4
Three Applications of MDS

Three applications of MDS are discussed in some depth. Emphasis is given
to the questions of how to choose a particular MDS solution and how to
interpret it. First, data on the perceived similarity of colors are studied. The
predicted MDS configuration is a color circle, which is indeed found to be
the best representation for the data. Second, confusion data on Morse codes
are investigated. The MDS space shows two regional patterns, which reflect
two physical properties of the signals. Third, global similarity judgments
on different facial expressions are studied. A dimensional system can be
found that relates to three empirical scales for the faces.

4.1 The Circular Structure of Color Similarities

We now look at some applications of MDS in somewhat more depth and
not just in an illustrative way. We start with a classic case where the MDS
solution is particularly revealing.

Some Data on the Perceived Similarity of Colors

A person asked to somehow orderly arrange chips of different colors will
almost certainly come up with an order from orange over yellow, green,
blue, to blue-violet, corresponding to the order of the electromagnetic wave-
lengths of these colors. For the color red-violet, the respondent would prob-
ably not be sure whether it should lie on the red end or the violet end of
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the scale (or on both). This problem is solved by arranging the colors in a
horseshoe or circle. It may be supposed that most persons confronted with
this ordering task would sooner or later arrive at such a solution.

Both perceptual and intellectual components seem to be involved in solv-
ing this task, but to what relative extent? It could be argued that the color
circle is already implied by the way we perceive the similarity of colors.
Let us look at some data by Ekman (1954). Ekman used 14 colors differing
only in their wavelengths, but not in their brightness or saturation. Each of
all possible 91 pairs of different colors was projected onto a screen, and 31
subjects were asked to rate the “qualitative similarity” of each such pair on
a scale from 0 (no similarity) to 4 (identical). The ratings for each pair were
averaged over all subjects. Finally, the resulting scores were divided by 4,
that is, scaled down to the interval from 0 to 1. This led to the similarity
matrix in Table 4.1 (lower half). Note that only one-half of the matrix was
collected empirically, and so it suffices to show this half: the complete ma-
trix, if needed, can be constructed by setting p;; = 1.00 and p;; = pj;, for
all 7, 7. (Most MDS programs need only a half-matrix as input.)

The proximities in Table 4.1 could be interpreted as correlations, so that
a principal component analysis (PCA; see also Chapter 24) is possible. A
PCA yields five different factors. These factors correspond to five differ-
ent groups of points on the electromagnetic spectrum. The factors com-
prise the colors 434-445, 465-490, 504-555, 584-600, and 610-674, which
roughly correspond to the subjective color qualities blueish-purple, blue,
green, yellow, and red, respectively. Chopping up the colors into qualita-
tive categories, however, does not throw much light on the question we are
asking.

An inspection of the coefficients in Table 4.1 shows that the data do
not support the notion of discrete color categories. Rather, they possess a
simple pattern of interrelatedness, a peculiar gradient of similarities, with
larger coeflicients towards the main diagonal and the lower left-hand cor-
ner, respectively. So, using MDS, which establishes a direct relationship
between dissimilarity measures and geometric distance (unlike PCA), we
would possibly get a simple geometric expression for this data gradient.

MDS Representations of the Color Similarities

For the MDS analysis, we use ordinal MDS, the usual choice for a first
approximation. Thus, a configuration of 14 points is sought such that the
rank-order of the distances between these points corresponds (inversely) to
the rank-order of the data.

Any MDS program requires the user to specify the dimensionality (m)
of the desired representation. What value m should be chosen in the given
case? Surely, setting m > 13 would be an uninteresting choice, because
dissimilarities among n objects can always be perfectly represented in a
space with dimensionality m > n — 1. For example, in a plane with points
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TABLE 4.1. Similarities of colors with wavelengths from 434 to 674 nm (lower
half) of Ekman (1954); residuals of 1D MDS representation (upper half).

nm (434 445 465 472 490 504 537 555 584 600 610 628 651 674
434 - .14 17 .38 .22 -.73 -1.07 -1.21 -.62 -.06 .42 .38 .28 .26
445 .86 — .25 .11 -.05 -.75 -1.09 -.68 -.35 -.04 .44 .65 .55 .53
465| .42 .50 - .08 -.32 -.57 -.47 -.06 .00 -.32 .17 .12 .91 .82
472( .42 44 81 - .12 -36 -.26 .15 .00 -.11 .00 .33 .23 1.03
490| .18 .22 47 54 - -07 .08 .48 .40 .00 .22 .17 .07 .00
504 .06 .09 .17 .25 .61 - .31 .28 .45 .68 .01 .00 .00 -.15
537( .07 .07 .10 .10 .31 .62 - .13 .35 .09 .31 .00 .00 -.75
555( .04 .07 .08 .09 .26 .45 .73 --.05 .17 -.09 -.22 -.32 -.34
584(.02 .02 .02 .02 .07 .14 .22 .33 - -.05-.01-.06 -.16 -.18
600( .07 .04 .01 .01 .02 .08 .14 .19 .58 - .21 .07 -.39 -.40
610 .09 .07 .02 .00 .02 .02 .05 .04 .37 .74 - -.08-.13 -.11
628(.12 .11 .01 .01 .01 .02 .02 .03 .27 .50 .76 - -.03 -.16
651( .13 .13 .05 .02 .02 .02 .02 .02 .20 .41 .62 .8 - -.11
674| .16 .14 .03 .04 .00 .01 .00 .02 .23 .28 .55 .68 .76 -

A, B, and C, it is possible, by moving the points around, to eventually arrive
at a configuration whose distances perfectly represent any given proximities
p(A, B), p(A,C), p(B,C), no matter what values they have. Analogously,
for four points, a perfect representation always exists in three dimensions,
and so on.

The minimal dimensionality for a perfect MDS representation is only of
formal interest. In practice, we always try to represent the data in an MDS
space of considerably lower dimensionality. The rationale for choosing a low
dimensionality is the expectation that this will cancel out over- and under-
estimation errors in the proximities, thus smoothing the representation (see
Chapter 3). Moreover, a low-dimensional and preferably two-dimensional
solution is often precise enough for a first interpretation. For the data in
Table 4.1, we first try solutions in 1D, 2D, and 3D space (using the MDS
module of SYSTAT 5.0).

With three solutions, we have to decide which one we should consider
most appropriate. We first look at the 2D solution in Figure 4.1. It shows
a circular arrangement of the points representing the colors. Moreover,
the points are perfectly ordered along the drawn-in line in terms of their
wavelengths. This circular structure corresponds to the color circle.

How well does this configuration represent the data? The best answer to
this question is provided by looking at the Shepard diagram of the 2D MDS
solution (Figure 4.2). The plot shows a tight correspondence of proximities
and distances. The points lie very close to the monotone regression line.
The regression line is almost straight, and so the dissimilarities of Table
4.1 are almost linearly and almost perfectly related to the distances in
Figure 4.1. In contrast, in the Shepard diagram for the 1D solution (Figure
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555 proximities

FIGURE 4.1. Ordinal MDS representa- FIGURE 4.2. Shepard diagram for
tion for color proximities in Table 4.1.  Fig. 4.1.

4.4), the deviations of the points from the shown best-possible monotonic
decreasing line are excessive.

Measured in terms of Stress, the badness-of-fit of the 1D, 2D, and 3D
solutions is 0.272, 0.023, and 0.018, respectively. These values are a rare
example for a definite elbow in the scree test. The 1D solution has high
Stress, and adding one additional dimension leads to a major Stress re-
duction. Adding yet another dimension has very little further effect and,
indeed, cannot have much of an effect because the 0.023 for the 2D solution
is so close to zero already.

Thus, the 2D solution appears to be a reasonably precise representation
of the data. Adding a third dimension is not sensible, because of several
reasons: (a) the point configuration in the X-Y-plane of the 3D solution
(Figure 4.3) corresponds closely to the 2D configuration (Figure 4.1); (b)
the decrement in Stress by allowing for a third dimension is negligible, satis-
fying the elbow criterion; (c) the scattering of the points in 3D space along
the third dimension appears to be uninterpretable in substantive terms;
and (d) no a priori theory exists for a 3D solution. Analogous arguments
hold for comparing the 1D and 2D solutions. Hence, we have formal and
substantive reasons to consider the 2D representation in Figure 4.1 as the
best MDS representation of the given data.

A Closer Look at Model Fit

The Shepard diagram in Figure 4.4 shows that the 1D solution is a relatively
poor representation of the data. Why there cannot exist a really good 1D
solution can be seen from Figure 4.1. If we had to locate a straight line in
this plane so that the distances between the projections of the points onto
this line mirror most closely the order of the data, then this line would be
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FIGURE 4.3. 3D MDS space of color FIGURE 4.4. Shepard diagram for 1D
data. MDS representation of color data.

oriented roughly horizontally. Such a line is the best 1D approximation to
the given 2D distance structure, because most of the straight lines connect-
ing any two points in Figure 4.1 run more or less in this direction. For point
610, for example, we see in Figure 4.1 that the projections of the rays from
this point to all other points onto a horizontal line are ordered (in length)
almost as the rays themselves. However, there would also be misrepresen-
tations on this line. For example, the points 434 and 555, if projected onto
a horizontal line, would be very close to each other, whereas the similarity
between 434 and 555 is among the lowest ones observed. Hence, this datum
is not represented well by the points’ distance on this 1D subspace.

We should expect, then, that a 1D MDS solution for the color data
represents the proximities of such colors as 610 and 472 with respect to all
other colors quite well, but that it runs into problems with pairs such as 434
and 555. One could assess such effects quantitatively by computing, for each
color C' in turn, the correlation between the similarities of C' to all other
colors and the distances of point C' to all other points. To be consistent with
the ordinal approach, an ordinal correlation (e.g., Spearman’s p) would be
appropriate. Each such coefficient is a conditional fit measure, because it
hinges on one fixed point or variable (C, here).

Using Spearman correlations, one finds that they are, for each point C,
close to —1.00 for the 2D and 3D solutions. For the 1D case, in contrast,
there is much more variance. The coefficients are particularly low for points
434 (r = —.075) and 445 (r = —.360) at the upper end of the horseshoe in
Figure 4.1. Low conditional fit measures imply that the overall precision of
the 1D MDS representation (as measured by Stress, e.g.) cannot be very
good, because conditional agreements between distances and data are a
necessary condition for a globally good solution.
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Spearman’s correlation is, however, not very robust, because it is based
on the ranks of the data, and major changes of the rank-order sometimes
result from minor changes of the data. A correlation coefficient that as-
sesses the degree of monotone correspondence directly on the data is us
(Guttman, 1968; see also Chapter 14). For the given data, however, one
arrives at the same conclusion using po: points 434 and 445 are the major
sources of Stress.

An even more fine-grained analysis of the sources of Stress is possible by
studying the residuals, e;;, for all ¢, j. Table 4.1 (upper half) shows these
residuals for the 1D MDS representation of the color data. One notes, for
example, that the similarity measures for the pairs (434, 555) and (434, 537)
are relatively poorly represented by their corresponding distances, as ex-
pected. For the pair (610,472), in contrast, the residual is zero.

Most MDS computer programs provide these residuals upon request.
Some also compute some kind of average residual value — such as the
root mean squared residual — for each point in turn. Such coefficients are
conditional fit measures closely related to the Stress formula (Borg, 1978b).

4.2 The Regionality of Morse Codes Confusions

The next example we consider is also from perception on stimuli that are
physically well structured. This most complex data matrix requires spe-
cial considerations and some simplifications. The MDS configuration, then,
clearly reflects the structural properties of the stimuli.

Morse Code Confusions and Their Representability by
Distances

Consider now the data matrix in Table 4.2 (Rothkopf, 1957). The scores
are confusion rates on 36 Morse code signals (26 for the alphabet; 10 for
the numbers 0,...,9). Each Morse code signal is a sequence of up to five
“beeps.” The beeps can be short (0.05 sec) or long (0.15 sec), and, when
there are two or more beeps in a signal, they are separated by periods
of silence (0.05 sec). For example, the signal for A is “short-silence-long,”
with a total temporal length of 0.25 seconds. We code such a signal as 12
(1 = short and 2 = long, or “di-da”).

Rothkopf (1957) asked 598 subjects to judge whether two signals, pre-
sented acoustically one after another, were the same. The values given in
Table 4.2 are the percentages with which the answer “Same!” was given in
each combination of row stimulus ¢ and column stimulus j, where ¢ was the
first and j the second signal presented. Each stimulus pair was presented
in two orders, for example, B following A (confusion rate is 4%) and also A
following B (5%). Moreover, the rate of confusion of each signal with itself
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was assessed. For example, the relative frequency of confusing A with itself
is 92%, and for B, 84%.

If we attempt an MDS representation, we notice several problems. First,
we observe that the nonnegativity axiom does not hold, because the values
in the main diagonal of the data matrix are not all the same. Because the
distance from any point to itself is always 0, we will therefore necessarily
incur a misrepresentation of the empirical data in the MDS space. On the
other hand, the second part of the nonnegativity axiom poses no problem,
because all data values in the main diagonal are greater than any off-
diagonal value, and this can be properly expressed by distances in an MDS
space.

Then, we see that the symmetry condition [axiom (2.2)] also does not
hold for the data. For example, the signal I is more frequently confused
with a subsequent A (64%) than A is with a subsequent I (46%). But if
we represent I and A by one point each, then we will necessarily have the
relation dy 4 = d sy, so that the asymmetry of the observed relation is lost,
that is, not represented.

Finally, the triangle inequality can be checked only if the data are on
a ratio scale. For all weaker MDS models, it is always possible to find a
constant k so that every p;;+k satisfies the triangle inequality. The minimal
constant k is found by first identifying the triangle inequality violated most
and then computing the value that, when added to each proximity in this
inequality, turns the inequality into an equality. Thus, unless we consider
the Rothkopf data as ratio-scaled distances (apart from error), axiom (2.3)
is immaterial.

Distance axioms (2.1) and (2.2), on the other hand, remain violated even
if one allows for ordinal transformations of the data. Yet, we should take
into account that none of Rothkopf’s subjects knew Morse codes. It is a
very demanding task for an untrained subject to distinguish consistently
between different signals, and we might, therefore, argue that the violations
of these axioms are unsystematic and due to error. (We test this in Chapter
24.) Under this assumption, we can think of the data for each (4,7) and
(j,1) pair as replicated observations of a basically symmetric relation, and
then obtain a better estimate of the true relation by averaging the two
observed values. In other words, from Table 4.2 we form a new proximity
matrix, where, say, pap = ppa = (.05 4 .04)/2 = .045. The main diagonal
could then be filled with the value 1.00, say, although this is immaterial,
because MDS programs ignore these values anyway.
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TABLE 4.2. Confusion percentages between Morse code signals (Rothkopf,
1957).

1

I JKLMNOPQR STUVWXYZ 12 3 45 671890

314101346 522 32534 6 6 93523 637131712 7 3 2 7 5 5 8 6 5 6 2 3|A

A BCDETVFGH

Al92 4 613
Ije4 7 71310 8 61293 3 5161330 7 3 519351610 5 8 2 5 7 2 5 8 9 6 8 5 2 4 5

J| 7 938 9 22418 5 4852231 8 321634711 2 7 9 9 922322867 663315 7 11 28 29 26 23| J

K| 5243873 1172511 5279133101231143122 2 2231733631618 5 917 8 8181413 5 6| K

B| 5843731 5281721 5193440 6 1012222516 18 2 18 34 884 3042 1217 144032744317 4 4| B
C| 4388717 42913 71119243514 3 951342414 6 611 14 32 82 38 13 15 31 14 10 30 28 24 18 12| C
D| 8621788 7234036 9138156 8 7 927 94529 6172027401533 3 9 611 919 810 5 6|D
H| 3452325 932 8871010 929 5 8 814 81737 43659 9331411 3 91543703517 4 3 3|H
L| 26943 451024 1226 930278 6 2 937362812 516 19 20 31 25 59 12 13 17 152629 36 16 7 3| L

M|2412 514 71729 8 81123 8966211101520 7 913 421 918 8 5 7 6 6 5 711 710 4|M
O 7 720 6 5 976 7 2392610 4 886373510 3 41114253527271917 7 7 618 14 11 20 12| O

P| 5223312 5362212 3781446 5 621834323 9 41219 19 19 41 30 34 44 24 11 15 17 24 23 25 13| P
Q| 8203811 41510 5 2272326 7 622519111 2 3 6 14 12 37 50 63 34 32 17 12 9 27 40 58 37 24| Q

R|13 14 16 23 5342615 712213314121229 88716 2232362141213 71013 4 712 7 9 1 2R
V| 5172416 929 639 5112643 4 1 9171017 11 63292 17 57 35 10 10 14 28 79 44 36 2510 1 5|V

W[ 9213022 9362515 425291815 626202561 12 4192086 22252210221916 5 911 6 3 7|W
X| 7644519 32811 6 135504210 8243261 10 12 3 12 17 21 91 48 26 12 20 24 27 16 57 29 16 17 6| X
Y| 9236215 42622 9 1301214 5 6143052 5 7 4 613 21 44 86 23 26 44 40 15 11 26 22 33 23 16| Y

Z| 3464518 2221710 723215111 215597214 4 3 911 12 36 42 87 16 21 27 9 10 25 66 47 15 15| Z
112 510 3 3 513 4 229 514 9 7143028 9 4 2 31214171922846313 810 8 19 32 57 55

21 71422 5 42013 32526 914 2 3173728 6 5 3 6101117 30 13 6289 54 20 5 14 20 21 16 11| 2
33 821 5 432 612 223 613 5 2 53719 9 7 6 416 6222512 18 64 86 31 23 41 16 17 8 10| 3

41 6191912 8251416 7211319 3 3 2172911 9 31755 83724 3 52644 8942443210 3 3| 4
5| 8451514 245 467 714 441 2 0 413 7 927 21445 7 4510 10 14 10 30 69 90 4224 10 6 5| 5

6| 7803017 423 414 2111127 6 2 716301114 31230 9583839 15142624 1788369 14 5 14| 6
7/ 6332214 525 6 4 6241332 7 6 7363912 6 2 313 93030502229 18 1512 61 85 70 20 13| 7
8/ 32340 6 31515 6 2331014 3 6141245 2 6 4 6 7 52435504229 1616 9 30 60 89 61 26| 8
931423 3 1 614 5 230 6 71611103132 5 6 7 6 3 81121245739 912 411425691 78| 9
0]9 311 2 5 714 4 530 8 3 2 3252129 2 3 4 5 3 21215205026 911 52217 52 81 94

E| 61314 697 2 4 417 1 5 6 4 4 5 1 510 767 3 3 2 5 6 5 4 3 5 3 5 2 4 2 3 3|E
F[ 4513319 2901029 5331650 7 61042123514 2212725192713 8164725262421 5 5 5|F
G| 9182738 11490 6 5223316 141362522321 5 31514322123391514 510 41017 2320 11| G
N[31 41330 812101613 316 85993 5 9 528121016 412 41611 5 2 3 4 4 6 2 210 2|N
S|1724 5301126 55916 31310 517 6 6 31896 956241210 6 7 8 2 21528 9 5 5 5 2[ S
T1310 1 546 3 6 614 614 7 6 5 611 4 4 796 8 5 4 2 2 6 5 5 3 3 3 8 7 614 67T
Ul14 29 1232 432113421 744321113 620124051 693573417 911 6 6163410 9 9 7 4 3|U

Morse Code
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An MDS of the Symmetrized Morse Code Data

Let us now study the symmetrized data by ordinal MDS.! In comparison
with the color data examined above, we start here from a weaker position.
Previously, we had a clear expectation about the MDS configuration and
its dimensionality; here we make no attempt to predict anything. Hence,
we must proceed in a purely descriptive way at the beginning.

Proceeding as Kruskal (1964a) did, we compute solutions in 1D through
5D, for which we obtain the Stress values shown graphically in Figure 4.5.
The figure shows that the 1D solution has about .28 Stress. These values lie
way below the expected Stress for random data reported in Figure 3.6, but
that is always true for structured proximities. Adding one more dimension
reduces Stress considerably to .18. By Kruskal’s criteria (see Section 3.5),
this would still be evaluated as a “poor” goodness-of-fit value. However,
this simple norm does not take n, the number of points, into account, and
what we have here is a relatively big data set compared to, say, the color
data in Table 4.1. Fitting proximities for more objects to distances in an
MDS space always requires a higher dimensionality if the data contain a
certain amount of experimental error.

But how large is this error? We could take up the proposal of Spence and
Graef (1974) and compare the observed Stress values to those obtained from
simulating the Hefner model. This should allow us to determine both the
true dimensionality and the error level. The observed Stress values are 0.35,
0.20, 0.14, 0.10, and 0.08 for m = 1,...,5, respectively. Their scree plot
(Figure 4.5) shows no elbow. Turning to Figure 3.8, we note that the curves
that most closely approximate the observed Stress values are the ones for
an error level of 0.13. However, the Spence and Graef (1974) simulations do
not clearly indicate what the true dimensionality of the MDS configuration
is for these data.

Turning to interpretability, we first consider the 2D MDS configuration in
Figure 4.6. Interpretation means to link some of the configuration’s geomet-
rical properties to known or assumed features of the represented objects.
In the given case, we find that the points arrange themselves in a pattern
that reflects the composition of the represented Morse signals, as shown
in Figure 4.7. Following a suggestion by Wish (1967), we note that the
2D MDS space can be cut by the solid lines such that each region of the
space contains signals of the same total duration. For example, this puts
M (coded as 22), R (=121), D (=211), U (=112), and H (=1111) into the
same equivalence class, because their signals all last 35/100 sec.

IThe first MDS analysis of these data was done by Shepard (1963) and then by
Kruskal (1964a) with the program M-D-SCAL (Kruskal & Carmone, 1969). M-D-SCAL
has been replaced, in the meantime, by KysT (Kruskal, Young, & Seery, 1978). Most
modern MDS programs (see Appendix A for an overview) usually lead to very similar
solutions (Spence, 1972).
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dimensionality

FIGURE 4.5. Scree plot (Stress vs. dimensionality) for MDS of color and Morse

code data, respectively.
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FIGURE 4.6. Ordinal MDS representa-

tion of Morse code data in Table 4.2.

FIGURE 4.7. Morse code MDS config-
uration with two sets of partitioning
lines: dashed lines split space into dif-
ferent signal types; solid lines differen-
tiate signal lengths.
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Technically, cutting a space into regions is called partitioning the space.
Generally, partitioning a set means splitting it into subsets such that each
element belongs to exactly one such subset. The resulting subsets are ex-
haustive and disjoint.

The configuration can also be partitioned in other ways by using other
criteria. The dashed lines partition the space into regions that contain
signals with only short (coded as 1) beeps, more short than long (coded as
2) beeps, a balanced number of short and long beeps, more long than short
beeps, and long beeps only, respectively. The structure of this partitioning
could be simplified—provided we are admitting some minor and one major
misclassification of points—to a North—South slicing of the MDS plane into
parallel stripes. The one major misclassification would result from point E.
E, the Morse code that consists of one short beep only, seems to play a
particular role. It is close to T, the other one-beep Morse code.

Without E, a typical dimensional interpretation of the MDS space would
suggest itself: after a little rotation, the Y-axis could be interpreted as
“duration”, the X-axis as “kind of composition”, ranging from signals con-
sisting of short beeps only over signals with both short and long beeps to
signals with long beeps only. Hence, at this stage, further research should
first clarify the reliability of E’s position. If E turns out to be reliable, we
could possibly design a theory that explains the subjective similarity of
Morse codes not by two independent dimensions but by two dimensions
where the points’ variance with respect to one dimension depends on the
scale values on the other dimension, giving rise to a fan-like partitioning.

In any case, we see that the 2D MDS configuration can be interpreted in
a simple but nontrivial way. Known properties of the signals, not just plau-
sible posthoc insights, are used to explain the point scatter. The simplicity
of the resulting geometric structure suggests, moreover, that we have found
something real, not just an apparent structure in random data.

If we go on to higher-dimensional solutions, the points do not appear
to reflect further systematic structure. Because no substantive hypothesis
could be derived on the dimensionality of the MDS configuration, we may
decide to give considerable weight to this simple interpretability of the
solution over a formal precision-of-representation criterion such as Stress.
This turns out to be a fruitful strategy in general. In any case, the data
could be replicated, and then we would hope to find the same organizational
patterns again. Without several such replications, we should be wary of
making fine-grained interpretations.

4.3 Dimensions of Facial Expressions

There are many principles that can be used for interpreting an MDS con-
figuration. What one always looks for is some way to organize the point
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scatter, to account for it or to “explain” it by a parsimonious but substan-
tively meaningful generating function. The typical, often almost mechani-
cal approach to this question in the literature has been the interpretation
by dimensions. Dimensional interpretations assign substantive meaning to
coordinate axes. We now examine a relatively refined example where a
dimensional theory is given a priori.

Rating Facial Expressions on Simple Scales

Some of the early research on the psychology of facial expressions was oc-
cupied with the question of whether subjects could correctly identify the
intended emotional message from a person’s facial expression. It was found
that misinterpretations were not random; the perceived emotion usually
seemed “psychologically similar” (Woodworth, 1938) to the one actually
expressed by the sender. Schlosberg and others then attempted to develop
a theory of the differentiability of facial expressions, concluding that three
perceptual “dimensions” were needed for a meaningful classification of fa-
cial expressions: pleasant—unpleasant (PU); attention—rejection (AR); and
tension-sleep (TS). In different studies, it could be shown that subjects
were able to classify facial expressions on these dimensions.

Engen, Levy, and Schlosberg (1958) published scale values, empirically
arrived at, for the 48 photographs of the Lightfoot Series. This series shows
the face of a woman acting out a series of different situations. Some of the
situations and their coordinate values are given in Table 4.3. If these values
are taken as Cartesian coordinates, distances between the different expres-
sions can be computed and used to predict confusion rates. However,
the particular three dimensions used by Schlosberg are not necessarily the
only dimensions or the best dimensions for explaining confusion data .. ..
There is the possibility that one or more of Schlosberg’s scales, while under-
standable when made explicit to judges, are unimportant in uninstructed
perception of facial expression; or conversely, that one or more important
scales have been omitted .... [The experimenter] imposes particular di-
mensions of his own choosing and is arbitrarily forced to give them equal
weight” (Abelson & Sermat, 1962, p. 546).

MDS of Facial Expressions and Internal Scales

MDS offers another way of testing the theory of three dimensions. We
can ask the subjects to globally judge, without external criteria provided
by the experimenter, the overall similarities of different facial expressions.
The proximities are then mapped into MDS distances. The resulting con-
figuration should be three-dimensional, with dimensions that correspond
to the Schlosberg scales.

Abelson and Sermat (1962) asked 30 students to rate each pair of the 13
pictures described in Table 4.3 on a 9-point scale with respect to overall
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TABLE 4.3. Scale values on three scales for faces of a woman acting different
scenes (Engen et al., 1958); values are medians on 9-point scales.

Scene PU AR TS

1 Grief at death of mother 3.8 42 4.1
2 Savoring a Coke 59 54 48
3 Very pleasant surprise 8.8 78 7.1
4  Maternal love-baby in arms 70 59 4.0
5  Physical exhaustion 3.3 25 3.1
6  Something wrong with plane 3.5 6.1 6.8
7  Anger at seeing dog beaten 2.1 80 8.2
8  Pulling hard on seat of chair 6.7 42 6.6
9  Unexpectedly meets old boyfriend 7.4 6.8 5.9
10  Revulsion 2.9 3.0 5.1
11  Extreme pain 2.2 22 64
12 Knows plane will crash 1.1 86 8.9
13  Light sleep 4.1 1.3 1.0

dissimilarity. Dissimilarity was defined as “a difference in emotional expres-
sion or content.” For each subject, 78 proximities resulted, which were then
rescaled over individuals by the method of successive intervals (Diederich,
Messick, & Tucker, 1957). The means of these intervals were taken as the
proximity data (Table 4.4).

We now analyze the data in Table 4.4 by ordinal MDS. The resulting
Stress values for 1D up to 5D solutions are .24, .11, .06, .04, and .02,
respectively. On purely formal grounds, we would probably decide that the
2D solution is reasonably accurate. However, because we are particularly
interested in testing Schlosberg’s theory of three dimensions, we should also
consider the 3D solution. To make things simpler, we first start with the
2D solution.

The point coordinates of the 2D solution (Figure 4.9) are shown in Table
4.5. One can check that the values in each column add up to zero. Geomet-
rically, this means that the MDS configuration is centered; that is, its center
of gravity lies at the origin of the coordinate axes. The coordinate vectors
are also uncorrelated. This is so because the MDS configuration has been
rotated to its principal axes orientation or, expressed differently, because
the dimensions X and Y are the principal axes (see also Section 7.10) of
this plane. Principal axes (PAs) are always uncorrelated.? The PAs can be
found by locating an axis so that it accounts for as much of the points’
scattering as possible. That is, an axis is located such that it lies as close
as possible to all points in the sense that the sum of squared distances of

20ne can formulate the problem of finding PAs as finding that rotation of a given
Cartesian dimension system that makes the point coordinates uncorrelated [see, for
example, Strang (1976)].
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TABLE 4.4. Proximities for faces from Table 4.3.

1 2 3 4 5 6 7 8 9 10 11 12 13
4.05 -
8.25 2.54 -
5.57 2.69 2.11 -
1.15 2.67 8.98 3.78 -
2.97 3.88 9.27 6.05 2.34 -
4.34 8.53 11.87 9.78 7.12 1.36 -
4.90 1.31 2.56 4.21 5.90 5.18 8.47 -
9(6.25 1.88 0.74 0.45 4.77 5.45 10.20 2.63 -
10|1.55 4.84 9.25 4.92 2.22 4.17 5.44 5.45 7.10 -
11{1.68 5.81 7.92 5.42 4.34 4.72 4.31 3.79 6.58 1.98 -
12]16.57 7.43 8.30 8.93 8.16 4.66 1.57 6.49 9.77 4.93 4.83 -
13(3.93 4.51 8.47 3.48 1.60 4.89 9.18 6.05 6.55 4.12 3.51 12.65 -

0~ O Uk W

TABLE 4.5. Coordinates for points in 2D MDS space.

Point/Picture Dim 1 (X) Dim 2 (Y)

1 —0.41 —0.46
2 0.54 0.14
3 1.22 0.75
4 0.97 —-0.21
5 0.06 —0.72
6 —0.67 0.24
7 —1.34 0.45
8 0.48 0.62
9 1.05 0.27
10 —0.59 —0.69
11 —0.62 —-0.31
12 —1.02 0.98
13 0.32 —1.04

the points from it is minimal. The second PA then is fixed automatically,
because it must be perpendicular to the first axis.

Internal and External Scales

We now test whether the externalscales of Table 4.3 account for the relative
locations of the points. A crude first test is to correlate each of the columns
of Table 4.5 (internal scale) with the columns in Table 4.3. Table 4.6, left
panel, shows that there is a considerable correlation, r = .94, between the
coordinates of the points on the X-axis and the values of the corresponding
facial expressions on the PU scale. Similarly, the point coordinates on the
Y-axis correlate highly with both the AR (r = .86) and the TS (r = .87)
scales.
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TABLE 4.6. Correlations between principal axes of 2D and 3D MDS solutions
and Schlosberg scales in Table 4.3.

2D MDS 3D MDS
Scale | Dim1 Dim2 | R? [ Dim1 Dim2 Dim3 | R?
PU .94 21 | .92 .93 .20 -.09 | .91
AR -.02 86 | .74 -.05 .83 -.34 | .81
TS -.38 .87 | .90 -.37 .89 .06 | .96

Yet, Schlosberg’s theory does not claim that the principal axes should
be of particular substantive importance. Maybe there are other dimensions
that better satisfy the theory and, in particular, correlate higher with the
scales of Table 4.3. This question can be answered as follows. Using multi-
ple correlation, we can assess how well an optimal linear combination of the
principal axes explains the scales. Because principal axes are uncorrelated,
the squared multiple correlations are simply the sum of the squared bivari-
ate correlations in Table 4.6. For example, for the PU scale on the one hand
and the principal axes of the 2D solution, we find R(PU.12) = .92'/2 from
R? = (0.94)2+(0.21)? = 0.92. Thus, because the multiple correlation of the
PU scale with the principal axes is higher than any bivariate correlation
of PU with a given principal axis, there must exist an axis (i.e., another
internal scale) in the MDS space that correlates even higher with PU than
the X-axis. This is now investigated.

Optimally Fitting Fxternal Scales

In addition to correlating the points’ coordinates on some internal scale
with an external scale, we can also express their relationship geometrically.
This is done by representing an external scale S by a directed line? Q
located such that the point projections on it (Q-values or Q-coordinates)
mirror as closely as possible the corresponding scale values of S. This can
mean, for example, that the point projections on @) are spaced such that
the ordinal Stress between the Q- and the S-values is minimal. Or, because
we have treated the S scales above as interval scales, we could require
that the intervals of the Q- and the S-values correspond most closely in
their proportions. Thus, @ should be located such that, over all points
i, [si — (a + b - ¢;)]> = min, where ¢; is the coordinate value of point i’s
projection on line @. This looks like a linear regression problem, except
that not only the weights a and b, but also the g; values are unknowns.
But any line @ is simply a linear combination of the coordinate vectors in

3A directed line is a line on which the direction from one end to the other has been
indicated as positive, and the reverse direction as negative. The points on this line are
ordered.



78 4. Three Applications of MDS

TABLE 4.7. Multiple regression problem to account for external PU scale by
MDS coordinate vectors. Weights wi, w2 and additive constant a are to be
chosen such that ~ means “as nearly equal as possible.” Optimal values are
g1 = 2.679, g2 = 0.816,a = 4.523.

r 3.8 r—0.41 1 r —0.46 1 rT17 T @ 7 T 305
5.9 0.54 0.14 1 @ 6.08
8.9 1.22 0.75 1 a 8.40
7.0 0.97 —0.21 1 @ 6.95
3.3 0.06 —0.72 1 as 4.10
3.5 —0.67 0.24 1 s 2.92
21 | ~g1 | —134 | +g0 045 | +a| 1 | = ¢ | =] 130
6.7 0.48 0.62 1 as 6.32
7.4 1.05 0.27 1 0 7.56
2.9 —0.59 —0.69 1 q10 2.38
2.2 —0.62 —0.31 1 a1 2.61
1.1 ~1.02 0.98 1 a1z 2.59

[ 4.1 | L 032 | | —1.04 | L1] Lasd L as3 |

Table 4.7. Hence, for each point ¢, it holds that ¢; = w1 - x; +ws - y;, where
x; and y; are the coordinate values of point 7 on the given X- and Y-axes,
respectively, and wy, is a weight.

Inserting this expression for ¢; into the above loss function, we note that
b can be pulled into the w;s so that the multiple regression problem in
Table 4.7 emerges, where g; = b - w;. Because X and Y are uncorrelated,
the weights in Table 4.7 are simple regression weights. The additive con-
stant @ is simply the mean of the external scale. (One can eliminate a
entirely by transforming the s;-values into deviation scores.) The regres-
sion equation thus says that, given some point P such as point 1 with
coordinates (—0.41, —0.46), its corresponding ¢;-value is 2.679 - (—0.41) +
0.816 - (—0.46) + 4.523 = 3.05.

Overall, the resulting point coordinates on ) correlate with the external
scale PU with .96, which checks with the R? = .92 from Table 4.6.

For the origin O = (0.00,0.00), we get go = 0.00, and so it is convenient
to run @ through the origin O. For actually drawing @ in an MDS space,
we have to find a second point on @ besides the origin. It can be shown
that the regression weights g; are the coordinates of such a point, provided
@ runs through the origin O. Hence, we have two points that lie on @, and
this determines the line. In the given case, these points are O = (0.00, 0.00)
and (2.679,0.816).

A second possibility is locating the line @) on the basis of its angles to the
coordinate axes. The direction cosine* of line Q with the ath coordinate

4The direction cosine of Q with the coordinate axis A; is the cosine of the angle that
rotates the positive end of @ onto the positive end of A;.
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TABLE 4.8. Coordinates of points 1,...,13 of Fig. 4.8 projected onto the axes
A1, Az, and Az of Fig. 4.8; r is the correlation of axis A; with the PU values in
Table 4.3.

Aq Ao Ag

1 -0.564 0.136 0.526
2 0.802 -0.421 -0.368
3 1.748 -0.719 -1.133
4 1.479 -0.980 -0.338
5 0.165 -0.417 0.475
6 -1.029 0.722 0.170
7  -2.049 1.426 0.356
8 0.655 -0.121 -0.672
9 1.544 -0.810 -0.709
10 -0.811 0.185 0.774

11 -0.895 0.399 0.528
12 -1.635 1412  -0.173
13 0.590 -0.811 0.564
r= 0.920 -0.780 -0.800

axis can be computed directly by the formula o, = cos™(g./ > ne, 92),
where g, is the regression weight of the ath coordinate axis.

Because of the close relationship between regression weights and direction
angles, we can conceive of the problem of representing an external scale by
a line as a rotation problem: the task is to turn a line running through the
origin such that the projections of the points on it correspond best to a
given external scale. Figure 4.8 demonstrates this notion. A line or, rather, a
directed axis is spun around the origin until it reaches an orientation where
the points of the MDS configurations project on it so that these projections
correlate maximally with the external scale. Three axes (A1, As, and As)
are shown graphically. The corresponding point projections are exhibited
in Table 4.8. The table also shows the correlations of the projections with
the scale values for the external PU scale from Table 4.3. One notes that
A; has a high positive correlation with the PU scale, which indicates that
the X-axis of the MDS solution can be interpreted as a continuum ranging
from unpleasant to pleasant (see also Figure 4.9).

3D MDS of the Faces Data with Embedded FExternal Scales

Because Schlosberg’s theory is a theory of three dimensions, we also take
a look at the 3D MDS solution. Figure 4.10 exhibits this configuration,
together with the embedded external scales. Before going into further in-
terpretations, we note that such a 3D configuration is not easy to look at,
because what we see here is only a projection of this configuration onto
a plane. The reader always has to mentally reconstruct the original con-
figuration from this projection, which is often a difficult task. We note,
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FIGURE 4.8. Embedding of an exter- FIGURE 4.9. 2D MDS of faces data,
nal scale into an MDS configuration with optimally fitted external scales.
(faces data) as a rotation problem.

for example, that it is almost impossible to see from Figure 4.10 how the
embedded scales are oriented in the space.

One gets a clearer picture from the correlations of the embedded scales
with the coordinate axes (Table 4.6). In addition, it is sometimes worth-
while to make use of features offered by the graphical environment of some
MDS programs, in particular the possibility of rotating 3D configurations
online in space. This allows one to inspect the configuration from different
perspectives on the computer screen, which may suffice to understand the
spatial relationships.

Figure 4.10, in any case, seems to suggest that the external scales PU
and TS essentially correspond to Cartesian dimensions, whereas AR does
not explain much additional variance. This is not surprising because (TS,
AR) = .75 in Table 4.3. Yet, there is quite a bit of scatter of the points
in the third dimension. That this can only be partially explained by the
external scales may be a consequence of the different psychology involved in
generating the global similarity judgments and the ratings on the external
scales. The given evidence is at least not contradictory to Schlosberg’s
theory of three dimensions.

4.4  General Principles of Interpreting
MDS Solutions

The above MDS applications are chosen to show the reader some real-
data examples, with substantive questions linked to them. The question of
interpretation asked for connections of geometric properties of the MDS
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dimension 3

dimension 2 dimension 1

FIGURE 4.10. 3D MDS of faces data, with fitted external scales.

representation and substantive aspects of the represented objects. In the
case of the color data, we found that the electromagnetic wavelengths of
the colors were reflected in a corresponding array of the points in MDS
space along a (curved) line. For the Morse code signals, we found that
certain physical properties of the signals had a systematic relationship to
various regions of the MDS space. The facial expression data led to an MDS
configuration whose dimensions were strongly related to external scales for
the same stimuli.

These examples illustrate the three most common principles used in in-
terpreting MDS solutions. The color circle is an instance of a particular
manifold, which is any set of points that form objects in space that are
nearly “flat” in the neighborhood of any of their points (“locally” Eu-
clidean). Most often, manifolds refer to points that form smooth curves or
surfaces in space.

The regional interpretation of the Morse code data resulted from parti-
tioning the space in multiple ways. The criteria used were different physical
properties of the Morse code stimuli. In each case, the goal was to split the
space such that each region would contain only points representing stim-
uli with equivalent properties on the partitioning criterion. Nothing else
is required by this interpretational approach and, therefore, many differ-
ent regional patterns may arise. Special cases are clusters—that is, very
dense regions separated from each other by “empty space”—and dimen-
sions. The latter partition the space into intervals, checkerboard patterns,
box-like cells, and so on, depending on the dimensionality m. A regional
interpretation is also possible for the color data: if we use wavelength as the
physical property of the stimuli, each region contains but a single point,
but coarser partitionings result from lumping together the stimuli into such
classes as red, blue, yellow, and green.
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Finally, the facial expression example illustrated the dimensional ap-
proach, the most common interpretation in practice. Note, however, that
interpreting dimensions means that one is trying to link a very particular
geometric feature to substantive features of the represented objects. One
should not expect that this will always be successful.

These applications were, in a sense, confirmatory ones, because, in each
case, there was at least an implicit expectation about certain properties of
the MDS configuration. But even in a more exploratory context, interpret-
ing MDS configurations complies with the same logic, except that some of
the features of the stimuli one links to the MDS geometry are hypothe-
sized or assumed. That is, looking at an MDS configuration and trying to
make sense out of it simply means that one projects various forms of prior
knowledge onto this space in order to explain the configuration. If this prior
knowledge is solid, then exploratory MDS is also solid. Otherwise, one has
to test the stability of such interpretations over replications.

In principle, any geometric property of an MDS solution that can be
linked to substance is an interesting one. However, in the literature, certain
standard approaches for interpretation are suggested, that is, particular
geometric properties that one should consider. By far, the most popular
approach is to look for meaningful directions or dimensions in the MDS
space. Naturally, dimensions may not be related in any interesting way to
the objects’ substance, nor is any other feature of an MDS configuration.

4.5 Exercises

Ezercise 4.1 In this exercise, we have a closer look at the choice of dimen-
sionality for the color data of Ekman (1954) from Section 4.1.

(a) Compute MDS solutions for the data in Table 4.1 in 1, 2, 3, 4, 5, and
6 dimensions. Make a scree plot. What do you conclude with respect
to the proper dimensionality of the MDS solution?

(b) Discuss a few criteria from Section 3.5 for choosing the proper di-
mensionality of the MDS solution.

Exercise 4.2 Figure 4.1 gives an MDS representation for the subjective
similarity assessments of different colors. These colors are characterized by
their electromagnetic wavelengths. Yellow corresponds to about 570 nm,
green to 520 nm, blue to 480 nm, and violet to about 380-450 nm. Orange
starts at about 600 nm and turns into red at the end of the visible spectrum
(above 650 nm). For answering (b) and (c), you may want to consult an
introductory psychology textbook.

(a) With this background, interpret the MDS configuration in terms of
two meaningful color dimensions.
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(b) What kind of MDS configuration could be expected if the color stimuli
would vary not only in hue, but also in saturation?

(¢) What color would you expect to lie at the center of the circle?

Ezercise 4.8 Consider the facial expression data of Section 4.3.

(a) Compute the angle between the X-axis and the lines that best rep-

resent the scales PU, AR, and TS, respectively, of Table 4.3 in the
MDS configuration of Table 4.5.

(b) The angles for AR and TS are similar. What does that mean in terms

of the data?

(¢) What substantive conclusions do you draw from (b)?

Ezercise 4.4 Rosenberg and Kim (1975) studied the similarity of 15 kinship

terms. College students sorted the terms on the basis of their similarity
into groups. Each student generated a dissimilarity matrix where a pair of
objects was coded as 1 if the objects were sorted in different groups and as
0 if the objects were sorted in the same group. The table below gives the
percentage of how often terms were not grouped together over all students.

Kinship Term 1 2 3 4 5 6 7 8 910 11 12 13 14 15
1 Aunt -

2 Brother 79 -

3 Cousin 53 67 —

4 Daughter 59 62 74 -

5 Father 73 38 77 57 —

6 Granddaughter |57 75 74 46 79 —

7 Grandfather 77 57 76 77 51 57 —

8 Grandmother |55 80 78 54 70 32 29 -

9 Grandson 79 51 72 72 54 29 31 57 -

10 Mother 51 63 79 31 29 56 75 50 79 —

11 Nephew 56 53 51 74 59 74 58 79 51 81 —

12 Niece 32 76 53 52 81 51 79 58 74 60 27 —

13 Sister 58 28 70 37 63 50 79 57 75 39 76 53 —

14 Son 80 38 73 29 32 72 55 78 47 57 52 T4 62 —

15 Uncle 27 57 51 80 51 80 55 77 58 73 33 56 79 59 —

In addition, for each of the kinship terms, external scales can be set up for

gender (1 = male, 2 = female, 9 = missing), generation (-2 = two back,

-1 = one back, 0 = same generation, 1 = one ahead, 2 = two ahead), and
degree (1 = first, 2 = second, etc.) of the kinship term. The table below

presents these external scales.
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(a)

(d)

4. Three Applications of MDS

Kinship Term Gender Generation Degree
1 Aunt 2 -1 3
2 Brother 1 0 2
3 Cousin 9 0 4
4 Daughter 2 1 1
5 Father 1 -1 1
6 Granddaughter 2 2 2
7 Grandfather 1 -2 2
8 Grandmother 2 -2 2
9 Grandson 1 2 2

10 Mother 2 -1 1

11 Nephew 1 1 3

12 Niece 2 1 3

13 Sister 2 0 2

14 Son 1 1 1

15 Uncle 1 -1 3

Do an ordinal multidimensional scaling analysis in two dimensions.
Interpret the solution.

Inspect the Shepard diagram or the transformation and residual dia-
grams. Are all proximities properly fitted?

Compute the correlations between the dimensions and the external
scales generation and degree, respectively. Use a multiple regression
program to find optimal weights g1 and gs to predict each external
scale out of the two dimensions. Plot the two external scales in the
solution. How can you interpret the solution in terms of generation
and degree?

Suppose that we would also like to represent gender in the MDS
solution. Explain how this could be done. Elaborate your solution in
the plot.

Ezercise 4.5 Wolford and Hollingsworth (1974) were interested in the con-
fusions made when a person attempts to identify letters of the alphabet
viewed for some milliseconds only. A confusion matrix was constructed
that shows the frequency with which each stimulus letter was mistakenly
called something else. A section of this matrix is shown in the table below.

(a)

Letter|C D G HM N QW
C —

D 5 -

G 12 2 -

H 2 4 3 -

M 2 3 219 -

N 2 4 1 18 16 -

Q 920 9 1 2 8 -
w 1 5 2 518 13 4 -

Are these data similarity or dissimilarity measures?
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(b) Use MDS to show their structure.

(¢) Interpret the MDS solution in terms of regions. What do you con-
clude with respect to letter confusion? (Hint: Letter confusion may
be based, e.g., on visual features or on the similarity of sounds.)

Exercise 4.6 Consider the data on the subjective similarity of different
countries in Table 1.3. The table below supplements these data by two
external scales. The first scale consists of rankings on “economic develop-
ment” that one particular student could have assigned to these countries
in the 1960s. The second scale shows the population of these countries in
about 1965.

Economic | Population
Country | No. | Development | (ca. 1965)
Brazil 1 3 87
Congo 2 1 17
Cuba 3 3 8
Egypt 4 3 30
France 5 8 51
India 6 3 500
Israel 7 7 3
Japan 8 9 100
China 9 4 750
USSR 10 7 235
U.S.A. 11 10 201
Yugoslavia | 12 6 20

(a) Find the coordinates of a two-dimensional ordinal MDS representa-
tion of the data in in Table 1.3.

(b) Fit the external scales into this MDS space by linear regression. Plot
the embedded scales as directed lines.

(¢c) Interpret the MDS solution in terms of the external scales, if possible.
Discuss how successful these two scales are in explaining the MDS
configuration.





