
15
Avoiding Trivial Solutions in
Unfolding

The occurrence of trivial solutions in unfolding was recognized soon after
the introduction of MDS. It was one of the reasons for introducing Stress-2.
However, as indicated in the previous chapter, Stress-2 does not solve the
degeneracy problem totally. In this section, we discuss several methods that
have been proposed in the literature to avoid trivial unfolding representa-
tions. They all adapt the unfolding procedure in such a way that the ideal
point interpretation is retained. The solutions can be categorized into three
classes: (a) adapting the unfolding data, (b) adjusting the transformation,
and (c) modifying the loss function.

15.1 Adjusting the Unfolding Data

One way to avoid a trivial solution in unfolding is to make sure that the
transformation cannot contain a nonzero intercept and a slope of zero by
adapting the data. Here, we discuss two of these options. The first one, is
an ordinal-ratio approach to unfolding.

Ordinal-Ratio Approach
The idea behind this approach is to use an ordinal and a ratio transfor-
mation simultaneously on the same data. Thus, the data are duplicated,
one data set is transformed by a ratio transformation, the other one by an
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FIGURE 15.1. Unfolding representation (a) of data in Table 14.2, using mixed
ordinal-linear σ2 loss function, and its Shepard diagram (b).

ordinal transformation, and both sets of disparities are approximated by a
single matrix of distances.

Let L(o) be the loss function that defines an ordinal approach and L(r)
the corresponding loss function for ratio unfolding. For example, L(o) may
be σ2 with disparities as target distances under, say, the primary approach
to ties, and L(r) is σ2 with target distances computed by a ratio transfor-
mation. Then, we simply define the total loss as

L = a · L(o) + b · L(r), (15.1)

where a and b are weights such that a, b > 0 and a + b = 1. L is equal to
0 only if both L(o) and L(r) are equal to 0. Note that if L(r) is zero, L(o)
will also be zero because the ratio transformation is an admissible ordinal
transformation. L will be small if both L(o) and L(r) are small, or if one
is very small and the other is not very large. The ordinal transformation
tries to model the data as usual in an ordinal manner. However, as a ratio
transformation does not allow for an intercept, the trivial transformation
with a nonzero intercept and zero slope cannot occur.

One drawback of this approach is that one needs to have dissimilarities in
order to do a ratio transformation. For similarities, a ratio transformation
with a negative slope is required to map larger similarities into smaller
distances. Yet, such a transformation leads to negative disparities, which
can never be properly modeled by nonnegative distances. Therefore, if we
have similarities, we either have to convert similarities into dissimilarities
before the unfolding analysis or revert to an ordinal-interval approach with
L = a·L(o) + b·L(i) and L(i) the loss for unfolding of data that are interval-
scaled. This ordinal-interval approach is not guaranteed to always avoid
the trivial solution but the example discussed below shows a successful
application.

Let us apply this approach to the brewery data, using Kyst with weights
a = b = 0.5 and loss function L = a · L(o) + b · L(i). This yields a solution
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with the Shepard diagram in Figure 15.1b. There are two regression curves
now: a monotonic one, related to L(o), and a linear one, related to L(i).
The (vertical) scatter of the points about the monotonic curve makes up
one component of L, and the scatter of these same points about the linear
regression line makes up the other. Hence, minimizing L tends to avoid a
solution with a crude step function in the Shepard diagram, because this
would make L(i) large. On the other hand, the regression slope must have
the desired sense to make L(o) small.

The configuration resulting from this mixed ordinal-linear unfolding is
presented in Figure 15.1a. It allows the usual ideal-point interpretation, but
differs radically from the previous interval representation in Figure 14.16a.
We now observe, for example, that brewery A is very far from the attribute
point 21, which, as can be seen from studying the proximities, has the
usual meaning that A possesses relatively little of this property. On the
other hand, we again find that the breweries form three groups, because
this closeness relation remains unaffected by the slope of the regression line.

It should be noted that, even though the loss criteria L = a·L(o) + b·L(i)
and L = b · L(i) + a · L(o) are algebraically equivalent, they may lead
to different results in an iterative optimization procedure. If the Kyst
program is used, for example, we find that if L(o) appears as the first
criterion in the weighted sum, then a solution like the one reported above
is obtained; if L(i) is the first criterion, then the approach does not work
as desired. In other words, a solution with a Shepard diagram like Figure
14.14 results, where the monotone regression curve is a horizontal straight
line. In general, such differences can result from various features of the
optimization method.

Augmenting the Within-Objects Blocks
A second way to avoid a trivial solution in unfolding by “changing the
data,” builds on the idea that unfolding is equivalent to MDS with missing
data as visualized in Figure 14.1. The main idea here is to augment the
data matrix with one or both of the missing “within”-sets data. Steverink,
Van der Kloot, and Heiser (2002) proposed to insert Kemeny distances for
the within-individuals data. In addition, they allow for different transfor-
mations within the blocks of the data matrix. The choice of transformation
is critical: it must exclude the possibility of zero within-sets disparities
and constant between-sets disparities to avoid the trivial equal-distances
solution. For example, ordinal transformations for the between-sets proxim-
ities should be combined with the absolute transformation for the within-
persons proximities to guarantee avoiding the trivial solution.

Kemeny distances for the within-persons data appear particularly suit-
able for unfolding preferential choice data. They are derived from preference
rankings as follows. First, each person i gets a score for each pair of items
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TABLE 15.1. Illustration of computing the Kemeny distance of two persons.

Pair k, l z1(k, l) z2(k, l) |zi(k, l) − zj(k, l)|
AB 1 1 0
AC 1 -1 2
BC 1 -1 2

Sum 4

TABLE 15.2. Illustrative example of an unfolding data matrix where the
within-persons data are Kemeny distances. Note that the between-sets data val-
ues are the preference orders of the persons for the objects.

A B C 1 2
A – – – 3 2
B – – – 2 3
C – – – 1 1
1 3 2 1 0 4
2 2 1 3 4 0

k and l on the function zi(k, l):

1 if A > B (person i prefers A over B),
0 if A = B (person i is indifferent to A and B),

−1 if A < B (person i prefers B over A).

Second, these zi-scores are aggregated over all pairs to yield the Kemeny
distance between persons i and j:

dKem(i, j) =
∑
k<l

|zi(k, l) − zj(k, l)|. (15.2)

As an illustration, consider a situation where three objects A, B, and C
are judged by two persons: the preference rank-order of person 1 is A >
B > C, and C > A > B of person 2. Then, there are only three possible
pairs of objects, that is, AB, AC, and BC. Table 15.1 shows the steps
taken to compute their Kemeny distance, which equals 4 in this case. For
this mini example, the data matrix augmented by within-persons distances
is presented in Table 15.2.

The augmentation approach described above was applied to the brewery
data, where the between-sets similarities were transformed ordinally (and
unconditionally) and Kemeny distances were computed among the 26 at-
tributes. The results are presented in Figure 15.2. As predicted, the trivial
solution with equal distances does not occur. The breweries are located in
three clusters in the center, a solution that is similar to that of the ordinal-
interval approach in Figure 15.1. The right panel of Figure 15.2 shows the
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FIGURE 15.2. Unfolding representation (a) of data in Table 14.2, using the aug-
mentation approach, and its Shepard diagram (b) for the between-sets data.

Shepard diagram of the between-sets data. The ordinal transformation is
quite reasonable and does not have big jumps. However, the scatter of the
distances about the regression curve is somewhat high, indicating that not
all points are fitted perfectly. We also see that the disparities range from
about .75 to 1.15. This means that even a brewery with the highest score
on an attribute will be located at a moderate distance from the attribute.
This aspect is shown in the left panel of Figure 15.2 by the fact that all
attributes are distant from the center where the breweries are located.

A problem arises when the between-blocks data are transformed row-
conditionally, which is a natural option for preference rank-order data.
Applying the augmentation approach will yield a proper scatter of the
attributes and a cluster of brewery points on top of each other. The within-
block data for the attributes are properly represented, but the between-
sets data (the original preference rank-orders) are trivially represented in
the same way as the degeneracy in Figure 14.7b. Steverink et al. (2002)
proposed to solve this problem by augmenting the data matrix with a
within-columns data block as well.

Here, we propose a different type of augmentation by a within-columns
data block. As the preference rank-orders are known for each subject, one
can compute city-block distances between the columns using the rank-
orders as coordinates. Thus, for each row, a unidimensional distance matrix
is computed between the columns. Then, taking the sum of all those dis-
tance matrices over the rows gives a city-block distance matrix between
the column objects. We take two additional steps. First, Steverink et al.
(2002) indicate that the Kemeny distance can also be seen as a city-block
distance matrix. Because we are fitting these data by Euclidean distances,
we transform both within-blocks to Euclidean distances matrices by sim-
ply taking the square root of all elements (for a rationale, see Gower &
Legendre, 1986). The second step involves making the range of the values
in the two within-blocks equal. This adaptation is important because the
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FIGURE 15.3. Ordinal row-conditional unfolding representation (a) of data in
Table 14.2, augmentation both within blocks, and its Shepard diagram (b) for
the between-sets data.

within-blocks are not transformed and it makes sure that the ranges of dis-
tances for the two sets of points are equivalent. Therefore, we divide each
within-block by its maximum value.

The proposed procedure of augmenting both within-blocks is applied
to the brewery data in Figure 15.3. In the analysis, the within-blocks data
were not transformed but the between-sets data were obtained by an ordinal
row-conditional transformation. The Shepard diagram in the right panel of
Figure 15.3 shows that the transformations are far from constant. A similar
pattern as before emerges for the configuration (Figure 15.3a), with three
clusters of breweries. Note that in this analysis we may explicitly interpret
the distances between all points and not only the between-sets distances
because we have (generated) data for all dissimilarities.

A disadvantage of the augmentation approach proposed above is that it
may be seen as doing two separate metric MDS analyses on the within-
blocks data. The between-sets data are of minor importance and merely
determine the translation of one of the sets with respect to the other.
On the other hand, all three blocks of the data use the same rank-order
information of the between-sets data. More experience with this approach
is needed to see how well it performs in practice.

Other suggestions to fill the within-blocks data have been proposed by
Rabinowitz (1976), Heiser and De Leeuw (1979), and Van Deun, Heiser,
and Delbeke (2004).

15.2 Adjusting the Transformation

A different way to avoid the trivial equal-distances unfolding solution is
to restrict the transformation so that the nonzero intercept and zero slope
transformation is excluded. This goal could be either achieved by a bound
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on the intercept or some restriction on the slope that excludes a slope
of zero. One obvious transformation satisfying this restriction is the ratio
transformation. Clearly, no intercept is estimated and the slope is equal
to one, so that the zero slope and nonzero intercept cannot occur. It is a
simple manner to avoid the trivial solution in unfolding, but it may not
recognize the ordinal nature of data that are often used in unfolding, such
as preference rank-orders.

A variant of this idea was proposed by Kim, Rangaswamy, and DeSarbo
(1999), who use a two-step procedure. In their first step, they preprocess
the original dissimilarities by a transformation (λij) of the original data.
These λijs satisfy several properties. First, λij should be strictly monotone
with the dissimilarities such as, for example, a linear or a strictly ordinal
transformation. Second, λij for the most preferred item in each row is set
to zero. Third, the transformations are the same for all rows. The form
of the transformation is left to the user, as long as it satisfies the three
conditions stated above. In the second step, after this preprocessing of the
data, the λijs are used as input data in Stress, allowing for row-conditional
ratio transformations.

The reason why this approach avoids the trivial solution is that the d-hats
of each row cannot become the same constant, as the d-hat corresponding
to the most preferred stimulus per row is equal to zero and the remaining
d-hats per row necessarily are nonzero because of the ratio transformation.
It should be said, though, that this method has some arbitrariness in the
way the user specifies the λijs. Different specifications of the λijs for the
same data will lead to different solutions.

For preference rank-orders, it is more preferable to apply a transforma-
tion that has more freedom than the ratio transformation but is still able to
avoid the nonzero constant and zero slope transformation. The smoothed
monotone regression approach of Heiser (1985, 1989a) can do this (see also
Section 9.2). The basic idea is that the absolute difference of the differences
d̂k − d̂k−1 and d̂k−1− d̂k−2 in the transformation should be smaller than the
average d-hat. Note that for k = 1 and k = 2, there will be references to
nonexisting elements d̂0 and d̂−1 that are substituted by zero. The impor-
tant consequence of this substitution is that the smallest d-hat cannot be
larger than the average d-hat. Thus, this approach has an internal upper
bound on the smallest d-hat, while restricting the size of the steps that
can be made in the transformation. These restrictions combined with the
requirement that the sum of squared d-hats are equal to some nonzero con-
stant assure that the constant d-hat solution is excluded so that the trivial
solution cannot occur.
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FIGURE 15.4. A degenerated linear unfolding solution obtained by Kyst (Panel
a) of the brewery data in Table 14.2. Panel b displays the Shepard diagram).

15.3 Adjustments to the Loss Function

Several authors have tried to avoid the trivial unfolding solution by adjust-
ing the loss function. The first proposal was to use Stress-2; that is,

σ2(X) =

(∑
i<j [δij − dij(X)]2∑
i<j [dij(X) − d̄]2

)1/2

.

The denominator of σ2(X) measures the variance of the distances about the
mean distance. Therefore, the denominator will be close to zero if all dis-
tances are almost the same. This implies that if the distances become sim-
ilar during the iterations, σ2(X) becomes larger and larger. Hence, equal-
distances solutions should be avoided.

Ordinal unfolding by the Kyst program using Stress-2 resulted in a
configuration with three clusters of breweries and attributes located at two
different distances (see Figure 14.13). Although the ordinal solution may
not be totally satisfactory, it certainly does not display the equal-distances
solution. However, a linear transformation with Kyst (with strict conver-
gence settings) does yield a constant distance solution (see Figure 15.4).
To understand why this happens, we need to consider both the numera-
tor and denominator of Stress-2 as the distances become almost equal. In
that case, both the denominator and the numerator approach zero, so that
no immediate conclusions can be drawn about the behavior of Stress-2.
Mathematical analysis should bring more insight into this situation. We
get back to this issue in the next chapter. For now it suffices to remark
that apparently linear unfolding using Stress-2 does not avoid equal dis-
tances. Stress-2 may stay away from the trivial equal distance solution but
it is not guaranteed to do so.
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Weighting Strategies
DeSarbo and Rao (1984) proposed to use specialized weighting schemes in
raw Stress to avoid the trivial solution: wij = δ−p

ij , where δij is a ranking
number (1 = most preferred) and p > 0 determines the influence of the
object to the Stress function. Figure 15.5 shows how much an object con-
tributes to Stress as a function of its ranking number for p = 2, . . . , 5. In
Figure 15.5, we see that even for p = 2, the residuals of the second most
preferred object are weighted by only 25% compared to the most preferred
object. An object with ranking number 3 is weighted by about 11%, and so
on. Thus, even with a small p of 2, only the three most preferred objects of
each individual (row) determine the solution. In the case of p = 5, the sec-
ond most preferred stimulus contributes only 3%. This means that for each
row there is essentially only a single stimulus that contributes to Stress.
As a consequence, there will be only very few effective constraints between
the points of both sets so that the points can be quite freely located in
space. For this approach, the quality of the solution mainly depends on
the quality of the starting configuration. A similar condition is true for the
transformation. Only the transformations of the first few most preferred
stimuli can be interpreted; the others hardly contribute to Stress.

Contrary to its claim, the weighting method does not exclude the trivial
solution. The reason is that for any transformation that allows for a zero
slope and constant intercept, distances can be obtained that are equal to
the intercept. For a formal proof, we refer to Busing, Groenen, and Heiser
(2005).

Penalizing the Intercept
For linear unfolding, Busing (2005) proposed a simple idea to avoid a trans-
formation with a nonzero intercept and zero slope. His idea is to add a
penalty to the Stress function to avoid a large value of the intercept. This
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idea can be formalized by the following loss function.

σi(a, b,X) =
∑
(i,j)

[a + bδij − dij(X)]2 + ωa2, (15.3)

where ω is a nonnegative value indicating the strength of the penalty.
Clearly, for ω = 0 the old Stress function is retained. In the limiting case of
ω = ∞, the intercept a will become zero and minimizing σi(a, b,X) reduces
to ratio unfolding.

Penalizing the intercept only makes sense for dissimilarity data. If the
data are similarities, we expect a transformation with a large intercept and
a negative slope, so that large similarities correspond to small nonnegative
d-hats and small distances, whereas small similarities correspond to large
nonnegative d-hats and large distances. This means that the intercept is
expected to be large, which contradicts the idea of penalizing the intercept.
To overcome this problem, the similarities have to be transformed into
dissimilarities before applying the current approach. As a consequence,
the Shepard diagram will be increasing because dissimilarities are used in
(15.3).

Penalizing the intercept is not applicable to just any transformation.
For example, the approach is not effective for ordinal unfolding, because
the transformation is free to find a constant transformation for all but the
smallest dissimilarity. However, penalizing the intercept can be effective for
spline transformations (see Section 9.6), provided that the spline is quite
restricted.

We applied this approach to the brewery data of Table 14.2. Because
the data (pij) in this case are similarity ratings from 1 = not true to 6 =
very true, they had to be transformed into dissimilarities first. This was
done by setting δij = 7 − pij so that the dissimilarities were again in the
range from 1 to 6, where 1 now indicates “very true” and 6 “not true”.
In this application, ω was set to 5 after some experimentation. The results
are presented in Figure 15.6. Again we see the split of the breweries into
the three different clusters that turn up in the other solutions as well. The
Shepard diagram in panel b of Figure 15.6 is increasing indeed and has an
intercept that is reasonably small compared to the slope. We may conclude
that for linear unfolding, the simple approach of penalizing the intercept is
effective to avoid the trivial solution.

Prefscal: Penalizing Equal d-hats
Another penalty approach was taken by Busing et al. (2005). As trivial
unfolding solutions are characterized by constant d-hats, one obvious way
to avoid a trivial solution is penalizing the Stress function for equal d-hats.
An advantage of this approach is that all standard transformations (see
Chapter 9) can be applied. Also, the resulting unfolding configuration can
be interpreted in terms of the ideal point model.
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FIGURE 15.6. Linear unfolding representation (a) of data in Table 14.2, by pe-
nalizing the size of the intercept, and its Shepard diagram (b).

To identify constant d-hats, Busing et al. (2005) suggests using the vari-
ation coefficient of Pearson (1896), which is defined by

ν(d̂) =
standard deviation(d̂)

mean(d̂)
=

(
K−1∑

k(d̂k − ¯̂
d)2

)1/2

K−1
∑

k d̂k

, (15.4)

where ¯̂
d = K−1 ∑

k d̂k and k is an index that runs over all d-hats. The
coefficient of variation is a measure that indicates the spread with respect
to the mean. It can be derived that ν(d̂) is independent of the scale of d̂,
so that ν(d̂) = ν(ad̂) for any a > 0.

To see what the variation coefficient does, we simulated four different
distributions of 300 d-hats, varying the mean, the standard deviation, and
the modality. Both from Figure 15.7a and from (15.4) it can be seen that
a zero standard deviation yields a zero variation coefficient. If the spread
around the mean is small relative to the mean, then ν(d̂) is also small (panel
b. of Figure 15.7). As the spread around the mean gets larger relative to
the mean, then ν(d̂) also increases (Figures 15.7c and 15.7d). A maximum
value of ν(d̂) = (K − 1)1/2 is attained if all but one of the d-hats are zero.

The variation coefficient can be used as a diagnostic for identifying so-
lutions with constant d-hats. The Prefscal model proposed by Busing
et al. (2005) exploits this diagnostic by using it as a penalty. To be more
precise, their Prefscal model minimizes penalized Stress that is defined
as

σp(d̂,X) = σλ
n(d̂,X)

(
1 +

ω

ν2(d̂)

)
, (15.5)

where σn(d̂,X) is normalized Stress defined by (11.1) and λ and ω are
two penalty parameters to be specified under the restrictions 0 < λ < 1
and ω > 0. The parameter λ is called a lack-of-penalty parameter that
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FIGURE 15.7. Value of the variation coefficient ν as a function of the mean and
the standard deviation of four hypothetical distributions of 300 d̂s.

influences the balance between the penalty 1 + ων−2(d̂) and σn(d̂,X): the
closer λ gets to zero, the stronger the penalty. The parameter ω determines
when the penalty gets active: for small ω, say, ω = .1, the σp(d̂,X) will
hardly be influenced by the penalty for d-hats as in Figure 15.7b, whereas
a large ω, say, ω = 5, ensures strong influence of the penalty for the same
d-hats. Based on extensive simulations, Busing et al. (2005) recommend
choosing λ = .5 and a value of ω = .5, although ω may need some fine
tuning depending on the data.

The penalty term in (15.5) obtains high values whenever almost equal
d-hats occur (thus when ν2(d̂) is close to zero), because the inverse of
the squared variation coefficient, ν−2(d̂), will become large. Thus, when
minimizing σp(d̂,X), the algorithm will stay away from constant d-hats,
because σp(d̂,X) has high values for those d-hats. Penalized Stress has the
additional advantage that as we move away from the trivial solution, the
penalty term becomes less influential and σn(d̂,X) will dominate the min-
imization. The cause of this property lies in the sum of one plus ων−2(d̂).
Thus, whenever ν(d̂) is large, ν−2(d̂) gets close to zero, so that the entire
penalty term is close to one. Then, the minimization of σn(d̂,X) is the
most important part and the penalty term will hardly influence the min-
imization. An additional advantage of the definition of penalized Stress is
that σp(d̂,X) = 0 for perfect nontrivial solutions (i.e., solutions with zero
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FIGURE 15.8. Linear unfolding representation (a) of data in Table 14.2 obtained
by Prefscal, and its Shepard diagram (b).

normalized Stress). Thus, if a perfect nontrivial solution exists, penalized
Stress should be able to find it. Another property of σp(d̂,X) is that the
minimum of σp(d̂,X) is independent of the scale of X or d̂, by which we
mean that multiplying both X and d̂ by a positive constant a does not
change the value of σp. Without the property of scale independence, penal-
ized Stress would be sensitive to the size of the unfolding problem. Thus,
the Prefscal penalty parameters λ and ω are independent of the number
of row and column objects and of the normalization of the d-hats.

Figure 15.8 displays the results of a Prefscal analysis on the brewery
data. The Prefscal solution is quite similar to Figure 15.1 obtained by
the ordinal-interval approach. Again, the three clusters with three breweries
each emerge. However, there are some differences in the positioning of the
attributes. For example, in Figure 15.1 attribute 8 is located outside the
triangle spanned by the three clusters, whereas Prefscal locates it inside
the triangle.

For row conditional transformations, constant d-hats should be avoided
for each row. Therefore, the penalty should be large whenever the d-hats of
a single row become constant. Prefscal achieves this objective by defining
row conditional penalized Stress as

σp.rc(d̂,X) = σλ
n(d̂,X)n−1

2

n2∑
i=1

(
1 +

ω

ν2(d̂i)

)
, (15.6)

where n2 is the number of rows in the unfolding problem and d̂i contains
the d-hats for row i (Busing et al., 2005). Here, too, ν−2(d̂i) becomes large
as the d-hats of row i become constant. Therefore, if any row tends to a
constant, then the penalty term n−1

2
∑n2

i=1[1 + ων−2(d̂i)] becomes large.
To see how well Prefscal performs in conditional unfolding, we allowed

separate transformations for each attribute of the brewery data (the rows
in Table 14.2). We specified a monotone spline transformation of the sec-
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FIGURE 15.9. Representation of row conditional unfolding of data in Table 14.2
obtained by Prefscal(panel a), and its Shepard diagram (panel b).

ond degree with one interior knot, which is less restrictive than a linear
or quadratic transformation, but more restrictive than an ordinal trans-
formation. A striking feature of the solution (left panel of Figure 15.9) is
that the breweries are located among the attributes, whereas in the other
solutions discussed so far there is a clear separation of the breweries and
the attributes. The right panel of Figure 15.9 contains the combined Shep-
ard diagram of all attributes. It can be seen that the fit is high (Kruskal’s
Stress-1 is .0001) because most of the points are closely located to the
a curve indicating that the difference between distance and d-hat will be
small for these brewery and attribute pairs. The transformation curves gen-
erally are smooth and have variation coefficients markedly different from
zero. Therefore, they are obviously not horizontal and not degenerated.

At the time of writing, Prefscal is scheduled to appear in SPSS in
2005. However, in the Prefscal program in SPSS, the row-conditional
penalized Stress is defined slightly different from (15.6). In the program,
σλ

n(d̂,X) in (15.6) is replaced by an implicitly normalized form of Stress for
each of the rows (Busing, 2004); that is, the Prefscal program in SPSS
minimizes (

n−1
∑

i

‖d̂i − di‖2

‖d̂i‖2

)λ

n−1
2

n2∑
i=1

(
1 +

ω

ν2(d̂i)

)
. (15.7)

The reason for this difference is that it is computationally more convenient
and can handle additional constraints on the configuration more easily.
Both (15.6) and (15.7) are otherwise the same.

15.4 Summary

To give an overview of the quality and main properties of the methods
discussed in this chapter, we have constructed Table 15.3. Most of the
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TABLE 15.3. Comparison of approaches aimed at avoiding trivial solutions.

Un- Row- Trivial
condi- condi- Solution
tional tional Transformation Excluded Quality

Adjusting Data
Ratio-ordinal + + Ordinal Yes +
Interval-ordinal + + Ordinal No +/–
Augmenting within-persons block + – All for between-sets No +/–

ratio for within-sets
Augmenting both within-sets + + All for between-sets Yes +

ratio for within-sets

Adjusting the Transformation
Ratio transformation + + Ratio Yes +
Approach of Kim et al. (1999) + + Ratio Yes +
Smoothed monotone regression + + Restricted ordinal Yes +

Adjusting the Loss Function
Stress-2 + + All No –
Weighting approach by DeSarbo + + All No –
Penalizing the intercept + + Interval Yes +
Penalized Stress by Prefscal + + All Yes +

methods either have limited applicability and may depend highly on the
software that is available. For example, the ratio-ordinal or the augmen-
tation method both require that different types of transformations can be
specified for the data. Kyst can do that, but other programs cannot. Some
of the methods discussed use forms of ratio transformations that may not
be suited for preference rank-order data. The most promising approach to
fit the ideal point model for unfolding seems to be the Prefscal model
that gives good quality solutions for all standard transformations used in
MDS.

When applying one of the methods for unfolding described in this chap-
ter, one caution is needed. It is our experience that convergence criteria of
the unfolding algorithms have to be set much more strictly than for ordi-
nary MDS programs. Failing to do so may lead to a premature halt of the
algorithm. The obtained solution may look nontrivial at a first glance, but
continuing the algorithm with stricter convergence criteria may well lead
to the trivial solution. Therefore, it is wise to make the algorithm run for
many iterations so that one is sure to have avoided the trivial solution.

15.5 Exercises

Exercise 15.1 Table 15.4 on p. 333 shows the average ratings of 90 stu-
dents from 15 different countries for 21 nations (columns) on 18 attributes
(rows). The data were collected and reported by Wish, Deutsch, and Biener
(1972). The rating scales are bipolar 9-point scales such as “collectivistic
vs. individualistic” (scale 2). For most scales, only one label is shown: the
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other end of the scale is obvious (as in “rich”, where the other scale end is
“poor”).

(a) To analyze these data, first use ordinal unconditional unfolding. Rep-
resent these data in a plane. The solution is most likely degenerated
into points-on-circles and/or into clusters of attributes and countries,
respectively.

(b) Check whether linear unfolding helps to avoid the degeneracies. Dis-
cuss how the linear unfolding solution differs from the one for ordinal
unfolding.

(c) Try out some of the methods discussed in this chapter to avoid the
degeneracies. For example, compute within-country proximities and
within-attribute proximities. Augment the above data matrix with
these coefficients, and then run unfolding on this matrix.

Exercise 15.2 Use the data from Table 14.2 to compute coefficients for
the similarity of breweries and of attributes, respectively. Then run an
unfolding analysis of the data matrix in Table 14.2 after “completing” it
with within-breweries and with within-attributes similarities (as suggested
in Figure 14.1). Do you succeed in avoiding the degeneracies observed in
Figures 14.13 and 14.15, respectively?

Exercise 15.3 Consider the contingency table below that is reported by
Garmize and Rychlak (1964). Its entries show the frequencies with which
different persons gave particular interpretations (rows) to Rorschach inkblot
pictures when induced (by role play) into one of the moods shown in the
columns.

Interpretation Fear Anger Depression Love Ambition Security
Bat 33 10 18 1 2 6
Bear 0 0 2 0 0 0
Blood 10 5 2 1 0 0
Boot(s) 0 1 2 0 0 0
Bridge 1 0 0 0 0 0
Butterfly 0 2 1 26 5 18
Cave 7 0 13 1 4 2
Cloud(s) 2 9 30 4 1 6
Fire 5 9 1 2 1 1
Fur 0 3 4 5 5 21
Hair 0 1 1 2 0 0
Island 0 0 0 1 0 0
Mask 3 2 6 2 2 3
Mountains 2 1 4 1 18 2
Rock(s) 0 4 2 1 2 2
Smoke 1 6 1 0 1 0

(a) Unfold these data with ordinal and metric models and test out dif-
ferent ways to avoid degeneracies.
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TABLE 15.4. Average ratings of 90 students from 15 different countries for 21
nations on 18 attributes (Wish et al., 1972).
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U.S.A. 9.0 7.4 4.5 7.5 7.5 6.6 5.5 7.5 7.2 6.1 4.8 7.4 4.4 8.8 8.8 8.9 6.6 8.8
U.K. 8.5 5.8 6.7 7.9 7.7 7.2 5.8 5.8 7.7 6.6 6.9 6.8 8.1 7.2 8.3 6.5 5.3 4.0
W.Germany 8.1 5.9 5.7 6.4 6.5 6.3 4.7 6.2 7.0 6.7 6.3 5.4 7.9 7.8 8.3 7.1 7.6 5.6
France 7.2 5.6 5.8 6.1 6.4 6.1 5.4 5.7 5.4 5.6 5.1 6.4 7.9 6.4 6.6 6.1 6.0 5.6
Israel 7.4 3.1 3.3 6.4 6.1 5.7 4.4 6.2 6.5 6.6 7.6 5.4 6.8 6.2 6.1 5.9 7.6 1.9
Japan 7.2 4.9 6.4 6.6 6.8 6.9 5.2 6.7 7.4 6.5 7.2 5.9 6.6 7.4 8.3 7.0 8.0 5.0
South Africa 6.0 6.6 5.1 2.9 3.6 3.4 2.2 2.8 4.6 3.4 2.8 3.2 6.9 6.3 5.6 4.7 4.7 5.7
Greece 6.9 5.9 6.2 3.2 6.4 4.8 3.6 3.7 3.5 3.8 4.2 6.2 3.4 3.6 3.7 3.0 4.5 3.0
Spain 6.6 6.1 6.4 3.4 5.5 4.2 2.9 3.5 5.5 4.4 4.5 5.0 4.6 3.5 3.9 3.1 4.3 4.6
Brazil 6.4 5.6 6.8 4.4 6.5 5.2 3.1 3.9 3.6 3.6 4.3 3.6 3.0 4.2 3.8 3.8 5.9 7.2
Mexico 6.8 5.2 7.0 4.6 6.4 5.7 3.5 4.1 5.2 4.6 5.7 4.7 3.3 3.8 4.0 3.4 5.7 5.4
Ethiopia 5.6 5.2 6.8 4.1 6.2 5.4 2.7 3.6 5.4 4.8 5.9 3.1 2.8 3.0 2.5 2.8 5.4 4.1
India 6.0 4.6 6.8 4.6 6.2 5.5 2.9 3.4 5.0 3.5 3.4 5.6 2.5 2.1 3.0 3.6 5.6 8.1
Indonesia 5.1 5.5 4.8 3.3 5.2 4.3 2.5 3.6 3.4 3.9 3.7 3.2 2.8 3.4 3.0 3.4 5.2 5.3
Congo 5.0 5.7 4.8 3.0 4.8 3.8 1.7 3.0 2.4 3.5 2.6 3.0 2.2 3.1 2.2 2.6 4.5 5.4
Egypt 3.6 4.1 3.1 3.8 5.1 4.2 2.5 3.5 4.1 4.5 5.6 5.0 3.0 3.4 3.5 3.7 4.7 5.1
China 1.1 2.0 2.4 2.1 4.2 3.9 2.7 3.2 4.5 3.8 4.2 5.2 3.4 3.1 4.7 7.0 6.4 8.7
Cuba 2.1 2.6 3.7 2.9 5.0 4.4 2.9 3.7 4.5 4.3 6.1 4.0 3.7 3.6 3.8 3.5 5.7 2.0
Yugoslavia 3.9 2.6 6.6 4.1 6.5 5.5 3.9 4.4 6.2 5.6 6.0 3.7 5.4 4.0 5.0 3.8 6.4 4.1
Poland 3.2 2.4 5.7 3.1 5.6 4.9 3.3 4.0 6.6 4.9 6.3 3.6 6.1 4.6 5.9 3.9 5.8 4.5
USSR 2.7 1.5 3.7 2.6 5.3 5.0 4.0 4.3 7.3 5.6 6.8 6.6 7.1 7.1 7.9 8.5 7.8 8.8
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(b) Discuss in what ways the data could be preprocessed or weighted,
noting, for example, that there are many zeros and also many very
low frequencies.

(c) Check out what applying weights on the data does to your unfolding
solutions.




