thus the 

I . .' . j te 

Weighted distance formulation is equivalent to one in which each dimension 
is simply rescaled by the square root of the corresponding weight. This 
rescaling can be regarded as equivalent to turning the "gain" up or down, 
thus relatively increasing or decreasing the sensitivity of the total system to 
changes along the various dimensions. 1 

1 Tucker and Messick's (1963) "points of view" model, which assumes that subjects form 
several subgroups, each of which has its own private space, or point of view, can be incorpo- 
rated within the scope of INDSCAL. At the extreme, the group stimulus space includes the 
union of all dimensions represented in any of the points of view, and an individual would have 
positive weights for all dimensions corresponding to the point of view with which he or she is 
identified and zero weights on all dimensions from each of the other points of view. For an 
updated treatment of points of view, see Meulman and Verboon (1993). 
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The input data for INDSCAL, as with other methods of three-way 
MDS, constitute a matrix of proximity (or antiproximity) data, the general 
entry of which is 8(i) the dissimilarity (antiproximity) of stimulij and k for jk' 
subject i. If there are n stimuli and I subjects, this three-way matrix will be n 
x n x I. The ith two-way "slice" through the third way of the matrix 
results in an ordinary two-way n x n matrix of dissimilarities for the ith 
subject. The output in the case of INDSCAL (although not necessarily for 
other three-way scaling methods) consists of two matrices. The first is an n 
x R matrix, X -= (Xjr) of stimulus coordinates, the second an I • R matrix 
W - (Wir) of subject weights. The input and output arrays for INDSCAL 
are illustrated in Figure 1. The coordinates described in the two matrices X 
and W can be plotted to produce two disjoint spaces, both with dimension- 
ality R, and which we have called, respectively, the group stimulus space 
and the subject space. These are illustrated in Figure 2 for a purely hypo- 
thetical data set, as are two of these subjects' idiosyncratic or private percep- 
tual spaces. Geometrically they are derived by stretching or shrinking each 
dimension by applying a rescaling factor to the rth dimension, proportional 
t o  (Wir) 1/2. The rth weight, Wir , for subject i can be derived from the subject 
space by simply projecting subject i's point onto the rth coordinate axis. 

Quite different patterns of similarity/dissimilarity judgments are pre- 
dicted in Figure 2 for Subjects 2, 3, and 4. Subject 3 (who weights the 
dimensions equally and so would have a private space that looks just like the 
group stimulus space) presumably judges Stimulus A to be equally similar 
to B and D, because these two distances are equal in that subject's private 
space. In contrast, Subject 2 would judge Stimulus A to be more similar to 
D than to B (because A is closer to D), and Subject 4 would judge Stimulus 
A to be more similar to B than to D. There would, of course, be many other 
differences in the judgments of these three subjects, even though all three 
are basing their judgments on exactly the same dimensions. 

Subjects 1 and 5, who are both one-dimensional, represent two extreme 
cases in the sense that each gives nonzero weight to only one of the two 
dimensions. Geometrically it is as though (if these were the only dimensions 
and the model fitted the data perfectly) Subject 1 has simply projected the 
stimulus points onto the Dimension 1 axis so that Stimuli A, D, and G, for 
example, project into the same point and so are seen by this subject as 
identical. Subject 5 exhibits the opposite pattern and presumably attends 
only to Dimension 2; this subject would see Stimuli A, B, and C as identi- 
cal. Thus, as a special case, some subjects can have private perceptual spaces 
of lower dimensionality than that of the group stimulus space. 

Distance from the origin is also meaningful in this subject space. Subjects 
who are on the same ray issuing from the origin but at different distances 
from it would have the same pattern of distances and therefore of predicted 
similarities/dissimilarities. They would have the same private space, in fact, 
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F I G U R E  1 A schematic representation of input for (A) and output from (B) INDSCAL. 
Input consists of 1(---2) n x n square symmetric data matrices (or half-matrices) one for each of I 
subjects (or other data sources), d~;)is the dissimilaritv of stimuli (or other objects) i and k for 
subject (or other data source) i. Til~is set of I square matrices can be thought of as defining the 
rectangular solid, or three-way array, of data depicted at top in the figure. (This is the form of 
the input for other three-way scaling methods also.) The output from INDSCAL consists of 
two matrices, an n • R matrix of coordinates of the n stimuli (objects) on R coordinate axes (or 
dimensions) and an I • R matrix of weights of I subjects for the R dimensions. These matrices 
define coordinates of the group stimulus space and the subject space, respectively. Both of them can 
be plotted graphically, as in Figure 2, and a private space for each subject can be constructed, as 
shown there, by applying the square roots of the subject weights to the stimulus dimensions, as 
in Equation 3. Note: "Objects" need not be "stimuli." "Subjects" may come from other data 
s o u r c c s .  
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in multidimensional scaling. Weights (plotted in subject space) are applied to group stimulus 
space to produce individual perceptual spaces for Subjects 2 and 4, shown at the bottom of the 
figure. (For purposes of illustration, the dimensions are multiplied by the weights themselves, 
rather than by their square roots as is more technically correct.) 

except for an overall scale factor. The main difference between such subjects 
is that this same private space and pattern of predicted judgments account 
for less of the variance in the (scalar products computed from the) data for 
subjects who are closer to the origin. Thus, although Subjects 3 and 7 in 
Figure 2 would have the same private space (the one corresponding to the 
group stimulus space), these two dimensions would account for more vari- 
ance in the (hypothetical) matrix of Subject 3 than of Subject 7. Subject 9, 
being precisely at the origin (indicating zero weight on both dimensions), 
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would be completely out of this space; that is, none of that subject's data 
could be accounted for by these two dimensions. The residual variance may 
be accounted for by other dimensions not extracted in the present analysis 
or simply by unreliability, or error variance, in the particular subject's 
responses. 

The square of the distance from the origin is closely analogous to the 
concept of communality in factor analysis. In fact, the square of that dis- 
tance is approximately proportional to variance accounted for. Although 
only an approximation, it is generally a good one and is perfect if the 
coordinate values on dimensions are uncorrelated. The cosine of the angle 
between subject points (treated as vectors issuing from the origin) approx- 
imately equals the correlation between distances (or, more properly, be- 
tween scalar products) in their private perceptual spaces. Distances between 
these points are also meaningful--they approximate profile distances be- 
tween reconstructed distances (or, again more properly, scalar products) 
from the respective private perceptual spaces in which the overall scale is 

included. We therefore reject arguments made by Takane et al. (1977), 
MacCallum (1977), and others that lengths (or distances from the origin) of 
these subject weight vectors are not meaningful. We believe the lengths (as 
well as directions) of these subject vectors are meaningful and interpretable, 
even when the data are matrix conditional rather than unconditional; in the latter 
case, Takane et al. (1977), MacCallum (1977), and others have argued these 
lengths have no meaning; thus those authors normalize subject weight vec- 
tors to unit lengths, contrary to the practice in the INDSCAL/SINDSCAL 
method of fitting the INDSCAL model. The lengths, in fact, often contain 
information that is quite critical in distinguishing among well-defined 
groups of subjects. Wish and Carroll (1974) presented one very good exam- 
ple, entailing perception of the rhythm and accent of English words or 
phrases by various groups of subjects. Most compelling, in this respect, is 
the fact that native and nonnative speakers of English were distinguished 
most clearly by the subject vectors--those for the former group having 
systematically greater length (terminating farther from the origin) than 
those for the latter group-- implying that all dimensions characterizing the 
rhythm and accent (or stress patterns) of English words were much more 
salient to native than to normative speakers of English. 2 

2 In statistical terms, the small set of"common" dimensions in the group space accounted for 
more variance in scalar products computed from the data of the native English speakers--the 
square of the length of the subject vector approximating the proportion of variance accounted 
for--whereas the nonnative English speakers apparently were largely accounted for by other 
variables not emerging from this analysis, such as unique linguistic dimensions (which might 
emerge if higher dimensional solutions were sought) more appropriate to their individual 
native languages or greater systematic or random errors stemming from an imperfect assimila- 
tion of English stress patterns. 
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One of the more important aspects of INDSCAL is the fact that its 
dimensions are unique, that is, not subject to the rotational indeterminacy 
characteristic of most two-way MDS procedures involving the Euclidean 
metric. INDSCAL recovered dimensions are generally defined uniquely up 
to what is called an "extended permutation," defined later. In the psycho- 
logical model, the dimensions are supposed to correspond to fundamental 
perceptual or other processes whose strengths, sensitivities, or importances 
vary among individuals. Mathematically, the family of transformations in- 
duced by allowing differential weighting (which corresponds geometrically 
to stretching or compressing the space in directions parallel to coordinate 
axes) will differ for the various orientations of coordinate axes~that  is, the 
family of admissible transformations is not rotationally invariant, as can be 
seen graphically by considering what kinds of private spaces might be gen- 
erated in the case illustrated in Figure 2 if one imagines that the coordinate 
system of the group stimulus space were rotated, say, 45 ~ Instead of the 
square lattice transforming into various rectangular lattices, it would trans- 
form into various rhombuses, or diamond-shaped lattices. Rotating the 
coordinate system by something other than 45 ~ would generate other fami- 
lies of parallelograms, generally a unique family for each different angle of 
rotation. These families are genuinely different, because they allow different 
admissible sets of distances among the objects or stimuli. Statistically speak- 
ing, a rotation (not corresponding to a reflection, permutation, or extended 
permutation) of the axes generally degrades the solution in the sense that the 
variance accounted for in fitting the model decreases after such a rotation, 
even if optimal weights are recomputed for the rotated coordinate system. 

This dimensional uniqueness property is important because it obviates the 
need, in most cases, to rotate the coordinate system to find an interpretable 
solution. If one adopts the psychological model underlying INDSCAL, then 
these statistically unique dimensions should be psychologically unique as 
well. Indeed, practical experience has shown that the dimensions obtained 
directly from INDSCAL are usually interpretable without rotation (even 
when there is little reason to believe the underlying model's assumptions). 
Kruskal (1976) has provided a formal proof of this uniqueness property of 
INDSCAL (and of a wider class of three-way models of which it is a special 
case). Technically, the INDSCAL stimulus space is identified, under very 
general conditions, up to a permutation and reflection of coordinate axes, 
followed by a rescaling of all dimensions via a diagonal scaling matrix (with 
scale factors that may be either positive or negative). The rescaling transfor- 
mation is generally resolved via the usual INDSCAL normalization conven- 
tion, in which stimulus dimensions are scaled so as to have unit sum of 
squared (and zero mean) coordinate values; this way only the signs of the scale 
factors are nonidentified. In practice INDSCAL dimensions are identified up 
to a permutation and possible reflection of axes--what we call an extended 
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permutation. In fact, even the permutation indeterminacy generally is resolved 
by ordering axes based on a variance accounted for (averaged over all sub- 
jects) criterion. 

Space limitations preclude us from giving substantive illustrations of 
fitting the INDSCAL model (or any of the others covered in this chapter). 
Two protracted analyses are given in Arabie et al. (1987, pp. 12-16, 25-33). 

Because of the particular normalization conventions used in the "stan- 
dard" formulation described earlier, distances in the group stimulus space 
are not immediately interpretable but must instead be compared to the 
interstimulus distances of a hypothetical (or real) subject who weights all 
dimensions equally. 

As is so often the case, the (weighted) Euclidean metric in Eq. (4) was 
chosen for mathematical tractability, conceptual simplicity, and historical 
precedence. In many stimulus domains (typically with nonanalyzable or 
unitary perceptual stimuli, or even with more conceptual analyzable stimuli 
when dimensionality becomes large) the Euclidean metric seems to fit quite 
well (Shepard, 1964). Furthermore, there is considerable evidence that 
methods based on it are robust, so that even if the basic metric is non- 
Euclidean, multidimensional scaling in a Euclidean space may recover the 
configuration adequately. We regard this particular choice of basic metric, 
then, as primarily heuristic and pragmatic, although on many grounds it 
does seem to be the best single choice we could have made. It is, however, 
within the spirit of the INDSCAL model to assume a much wider class of 
weighted metrics, and Okada and Imaizumi (1980) have provided such a 
generalization, along with gradient-based software to fit the model. Also, as 
argued in the discussion of two-way MDS models, among certain non- 
Euclidean metrics, the L 1 or city-block metric in particular appears to be 
more appropriate for the more cognitive or conceptual stimulus domains 
involving analyzable stimuli in which the dimensions are psychologically 
separable. For this reason we consider an obvious generalization entailing a 
weighted Minkowski p or power metric of the form 

dj('k ) - -  EWirlXjr--Xkr p ~ l .  (5) 
r = l  

According to the rescaling of dimensions, the private space for this gen- 
eralized L~ model would be defined as 

(i) l/p xj~ (6) jr "~ W ir 

It is evident that computing ordinary Minkowski p metric in this rescaled 
space, now involving the pth root of the weights, is equivalent to the 
weighted Minkowski p metric in Eq. (5). See Carroll and Wish (1974b, 
pp. 412-428) for a technical discussion concerning metrics in MDS. 
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B. The IDIOSCAL Model and Some Special Cases 

The most general in this Euclidean class of models for MDS is what has 
been called the IDIOSCAL model, standing for Individual Differences in 
Orientation S C A L i n g  (Carroll & Chang, 1970, 1972; Carroll & Wish, 
1974a). The intuitive appeal of the IDIOSCAL model is demonstrated by 
the number of times it, or special cases of it, have been invented or rein- 
vented (e.g., "PARAFAC-2" by Harshman, 1972a, 1972b; "Three-Mode 
Scaling," by Tucker, 1972, and other procedures proposed by Bloxom, 
1978, and by Ramsay, 1981, incorporating this general Euclidean metric or 
some variant of it); indeed, sometimes it has been simultaneously reinvented 
and renamed (e.g., "the General Euclidean Model" by Young, 1984a). In the 
IDIOSCAL model, the recovered distance d!!) between objects j and k for ,,~ 
the ith source of data is given by 

/ R R 

r p r 
-- Xkr ) t"(i)rr, (Xjr' Xkr, ) , (7) 

where r and r' are indices of the R dimensions in the object space and 
(separately) the source space. This model differs from the INDSCAL model 
in Eq. (2) by the inclusion of matrix C(;) "(;)~ -= (t,,j, which is an R x R sym- 
metric positive definite or semidefinite matrix, instead of matrix Wi, which 
is diagonal, with the weights wi~ on the diagonals. If each Ci is constrained 
to be such a diagonal matrix 3 W i with nonnegative entries, then the diagonal 
entries in the Ci matrices are interpretable as source weights in the INDS- 
CAL formulation of distance, and the INDSCAL model follows as a special 
case. This result can be seen by noting that if in Eq. (7), cS'fi = w;~ when r - 
r', and 0 when r # r', then the terms (xi ,  - xk,')c~!(xi," -- xk,") drop out if r ~: 
r' and become Wir(Xjr -- Xk,.)2 for r -- r', thus producing the INDSCAL 
model of Equation (2). In the general IDIOSCAL model, C~ provides a 
rotation of the object space to a new (or IDIOsyncratic) coordinate system 
for source i, followed by differential weighting of the dimensions of this 
rotated coordinate system. In the Carroll and Chang (1970, pp. 305-310; 
/972) approach to interpreting the model, this rotation will be orthogonal. 
The alternative approach suggested independently by Tucker (1972) and by 
Harshman (1972a, 1972b) entails no such rotation but assumes differing 
correlations (or, more geometrically, cosines of angles) between the same 
dimensions of the object space over different sources. (Further details on the 
two interpretations of the C; matrices are given by Carroll and Wish, 1974a, 
and in the source articles; also see de Leeuw and Heiser, 1982.) 

3 We note here that the matrix W; is an R • R diagonal matrix for the ith subject whereas, 
previously, the symbol W has been used to demote the I • R matrix of weights for the I 
subjects on the R dimensions (so that the ith row of W contains the diagonal entries of  Wi). 



3 Multidimensional Scaling 197 

In vector and matrix form, this model can be written as 

- [ ( x j  - (8) 

where C i ~ (C~!) is an R x R matrix. The matrix Ci is generally assumed to 
be symmetric and positive definite or semidefinite. This metric is exactly what we 
would obtain if we defined a private perceptual space for individual i by a 
general linear transformation defined as 

R 

y}[) = E xj, q('),, , (9) 
s----I 

which in vector-matrix notation is 

y ) i ) - -  xjQ,, (10) 

and we then computed ordinary Euclidean distances in these private spaces. 
Matrix Ci in Eq. (8) will, in this case, simply be 

Ci = Q,Q~, (11) 

because 

[d)/~)]2 ~ (.),j(i) --}1 (ki)) .(yJ(i) - - Y  (~)), 

= ( x j -  xk)QiQ;(x j - xk) ' ,  (12) 

which is equivalent to Eq. (8) with C i as defined in Eq. (11). 
Another closely related interpretation is provided by decomposing the 

(symmetric, positive definite) matrix C; into a product of the form 

C i ---- T,j3iT~, (13) 

with T i orthogonal and 6i diagonal. (This decomposition, based on the 
singular value decomposition and closely related to principal components 
analysis, can always be effected. If the Ci's are positive definite or semi- 
definite, the diagonal entries of 13; will be nonnegative.) 

Then we can define 

~D, = TJ3!, (14) 

and clearly 

C, = ~;~; .  (15) 

Actually, ~i provides just one possible definition of the matrix Qi in Eq. 
(10). Given any orthogonal matrix F, we may define 

Q i -  r (16) 
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and it will turn out that 

Q,Q; = ~ , F F ' ~  = (I)i(I); = C i. (17) 

Any Qi satisfying Eq. (11) can be shown to be of the form stipulated in 
Eq. (16), but the decomposition of Ci defined in Eqs. (13)-(14) or (15) (with 
F as the identity matrix) leads to a particularly convenient geometric inter- 
pretation. Ti can be viewed as defining an orthogonal rotation of the refer- 
ence frame, and thus of the Individual Differences In Orientation (of the 
reference system) referred to earlier. The diagonal entries of 13 i can be inter- 
preted as weights analogous to the Wir'S in the INDSCAL model that are 
now applied to this IDIOsyncratic reference frame. The considerable intu- 
itive appeal of the IDIOSCAL model notwithstanding, it has empirically 
yielded disappointing results in general. A major practical drawback of 
using the IDIOSCAL model is the potential need to provide a separate 
figure (or set of them) for the spatial representation of each source. 

Young's (1984a) approach to fitting what he called the "General Euclide- 
an Model," specifically in the form of his "Principal Directions Scaling," 
can be viewed as a special case of IDIOSCAL in which the Ci matrix for 
each subject is positive semidefinite, with rank Ri less than R (generally R i = 
2). Young assumes each subject projects the IDIOSCAL-type stimulus 
space defined by X into an Ri-dimensional subspace so that in this model Yi 
= X ~  i where (I) i is an R x R i projection matrix (so ~(I) i = IR; that is ~i is 
an orthonormal section projecting orthogonally from X into an Rrdimension- 
al subspace, Yi)- In this case C i = ~ i ~  will be positive semidefinite and is of 
rank R,. The main advantage of this particular special case of IDIOSCAL 
appears to be that it enables the graphic representation of each subject's 
private perceptual space in (usually the same) smaller dimensionali ty~typ- 
ically two. It is not clear, however, that this model has a convincing ratio- 
nale beyond this practical graphical advantage (see Easterling, 1987, for a 
successful analysis). 

Other models closely related to IDIOSCAL are discussed at length in 
Arabie et al. (1987, pp. 44-53), but one final three-way model for proximities 
that bears mentioning generalizes the IDIOSCAL model by adding addition- 
al parameters associated with the stimuli (or other objects)" the PINDIS 
(Procrustean INdividual Differences Scaling) model and method of Lingoes 
and Borg (1978). PINDIS adds to the parameters of the IDIOSCAL model a 
set of weights for stimuli, so the model for an individual, in the scalar product 
domain, is of the form 

B i ~ AiXCiX'Ai ,  

where B i is an n x n matrix of  scalar products among the n stimuli for subject/ 
source i, whereas A i is an n x n diagonal matrix of rescaling weights for 
stimuli. (Although we shall not demonstrate the result here, the IDIOSCAL 
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model in the scalar product domain is of this form, but with A i = I for all i, so 
that, in effect, the pre- and postmultiplication by Ai is omitted.) The inter- 
pretation of these additional parameters is difficult to justify on psychological 
grounds. Even more parameters defining different translations of the coordi- 
nates of each individual or other source of data, i, are allowed in the general 
formulation of PINDIS in its scalar product form. Geometrically, the rescal- 
ing parameters for stimuli have the effect of moving each stimulus closer to or 
farther from the centroid in the stimulus space; they do this by multiplying 
the coordinates by the weight associated with that object. It is hard to 
envision a psychological mechanism to account for such nonuniform dila- 
tions. Moreover, Commandeur (1991, p. 8-9) provides a trenchant and 
compelling algorithmic critique of PINDIS. Thus, we pursue this model and 
method no further. 

C. Available Software for Two- and Three-Way MDS 

1. The Two-Way Case 

KYST2A (Kruskal, Young, & Seery, 1973) is the dominant software for 
two-way MDS. The acronym stands for "Kruskal, Young, Shepard, and 
Torgerson," and the software synthesizes some of the best parts of various 
approaches to nonmetric (two-way) MDS that these four contributors have 
proposed. These algorithms are described in great detail in the previously 
cited references, so they will not be further described here. The important 
distinctions are the following: 

1. KYST2A minimizes a criterion Kruskal calls STRESS. The standard 
version of STRESS, often called STRESSFORM1, is defined as 

( ~jk(djk_ djk)2 )1/2 
STRESSFORM1 = ~_~jkdf. k " 

R 1 / 2  

(i.e., the Euclidean distance in the recovered configuration has coordiantes 
Xjr, for j  = 1, 2 . . .  n, r = 1, 2 = R) and djk is, depending on the user's 
specification, a linear, monotonic, or other function of the input similarity, 
sjk, or dissimilarity, ~jk, ofj and k (a decreasing or nonincreasing function in 
the former case and an increasing or nondecreasing function in the latter). 

STRESSFORM2 differs only in the normalization factor in the denomi- 
nator, which is ~ok(djk -- j)2, where d is the mean of the djk's. All sums (and 
the mean if STRESSFORM2 is used) are over only the values ofj  and k for 
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which data are given. Generally, the diagonals (sjj or ~jj) or self-sim- 
ilarities/dissimilarities are undefined and therefore are treated as missing 
data (so that sums and means exclude those diagonal values as well). 

2. KYST2A allows both metric and nonmetric fitting (and, in fact, in- 
cludes options for other than either linear or general monotonic functions 
transforming data into estimated distances; the most important special case 
allows polynomial functions up to the fourth degreeAbut such generalized 
linear functionals are not necessarily monotonic). KYST2A allows still other 
options (see Kruskal et al., 1977, for details) for analyzing three-way data, 
but fitting only two-way or nonindividual differences models to all subjects 
or other sources, as well as for performing what Coombs (1964) and others 
call "multidimensional unfolding" (to be discussed later). 

3. KYST2A allows fitting of metrics other than Euclidean--specifically 
the "Minkowski p," or Lp, metric of the form given in Eq. (1). In practice, 
the only two values of p that are used at all frequently are p = 2, the 
Euclidean case, and, quite inappropriately, p - 1, the city-block or Manhat- 
tan metric case (see Arabie, 1991, for a review). As noted earlier, however, 
Hubert and Arabie (1988; Hubert, Arabie, & Hesson-Mcinnis, 1992) dem- 
onstrated that the problem of fitting an L 1 or city-block metric is more 
appropriately approached via combinatorial optimization. 4 

Another available algorithm for two-way nonmetric MDS is Heiser and 
de Leeuw's (1979) SMACOF (Scaling by MAjorizing a COmplicated Func- 
tion) procedure, based on a majorization algorithm, (see de Leeuw and 
Heiser, 1980, for details), which we will not discuss here except to say that 
SMACOF optimizes a fit measure essentially equivalent to Kruskal's 
STRESS. Majorization is an important algorithmic approach deserving 
much more coverage than space allows. Important references include de 
Leeuw (1988), Groenen (1993), Groenen, Mathar, and Heiser (1995), Heiser 
(1991, 1995), Kiers (1990), Kiers and ten Berge (1992), and Meulman 
(1992). 

Wilkinson's (1994) SYSTAT allows many options and considerable flex- 
ibility for two-way MDS. 

Two other valuable algorithmic developments in two-way (and three- 
way) MDS are the ALSCAL (Takane et al., 1977) procedure and Ramsay's 
(1978) MULTISCALE. ALSCAL (for Alternating Least squares SCALing) 
differs from previous two-way MDS algorithms in such ways as (1) its loss 
function, (2) the numerical technique of alternating least squares (ALS) used 
earlier by Carroll and Chang (1970) and originally devised by Wold (1966; 
also see de Leeuw 1977a, and de Leeuw & Heiser 1977), and (3) its allowance 

4 For other combinatorial approaches to MDS, see Hubert and Schuhz (1976), Poole (1990), 
and Waller, Lykken, and Tellegen (1995). 
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for nominal scale (or categorical) as well as interval and ordinal scale data. 
ALSCAL and MULTISCALE are also applicable to two-mode three-way 
data, and a three-way version of SMACOF is under development. All three 
programs will be considered again under spatial distance models for such data. 

MULTISCALE (MULTidimensional SCAL[E]ing), Ramsay's (1977b, 
1978a, 1978b, 1980, 1981, 1982a, 1983) maximum-likelihood-based proce- 
dure, although strictly a metric approach, has statistical properties that 
make it potentially much more powerful as both an exploratory and (partic- 
ularly) a confirmatory data analytic tool. MULTISCALE, as required by 
the maximum likelihood approach, makes very explicit assumptions re- 
garding distribution of errors and the relationship of the parameters of this 
distribution to the parameters defining the underlying spatial representa- 
tion. One such assumption is that the dissimilarity values 82k are log nor- 
mally distributed over replications, but alternative distributional assump- 
tions are also allowed. 

The major dividend from Ramsay's (1978) strong assumptions is that the 
approach enables statistical tests of significance that include, for example, 
assessment of the correct dimensionality appropriate to the data (via an 
asymptotically valid chi square test of significance for three-way data treated 
as replications) while fitting a two-way model. Another advantage is the 
resulting confidence regions for gauging the relative precision of stimulus 
coordinates in the spatial representation. The chief disadvantage is the very 
strong assumptions entailed for the asymptotic chi squares or confidence 
regions to be valid. Not least of these is the frequent assumption of ratio 
scale dissimilarity judgments. In addition, there is the assumption of a 
specific distribution (log normal, normal, or others with specified parame- 
ters) and of statistical independence of the dissimilarity judgments. 

2. The Three-Way Case 

The most widely used approach to fitting the three-way INDSCAL model 
is the method implemented in the computer program SINDSCAL (for 
Symmetric INDSCAL, written and documented by Pruzansky, 1975), 
which updated the older INDSCAL program of Chang and Carroll (1969a, 
1989). 

SINDSCAL begins with some simple preprocessing stages, initially de- 
rived by Torgerson and his colleagues (Torgerson, 1952, 1958) for the two- 
way case (also see Gower, 1966, and Keller, 1962). The first step, based on 
the assumption that the initial data are defined on at most an interval scale (so 
that the origin of the scale is arbitrary, leading to the similarities/dissimi- 
larities being related to distances by an inhomogeneous linear function), 
involves solving the so-called additive constant problem. Then a further 
transformation of the resulting one-mode two-way matrix of estimated 
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distances to one of estimated scalar products is effected. (See Torgerson, 1952, 
1958, or Arabie et al., 1987, pp. 71-77, for further details on these pre- 
processing steps.) 

In the two-way classical metric MDS, as described by Torgerson (1952, 
1958) and others, the derived (estimated) scalar product matrix is thus sim- 
ply subjected to a singular value decomposition (SVD), which is mathe- 
matically equivalent to a principal components analysis of a correlation or 
covariance matrix, to obtain an estimate of the n • R matrix X of coordi- 
nates of the n stimuli in R dimensions, X, by minimizing what has been 
called the STRAIN criterion: 

n n R 

STRAIN = lIB - X R ' ] [  2 ~- E E (bjk - ~jk) 2, w h e r e  ~..jk ~ E XjrfCkr �9 
j k r=l 

This approach yields a least-squares measure of fit between derived scalar 
products B = (bjk) and estimated scalar products I] = (bjk). (In some cases, 
e.g., when fitting nonmetrically, it might be necessary to normalize 
STRAIN by, say, dividing by the sum of squared entries in the B matrix; 
but for the current metric case, and with the preprocessing described earlier, 
we may use this raw unnormalized form without loss of generality.) 

In the three-way case, preprocessing entails these same steps for each 
similarity or dissimilarity matrix, S,. or A;, respectively, converting an initial 
three-way array S (of similarities) or A (of dissimilarities) into a three-way 
array B of derived scalar products, where each two-way slice, Bi, is a 
symmetric matrix of derived (estimated) scalar products for the ith subject 
or other source of data. CANDECOMP,  as applied in this case, optimizes a 
three-way generalization of the STRAIN criterion discussed earlier, namely, 

STRAIN = E E E (b)~)- ~)~))2 = E STRAIN/, 
; j k 

where STRAIN/is STRAIN defined for the ith subject or source and where, 
if the usual matrix normalization option is used, the constraint is imposed 
that 

E E (b(~)) 2 = 1 . 0 ,  for all i,  
i i 

R 

b)~)- ~ ff,(ifCjrfCkr (18) 
r-1 

is a generalized (weighted) scalar product, and parameters rb,). and ~j~ are 
(estimates of) the same parameters (without the "hats") as those entering the 
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weighted Euclidean distance defined for INDSCAL in Eq. (2), as demon- 
strated in Carroll and Chang (1970) and elsewhere (e.g., Appendix B, Arabie 
et al., 1987). The INDSCAL/SINDSCAL approach to metric three-way 
MDS then applies a three-way generalization of the SVD, called (three-way) 
C A N D E C O M P  (for CANonical DECOMPosition of N-way arrays) to 
array B, to produce estimates (minimizing the least-squares STRAIN crite- 
rion) X and W, respectively, of the group stimulus space and the subject 
weight space. For details of this C A N D E C O M P  procedure and its applica- 
tion to the estimation of parameters of the INDSCAL model, see Carroll and 
Chang (1970) or Arable et al. (1987). 

Probably the most widely used approach for nonmetric fitting of the IND- 
SCAL model is ALSCAL (Takane et al., 1977), which fits the model by 
optimizing a criterion called SSTRESS, analogous to Kruskal's STRESS, 
except that it is a normalized least-squares criterion of fit between squared 
distances (in the fitted configuration) and monotonically transformed data 
(called "disparities" by Takane et al.). 

For each subject or data source, SSTRESS is defined analogously to 
Kruskal's STRESSFORM1, except that, again, squared Euclidean distances 
replace first-power distances. Another difference, irrelevant to the solutions 
obtained but definitely important vis-a-vis interpretation of values of 
SSTRESS, is that the square root of the normalized least-squares loss func- 
tion defines STRESS, whereas SSTRESS is the untransformed normalized 
least-squares criterion of fit. Thus, to the extent that SSTRESS is compa- 
rable to STRESS(FORM1) at all, SSTRESS should be compared with 
squared STRESS. In the three-way case, overall SSTRESS is essentially a 
(possibly weighted) sum of SSTRESSi, where SSTRESS; is the contribution 
to the SSTRESS measure from subject/source i. As in the case of KYST2A, 
ALSCAL allows either monotonic or linear transformations of the data, in 
nonmetric or metric versions, respectively. See Young and Lewyckyj (1981) 
for a description of the most recent version of the ALSCAL program. 

In a recently published Monte Carlo study, Weinberg and Menil (1993) 
compared recovery of structure of SINDSCAL to that by ALSCAL, under 
conditions in which both metric and nonmetric analyses were appropriate. 
Because SINDSCAL allows only metric analyses, even if only ordinal scale 
data are given, one would expect ALSCAL to be superior in recovering 
configurations under such ordinal scale conditions because ALSCAL allows 
a more appropriate nonmetric analysis whereas SINDSCAL necessarily 
treats the data (inappropriately) as interval scale. It is not clear which of the 
two should yield better recovery of configurations in the case of interval 
scale data, because both can allow (appropriate) metric analyses in this case. 

Surprisingly, the Weinberg and Menil (1993) Monte Carlo study found 
that SINDSCAL was superior in recovery both of the stimulus configura- 
tion and of subject weights, in the case both of interval and of ordinal scale 
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data (with some fairly severely nonlinear monotonic transformations of the 
data). The Weinberg and Menil findings may confirm some preliminary 
results reported by Hahn, Widaman, and MacCallum (1978), at least in the 
case of mildly nonlinear ordinal data. The explanation of this apparent 
anomaly appears to rest in the SSTRESS loss function optimized by AL- 
SCAL, probably because SSTRESS measures the fit of transformed data to 
squared rather than first power distances; the squaring evidently tends to 
put too much weight on the large distances. A STRESS-based three-way 
approach might do better in this respect, but unfortunately no such meth- 
odology exists at present. Willem Heiser (personal communication) has 
indicated that he and his colleagues expect eventually to have a three-way 
version of SMACOF available, which should fill this void. 

Version 6 of SYSTAT (Wilkinson, 1994) included, for the first time, 
software for nonmetric fitting of the INDSCAL model. It is too early to 
evaluate SYSTAT's performance in this particular domain, but we note that 
the example given in the documentation (Wilkinson, 1994, p. 140) erro- 
neously suggests that both the subjects and the stimuli are positioned in the 
same space, rather than in disjoint spaces having a common dimensionality. 

Another widely available program for both two- and three-way MDS is 
Ramsay's (1978, 1982a) MULTISCALE, briefly discussed earlier, which 
generally assumes ratio scale data, and fits via a maximum likelihood crite- 
rion, assuming either additive normal error or a lognormal error process. 
Although a power transformation is allowed, Ramsay's approach generally 
entails only metric options and in fact makes even stronger metric assump- 
tions than other metric approaches in that it generally requires ratio scale, 
not the weaker form of interval scale proximity data generally assumed in 
metric MDS. The main advantage of Ramsay's approach is that it does 
utilize a maximum likelihood criterion of fit and thereby allows many of the 
inferential statistics associated with that approach, notably the asymptotic 
chi square tests that can be used to assess the statistical significance of 
various effects. (This advantage is undermined somewhat by the fact that 
the additional parameters associated with subjects or other sources of data in 
the three-way case can be regarded as nuisance parameters, whose number 
increases with the number of subjects/sources, thus violating one of the key 
assumptions on which the asymptotic behavior of the asymptotic chi square 
is based. Ramsay, 1980, however, provided some Monte Carlo results that 
led to adjustments in the degrees of freedom for the associated statistical 
tests that correct, at least in part, for this problem.) 

Ramsay (1982b) and Winsberg and Ramsay (1984) also introduced a 
quasi-nonmetric option in MULTISCALE, in which the proximity data are 
transformed via a monotone spline function or functions in the case of 
matrix conditional three-way data, which, incidentally, can include an in- 
homogeneous linear function as a special case (thus allowing for more gener- 



3 Multidimensional Scaling 205 

al metric fitting). But this option is not available in most versions of MUL- 
TISCALE. It is important, however, to note that this quasi-nonmetric op- 
tion in MULTISCALE is quite different from the one introduced by Wins- 
berg and Carroll (1989a, 1989b) and Carroll and Winsberg (1986, 1995) in 
their extended Euclidean two-way MDS. It also differs from the extended 
INDSCAL (or EXSCAL) approach, described next. 

D. The Extended Euclidean Model and Extended INDSCAL 

Winsberg and Carroll (1989a, 1989b) and Carroll and Winsberg (1986, 
1995) proposed an extension of the simple Euclidean model for two-way 
proximities and of the INDSCAL model for three-way proximities for 
which the continuous dimensions of common space are supplemented by a 
set of specific dimensions, also continuous, but relevant only to individual 
stimuli or other objects. Here we state the extended model for distances for 
the three-way, extended INDSCAL case because the two-way extended 
model is a special case, 

R 1 / 2  

d)~ ) = [ ~  Wi,.(Xjr--Xkr)2+ ~ij+ ~ile ] , (19) 
r----- 1 

where ~ ,  called the "specificity" of stimulus j for subject i, is the sum of 
squares of coordinates of specific dimensions for subject i on stimulus j. 
Note that we cannot tell in this model how many specific dimensions per- 
tain to a given subject-stimulus combination, only their total effect on 
(squared) distances in the form of this specificity. 

Winsberg and Carroll have adduced both theoretical and strong empirical 
evidence for the validity of this extended (ordinary or weighted) Euclidean 
model. They discussed the topic in a series of papers on maximum likeli- 
hood methods for either metric or quasi-nonmetric fitting of both the two- 
and three-way versions of this extended model. As noted in considerable 
detail in Carroll and Winsberg (1995), there are theoretical reasons why the 
now classical approach to nonmetric analysis pioneered by Kruskal (1964a, 
1964b)~in which a totally general monotonic function (or functions in the 
three-way case) of the data is sought optimizing either of two forms of 
Kruskal's STRESS measure (or a large class of other STRESS-like fit mea- 
sures)--cannot be used for nonmetric fitting of these extended models. The 
basis of this assertion is the existence of theoretical degeneracies or quasi- 
degeneracies (solutions yielding apparent perfect or near-perfect fit, but 
retaining essentially none or very little of the information in the original 
data) that can always be obtained via such a fully nonmetric fitting. Instead, 
Winsberg and Carroll (1989a, 1989b) and Carroll and Winsberg (1986, 
1995) use a form of quasi-nonmetric fitting in which very (though not 
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totally) general monotonic functions constrained to be continuous and to 
have continuous first and possibly second derivatives are applied to the 
distances derived from the model, rather than to the data. Winsberg and 
Carroll use monotone splines, which can be constrained to have any desired 
degree of continuity of function and derivativesmalthough other classes of 
functions possessing these desiderata could also be utilized. For complete 
details, see Carroll and Winsberg (1995). Also, see the discussion of the 
primordial model presented later in this chapter. 

Carroll (1988, 1992) has also demonstrated that similar degeneracies 
would affect attempts at fully nonmetric fitting of discrete models (e.g., 
ADCLUS/INDCLUS, or tree structures), to be discussed later, and that 
such quasi-nonmetric fitting would be appropriate here as well. In fact, we 
argue that even in more well-behaved cases, such as fitting the ordinary 
two-way Euclidean or three-way INDSCAL model, quasi-degeneracies 
tend to occur in the case of fully nonmetric fitting, so that such quasi- 
nonmetric fitting may be more appropriate even in standard MDS. The 
essence of such quasi-nonmetric fitting is twofold: (1) the monotone func- 
tion is applied on the model side (as seems more appropriate statistically, in 
any case), not to the data, and (2) a less than totally general class of mono- 
tone functions, such as monotone splines, is utilized so that continuity of 
the function and at least some of its derivatives can be guaranteed. 

Concerning the extended simple and weighted Euclidean models as- 
sumed in this work, such extensions, entailing assumptions of dimensions 
specific to particular stimuli in addition to common dimensions, can be 
made for such other generalized Euclidean models as IDIOSCAL, three- 
mode scaling, and PARAFAC-2, or even to non-Euclidean models such as 
those based on city-block or other L, metrics. 

E. Discrete and Hybrid Models for Proximities 

In addition to the continuous spatial models so closely associated with tradi- 
tional MDS, nonspatial models (which are still geometric in the generic 
sense of being distance models) entailing discrete, rather than continuous, 
parameters can also be used profitably for representing proximity data (see, 
e.g., Gordon, 1996, and other chapters in Arabie, Hubert, and De Soete, 
1996; S. C. Johnson, 1967, Hartigan, 1967; Kruskal and Carroll, 1969; 
Carroll and Chang, 1973; Carroll, 1976; Carroll and Pruzansky, 1975, 1980, 
1983, 1986; De Soete & Carroll, 1996; Shepard and Arabie, 1979; Carroll 
and Arabie, 1980; Arabie et al., 1987). As already argued, such discrete (or 
"feature") representations may be more appropriate than continuous spatial 
models for conceptual or cognitive stimuli. 

A large number of these discrete models are special cases of a model 
originally formulated by Shepard and Arabie (1979; see also Shepard, 1974) 
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called ADCLUS, for ADditive C L U S t e r i n g ,  and generalized to the three- 
way, individual differences case by Carroll and Arabie (1983) in the form of 
the INDCLUS (INdividual Differences C L U S t e r i n g )  model. We can state 
both models in the single equation 

R 

S)k ) ~ S)ff ~" E W irPjrPkr -{- g i,  
r = l  

(20) 

where s(0 - proximity (similarity or other measure of closeness) of stimuli 
(or othJr k objects)j and k for subject (or other source of data)/(/ ' ,  k = 1, 2 
�9 . .  n; i, = 1, 2 . . .  /). Note. that,, ~!{)j~ is~the model estimate_ of s!0, and " ~ "  
means approximately equals except tor error terms mat will snot be fur- 
ther specified here. In addition, Pjr - a binary (0, 1) valued variable defining 
membership (Pjr = 1) or nonmembership (Pir = 0) of stimulus (or other 
object) j in class or cluster r (j = 1, 2 . . .  n; r = 1, 2 . . .  R); wit  - (a 
continuous nonnegative) importance weight of class or cluster r for prox- 
imity judgments (or other measurements) for subject (or other source of 
data) i; g i -  additive constant for subject (source) i, or, alternatively, that 
subject's weight for the universal class or cluster of which all the stimuli are 
members; and R - number of classes or clusters (excluding the universal 
o n e ) .  

Equation (20) gives the basic form of the three-way INDCLUS model; 
ADCLUS is simply the two-way special case in which I = 1, so if desired 
we may drop the "i" subscript. 

It might be noted immediately that the A D C L U S / I N D C L U S  model as 
stated in Eq. (20) is algebraically of the same form as the scalar product form 
of the INDSCAL model given in Eq (18) We simply substitute b(i) = s (i) 

�9 �9 jk .ik 
and x(i) = n(i) while we set o = 0 for all i, and because we are concerned j r .  r jr e~, , ,, ,, 

here with models themselves, we may, conceptually, remove the hats 
from Equation (18), of course! In the INDSCAL approach the b's, or (ap- 
proximate) scalar products, can be interpreted as proximity measures de- 
rived from directly judged similarities or dissimilarities. 

From the purely algebraic perspective, the A D C L U S / I N D C L U S  mod- 
els can be viewed as scalar product models for proximities (s!iB, but with 
dimensions coordinates (Xjr = Pjr) constrained to be binary i(~ k'-' 1) rather 
than continuous. Thus, this particular discrete model for proximities can be 
viewed simply as a special case of the scalar product form of the continuous, 
spatial model discussed earlier, and most typically associated with MDS, 
albeit with the simple and straightforward constraint that the dimensions' 
coordinates must be discrete (specifically, binary). 

An interpretation of the A D C L U S / I N D C L U S  model was provided by 
Shepard and Arabie (1979) using what is sometimes called a "common 
features" model, which can be viewed as a special case of Tversky's (1977) 
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features of similarity model. Each of the R classes or clusters can potentially 
be identified with what Shepard (1974) called an attribute or what Tversky 
(1977) later dubbed a feature, which each stimulus or other object either has 
or does not have~a  kind of all-or-none dimension, that is. The similarity 
(proximity) of two objects is incremented for subject (source) / b y  an 
amount defined by the weight (wi~) associated with that particular sub- 
ject/attribute combination if both objects have the attribute, but it is not 
incremented if either one fails to possess it. This model defines the similarity 
of a pair of objects as a weighted count of common attributes of those two 
objects~an intuitively quite compelling model. As with INDSCAL, in the 
three-way, individual differences case, the subjects or objects are differenti- 
ated by the profile of (cluster) weights characterizing the individual sub- 
jects. 

Arabie and Carroll (1980) devised the MAPCLUS algorithm, the most 
widely used method for fitting the two-way ADCLUS special case of this 
model. Published data analyses using MAPCLUS include examples from 
psychoacoustics (Arabie & Carroll, 1980), marketing (Arabie, Carroll, De- 
Sarbo, & Wind, 1981), and sociometry (Arabic & Carroll, 1989); other 
references are given in Arabic and Hubert (1996, p. 14). 

A more widely used method for the discrete representation of similarity 
data is hierarchical clustering (Gordon, 1996; Hartigan, 1967; Johnson, 
1967; Lance & Williams, 1967), which yields a family of clusters such that 
either two distinct clusters arc disjoint or one includes the other as a proper 
subset. In the usual representation, the objects being clustered appear as 
terminal nodes of an inverted tree (known as a dendrogram), clusters corre- 
spond to internal nodes, and the reconstructed distance between two objects 
is the height of the internal node constituting their meeting point. The 
model implies that, given two disjoint clusters, all recovered distances be- 
tween objects in the same cluster are smaller than distances between objects 
in the two different clusters, and that for any given pair of clusters these 
between-cluster distances are cqual; all triangles are therefore acute isosccles 
(isosceles with the two larger distances equal). This property is equivalent 
to the ultrametric inequality, and the tree representation is called an ultra- 
metric tree. The ultrametric incquality (u.i.) states that, for ultrametric dis- 
tances h, 

hi i <- max(hik, hk/) for all j, k, I. (21) 

Given a set of distances satisfying the u.i., the associated tree can easily be 
constructed and numerical height values defined (i.e., the numerical ultra- 
metric values arising during the iterative clustering procedure and tradi- 
tionally presented in the margins of the dendrogram beside their respective 
levels). An infinite family of ultrametric distance matrices is associated with 
the topology of a given rooted tree, but if the height values arc specified, the 
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particular ultrametric is correspondingly and uniquely specified. Those val- 
ues must satisfy a partial order based on the hierarchy defined by the tree; 
namely, the height of an ancestral node corresponding to a superordinate 
class or cluster must be greater than or equal to the height of a descendant 
node representing a subordinate class/cluster (a proper subset of the for- 
mer). This statement assumes the corresponding one-mode two-way prox- 
imity data are keyed as dissimilarities. 

As an aside, we note that Holman's (1972) classic result relating (two- 
way one-mode) ultrametric and (two-way one-mode) Euclidean data en- 
gendered a highly productive tradition of formal investigations of the inter- 
connections; see Arabie and Hubert (1996, p. 23-24) for an overview. 

Although the two representations just discussed, ADCLUS (as fitted by 
the MAPCLUS algorithm in this case) and an ultrametric tree structure 
representation (as fitted by one of the standard hierarchical clustering ap- 
proaches or other procedures to be discussed later for least-squares tree 
structure fitting), may at first blush seem to be quite distinct, it turns out 
that the latter is in fact a special case of the former. First, if we define a 
dissimilarity measure corresponding to a single linear transformation of 
~O--namely, 

8!!) = t ; -  s!9 (/ # k) (22) 
1 ~e .I ~: 

where t; is a large positive constant~the 8!9 can be so defined as to satisfy 
the triangle inequality, and thus the metric axioms, because the diagonal 
elements are undefined and symmetry of S; = (s(O3 is assumed by defini- 

, ,, i k ~  

tion. 
If we furthermore assume that the clusters for the ADCLUS representa- 

tion are hierarchically nested, so that every pair of clusters is either disjoint 
or one is a proper subset of the other, and define ~(;/as t . -  ~(0, where ~(9 is as 

~ ,, - i k  z i k  i ~  _ 

defined in Eq. (20), then 8(9 (for fixed i) will satisfy the ultrametric inequali- 
J R  

ty and correspond to an ultramemc defined on a hierarchical tree. Thus, 
ultrametric trees, this very important class of discrete geometric models so 
closely associated with hierarchical clustering, can be viewed as a special 
case of the ADCLUS/ INDCLUS model, after this simple linear transfor- 
mation from the similarity to this dissimilarity form of the model. As will 
be evident shortly, a wider class of discrete models can also be viewed as 
special cases of A D C L U S / I N D C L U S .  For extended analyses using the 
INDCLUS model, see Arabie, Carroll, and DeSarbo (1987, chap. 6), as 
well as references cited there and in Arabie and Hubert (1996, p. 14). 

F. C o m m o n  versus D i s t i n c t i v e  Feature Models  

As already discussed, ADCLUS and INDCLUS are common feature mod- 
els, in which similarity is defined by a (weighted) count of features shared 
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by the two objects (a "feature" corresponding to a cluster of which an object 
is a member). (We can, as previously shown, translate this model into one 
for dissimilarities by simply subtracting the similarities for a given subject 
or source from a larger constant.) A different feature model for dis- 
similarities is a distinctive features model, which depicts dissimilarities using a 
weighted count of features not found in common; (i.e., distinctive features 
possessed by one or the other object but not by both). As Sattath and 
Tversky (1987) have shown, common and distinctive feature models are 
closely related. We discuss this relation in somewhat different terms from 
those offered by Sattath and Tversky. 

One way to write a distinctive features model for three-way dis- 
similarities data, ~(i)_ is j k '  

R 

= :g lP j r -  Pk~[ (23) ~(k) ~ ~(k)g E W ir 
r= 1 

where w* is a weight, and pj~ and R are as defined earlier. Therefore, Eq. 
(23) defines a weighted count of distinctive features. It is also a weighted 
city-block distance model with binary "dimensions" defined by the p's. 
Because the p's are binary (0, 1) variables, it might be noted that 

IPjr - pkrl = (Pjr - Pkr) 2 (24) 

(in fact, Ipj r -- Pkr I = Ipj r -- pkrlP for any p > 0). Therefore it is equally valid to 
write 

R 

r = l  
-- Pkr) 2 (25) 

[or ~)~) = s w* I p j  r - -  PkriP, for p > 0], so that ~* can with equal validity be 
viewed as a weighted city-block, or L1, metric defined on the (discrete) 
space whose coordinates are defined by P = (Pjr) or as a weighted squared 
Euclidean metric defined on the same space (or, indeed, as any weighted L 0 
or Minkowski p metric, raised to the pth power). 

We now utilize the definition of ~* in Eq. (25), as squared Euclidean 
distances, for mathematical convenience. Expanding 

~j('k)* -- E Wi@r(Pjr 
Y 

-- Pkr) 2 , 

= ~ w*(P 2, - 2pjrPkr + p2r) 
r 
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E , 2 "> - - wi, ps , + ~ , w * p L -  2 ~ w*pi,Pkr, 
r r r 

- E  �9 W i r P j  r + E W ~ P k r  2 E * __ - -  W i r P . i r P k r  , 
?" P" r 

- u * +  u~ 2 ~ * (26) __ - -  W i r P j r P k r  , 
r 

(since p2 ~ p, given p binary), or 

~ *  - -  ~(i) "Jr- bl(j "Jr" Uik , (27) 
j k  

where uij = u* - (ti - gi) /2 - s Wi~pi r *  - - t* ,  Wi~ = 2W*, and t* = (ti - gi) / 2 
i __ - -  -~(9 defined in Eq. (22), whereas .~{{) and As stated earlier, ~k - ti , with t; as 

g i  are as defined in Eq. (20~. ~ ;'~ 
Thus, the distinctive feature model can be viewed as a common features 

model supplemented by uniqueness u!; and Uik that have the same mathemati- 
cal form as the specificities that transform the common space INDSCAL-  
model into the extended INDSCAL model discussed earlier. It should be 
stressed that the substantive interpretation of uniqueness in the present case 
differs greatly from the specificities in the extended Euclidean model/ 
INDSCAL case. In the latter case, specificities are related to dimensions 
specific to the stimulij  and k, respectively, whereas in the distinctive features 
model, the uniqueness values pertain to a weighted count of all features that 
the stimulus possesses and can be viewed in the same spirit as Nosofsky's 
(1991, p. 98) stimulus bias. 

As Sattath and Tversky (1987) have shown, the distinctive features model 
can always be formulated as a special case of the common features model, 
however, so that the uniquenesses are not (explicitly) necessary. This con- 
version is accomplished by supplementing the features in the common fea- 
tures model by a set of additional complementary common fea turesnone  
complementary feature corresponding to each stimulus or other object. A 
complementary feature for a particular object is a feature possessed by all 
objects except that object, such as a class or cluster containing all n - 1 
objects excluding that one. (Weights for the common features, including 
these complementary features, and the additive constants, must be adjusted 
appropriately.) 

In the case of hierarchically nested features (classes or cultures), a distinc- 
tive features model will lead to the family of path length or additive trees, 
discussed later. Other discrete structures such as multiple trees (either ultra- 
metric or path length/additive) are also special cases of either common or 
distinctive features models, whereas distinctive features models are special 
cases of common features models, as we noted earlier, so that all of a very 
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large class of discrete models to be discussed later are special cases of the 
A D C L U S / I N D C L U S  form of common features model. 

Although any distinctive features model can be formulated as a common 
features model with a large set of features (including complementary ones), 
the more parsimonious form (covering both common and distinctive fea- 
tures models) stated for similarity data is 

R 

S)~e >~ S(fe )-" s WirPjrPkr- 14!j- Uik , 
r = l  

(28) 

where for a common features case u,j = uik = - g i / 2  for all i, j, k. 

G. The Primordial  Model 

We can now formulate a general model that includes the INDSCAL model, 
the two-way (Euclidean) MDS model, and this large class of discrete mod- 
els, all as special cases. This primordial model will be the linchpin for much of 
the remaining discussion in Section IV and can be written as 

R 

-_- - Mi(  jk . . , 
r = l  

(29) 

where M i is a monotone (nondecreasing) function. In the case of the INDSCAL 
model uij = .5s Wi,X]r, SO that the expression in parentheses on the right 
side of Eq. (29) equals - 5(d(i)~ 2 where, as before, 

" \ . j k  j 

R 1/2 

df~e>-~- [ s Wir(Xjr--Xkr) 2 ] 
r = l  

In the case of the extended INDSCAL (or EXSCAL) model, 

R 

K 

(30) 

where cr 0 denotes the (i, j ) th  specificity as defined in that model. Here Mi is 
a linear function only if similarities are assumed to be (inversely) linearly 
related to squared (weighted) Euclidean distances. (The two-way special 
cases of both of these should be obvious.) If the Mi's are assumed to be 
monotonic (but nonlinear), we recommend the quasi-nonmetric approach, 
for reasons discussed earlier in the case of fitting the extended INDSCAL 
(i.e., EXSCAL), or the extended Euclidean model in the two-way case. 

As we have already shown, if Xjr -- Pjr (i.e., if the coordinates of the R 
dimensions are constrained to binary (0, 1) values), then the model becomes 
the common or distinctive features model and thus has all the other discrete 
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models discussed earlier as special cases. Thus, Eq. (29) can be viewed as the 
primordial model, of which all others are descendants! It might be noted in 
passing that since, as Joly and Le Calv6 (submitted) have shown, a city- 
block, or L 1, metric can always be written as the square of a Euclidean 
metricmalthough in a space, generally, of very high dimensionalitymthe 
L 1 metric modelsnincluding the three-way (weighted) version discussed 
earlier--can also, at least in principle, be included as special cases of this 
primordial scalar product model. In fact, although this primordial model 
has the form of a scalar product plus some additive constants, it is easy to 
show that it can in fact be formulated as an overall scalar product model that 
requires two additional dimensions to accommodate two additional scalar 
product terms with special constraints. Although most MDS models are 
based on distances between points, not scalar products among vectors, we 
have shown here that such distance models can easily be converted to this 
general scalar product form, at least in the case of Euclidean and city-block- 
based models. Some have argued, however, that the processes involved in 
computing, say, Euclidean distances are very "unnatural" (taking differ- 
ences between coordinates of two stimuli in an internal spatial representa- 
tion of the stimuli, squaring this difference, and then summing these 
squares of coordinate differences over all dimensions; this is possibly fol- 
lowed by a final step of taking the square root, at least in the case of ratio 
scale distance judgments). It is hard to imagine such operations being wired 
into the human neural apparatus. In contrast, calculating scalar products 
(simply multiplying the coordinates for the stimulus pair and summing 
these products) seems much more plausible as an innate neurologi- 
cal/psychological process. In fact, the general semantic model offered by 
Landauer and Dumais (1997) assumes the representation of words in a high- 
dimensional semantic space (about 300 dimensions for their data). Those 
authors argue that such scalar products can be computed by a very simple 
neural network. (The model assumes that the association of a given word 
with unordered strings of other words is based on finding the word in this 
semantic space closest to the centroid of the words in that string, in the 
sense of maximizing the cosine of the angle between the word and that 
centroid. The cosine of an angle in multidimensional space is, in turn, a 
simple function of the scalar products of vectors.) 

Now if we just take the one additional evolutionary step of allowing 
some x's to be continuous and others discrete (binary, in particular), we 
immediately generate the hybrid models originally discussed by Carroll 
(1976; De Soete & Carroll, 1996; also see Hubert & Arabie, 1995a) as an 
even more general family of models in which continuous spatial structure is 
combined with discrete, nonspatial structure. We discuss some of the discrete 
and hybrid models that emerge as such special cases of the very broad, 
general model stated in Eq. (29). See Carroll and Chaturvedi (1995) for a 
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general approach, called CANDCLUS,  that allows fitting of a large class of 
discrete and hybrid models, including the (two- and three-way) common 
features models discussed previously, to many types of data that are two- 
way, three-way, and higher-way via either least-squares or a least absolute 
deviations (LAD) criterion. Chaturvedi and Carroll (1994) apply this ap- 
proach to provide a more efficient algorithm, called SINDCLUS, for fitting 
the ADCLUS/ INDCLUS models via an OLS criterion, whereas Chatur- 
vedi and Carroll (1997) have extended this work to fit with a LAD criterion 
in a procedure called LADCLUS. 

A tree with path-length metric (Carroll & Chang, 1973), or simply a 
path-length tree, is synonymous with what Sattath and Tversky (1977) 
called an "additive similarity tree." Unlike ultrametric trees, which have a 
natural root node, a path-length tree has no unique root. It is not necessary 
to think of it as being vertically organized into a hierarchy. (In fact, such a 
tree, for n objects, is consistent with 2n - 2 different hierarchies, correspond- 
ing to rooting the tree along any one of its 2n - 2 distinct branches.) 
Underlying the structure of a path-length tree is the four-point condition that 
must be satisfied by the estimated path-length distances. This condition, 
which is a relaxation of the ultrametric inequality, is satisfied by a set of 
distances (arjk) if and only if, for all quadruples of points j, k, 1, and m, 

"rrjk + "tr1,,, --> "rrjl + "rrk,,,--> "rrkl + ~.i,,, implies that 
"rCjk + 'Yrhn = "ITjl + "ffkm" (31) 

That is, the two largest sums of pairs of distances involving the subscripts j, 
k, 1, and m must be equal. See Carroll (1976), Carroll and Pruzansky (1980), 
or De Soete and Carroll (1996) for a discussion of the rationale for this four- 
point condition and its relationship to the u.i. 

H. Fitting Least-Squares Trees by Mathematical Programming 

1. Fitting a Single Ultrametric Tree 

Carroll and Pruzansky (1975, 1980) pioneered a mathematical programming 
approach to fitting uhrametric trees to proximity data via a least-squares 
criterion. This strategy basically attempts to find a least-squares fit of a 
distance matrix constrained to satisfy the u.i. by use of a penalty function, 
which measures the degree of violation of that inequality, as defined in Eq. 
(21), to a given matrix of dissimilarities. This approach can be extended 
easily but indirectly to the fitting of path-length trees satisfying the four- 
point condition, as described later. A more direct procedure entailing a 
generalization of the Carroll and Pruzansky penalty function approach was 
proposed and implemented by De Soete (1983) using a penalty function to 
enforce the four-point condition. 
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2. Fitting Multiple Tree Structures Using Mathematical Programming 
Combined with Alternating Least Squares 

Many sets of proximity data are not well represented by either simple or 
hierarchical clusterings. A general model already discussed is the ADCLUS/  
INDCLUS model, in which proximity data are assumed to arise from 
discrete attributes that define overlapping but nonhierarchically organized 
sets. It may happen, however, that the attributes can be organized into two 
or more separate hierarchies, each of which could represent an organized 
family of subordinate and superordinate concepts. For example, in the case 
of animal names one might imagine one hierarchical conceptual scheme 
based on the phylogenetic scale and another based on function (or relation- 
ship to humankind) involving such categories as domesticated versus wild. 
The former could be classified as pets, work animals, and animals raised for 
food; pets could be further broken down into house versus outdoor pets, 
and so on. 

This case requires a method to allow fitting multiple tree structures to 
da t a~a  multidimensional generalization of the single tree structure, as it 
were. We now describe a procedure for fitting such multiple tree structures 
to a single two-way data matrix of dissimilari t ies .  

Consider fitting A, the two-way data matrix, with a mixture of hierarchi- 
cal tree structures (HTSs), each satisfying the u.i. In particular, we want to 
approximate A as a sum 

A ~ H 1 + H 2 + . . .  Hq, (32) 

where each H matrix satisfies the u.i. We use an overall alternating least- 
squares (ALS) strategy to fit the mixture of tree structures. In particular, 
given current fixed estimates of all H matrices except Hq, we may define 

2i~ = A -  ~ I;tq' (33) 
q'#q 

and use the mathematical programming procedure discussed earlier to fit a 
least-squares estimate, 121q, of Hq, to A~'. 

3. Fitting a Single Path-Length Tree 

J. s. Farris (personal communication), as Hartigan (1975, p. 162) noted, has 
shown that it is possible to convert a path-length tree into an ultrametric 
tree by a simple operation, given the distances from the root node to each of 
the nodes corresponding to objects. Letting "rri o represent the distance from 
thejth object to the root node O and ~ik represent the path-length distance 
from j to k, it can be shown that 

hik = arik - arjo - ,rrko 
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(34) 

satisfies the u.i. The hik will not, however, necessarily satisfy the positivity 
condition for distances. But both the u.i. and positivity will be satisfied by 
adding a sufficiently large constant II by defining t!i k as 

hjk = rgk - r(.io - % 0  + H - "r(.ik -- '9 -- Uk ( j  # k) (35) 

where uj = ,rri o - II/2. An equivalent statement is that 

"ITJ k = I{ik + ui + 14k (J # k)  (36) 
o r I l = H + U  J 

which states that the path-length distance matrix Il is decomposable into a 
distance matrix H that satisfies the u.i. plus an additive residual (which we 
shall simply call U) where l{i k = u i + u k forj -#= k, and the diagonals of U are 
undefined, or zero if defined. The decomposition can be defined so that the 
uy's are nonnegative, in which case U is the distance matrix for a very special 
path-length tree, usually called a "bush" by numerical taxonomists or a 
"star" by graph theorists, and is a path-length tree with only one nontermi- 
nal (or internal) node. (We use the more standard graph-theoretic term star 

henceforth.) The nonnegative constant 19 is, then, just the length of the 
branch connecting terminal node j to that single internal node, and the 
distance between any two distinct terminal nodes, j and k, of the star tree 
equals uj + u k. Thus we may summarize Eq. (36) verbally as 

A path-length tree = An ultrametric tree + A star tree. 

It should be noted that this decomposition is not unique. Many different 
ways exist for decomposing a fixed path-length tree (PLT) into such a sum. 
In the case of multiple PLTs, because the sum of Q star trees is itself just a 
single star tree, we have the extended theorem that 

Q Q 

H q =  E H q  + U (37) 
q q 

or, in words, 

A sum of PLTs = A sum of ultrametric trees + One star tree. 

It should also be noted that both single and multiple path-length or additive 
trees are also, by quite straightforward inference, special cases of the pri- 
mordial model in Eq. (29). 

We may thus fit mixtures of path-length trees by simply adding to the 
ALS strategy defined earlier an additional step in which the constants uj, 
defining the single star component, are estimated via least-squares proce- 
dures. Details of this and of the procedure implementing estimation of the 
uj's can be found in Carroll and Pruzansky (1975, 1980). A more computa- 
tionally efficient, but heuristic (and therefore more likely to be suboptimal), 
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approach to fitting multiple trees was also devised by Carroll and Pruzansky 
(1986). 

I. Hybrid Models: Fitting Mixtures of  Tree 
and Dimensional Structures 

Degerman (1970) proposed the first formal hybrid model combining ele- 
ments of continuous dimensional structure and of discrete class-like struc- 
ture, using a rotational scheme for high-dimensional MDS solutions, and 
seeking subspaces with class-like rather than continuous variation. Since 
then, much has been said but little done about such mixed or hybrid models. 

By further generalizing the multiple tree structure model that Carroll and 
Pruzansky proposed, it is possible to formulate a hybrid model that would 
include a continuous spatial component in addition to the tree structure 
components. To return to our hypothetical animal name example, we 
might postulate, in addition to the two hierarchical structures already men- 
tioned, continuous dimensions of the type best captured in spatial models. 
In the case of animals, obvious dimensions might include size, ferocity, or 
color (which itself is multidimensional). 

Carroll and Pruzansky (1975, 1980), in fact, generalized the multiple tree 
structure model just discussed in precisely this direction. The model can be 
formally expressed as 

A ~-- D 1 + D 2 + . . .  + DQ + D~:R, (38) 

where D 1 through DQ are distance matrices arising from tree structures 
based on either ultrametric or path-length trees, and D 2 is a matrix of ER 
squared distances arising from an R-dimensional Euclidean space. (The 
reason for adding squared rather than first-power Euclidean distances is a 
technical one largely having to do with mathematical tractability and con- 
sistency with the general primordial model in Eq. (29).) In effect, to esti- 
mate this additional continuous component, we simply add an extra phase 
to our alternating least-squares algorithm that derives conditional least- 
squares estimates of these components. Carroll and Pruzansky (1975, 1980) 
provided details of this additional step. The same reference also provides 
an illustrative data analysis with a protracted substantive interpretation. 
Hubert and Arabie (1995b) and Hubert, Arabie, and Meulman (1997) have 
provided yet another approach to fitting multiple tree structures. 

J. Other Models for Two-- and Three-Way Proximities 

Another direction, already explored to some extent, involves generalization 
of the discrete models discussed to the case of nonsymmetric proximity 
data, such as two-mode matrices of proximities or nonsymmetric one-mode 
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proximities (e.g., confusability measures) between pairs of objects from the 
same set. More extensive discussions of the analysis ofnonsymmetric prox- 
imities are found in the next section, but we mention some particularly 
interesting discrete models and methods here. DcSarbo (1982) has devised a 
model/method called GENNCLUS, for example, which generalizes the 
A D C L U S / M A P C L U S  approach to nonsymmetric proximity data. Furnas 
(1980) and De Soete, DeSarbo, Furnas, and Carroll (1984a, 1984b) have 
done the same for tree structures, in a general approach often called "tree 
'unfolding." 

Yet another fruitfully explored direction involves three-way extensions 
of a number of these models, which provide discrete analogues to the 
INDSCAL generalization (Carroll & Chang, 1970) of two-way multi- 
dimensional scaling. One such three-way generalization has already been 
discussed, namely the Carroll and Arabie (1983) INDCLUS generalization 
of ADCLUS/MAPCLUS to the three-way case--including an application 
of INDCLUS to some of the Rosenberg and Kim (1975) kinship data 
(where the third way was defined by those authors' various experimental 
conditions). In the case of tree structures and multiple tree structures, an 
obvious direction for individual differences generalization is one in which 
different individuals are assumed to base their judgments on the same fami- 
ly of trees, but are allowed to have different node heights (in the case of 
ultrametric trees) or branch lengths (for path-length or additive trees)--that 
is, single or multiple trees having identical topological structures, but differ- 
ent continuous parameters for each individual or other data source. Carroll, 
Clark, and DeSarbo (1984) implemented an approach called INDTREES, 
for fitting just such a model to three-way proximity data. In the hybrid casc, 
a set of continuous stimulus dimensions defining a group stimulus space, 
together with individual subject weights similar to those assumed in IND- 
SCAL, could also be introduced. 

We emphasize that all the models discussed thus far for proximity data 
(even including IDIOSCAL, PARAFAC-2, Tucker's three-mode scaling 
model, and DeSarbo's GENNCLUS, if sufficiently high dimensionality is 
allowed) are special cases of the general primordial scalar products model in 
Eq. (29), some with continuous dimensions and others with discrete valued 
coordinates on dimensions constrained to binary values and often called 
"attributes" or "features." The only model discussed not in conformity with 
this generic framework is Lingoes and Borg's (1978) PINDIS--a model we 
have argued is substantively implausible and overparametrized, in any case. 
Thus, a very large class of continuous, discrete, and hybrid models can all 
be viewed as special cases of the primordial model--relatively simple in 
algebraic form, as well as in its theoretical assumptions concerning psycho- 
logical processes underlying perception or cognition. Therefore, all can be 
viewed as special cases of this generic multidimensional model, with the 
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different models varying only with respect to the class of continuous or 
discrete constraints imposed on the structure and interrelations of the di- 
mensions assumed. 

K. Models and Methods for Nonsymmetric Proximity Data 

All the approaches to MDS discussed thus far have involved symmetric 
models for symmetric proximity data. Several types of proximity data are, 
however, inherently nonsymmetric; for example, the similarity/dissimilar- 
ity of j  to k presented in that order is not necessarily equal to that of k to j 
when presented in the reverse order, so that theoretical problems may arise 
in modeling these data via distance models--which are inherently sym- 
metric, because one of the metric axioms (which by definition is satisfied by 
all distance functions) demands that dik = dki for all j and k. (We prefer the 
term nonsymmetric to asymmetric, which is often used as a synonym of the 
former, because some definitions of asymmetric imply antisymmetry--that 
is, that ~jk is definitely not equal to gki, or even that ~ik = a(~kj), where a is a 
decreasing monotonic function [e.g., a(g) = some constant -~]). 

Examples of inherently nonsymmetric proximities include (1) confusions 
data, in which the probability of confusing k with j (i.e., responding j when 
stimulus k is presented) is not necessarily the same as that of confusing j 
with k, (2) direct judgments of similarity/dissimilarity in which systematic 
order effects may affect judgments, and the subject judges both (j', k) and (k, 
j) pairs (perhaps the best example of this involves auditory stimuli, where 
there may be systematic order effects, so that stimulus "q followed by stimu- 
lus i~ may appear, and be judged, either more or less similar than ~ followed 
by ~1; visual and other psychophysical stimuli may be subject to analogous 
order and other effects; see Holman, 1979, and Nosofsky 1991, for impres- 
sive theoretical and substantive developments in this area); and (3) brand- 
switching data, in which the data comprise estimated probabilities (or ob- 
served relative frequencies) of consumers who choose brand TI on a first 
occasion but select brand i~ at some later time (see Cooper & Nakanishi, 
1988). 

Tversky (1977) argued that even direct judgments of similarity/dissimilar- 
ity of conceptual/cognitive stimuli may be systematically nonsymmet r i c~  
largely depending (we would argue) on how the similarity or dissimilarity 
question is phrased~and he provided numerous empirical examples. For 
instance, if subjects are asked "How similar is Vietnam to China?" the 
response will be systematically different than if they are asked "How similar 
is China to Vietnam?" In this particular case Vietnam will generally be judged 
more similar to China than vice versa. Tversky (1977) argued that this occurs 
because China has more "features" for most subjects than Vietnam does, and 
that, in this wording of the similarity question, greater weight is given to 
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"distinctive features" unique to the second stimulus than to those unique to 
the first. This example will be discussed in more detail later when we consider 
Tversky's (1977) "features of similarity" theoretical framework. We would 
argue that a slightly different wording of this question, namely "How similar 
are ~ and/~?" would tend to produce symmetric responses (i.e., that any 
deviations from symmetry are not systematic but result only from random 
error). It is, in fact, this latter wording or some variation of it that is most 
often used when direct judgments of similarities/dissimilarities are elicited 
from human subjects. 

1. The Two-Mode Approach to Modeling Nonsymmetric Proximities 

The first of the two approaches to modeling nonsymmetric proximities is 
the two-mode approach, in which the stimuli or other objects being modeled 
are treated as two sets rather than one--in the two-way case, in effect, the 
proximity data are treated as two-mode two-way, rather than one-mode 
two-way, with one mode corresponding to rows of the proximity matrix 
and the other to columns. In the case of confusions data, for example, the 
rows correspond to the stimuli treated as stimuli, whereas the columns 
correspond to those same stimuli treated as responses. In the case of psycho- 
physical stimuli for which there are or may be systematic order effects, the 
two modes correspond, respectively, to the first and second presented stim- 
ulus. More generally, we have the following important principle: any 
O-mode N-way data nonsymmetric in any modes corresponding to two ways 
(say, rows and columns) can be accommodated by a symmetric model de- 
signed for (0 + 1)-mode N-way data. The extra mode arises from consider- 
ing the rows and columns as corresponding to distinct entities, so that each 
entity will be depicted twice in the representation from the symmetric 
model. (One could, of course, generalize this approach to data nonsym- 
metric in more than one modemperhaps even to generalized nonsymme- 
tries involving more than two-ways for a single mode- -bu t  we know of 
few, if any, actual examples of data of this more general type.) 

The two-set distance model approach can be viewed very simply as a 
special case of Coombs's (1964) unfolding model, which is inherently de- 
signed for data having two or more modes. (In the two-mode case, with 
respective cardinalities of the stimulus sets being n~ and n2, the two-mode 
data can also be regarded as being in the "corner" of an augmented (nl + n2) 
X (n I + n2) matrix with missing entries for all but the n~ x n2 submatrix of 
observed data~hence the traditional but unhelpful jargon of a "corner 
matrix.") Because most programs for two-way (and some for three-way) 
MDS allow for missing data. KYST2A allows the user to provide as input 
such an nl x n 2 matrix. The case with which we are dealing, where nl = n2 
= n, leads directly to a representation in which the stimuli (or other objects) 
are modeled by 2n pointsmone set of points corresponding to each mode. 
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Coombs's (1964) distance-based unfolding model assumes preference is 
inversely monotonically related to distance between the subject's ideal point 
and a point representing the stimulus in a multidimensional space. Because 
of the historical association with Coombs's unfolding model, the general 
problem of analyzing two-mode proximity data (irrespective of whether 
they are row/column conditional or unconditional and whether ordinal, 
interval, or ratio scale) is often referred to as the multidimensional ut~folding 
problem. From a methodological perspective, there arc serious problems 
with the analysis of two-mode proximities, whether of the type discussed 
previously or of another type more normally associated with preferential 
choice (or other dominance) data~which in some cases can lead to data 
that, as defined earlier, arc row or column conditional (e.g., an I x n matrix 
of preference ratings for I subjects on n stimuli). 

Discussion of the problem of multidimensional unfolding as a special case 
of MDS, and the associated problems of theoretical degeneracies that make 
such analyses intractable if great care is not taken, can be found in Kruskal and 
Carroll (1969) orin Carroll (1972, 1980). To summarize the practical implica- 
tions for the analyses of two-mode proximities: Either these analyses should 
be done metrically (i.e., under the assumption of ratio or interval scale data) 
while assuming row (or column) unconditional off-diagonal data, or they 
must be done using STRESSFORM2 (or its analogues, in case of other loss 
functions, such as SSTRESSS), whether doing a metric or nonmctric analy- 
sis, if row (column) conditional data arc entailed. Ifa fully nonmetric analysis 
is attempted treating the data as unconditional (whether using STRESSFORM1 
or 2), a theoretical degeneracy can be shown always to exist corresponding to 
perfect (zero) STRESS, although it will account for essentially none of the 
ordinal information in the data. On the other hand, either a metric or 
nonmetric analysis assuming (row or column) conditional data, but using 
STRESSFORM1 instead of STRESSFORM2, will always allow another, 
even more blatant theoretical degeneracy--as described in Kruskal and Car- 
roll (1969) and Carroll (1972, 1980). 

Discrete analogues of the two-set approach to the analysis of nonsym- 
metric data (or, more generally, rectangular or off-diagonal proximities) arc 
also possible. The tree unfolding approach discussed briefly in the previous 
section is the most notable example. Note that this analysis was (neces- 
sarily) done metrically, assuming row/column unconditional data, for ex- 
actly the reasons cited earlier concerning possible degeneracies (which arc 
even more serious in the case of such discrete models as tree structures, 
where, as discussed earlier, theoretical degeneracies arise in the case of 
nonmetric analyses--even in the case of symmetric proximities). 

5 It should be noted that ALSCAL should not  be used for unfolding analyses, however, 
because the appropriate analogue to STRESSFORM2 is not available in any version of the 
ALSCAL software. 
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Tree unfolding has been generalized to the three-way case by De Soete 
and Carroll (1989). Various approaches to generalizing spatial unfolding to 
the three-way case have been pursued by DeSarbo and Carroll (1981, 1985); 
all are restricted to the metric case and to unconditional proximity data, for 
reasons discussed previously. 

Although fully nonmetric analyses are inappropriate (except under the 
conditions mentioned in the case of spatial unfolding models and always in 
the case of discrete models), the type of quasi-nonmetric analyses described 
in the case of the extended Euclidean and INDSCAL models should be 
permissible, though to our knowledge no one has attempted this approach. 
Heiser (1989b), however, has pursued some different quasi-nonmetric 
methods as well as other approaches to unfolding by imposing various 
constraints on the configurations or by using homogeneity analysis, which is 
closely related to correspondence analysis; see Girl (1990) for a fuller discus- 
sion of this approach to multivariate data analysis, or see Greenacre (1984), 
Greenacre and Blasius (1994), Lebart, Morineau, and Warwick (1984), and 
Nishisato (1980, 1993, 1996a, 1996b) for discussions of correspondence 
analysis. For reasons why correspondence analysis should not be considered 
a routine alternative to either metric or nonmetric MDS, see Carroll, Kum- 
basar, and Romney (1997) and Hubert and Arabie (1992). 

We note tangentially that a large number of multidimensional models 
used for representing preferential choice data and methods for analyzing 
these data using these models have been proposed and can be included under 
the general rubric of multidimensional scaling (broadly defined). If one 
characterizes preferences, as does Coombs (1964), as measures of proximity 
between two sets (stimuli and subjects' ideal points), then the models can be 
classified as MDS models even if we restrict the domain to geometric mod- 
els/methods for proximity data. In fact, as Carroll (1972, 1980) has pointed 
out, a large class of models called the linear quadratic hierarchy of models, 
including the so-called vector model for preferences (Tucker, 1960; Chang 
& Carroll, 1969a) can all be viewed as special cases or generalizations of the 
Coombsian unfolding or ideal point model. 6 The vector model, frequently 
fit by use of the popular MDPREF program (Chang & Carroll, 1969b, 
1989), can be viewed as a special case of the unfolding model corresponding 
to ideal points at infinity (a subject vector then simply indicates the direction 
of that subject's infinitely distant ideal point). Overviews of these and other 
models/methods for deterministic (i.e., nonstochastic) analyses of prefer- 
ence data are provided by Carroll (1972, 1980), Weisberg (1974), Heiser 
(1981, 1987), and DeSarbo and Carroll (1985), whereas discussion of some 
stochastic models and related methods is found in Carroll and De Soete 
(1991), De Soete and Carroll (1992), and Marley (1992). 

6 In an important development, the ideal point model has been extended to the technique of 
discriminant analysis (Takane, Bozdogan, & Shibayama, 1987; Takane, 1989). 
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2. The One-Mode Approach to Modeling Nonsymmetric Proximities 

The other general approach to analyzing nonsymmetric proximities entails 
a single set representation that assumes a nonsymmetric model. These mod- 
els can be viewed as adaptations of either a spatial or a discrete (e.g., feature 
structure) model, modified to accommodate nonsymmetries. 

Many of these models are subsumed as special cases of a nonsymmetric 
modification of what we called the primordial (symmetric) model for prox- 
imities in Eq. (29), which, in its most general (three-way) case, can be 
written for ~) ,  the proximity between objects j and k for subject i, as 

5(!) ~- M.(b(~) + u~i + v~k) (39) 
. ik  ~" . ik  . ' 

where b(!) = 5~rR W i r X i r X k r  ( a  weighted symmetric scalar product between j and 
k for suJ(3ject/source i), 

Xjr = continuous (discrete) value of j th  object on rth 
dimension (feature), 

Wir = salience weight of rth dimension/feature for 
the ith subject, 

uij = uniqueness of j th  object for ith subject in the first (row) 
mode, and 

vik = uniqueness of kth object for ith subject in the second 
(column) mode, 

while M i is a (nonincreasing or nondecreasing) monotonic function for 
subject i, depending on whether ~!!)is, respectively, a similarity or a dis- 

J Pc 
similarity measure. 

For nonsymmetric proximities, among the special cases of this model are 
the following. 

a. Tversky's Features of Similarity Model 

A general statement of this model in set-theoretic terms is (Tversky, 1977) 

SO', k) = O~A n B) - ~ t (A  - B) - f ~ B  - A) 
for 0, et, [3 --- 0, (40) 

where SO', k) is the similarity of stimulij  and k; A and B are corresponding 
sets of discrete dimensions/attributes/features (whichever term one pre- 
fers); A N B is the intersection of sets A and B (or, the set of features 
common to j and k); A - B is the set difference between A and B or, in 
words, the set of features possessed byj  but not by k (whereas B - A has the 
opposite meaning); 0, ct, and [3 are numerical weights to be fitted; and f i s  a 
finitely additive function, that is, 

An)= glad) 
A ~ E  f/ 
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(where A~ denotes a feature included in the feature set ~). An MDS algo- 
rithm tailored to fit this model is described by DeSarbo, M. D. Johnson, A. 
K. Manrai, L. A. Manrai, and Edwards (1992). 

When a = ]3, this model leads to symmetric proximities S; otherwise it 
leads to a nonsymmetric model. Tversky (1977) pointed out that the Shep- 
ard and Arabie (1979) ADCLUS model corresponds to the special case in 
which ot = [3 (so that the model is symmetric) and f ( A )  = f ( B ) ,  for all A ,  B 
(that is, the weights of the feature sets for stimuli j, k, etc. are all equal). We 
now demonstrate that the more general model is a special case of the pri- 
mordial nonsymmetric proximity model expressed in Eq. (39). 

First, we rewrite Eq. (40) as 

sO,  k) = 0f(A n ,3) + (,~ + ~)f(A n B) - ~f(A - B) 
- , , f (A n ,3) - ~ f ( ~ -  A) - ~f (A n ,3) 

= (0 + ot + f 3 ) f ( A  N B) - o t f ( A )  - f3 f (B) ,  (41) 

with the last expression resulting from substitutions of the set identity A = 
(A n B) + (A - B). 

Rewriting Eq. (41) with the same notation used in formulating the two- 
way ADCLUS model results in nonsymmetric (similarities) of the form 

R 

sit e -- s Wrpirpk r - - u j -  Vie , (42) 
r 

where 

,,j = - ,~ ,  ~ w~p,~ 
r 

and 

lek = - - ~ *  Z WrPter, 
Y 

while 

et* = and lB* = 
0 + o L +  f~ 0 + ~ + 1 3  

Here sjk -- o + ~1 + ~ S ( j ,  k) (an unimportant scale transformation), and wr = 
"r(Ar), where Ar is the rth "feature" and P_ir is a binary indicator variable; pj~ = 
1 iff stimulus j has feature r, and -r is a nonnegative function. 

This formulation, of course, is a two-way special case of Eq. (39). Ex- 
tending this reinterpretation of the features of similarity model to the three- 
way case, we have 
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R 

s (i) ~ ~., W;rPi,'Pk,"_ uii ik 
r = l  

12ik , (43) 

which is a special case of the three-way primordial nonsymmetric scalar 
product model of Eq. (39), with xir ~- Pir, that is, with discrete valued 
dimensions or features (and with ~(;) = s(;) with M as the identity function). 

" ik  i k '  
Because Eq. (43) is the three-way generalization of Eq. (39), the u and v 
terms now have an additional subscript for subject i. Thus, Tversky's (1977) 
features of similarity model leads to an extended (nonsymmetric) version 
of the ADCLUS/INDCLUS model--extended by adding the terms u!i 
and vik. 

Holman (1979) generalized Tversky's featurcs of similarity model to 
include a monotone transformation of the expression on the right sidc of 
Eq. (40), making the model more nearly equivalent to Eq. (39), but only in 
the two-way case. Holman then formulated a general model for nonsym- 
metric proximities entailing response biases, a special case of which can be 
viewed as the two-way case of Eq. (39), with the terms u i and v k represent- 
ing the response biases. Holman defined a general symmetric similarity 
function as part of his response bias modcl; our interpretation of Eq. (39) as 
a special two-way case is dependent on a particular definition of that general 
similarity function. 

Krumhansl (1978) proposed a (continuous) model for nonsymmetric 
proximities based on what she called a distance-density hypothesis, which 
leads to an expression for modified distances d of the form 

[-tjk = dik + ~ + [3~bk, (44) 

where c~, [3, and d, arc unrelated to previous usage in this chapter. 
The distance-density model has occasioned an impressive algorithmic 

tradition in two-way MDS. Okada and lmaizumi (1987; Okada, 1990) pro- 
vide a nonmetric method in which a stimulus is represented as a point and 
an ellipse (or its generalization) whose center is at that very point in a 
Euclidean space. Although theirs is a two-way method, it could readily be 
extended to the three-way case. Distance between the points corresponds to 
symmetry, and between the radii to skew-symmetry. Boy4 and Critchley 
(1989, 1993) devised a metric method for fitting the same model and related 
their solution to work by Toblcr (1979) and Weeks and Bentler (1982). 
Saito's approach (1991, 1993; Saito & Takcda, 1990) allows the useful option 
of including unequal diagonal values (i.e., disparate self-similarities) in the 
analysis. DeSarbo and A. K. Manrai (1992) devised an algorithm that, they 
maintain, links estimated parameters more closely to Krumhansl's original 
concept of density. 

Krumhansl's original justification for her model, in which r and 6k are 
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measures of the spatial density of stimuli in the neighborhoods of j  and k, 
respectively, is actually equally consistent with a formulation using squared 
(Euclidean) distances, namely, modified squared distances ~2 defined as 

cl~ = d2k + o~i + f3d~k, (45) 

which, in the three-way case, is a nonsymmetric generalization of the ex- 
tended Euclidean model formulated in the symmetric case by Winsberg and 
Carroll (1989a, 1989b) and extended to the three-way (EXSCAL) case by 
Carroll and Winsberg (1986, 1995). It should be clear that this slight rein- 
terpretation of Krumhansl's distance-density model also leads, in the most 
general three-way case, to a model with continuous spatial parameters of 
the same general form defined in Eq. (39). 

b. Drift Models 

As a final class of models leading to this same primordial generalized scalar 
product form, we now consider two frequently discussed models. One 
entails "drift" in a fixed direction (referred to as a slide-vector model in the 
implementation of Zielman & Heiser, 1993) and the second entails "drift" 
toward a fixed point. (The first can actually be viewed as a special case of the 
second, with the fixed point at infinity in some direction.) 

Before stating the fixed directional form of the drift model in mathemati- 
cal terms, we consider a stimulus identification task leading to confusions 
data, in which a stimulus is presented and the subject attempts to identify it 
by naming or otherwise giving a response associated with the stimulus 
presented. In the drift model, we assume the presented stimulus is mapped 
onto a point (in a continuous multidimensional spatial representation) corre- 
sponding to the "true" location of that stimulus plus a fixed vector entailing 
a drift in a fixed direction (and for a fixed distance). 

Specifically, if xj is the vector representing the true position of stimulus j, 
the effective position of the presented stimulus will be Xi + t~, where t~ is the 
fixed drift vector. If we then assume a Euclidean metric space, the perceived 
distance between j and another (nonpresented) stimulus k will be (in the 
two-way case) 

R 1/2 

(1j'k= [ E  (Xjr + I~r--Xkr) 2 ] (46) 
r= 1 

Now, if we assume that the probability of confusion is a decreasing mono- 
tonic function of d then we have 

sjk ~ Prob (k]j) = M*(dik ) 

g 



= M** 5', 
p- 
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Xkr) 2 + 2 ~., CrXj r  
r 

2 s CrXkr 3r- 2 r 
r 

= M** [ - 2  E XirXkr + ~, X2r + ~,  Xkr 
P" r Y 

+ 2 E CrXjr- 2 E CrXkr q- 2 r 
r g r 

= M [ ~ ,  XirXkr--Ri--Idk] , (47) 
r 

where M* is (an arbitrary) monotonic function, and M** and M are also 
monotonic functions (implied by absorbing first the square root trans- 
formation and then the multiplicative factor o f - 2 ) .  (If M* is mono-  
tone decreasing, of course, M will be a monotone increasing function.) 
The important point is that Eq. (47) is of the same form as (the two-way 
case of) Eq. (39), with uj = - .5 ( s  X]~ + 2s CrXjr if- '~r r and Vk = 
--.5(s X~r -- 2s r CrXir + E r r Clearly, if we assume a separate drift vec- 
tor for each subject/source in the three-way case, we get exactly the model 
form assumed in Eq. (39), with u!i = -.5(Er wir + 2E~ r + gr r 
and lJir ~-- --.5(s r WirX~r -- 2s r qlirXkr + E r r 

In the case of the (two-way) model entailing drift toward a fixed point, 
we assume that the effective position of the presented stimulus, whose true 
location is xj, will be Xi + to(z - X;)' where z is the fixed point toward 
which stimuli drift, while to is a parameter (0 -< to 5 1) governing the degree 
to which xj will drift toward z. In this two-way case, the modified Euclide- 
an distance will be 

R 
d j k -  ~_a (xJr + to(Zr_ Xl r) __ Xkr) 2 ]1/2 

= [ E ( i  
g 

1 - coJxir + t o Z  r - -  Xkr )  2 ] 

1/2 

-[_ 
r !- t" 
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+2o,(1 - o,) Z 2,0 Z + Z 
r r r 

1/2 

Again, if we assume that the probability of confusion, as a measure of 
proximity, is a monotonic function of d ik, we have after some simple alge- 
braic manipulations that proximity is of the same form as in Eq. (47) (with 
M,  Ui, and v k defined appropriately), although, again the three-way general- 
ization (assuming a possibly different fixed point zi for each subject) will be 
of the same primordial form given in Eq. (39). It is important to note that, 
except for the additive constants u(i and v;k, this generalized (primordial) 
scalar product model is essentially symmetric (for each subject/source i). 

To summarize this section, a large number of superficially disparate 
models for nonsymmetric proximities are of the same general form as the 
primordial modified three-way scalar product model stated in Eq. (39), 
although a very large class of discrete, continuous, and hybrid models for 
symmetric proximities are of that same general form but have the constraint 
that u!i = vii, leading to the primordial symmetric model stated in Eq. (29). 

It thus appears that a large class of seemingly unrelated models (both 
two- and three-way, symmetric and nonsymmetric) that have been pro- 
posed for proximity data of widely varying kinds are special cases of this 
generic three-way model that we call the primordial scalar product model, 
expressed in its most general form in Eq. (39). 

3. Three-Way Approaches to Nonsymmetric Proximity Data 

In a seminal two-way approach to representing structure underlying non- 
symmetric one-mode data, Gowcr (1977) used areas of triangles and collin- 
earities for the graphical representation of the skew-symmetric component 
of a nonsymmetric matrix. (Each stimulus was represented by two points, 
one for its row and another for its column.) The degree of nonsymmetry 
relates to the area (or sum of signed areas) of triangles, defined by pairs of 
points and the origin, in two-dimensional subspaces corresponding to 
matched pairs of eigenvalues in an SVD of the skew-symmetric component 
of the original matrix of proximity data (after a standard decomposition of 
the matrix into symmetric and skew-symmetric parts); the direction of the 
nonsymmetry depends on the sign of the area or of the summed signed 
areas. That approach forms the basis for numerous three-way models. 

Boy6 and Rocci (1993) generalized Escoufier and Grorud's (1980) ap- 
proach, in which nonsymmetries are represented by areas of triangles, to 
the three-way case. Kiers and Takane (1994) provided algorithmic advances 
on earlier work by Chino (1978, 1990). Similarly, Zielman (1993) pro- 
vided a three-way approach emphasizing directional planes and colline- 
ari'ties for representing the skew-symmetric component of a nonsymmetric 
three-way matrix. 

We have reviewed elsewhere (Arabie et al., 1987, pp. 50-53) other ap- 
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proaches to this problem (e.g., Krooncnbcrg & dc Lceuw, 1980; also see 
Kroonenberg, 1983; for developments of Tuckcr's three-mode three-way 
principal component analysis, see Tucker, 1972) and will not repeat the 
discussion here. But Kroonenberg and de Leeuw's (1980, p. 83) empirical 
conclusion after a protracted analysis that "symmetrization does not really 
violate the structure of the data" they were analyzing is noteworthy. It is our 
impression that the extensive collective effort to provide MDS algorithms 
capable of faithfully representing the nonsymmetric psychological structure 
so emphasized by Tversky (1977) has borne little substantive fruit. 7 Two 
possible (and nonexclusive) explanations arc (1) nonsymmetry is not very 
important psychologically or is a minor component of most proximity 
data, and (2) the extant models are failing to capture the implicit structure. 
Also see remarks by Nosofsky (1992, p. 38) on this topic. 

Concerning the former explanation, Hubert and Baker's (1979) inferen- 
tial test for detecting significant departures from symmetry has been greatly 
underemployed. Their examples suggest that presence of nonsymmetry in 
psychological data has been exaggerated. Similarly, Nosofsky's (1991) inci- 
sive treatment of the topic suggests that models incorporating terms like 
those for stimulus uniqueness in Eq. (39) may preclude the need to posit 
more fundamental nonsymmetries in similarity data. Concerning the ap- 
propriateness of" extant models, integrative reviews (e.g., Zielman & 
Heiser, 1994) and comparative analyses (e.g., Takane & Shibayama, 1986; 
Molenaar, 1986) should afford a better understanding of exactly what is 
being captured by models for nonsymmctric data. 

We now turn to a different class of such models. 

4. Nonspatial Models and Methods for Nonsymmctric Proximity Data 

The reader who expects to find nonspatial counterparts to the models lust 
discussed will not be disappointed. For the case of one-mode two-way 
nonsymmetric data, Hutchinson (1981, 1989) provides a network model, 
NETSCAL (for NETwork SCALing), in which a reconstructed distance, 
defined as the minimum path length between vertices corresponding to 
stimuli, is assumed to be a generalized power function of the input dis- 
similarities, and the topology of the network is based only on ordinal infor- 
mation in the data. Hutchinson's illustrative data analyses provide impres- 
sive support for the usefulness of his approach. 

Klauer and Carroll used a mathematical programming approach to fit 
network models to one-mode two-way symmetric (1989) and nonsym- 
metric (1991) proximity data. Using a shortest path definition for the recon- 
structed distances, their metric algorithm, MAPNET (for MAthmetical 
Programming NETwork fitting), seeks to provide the connected network 

70kada and lmaizumi (1997) have provided a noteworthy exception to this statement. 
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with a least-squares fit using a specified number of arcs. Klauer and Carroll 
(1991) compared their algorithm to Hutchinson's NETSCAL and found the 
two yielded comparable results, although MAPNET ran faster and pro- 
vided better variance accounted for. (MAPNET has also been generalized to 
the three-way case called INDNET; see Klauer and Carroll, 1995.) 

We note that neither Gower's (1977) approach nor these network models 
are subsumed in the primordial model. 

V. CONSTRAINED AND CONFIRMATORY 
APPROACHES TO MDS 

Substantive theory can provide a priori expectations concerning the config- 
uration that MDS algorithms generate in the course of an analysis. Beyond 
being useful in interpreting the configuration, such expectations can actu- 
ally be incorporated in the analysis in the form of constraints, if the algo- 
rithm and software at hand so allow. 

Most of the literature on constrained MDS considers only two-way one- 
mode analyses, but the extension to the three-way case is usually fairly 
straightforward; thus, we invoke this distinction here much less than in 
some of the previous sections (also in contrast to our treatment of the topic 
in Carroll & Arabie, 1980, pp. 619, 628, 633). 

A. Constraining the Coordinates 

As Heiser and Meulman (1983a, 1983b) noted, most constrained approaches 
focus either on the coordinates of the configuration or on the function 
relating the input data to the corresponding recovered interpoint distances. 
We now consider the former case. Most of the discussion on this topic in our 
1980 review centered on constraining the coordinates, and we will not 
repeat the coverage here. Important subsequent contributions include de 
Leeuw and Heiser (1980), Lee and Bentler (1980), Takane and Carroll 
(1981), Weeks and Bentler (1982), DeSarbo, Carroll, Lehmann, and 
O'Shaughnessy (1982), Heiser and Meulman (1983a, pp. 153-158; 1983b, 
pp. 387-390), Takane and Sergent (1983), Carroll, De Soete, and Pruzansky 
(1988, 1989), and Krijnen (1993). 

1. Circular/Spherical Configurations 

Shepard (1978) masterfully demonstrated the pervasive relevance of spheri- 
cal configurations in the study of perception. In response, designers of MDS 
algorithms have made such configurations a popular form of constrained 
(two-way) MDS. T. F. Cox and M. A. A. Cox (1991) provided a nonmetric 
algorithm, and earlier metric approaches were devised by de Leeuw and 
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Heiser (1980) and Lee and Bentler (1980); also see Hubert and Arabie (1994, 
1995a) and Hubert, Arabie, and Meulman (1997). 

2. Hybrid Approaches Using Circular Configurations 

It is too easy to think only of orthogonal dimensions in a metric space for 
representing the structure in proximities data via MDS, despite the empha- 
sis earlier in this chapter on trees and related discrete structures. Yet other 
alternatives to dimensions are circles and the matrix form characterized by 
permuting input data according to a seriation analysis. That is, instead of a 
series of axes/dimensions or trees (as in Carroll & Pruzansky's hybrid ap- 
proach, 1975, 1980, discussed earlier) accounting for implicit structure, a set 
of circles, for example, could be used to account for successively smaller 
proportions of variance (or components in some other decomposition of an 
overall goodness-of-fit measure). Taking this development a step further in 
the hybrid direction, one could also fit a circle as one component, the 
seriation form as another component, and yet another structure as a third, 
all in the same analysis of a one-mode symmetric proximities matrix, using 
the algorithms devised by Hubert and Arabie (1994) and Hubert, Arabie, 
and Meulman (1997). Those authors (1995a) subsequently generalized this 
approach to include two-way two-mode proximity matrices. 

B. Constraining the Function Relating the Input Data 
to the Corresponding Recovered Interpoint Distances 

In various programs for nonmetric two-way MDS, the plot of this function 
is appropriately known as the Shepard diagram, to give due credit to Shep- 
ard's emphasis on this function, which before the advent ofnonmetric MDS 
was generally assumed be linear between derived measures. (Recall that the 
subtitle of his two 1962 articles is "Multidimensional scaling with an un- 
known distance function.") Shepard (1962a, 1962b) and Kruskal (1964a, 
1964b) devised algorithms for identifying that function with assumptions 
no stronger than weak monotonicity. In later developments, Shepard (1972, 
1974) pointed to the advantages of imposing such constraints as convexity 
on the monotone regression function. Heiser (1985, 1989b) extended this 
approach to multidimensional unfolding. 

Work by Winsberg and Ramsay (1980, 1981, 1984) and Ramsay (1982a, 
1988) using splines rather than Kruskal's (1964b) unconstrained monotone 
regression to approximate this function has afforded new approaches to 
imposing constraints on the monotonic function, such as continuity of the 
function and its first and possibly second derivatives. As already discussed 
extensively, these continuity constraints have allowed Winsberg and Carroll 
(1989a, 1989b) and Carroll and Winsberg (1986, 1995) to reverse the direc- 
tion of the monotone function--treating the data as a (perturbed) monotone 
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function of the distances in the underlying model rather than vice versa, as is 
done almost universally elsewhere in nonmetric (or even other approaches 
to quasi-nonmetric) M D S ~ i n  their quasi-nonmetric approach to fitting the 
Extended Euclidean model or its generalization, the Extended INDSCAL 
(or EXSCAL) model~which includes the ordinary two-way Euclidean 
MDS model or the three-way INDSCAL models as special cases. The 
statistical and other methodological advantages of this strategy have already 
been discussed. The imposition of some mild constraints on various aspects 
of MDS models often leads to considerable advantages of greater robust- 
ness; it also enables fitting, in many cases, of models that are essentially 
impossible to fit without such constraints. 

C. Confirmatory MDS 

As Heiser and Meulman (1983b, p. 394) note, "the possibility of constrain- 
ing the MDS solution in various ways greatly enhances the options for 
analyzing data in a confirmatory fashion." Approaches to confirmatory 
MDS have taken several paths. For example, beginning with a traditional 
statistical emphasis of looking at the residuals, specifically of a nonmetric 
two-way analysis, Critchley (1986) proposed representing stimuli as small 
regions rather than points in the MDS solution. The advantage of this 
strategy is that the regions allow better goodness of fit to the ordinal prox- 
imity data. We noted earlier that Ramsay's maximum likelihood approach 
to two- and three-way MDS allows computing confidence regions for the 
stimulus mode. 

An alternative strategy, used by Weinberg, Carroll, and Cohen (1984), 
employs resampling (namely, jackknifing and bootstrapping on the sub- 
jects' mode in INDSCAL analyses) to obtain such regions. The latter ap- 
proach is more computationally laborious but less model-specific than 
Ramsay's, and the results suggest that Ramsay's estimates based on small 
samples provide an optimistic view of the actual reliability of MDS solu- 
tions. For resampling in the two-way case, de Leeuw and Meulman (1986) 
provide an approach for jackknifing by deleting one stimulus at a time. This 
approach also provides guidelines as to the appropriate dimensionality for a 
two-way solution. Heiser and Meulman (1983a) used bootstrapping to ob- 
tain confidence regions and assess the stability of multidimensional unfold- 
ing solutions. 

Extending earlier results by Hubert (1978, 1979) to allow significance 
tests for the correspondence (independent of any model of MDS) between 
two or more input matrices, Hubert and Arabic (1989) provided a confirma- 
tory approach to test a given MDS solution against an a priori, idealized 
structure codified in matrix form. Hubert's (1987) book is essential reading 
for this topic of research. 
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Vocational psychology has recently provided a setting for numerous de- 
velopments related to confirmatory MDS (Hubert & Arabie, 1987; Rounds, 
Tracey, & Hubert, 1992; Tracey & Rounds, 1993), including a clever appli- 
cation of the INDSCAL model in such an analysis (Rounds & Tracey, 1993). 

VI. VISUAL DISPLAYS AND MDS SOLUTIONS 

A. Procrustes Rotations 

It is often desirable to compare two or more MDS solutions based on the 
same set of stimuli. When the interpoint distances in the solution(s) to be 
rotated to maximal congruity with a target configuration arc rotationally 
invariant (as in two-way MDS solutions in the Euclidean metric), the prob- 
lem of finding the best-fitting orthogonal rotation and a dilation (or overall 
scale) factor (and even a possible translation of origin of one of the two to 
align the centroids of the two configurations, if not already done via nor- 
malization) has an analytic least-squares solution. But devising a canonical 
measure of goodness of fit between a pair of matched configurations has 
proven to be a more challenging problem (see Krzanowski and Marriott, 
1994, pp. 134-141, for a concise history of developments). 

Analogous to the shift in emphasis from two- to three-way MDS, ad- 
vances in rotational strategies have progressed from an emphasis on com- 
paring two MDS solutions to comparing more than two. This problem, 
one variant of which is known as generalized Procrustes analysis (Gower, 
1975), has occasioned considerable algorithmic development (e.g., ten Be- 
rge, 1977; ten Berge & Knol, 1984; ten Berge, Kiers, & Commandeur, 1993; 
see Commandeur, 1991, and Gower, 1995a, for overviews) and can be cast 
in the framework of generalized canonical correlation analysis (Green & 
Carroll, 1988; ten Berge, 1988). As in the case of generalizing many two- 
way models and associated methods to the three-way (or higher) case, there 
are a plethora of different approaches to the multiset (e.g., MDS solutions) 
case, many (but not all) of which are equivalent in the two-set case. Also, in 
the case of Procrustes analyses, different techniques are appropriate, de- 
pending on the class of transformations to which the user believes, on 
theoretical or empirical grounds, the two (or more) configurations can justi- 
fiably be subjected. For example, Gower's generalized Procrustes analysis 
assumes that each configuration is defined up to an arbitrary similarity 
transformation (but that the translation component can generally be ignored 
because of appropriate normalization--e.g., translation of each so that the 
origin of the coordinate system is at the centroid of the points in that 
configuration). The canonical correlation-based approaches, on the other 
hand, allow more general affine transformations of the various configura- 
tions. 
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Yet another approach, first used by Green and Rao (1972, pp. 95-97) as a 
configuration matching approach (in the case of two as well as of three or 
more configurations) utilizes INDSCAL, applied to distances computed 
from each separate configuration, as a form of generalized configuration 
matching (or an alternative generalized Procrustes approach, implicitly as- 
suming yet another class of permissible transformations too complex to be 
discussed in detail here). This INDSCAL-based approach to configuration 
matching has been quite useful in a wide variety of situations and has the 
advantage, associated with INDSCAL in other applications, of yielding a 
statistically unique orientation of common coordinates describing all the 
separate configurations. The general approach of configuration matching 
has long been used to assess mental maps in environmental psychology 
(e.g., Gordon, Jupp, & Byrne, 1989) and has also found many applications 
in food technology (see Dijksterhuis & Gower, 1991/1992) and morphome- 
tries (Rohlf & Slice, 1990). In addition to the earlier applications in market- 
ing by Green, cited earlier, a recent approach utilizing either (1) Gower's 
generalized Procrustes analyses, (2) INDSCAL-bascd rotation to congru- 
ence, or (3) a canonical correlation or generalized canonical correlation- 
based technique for configuration matching (Carroll, 1968; Green & Car- 
roll, 1989)--or all three--has been quite successfully applied to provide a 
highly provocative and quite promising new paradigm for marketing analy- 
sis, synthesizing elements of a semantic differential approach in a neo- 
Kellyian framework with an MDS-type spatial representation (see Steen- 
kamp, van Trijp, & ten Berge, 1994). Although devised in the context of a 
marketing problem, this novel methodological hybridization could very 
profitably be used in several areas of applied psychology. Other aspects of 
MDS that are applied to marketing and that could have useful analogues in 
psychology are discussed in Carroll and Green (1997). 

B. Biplots 

As Greenacre (1986) succinctly noted, 

"Biplot" is a generic term for a particular class of techniques which represent 
the rows and columns of a [two-way two-mode} data matrix Y as points in a 
low-dimensional Euclidean space. This class is characterized by the property 
that the display is based on a factorization of the form AB' [notation modified 
from the original] of a matrix approximation Z of Y. The biplot recovers the 
approximate elements % as scalar products aib~ of the respective i-th and j-th 
rows of A and B, which represent row i and column j respectively in the 
display. 

(Note: The names of these variables bear no necessary relation to usage 
elsewhere in this chapter.) Such representations have been available since the 
advent of MDPREF (Carroll & Chang, 1969), but by emphasizing the 
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graphical presentation and by naming it a "biplot" (after its two modes), 
Gabriel (1971) contributed to the display's popularity. For advances in the 
underlying statistical techniques, see Gower (1990, 1992, 1995b), Gower 
and Harding (1988), Meulman and Heiser (1993), and Gower and Hand 
(1996). 

C. Visual izat ion 

Young (1984b, p. 77) predicted that "methods for graphically displaying the 
results of scaling analyses rather than new scaling methods as such" were 
the new frontier of MDS developments and emphasized color and interac- 
tive graphic hardware. This prophecy has turned out to be highly myopic. 
Although the graphics capabilities of multivariate statistical packages like 
SYSTAT's SYSGRAPH (Wilkinson, 1994) are indeed impressive and will 
no doubt continue to improve, they are in no way specific to MDS analyses. 
The most dramatic graphics-based advances in our understanding of MDS 
techniques have come from black-and-white graphics portraying results of 
highly sophisticated investigations that rely on clever and insightful theoret- 
ical analyses and simulations (Furnas, 1989; W. P. Jones & Furnas, 1987; 
Littman, Swayne, Dean, & Buja, 1992). 

VII. STATISTICAL FOUNDATIONS OF MDS 

During the 1960s, MDS tended to be ignored in the statistical literature, but 
in the past 15 years, most comprehensive textbooks on multivariate data 
analysis have included at least one chapter on MDS (e.g., Krzanowski & 
Marriott, 1994, chap. 5). But relatively few papers (e.g., Cuadras, Fortiana, 
& Oliva, 1996; Groenen, de Leeuw, & Mathar, 1996) have looked intently at 
the problem of estimation in MDS. Focusing on the consistency of the 
Shepard-Kruskal estimator in two-way nonmetric MDS, Brady (1985) 
reached several interesting conclusions. For example, in aggregating over 
sources of data to go from a three-way two-mode matrix to a two-way one- 
mode matrix (as is typically done when two-way nonmetric MDS is applied), 
it is better to use medians than the traditional arithmetic mean when the data 
are continuous (e.g., collected using a rating scale). If the data are not 
continuous (e.g., aggregated over same-different judgments or overt confu- 
sions), then accurate recovery of the monotone function typically displayed 
as the Shepard diagram is unlikely. Brady also developed the beginnings of an 
hypothesis test for the appropriate dimensionality of MDS solutions. 

Ramsay (1982b) provided a scholarly and comprehensive discussion of 
the underpinnings of his maximum likelihood-based MULTISCALE algo- 
rithms (described earlier). 
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Using matrix permutation/randomization techniques as the basic engine, 
Hubert and his collaborators (Hubert, 1985, 1987; Hubert & Arable, 1989; 
Hubert & Golledge, 1981; Hubert & Subkoviak, 1979) have provided a 
variety of confirmatory tests applicable to MDS analyses. This general 
approach makes considerably weaker distributional assumptions than the 
other papers cited in this section. 

Brady (1990) studied the statistical properties of ALS and maximum 
likelihood estimators when applied to two-way unfolding (e.g., Greenacre 
& Browne, 1986) and reached the unsettling conclusion that "even after 
making some strong stochastic assumptions, the ALS estimator is inconsis- 
tent (biased) for any squared Euclidean model with an error term." Further 
statistically based research that could lead to practical improvements in the 
everyday use of MDS is sorely needed. 
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