
11
MDS Fit Measures, Their Relations,
and Some Algorithms

A problem in MDS is how to evaluate the Stress value. Once a solution is
found, how good is it? In Chapter 3, several statistical simulation studies
were reported. Here we give an interpretation of normalized Stress in terms
of the proportion of the explained sum-of-squares of the disparities. We also
show that normalized Stress is equal to Stress-1 at a minimum and that the
configurations only differ by a scale factor. Then, other common measures
of fit for MDS are discussed. For these fit measures, we refer to some recent
algorithmic work. Finally, it is discussed how weights in MDS can be used
to emphasize different aspects of the data, to approach other MDS loss
functions, or to take the reliability of the data into account.

Throughout this chapter, we refer to the data as being dissimilarities
δij for notational simplicity. However, all definitions of Stress measures
and their relations remain valid when the dissimilarities are replaced by
d̂ij obtained by optimal transformation (see the approach taken in Section
9.1).

11.1 Normalized Stress and Raw Stress

In Section 3.2, we saw that σr depends on the “size” of X. Changing the
scale of the coordinates of X changes σr accordingly. To avoid this scale
dependency, one can use the implicit normalization used in Kruskal’s Stress-
1. Here, we elaborate on a different measure, which we call normalized
Stress. This coefficient shows (after convergence) the proportion of the sum-
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of-squares of the δijs that is not accounted for by the distances. We define
normalized Stress σn(X) as

σn(X) =
σr(X)

η2
δ

=

∑
i<j wij(δij − dij(X))2∑

i<j wijδ2
ij

. (11.1)

Clearly, if
∑

i<j wijδ
2
ij = 1, then σn(X) = σr(X).

De Leeuw (1977) (and, among others, Commandeur, 1993) show how
σn(X) is related to the square of Tucker’s coefficient of congruence.1 This
relation can be explained as follows. Suppose that X∗ is a local minimum
of σr(X). This implies that bY∗ = X∗ (with b > 0) also must be a local
minimum. Note that Y∗ has coordinates that are proportional to X∗. We
show that for optimal b normalized Stress is equal to one minus the square
of Tucker’s coefficient of congruence.

To find an optimal b, we use the property that the Euclidean distance is
a positively homogeneous function in X; that is, dij(bY∗) = bdij(Y∗) for
b ≥ 0. Then σr(bY∗) can be written as

σr(bY∗) =
∑
i<j

wij(δij − dij(bY∗))2

=
∑
i<j

wijδ
2
ij + b2

∑
i<j

wijd
2
ij(Y

∗) − 2b
∑
i<j

wijδijdij(Y∗)

= η2
δ + b2η2(Y∗) − 2bρ(Y∗). (11.2)

The minimum of (11.2) over b is obtained by setting the first derivative of
σr(bY∗) with respect to b equal to zero, 2bη2(Y∗) − 2ρ(Y∗) = 0. Thus,
the optimal b is b∗ = ρ(Y∗)/η2(Y∗) (see, e.g., Mathar & Groenen, 1991).
Inserting b∗ in σr(bY∗) gives

σr(b∗Y∗) = η2
δ −

(
ρ(Y∗)
η(Y∗)

)2

. (11.3)

Dividing both sides by η2
δ yields

σn(b∗Y∗) =
σr(b∗Y∗)

η2
δ

= 1 −
(

ρ(Y∗)
ηδη(Y∗)

)2

, (11.4)

where the last term is equal to the square of Tucker’s congruence coeffi-
cient with distances and dissimilarities. The congruence coefficient is al-
ways between −1 and 1, due to the Cauchy–Schwarz inequality. Moreover,

1The congruence coefficient of two variables X and Y , c, is the correlation of these
variables about their origin or “zero”, not about their means (as in Pearson’s correlation
coefficient). The coefficient c was first used by Tucker (see, e.g., Tucker, 1951) to assess
the similarity of corresponding factors resulting from factor analyses of different samples.
It is defined as c = (

∑
i
(xiyi)/[(

∑
i
x2

i )(
∑

i
y2

i )]1/2.
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negative congruence coefficients are impossible because distances and dis-
similarities are nonnegative. Hence, at a stationary point X∗, it holds that
0 ≤ σn(X∗) ≤ 1. The value of σn(X∗) is the proportion of variation of
the dissimilarities not accounted for by the distances, and 1 − σn(X∗) is
the fitted proportion, a coefficient of determination. Because distances and
dissimilarities both are positive, congruence coefficients tend to be close to
1 in practice. Therefore, values of σn(X∗) < .10 are usually not difficult to
obtain.

Using the normalized Stress (as defined in this section) gives a clear
interpretation that does not depend on the scale of the dissimilarities.

Relation Between Normalized Stress and Stress-1
Fortunately, there exists a simple relation between the normalized Stress
σn and Stress-1 σ1. In fact, we show here that σ2

1 = σn at a local minimum
if we allow for a rescaling of the solution. Note that Raw Stress σr and
normalized Stress σn differ from most other Stress measures in that no
square root is taken.

Let X∗ be a local minimum obtained by minimizing σn. De Leeuw
and Heiser (1980) and De Leeuw (1988) proved that for X∗ it holds that
η2(X∗) = ρ(X∗). This result implies that

σn(X∗) = 1 − η2(X∗)
η2

δ

. (11.5)

Now, for the same configuration, Stress-1 can be expressed as

σ2
1(X∗) =

η2
δ + η2(X∗) − 2ρ(X∗)

η2(X∗)
=

η2
δ − η2(X∗)
η2(X∗)

=
η2

δ

η2(X∗)
− 1.

From (11.5) we have η2
δ/η2(X∗) = 1/(1 − σn(X∗)), so that

σ2
1(X∗) =

σn(X∗)
1 − σn(X∗)

.

However, the scale of X∗ is not optimal for Stress-1. By allowing for a
scaling factor b, Stress-1 becomes

σ2
1(bX∗) =

η2
δ + b2η2(X∗) − 2bρ(X∗)

b2η2(X∗)
=

η2
δ + (b2 − 2b)η2(X∗)

b2η2(X∗)
.

An optimal b can be found by differentiating σ2
1(bX∗) with respect to b;

that is,

∂σ2
1(bX∗)
∂b

=
2b2[b − 1]η4(X∗) − 2bη2(X∗)[η2

δ + (b2 − 2b)η2(X∗)]
b4η2(X∗)
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=
2bη2(X∗) − 2η2

δ

b3 ,

which is equal to zero for b∗ = η2
δ/η2(X∗). Inserting b∗ into σ2

1(bX∗) yields

σ2
1(b∗X∗) =

η2
δ + η4

δ

η4(X∗)
η2(X∗) − 2 η2

δ

η2(X∗)
η2(X∗)

η4
δ

η4(X∗)
η2(X∗)

=
η2

δ/η2(X∗) − 1
η2

δ/η2(X∗)

= 1 − η2(X∗)
η2

δ

= σn(X∗).

This proves that Stress-1 is equal to normalized Stress at a local minimum
if the scale is calibrated properly.

11.2 Other Fit Measures and Recent Algorithms

A whole variety of MDS loss functions have been proposed in the litera-
ture. In this section, we describe some of them. A summary of different
fit measures and their relations is given by Heiser (1988a). Here, we re-
strict ourselves to the most commonly used MDS loss functions. One of the
reasons for our emphasis on using Stress in MDS is that the majorization
algorithm is a simple procedure for which nice theoretical convergence re-
sults have been derived (De Leeuw, 1988). In this section, we assume that
the weights wij = 1, for all i, j. We start with a brief overview of other
algorithms for minimizing Stress.

Algorithms for Minimizing Raw Stress
Let us first turn to raw Stress. Apart from majorization, several other
approaches for minimizing raw Stress have been reported in the litera-
ture. Some of these approaches are equivalent to the majorization algo-
rithm discussed in Section 8.6. For example, De Leeuw (1993) reparam-
eterized the raw Stress function, where the coordinates are restricted to
be a sum of some other fixed coordinate matrices. The algorithm is also
based on majorization. A convex analysis approach for minimizing raw
Stress (De Leeuw, 1977; Mathar, 1989; Mathar & Groenen, 1991; Meyer,
1993) leads to the same algorithm as the majorization approach. A rela-
tion between the convex analysis approach and the majorization approach
(for the more general case of Minkowski distances) was discussed by Mathar
(1994). A genetic algorithm to minimize raw Stress was proposed by Mathar
and Z̆ilinskas (1993), who found this a promising approach for small MDS
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problems. Glunt, Hayden, and Raydan (1993) proposed a spectral gradient
algorithm, which was, in one example, 10 times faster than the majorizing
algorithm.

Implicitly Normalized Stress
In Section 3.2, it was indicated that raw Stress σr(X) can be misleading,
because it is dependent on the normalization of the dissimilarities. To cir-
cumvent this inconvenience, normalized Stress σn(X) was introduced in
Section 11.1. A different solution is to require explicitly η2

δ = c, with c
a positive constant (e.g., η2

δ = n(n − 1)/2), as was imposed in nonmetric
MDS by (9.2). This solution is called explicit normalization. A third (but
historically earlier) solution was pursued by Kruskal (1964a), which is called
implicit normalization. Here, Stress is expressed in relation to the size of
X. More concretely, σ is divided by the sum of the squared distances in X
and the root is taken of the total fraction; that is,

σ1(X) =
(

σ(X)
η2(X)

)1/2

=

(∑
i<j [δij − dij(X)]2∑

i<j dij(X)

)1/2

.

This expression, proposed by Kruskal (1964a) is called Stress formula 1.
Note that often Stress-1 is expressed using disparities d̂ij to allow for trans-
formations. Throughout this chapter, we use dissimilarities δij instead of
d̂ij for reasons of notational simplicity. Kruskal and Carroll (1969) proved
that implicitly or explicitly normalized Stress gives the same configuration
up to scaling constant. A different form of implicit normalization is Stress
formula 2; that is,

σ2(X) =

(∑
i<j [δij − dij(X)]2∑
i<j [dij(X) − d̄]2

)1/2

,

with d̄ the average distance. This version of Stress was introduced to avoid
a particular type of degeneracy in unfolding, that is, solutions where all
distances are equal.

The Alienation Coefficient and the Guttman–Lingoes Programs
Another error measure, the alienation coefficient, abbreviated as K, is used
only in combination with rank-images as target distances. K can be derived
from normalized Stress σn(X) as defined in (11.4) by setting δij = d∗

ij ,
where d∗

ij denotes the disparity obtained by the rank-image transformation
(see Section 9.5). Thus, the alienation coefficient is defined as

K =

(
1 − [

∑
i<j d∗

ijdij(X)]2∑
i<j(d

∗
ij)2

∑
i<j d2

ij(X)

)1/2

. (11.6)
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The quotient term in (11.6) is known as the monotonicity coefficient, µ
(Guttman, 1981). It is similar to a correlation coefficient, which is easier
to see if we rewrite it as

µ =

∑
i<j d∗

ijdij(X)

[
∑

i<j(d
∗
ij)2

∑
i<j d2

ij(X)]1/2 . (11.7)

Hence, µ differs from the usual Pearson correlation coefficient on the vari-
ables distances and rank-images in not subtracting the means from the
variables. The regression line, therefore, runs through the origin and not
the centroid of the image diagram, the plot of all points with coordinates
(dij , d

∗
ij). Note that in an image diagram all points are exactly on the bisec-

tor if and only if the solution is perfect. In that case, µ = 1. Furthermore,
µ is equal to Tucker’s congruence coefficient of the distances and their
rank-images.

For practical purposes, µ has the disadvantage that it takes on values
close to 1 even if the MDS solution is far from perfect. We can, however,
convert µ into the coefficient of alienation

K = (1 − µ2)1/2,

which yields values that vary over a greater range and, thus, are easier to
distinguish. K is a measure for the “unexplained” variation of the points
in the image diagram, whereas µ2 is a coefficient of determination, that is,
a measure for the “explained” variance. The smaller K, the more precise
is the representation, or, conversely, the greater K, the worse the fit of the
MDS model to the proximities. The squared alienation coefficient is equal to
normalized Stress σn(X) if rank-images are used instead of disparities. The
Guttman–Lingoes programs and various other programs (see Appendix A)
do ordinal MDS by attempting to minimize K rather than Stress.

Minimizing S-Stress
The S-Stress loss function of Takane, Young, and De Leeuw (1977),

σAL(X) =
∑
i<j

(d2
ij(X) − δ2

ij)
2, (11.8)

is minimized by Alscal (see Appendix A). This loss function sums the
differences of squared dissimilarities and squared distances. One of the rea-
sons for using squared distances is that σAL(X) is differentiable everywhere,
even if dij(X) = 0 for some pair i, j. Squaring distances and dissimilari-
ties causes S-Stress to emphasize larger dissimilarities more than smaller
ones, which may be viewed as a disadvantage of S-Stress. A fast Newton–
Raphson procedure to minimize S-Stress was proposed by Browne (1987).
An alternative algorithm was presented by Glunt, Hayden, and Liu (1991).
For the full-dimensional case of m = n − 1, Gaffke and Mathar (1989)
developed an algorithm that always yields a global minimum.
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Maximum Likelihood MDS and Multiscale
The Multiscale loss function of Ramsay (1977) is based on the sum of the
squared difference of the logarithm of the dissimilarities and the distances;
that is,

σMU (X) =
∑
i<j

[log(dij(X)) − log(δij)]
2
.

This loss function is used in a maximum likelihood (ML) framework. The
likelihood is the probability that we find the data given X. This proba-
bility is maximized in ML-MDS. For ML estimation, we need to assume
independence among the residuals and a lognormal distribution of the resid-
uals. In many cases, these assumptions are too rigid. However, if they do
hold, then σMU has the advantage that confidence regions of the points
can be obtained and that different models can be tested. If the residuals
are assumed to be normally distributed, then Multiscale reduces to min-
imizing Stress. An advantage of using a logarithm in σMU is that the large
dissimilarities do not determine the solution as much as when Stress is
minimized. Conversely, dissimilarities close to zero are relatively important
for the solution. The Multiscale program is discussed in Appendix A.

Further Algorithms and Developments
Groenen, De Leeuw, and Mathar (1996) discussed a least-squares loss func-
tion for MDS that includes Stress, S-Stress, and Multiscale as special
cases. They used

σG(X) =
∑
i<j

wij

[
f(δ2

ij) − f(d2
ij(X))

]2
,

where f(z) is an increasing scalar function. For example, choosing f(z) =
z1/2 gives Stress, f(z) = z gives S-Stress, and f(z) = log(z) gives the
Multiscale loss function. They derive several properties of the gradient
and hessian (the matrix of second derivatives) of this function. For example,
it can be shown that S-Stress is differentiable everywhere (Takane et al.,
1977) and that at a local minimum Stress has no zero distances (and thus
is differentiable) if wijδij > 0 for all i, j (De Leeuw, 1984). Kearsley, Tapia,
and Trosset (1998) provide an algorithm for the Stress and S-Stress versions
of σG based on a globalized Newton’s method, which they claim uses fewer
iterations than the majorizing algorithm and yields lower Stress solutions.

To minimize Stress, Luengo, Raydan, Glunt, and Hayden (2002) have
elaborated on the so-called spectral gradient algorithm. In a small com-
parison study, Groenen and Heiser (2000) found that the spectral gradient
algorithm was the fastest algorithm, outperforming Smacof and Kyst.
This may be of importance for MDS with a large number of objects.
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A special case of σG occurs in applications in chemistry, where the ob-
jective is to find stable molecules. The energy function used is essentially
equal to σG(X) with f(z) = z6 and δij = 1 for all i, j. The gradient be-
comes so steep that this problem turns out to be combinatorial in nature
(see, e.g., Xue, 1994).

De Leeuw and Groenen (1997) considered the problem of finding those
dissimilarity matrices for which a given X is a local minimum (or has a
zero gradient) for Stress. This problem is called inverse MDS. If this set
of dissimilarities is large, then the local minimum is not very informative.
After all, many dissimilarity matrices have X as a (possible) local minimum.
Groenen et al. (1996) discuss the problem of inverse MDS for the loss
function σG(X).

An overview of various algorithmic approaches in MDS is given by Mathar
(1997).

11.3 Using Weights in MDS

So far, we have used the weights wij only to indicate nonmissing dissimi-
larities. Choosing wij = 1 indicates that for object pair ij a dissimilarity
has been observed, whereas wij = 0 is used for pairs ij where a dissimi-
larity is “missing”. As zero weights lead to zero error terms in the Stress
loss function, the distance that corresponds to a missing data value can-
not be assessed in terms of fit. Hence, it contributes nothing to the Stress,
whatever its value. But this also means that this distance cannot be inter-
preted directly, but only in terms of what is implied by the distances that
represent given data. If the number of missing dissimilarities gets large or
if they form special block patterns (as in Table 6.1, e.g.), we should take
care in interpreting distances that “represent” missing data. Then, one
should emphasize the interpretation of distances that represent observed
data values.

Using Particular Weighting Schemes
Instead of using wij ’s that are zero or one in the minimization of Raw
Stress, we can apply any positive value for wij . Heiser (1988a) exploited
this powerful idea and distinguished several weighting schemes of which we
discuss a few below.

Consider the S-Stress loss function. Instead of (11.8), S-Stress may also
be written as

σAL(X) =
∑
i<j

(δij + dij(X))2(δij − dij(X))2,

which shows that each S-Stress error term consists of two factors: the square
of the ordinary Stress residual (δij − dij(X))2 and a weighting term (δij +
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dij(X))2 that is also dependent on dij(X). Assume that the residuals are
reasonably small. Then, (δij + dij(X))2 can be approximated by replacing
dij(X) by δij so that

(δij + dij(X))2 ≈ 4δ2
ij .

Therefore, the minimization of S-Stress can be approximated by minimizing
Stress choosing wij = 4δ2

ij . This approximation shows that optimizing S-
Stress tends to lead to small errors for the large dissimilarities and large
errors for the smaller dissimilarities. In other words, large dissimilarities
are much better represented than the small ones.

McGee (1966) proposed the idea of elastic scaling. This form of MDS
fits relative residuals so that the proper representation of small dissimilar-
ities is equally important as fitting large dissimilarities. The loss function
minimized in elastic scaling is

σEL(X) =
∑
i<j

(1 − dij(X)/δij)2 =
∑
i<j

δ−2
ij (δij − dij(X))2.

Thus, choosing wij = δ−2
ij makes minimizing raw Stress do the same as

McGee’s elastic scaling.
An MDS method popular in the pattern recognition literature is called

Sammon mapping after Sammon (1969). The loss function can be expressed
as

σSAM (X) =
∑
i<j

δ−1
ij (δij − dij(X))2,

which is identical to raw Stress for wij = δ−q
ij , with q = −1. The objective is

somewhat similar to that of elastic scaling of McGee (1966), although larger
dissimilarities still are somewhat more emphasized in the MDS solution.

The Multiscale loss function of Ramsay (1977) can be written as

σMU (X) =
∑
i<j

log2(dij(X)/δij),

showing that the squared logarithm of the relative error is minimized. Pro-
vided that the relative error is close to one, log(a) can be approximated by
a − 1; that is,

σMU (X) =
∑
i<j

log2(dij(X)/δij) ≈
∑
i<j

(1 − dij(X)/δij)2 = σEL(X).

Thus, the objective of Multiscale and elastic scaling scaling coincides in
that errors are corrected for the size of the dissimilarities.

The examples above show that choosing wij as a power of δij leads to
(approximations) of other loss functions. For this reason, Buja and Swayne



256 11. MDS Fit Measures, Their Relations, and Some Algorithms

(2002) incorporated the weights wij = δq
ij in their Ggvis software (see

Appendix A). Figure 11.1 shows solutions for ratio MDS of the facial ex-
pression data of Table 4.4 using several values of q. The middle panels show
the standard solution with q = 0 and all weights being one as wij = δ0

ij = 1.
The Shepard diagram in the middle-right panel shows that the size of the
errors does not depend on the size of the dissimilarities. Note that the
solution for q = 0 is the same as Figures 4.8 and 4.9 up to a rotation.

In contrast, for q = −5, the large dissimilarities show much error and
thus are not well represented. For example, the two worst fitting large
dissimilarities are between faces 12 and 13 (“Knows plane will crash” and
“Light sleep”) and faces 3 and 7 (“Very pleasant surprise” and “Anger at
seeing dog beaten”). Both distances are too small in this representation. In
this case, the small dissimilarities have little error, and thus can be safely
interpreted.

The reverse situation occurs for q = 5 where the large dissimilarities
are fitted with almost no error and there is quite some error in the rep-
resentation of the smaller errors. The Shepard plot shows three or four
bad-fitting small dissimilarities, which turn out to be connected with face
12. However, face 12 is located so far away because it has several large dis-
similarities with other faces (2, 3, 4, 5, 8, 9, and 13) that are all large and
represented with almost no error. This compromise is typical for choosing
large q. Hence, only large distances can be properly interpreted and small
distances should be interpreted with care. If the dissimilarities have some
clustering, then choosing a large q may reveal a clearer clustering structure
than choosing all wij = 1.

Summarizing, to emphasize the representation of small dissimilarities,
choose a large negative q. For a proper representation of the large dissimi-
larities, choose a large q. If you want to use relative errors to penalize small
deviations for small dissimilarities equally heavy as large deviations for
large dissimilarities, choose q = −2. To measure the error directly without
any modification, choose q = 1.

Using Weights on Substantive Grounds
All of the above schemes for picking weights wij had in common that the
weights were specified on the basis of general and rather formal considera-
tions. We conclude this discussion about using weights in MDS by pointing
out that weights can also be picked on a substantive basis. One particular
choice for wij would be to set it equal to the empirically assessed reliability
of the proximity pij . This means that highly reliable proximities have more
impact on the MDS solution than unreliable ones.

The problem, of course, is that reliabilities are seldom collected, because
to collect one set of proximities is typically demanding enough. Estimating
reliabilities from other information is not that simple either. Consider, for
example, the Morse code data in Table 4.2. We may come to the conclusion
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FIGURE 11.1. Ratio MDS of facial expression data of Table 4.4 where wij = δq
ij

for q is −5, −2, 0, 2, and 5. The left panels show the configurations, the right
panels the corresponding Shepard plots.
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that these data are essentially symmetric, symmetrize the data, and use
the degree of asymmetry as a measure of the unreliability of the confusion
probability for each pair. This approach sounds plausible but a closer study
of the asymmetries in Chapter 23 reveals that the asymmetries are clearly
not just random. Other solutions to obtain reliabilities from the data we
have could be considered. For example, one may feel that confusing a signal
with itself relates to reliability, and then compute a reliability measure for a
pair of signals on the basis of their individual reliabilities. Obviously, many
such measures could be considered, and there are many ways to collect
reliabilities directly such as, for example, simply replicating the proximity
observations at least twice. What is and what is not a good reliability
estimate must be decided within the substantive context of the particular
data.

Note also that proximities are often data that are collapsed over individ-
uals. This is true too for the Morse code data in Table 4.2. But different
individuals can agree on the similarity of some pairs, and disagree on others.
This information could also be used to weight the data so that the respon-
dents’ common perceptual space relies more on data where interindividual
agreement is relatively high.

11.4 Exercises

Exercise 11.1 Compute, by hand, the alienation coefficient for the pij and
dij in Table 9.2, p. 206.

Exercise 11.2 Consider the data in Table 1.3, p. 10. One may attempt
to weight these data somehow to account for possible differences in their
reliability. For example, the students who generated these similarity ratings
were certainly less familiar with (what was then) “Congo” than with the
U.S.A. or the U.K.

(a) Develop a scheme that generates reliability estimates for each proxim-
ity in Table 1.3 on the basis of simple ratings of the different nations
in terms of their assumed familiarity to the students in this experi-
ment. (Hint: One way of rating the reliability of the proximity pij is
to multiply the familiarity ratings for i and for j.)

(b) Use these estimates to weight the proximities, and redo the (ordinal)
MDS with these weights.

(c) Discuss any differences (configuration, Stress, pointwise Stress, inter-
pretation) of the weighted MDS solution and the “unweighted” (or,
rather, unit-weights) solution in Figure 1.5.
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Exercise 11.3 There are many ways to generate weights δij for proximities
pij .

(a) MDS is often used to analyze the structure of correlation matrices
(see, e.g., Tables 1.1, 5.1, and 20.1). Discuss some ways to sensibly
weight correlations for potentially more robust MDS analyses of such
data.

(b) Consider the similarity judgments on facial expressions described in
Section 4.3. The respondents may make these judgments with differ-
ent degrees of confidence. How could this information be collected
and incorporated into the MDS analysis?

(c) Even the similarities on the colors in Table 4.1 could be weighted. One
possible way is to assume that primary colors (red, blue, green) gen-
erate more reliable judgments. Devise a method to generate weights
on that basis.

Exercise 11.4 Consider the data in Table 4.1, p. 65. Their Shepard diagram
in Figure 4.2 exhibits a slightly nonlinear trend. Find a transformation on
the similarities that linearizes the relationship of these data to their MDS
distances. Justify this transformation in terms of psychophysics, if possible.
Redo the MDS analysis with the rescaled data and a linear MDS model.

Exercise 11.5 Dissimilarities may be related to nonlinear manifolds that
are embedded in very high-dimensional space. For example, a constant
face that an observer looks at from different angles in space corresponds to
different points in the space of its image pixels on the retina. This space
has thousands of dimensions, but the points that represent the faces still
lie on some nonlinear manifolds (with the angles as parameters) within
this space. MDS does not necessarily uncover such manifolds, because of
“using greedy optimization techniques that first fit the large-scale (linear)
structure of the data, before making small-scale (nonlinear) refinements”
(Tenenbaum, 1998, p. 683). One suggestion to solve this problem is to use
a “bottom-up” approach that computes distances for points in small local
environments only, and then build up large distances by concatenating such
distances over geodesics within the manifolds (given that these manifolds
are densely packed with points).

(a) Construct a so-called Swiss roll of points in 3D as in the left panel
of Figure 11.2. A Swiss roll can be made as follows. Generate two
uniformly distributed vectors u and v of n points (say, choose n =
1000). Then, the coordinates are xi = 1

2vi sin(4πvi), yi = ui − 1
2 , and

zi = 1
2vi cos(4πvi).

(b) Compute Euclidean distances for the points in your manifold, and
then use metric MDS in an attempt to recover the original Swiss roll
configuration.
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FIGURE 11.2. Manifolds described in Exercise 11.5. The left panel shows the
“Swiss roll” manifold, the right panel a “bowl”.

(c) Now focus predominantly on small distances by a suitable weighting
pattern, and repeat the MDS analyses with small or even zero weights
on large distances. Check to what extent this approach manages to
unroll the Swiss roll into a plane. [Shepard and Carroll (1966) call this
the “intrinsic” dimensionality of the manifold.] Compare the resulting
MDS configuration to the one obtained in Exercise (b) above.

(d) Repeat (a) to (c), but now for a “bowl” of points in 3D. A bowl
is generated similarly as the Swiss roll in (a), except that xi =
1
2v

1/2
i cos(2πui), yi = 1

2v
1/2
i sin(2πui), and zi = vi − 1

2 . Can you “flat-
ten” the bowl-like manifold by appropriate weighting into a 2D MDS
configuration?




