
18
Scalar Products and Euclidean
Distances

Scalar products are functions that are closely related to Euclidean dis-
tances. They are often used as an index for the similarity of a pair of
vectors. A particularly well-known variant is the product-moment correla-
tion for (deviation) scores. Scalar products have convenient mathematical
properties and, thus, it seems natural to ask whether they can serve not
only as indices but as models for judgments of similarity. Although there
is no direct way to collect scalar product judgments, it seems possible to
derive scalar products from “containment” questions such as “How much of
A is contained in B?” Because distance judgments can be collected directly,
but scalar products are easier to handle numerically, it is also interesting
to study whether distances can be converted into scalar products.

18.1 The Scalar Product Function

The earliest papers on MDS paid more attention to scalar products than to
distances. The reason was simply computational. Given a matrix of scalar
products, it is easy to find a representing MDS configuration for them. In
fact, this MDS problem can be solved analytically (see Chapter 7).

In the usual geometry, the scalar product bij of the points i and j is
defined as the sum of the products of the coordinates of i and j:

bij =
m∑

a=1

xiaxja. (18.1)
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FIGURE 18.1. Illustration of two vectors (arrows) and of the Euclidean distance
between their endpoints.

To illustrate, Figure 18.1 shows three distinct points in the X−Y -plane: the
origin O with coordinates (0, 0), the point i with coordinates (xi1, xi2) =
(3, 5), and the point j = (6, 3). The points i and j are depicted as endpoints
of vectors (“arrows”) emanating from O.

Once a particular point in a plane is chosen as the origin, then all points
can be conceived as vectors bound to this origin, and vice versa. So one
can alternate between the notions of point and vector whenever it seems
useful to do so. Notationally, the origin to which the vectors are bound is
not explicitly shown, so one simply writes a bold j for the vector from O
to j.

For the scalar product of i and j in Figure 18.1, we find bij = 3 ·6+5 ·3 =
33. But formula (18.1) can also be used on each vector alone. For example,
for j, one finds bjj = 6 · 6 + 3 · 3 = 45. This corresponds to the length of j.
For the length of j, one often writes hj . So, hj =

√
bjj = dOj .1

Some of the relations between a scalar product, the lengths of its vectors,
and the angle subtended by them may be seen by considering the triangle
formed by the points O, i, and j in Figure 18.1. The lengths of its sides are
easily found by using the Pythagorean theorem, which yields h2

i = 62+32 =
45, h2

j = 52 + 32 = 34, and d2
ij = (6 − 3)2 + (5 − 3)2 = 13. The angle α in

Figure 18.1 is computed by using the cosine law for a triangle with sides
a, b, and c, which says that a2 = b2 + c2 − 2bc cos(α), where α is the angle
between the sides b and c. Thus, d2

ij = h2
i + h2

j − 2hihj cos(α), and solving
this equation for cos(α) yields

cos(α) =
h2

i + h2
j − d2

ij

2hihj
, (18.2)

1The term hj is the image of a scalar function on the vector argument j. The func-
tion is the Euclidean norm ‖j‖ (see Chapter 7). Norm functions on vectors have general
properties that are similar to those of distances between points, but, unlike distances,
they cannot be defined on just any set. Rather, they require sets that possess the prop-
erties of vector spaces so that operations such as + in (7.2) have a particular well-defined
meaning (see Chapter 19).
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TABLE 18.1. Scalar product matrix for three variables.

Variable x y z
x 25 15 20
y 15 25 12
z 20 12 25

y z

x

(a) (b) (c)

x xy yz z

(d)
53 6137

FIGURE 18.2. Vector configurations for scalar products in Table 18.1; panels
(a), (b), and (c) show combinations of pairs of vectors; panel (d) results from
combining panels (a), (b), and (c).

or, in more detail,

cos(α) =

∑
a x2

ia +
∑

a x2
ja − ∑

a(xia − xja)2

2(
∑

a x2
ia)1/2(

∑
a x2

ja)1/2 , (18.3)

which simplifies to

cos(α) =
∑

a xiaxja

(
∑

a x2
ia

∑
a x2

ja)1/2 =
bij

hihj
. (18.4)

(This is the formula for the product-moment correlation coefficient for de-
viation scores, which can therefore be interpreted as an angle function of
the data vectors i and j.) The scalar product bij is thus

bij = hihj cos(α). (18.5)

One notes that the value of bij depends on three arguments: the length
of the vector i; the length of j; and the angle α subtended by i and j. If
α = 0, then cos(α) = 1, and the scalar product is equivalent to the squared
Euclidean distance between the origin O and the endpoint of vector i.

If all scalar products are given for a set of vectors, then it is possible to
construct the corresponding vector configuration from these values. This
was shown algebraically in Section 7.9, but it is also easy to understand
geometrically. Consider an example. Assume that Table 18.1 is a matrix
whose entries are scalar products.2 Then, the values in the main diagonal

2The matrix does not obviously violate this assumption. It is symmetric and its main
diagonal elements are nonnegative. Symmetry must be satisfied by all scalar product
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tell us that the vectors x, y, and z all have the same length, hx = hy =
hz =

√
25 = 5. To construct the vector configuration, we need to know

the angles between each pair of vectors. The angle between x and y, say,
is found from bxy = 15. By formula (18.5), bxy = 5 · 5 · cos(α) = 15 or
cos(α) = 3/5, and this yields α = 53.13◦. Figure 18.2a shows the resulting
configuration of the two vectors x and y. Proceeding in the same way for
the other vector pairs, we arrive at Figures 18.2b and 18.2c. If everything is
put together, we find the configuration of all three vectors, which requires
a 3D space (Figure 18.2d).

18.2 Collecting Scalar Products Empirically

A scalar product is a more complex measure than a distance. In terms of
points in a space, it not only involves the endpoints i and j but also a third
point that serves as the origin. Does such a complicated function serve any
other purpose than a purely mathematical one? Is it possible to translate
all or some of the properties of scalar products into real questions on the
similarity of two objects, i and j?

Building Scalar Products from Empirical Judgments
It would be futile, of course, to ask a subject to directly rate the “scalar
product” of two stimuli i and j, although we could certainly ask him or her
to rate their “distance”. A scalar product is a notion that has no intuitive
meaning. Ekman (1963), therefore, suggested an indirect approach, asking
for two particular judgments, which are then combined to form a scalar
product. Consider Figure 18.3. Let vectors i and j in panel (b) represent
two stimuli such as the colors blue and red. We could ask the subject to
assess the ratio cij/hj , that is, judge the length of the projection of i onto
j relative to the length of j. Concretely, this could be operationalized in a
question like, “How much of this blue is contained in this red?” to which
the subject may answer by giving a percentage judgment (such as “80%”).
The question is then inverted to, “How much of this red is contained in
this blue?” and the subject’s answer is taken as an assessment of the ratio
cji/hi.

matrices, because it follows from (18.1) that bij = bji. Moreover, all elements in the
main diagonal must be nonnegative, because, for i = j, formula (18.1) is but a sum
of squared numbers. These conditions do not guarantee, however, that the matrix is a
scalar product matrix. A matrix B is a (Euclidean) scalar product matrix only if it can
be decomposed into the matrix product XX′, with real X (see Chapter 19). If this is
possible, then each element of B satisfies formula (18.1).
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FIGURE 18.3. Vector representations of two stimuli, i and j.

We show what can be done with such data. To simplify the notation, let

vij = cij/hj , (18.6)
vji = cji/hi. (18.7)

Note that what one observes are the v-values; the expressions on the right-
hand side of the equations are how these data are explained by the vector
model. Note also that one can assume that the v-values are nonnegative
because a score of zero is the least possible containment. In terms of the
model, the c-terms are projections,

cij = hi · cos(α), (18.8)
cji = hj · cos(α). (18.9)

Thus,

cos(α) = (vij · vji)1/2, (18.10)

hi/hj = (vij/vji)1/2. (18.11)

If vij and vji can be estimated empirically, we can derive from them (a)
the angle α between the vectors i and j via (18.10), and (b) the ratio of the
lengths of these vectors via (18.11). If one of the vectors is fixed arbitrarily
(say, by setting hi = 1), then a unit for scaling is given, and the vector
configuration can be constructed.

Consider some data (Ekman, 1963). Six monochromatic lights of equal
brightness served as stimuli. Their wavelengths were 593, 600, 610, 628,
651, and 674 nm; that is, the lights were in the red-yellow range. All possi-
ble pairs of lights were projected onto a screen, and 10 subjects were asked
for “contained-in” judgments on each pair. The averages of the observed
values are presented in Table 18.2. This data matrix is denoted as V. From
V we can derive a matrix H(2) that contains the quotients vij/vji as its el-
ements (Table 18.3). These values are, by formula (18.11), the quotients of
the squared lengths of our six vectors. For example, the second element in
the first row is v12/v21 = h2

1/h2
2 = .94/.95 = .99. Summing over all elements
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TABLE 18.2. Averaged v-data for colors with wavelengths 593, . . . , 674 nm
(Ekman, 1963).

nm 593 600 610 628 651 674
593 1.00 .94 .67 .22 .08 .04
600 .95 1.00 .80 .31 .16 .06
610 .63 .75 1.00 .78 .56 .38
628 .21 .37 .78 1.00 .81 .72
651 .14 .23 .61 .85 1.00 .86
674 .07 .13 .40 .80 .90 1.00

TABLE 18.3. H(2) matrix, based on v-values in Table 18.2; H(2) = (vij/vji).

First Est. Sec. Est.
nm 593 600 610 628 651 674 h2

i h2
i

593 1.00 .99 1.07 1.05 .56 .62 5.29 4.11
600 1.01 1.00 1.07 .85 .70 .47 5.10 3.93
610 .94 .93 1.00 1.00 .91 .94 5.72 3.87
628 .95 1.18 1.00 1.00 .95 .89 5.97 4.13
651 1.79 1.44 1.09 1.05 1.00 .96 7.33 4.33
674 1.61 2.14 1.06 1.11 1.05 1.00 7.97 4.58

of row i of H(2) yields, symbolically,
∑n

j=1 h2
i /h2

j = h2
i

∑n
j=1(1/h2

j ). Hence,
this sum always involves a constant term,

∑n
j=1(1/h2

j ). Ekman (1963) sug-
gested simply setting this term equal to 1, thus introducing a scaling norm
for the vectors. With

∑n
j=1(1/h2

i ) = 1, we get h2
1 = 5.29, h2

2 = 5.10, and
so on, as shown in Table 18.3.

Further Considerations on Constructing Scalar Products
Selecting a scaling norm for the vectors is a trivial matter in the case of
error-free data. The simplest choice would be to arbitrarily select one vector
and take its length as the norming length for all vectors. With real data,
however, Ekman’s suggestion for norming by setting

∑
i(1/h2

i ) = 1 seems
better, because the vector lengths are derived from all data, not just a
subset. This should lead to more robust vector-length estimates for fallible
data.

Computational accuracy remains a problem in any case, because our
estimates rely very much on divisions and multiplications. Such operations
are numerically unstable. Consider, for example, the v-values for 593 and
674. Their quotient forms two entries in the H(2) matrix. For example, we
should find the value for the element in row 593 and column 674 of H(2)

from 0.04/0.07. But 0.04/0.07 = 0.57, and not 0.62, as we find in the table.
The discrepancy is a consequence of the fact that Table 18.3 reports only
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two decimal places. Other small changes in the v-values also render quite
different h2-values.

The reliability of the v-data could also be taken into account. One may
argue that very small v-data should be less reliable because they express
that the subject felt that the two objects had essentially nothing in com-
mon. A subject should, therefore, be relatively indifferent whether, say,
one object is said to contain 4% or 3% of the other. Forming ratios of such
small contained-in percentages is, however, very much affected by such
small changes in the magnitude of the contained-in data. Ekman (1963)
therefore suggested skipping such small v-values in estimating the vector
lengths. In Table 18.2, he decided to ignore the values in the upper right-
hand and the lower left-hand corners of the matrix, because these corners
contain relatively many small v-values. The vector lengths were estimated
only from the values in the upper 4× 4 left-hand and the lower 3× 3 right-
hand submatrices of H(2) in Table 18.3. That means, for example, that
h2

593 results from adding the first four elements in row 593. For h2
651, the

last three elements of row 651 are added, and, because this sum involves
one element less than before, the sum is rescaled by the adjustment factor
1.45 to yield h2

651 = 4.33. The factor 1.45 is computed from row 628, where
the first four elements add up to 4.13 and the last three to 2.84, giving the
ratio 4.13/2.84 = 1.45. If one compares the results of this estimation (see
column “Second Estimates” in Table 18.3) with those obtained before, one
notes (apart from the irrelevant differences in the magnitudes of the h2

i -
values) that their proportions are quite different. Whether these values are
indeed better estimates is, of course, impossible to say without any further
evidence. We note, however, that the estimation approach is obviously not
very robust.

The angles for each vector pair could be found in a similar way using
(18.10). This would then yield scalar products by (18.5). However, there is
a more direct estimation approach that also provides a test. It follows from
(18.8) that bij = h2

j · vij . Because we also obtain bji from h2
i · vji, nothing

guarantees that B is symmetric so that bij = bji, for all i, j. This provides
a test for assessing to what extent the properties derived from the vector
model are consistent with the data. We find that there are indeed some
asymmetries, for example, b(593,600) = (3.93)(0.94) = 3.69, but b(600,593)
= (4.12)(0.95) = 3.91 (Table 18.4). However, these asymmetries are quite
small, as Figure 18.4 makes clear, and can be assumed to lie within the
error range. Thus, finally, a scalar product matrix is obtained by averaging
these b-values.

Different Vector Lengths and v-Data
One notes that the V-matrix in Table 18.2 is not symmetric; that is, vij �=
vji for most i, j. The asymmetries are, however, minor in their magnitudes.
Empirically, one also finds cases where asymmetries are substantial. One
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TABLE 18.4. Preliminary (nonsymmetrized) B matrix for values in Table 18.2.

nm 593 600 610 628 651 674
593 4.12 3.68 2.59 .92 .35 .20
600 3.89 3.93 3.09 1.28 .71 .27
610 2.58 2.92 3.87 3.21 2.42 1.71
628 .87 1.44 3.01 4.13 3.51 3.27
651 .59 .92 2.37 3.51 4.33 3.89
674 .29 .50 1.54 3.30 3.88 4.55

bij (i<j)

b i
j

(i>
j)

1.0

.8

.6

.4

.2

.2 .4 .6 .7 1.0

FIGURE 18.4. Scatter plot of scalar products in Table 18.4; points’ coordinates
on X-axis (Y -axis) are values in upper (lower) half of Table 18.4.
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example is a study by Sixtl (1967) on the similarity of different emotional
experiences or feelings. He reports that his subjects felt that “wrath” has
83% in common with “aggressiveness”, but “aggressiveness” overlaps with
“wrath” only to 60%. Within the vector model, such asymmetries of the
containment judgments imply different lengths for the representing vectors.
This can be seen from Figure 18.3b, where i does have more in common with
j than vice versa. The reason is that j is longer and, thus, its perpendicular
projection is also longer.

This example also shows that, in the model, symmetric contained-in judg-
ments are not necessary for symmetric scalar products: bij = bji implies
that h2

jvij = h2
i vji. Hence, asymmetries of vij and vji judgments can be

compensated by the different lengths of i and j.
Vastly different vector lengths may, on the other hand, lead to a serious

problem for the contained-in judgments. Consider Figure 18.3a. Here, j =
2 · i and, so, vji = 2. This yields consistent equations: if one sets hj = 1
(units), then bij = h2

jvij = (1)2(1/2) = 0.5 and bji = h2
i vji = (1/2)2(2) =

0.5. However, the operationalization, “How much of j is contained in i?”
does not work anymore for this case, because it seems impossible that a
containment judgment is smaller than 0% or larger than 100%.

But are such cases really impossible? The projection of j onto i should
be longer than i itself if j contains more of i than i itself. This case is
not quite as paradoxical as it may appear at first sight. A conceivable
instance of this situation involves the colors j = bright red and i = pale
reddish, where the latter is but a “pale” instance of the prototypical color.
If this situation seems likely, conventional contained-in judgments do not
appear to be sufficient to measure scalar products. It would be desirable, for
example, to somehow assess the vector lengths independently of any notions
of similarity or containment. A set-theoretic approach where objects are
equated with feature sets might be a possibility (see, e.g., Restle, 1959).

18.3 Scalar Products and Euclidean Distances:
Formal Relations

In an exploratory context, the mapping of v-values into a vector configu-
ration does not have to pass major tests that would allow one to conclude
that the model is inappropriate. The only such test is the required rough
symmetry of the preliminary B-matrix. If this matrix is grossly asymmet-
ric, the model should be dropped as inappropriate.

One could devise further tests though, for example, constraints on the
dimensionality of the vector configuration or predictions as to how the vec-
tors should be positioned relative to each other. The more such tests there
are, the more can be learned about the data. Ekman, Engen, Künnapas,
and Lindman (1964) suggested collecting further measures besides the
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contained-in judgments (v-data), and then checking whether everything
fits together. Given two stimuli i and j as in Figure 18.1, we would expect
that the dissimilarity judgments on i and j could be mapped into the dis-
tance dij , and the v-data would mirror the discussed projection-to-length
ratios.

Converting Scalar Products into Euclidean Distances,
and Vice Versa
Scalar products and Euclidean distances are closely related; for example,
for vectors of constant length, they stand in an inverse monotonic relation
to each other, so that if dij grows, bij gets smaller, and vice versa. But there
is a major difference between scalar products and distances: if the origin
of the coordinate system is shifted in space, then the scalar products will
also change, whereas the distances remain the same. Expressed in terms of
the formulas, we have bij =

∑
a xiaxja and d2

ij =
∑

a(xia − xja)2 for the
old coordinate system. Shifting the coordinate system by the translation
vector (t1, . . . , tm), one obtains bij(t) =

∑
a(xia + ta)(xja + ta) �= bij , unless

t1 = 0, . . . , tm = 0. For distances, on the other hand, one gets d2
ij(t) =∑

a[(xia+ta)−(xja+ta)]2 = d2
ij . However, once some point has been chosen

to serve as the origin, we can compute scalar products from distances and
vice versa (see also Chapter 12). To see this, consider Figure 18.5. Let point
k be the origin. Then, by the cosine theorem,

d2
ij = d2

kj + d2
ki − 2dkjdki cos(α), (18.12)

where α is the angle between the vectors from point k to j and from k to
i, respectively. Rearranging (18.12), we find

dkjdki cos(α) = 1
2 (d2

kj + d2
ki − d2

ij), (18.13)

which is, by (18.5),
bij = 1

2 (d2
kj + d2

ki − d2
ij), (18.14)

because dkj and dki are just the lengths of the vectors j and i. Thus, we find
the scalar product bij from three distances. Conversely, we find the distance
dij from three scalar products: observing that d2

kj = bjj and d2
ki = bii, we

have d2
ij = bii + bjj − 2bij . Note that the origin k always enters into these

conversions.
Typically, one chooses the centroid as the origin, because this point

is supposedly more reliable than any point representing a single variable
(Torgerson, 1958). This choice should therefore lead to more robust scalar-
product estimates. The centroid is the point z with coordinates

(z1, . . . , zm) =

(
1
n

n∑
i=1

xi1, . . . ,
1
n

n∑
i=1

xim

)
. (18.15)
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FIGURE 18.5. Defining a vector configuration on the points f, . . . , k by choosing
one point, k, as an origin.

TABLE 18.5. Numerical example for the relation (18.17).

Centered Squared Scalar
Point Coordinates Coordinates Distances Products

1 2 1 2 1 2 3 4 1 2 3 4
1 1 2 -1.5 0.75 0 1 8 10 2.81 1.31 -1.69 -2.44
2 2 2 -0.5 0.75 1 0 5 5 1.31 0.81 -1.19 -0.94
3 3 0 0.5 -1.25 8 5 0 2 -1.69 -1.19 1.81 1.06
4 4 1 1.5 -0.25 10 5 2 0 -2.44 -0.94 1.06 2.31

Sum 2.5 1.25 0.0 0.0 19 11 15 17

With the centroid of all points as the origin, we obtain the scalar product

bij =
∑

a

(xia − za)(xja − za), (18.16)

because each coordinate is now expressed as a deviation score from the
origin z. This expression is transformed into a formula with only distances
appearing on the right-hand side, as in (18.14). Such a formula allows one to
convert distances—for which empirical estimates are assumed to be given—
into scalar products relative to the centroid. Inserting z values into (18.16),
one obtains, after some rearrangements of terms,

bij = − 1
2

⎛⎝d2
ij − 1

n

∑
i

d2
ij − 1

n

∑
j

d2
ij +

1
n2

∑
i

∑
j

d2
ij

⎞⎠ . (18.17)

Table 18.5 shows an example for this conversion. Given the squared dis-
tances, bij values are found by first subtracting from each d2

ij value the
mean of row i and column j, then adding to it the mean of all squared
distances, and finally multiplying all values by − 1

2 . For example, for points
1 and 2 we get d2

12 = (1 − 2)2 + (2 − 2)2 = 1 from the coordinates. The
scalar product relative to the centroid is b12 = − 1

2 (1−19/4−11/4 + 62/16)
= 1.31. But this should be the same as computing the scalar product di-
rectly by formula (18.5) from the centered coordinates. Indeed, we find
b12 = (−1.5)(−0.5) + (0.75)(0.75) = 1.31.
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Table 18.5 also demonstrates that the scalar product between i and j
depends on the origin, whereas the distance of i and j does not. For example,
the scalar product for points 1 and 2 is 5.00 for the raw coordinates but, as
we saw, 1.31 for the centered coordinates. On the other hand, the distance
d12 = 1.00 for any origin. Thus, scalar products are in a sense stronger or
richer in information than distances, because they depend on the n points
of a configuration and, in addition, on an origin. This issue is unrelated
to the scale level of the data. Even for absolute proximities, any point
of the MDS configuration can be chosen to serve as an origin. Hence, in
distance scaling, the origin is, by itself, meaningless, although meaning may
be brought in from elsewhere, as, for example, in the radexes in Chapter 5.
For scalar-product data, in contrast, the origin necessarily has an empirical
meaning. In Figure 18.7, it represents the color gray, and the fact that all
points have the same distance from it reflects the equal saturation of the six
colors used in the experiment. Consequently, Ekman (1963) interprets the
different directions of the color vectors as due to their qualitative differences,
whereas different vector lengths represent their quantitative differences.

18.4 Scalar Products and Euclidean Distances:
Empirical Relations

The formal relations between scalar products and distances may be used
in empirical research. If one collects both contained-in data (v-data) and
also asks the subjects to directly assess the global similarity (s-data) of
the objects of interest, it becomes possible to test whether the subjects’
proximity judgments can be accounted for by their scalar products. If so,
our confidence in the empirical validity of the geometrical models should
be increased. The converse, however, is not possible, because one cannot
uniquely derive scalar products from given distances due to the arbitrary
choice of origin.

A number of researchers have studied whether there exist empirical re-
lationships between distance and scalar-product data that allow such two-
way conversions. Let us first consider the special case where hi = hj , for all
i, j. Under this equal-length condition, Ekman proposed that the relation
sij = cos(α)/ cos(α/2) could be shown to hold very well empirically, where
cos(α) = √

vijvji from equations (18.6)–(18.10). (Both the s- and the v-
data were collected on percentage scales, in which 100 meant “identity”
for proximity judgments, and “completely contained in” for contained-in
judgments.) If such a relation would indeed hold, then we could arrive at
a natural origin by converting proximity data into scalar products. This
has the advantage that all we need are proximity data, which are much
easier to collect. Of course, this should work only if hi = hj holds for all
i and j, a condition that supposedly is guaranteed by proper instruction
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of the subjects. Therefore, in an experiment on the similarity of different
emotions, Ekman et al. (1964) asked their subjects “to consider emotions of
equal intensity” (p. 532) and “to disregard possible quantitative differences
in the intensity of the (emotions) and base their judgments on qualitative
characteristics” (p. 533).

It seems hard to evaluate what the results of such experiments mean.
Because they involve complicated formal relations and equally complicated
instructions, it is impossible to see where things break down. Nevertheless,
it is interesting to consider the more general principles from which Ekman
derived such relations. He started by studying models for the subjective
similarity of stimuli differing on one attribute only. For example, Ekman,
Goude, and Waern (1961) report an experiment in which subjects had to
assess all possible pairs of different grays (a) with respect to their global
similarity on a 10-point scale, and (b) relative to their darkness ratios. The
resulting proximity values were divided by 10, and a simple function was
found closely describing the relation between ratio and similarity data:

sij =
2hi

hi + hj
, hi ≤ hj , (18.18)

where hi and hj are the values of stimuli i and j on the darkness scale, and
sij is the (rescaled) distance estimate for i and j. In terms of the actual
data collection procedure, (18.18) can be written as sij = 2/(1 + hj/hi),
with hj/hi being the empirical ratio judgment. Because the different gray
stimuli on which the relation (18.18) is based do not differ qualitatively,
the situation can be best understood by considering Figure 18.3a, where
i is completely contained in j. Also, i is, of course, completely contained
in itself. Hence, one can interpret the term 2hi in formula (18.18) as an
expression for what i and j have in common (e.g., in the sense of their
stimulation). The term hi + hj , on the other hand, expresses what i and j
comprise together. What equation (18.18) says, thus, is that the subjective
dissimilarity of i and j is given as the ratio3 of the communality and the
totality of i and j,

sij =
communality of i and j

totality of i and j
=

Kij

Tij
. (18.19)

We now want to drop the model constraint that i and j are both collinear
(as in Figure 18.3a) and generalize the notions of communality and totality
to the higher-dimensional case. One possibility is to set Kij = cij + cji,
because cij is just that component that i shares with j, and the converse is

3This is similar to feature-set models of stimuli, where communality is equated with
the intersection of the object’s feature sets, and totality with the union of these sets. The
2 in the numerator of (18.18) could be interpreted as a scaling factor on the similarity
judgments.
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FIGURE 18.6. Illustrations of some notions of communality and totality.

true for cji. With Tij = hi + hj as before, this gives

sij =
cij + cji

hi + hj
. (18.20)

But cij = hicos(α) and cji = hjcos(α), so (18.20) is equal to

sij = cos(α), (18.21)

assuming that cij ≤ hj and cji ≤ hi, that is, that the projections of any
vector onto another vector should not be longer than the vector itself (see
Section 18.2). This equation means, in terms of the observations, that sij =√

vijvji.
Unfortunately, this simple hypothesis on the relation between s- and

v-values was found to describe empirical correspondences rather poorly.
Hence, other proposals were made. Ekman et al. (1964) tested a version of
(18.19) in which the totality of i and j was modeled by the vector sum of
i and j, as shown in Figure 18.6a. If hi = hj , we obtain

sij =
cos(α)

cos(α/2)
. (18.22)

But (18.22) can also be interpreted in a different way. The projections of
i and j onto the stimulus vector that lies (“qualitatively”) halfway between
i and j (see Figure 18.6b) are hicos(α/2) and hjcos(α/2), respectively.
If hi = hj , then the these projections sum to 2hicos(α). If this term is
used for Tij , one also obtains (18.22). One could also reason that Kij =
[hicos(α)+hjcos(α)]/2 = hicos(α) and Tij = [hicos(α/2)+hjcos(α/2)]/2 =
hicos(α/2), which again implies (18.22).

Of course, many more possibilities for Kij and Tij offer themselves if
the special constraint hi = hj is dropped. Sjöberg (1975) presents the
partial overview shown in Table 18.6. It is not surprising that none of
these hypotheses has been found to be universally superior. But this leads
us back to the question raised at the beginning of this section, and we can
now conclude that there is no empirical correspondence between proximities
and scalar-product estimates that allows one to derive the latter from the
former.



18.5 MDS of Scalar Products 403

TABLE 18.6. Some formulations for communality Kij and totality Tij of two
stimuli. K̄ij in model 4 (Goude, 1972) denotes what is not common to i and j,
so that sij = 1−K̄ij/Tij . The function min(a, b) selects the smaller of a and b. If
hi = hj , model 2 (Ekman et al., 1964) is equal to formula (18.22). Kij in model
3 (Ekehammar, 1972) is the vector sum of cij and cji in Figure 18.6c. Model 1
is by Ekman and Lindman (1961), and model 5 (the content model) is by Eisler
and Roskam (1977) and Eisler and Lindman (1990).

Model Communality Kij Totality Tij

1 (hi + hj) cos(α) hi + hj

2 min[hj , hi cos(α)] + min[hi, hj cos(α)] [h2
i + h2

j + 2hihj cos(α)]1/2

3 cos(α)[h2
i + h2

j + 2hihj cos(α)]1/2 hi + hj

4 [h2
i + h2

j − 2hihj cos(α)]1/2 = K̄ij = dij [h2
i + h2

j + 2hihj cos(α)]1/2

5 2 · min(hi, hj) cos(α) hi + hj

18.5 MDS of Scalar Products

Given a matrix of scalar products, we can compute—by solving B = XX′

for X—a configuration X that represents or approximates the scalar prod-
ucts (see Chapter 7). Because B = XX′ = (XT)(XT)′ = XTT′X′ = XX′

for TT′ = I, X is unique up to an orthogonal transformation T. That is,
X can be rotated and/or reflected freely without affecting the quality of
the solution.

An Application on the Color Data
For the symmetrized matrix of Table 18.4, B = (B+B′)/2, Ekman (1963)
reports the point coordinates in Table 18.7. The column ĥ2

i shows the
squared length of vector i in the MDS space; the hat denotes that this
length is a reconstruction of the vector length computed directly from the
data. For example, using (18.5) with i = j, we find for i = 3: (1.29)(1.29)+
(−1.47)(−1.47)+(0.15)(0.15) = 3.85. In Table 18.3, we had concluded that
this color’s vector should have a length of 3.87, so the 3D MDS configura-
tion comes very close to representing this value accurately. The five other
vectors also represent their colors well.

Table 18.7 shows that the vectors are distributed primarily around the
first principal axis: the sum of the squared projections onto this dimension
is 14.87, and only 7.72 and 1.54 for the second and third principal axes,
respectively. Thus, the vector configuration is essentially two-dimensional.
The dimensions of this space are principal axes. Therefore, we know that
the plane spanned by the first two axes is the best possible approximation
to the 3D vector configuration X.

Any coordinate system can be picked to coordinate this plane. Ekman
(1963), for example, rotated the principal axes to a simple structure ori-
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TABLE 18.7. Coordinates of vector configuration for symmetrized scalar prod-
ucts of Table 18.4; PAs are principal axes of 3D representation; D1 and D2 are
dimensions of the 2D plane spanned by PA1 and PA2 after rotation to simple
structure; SS is the sum-of-squares of the column elements; ĥ2

i is the squared
length of the vector in space.

nm PA1 PA2 PA3 ĥ2
i D1 D2 ĥ2

i

593 1.14 -1.58 0.51 4.04 0.00 1.95 3.79
600 1.29 -1.47 0.15 3.84 0.18 1.95 3.81
610 1.75 -0.59 -0.64 3.81 1.07 1.50 3.40
628 1.82 0.60 -0.55 3.97 1.82 0.58 3.67
651 1.74 0.99 0.14 4.03 1.99 0.22 4.01
674 1.59 1.20 0.70 4.45 1.99 -0.05 3.97
SS 14.86 7.79 1.50 24.14 12.43 10.22 22.65

D1

D2

610

628

651

674

600593

PA 1

FIGURE 18.7. Vector representation of point coordinates in Table 18.7.
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entation (Thurstone, 1947). Simple structure requests that the point co-
ordinates are either very large or very small, and intermediate values are
avoided. Table 18.7 shows such simple-structure coordinates resulting from
rotating the first two principal axes. For the rotated dimensions, D1 and
D2, the vector for color 593 has a coordinate value of 1.95 on the second
axis, while its projection onto the first axis has zero length. Thus, this
vector is collinear with the second axis. For 674, the converse is almost
true.

Because the third dimension accounts for so little, we may simply ignore
it, and concentrate on the plane spanned by the first two PAs. This plane is
presented in Figure 18.7, together with the principal axes and the simple-
structure coordinate system that give rise to the values in Tables 18.7.
The endpoints of our six color vectors fall almost onto a circle about the
origin in the order of their wavelengths. Thus, the perceived dissimilarities
in the colors are represented by the different orientations of the vectors.
The fact that all vectors have roughly the same length is, according to
Ekman (1963), a consequence of the fact that the colors were all matched
in brightness and saturation.

How well does Figure 18.7 represent the data? A global answer is pro-
vided by comparing the data with the scalar products implied by the given
vector configuration. The latter are computed from the first two principal
axes in Table 18.7 or, equivalently, from D1 and D2 in Table 18.7. One
finds, for example, that the reconstructed scalar product is b̂(593, 600) =
(1.14)(1.29) + (−1.58)(−1.47) = 3.793, and this is almost the same as the
data value b(593, 600) = (3.68 + 3.89)/2 = 3.785. Given all b̂ and b values,
we can combine them into a global fit measure. One possibility is to use
the correlation coefficient of the b̂ and the b values. It yields r = 0.9805.
Another measure is obtained by adding the squared differences of all b̂ and
b values and dividing this sum by the sum-of-squares of the b values. There
are no standards for evaluating such a loss function, but it suggests other
representation criteria; for example, the b̂ values could be replaced by the
rank-image values of the data, defining a loss function for a procedure that
maps the data ordinally into scalar products. This criterion was used in
SSA-III, a program for nonmetric factor analysis (Lingoes & Guttman,
1967).

Successive Extractions of Dimensions from Scalar Products
Rather than computing an MDS solution for scalar products in one fixed
dimensionality, one can extract this solution dimension by dimension. This
allows further tests.

Consider the preliminary B-matrix in Table 18.4. One may interpret its
asymmetries as essentially due to random noise and thus generate a “bet-
ter” B-matrix by averaging the corresponding bij- and bji-values. For the
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TABLE 18.8. Upper half with diagonal shows error values bij − b̂ij for 3D vector
configuration; lower half shows asymmetries, (bij −bji)/2 of values in Table 18.4.

nm 593 600 610 628 651 674
593 .08 -.08 -.01 .05 -.02 -.01
600 .11 .09 -.01 -.02 .01 .01
610 -.01 -.09 .06 -.07 .03 .01
628 -.03 .08 -.10 .16 -.17 .07
651 .12 .11 -.03 .00 .30 -.16
674 .05 .12 -.09 .02 .00 .10

3

2

1

0

-1

-1 0 1 2 3 4 5

4

5

bij

b̂ij

FIGURE 18.8. Plot of residuals of empirical scalar products of Table 18.4 esti-
mated by vector configurations in 1D (squares), 2D (open circles), and 3D (filled
circles).
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MDS representation of B, we now proceed stepwise, extracting one princi-
pal component after the other,4 until the representation seems sufficiently
precise. Precision may be defined by requiring that the bijs do not differ
from the scalar products computed on the MDS coordinates, b̂ij , by a mag-
nitude that lies in the range of the asymmetries. Because these asymmetries
were assumed to be due to error, further principal components would only
represent structure that cannot be distinguished from error. Table 18.8
shows that the criterion is satisfied by a 3D solution. Figure 18.8 shows
the residuals of the estimation of the scalar products in 1D, 2D, and 3D.
The sum of squared errors is in 1D 63.17, in 2D 2.53, and in 3D .29. Ac-
cording to these criteria, a representation in at most 3D seems adequate,
because the error sum-of-squares in 3D is less than the sum-of-squares of
the asymmetries in Table 18.8 (= .336).

MDS Representations of v- and s-Data
We have seen that scalar products determine not only n stimulus points
but also a unique origin. However, scalar products are often employed in a
purely ancillary fashion, because they allow direct computation of a vector
configuration by algebraic means. If we begin with distance estimates, we
can convert them into scalar products by picking some point to serve as
an origin. In that case, the origin has no direct empirical meaning. If the
data are scalar products that are not just indices such as correlations com-
puted over persons, say, but measurements constructed from contained-in
judgments, then the origin has a meaning, as we have seen for the color
data.

But will there be other differences between the MDS solutions derived
from scalar-product and distance data? Yes, because of restrictions built
into v-judgments. Figure 18.3b shows that the contained-in judgments have
a lower bound when the two respective stimulus vectors i and j are perpen-
dicular, so that cij = 0. In the color circle in Figure 4.1, this is the case,
for example, for the colors with wavelengths 674 nm and 584 nm. Indeed,
Table 18.2 shows for the very similar stimulus pair (674 nm and 593 nm)
that the contained-in rating is almost equal to 0. But what can the subject
say when asked to evaluate to what extent the color with wavelength 555
nm is contained in the color 674 nm? For these colors, the respective vec-
tors in the color circle form an obtuse angle. Even more extreme are the
complementary colors red and green, which are opposite each other in the
color circle: what portion of red is contained in green? Because the subject
cannot respond with v-values of less than 0 (unless the procedure is gen-

4This extraction process amounts to a spectral decomposition of B, B = λ1q1q′
1 +

. . .+λmqmq′
m, where λi is the ith eigenvalue and qi the corresponding eigenvector. See

formula (7.12).
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eralized in some way), it seems plausible that we end up with b(674,584)
= 0, b(674,490) = 0, and also b(584, 490) = 0. But this means that the
scaling problem corresponds to a situation like that in Figure 18.2, where
all three angles are equal to 90◦. To fit the three quarter-circles together
necessitates a 3D space. So, for the complete color circle, we should expect
a 4D MDS representation if it is based on v-data.

18.6 Exercises

Exercise 18.1 Given a matrix B, how can one check, by matrix computa-
tion, whether B is a scalar-product matrix?

Exercise 18.2 Consider the following geometric problems.

(a) What is the angle between x = (2,−2, 1) and y = (1, 2, 2)?

(b) What is the projection of x onto y?

(c) What is the projection of x onto the plane spanned by (1, 0, 0) and
(1, 1, 0)?

Exercise 18.3 What multiple of a = (1, 1) should be subtracted from b =
(4, 0) to make the result orthogonal to a? Sketch a figure.

Exercise 18.4 Draw two vectors a and b in the plane, both emanating from
the same origin, such that a+b is perpendicular to a−b. What properties
have to hold for a and b to make this possible?

Exercise 18.5 Consider the experiment by Sixtl (1967) reported on p. 397.
He asked subjects to assess how much of emotion x is contained in emotion
y. The exact question posed to the subjects was: “How much does x have
of y?” Whether this instruction was further explained is not reported. The
emotions were shyness, compassion, desire, love, humbleness, tenderness,
anxiety, aggressiveness, wrath, and disgust.

(a) Discuss the task to which these subjects had to respond. Devise ad-
ditional or alternative instructions that would make it very clear to
them what they were expected to deliver.

(b) What type of questions concerning this task do you expect the sub-
jects to raise in this context?

(c) Compare the above experimental method to one where proximities
are collected. What type of data collection would you prefer? Which
one is more likely to yield better data?
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(d) Assume that the contained-in judgments generate the type of data
that proponents of this method are hoping to get. What are the ad-
ditional insights that these data would then allow over and beyond
direct similarity ratings, say?

Exercise 18.6 Data collection by way of contained-in judgments has been
restricted to a range of 0% to 100%. This implies that the respondents
cannot distinguish stimuli that are “orthogonal” to each other from those
that are opposite to each other, for example. They would both be rated
as 0%. Devise a method that does away with this restriction. Work out
the instructions that you would use to instruct the respondents about their
task, and discuss your approach in the context of both the color similarities
and the similarity of emotional experiences discussed in this chapter.




