
14
Unfolding

The unfolding model is a model for preferential choice. It assumes that
different individuals perceive various objects of choice in the same way but
differ with respect to what they consider an ideal combination of the ob-
jects’ attributes. In unfolding, the data are usually preference scores (such
as rank-orders of preference) of different individuals for a set of choice ob-
jects. These data can be conceived as proximities between the elements of
two sets, individuals and choice objects. Technically, unfolding can be seen
as a special case of MDS where the within-sets proximities are missing.
Individuals are represented as “ideal” points in the MDS space so that the
distances from each ideal point to the object points correspond to the pref-
erence scores. We indicate how an unfolding solution can be computed by
the majorization algorithm. Two variants for incorporating transformations
are discussed: the conditional approach, which only considers the relations
of the data values within rows (or columns), and the unconditional ap-
proach, which considers the relations among all data values as meaningful.
It is found that if transformations are allowed on the data, then unfold-
ing solutions are subject to many potential degeneracies. Stress forms that
reduce the chances for degenerate solutions are discussed.

14.1 The Ideal-Point Model

To introduce the basic notions of unfolding models, we start with an exam-
ple. Green and Rao (1972) asked 42 individuals to rank-order 15 breakfast
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TABLE 14.1. Preference orders for 42 individuals on 15 breakfast items (Green
& Rao, 1972). The items are: A=toast pop-up; B=buttered toast; C=English
muffin and margarine; D=jelly donut; E=cinnamon toast; F=blueberry muffin
and margarine; G=hard rolls and butter; H=toast and marmalade; I=buttered
toast and jelly; J=toast and margarine; K=cinnamon bun; L=Danish pastry;
M=glazed donut; N=coffee cake; O=corn muffin and butter.

A B C D E F G H I J K L M N O
1 13 12 7 3 5 4 8 11 10 15 2 1 6 9 14
2 15 11 6 3 10 5 14 8 9 12 7 1 4 2 13
3 15 10 12 14 3 2 9 8 7 11 1 6 4 5 13
4 6 14 11 3 7 8 12 10 9 15 4 1 2 5 13
5 15 9 6 14 13 2 12 8 7 10 11 1 4 3 5
6 9 11 14 4 7 6 15 10 8 12 5 2 3 1 13
7 9 14 5 6 8 4 13 11 12 15 7 2 1 3 10
8 15 10 12 6 9 2 13 8 7 11 3 1 5 4 14
9 15 12 2 4 5 8 10 11 3 13 7 9 6 1 14

10 15 13 10 7 6 4 9 12 11 14 5 2 8 1 3
11 9 2 4 15 8 5 1 10 6 7 11 13 14 12 3
12 11 1 2 15 12 3 4 8 7 14 10 9 13 5 6
13 12 1 14 4 5 6 11 13 2 15 10 3 9 8 7
14 13 11 14 5 4 12 10 8 7 15 3 2 6 1 9
15 12 11 8 1 4 7 14 10 9 13 5 2 6 3 15
16 15 12 4 14 5 3 11 9 7 13 6 8 1 2 10
17 7 10 8 3 13 6 15 12 11 9 5 1 4 2 14
18 7 12 6 4 10 1 15 9 8 13 5 3 14 2 11
19 2 9 8 5 15 12 7 10 6 11 1 3 4 13 14
20 10 11 15 6 9 4 14 2 13 12 8 1 3 7 5
21 12 1 2 10 3 15 5 6 4 13 7 11 8 9 14
22 14 12 10 1 11 5 15 8 7 13 2 6 4 3 9
23 14 6 1 13 2 5 15 8 4 12 7 10 9 3 11
24 10 11 9 15 5 6 12 1 3 13 8 2 14 4 7
25 15 8 7 5 9 10 13 3 11 6 2 1 12 4 14
26 15 13 8 5 10 7 14 12 11 6 4 1 3 2 9
27 11 3 6 14 1 7 9 4 2 5 10 15 13 12 8
28 6 15 3 11 8 2 13 9 10 14 5 7 12 1 4
29 15 7 10 2 12 9 13 8 5 6 11 1 3 4 14
30 15 10 7 2 9 6 14 12 8 11 5 3 1 4 13
31 11 4 9 10 15 8 6 5 1 13 14 2 12 3 7
32 9 3 10 13 14 11 1 2 4 5 15 6 7 8 12
33 15 8 1 11 10 2 4 13 14 9 6 5 12 3 7
34 15 8 3 11 10 2 4 13 14 9 6 5 12 1 7
35 15 6 10 14 12 8 2 4 3 5 11 1 13 7 9
36 12 2 13 11 9 15 3 1 4 5 6 8 10 7 14
37 5 1 6 11 12 10 7 4 3 2 13 9 8 14 15
38 15 11 7 13 4 6 9 14 8 12 1 10 3 2 5
39 6 1 12 5 15 9 2 7 11 3 8 10 4 14 13
40 14 1 5 15 4 6 3 8 9 2 12 11 13 10 7
41 10 3 2 14 9 1 8 12 13 4 11 5 15 6 7
42 13 3 1 14 4 10 5 15 6 2 11 7 12 8 9

items from 1 (= most preferred) to 15 (= least preferred). They obtained
the data in Table 14.1, where each row i contains the ranking numbers as-
signed to breakfast items A, . . ., O by individual i. These numbers express
some kind of closeness, the proximity of each item to an optimal breakfast
item.

In contrast to other examples discussed so far, the row entries of this
matrix differ from the column entries: the former are individuals, the lat-
ter breakfast items.1 It is possible, though, to conceive of Table 14.1 as a
submatrix of the familiar proximity matrix. This is shown in Figure 14.1,
where the shaded rectangles stand for the observed scores. Both rectangles
contain the same scores: the rows and columns of one rectangle appear

1A matrix with different row and column entries is called a two-mode matrix, see
Section 3.7.
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FIGURE 14.1. Schematic view of proximity matrix in Table 14.1 as a submatrix
of a complete proximity matrix.

as columns and rows in the other. Each rectangle is called an off-diagonal
corner matrix. One notes that in this data matrix only between-sets proxim-
ities are given and no within-sets proximities. Hence, one can analyze these
proximities by “regular” MDS if the within-sets proximities are treated as
missing values.

Ideal Points and Isopreference Contours
Figure 14.2 presents such an unfolding solution for Table 14.1. The result-
ing configuration consists of 57 points, 42 for the individuals (shown as
stars) and 15 for the breakfast items (shown as solid points). Every indi-
vidual is represented by an ideal point. The closer an object point lies to an
ideal point, the more the object is preferred by the respective individual.
For example, Figure 14.2 says that individual 4 prefers K (cinnamon bun)
and L (Danish pastry) the most, because the object points of these break-
fast items are closest to this individual’s ideal point. The circles around
point 4 are isopreference contours. Each such contour represents a class of
choice objects that are preferred equally by individual 4. We note that for
individual 4, D and M are slightly less preferred than K and L. Somewhat
less preferred is the coffee and cake breakfast (N), whereas A, B, C, E, F,
G, H, I, J, and O are more or less equally disliked.

In this way, the preferences for every individual are modeled by relating
ideal points to the points representing the choice objects. This defines the
ideal-point model of unfolding. Note that the model assumes that all indi-
viduals share the same psychological space for the choice objects. Individual
differences are modeled exclusively by the different ideal points.

The term “unfolding” (Coombs, 1950) was chosen for the following rea-
son. Assume that Figure 14.2 was printed on a thin handkerchief. If this
handkerchief is picked up with two fingers at the point representing in-
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FIGURE 14.2. Unfolding representation of data in Table 14.1. Stars are indi-
viduals, solid points are items; the circles show the isopreference contours for
individual 4.

dividual i, yi, and then pulled through the other hand, we have folded it:
point yi is on top, and the farther down the object points, the less preferred
the objects they represent. The order of the points in the vertical direction
corresponds (if we folded a perfect representation) to how individual i or-
dered these objects in terms of preference. Picking up the handkerchief in
this way at any individual’s ideal point yields this individual’s empirical
rank-order. The MDS process, then, is the inverse of the folding, that is,
the unfolding of the given rank-orders into the distances.2

Figure 14.2 seems to indicate that none of the breakfast items is partic-
ularly attractive to the respondents, because none really comes close to an
ideal point (a “star”). Furthermore, we also see that the ideal points scatter
quite a bit, indicating considerable interindividual differences in what kind
of breakfast item the respondents prefer. Thus, it would be impossible to
please everybody with any particular small set of breakfast items. However,
before embarking on further interpretations, we should first ask to what ex-
tent we can really trust what we see here in the unfolding configuration.

Unfolding: Technical Challenges
An MDS analysis of an off-diagonal proximity matrix poses technical chal-
lenges. A lot of data are missing and, moreover, the missing data are not
just randomly scattered throughout the data matrix. What does that mean
in terms of the model? Consider a case suggested by Green and Carmone
(1970). Figure 14.3 shows 35 points, arranged to form an A and an M . As-
sume that we compute the distances for this configuration, and use them

2More precisely, the case just described is conditional unfolding; see below.
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FIGURE 14.3. Synthetic AM configuration (after Green & Carmone, 1970).

as data for ordinal MDS. If a 2D representation is computed, it will, no
doubt, recover the underlying AM configuration almost perfectly. But what
happens in the unfolding situation when only those data that correspond
to distances between the points in the A and the M are employed? If M ’s
points are fixed, then, for example, the order of d(13, 23) to d(13, 29) im-
plies that point 13 must be placed to the left of the perpendicular through
the midpoint of the line segment connecting 23 to 29. At the same time,
the points in A impose constraints on those in M , and, indeed, those are
the only ones imposed on M ’s points, just as M ’s points are the only points
to constrain the points of A. Note that this involves all distances between
A and M . Considering that there are many such order relations, it seems
plausible to expect a very good recovery of the AM configuration.

In the next sections, we show, however, that blind optimization of Stress
(with admissible transformation of the proximities) yields degenerate solu-
tions for unfolding. We discuss why this is so.

14.2 A Majorizing Algorithm for Unfolding

Assume that the proximities are dissimilarities and that no transformations
are allowed on the data. Let W be the partitioned matrix of weights wij ,[

W11 W12
W′

12 W22

]
=

[
0 W12

W′
12 0

]
,

and let the coordinate matrix X be partitioned in X1 for the n1 individuals
and X2 for the n2 objects in the unfolding analysis. Because the within-sets
proximities are missing, W11 = 0 and W22 = 0. This weight matrix can be
used in any program for MDS that allows missing values to do unfolding.
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Heiser (1981) applied this idea for the majorizing algorithm for minimizing
Stress (see Chapter 8). The corresponding algorithm is summarized below.

Consider the minimization of raw Stress; that is,

σr(X) =
∑
i<j

wij(δij − dij(X))2

= η2
δ + tr X′VX − 2tr X′B(X)X,

where V is defined as in (8.18) and B(X) as in (8.24). For the moment,
assume that all between-sets weights are one, so that the n1 × n2 matrix
W12 = 11′, where the vectors 1 are of appropriate lengths. Then, the
partitioned matrix V equals

V =
[

V11 V12
V′

12 V22

]
=

[
n2I −11′

−11′ n1I

]
.

The majorization algorithm of Section 8.6 proves that Stress is reduced by
iteratively taking the Guttman transform (8.28), Xu = V+B(Y)Y, where
Y is the previous estimate of X. Heiser (1981) showed that for unfolding
with equal weights W12 = 11′ we can use instead of the Moore–Penrose
inverse V+ a generalized inverse

V− =
[

n−1
2 (I − n−111′) 0

0 n−1
1 (I − n−111′)

]
,

where n = n1 + n2. B(Y) can be partitioned in the same way as V; that
is,

B(Y) =
[

B11(Y) B12(Y)
B12(Y)′ B22(Y)

]
;

see (8.24).
The update becomes

Xu
1 = [V−]11[B11(Y)Y1 + B12(Y)Y2], (14.1)

Xu
2 = [V−]22[B12(Y)′Y1 + B22(Y)Y2]. (14.2)

As with every majorizing algorithm, the Stress is reduced in every iteration
until convergence is reached.

If the between-sets weights have different values, then the update for-
mulas (14.1) and (14.2) do not work anymore. Instead, the update for-
mula (8.28) for MDS with weights should be applied. The Smacof al-
gorithm needs the computation of the Moore-Penrose inverse V+ of the
(n1 + n2) × (n1 + n2) matrix V which can be computed outside the itera-
tion loop and stored in memory. For reasonable-sized unfolding problems,
the memory and computational effort do not pose a problem for current
computers.
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FIGURE 14.4. Ordinal unconditional unfolding representation based on distances
between points in A and M in Figure 14.3.

14.3 Unconditional Versus Conditional Unfolding

We now take the 19 × 16 corner matrix of the between-sets distances of the
AM example and check whether ordinal MDS (called “unfolding” under
these circumstances) can recover the AM configuration in Figure 14.3. We
emphasize ordinal unfolding, but any of the transformations discussed in
Chapter 9 for complete MDS can be used.

Unconditional Unfolding
In ordinary MDS, any nonmissing proximity can be compared uncondi-
tionally to any other nonmissing proximity. For unfolding, this situation is
called unconditional unfolding.

The unconditional unfolding solution for the AM data is shown in Figure
14.4.3 Contrary to expectation, this is not a particularly good reconstruc-
tion of the original AM configuration. The M is quite deformed, and the
A is sheared to the left. Yet, the Stress is only .01, so it seems that the
ordinal relations of the between-sets proximities are too weak to guarantee
perfect recovery of the underlying configuration.

An MDS analysis for a complete set of proximities on A and M is con-
strained by many more order relations than doing MDS on an off-diagonal
submatrix. In the off-diagonal submatrix, we have nA · nM entities, where
nA = 16, the number of points in A, and nM = 19 for M . Because we can
compare any two entities, we have

(
nA·nM

2

)
= 46, 056 order relations. In

3We used the program Minissa-I (Lingoes, 1989), but any other MDS program that
allows for missing data could be used as well. Unconditional unfolding can be accom-
plished by embedding the corner matrix into a complete matrix as shown in Figure
14.1. Programs that allow the user to input off-diagonal matrices directly are only more
convenient, but they yield the same solutions as “regular” MDS with missing data.
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the complete case (no missing data), we have
(
nA+nM

2

)
= 595 different en-

tities, and, thus,
(595

2

)
= 176, 715 order relations. Yet, the sheer reduction

of proximities and thus of relevant order relations between the proximi-
ties is, by itself, not of crucial importance: Figure 6.1, for example, shows
that almost perfect recovery of the underlying configuration is still possible
even when 80% of the proximities are eliminated. This recovery, however,
depends critically on a systematic interlocking of the nonmissing proximi-
ties. In the unfolding case, such interlocking is not given: rather, there are
no proximities at all for determining the distances within the two subsets
of points.

Conditional Unfolding
The data information is now reduced even further by treating the 19 × 16
proximity matrix derived from the AM configuration row-conditionally.4 A
proximity is only compared to other proximities within its own row, not to
proximities in other rows. With nA = 16 and nM = 19, row-conditionality
reduces the number of order constraints in the MDS representation from
46,056 in the unconditional case to only nA · [nM (nM −1)/2] = 2,736 in the
conditional case. An early reference of the use of row-conditional unfolding
is Gleason (1967).

Why do we consider conditional unfolding at all? After all, the uncon-
ditional approach already has serious problems. But consider Table 14.1.
Each of its rows is generated by a different individual. For such data, it
must be asked whether they can be meaningfully compared over individ-
uals. By comparing the ranks unconditionally, we would assume that if
individual i ranks beakfast item x higher than individual j ranks item y,
then x comes closer to i’s ideal item than y is to j’s ideal. This is a strong
assumption, because individuals i and j may carry out their ranking task
completely differently. For example, i may be essentially indifferent to all
items, whereas j likes all items very much so that it becomes difficult to
decide which one he or she likes best. In unconditional ordinal unfolding,
all 1s must be mapped into distances smaller than those representing 2s,
and so on, but the row-conditional case requires only that a 1 in a given
row is mapped into a distance smaller than the distance representing a 2
of the same row, and so on, for all rows separately.

For the breakfast item preferences in Table 14.1, the configuration in
Figure 14.2 was obtained by ordinal row-conditional unfolding (with the
program SSAR-2). The alienation coefficient of this solution is K = .047,
so the order of the proximities in each row of data seems to match the order

4This restriction is called split-by-rows by Kruskal and Carmone (1969), which sug-
gests that the data matrix is treated as if we had cut it into horizontal strips: the
elements can be compared within a strip, but not between strips.
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FIGURE 14.5. Trivial unconditional ordinal unfolding solutions for the AM data
when using Stress.

of the corresponding distances very well. For individual 11, for example, we
find that d(11, G) is indeed the smallest distance, whereas d(11, D) is the
greatest distance, corresponding to the ranks 1 for item G and 15 for D.
Moreover, the distances from point 11 to those points representing items of
intermediate preference are also approximately in agreement with the data.
The configuration suggests further that the individuals seem to divide the
items into four groups. Yet, we notice that the object points are essentially
all located on a circle. Such peculiar regularities often indicate degeneracies
in the MDS solution. We turn to this question in the next section.

14.4 Trivial Unfolding Solutions and σ2

The minimization of Stress for conditional or unconditional unfolding leads
easily to trivial or even degenerate solutions, apart from the degeneracies
that can occur in ordinary MDS.

The Equal Distance Solution
In unconditional ordinal unfolding there exist two trivial or degenerate
solutions if Stress is used as a minimization criterion. That is, Stress can
be reduced arbitrarily close to 0, irrespective of the order relations in the
data. Two such degenerate solutions are presented in Figure 14.5.

For our AM problem, one trivial solution consists of only two point
clusters: all points of the A are condensed into one point and all points of
the M into another; the A and the M clusters are clearly separated from
each other. The other trivial solution consists of all M points on a circle
(not necessarily equally spaced) and the A points in the center, or vice
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versa. In higher dimensions, the M points could appear on the surface of
a (hyper)sphere. These two solutions share the fact that all distances from
the ideal points to the object points are the same.

Why these configurations represent solutions to the scaling problem fol-
lows from the Stress-1 function, that is, from

σ1(X) =

(∑
i<j wij(dij(X) − d̂ij)2∑

i<j wijd2
ij(X)

)1/2

, for all defined pij , (14.3)

where X is the matrix with the coordinates of the A- and the M-points. In
the configurations of Figure 14.5, all between-sets distances are equal. Thus,
dij(X)−d̂ij = 0, for all defined pij , but

∑
i<j wijd

2
ij(X) > 0. This condition

means that σ1(X) is zero, irrespective of the proximities. This degenerate
solution is not limited to ordinal transformations. Even interval unfolding
(with intercept one and slope zero) may lead to constant disparities yielding
the trivial solutions above. The trivial solution of Figure 14.5a is a special
case of the one discussed in Section 13.1. For ordinal or interval unfolding,
it always exists, because the within-sets proximities are missing and the
between-sets disparities all can be made equal.

Although these equal disparity solutions seem without any information
about the data, Van Deun, Groenen, Heiser, Busing, and Delbeke (2005)
showed that still a meaningful interpretation of such a solution is possible.
The important idea is that one needs to zoom in on the points that are clus-
tered together. Then it turns out that these points have different positions
that depend on the data. The interpretation is done by projection using
the so-called signed-compensatory distance model. For more information,
we refer to Van Deun et al. (2005). Of course, without zooming, no useful
information of the equal disparity solution can be derived.

To avoid these solutions, Kruskal (1968) and Kruskal and Carroll (1969)
proposed the use of a variant of the stress measure called Stress2 or Stress-
form2,

σ2(X) =

(∑
i<j wij(dij(X) − d̂ij)2∑
i<j wij(dij(X) − d̄)2

)1/2

, for all defined pij , (14.4)

where d̄ denotes the mean of all distances over which the summation ex-
tends (see Section 11.2). For the above solutions where all between-sets
distances are strictly equal, we find that σ2(X) is not defined because∑

i<j wij(dij(X) − d̄)2 = 0, which leads to 0/0. However, if an MDS pro-
gram is started from a configuration slightly different from the trivial so-
lution, the program iterates away from the trivial solution. The reason is
that close to the trivial solution σ2 is large, because the denominator of
(14.4) is close to zero. Several computer programs for ordinal MDS offer an
option for minimizing σ2 rather than σ1. The criterion σ2 always (except
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FIGURE 14.6. Trivial solution for ordinal unfolding under σ2 (after Carroll,
1980).

at 0) yields values higher (typically twice as large) than σ1, because it has
the same numerator but a smaller denominator. Thus, using σ2 avoids the
equal-distance trivial solution.5

The Four-Point Solution
Using σ2 does not free unfolding from degeneracies totally. If we compute
the distances for the AM configuration in Figure 14.3 and use the between-
sets distances as data for a 1D unfolding representation under σ2, then
the four-point configuration in Figure 14.6 is a perfect but trivial solution
(Kruskal & Carroll, 1969; Carroll, 1980). It represents all A-points of Figure
14.3 by A′, except for point 7, which corresponds to a. Similarly, all M -
points of Figure 14.3 are mapped into M ′, except for point 35, which is
carried into m. Because only the distances between A and M define the
solution, σ2 involves only two distance values, k and 3k. 3k represents
the greatest distance of the AM configuration, and k represents all other
distances. Hence, the Shepard diagram essentially exhibits a horizontal
array of points, except that the last point to the right is shifted upwards
so that its value on the ordinate is three times that of the other points.
This step function is perfectly monotonic, which makes the numerator of
σ2 equal to zero. At the same time, the norming factor (dij − d̄)2 is not
equal to zero. Therefore, σ2 = 0.

This degeneracy is somewhat contrived and not likely to occur often, if
at all, in real applications. It shows, however, that the norming factor used

5Although σ2 tends to keep the variance of the distances large, this does not prevent
degeneracies in “regular” ordinal MDS (see Section 13.1).
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FIGURE 14.7. Trivial row-conditional ordinal unfolding solutions for the AM
data (with the points of A in the rows) using Stress, panel a., and using (14.4),
panel b.

in σ2 has alleviated the degeneracy problem only to a degree. More specific
degeneracies are discussed in Heiser (1989a).

Trivial Solutions for Row-Conditional Unfolding
For preference rank-orders, it is quite natural to have independent or-
dinal transformations for each of the individuals. If the individuals are
represented by the rows, then it means that the data are treated row-
conditionally. Again, minimizing Stress using a row-conditional transfor-
mation of at least interval level may lead to a zero Stress solution with
equal distances as in Figure 14.5.

However, treating the transformations row-conditionally, also introduces
additional trivial unfolding solutions. Consider the AM data, where the A
points are the rows. Then, the equal distance solution in panel a. of Figure
14.7 looks similar to panel b. of Figure 14.5. The difference lies in the role of
the points in the center which are the rows in Figure 14.5b and the column
points (M) in Figure 14.7a.

A second trivial solution may occur when minimizing (14.4) with row-
conditional transformations. In Figure 14.7b, all column points (M) are
again represented in the center, but the row points scatter through the
space. The row-conditional transformation has allowed different distances
between row points to the cluster of column points in the center while
keeping the distances within a row equal. In (14.4), the numerator is zero
because all distances are the equal to the d-hats within each row. The
denominator is nonzero because the distances from a row point to the
cluster differ per row. This solution can be considered degenerate because
it is independent of the data.
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FIGURE 14.8. Row-conditional unfold-
ing representation based on distances
between points in A and M in Fig. 14.3.

13

FIGURE 14.9. Isotonic region (shaded)
for point 13 in configuration of
Fig. 14.3; boundaries defined by order
of distances of 13 to points in M .

14.5 Isotonic Regions and Indeterminacies

To get a feeling for the uniqueness or, expressed conversely, the indetermi-
nacies of a conditional, ordinal unfolding representation we return again to
our AM configuration in Figure 14.3 and use its distances. In conditional
unfolding, there are two possible analyses: we may use the 16×19 proximity
matrix in which A’s points form the rows and M ’s points the columns, or
the 19 × 16 transposed matrix in which the roles of A and M are reversed.
We choose the first approach, which implies that only the distances from
each point in A to every point in M are constrained by the data, but not
the distances from each point in M to every point in A. (You may think
of A as the set of ideal points and of M as the set of points representing
choice objects.) The SSAR-2 program then leads to Figure 14.8, with the
low alienation K = 0.002 [see (11.6)]). We note that there is a substantial
deformation of the letters, in fact, a much stronger one than for the un-
conditional case. The M , in particular, can hardly be recognized. As could
be expected, the row-conditional unfolding does not recover the underlying
configuration nearly as well as the unconditional version.

In Figure 14.8, we can move the points around quite a bit without making
the alienation worse. One example of what is possible is the underlying
configuration itself (Figure 14.3), for which K = 0. Hence, the SSAR-2
solution is only weakly determined, that is, many more configurations exist
with equal or even better fit to the data. This implies that it may be risky
to embark on substantive interpretations of such representations, so we
should study when we may do so.

A natural first question is whether the poor recovery of the AM config-
uration is a consequence of certain properties that are not likely to hold in
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7

FIGURE 14.10. Isotonic region
(shaded) for point 7, defined as in
Fig. 14.9.

26

FIGURE 14.11. Isotonic region
(shaded) for point 26, defined by its
distances to all other points.

general. To answer this question, let us check the invariance of some of the
points. Assume that M is fixed and that A’s points have to be located un-
der the constraints of conditional unfolding. For point 13, which is closest
to M , we obtain as its solution space or isotonic region (i.e., the region in
which the distances of every point to M ’s points are ordered equivalently)
the grey area shown in Figure 14.9. Note that all boundaries are straight
lines in the conditional case, in contrast to the unconditional MDS consid-
ered in Chapter 2. The indeterminacy of point 13 is considerable but not
unlimited.

Determining the isotonic region for point 7 in a similar fashion leads
to Figure 14.10. We notice immediately that this point’s solution space
is much greater and is closed to the outside only by the boundary line
marked with the arrow. Thus, point 7 could be positioned much farther
to the outside of this region without affecting the fit of the conditional
unfolding solution at all. But why is this point’s solution space so much
greater than the one for point 13? One conjecture is that the boundary lines
for those points that are closer to the M differ more in their directions,
which leads to a network with tighter meshes. To test this conjecture,
we look at the isotonic region of point 26 relative to all other points in
M . Figure 14.11 shows that the boundary lines indeed run in many very
different directions, which generates a comparatively small isotonic region,
even though many fewer order relations are involved than in the above. The
number of constraints as such does not imply anything about the metric
determinacy of a point. What is important is how ideal and object points
are distributed throughout the space relative to each other.

The best relative distribution of ideal points and object points is one
where they are thoroughly mixed, that is, where both are evenly spread
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FIGURE 14.12. Row-conditional unfolding representation of distances from su-
perimposed A and M point sets.

throughout the space. Substantively, this implies that we have individuals
with many different preference patterns, so each object is someone’s first
choice. With our AM configuration, a situation like this can be approxi-
mated by superimposing A on M , which is done here by shifting A and M
so that their respective centroids coincide with the origin. With the dis-
tances of this configuration, SSAR-2 leads to Figure 14.12, with K = 0.002.
The metric recovery of the underlying configuration is virtually perfect, as
expected. Thus, conditional unfolding does work—under favorable circum-
stances!

Part of the favorable circumstances of the situation leading to Figure
14.12 was also that the number of ideal and object points was high for a
2D solution. Coombs (1964) has shown that if there are n object points in
an (n − 1)-dimensional MDS space, then all isotonic regions for the ideal
points are open to the outside. Why this is so is easy to see for the special
case of three object points in the plane. We connect the points A, B, and C
by straight-line segments, and draw straight lines running perpendicularly
through the midpoints of the line segments. These lines will then intersect
at just one point, which is the center of the circle on which A, B, and
C fall. Moreover, the three lines will partition the plane into six regions,
which are all open to the outside. Any ideal point falls into one of these
regions, depending on the empirical preference order for the individual it
represents. With three objects, there are exactly six different rank-orders,
corresponding to the six regions. But, because all regions are open, the
location of the ideal points is very weakly determined indeed. If the number
of object points grows relative to the dimensionality of the representation
space, then more and more closed regions result. These regions are located
primarily where the object points are, as we concluded above.
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TABLE 14.2. Similarity data for breweries A, . . ., I and attributes 1, . . ., 26.

A B C D E F G H I
1 3.51 4.43 4.76 3.68 4.77 4.74 3.43 5.05 4.20
2 3.41 4.05 3.42 3.78 1.04 3.37 3.47 3.25 3.79
3 3.20 3.66 4.22 3.07 3.86 4.50 3.19 4.62 3.75
4 2.73 5.25 2.44 2.75 5.28 2.11 2.68 2.07 3.63
5 2.35 3.88 4.18 2.78 3.86 4.37 2.38 4.21 4.63
6 3.03 4.23 2.47 3.12 4.24 2.47 2.90 2.36 3.53
7 2.21 3.27 3.67 2.49 3.40 4.10 2.53 4.03 3.33
8 3.91 2.71 4.59 3.91 4.23 4.72 3.81 4.88 3.96
9 3.07 4.08 4.74 3.34 4.23 4.88 3.20 5.20 3.95

10 3.21 3.57 4.20 3.24 3.85 4.28 3.16 4.30 3.75
11 3.15 3.80 4.34 3.33 3.88 4.49 3.17 4.70 3.67
12 2.84 3.41 4.01 2.89 3.64 4.15 2.95 4.25 3.65
13 2.75 3.24 4.07 2.68 3.55 4.18 2.84 4.56 3.22
14 2.35 3.44 4.13 3.16 3.55 4.55 2.82 4.49 3.29
15 3.07 3.82 4.17 3.21 3.94 4.42 3.21 4.41 3.67
16 3.45 4.29 4.44 3.74 4.47 4.68 3.61 4.76 4.04
17 2.53 4.71 4.53 2.83 4.83 4.71 2.70 4.83 4.72
18 3.12 3.58 4.10 3.14 3.82 4.28 3.10 4.53 3.50
19 2.93 3.27 4.13 2.80 3.46 4.10 2.84 5.12 3.13
20 2.24 3.11 4.12 2.39 3.39 4.17 2.54 4.33 3.19
21 2.41 3.14 3.43 2.40 3.22 3.45 2.43 3.22 3.93
22 3.32 3.74 4.32 3.32 4.01 4.64 3.26 4.88 3.72
23 3.39 4.04 4.51 3.48 4.23 4.63 3.43 4.95 3.86
24 2.88 3.39 3.85 2.90 3.61 4.18 2.79 3.94 3.96
25 2.74 3.57 2.37 2.77 3.96 2.49 2.71 2.44 3.26
26 2.70 3.10 3.85 2.82 3.58 4.13 2.79 4.17 3.20

14.6 Unfolding Degeneracies in Practice and
Metric Unfolding

We now demonstrate some of the degeneration problems with the data in
Table 14.2. Beer drinkers were asked to rate nine breweries on 26 attributes
(Borg & Bergermaier, 1982). The attributes were, for example, “Brewery
has rich tradition” or “Brewery makes very good Pils beer”. Relative to
each attribute, the informant had to assign each brewery a score on a 6-
point scale ranging from 1 = not true at all to 6 = very true. The resulting
scores are therefore taken as similarity values.

Minimizing Stress (σ1) in unconditional ordinal unfolding, Kyst yields a
computer printout similar to Figure 14.13a. We find that all of the brewery
points are tightly clustered, whereas all of the attribute points lie on a J-
shaped curve. The Shepard diagram for this configuration is given in Figure
14.13b. At first sight, these results do not look degenerate, even though the
extremely low Stress of σ1 = .0005 would at least suggest this possibility.
Indeed, a second look at the Shepard diagram reveals that the distances
scatter over only a small range. Thus, they are very similar, in spite of the
considerable scatter in the diagram. The horizontal step function in Figure
14.13b is the monotone regression line. So, the sum of the squared (vertical)
distances of each point from this line defines the numerator of Stress, which
is definitely much smaller than the sum of the squared distance coordinates
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FIGURE 14.13. Ordinal unfolding representation (a) of data in Table 14.2, using
Stress, σ1, and (b) its Shepard diagram.

of the points in the Shepard diagram, the denominator of Stress. The J-
shaped curve in Figure 14.13a thus turns out to be a segment of a circle
with its origin at the brewery points. Thus, this example is a degenerate
solution of the equal distance type shown in Figure 14.5.

Instead of ordinal unfolding, stronger assumptions (or hypotheses) about
the data can be imposed, because metric MDS is often more robust than
ordinal MDS. If it seems justifiable to assume that the proximities are at
least roughly interval scaled, using metric MDS is no problem. But even if
this is not the case, one could replace the original data with appropriate
ranking numbers and then use interval MDS, because the rank-linear model
is very robust vis-à-vis nonlinearities in the relations of data and distances,
as we saw in Chapter 3. For metric conditional unfolding, we have

pij �→ ai + bi · pij ≈ dij , (14.5)

where i denotes an individual, j is an object, and ≈ means as nearly equal
as possible. In the unconditional case, the intercept a and slope b are equal
for every individual i; that is,

pij �→ a + b · pij ≈ dij . (14.6)

Using (unconditional) interval unfolding, however, has little effect for the
data in Table 14.2 and leads to virtually the same configuration as in Figure
14.13a. Moreover, it has the additional drawback that now the regression
line in the Shepard diagram has the “wrong” slope: given that the data
are similarities, the regression line should run from the upper left-hand
corner to the lower right-hand corner of the diagram in order to preserve
the interpretation of the individuals’ points as ideal points or, in the present
case, the direct correspondence of geometrical and psychological closeness.

We see that using Stress as a minimization criterion can lead to wrong
solutions. This is easy to see because the configuration in Figure 14.13a
suggests that all breweries are evaluated in the same way with respect to
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FIGURE 14.14. Shepard diagram of linear unfolding of data in Table 14.2 using
Stress, σ1.
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FIGURE 14.15. Ordinal unfolding representation (a) of data in Table 14.2, using
σ2, and (b) its Shepard diagram.

all attributes. From the empirical data in Table 14.2, this cannot be true.
When we use σ2, it becomes far more difficult to diagnose, from looking
at the configuration, that something went wrong. The ordinal unfolding
solution (under σ2) is shown in Figure 14.15a. The letters A, . . ., I stand for
the nine breweries, the solid points for the 26 attributes. The figure suggests
that the breweries form three groups, and the attributes also seem to cluster
to some extent. But the Shepard diagram for the unfolding solution (Figure
14.15b) shows immediately that we have a degeneracy of the two-distance-
classes type. Although the data scatter quite evenly over the range 2.0 to
5.5, there are practically only two distances. All of the small proximities
up to about 3.0 are mapped into distances of about 2.5, whereas all other
proximities are represented by distances about equal to 1.2. Almost all
points lie very close to the regression line; thus, σ2 is very low.

After learning from the Shepard diagram that there are essentially only
two different distances in the scaling solution, we can identify them. Be-
cause we are only concerned with between-sets distances, we have to show
that each distance from a brewery point to an attribute point is equal to
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FIGURE 14.16. Linear unfolding representation (a) of data in Table 14.2, using
σ2, and its Shepard diagram (b).

either a or b, where a < b. Moreover, because the unfolding was done un-
conditionally, the same would be true in the reverse direction, that is, from
each attribute point to all brewery points. In Figure 14.15a, the two dis-
tance types are indicated (for the perspective from the brewery points to
the attribute points) by either solid circles (for a-type distances) or broken
circles (for b-type distances). Similar circles, with radius equal to either a
or b, could be drawn about the attribute points in such a way that the
brewery points would fall onto or close to them.

As we did for Stress, we now unfold the data with an interval regression
approach. The solution is given in Figure 14.16a, where the brewery points
are labeled A, . . ., I , as above, and the attribute points as 1, . . ., 26. The
brewery points tend to arrange themselves in the same groups as in the
degenerate solution in Figure 14.15a for empirical reasons, as the Shepard
diagram in Figure 14.16b shows. The distances and the proximities of the
unfolding solution vary over a wide range. There are no gaps in the distri-
bution, and the linear regression line fits very well. The problem with this
solution is that the slope of the regression line is not as we would like it
to be. If this is not noticed by the user, serious interpretational mistakes
are bound to result. The configuration in Figure 14.16a puts a brewery
closer to an attribute the less (!) this brewery was judged to possess this
attribute. Thus, for example, brewery A is not really close to attribute 21
as the configuration suggests; rather, the contrary is true. This certainly
leads to an awkward and unnatural meaning for the configuration, where
two points are close when the objects they represent are psychologically
different.

We conclude that using σ2 instead of σ1 does not eliminate the problems
of unfolding. In the ordinal case, we again get a degenerate solution (even
though it is somewhat less degenerate than for σ1). For the metric approach,
we obtain an undesirable inverse representation that is hard to interpret.
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FIGURE 14.17. Hypothetical example to demonstrate problems of dimensional
interpretations in unfolding.

14.7 Dimensions in Multidimensional Unfolding

Apart from degeneracies and indeterminacies, there are further problems in
unfolding that one should be aware of when interpreting an unfolding solu-
tion. Consider an example. Assume that we want to know how an individual
selects a car from a set of different automobiles. Assume further that the
preference judgments were made in a 2D unfolding space with dimensions
“performance” and “sporty looks”. Figure 14.17a shows 16 hypothetical
cars in a space spanned by these dimensions. A market researcher wants
to infer this space from the person’s similarity data. This is a difficult task
if, as Figure 14.17b illustrates, there are no cars in the upper left- and the
lower right-hand corners. The reason for the empty corners in this example
is that cars with a very high performance must look sporty to some ex-
tent, for engineering reasons. The converse is usually also true empirically;
that is, cars with extremely poor performance do not look like racing ma-
chines. But with the remaining 10 cars it is likely that the researcher would
conclude that essentially only one dimension explains the similarity data,
especially because the resulting dimension (“sportiness”) seems to make
sense psychologically (Figure 14.17c).

Figure 14.17d shows the consequences of this false interpretation. Let
Y be the ideal point of some individual. This individual wants a car with
very high performance and moderately sporty looks. A market researcher,
therefore, should recommend making car M in Figure 14.17d less sporty
in looks and more powerful in its performance. However, on the basis of
the accepted unfolding solution, the market researcher would come to a
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different, incorrect conclusion: with “sportiness” as the assumed decision
criterion, the advice would be to increase M’s sportiness so that M would
move closer to Y on this dimension. Concretely, this movement could be
achieved in two ways: increase performance and/or sporty looks. Because
the latter is cheaper and easier to implement, this would be the likely
immediate action. But this would be just the wrong thing to do, because
the person wanted a reduction, not an increase, in the sporty looks of M.

The problems encountered here are a consequence of the fact that some
corners of the similarity space remain empty. Coombs and Avrunin (1977,
p. 617) therefore argue that “deliberate efforts” should be made to avoid
collapsing the preference space due to correlated dimensions. This means,
in practice, that an unfolding analysis should be based on a set of objects
that are carefully selected from the product space of the presumed choice
criteria, not on a haphazard collection of objects.

14.8 Multiple Versus Multidimensional Unfolding

When aggregated data are analyzed in MDS, there is always a danger that
the multidimensionality is an aggregation artifact. This danger is particu-
larly acute in multidimensional unfolding because here the data are usually
from different individuals.

Unfolding assumes that all individuals perceive the world in essentially
the same way. There is just one configuration of objects. Differences among
individuals are restricted to different ideal points. If this assumption is not
correct, unfolding preference data will be misleading. Consider an example.

Norpoth (1979a) reports two data sets, where German voters were asked
to rank-order five political parties in terms of preference. The parties ranged
from Nationalists to Communists, and so one could expect that the respon-
dents should have agreed, more or less, on the position of each party on a
left-to-right continuum.

Running an unfolding analysis on these data, Norpoth (1979a) concluded
that he needed a 2D solution for an adequate representation of the data.
The solution shows one dimension where the Communists are on one end
and the Nationalists are on the other. This is interpreted as the familiar left-
to-right spectrum. The second dimension shows the (then) ruling coalition
parties on one end and the major opposition party on the other. This
interpretation also seemed to make sense.

One can question, however, whether all voters really perceived the par-
ties in the same way. One hypothesis is that the voters do indeed all or-
der the parties on a left-to-right dimension, but that they do not always
agree on where these parties are located relative to each other. Indeed, Van
Schuur (1989) and Borg and Staufenbiel (1993) independently showed for
Norpoth’s data that by splitting the set of respondents into two groups
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(in each sample) by simply placing the Liberals to the right of the Con-
servatives in one case, and to the left of the Conservatives in the other,
while leaving all other parties ordered in the same way, two subsamples are
obtained that each yield one-dimensional unfolding solutions.

Substantively, such multiple solutions are much more convincing: they
preserve a simple dimensional model of how political parties are perceived;
they explain different preferences by a simple ideal-point model; and, fi-
nally, they account for group differences by a simple shift of the position
of the Liberals, an ambiguous party in any case.

There exist computer programs for multiple one-dimensional unfolding
(e.g., Lingoes, 1989; Van Schuur & Post, 1990). They offer the easiest way
to test for the existence of multiple 1D unfolding scales.

14.9 Concluding Remarks

Unfolding is a natural extension of MDS for two-way dissimilarity data.
When no transformation is allowed on the data (or a ratio transformation),
unfolding can be safely used. However, if transformations are required, for
example, for preference rank-orders, then special caution is needed because
the usual approaches yield a degenerate solution with all disparities being
equal. Chapter 15 discusses several of such solutions.

14.10 Exercises

Exercise 14.1 Consider the unfolding solution for the breakfast items in
Figure 14.2. Attempt an interpretation. In particular, find “labels” for the
four groups of breakfast items, and interpret their positions relative to each
other. (What lies opposite each other, and why?)

Exercise 14.2 Consider the (contrived) color preferences of six persons (A..F)
in the table below (Davison, 1983). The data are ranks, where 1 = most
preferred.

Person
Color A B C D E F
Orange 1 2 3 4 3 2
Red 2 1 2 3 4 3
Violet 3 2 1 2 3 4
Blue 4 3 2 1 2 3
Green 3 4 3 2 1 2
Yellow 2 3 4 3 2 1

(a) Unfold these data without any transformations.
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(b) Discuss the solution(s) substantively, relating them to Figure 4.1 and
to unfolding theory. In what sense are the six persons similar, in what
sense do they differ?

(c) Discuss technical reasons why the unfolding analysis works for these
data.

(d) Construct a set of plausible color preference data that do not satisfy
the ideal point model.

(e) Discuss some data sets that satisfy the ideal point model but that
would most likely lead to degenerate or other nondesirable MDS so-
lutions. (Hint: Consider the distribution of ideal points in the percep-
tual space.)

Exercise 14.3 The following table shows empirical color preferences of 15
persons (Wilkinson, 1996). The data are ranks, where 1 = most preferred.

Person
Color A B C D E F G H I J L M N O P
Red 3 1 3 1 5 3 3 2 4 2 1 1 1 2 1
Orange 5 4 5 3 3 2 4 4 5 5 5 5 4 5 2
Yellow 4 3 1 5 2 5 5 3 3 4 2 4 5 3 3
Green 1 5 4 4 4 1 2 5 1 3 4 2 2 4 4
Blue 2 2 2 2 1 4 1 1 2 1 3 3 3 1 5

(a) Unfold these data.

(b) Discuss the solution(s) substantively, connecting the color points in
the order of the electromagnetic wavelengths of the respective colors.

(c) Use an external starting configuration where the color points are po-
sitioned on a rough color circle similar to the one in Figure 4.1. (Hint:
Place the person points close to their most preferred color points in
the starting configuration.)

(d) Compare the unfolding solutions with and without external starting
configurations, both technically in terms of Stress and substantively
in terms of a reasonable theory.

Exercise 14.4 The following table shows the dominant preference profiles
(columns) for German political parties in 1969. A score of 1 indicates “most
preferred”. The row “freq” shows the frequency of the respective preference
order in a representative survey of 907 persons (Norpoth, 1979b).
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Preference Type
Political Party 1 2 3 4 5 6 7 8 9 10 11
SPD (Social Democrats) 1 1 1 1 3 3 2 2 2 2 3
FDP (Liberals) 2 2 3 3 2 2 3 3 4 1 1
CDU (Conservatives) 3 3 2 2 1 1 1 1 1 3 2
NPD (Nationalists) 4 5 4 5 5 4 5 4 3 5 4
DKP (Communists) 5 4 5 4 4 5 4 5 5 4 5
Freq 29 85 122 141 56 66 135 138 11 16 19

(a) Unfold these data in one to three dimensions and discuss the solu-
tions. Use both ordinal and linear MDS, and both unweighted and
weighted (by “freq”) unfolding.

(b) Norpoth (1979a) claims that these data require a 2D unfolding space.
Yet, most Germans would probably order these parties from left
to right as DKP-SPD-FDP-CDU-NPD or as DKP-SPD-CDU-FDP-
NPD. Sketch diagrams for these two orders, where the Y -axis repre-
sents preference ranking—the highest rank 1 getting the highest Y-
score—and the X-axis the left-to-right order. What do these diagrams
show you with respect to single-peakedness of the preference func-
tions? Can you accommodate most preference profiles in the scales?
Can you accommodate them in one single scale too?

(c) Compute two (or more) 1D unfoldings for subsets of the voter profiles
as an alternative to one common unfolding solution for all persons
combined. Discuss the substantive implications.




