
8
A Majorization Algorithm for
Solving MDS

An elegant algorithm for computing an MDS solution is discussed in this
chapter. We reintroduce the Stress function that measures the deviance of
the distances between points in a geometric space and their corresponding
dissimilarities. Then, we focus on how a function can be minimized. An
easy and powerful minimization strategy is the principle of minimizing
a function by iterative majorization. An intuitive explanation for iterative
majorization in MDS is given using a simplified example. Then, the method
is applied in the Smacof algorithm for minimizing Stress.

8.1 The Stress Function for MDS

We now place the concepts introduced into a common framework to al-
low the derivation of mathematically justifiable rather than just intuitively
plausible methods for solving the MDS construction problem. The methods
can then be extended and generalized to MDS models not considered so
far. We need the following six basic definitions, most of which have been
introduced before.

D1 n denotes the number of empirical objects (stimuli, variables, items,
questions, and so on, depending on the context).

D2 If an observation has been made for a pair of objects, i and j, a
proximity value pij is given. If pij is undefined, we speak of a miss-
ing value. The term proximity is used in a generic way to denote

170 8. A Majorization Algorithm for Solving MDS

both similarity and dissimilarity values. For similarities, a high pij

indicates that the objects i and j are similar.

D3 A dissimilarity is a proximity that indicates how dissimilar two ob-
jects are. A small score indicates that the objects are similar, a high
score that they are dissimilar. A dissimilarity is denoted by δij .

D4 X denotes (a) a point configuration (i.e., a set of n points in m-
dimensional space) and (b) the n × m matrix of the coordinates of
the n points relative to m Cartesian coordinate axes. A Cartesian
coordinate system is a set of pairwise perpendicular straight lines
(coordinate axes). All axes intersect at one point, the origin, O. The
coordinate of a point on axis a is the directed (signed) distance of
the point’s perpendicular projection onto axis a from the origin. The
m-tuple (xi1, . . . , xim) denotes the coordinates of point i with respect
to axes a = 1, . . . , m. The origin has the coordinates (0, . . . , 0).

D5 The Euclidean distance between any two points i and j in X is the
length of a straight line connecting points i and j in X. It is computed
by the value resulting from the formula dij = [

∑m
a=1(xia −xja)2]1/2 ,

where xia is the coordinate of point i relative to axis a of the Carte-
sian coordinate system. We also use dij(X) for the distance to show
explicitly that the distance is a function of the coordinates X.

D6 The term f(pij) denotes a mapping of pij , that is, the number as-
signed to pij according to rule f . This is sometimes written as f :
pij �→ f(pij). We also say that f(pij) is a transformation of pij . (The
terms function, transformation, and mapping are synonymous in this
context.) Instead of f(pij) we often write d̂ij .

So far, the task of MDS was defined as finding a low-dimensional config-
uration of points representing objects such that the distance between any
two points matches their dissimilarity as closely as possible. Of course, we
would prefer that each dissimilarity should be mapped exactly into its cor-
responding distance in the MDS space. But that requires too much, because
empirical data always contain some component of error (see, e.g., Section
3.2). We define an error of representation by

e2
ij = (dij − δij)2. (8.1)

Summing (8.1) over i and j yields the total error (of approximation) of an
MDS representation,

σr(X) =
n∑

i=1

n∑
j=i+1

(dij − δij)2, for all available δij , (8.2)

which is often written as

σr(X) =
∑
i<j

(dij − δij)2, for all available δij . (8.3)

8.2 Mathematical Excursus: Differentiation 171

The relation i < j in (8.3) simply says that it is sufficient, in general, to sum
over half of the data, because dissimilarities and distances are symmetric.

What does “for all available δij” mean? In practical research, we some-
times have missing values, so that some δij are undefined. Missing values
impose no restriction on any distances in X. Therefore, we define fixed
weights wij with value 1 if δij is known and wij = 0 if δij is missing. Other
values of wij are also allowed, as long as wij ≥ 0. This defines the final
version of raw Stress (Kruskal, 1964b),

σr(X) =
∑
i<j

wij(dij(X) − δij)2. (8.4)

We use the notations σr and σr(X) interchangeably to denote raw Stress.
For every set of coordinates X, a Stress value can be computed. Clearly,

we do not want just any X, but we want to find an X such that the
errors (8.1) are small or even zero. Mathematically spoken, we want to
minimize σr(X) over X. For that purpose, we first introduce the concept
of differentiating a function, which is explained in the next section.

8.2 Mathematical Excursus: Differentiation

Our aim is to find a coordinate matrix X such that σr(X) is minimal.
This is a rather complex problem because it requires us to pick n · m
coordinates optimally with respect to the Stress function. Therefore, we
start by looking at a more simple problem, that is, finding the minimum
of a function f(x) with one variable x only. This requires some notions of
differential calculus. Consider an example. Let y be the dependent variable
and x the independent variable in the function

f(x) = y = .3x4 − 2x3 + 3x2 + 5, (8.5)

and find the x value for which y attains its smallest value. A first rough
estimate of the solution can be derived by looking at some points from the
graph of this function, that is, points with the coordinates (x, f(x)) in a
Cartesian coordinate system. A set of such points can be easily found by
choosing some x values, plugging them into the right-hand side of (8.5),
and solving for y. If we compute the coordinates of some such points on the
graph, we arrive at Figure 8.1 and, with more and more points, at Figure
8.2.

It is clear that point E in Figure 8.2 represents the solution of the min-
imization problem. For x = 3.6 the smallest y value of function (8.5) is
obtained: y = 0.96. However, point B has, in a sense, the same properties
as E, provided we consider a limited interval of x values only, such as only
those x values to the left of C. B is called a local minimum of the function,

172 8. A Majorization Algorithm for Solving MDS

x

y

FIGURE 8.1. Some points for y =
0.3x4 − 2x3 + 3x2 + 5.

F

D

E

C

B

A

FIGURE 8.2. Graph of y = 0.3x4 −2x3

+ 3x2 + 5, with tangent lines at points
B, C , D, and E.

and E is the global minimum. Analogously, C is a local maximum. Function
f(x) has no global maximum.

If we determine the tangents for each point on the graph, it becomes
evident that they are horizontal lines at the extrema of the displayed por-
tion of the graph. Figure 8.2 shows this for the minima B and E, and
the maximum C. The tangents for other points are not horizontal; that
is, their slopes are not zero. This is a property that distinguishes extrema
from other points and can be used to find extrema by computation rather
than by inspection. If we know all of the extrema, we can select the point
with the smallest y-coordinate.

The Slope of a Function
What exactly is a tangent and its slope? Consider Figure 8.3, where the
points P and Q are distinguished on the graph for y = f(x). P and Q have
the coordinates (xP , yP) and (xQ, yQ), respectively, or, because y = f(x),
(xP , f(xP)) and (xQ, f(xQ)), respectively. The straight line through P and
Q has the slope

slope(PQ) =
yQ − yP

xQ − xP
. (8.6)

We now set xQ − xP = ∆x. Then (8.6) can be written as

slope(PQ) =
f(xP + ∆x) − f(xP)

∆x
, (8.7)

8.2 Mathematical Excursus: Differentiation 173

x

y

P

Q

y
P

y
Q

x
P

x
Q

∆x

∆y

FIGURE 8.3. Some notions for finding tangent line at P .

or, more generally, for any point P = (x, f(x)),

slope(PQ) =
f(x + ∆x) − f(x)

∆x
. (8.8)

To find the tangent at point P on the graph, it is necessary to move Q very
close to P . However, Q should not become equal to P , because we need two
points to uniquely identify the tangent line. This is expressed as follows:

dy

dx
= lim

∆x→0

f(x + ∆x) − f(x)
∆x

, (8.9)

where lim∆x→0 is the limit operator. The limit operator makes the differ-
ence term ∆x in the function [f(x+∆x)−f(x)]/∆x smaller and smaller, so
that ∆x approaches 0 without ever reaching it. We say that ∆x is made ar-
bitrarily or infinitesimally small. The symbol dy/dx denotes the resulting
limit of this operation. Note carefully that the limit dy/dx is not gener-
ated by setting ∆x = 0, but by approximating ∆x = 0 arbitrarily closely.
[Setting ∆x = 0 would turn the right-hand side of (8.9) into 0/0.]

Equations (8.8) and (8.9) are formulated for any point P , not just the
particular one in Figure 8.3. Hence, by choosing different P s, a function of
the respective limits is obtained, that is, a function giving the slope of the
tangents or the growth rate of y relative to x at each point P . This function
is called the derivative of y = f(x), usually denoted by y′. To illustrate
this, let y = x2. The derivative of y = x2 can be found by considering the
slope of the tangent at point P :

dy

dx
= lim

∆x→0

(x + ∆x)2 − (x)2

∆x

= lim
∆x→0

x2 + (∆x)2 + 2x∆x − x2

∆x

174 8. A Majorization Algorithm for Solving MDS

= lim
∆x→0

(
(∆x)2

∆x
+

2x∆x

∆x

)
= lim

∆x→0
(∆x + 2x)

= lim
∆x→0

(∆x) + lim
∆x→0

(2x) = 2x. (8.10)

Because x is not restricted to a particular point P , we have established a
function that gives the slope of y = x2 for any x-value. Hence, y′ = 2x; that
is, the slope of the tangent at each point is simply twice its x-coordinate.
For x = 5, say, we obtain the slope dy/dx = 10, which means that y = x2

grows at this point at the rate of 10 y-units per 1 x-unit (compare Figure
8.3). We can check whether these derivations are correct by setting x = 5
and ∆x = 3, say, and then making ∆x ever smaller; the smaller ∆x gets,
the more the limiting value y′ = 10 is approximated.

Finding the Minimum of a Function
The slope at the minimum must be equal to 0. The derivative gives us an
expression for the slope, and thus we can find a minimum by checking all
points where the derivative is zero. Points with a zero derivative are called
stationary points. Given the derivative y′ = 2x, we can find the minimum of
y = x2. We first set y′ = 2x = 0. But 2x = 0 only if x = 0. So we know that
y = x2 has a tangent with slope 0 at x = 0. Whether this is a minimum can
be checked by looking at the graph of the function. Alternatively, we can
compute what the function yields at two1 neighboring points at x = 0. For
x1 = 1 and x2 = −1, say, we determine y1 = 12 = 1 and y2 = (−1)2 = 1,
respectively, both values greater than the y at x = 0, which indicates that
we have found a minimum at x = 0.

The method of setting the derivative of a function equal to zero and
then finding the values that solve this equation has identified only one
point. This turned out to be a minimum. We might ask where the maxima
are. They can be found by considering the bounds of the interval that x
should cover. If we do not restrict x, then these bounds are −∞ and +∞,
and this is where the maxima are, as we can see by inserting larger and
larger x values into y = x2. Therefore, we also must always test the bounds
of the x-interval in which we are interested.

Just as we did in equations (8.10) for the function y = x2, we can find
the derivative for any other (continuous and smooth) function. Because
differentiation (i.e., finding the derivative) is useful in many fields of math-

1We test two rather than just one neighboring point at x = 0 because the tangent has
a zero slope not only at extreme points but also in other cases. Consider, for example, a
function that first increases, then runs on a plateau, and then increases again. For all of
the points on the plateau, the function has a zero slope. Thus, the zero slope condition
for stationarity is only necessary, but not sufficient, for identifying an extremum.

8.2 Mathematical Excursus: Differentiation 175

TABLE 8.1. Some rules of differentiation.

Rule Function Derivative
1 y = constant = a dy/dx = 0
2 y = x dy/dx = 1
3 y = a · x dy/dx = a
4 y = a · xn dy/dx = a · n · xn−1

5 y = ex dy/dx = ex

6 y = sin(x) dy/dx = cos(x)
7 y = cos(x) dy/dx = − sin(x)

Let u = f (x) and v = h(x) be functions of x. Then:
8 y = u + v dy/dx = du/dx + dv/dx
9 y = u · v dy/dx = u(dv/dx) + v(du/dx)

10 y = u/v dy/dx = [v(du/dx) − u(dv/dx)]/v2

Let y = f (z) and z = g(x). Then (chain rule):
11 y = f (g(x)) dy/dx = (dy/dz) · (dz/dx)

ematics, rules have been derived that greatly simplify finding y′. Some such
rules are summarized in Table 8.1. Some of them are patent; others are ex-
plained later when we need them. For the example above, y = x2, we find y′

by applying rule 4: y′ = dy/dx = 1 ·2 ·x2−1 = 2x. For (8.5) we find by rules
1, 4, and 8: dy/dx = (0.3)(4)x3 − (2)(3)x2 + (3)(2)x = 1.2x3 − 6x2 + 6x.
Setting this derivative equal to 0 yields the equation 1.2x3 − 6x2 + 6x = 0.
After factoring, we have (x)(1.2x2 −6x+6) = 0. So, the sought x-values re-
sult from the equations x = 0 and 1.2x2−6x+6 = 0. We find x1 = 0 as one
solution, which we identify immediately as a local minimum in the graph
in Figure 8.2. The quadratic equation yields x2 = 3.618 and x3 = 1.382 for
the other solutions. They correspond to points B and E in the graph.

Second- and Higher-Order Derivatives
The derivative of a function y = f(x) is itself a function of x, y′′ = f ′(x).
One therefore can ask for the derivative of y′, y′′ = f ′′(x), the derivative
of y′′, and so on. The second derivative, y′′, indicates the rate of change
of the rate of change of f(x). For example, for y = x3 we get y′ = 3x2.
That is, at any point x, the cubic function grows by the factor 3x2. Now,
differentiating y′ = 3x2 with respect to x (using rule 4 in Table 8.1), we
get y′′ = 3.2x. This means that the rate of change of the growth rate also
depends on x: it is 6 times the value of x. So, with large x values, the growth
of x3 “accelerates” quite a bit. As a second example, the rate of change
of the growth rate of y =

√
x = x1/2, x > 0, is y′′ = f ′(1/2 · x−1/2) =

(−1/4) ·x−3/2 = −1/(4
√

x3). So, y′ shows that this function has a positive
slope at any point x, and y′′ indicates that this slope decreases as x becomes

176 8. A Majorization Algorithm for Solving MDS

larger. Another way of saying this is that y =
√

x is concave downwards,
whereas y = x3 is convex downwards.

The second derivative is useful to answer the question of whether a sta-
tionary point is a minimum or a maximum. Consider Figure 8.2, where we
have three stationary points: B, C, and E. C differs from B and E because
the speed of growth of f(x) is continuously shrinking when we approach C
from the left. To the right of C, the growth rate of f(x) is even negative
(“decline”), and becomes more negative as a function of x. The opposite
is true for points B and E. This means that if y′′ < 0 at some stationary
point x, then x is a maximum; if y′′ > 0, x is a minimum. Thus, for the
function in Figure 8.2, we have y′′ = 3.6x2 − 12x + 6, so that at x = 0
(stationary point B) we have y′′ = 6, for example. Because 6 > 0, B is a
minimum. For x = 1.382 (point C), we get −3.708, so that this point is a
maximum by the second derivative test.

8.3 Partial Derivatives and Matrix Traces

We often deal with functions that have more than one variable. Such func-
tions are called functions with several variables, multivariable functions,
vector functions, or functions with many arguments. An example of such a
function is raw Stress, σr(X). Because we attempt to minimize this func-
tion over every single one of its n · m coordinates, we naturally encounter
the question of how to find the derivative of multivariable functions. The
answer is simple: such functions have as many derivatives as they have argu-
ments, and the derivative for each argument xi is found by holding all other
variables fixed and differentiating the function with respect to xi as usual.
For example, the derivative of the function f(x, y, z) = x2y + y2z + z2x
with respect to variable y is x2 + 2yz, using rules 4 and 8 of Table 8.1 and
treating the term z2x as a “constant” (i.e., as not dependent on y). The
derivative to one argument of a function of several variables is called the
partial derivative. The vector of partial derivatives is called the gradient
vector.

In the following, we focus on one particular multivariable function that
becomes important in much of the remainder of this book, the trace func-
tion, tr A =

∑n
i=1 aii discussed earlier in Section 7.2 and Table 7.4. The

trace can be used to simplify expressing a multiargument linear function
such as f(x11, . . . , xik, . . . , xnn) =

∑n
k=1

∑n
i=1 akixik, where the aik terms

denote constants and xik are variables:
n∑

k=1

n∑
i=1

akixik = tr AX = f(X).

Here, the constants are collected in the matrix A, the variables in X (see,
e.g., Table 8.2 for an example). Suppose that we want to find the partial

8.3 Partial Derivatives and Matrix Traces 177

TABLE 8.2. Example of differentiating the linear function tr AX with respect
to an unknown matrix X.

(1) AX =

[
a11 a12
a21 a22

][
x11 x12
x21 x22

]
(2) f (X) = tr (AX) = a11x11 + a12x21 + a21x12 + a22x22

(3) ∂f (X)/∂X = (∂f (X)/∂xij)

(4)

[
∂f (X)/∂x11 = a11 ∂f (X)/∂x12 = a21
∂f (X)/∂x21 = a12 ∂f (X)/∂x22 = a22

]
= A′

(5) rule: ∂tr (AX)/∂X = A′

derivative of the linear function f(X) with respect to the matrix X. The
partial derivative of f(X) with respect to X is the matrix consisting of
the derivatives of f(X) with respect to each element of X (i.e., the matrix
with elements ∂f(X)/∂xik). The notation ∂f(X)/∂xik denotes the partial
derivative. It replaces df(X)/dxik used previously in Section 8.2 to make
clear that we are dealing with a multivariable function f rather than with
a function of just one variable, as in Section 8.2. All variables except xik

are considered constant in ∂f(X)/∂xik. The matrix of partial derivatives
is also denoted by ∇f(X), by ∇tr AX, or by ∂tr AX/∂X.

To find ∇f(X), we have to take the first derivative of f(X) with respect
to every xik separately. That is, ∂tr AX/∂xik = aki, so that ∂tr AX/∂X =
A′. The steps needed to find the partial derivative of tr AX are illustrated
in Table 8.2. (For properties of matrix traces, see Table 7.4.) More rules
for differentiating a matrix trace function are presented in Table 8.3.

Matrix traces are also useful for expressing a quadratic function such as

n∑
i=1

m∑
k=1

x2
ik = tr X′X.

Because tr (XX′) is equal to
∑

k

∑
i x2

ki, tr X′X = tr XX′. Hence, the
gradient of tr X′X is equal to 2X by rule 4, Table 8.3, setting A = I.

As another example, assume that we want to minimize

f(X) = tr (X − Z)′(X − Z)

=
n∑

i=1

m∑
k=1

(xik − zik)2

by an appropriate choice of X. We solve this problem formally by first
finding the gradient ∇f(X) and then setting ∇f(X) = 0 and solving for

178 8. A Majorization Algorithm for Solving MDS

TABLE 8.3. Some rules for differentiating a matrix trace with respect to an
unknown matrix X; matrix A is a constant matrix; matrices U, V, W are
functions of X (Schönemann, 1985).

(1) ∂tr (A)/∂X = 0

(2) ∂tr (AX)/∂X = A′ = ∂tr [(AX)′]/∂X

(3) ∂tr (X′AX)/∂X = (A + A′)X

(4) ∂tr (X′AX)/∂X = 2AX if A is symmetric

(5) ∂tr (U + V)/∂X = ∂tr (U)/∂X + ∂tr (V)/∂X

(6) ∂tr (UVW)/∂X = ∂tr (WUV)/∂X = ∂tr (VWU)/∂X
Invariance under “cyclic” permutations

(7) ∂tr (UV)/∂X = ∂tr (UcV)/∂X + ∂tr (UVc)/∂X
Product rule: Uc and Vc is taken as a constant matrix when
differentiating

X. The gradient can be obtained as follows. If we expand f(X), we get

f(X) = tr X′X + tr Z′Z − 2tr X′Z,

and, by using the rules from Table 7.4,

∇f(X) = ∇tr X′X + ∇tr Z′Z − ∇2tr X′Z
= 2X + 0 − 2Z = 2X − 2Z.

To find the minimum of f(X), its gradient ∇f(X) = 2X − 2Z must be
equal to 0, so that X = Z at the minimum.

In the sequel, we often make use of trace minimizations. For the difficult
problem of minimizing the Stress function, we need an additional mini-
mization method, iterative majorization, which is explained in the next
section.

8.4 Minimizing a Function by Iterative
Majorization

For finding the minimum of a function f(x), it is not always enough to com-
pute the derivative f ′(x), set it equal to zero, and solve for x. Sometimes
the derivative is not defined everywhere, or solving the equation f ′(x) = 0
is simply impossible. For such cases, we have to refer to other mathematical
techniques. A useful method consists of trying to get increasingly better es-
timates of the minimum. We call such a numerical method an algorithm. It

8.4 Minimizing a Function by Iterative Majorization 179

consists of a set of computational rules that are usually applied repeatedly,
where the previous estimate is used as input for the next cycle of computa-
tions which outputs a better estimate. An elegant method is called iterative
majorization,2 which is based on the work of De Leeuw (1977). We first
present the main principles of iterative majorization. In the next section,
we apply it to the Stress function.

Principles of Majorization
One of the main features of iterative majorization (IM) is that it gen-
erates a monotonically nonincreasing sequence of function values. If the
function is bounded from below, we usually end up in a stationary point
that is a local minimum. An early reference to majorization in the context
of line search can be found in Ortega and Rheinboldt (1970, pp. 253–255).
Majorization has become increasingly popular as a minimization method;
see, for example, Kiers (1990), Bijleveld and De Leeuw (1991), Verboon
and Heiser (1992), and Van der Lans (1992). In the field of multidimen-
sional scaling, it has been applied in a variety of settings by, among others,
De Leeuw (1977, 1988), De Leeuw and Heiser (1977, 1980), Meulman (1986,
1992), Groenen (1993), Groenen, Mathar, and Heiser (1995), and Groenen,
Heiser, and Meulman (1999). Some general papers on iterative majorization
are De Leeuw (1994), Heiser (1995), Lange, Hunter, and Yang (2000), Kiers
(2002), and Hunter and Lange (2004). Below, we provide an introduction
to iterative majorization.

The central idea of the majorization method is to replace iteratively the
original complicated function f(x) by an auxiliary function g(x, z), where
z in g(x, z) is some fixed value. The function g has to meet the following
requirements to call g(x, z) a majorizing function of f(x).

• The auxiliary function g(x, z) should be simpler to minimize than
f(x). For example, if g(x, z) is a quadratic function in x, then the
minimum of g(x, z) over x can be computed in one step (see Section
8.2).

• The original function must always be smaller than or at most equal
to the auxiliary function; that is, f(x) ≤ g(x, z).

• The auxiliary function should touch the surface at the so-called sup-
porting point z; that is, f(z) = g(z, z).

To understand the principle of minimizing a function by majorization,
consider the following. Let the minimum of g(x, z) over x be attained at

2The term iterative majorization and its abbreviation (IM) was coined by Heiser
(1995). Before, the method was called simply majorization. In MDS the method goes
back to the work of De Leeuw (1977).

180 8. A Majorization Algorithm for Solving MDS

x0x1

f(x2)
g(x2,x1)

g(x1,x0)
f(x1)=g(x1,x1)

f(x0)=g(x0,x0)

x2

g(x,x1)

f(x)g(x,x0)

FIGURE 8.4. Illustration of two iterations of the iterative majorization method.
The first iteration starts by finding the auxiliary function g(x, x0), which is lo-
cated above the original function f(x) and touches at the supporting point x0.
The minimum of the auxiliary function g(x, x0) is attained at x1, where f(x1) can
never be larger than g(x1, x0). This completes one iteration. The second iteration
is analogous to the first iteration.

x∗. The last two requirements of the majorizing function imply the chain
of inequalities

f(x∗) ≤ g(x∗, z) ≤ g(z, z) = f(z). (8.11)

This chain of inequalities is named the sandwich inequality by De Leeuw
(1993), because the minimum of the majorizing function g(x∗, z) is squeezed
between f(x∗) and f(z). A graphical representation of these inequalities is
presented in Figure 8.4 for two subsequent iterations of iterative majoriza-
tion of the function f(x). The iterative majorization algorithm is given
by

1. Set z = z0, where z0 is a starting value.

2. Find update xu for which g(xu, z) ≤ g(z, z).

3. If f(z) − f(xu) < ε, then stop. (ε is a small positive constant.)

4. Set z = xu and go to 2.

Obviously, by (8.11) the majorization algorithm yields a nonincreasing se-
quence of function values, which is an attractive aspect of iterative ma-
jorization. If the function f(x) is not bounded from below, and if there are
no sufficient restrictions on x, then the stop criterion in step 3 may never
be met. In the sequel, this situation does not arise. Although the function
value never increases, the majorization principle does not say how fast the
function values converge to a minimum. In most applications, an algorithm
based on iterative majorization is not very fast. As shown in Section 8.2,
a necessary condition for a minimum at point x∗ is that the derivative of
f(x) at x∗ is 0. Using the inequalities of (8.11), this also implies that x∗

8.4 Minimizing a Function by Iterative Majorization 181

�

�

�
�

�
��

x1 x2

f(x) ���
x1/2

FIGURE 8.5. Graph of the concave
function x1/2.

�

�

����������

z

f(z)

�g(x, z)

���
f(x)

FIGURE 8.6. An example of linear
majorization of the concave function
f(x) = x1/2 by the linear majorizing
function g(x, z).

minimizes g(x, x∗) over x, with g(x∗, x∗) as the minimum. Thus, the nec-
essary condition of a zero derivative at a local minimum may be replaced
by the weaker condition that g(xu, y) = f(y) and xu = y. In general, the
majorization algorithm can stop at any stationary point, not necessarily
at a local minimum. However, Fletcher (1987) notes that, for algorithms
that reduce the function value on every iteration, it usually holds that “the
stationary point turns out to be a local minimizer, except in rather rare
circumstances” (p. 19).

Linear and Quadratic Majorization
We distinguish two particularly useful classes of majorization: linear and
quadratic (De Leeuw, 1993). The first one is majorization of a function
that is concave. A concave function f(x) is characterized by the inequality
f(αx + (1 − α)z) ≥ αf(x) + (1 − α)f(z) for 0 ≤ α ≤ 1. Thus, the line that
connects the function values at f(x) and f(z) remains below the graph
of a concave function. An example of the concave function f(x) = x1/2 is
given in Figure 8.5. But for such a function f(x), it is always possible to
have a straight line defined by g(x, z) = ax + b (with a and b dependent
on z) such that g(x, z) touches the function f(x) at x = z, and elsewhere
the line defined by g(x, z) is above the graph of f(x). Clearly, g(x, z) =
ax+ b is a linear function in x. Therefore, we call this type of majorization
linear majorization. Any concave function f(x) can be majorized by a linear
function g(x, z) at any point z. Thus, g(x, z) satisfies all three requirements
of a majorizing function. An example of a linear majorizing function g(x, z)
with supporting point z of the concave function f(x) = x1/2 is given in
Figure 8.6.

The second class of functions that can be easily majorized is characterized
by a bounded second derivative. For a function f(x) with a bounded second
derivative, there exists a quadratic function that has, compared to f(x), a
larger second derivative at any point x. This means that f(x) does not have

182 8. A Majorization Algorithm for Solving MDS

2 4 6 8 10

5

10

15

20

25

x �

���	
f(x)

FIGURE 8.7. Graph of the function
f(x) = |x − 1| + |x − 3| + |x − 4| +
|x − 7| + |x − 8|.

2 4 6 8 10

5

10

15

20

25

x �

�
f(x)

� g(x, 9)

x0x1

FIGURE 8.8. A quadratic majorizing
function g(x, x0) of f(x) with support-
ing point x0 = 9.

very steep parts, because there always exists a quadratic function that is
steeper. This type of majorization can be applied if the function f(x) can
be majorized by g(x, z) = a(z)x2 − b(z)x + c(z), with a(z) > 0, and a(z),
b(z), and c(z) functions of z, but not of x. We call this type of majorization
quadratic majorization.

Example: Majorizing the Median
Heiser (1995) gives an illustrative example of iterative majorization for
computing the median. The median of the numbers x1, x2, . . . , xn is the
number for which f(x) =

∑n
i=1 |x − xi| is a minimum. For example, the

median of the numbers x1 = 1, x2 = 3, x3 = 4, x4 = 7, and x5 = 8 is 4.
Thus, the median is the value for which 50% of all observations is smaller.
The function f(x) is shown in Figure 8.7.

How can we majorize f(x)? We begin by noting that g(x, z) = |z|/2 +
x2/|2z| majorizes |x| (Heiser, 1988a). The three majorization requirements
are fulfilled by this g(x, z). First, g(x, z) is a simple function because it is
quadratic in x. Second, we have f(x) ≤ g(x, z) for all x and fixed z. This
can be seen by using the inequality (|x| − |z|)2 ≥ 0, which always holds,
because squares are always nonnegative. Developing this inequality gives

x2 + z2 − 2|x||z| ≥ 0
2|x||z| ≤ x2 + z2

|x| ≤ 1
2

x2

|z| +
1
2
|z|, (8.12)

which proves |x| ≤ g(x, z). The third requirement of a majorizing function is
that there must be equality in the supporting point; that is, f(z) = g(z, z).

8.4 Minimizing a Function by Iterative Majorization 183

If we substitute x = z in (8.12), we obtain

1
2

z2

|z| +
1
2
|z| =

1
2
|z| +

1
2
|z| = |z|,

which shows that all three requirements for a majorizing function hold.
f(x) is majorized by replacing x and z in (8.12) by the separate terms

in f(x). This means that |x − 1| is majorized by g1(x, z) ≤ |z − 1|/2 +
(x − 1)2/|2(z − 1)|. Similarly, the second term |x − 3| of f(x) is majorized
by g2(x, z) ≤ |z − 3|/2 + (x − 3)2/|2(z − 3)|, and so on. Summing the
majorization functions for each term in f(x) yields the majorizing function
of f(x); that is,

g(x, z) = g1(x, z) + g2(x, z) + g3(x, z) + g4(x, z) + g5(x, z)

=
1
2
|z − 1| +

(x − 1)2

|2(z − 1)| +
1
2
|z − 3| +

(x − 3)2

|2(z − 3)|
+

1
2
|z − 4| +

(x − 4)2

|2(z − 4)| +
1
2
|z − 7| +

(x − 7)2

|2(z − 7)|
+

1
2
|z − 8| +

(x − 8)2

|2(z − 8)| . (8.13)

To start the iterative majorization algorithm, choose the initial value to
be x0 = 9, although any other value would be equally valid. This implies
that the first supporting point x0 in the IM algorithm is z = x0 = 9. After
substitution of z = 9 into (8.13) and simplification, we obtain

g(x, 9) =
1
2
|9 − 1| +

(x − 1)2

|2(9 − 1)| +
1
2
|9 − 3| +

(x − 3)2

|2(9 − 3)| +
1
2
|9 − 4|

+
(x − 4)2

|2(9 − 4)| +
1
2
|9 − 7| +

(x − 7)2

|2(9 − 7)| +
1
2
|9 − 8| +

(x − 8)2

|2(9 − 8)|
=

8
2

+
(x − 1)2

16
+

6
2

+
(x − 3)2

12
+

5
2

+
(x − 4)2

10
+

2
2

+
(x − 7)2

4
+

1
2

+
(x − 8)2

2

=
8
2

+
(x − 1)2

16
+

6
2

+
(x − 3)2

12
+

5
2

+
(x − 4)2

10
+

2
2

+
(x − 7)2

4
+

1
2

+
(x − 8)2

2

=
239
240

x2 − 517
40

x +
4613
80

. (8.14)

This example of quadratic majorization is illustrated in Figure 8.8. Because
g(x, x0) is quadratic in x, its minimum can be easily obtained by setting
the derivative equal to zero (see Section 8.2). The minimum of g(x, x0) is

184 8. A Majorization Algorithm for Solving MDS

attained at x1 ≈ 6.49. Due to the majorization inequality, we must have
that f(x1) ≤ g(x1, x0) ≤ g(x0, x0) = f(x0). Thus, we have found an x1 with
a lower function value f(x). The next step in the majorization algorithm
is to declare x1 to be the next supporting point, to compute g(x, x1) and
find its minimum x2, and so on. After some iterations, we find that 4 is the
minimum for f(x); hence 4 is the median.

The key problem in quadratic majorization is to find a majorizing in-
equality such as (8.12). Unlike concave functions, which can always be
linearly majorized, it is an art to find quadratic majorizing functions. Note
that linear and quadratic majorization can be combined without any prob-
lem as long as the majorization conditions hold.

8.5 Visualizing the Majorization Algorithm for
MDS

To get an idea what the iterative majorization algorithm does in MDS, we
consider a mini example from the data of Exercise 3.3. These data contain
the correlations among the returns of 13 stock markets. To analyze these
data, we converted the correlations into dissimilarities by (6.1), so that
δij = (2−2rij)1/2. Then we performed ratio MDS by the Smacof algorithm
(see the next section). The resulting configuration is given in Figure 8.9.
We see, for example, that the Dow Jones (dj) and Standard & Poors (sp)
indices correlate highly, because they are very close together. We also see
that the European indices (brus, dax, vec, cbs, ftse, milan, and madrid) are
reasonably similar because they are located together. The Asian markets
(hs, nikkei, taiwan, and sing) do not seem to correlate highly among one
another as they are lying at quite some distance from one another.

To see how the iterative majorization algorithm for MDS works, consider
the situation where the coordinates of all stock indices are kept fixed at
the positions of Figure 8.9 except for the point nikkei. To minimize raw
Stress, we can only vary the two coordinates xi1 and xi2 of nikkei. This
simplification allows us to visualize the raw Stress function as a surface
in 3D with xi1 and xi2 in the xy plane and the raw Stress value on the
z-axis. Figure 8.10 shows the raw Stress surface in both panels. The ground
area shows the position of all the fixed points and, for reference, also the
optimal position of nikkei. It is clear that in this situation, the coordinates
for nikkei where raw Stress finds its global minimum are indeed located
at the point with label nikkei. However, a computer is “blind” and cannot
“see” where these optimal coordinates of nikkei with the lowest raw Stress
function is found. Therefore, it needs an optimization algorithm such as
iterative majorization to compute the location of minimal raw Stress.

Iterative majorization for MDS works in this example as follows. Suppose
that the initial guess for the coordinates of nikkei is the origin. Then,

8.6 Majorizing Stress 185

Dimension 1

brus

cbs

dax

dj

ftse

hs

madrid
milan

nikkei

sing

sp

taiwan

vec

D
im

en
si

on
 2

FIGURE 8.9. Ratio MDS solution of correlations between returns of 13 stock
markets. The data are given in Exercise 3.3.

the majorizing function must touch the raw Stress function at the origin
(with coordinates xi1 = 0 and xi2 = 0) and must be located above it (or
touch it) at other locations. The parabola in Figure 8.10a satisfies these
restrictions and is therefore a valid majorizing function. At the location of
the minimum of this majorizing function, the raw Stress function is lower.
Thus, choosing this location as the next estimate of the coordinates for
nikkei reduces the raw Stress. At this location, a new majorizing function
can be found that again touches the raw Stress function at this location
and is otherwise located above the raw Stress function. The minimum of
this new majorizing function can be determined and will again decrease
raw Stress. This process is iterated until the improvement in raw Stress is
considered small enough. This final situation is shown in Figure 8.10b with
the last majorizing function. We note that the majorizing algorithm has
correctly identified the best local minimum possible. The estimates for the
location of point nikkei in the different iterations is shown by the trail of
points in the xy plane between the origin and the final location of nikkei.

Here, we focused on the special case that only two coordinates need to
be estimated and all others are kept fixed. The next section explains how
the iterative majorization algorithm works when all coordinates need to be
found simultaneously.

8.6 Majorizing Stress

So far, we have discussed the principle of iterative majorization for functions
of one variable x only. The same idea can be applied to functions that

186 8. A Majorization Algorithm for Solving MDS

a. First majorizing function

b. Final majorizing function

x1

x2

x1

x2

FIGURE 8.10. Visualization of the raw Stress function for the Stock market data
where all coordinates are kept fixed except those of nikkei. For reference, the
optimal position of nikkei is also shown. The upper panel shows the majorizing
function with the origin as current estimate for the location of nikkei. The lower
panel shows the final majorizing function and a trail of points in the xy-plane
showing the positions of point nikkei in the different iterations.

8.6 Majorizing Stress 187

have several variables. As long as the majorizing inequalities (8.11) hold,
iterative majorization can be used to minimize a function of many variables.

We now apply iterative majorization to the Stress function, which goes
back to De Leeuw (1977), De Leeuw and Heiser (1977), and De Leeuw
(1988). The acronym Smacof initially stood for “Scaling by Maximizing
a Convex Function,” but since the mid-1980s it has stood for “Scaling
by Majorizing a Complicated Function.” Algorithms other than Smacof
have been derived to minimize Stress. For example, using approaches from
convex analysis, the same algorithm for minimizing Stress was obtained by
De Leeuw (1977), Mathar (1989), and Mathar and Groenen (1991). Earlier,
Stress was minimized by steepest descent algorithms by Kruskal (1964b)
and Guttman (1968) that use the gradient of Stress. However, the Smacof
theory is simple and more powerful, because it guarantees monotone con-
vergence of Stress. Hence, we pursue the majorization approach and show
how to majorize the raw Stress function, σr(X), following the Smacof
theory.

Components of the Stress Function
The Stress function (8.4) can be written as

σr(X) =
∑
i<j

wij (δij − dij(X))2

=
∑
i<j

wijδ
2
ij +

∑
i<j

wijd
2
ij(X) − 2

∑
i<j

wijδijdij(X)

= η2
δ + η2(X) − 2ρ(X), (8.15)

where dij(X) is the Euclidean distance between points i and j; see also
(3.3). From (8.15) we see that Stress can be decomposed into three parts.
The first part, η2

δ , is only dependent on the fixed weights wij and the
fixed dissimilarities δij , and not dependent on X; so η2

δ is constant. The
second part, η2(X), is a weighted sum of the squared distances d2

ij(X).
The final part, −2ρ(X), is a weighted sum of the “plain” distances dij(X).
Before we go on, we have to make one additional assumption: we assume
throughout this book that the weight matrix W is irreducible, that is, there
exists no partitioning of objects into disjoint subsets, such that wij = 0
whenever objects i and j are in different subsets. If the weight matrix
is reducible, then the problem can be decomposed into separate smaller
multidimensional scaling problems, one for each subset. Let us consider
η2(X) and ρ(X) separately to obtain our majorization algorithm.

A Compact Expression for the Sum of Squared Distances
We first look at η2(X), which is a sum of the squared distances. For the
moment, we consider only one squared distance d2

ij(X). Let xa be column

188 8. A Majorization Algorithm for Solving MDS

a of the coordinate matrix X. Furthermore, let ei be the ith column of the
identity matrix I. Thus, if n = 4, i = 1, and j = 3, then e′

i = [1 0 0 0]
and e′

j = [0 0 1 0], so that (ei − ej)′ = [1 0 −1 0]. But this means that
xia − xja = (ei − ej)′xa, which allows us to express the squared distance
d2
13(X) as

d2
13(X) =

m∑
a=1

x′
a(e1 − e3)(e1 − e3)′xa

=
m∑

a=1

x′
a

⎡⎢⎢⎣
1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤⎥⎥⎦xa =
m∑

a=1

x′
aA13xa

= tr X′A13X. (8.16)

The matrix Aij is simply a matrix with aii = ajj = 1, aij = aji = −1, and
all other elements zero. Note that Aij is row and column centered, so that
Aij1 = 0 and 1′Aij = 0′. But η2(X) is a weighted sum of these squared
distances. One term of η2(X) is

wijd
2
ij(X) = wijtr X′AijX

= tr X′(wijAij)X,

and summing over all i < j terms gives

η2(X) =
∑
i<j

wijd
2
ij(X) = tr X′

⎛⎝∑
i<j

wijAij

⎞⎠X

= tr X′VX. (8.17)

In a 3 × 3 example, the matrix V defined in (8.17) becomes

V =
∑
i<j

wijAij

=

⎡⎣ w12 + w13 −w12 −w13
−w12 w12 + w23 −w23
−w13 −w23 w13 + w23

⎤⎦ , (8.18)

or, in general, vij = −wij if i �= j and vii =
∑n

j=1,j �=i wij for the diagonal
elements of V. By (8.17) we have obtained a compact matrix expression
for η2(X). Furthermore, η2(X) is a quadratic function in X, which is easy
to handle. Because V is the weighted sum of row and column centered
matrices Aij , it is row and column centered itself, too. Because of our
assumption that the weights are irreducible, the rank of V is n − 1, the
zero eigenvalue corresponding to the eigenvector n−1/21.

8.6 Majorizing Stress 189

Majorizing Minus a Weighted Sum of Distances
We now switch to −ρ(X), which is minus a weighted sum of the distances;
that is,

−ρ(X) = −
∑
i<j

(wijδij)dij(X).

For the moment, we focus on minus the distance. To obtain a majorizing
inequality for −dij(X), we use the Cauchy–Schwarz inequality,

m∑
a=1

paqa ≤
(

m∑
a=1

p2
a

)1/2 (
m∑

a=1

q2
a

)1/2

. (8.19)

Equality of (8.19) occurs if qa = cpa. If we substitute pa by (xia −xja) and
qa by (zia − zja) in (8.19), we obtain

m∑
a=1

(xia − xja)(zia − zja) ≤
(

m∑
a=1

(xia − xja)2
)1/2 (

m∑
a=1

(zia − zja)2
)1/2

= dij(X)dij(Z), (8.20)

with equality if Z = X. Dividing both sides by dij(Z) and multiplying by
−1 gives

−dij(X) ≤ −
∑m

a=1(xia − xja)(zia − zja)
dij(Z)

. (8.21)

If points i and j have zero distance in configuration matrix Z, then (8.21)
becomes undefined, but because of the positivity of dij(X) it is still true
that −dij(X) ≤ 0. Proceeding as in (8.16)–(8.18), a simple matrix expres-
sion is obtained:

m∑
a=1

(xia − xja)(zia − zja) = tr X′AijZ. (8.22)

Combining (8.21) and (8.22), multiplying by wijδij , and summing over
i < j gives

−ρ(X) = −
∑
i<j

(wijδij)dij(X)

≤ −tr X′

⎛⎝∑
i<j

bijAij

⎞⎠Z

= −tr X′B(Z)Z, (8.23)

190 8. A Majorization Algorithm for Solving MDS

where B(Z) has elements

bij =

⎧⎨⎩ − wijδij

dij(Z)
for i �= j and dij(Z) �= 0

0 for i �= j and dij(Z) = 0

bii = −
n∑

j=1,j �=i

bij . (8.24)

Because equality occurs if Z = X, we have obtained the majorization
inequality

−ρ(X) = −tr X′B(X)X ≤ −tr X′B(Z)Z.

Thus, −ρ(X) can be majorized by the function −tr X′B(Z)Z, which is a
linear function in X.

Consider an example for the computation of B(Z). Let all wij = 1, the
dissimilarities be equal to

∆ =

⎡⎢⎣ 0 5 3 4
5 0 2 2
3 2 0 1
4 2 1 0

⎤⎥⎦ , (8.25)

and the matrix of coordinates Z and their distances be

Z =

⎡⎢⎣ −.266 −.539
.451 .252
.016 −.238

−.200 .524

⎤⎥⎦ and D(Z) =

⎡⎢⎣ .000 1.068 .412 1.065
1.068 .000 .655 .706
.412 .655 .000 .792

1.065 .706 .792 .000

⎤⎥⎦ . (8.26)

The elements of the first row B(Z) are given by

b12 = −w12δ12/d12(Z) = −5/1.068 = −4.682
b13 = −w13δ13/d13(Z) = −3/0.412 = −7.273
b14 = −w14δ14/d14(Z) = −4/1.065 = −3.756
b11 = −(b12 + b13 + b14) = −(−4.682 − 7.273 − 3.756) = 15.712.

In the same way, all elements of B(Z) can be computed, yielding

B(Z) =

⎡⎢⎣ 15.712 −4.682 −7.273 −3.756
−4.682 10.570 −3.052 −2.835
−7.273 −3.052 11.588 −1.263
−3.756 −2.835 −1.263 7.853

⎤⎥⎦ .

The Smacof Algorithm for Majorizing Stress
Combining (8.17) and (8.25) gives us the majorization inequality for the
Stress function; that is,

σr(X) = η2
δ + tr X′VX − 2tr X′B(X)X

≤ η2
δ + tr X′VX − 2tr X′B(Z)Z = τ(X,Z). (8.27)

8.6 Majorizing Stress 191

Thus τ(X,Z) is a simple majorizing function of Stress that is quadratic in
X. Its minimum can be obtained analytically by setting the derivative of
τ(X,Z) equal to zero; that is,

∇τ(X,Z) = 2VX − 2B(Z)Z = 0,

so that VX = B(Z)Z. To solve this system of linear equations for X,
we would usually premultiply both sides by V−1. However, the inverse
V−1 does not exist, because V is not of full rank. Therefore, we revert
to the Moore–Penrose3 inverse. The Moore–Penrose inverse of V is given
by V+ = (V + 11′)−1 − n−211′. The last term, −n−211′, is irrelevant in
Smacof as V+ is subsequently multiplied by a matrix orthogonal to 1,
because B(Z) also has eigenvector 1 with eigenvalue zero. This leads us to
the update formula of the Smacof algorithm,

Xu = V+B(Z)Z. (8.28)

If all wij = 1, then V+ = n−1J with J the centering matrix I− n−111′, so
that the update simplifies to

Xu = n−1B(Z)Z. (8.29)

De Leeuw and Heiser (1980) call (8.28) the Guttman transform, in recog-
nition of Guttman (1968).

The majorization algorithm guarantees a series of nonincreasing Stress
values. When the algorithm stops, the stationary condition X = V+B(X)X
holds. Note that after one step of the algorithm X is column centered, even
if Z is not column centered.

The Smacof algorithm for MDS can be summarized by

1. Set Z = X[0], where X[0] is some (non)random start configuration.
Set k = 0. Set ε to a small positive constant.

2. Compute σ
[0]
r = σr(X[0]). Set σ

[−1]
r = σ

[0]
r .

3. While k = 0 or (σ[k−1]
r − σ

[k]
r > ε and k ≤ maximum iterations) do

4. Increase iteration counter k by one.

5. Compute the Guttman transform X[k] by (8.29) if all wij = 1,
or by (8.28) otherwise.

6. Compute σ
[k]
r = σr(X[k]).

3Gower and Groenen (1991) report some computationally very efficient Moore–
Penrose inverses for some special weight matrices, such as those of a cyclic design and a
block design (see Table 6.1).

192 8. A Majorization Algorithm for Solving MDS

�
�

�
�

Start: set initial X[0],
compute σ

[0]
r , k := 0

k := k + 1

Update X[k] by

Guttman transform

Compute σ

[k]
r

�������������������
�����

σ
[k−1]
r − σ

[k]
r < ε or

k = maxiter?

no

�

yes�

�
	

End

FIGURE 8.11. The flow of the majorization algorithm (Smacof) for doing MDS.

7. Set Z = X[k].

8. End while

A flowchart of the Smacof algorithm is given in Figure 8.11.

An Illustration of Majorizing Stress
To illustrate the Smacof algorithm, consider the following example. We
assume that all wij = 1, that the dissimilarities ∆ are those in (8.25), and
the starting configuration X[0] = Z by (8.26). The first step is to compute
σr(X[0]), which is 34.29899413. Then, we compute the first update Xu by
the Guttman transform (8.29),

Xu = n−1B(Z)Z

=
1
4

⎡⎢⎣ 15.712 −4.683 −7.273 −3.756
−4.683 10.570 −3.052 −2.835
−7.273 −3.052 11.588 −1.263
−3.756 −2.835 −1.263 7.853

⎤⎥⎦
⎡⎢⎣ −.266 −.539

.451 .252

.016 −.238
−.200 .524

⎤⎥⎦ ,

Xu=

⎡⎢⎣ −1.415 −2.471
1.633 1.107
.249 −.067

−.468 1.431

⎤⎥⎦ with D(Xu)=

⎡⎢⎣ .000 4.700 2.923 4.016
4.700 .000 1.815 2.126
2.923 1.815 .000 1.661
4.016 2.126 1.661 .000

⎤⎥⎦.

8.6 Majorizing Stress 193

TABLE 8.4. The Stress values and the difference between two iterations k of the
Smacof algorithm.

k σ
[k]
r σ

[k−1]
r − σ

[k]
r k σ

[k]
r σ

[k−1]
r − σ

[k]
r

0 34.29899413 21 .01747237 .00001906
1 .58367883 33.71531530 22 .01745706 .00001531
2 .12738894 .45628988 23 .01744477 .00001229
3 .04728335 .08010560 24 .01743491 .00000986
4 .02869511 .01858823 25 .01742700 .00000791
5 .02290353 .00579158 26 .01742066 .00000634
6 .02059574 .00230779 27 .01741557 .00000509
7 .01950236 .00109338 28 .01741150 .00000408
8 .01890539 .00059698 29 .01740823 .00000327
9 .01853588 .00036951 30 .01740561 .00000262

10 .01828296 .00025292 31 .01740351 .00000210
11 .01809735 .00018561 32 .01740183 .00000168
12 .01795518 .00014217 33 .01740048 .00000135
13 .01784363 .00011155 34 .01739941 .00000108
14 .01775498 .00008866 35 .01739854 .00000086
15 .01768406 .00007092
16 .01762716 .00005690
17 .01758144 .00004572
18 .01754469 .00003675
19 .01751516 .00002953
20 .01749143 .00002373

194 8. A Majorization Algorithm for Solving MDS

The next step is to set X[1] = Xu and compute σr(X[1]) = 0.58367883,
which concludes the first iteration. The difference of σr(X[0]) and σr(X[1])
is large, 33.71531530, so it makes sense to continue the iterations. The
second update is

X[2] =

⎡⎢⎣ 1.473 −2.540
1.686 1.199
.154 .068

−.366 1.274

⎤⎥⎦ ,

with σr(X[2]) = .12738894. We continue the iterations until the difference
in subsequent Stress values is less than 10−6. With this value, it can be
expected that the configuration coordinates are accurate up to the third
decimal. The history of iterations is presented in Table 8.4. After 35 itera-
tions, the convergence criterion was reached with configuration

X[35] =

⎡⎢⎣ −1.457 −2.575
1.730 1.230

−0.028 0.160
−0.245 1.185

⎤⎥⎦ .

Various nice results can be derived from the Smacof algorithm. For
example, De Leeuw (1988) showed that X[k] converges linearly to a sta-
tionary point. In technical terms, linear convergence means that ||X[∞] −
X[k−1]||/||X[∞] − X[k]|| → λ, where 0 < λ < 1 is the largest eigenvalue
not equal to 1 of the matrix of the second derivatives of the Guttman
transform. Another attractive aspect of Smacof is that zero distances are
unproblematic, because of the definition of bij in (8.24). In gradient-based
algorithms, ad hoc strategies have to be applied if zero distances occur.
If no zero distances are present, then it can be shown that the Guttman
transform is a steepest descent step with a fixed stepsize parameter.

8.7 Exercises

Exercise 8.1 Consider the function f(x) = 2x3 − 6x2 − 18x + 9.

(a) Tabulate the values of the function f(x), its derivative f ′(x), and
f ′′(x) for x equal to −4,−3,−2, 1, 0, 1, . . . , 6.

(b) Plot all three functions in the same diagram.

(c) Find the minima and maxima of f(x) in the interval [−4,+6] through
inspection of the function graph and through computation, respec-
tively.

(d) Interpret f ′′(x).

8.7 Exercises 195

Exercise 8.2 Find local and absolute maxima and minima of the following
functions.

(a) y = x2 − 3x, for 0 ≤ x ≤ 5.

(b) v = 1 + 2t + 0.5t2, for −3 ≤ t ≤ 3.

(c) u = 1/(2v + 3), for 1 ≤ v ≤ 3.

(d) y = x3 − 3x, for −3 ≤ x ≤ 3.

Exercise 8.3 Repeat Exercise 8.2 for

(a) f(x, y) = 4xy − x2 − y2.

(b) f(x, y) = x2 − y2.

(c) f(x, y) = x2 + 2xy + 2y2 − 6y + 2.

Exercise 8.4 Use a computer program that does function plots.

(a) Plot f(x, y) = x2 + xy − y.

(b) Find the minimum value of f(x, y) by graphical means.

(c) Find the minimum of f(x, y) by differentiation techniques. [Hint: Use
partial differentiation with respect of f(x, y) with respect to x and y,
respectively, to obtain the x- and y-coordinates of the minimal point
of the function.]

Exercise 8.5 Use matrix differentiation to solve the regression problem y ≈
Xb, where y is the criterion vector, X is the battery of predictor vectors
(columns), and b is the vector of unknown weights. Find b such that ||y −
Xb||2 =min. (Hint: Express the norm as a trace function.)

Exercise 8.6 Use the solution from Exercise 8.5 to solve the following prob-
lems.

(a) Find the vector x1 that solves (7.23) on p. 156 in a least-squares
sense. That is, minimize f(x1) = ||A1x1 − b1||2 by an appropriate
xi.

(b) What is the value of f(x1) at the optimal x1?

(c) Repeat (a) for A2,b2, and x2 from (7.24).

(d) Repeat (a) for A3,b3, and x3 from (7.25).

196 8. A Majorization Algorithm for Solving MDS

Exercise 8.7 Suppose that we want to approximate the list of values 0, 2, 6, 5,
and 9 by a single value x. One option is to put these values in the vector
z = [0 2 6 5 9]′ and minimize the least-squares function f(x) = ‖z − x1‖2

over x.

(a) Derive f ′(x) and express the result in the matrix algebra. [Hint: Start
by expanding f(x) into separate terms. Then apply the rules for dif-
ferentiation to the individual terms.]

(b) Equate the derivative to zero. Can an analytic solution for x be ob-
tained?

(c) For what value of x is f(x) at its minimum?

(d) What can you say about the x that minimizes f(x)?

Exercise 8.8 Consider the matrix V in (8.18) on p. 188.

(a) What do you expect to be the outcome of V1 and 1′V? Compute
the results for the small example of (8.18). Does this result hold for
V being of any size?

(b) Suppose Y = Z + 1a′. Explain why VZ = VY.

(c) Show that V is double centered.

(d) Is the matrix B(Z) in (8.24) also double centered? Explain why or
why not.

(e) As a consequence of (d), how do you expect that a translation of
the type Z + 1a′ changes a single iteration (8.29) of the Smacof
algorithm?

Exercise 8.9 In the so-called Median-center problem, the objective is to
find a point such that the Euclidean distance to all other points is minimal.
Let Y be the matrix of n given points. The function that needs to be
minimized is

f(x) =
n∑

i=1

di(x),

where di(x) = ‖x − yi‖ and yi is row i of Y.

(a) Use the results from the section on majorizing the median to find a
majorizing function g(x, z) that is a weighted sum of d2

i (x) and where
the weights are dependent on the d2

i (z), where z is the vector with
the previous estimates of x.

(b) Determine the derivative of g(x, z).

8.7 Exercises 197

(c) Set the derivative of g(x, z) equal to zero. Solve this equation for x.
(Hint: you will have to use results from Section 7.7.)

(d) Use a program that can do matrix computations and program your
majorization algorithm. Choose a random Y and apply your algo-
rithm to this y. Verify that every subsequent iteration reduces f(x).

