
9
Metric and Nonmetric MDS

In the previous chapter, we derived a majorization algorithm for fixed dis-
similarities. However, in practical research we often have only rank-order
information of the dissimilarities (or proximities), so that transformations
that preserve the rank-order of the dissimilarities become admissible. In
this chapter, we discuss optimal ways of estimating this and other trans-
formations. One strategy for ordinal MDS is to use monotone regression.
A different strategy, rank-images, is not optimal for minimizing Stress, but
it has other properties that can be useful in MDS. An attractive group
of transformations are spline transformations, which contain ordinal and
linear transformations as special cases.

9.1 Allowing for Transformations of
the Proximities

So far, we have assumed that the proximities are ratio-scaled values. How-
ever, in the social sciences often only the rank-order of the proximities is
considered meaningful. In such cases, the dissimilarities δij are replaced in
the Stress function by disparities, d̂ij (d-hats)1. Disparities are an admis-
sible transformation of the proximities, chosen in some optimal way. For
example, if only the rank-order of the proximities is considered informative,

1Other frequently used terminology for disparities is pseudo distances (Kruskal, 1977;
Heiser, 1990) or target distances.
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then the disparities must have the same rank-order as the proximities. In
this case, we speak of ordinal MDS or nonmetric MDS. If the disparities
are related to the proximities by a specific continuous function, we speak of
metric MDS. The proximities are in both cases transformed into disparities.
In this chapter, we discuss various metric and nonmetric transformations of
the proximities, when to use them, and how to calculate them. To simplify
the presentation, we assume throughout this chapter that the proximities
are dissimilarities, unless stated otherwise.

Stress with d-Hats
Disparities are incorporated in the Stress function as

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2

=
∑
i<j

wij d̂
2
ij +

∑
i<j

wijd
2
ij(X) − 2

∑
i<j

wij d̂ijdij(X)

= η2
d̂

+ η2(X) − 2ρ(d̂,X), (9.1)

where d̂ denotes the s × 1 vector of disparities with s = n(n − 1)/2. In
Section 8.6, we saw how to minimize Stress over the configuration matrix
X by the Smacof algorithm. We follow De Leeuw (1977), De Leeuw and
Heiser (1977), and De Leeuw (1988) in extending this algorithm to include
disparities by iteratively alternating an update of X with an update of d̂.
Clearly, if we optimize over both d̂ and X, a trivial solution is d̂ = 0 and
X=0, which makes (9.1) equal to zero. To avoid this degenerated solution,
we norm d̂ to some fixed length, such as

η2
d̂

= n(n − 1)/2. (9.2)

Metric MDS Models
We now formulate several types or models of MDS. In the simplest case
(absolute MDS), proximities (here dissimilarities) and disparities are related
by pij = d̂ij . Thus,

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2 =
∑
i<j

wij(dij(X) − pij)2, (9.3)

so that each proximity value pij should correspond exactly to the distance
between points i and j in the m-dimensional MDS space.

Absolute MDS is, from an applications point of view, irrelevant, because
it is of no interest, for example, to exactly reconstruct from Table 2.1 the
European map in its original size. Instead, we settled on ratio MDS, where
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d̂ij = b · pij . In this case, the proximities must be dissimilarities. Then,
Stress equals

σr(d̂,X) =
∑
i<j

wij(dij(X) − d̂ij)2 =
∑
i<j

wij(dij(X) − bpij)2

=
∑
i<j

wijd
2
ij(X) + b2

∑
i<j

wijp
2
ij − 2b

∑
i<j

wijp
2
ijd

2
ij(X)

= η2(X) + b2η2
p − 2bρ(X). (9.4)

We see that it is not very difficult to optimize (9.4) over b. Setting the
derivative of σr(d̂,X) with respect to b equal to zero yields

∂σr(d̂,X)
∂b

= 2bη2
p − 2ρ(X) = 0,

b =
ρ(X)
η2

p

,

which gives the update of b for ratio MDS.
It is easy to generate further MDS models from d̂ij = f(pij) by defining

f in different ways. One generalization of ratio MDS is interval MDS,

d̂ij = a + b · pij , (9.5)

where an additive constant, a, has been added. Ratio and interval MDS are
linear MDS models, because the f(pij)s are linear transformations of the
pijs. This carries certain linear properties of the data into the corresponding
distances. If the pijs are dissimilarities, we require that b > 0, because larger
dissimilarities should correspond to larger distances. Conversely, if the pijs
represent similarities, then b < 0, because a large similarity corresponds
to a small distance. In ratio MDS, the ratio of any two disparities should
be equal to the ratio of the corresponding proximities, because d̂ij/d̂kl =
(b ·pij)/(b ·pkl) = pij/pkl. Thus, although it is always possible to assess the
ratio of distances in any MDS space and to note that, say, dij is twice as
large as dkl, in ratio MDS such relations should mirror corresponding ratios
of the data. In interval MDS, then, the ratio of differences (“intervals”) of
distances should be equal to the corresponding ratio of differences in the
data.

Naturally, f does not have to be linear. In principle, we may choose
any function we like. However, some functions have been found to be par-
ticularly useful in various contexts of psychology. Among them are the
logarithmic function

d̂ij = b · log(pij), (9.6)

or, more generally,

d̂ij = a + b · log(pij),
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FIGURE 9.1. Transformation plot of several transformations.

and the exponential function

d̂ij = a + b · exp(pij). (9.7)

Sometimes, we might even consider nonmonotonic functions such as a poly-
nomial function of second degree,

d̂ij = a + b · pij + c · p2
ij . (9.8)

There are no limits to the variety of MDS models that can be constructed
in this way. These functions can be viewed in a transformation plot, where
the horizontal axis is defined by the proximities (pij) and the vertical axis is
defined by the transformed proximities (d̂ij). Some of the transformations
discussed so far are graphed in Figure 9.1.

One problem may occur when fitting some of these models (Heiser, 1990).
In the step for finding optimal disparities d̂ij , negative disparities can occur.
For example, this happens in (9.6) when some pijs are smaller then 1 and
some larger than 1, because log(x) < 0 for 0 < x < 1. More importantly, in
interval MDS, model (9.5), negative disparities can and do occur. Because
distances can never be negative, a zero residual in the Stress function is
unreachable for negative disparities. Moreover, the majorization algorithm
may fail to converge because the inequalities that are used to derive (8.23)
are reversed for negative disparities, thereby destroying the convergence
proof. This problem can be repaired in two ways: first, on top of the re-
strictions implied by the model, the disparities are restricted to be positive
(which makes updating the disparities more complicated), or, second, the
Smacof algorithm is extended to deal with negative disparities. For more
details on this issue, we refer to Heiser (1990).
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TABLE 9.1. Some MDS models ordered by the scale level of the proximities
(from strong to weak).

Transformation d̂ij

Absolute pij

Ratio b · pij with b > 0
Interval a + b · pij with a ≥ 0, b ≥ 0
Spline A sum of polynomials of pij

Ordinal Preserve the order of pijs in d̂ijs

Nonmetric MDS
All of the models from (9.3) to (9.8) are metric; that is, they represent
various properties of the data related to algebraic operations (addition,
subtraction, multiplication, division). In contrast, nonmetric models rep-
resent only the ordinal properties of the data. For example, if p12 = 5 and
p34 = 2, an ordinal model reads this only as p12 > p34 (assuming here that
the data are dissimilarities) and constructs the distances d12 and d34 so
that d12 > d34.

Ordinal models typically require that

if pij < pkl, then d̂ij ≤ d̂kl, (9.9)

and no particular order of the distances for pij = pkl (weak monotonicity2

and the primary approach to ties). Notice that the models (9.3) to (9.7) also
lead to distances ordered in the same way as the corresponding proximities.
But they are all special cases of (9.9), where no particular function f is
required for the monotone relation. In Table 9.1 some common MDS models
are ordered by the scale level of the proximities.

Even weaker MDS models are conceivable. If, for example, we had prox-
imities coded as a, b, or c, we only may require that there be three classes
of distances, one for each data code. All that the distances represent then is
the qualitative distinctness, and the model could be called nominal MDS,
where the disparities are restricted by

if pij = pkl, then d̂ij = d̂kl,

which is implemented in the program Alscal. However, we discourage the
use of nominal MDS because when interpreting an MDS solution we usually
assume that the closer two points are, the more similar the objects they
represent. The nominal MDS model thwarts this interpretation. Moreover,
it admits transformations that may radically change the appearance of the

2Requiring strong monotonicity or d̂ij < d̂kl rather than just d̂ij ≤ d̂kl does not
lead to stronger models in practice, because one can always turn an equality into an
inequality by adding a very small number ε to one side of the equation.



204 9. Metric and Nonmetric MDS

MDS configuration. Finally, strict equality in empirical proximities is often
rather exceptional, and, indeed, it is just the case that is excluded in the
usual ordinal MDS (primary approach to ties) because of its presumed
empirical unreliability.

Ad Hoc MDS Models
In addition to such textbook models of MDS, more complicated models
are occasionally necessary in real applications. Typically, they involve a
function d̂ = f(p) that is itself a combination of several component func-
tions. Consider, for example, the case of ordinal MDS in (9.9). We may
not be satisfied with simply requiring that the data be mapped by “some”
monotonic function into distances. We may also want to insist that this
function be negatively accelerated, say, because we have a theory about
what is going on behind the data. We then have to restrict the d̂ijs to be
negatively accelerating. Such additional restrictions on f come from sub-
stantive considerations and, therefore, are without limit in their number
and variety.

Smacof with Admissibly Transformed Proximities
The Smacof algorithm with transformation of the proximities can be sum-
marized by

1. Set Z = X[0], where X[0] is some (non)random start configuration.
Set iteration counter k = 0. Set ε to a small positive constant.

2. Find optimal disparities d̂ij for fixed distances dij(X[0]).

3. Standardize d̂ij so that η2
d̂

= n(n − 1)/2.

4. Compute σ
[0]
r = σr(d̂,X[0]). Set σ

[−1]
r = σ

[0]
r .

5. While k = 0 or (σ[k−1]
r − σ

[k]
r > ε and k ≤ maximum iterations) do

6. Increase iteration counter k by one.

7. Compute Guttman transform X[k] by (8.29) if all wij = 1,
or by (8.28) otherwise, where δij is replaced by d̂ij .

8. Find optimal disparities d̂ij for fixed distances dij(X[k]).

9. Standardize d̂ij so that η2
d̂

= n(n − 1)/2.

10. Compute σr(d̂,X[k]).

11. Set Z = X[k].
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FIGURE 9.2. The flow of the majorization algorithm (Smacof) for doing MDS
with optimal transformations.

12. End while.

A flowchart of this algorithm is presented in Figure 9.2. Note that when
computing the Guttman transform the places of the δijs are taken by d̂ijs.
The allowed transformation of the disparities determines how the update
for the disparities in Steps 2 and 7 should be calculated. In the next sections,
we discuss the optimal update for ordinal MDS and MDS with splines.

9.2 Monotone Regression

In ordinal MDS, we have to minimize σr(d̂,X) over both X and d̂, where
the disparities must have the same order as the proximities pij ; that is,

if pij < pkl, then d̂ij ≤ d̂kl (9.10)

if the proximities are dissimilarities, and an inverse order relationship if
they are similarities. We switch to Step 7 in the Smacof algorithm, where
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TABLE 9.2. Pairs, ranks, symbolic proximities, numeric proximities (=ranks),
numeric distances of starting configuration X, symbolic distances, and target
distances for X.

Pair Rank Sym. pij pij dij Sym. dij d̂ij

Humphrey–McGovern 1 pHM 1 7.8 dHM 3.38
McGovern–Percy 2 pMP 2 3.2 dMP 3.38
Nixon–Wallace 3 pNW 3 0.8 dNW 3.38
Nixon–Percy 4 pNP 4 1.7 dNP 3.38
Humphrey–Percy 5 pHP 5 9.1 dHP 5.32
Humphrey–Nixon 6 pHN 6 7.9 dHN 5.32
Humphrey–Wallace 7 pHW 7 7.4 dHW 5.32
McGovern–Nixon 8 pMW 8 2.3 dMW 5.32
Percy–Wallace 9 pPW 9 2.3 dPW 5.32
McGovern–Wallace 10 pMW 10 2.9 dMW 5.32

better-fitting d̂ijs with respect to fixed dij(X) have to be found, subject to
the constraints (9.10). Suppose that the order of the dij(X)s is exactly the
same as the order of the proximities pij . Then, simply choosing d̂ij = dij(X)
defines the optimal update. If the fixed dij(X)s are not in the same order
as the proximities, the optimal update is found by monotone regression of
Kruskal (1964b).

The Up-and-Down-Blocks Algorithm

We discuss the solution of minimizing σr(d̂) by monotone regression with
Kruskal’s up-and-down-blocks algorithm. Consider an example. Rabinowitz
(1975) describes a hypothetical experiment where a subject was asked to
rank-order all possible pairs of the following politicians from most to least
similar: Humphrey (H), McGovern (M), Percy (P), Nixon (N), and Wallace
(W). The subject generated the ranking numbers exhibited in the second
column of Table 9.2. They are shown in the form of the familiar proximity
matrix in Table 9.3.

Now, assume that we have a first configuration X, which leads to the
distances in Table 9.2. How are the d̂ijs computed? Consider the distances
dij for the pairs Humphrey–McGovern and McGovern–Percy, dHM and
dMP . The corresponding proximities are ordered as pHM < pMP . Because
the proximities are dissimilarities (i.e., the smaller the p-value, the larger
the similarity), dHM ≤ dMP should hold in a perfect MDS representation.
This is obviously not true for the configuration X, because it yields dHM =
7.8 and dMP = 3.2. Thus, the points of X must be moved so that dHM

becomes smaller and dMP larger. Now, given two numbers, the arithmetical
mean yields the number that is closest to both of them in the least-squares
sense. Thus, setting (dHM + dMP )/2 = d̂HM = d̂MP defines target values
that satisfy the requirements.
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TABLE 9.3. Proximity matrix for politicians.

H M P W N
H – 1 5 7 6
M 1 – 2 10 8
P 5 2 – 9 4

W 7 10 9 – 3
N 6 8 4 3 –

TABLE 9.4. Derivation of the disparities in Table 9.2 by monotone regression.

Trial Solutions for d̂ij Final
Pair pij d̂ij I II III IV V VI VII d̂ij

Humphrey–McGovern 1 7.8 5.5 3.93 3.38 3.38 3.38 3.38 3.38 3.38
McGovern–Percy 2 3.2 5.5 3.93 3.38 3.38 3.38 3.38 3.38 3.38
Nixon–Wallace 3 0.8 0.8 3.93 3.38 3.38 3.38 3.38 3.38 3.38
Nixon–Percy 4 1.7 1.7 1.7 3.38 3.38 3.38 3.38 3.38 3.38
Humphrey–Percy 5 9.1 9.1 9.1 9.1 8.5 8.13 6.68 5.8 5.32
Humphrey–Nixon 6 7.9 7.9 7.9 7.9 8.5 8.13 6.68 5.8 5.32
Humphrey–Wallace 7 7.4 7.4 7.4 7.4 7.4 8.13 6.68 5.8 5.32
McGovern–Nixon 8 2.3 2.3 2.3 2.3 2.3 2.3 6.68 5.8 5.32
Percy–Wallace 9 2.3 2.3 2.3 2.3 2.3 2.3 2.3 5.8 5.32
McGovern–Wallace 10 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 5.32
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FIGURE 9.3. Shepard diagram of monotone regression as calculated in Tables
9.2 and 9.4. The open points represent pairs of corresponding proximities and
distances (pij , dij), the solid points disparities d̂ij . The solid line is the best-fitting
monotone regression curve.

Beginning with the first pair of distances in Table 9.4, we get a first trial
solution for the disparities by setting 5.5 = d̂HM = d̂MP and d̂ij = dij

for all remaining distances. This yields the values in column I of Table 9.4.
This trial solution, however, satisfies the monotonicity requirement only for
its first two elements, and the third disparity value is too small, because
dNW = 0.8 is smaller than both of the preceding values. So, we create a
new block by computing the average of the first three distances (5.5 + 5.5
+ 0.8)/3 = 3.93. We then use 3.93 for d̂HM , d̂MP , and d̂NW , and again
hope that everything else is in order, thus setting d̂ij = dij for all other
distances. This yields the second trial solution for the disparities (column
II). This sequence still violates the monotonicity requirement in row 4.
Hence, a new block is formed by joining the previous block and dNP . The
resulting disparities in column III form a weakly monotonic sequence up to
and including row 5. In row 6, a value 7.9 turns up, however, that is smaller
than the preceding one, 9.1. So, we join 9.1, 7.9, and all preceding values
into one block, average these values, and so on. Table 9.4 shows all of the
steps leading to the final disparity sequence of d̂ijs in the last column. This
completes monotone regression for the first iteration.

A Shepard diagram is given in Figure 9.3. In the main algorithm, we
then have to normalize the d̂ij such that their sum-of-squares is equal to
n(n−1)/2. Then, we start the second iteration by computing an update for
the configuration X. This gives new distances for which we can compute
new disparities by monotone regression, as we have done above.

Smoothed Monotone Regression
A more restrictive version of ordinal MDS is smoothed monotone regression
(Heiser, 1985, 1989a). Apart from the order restrictions implied by ordinal
MDS, we also impose the restriction that the difference between differences
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of adjacent disparities is never larger than the average disparity. Thus, if
the s = n(n − 1)/2 elements of vector d̂ are ordered as the proximities,
then smoothed monotone regression requires

|(d̂k − 0) − (0 − 0)| ≤ s−1 ∑s
l=1 d̂l, for k = 1,

|(d̂k − d̂k−1) − (d̂k−1 − 0)| ≤ s−1 ∑s
l=1 d̂l, for k = 2,

|(d̂k − d̂k−1) − (d̂k−1 − d̂k−2)| ≤ s−1 ∑s
l=1 d̂l, for k = 3, . . . , s.

(9.11)

Thus, the restrictions are imposed on the difference of subsequent differ-
ences. The advantage of this internally bounded form of monotone regres-
sion is that the steps between two adjacent disparities can never get large.
Therefore, the Shepard diagram always shows a smooth relation of pijs and
d̂ijs without irregular steps in the curve. For k = 1, the first restriction of
(9.11) implies that d̂k should be between zero and the average d-hat. There-
fore, a smoothed monotone transformation has a first d-hat that is quite
close to zero and will be increasing in a smooth way. It can be verified that
a quadratically increasing transformation and a logarithmically increasing
transformation satisfy the maximal stepsizes as defined in (9.11). Unfortu-
nately, Heiser reports that it is not easy to compute optimal disparities for
given distances using smoothed monotone regression. Also, the smoothed
monotone regression problem tends to become computationally demanding
if n is large (say n > 25).

9.3 The Geometry of Monotone Regression

In the previous section, we saw how monotone regression is performed.
Here, we give a geometrical explanation of monotone regression. Consider
an example. Suppose that we have

P =

⎡⎣ − 1 3
1 − 2
3 2 −

⎤⎦ , and D(X) =

⎡⎣ − 1 2
1 − 3
2 3 −

⎤⎦ ,

and wij = 1 for each pair i, j. Let us reformulate the problem in simpler
notation. Denote the unknown d̂ij as xl, and the known dij(X) as al. Also,
we order the al in the rank-order of the proximities. This leads to Table
9.5. Rewriting σr accordingly, the monotone regression problem becomes
minimizing

σr(x) =
s∑

l=1

(xl − al)2

under the restriction that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xs, where s = n(n − 1)/2.
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TABLE 9.5. Reformulation of the monotone regression problem.

s Pair i, j Proximity as = dij(X) xs = d̂ij

1 12 p12 a1 = 1 x1 = d̂12

2 23 p23 a2 = 3 x2 = d̂23

3 13 p13 a3 = 2 x3 = d̂13
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FIGURE 9.5. The area for which
0 ≤ x1 ≤ x2 ≤ x3.

To see what these restrictions imply geometrically, consider the case
where we have the restrictions 0 ≤ x1 ≤ x2. The shaded area in Figure
9.4 shows the area in which these inequalities hold. Here, each axis denotes
one of the variables xl. The first part of the inequalities implies that all xl

should be nonnegative, because we do not want the disparities to become
negative. The elements a1 = 1 and a2 = 3 fall in the shaded area, so that
choosing x∗

1 = a1 = 1 and x∗
2 = a2 = 3 gives σr(x) where the order re-

striction on x1 and x2 is not violated. If a were outside the shaded area,
then we would have to find an x on the border of the shaded area that is
closest to a by the up-and-down-blocks algorithm. The triple of inequalities
0 ≤ x1 ≤ x2 ≤ x3 of our simple example can be represented graphically
as in Figure 9.5. After orthogonal projection on each pair of axes, the area
in which the inequalities hold is similar to that of Figure 9.4. The three
inequalities combined give the inner part of the ordered cone in Figure 9.5.
Monotone regression amounts to projecting a onto this cone. If a is ordered
with increasing values, then it is located inside the cone. In this example,
the x with the shortest distance to a that is in or on the ordered cone
equals x∗ = [1, 2.5, 2.5]′.

Geometrically, monotone regression amounts to finding the d̂ that is in
the ordered cone (defined by the proximities) and as close as possible to
the vector of distances.
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TABLE 9.6. Calculation of the primary and the secondary approaches to ties in
ordinal MDS for given distances dij .

Primary Approach Secondary Approach
Pair pij dij I II III d̂ij I II d̂ij

3,2 1 3 3 2.50 2.50 2.50 3 2.50 2.50
4,1 2 2 2 2.50 2.50 2.50 2 2.50 2.50
3,1 3 6 6 6 4.50 4.50 6 6 4.66
4,2 4 5 3 3 4.50 5 5 4 4.66
2,1 4 3 5 5 5 4.50 3 4 4.66
4,3 5 7 7 7 7 7 7 7 7

9.4 Tied Data in Ordinal MDS

In ordinal MDS, the relevant data information is the rank-order of the
proximities. But consider the rank-order of the proximities in the following
matrix.

P =

⎡⎢⎢⎣
− 4 3 2
4 − 1 4
3 1 − 5
2 4 5 −

⎤⎥⎥⎦ .

We see that the proximities p21 and p42 have the same ranks; that is, they
are tied. How should such ties be represented in an MDS configuration?
It would seem natural to represent them by equal distances in an MDS
solution, but this is known as the secondary approach to ties. For our sim-
ple example, it means that d̂21 = d̂42, so that d̂31 ≤ d̂21 = d̂42 ≤ d̂43. In
the primary approach, tied proximities impose no restrictions on the cor-
responding distances. In other words, it is not necessary to map tied data
into equal distances. For our example, the primary approach to ties implies
d̂31 ≤ d̂21 ≤ d̂43 and d̂31 ≤ d̂42 ≤ d̂43. Nothing is required of the distances
representing equal proximities, except that they must be smaller (larger)
than the distances corresponding to smaller (larger) proximities. Ties in
the data thus can be broken in the representing distances.

In Table 9.6, an example is presented of the calculation for the primary
and secondary approaches to ties for given distances. The resulting Shepard
diagrams are shown in Figure 9.6. In the primary approach, the first esti-
mate of the disparities is obtained by setting d̂ij = dij and then reordering
these d̂ij wherever they correspond to tied pij values so that they increase
monotonically. Then, standard monotone regression is applied (see Section
9.2). Finally, the resulting disparities are permuted back into the original
order of the distances. The secondary approach to ties follows the same
strategy as monotone regression, except that the first disparity estimates
for tied data are replaced by their average values.
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FIGURE 9.6. Shepard diagram of monotone regression calculated with the pri-
mary approach to ties (a), or the secondary approach to ties (b) (see Table 9.6).
The solid points are the disparities d̂ij , and the open points are the distances
dij(X).

How do ties arise in proximity data? There are several possibilities. Con-
sider the following case. Assume that we want to find out how people
perceive cars by studying their similarity impressions. A stack of cards is
prepared, where each card shows one pair of cars. The subject is asked to
split the stack into two piles, one containing the more similar pairs, the
other the more dissimilar pairs. Then, the subject is asked to repeat this
exercise for each pile in turn, and repeat again, and so on, until he or she
feels that it is not possible to discriminate any further between the pairs
of cars in any pile. If the subject stops when each pile has only one card
left, then we get a complete similarity order of the pairs of cars and no ties
occur. It is more likely, however, that some of the final piles will have more
than one card. Most likely, the piles for the extremely similar pairs will
be quite small, whereas those for pairs with intermediate similarity will be
larger. This means that if we assign the same proximity value to all pairs in
a pile, ties will arise for every pile containing one or more cards. However,
we would not want to assume that these data are tied because the subject
feels that the respective pairs of cars are exactly equal. Rather, the subject
stops the card sorting only because the pairs in some piles do not appear to
be sufficiently different for a further meaningful or reliable ordering. Hence,
the primary approach to ties should be chosen in analyzing these data.

Consider another example, a pilot study on the perception of nations
(Wish, Deutsch, & Biener, 1970; Wish, 1971), where the respondents had
to judge the degree of similarity between each pair of 12 nations on a
9-point rating scale with endpoints labeled as “very different” and “very
similar”, respectively. Here, the proximities for each respondent must have
ties, because there are 66 pairs of nations, and, thus, it would require a
rating scale with at least 66 categories in order to be able to assign a
different proximity value to every stimulus pair. The 9-point rating scale
works as a relatively coarse sieve on the true similarities, so the data would
be best interpreted as indicators for intervals on a continuum of similarity.
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The primary approach to ties is again indicated, inasmuch ties must result
due to the data collection method.

A further way for ties to occur is when the proximities are derived from
other data. Consider the correlation matrix of intelligence tests in Table
5.1. Several ties occur here, so that with the primary approach to ties, the
distances d17, d24, and d27, say, are merely required to be less than d37 and
greater than d26. However, we can compute the correlation coefficients to
more decimal places. Assume that we get, by using three decimal places,
r17 = .261, r24 = .263, and r27 = .259. In ordinal MDS, it should then hold
that d24 < d17 < d27, and so the MDS solution must satisfy additional
properties. But is it worthwhile to place such stronger demands on the
solution? Clearly not. The correlations may not even be reliable to three
decimal places. Even the value of r = .26 should be read as r ≈ .26. Hence,
the secondary approach to ties makes no sense here.

9.5 Rank-Images

A completely different way of computing disparities in ordinal MDS is based
on rank-images. The basic idea is that if a perfect fit exists in ordinal MDS,
then the rank-order of the distances must be equal to the rank-order of the
proximities. To compute the disparities, a switch is made to a loss function
that is different from Stress; that is,

τ(d̂) = (Rpd̂ − Rdd)′(Rpd̂ − Rdd), (9.12)

where we assume for simplicity that all the weights wij are one in the
Stress function. Rp is a permutation matrix (that has only a single one in
each row and column, and zeros elsewhere) such that Rpp is the vector
of proximities ordered from small to large. Similarly, Rd is a permutation
matrix that orders the distances d from small to large. Rp is known, the
vector of distances d is known, and thus Rd is known. The only unknown
vector is the vector of disparities d̂ that we intend to find. To find the
minimum of (9.12) we use the fact that R′R = I for any permutation
matrix R. Equation (9.12) is a quadratic function in d̂, so that its minimum
can be found in one step by setting the gradient (first derivative)

∇τ(d̂) = 2R′
pRpd̂ − 2R′

pRdd = 2d̂ − 2R′
pRdd

equal to zero for all elements: ∇τ(d̂) = 0 implies d̂ = R′
pRdd (and Rpd̂ =

Rdd). If the proximities are already ordered increasingly, then Rp = I and
the rank-image transformation amounts to setting the disparities equal to
the ordered distances.

A flaw of using rank-images for ordinal MDS is that convergence of the
overall algorithm cannot be guaranteed. This is caused by the switch from



214 9. Metric and Nonmetric MDS

TABLE 9.7. Derivation of rank-image disparities from the politicians data given
in Tables 9.2 and 9.3.

Pair Rpp Rpd Rdd Rpd̂
Humphrey–McGovern 1 7.8 0.8 0.8
McGovern–Percy 2 3.2 1.7 1.7
Nixon–Wallace 3 0.8 2.3 2.3
Nixon–Percy 4 1.7 2.3 2.3
Humphrey–Percy 5 9.1 2.9 2.9
Humphrey–Nixon 6 7.9 3.2 3.2
Humphrey–Wallace 7 7.4 7.4 7.4
McGovern–Nixon 8 2.3 7.8 7.8
Percy–Wallace 9 2.3 7.9 7.9
McGovern–Wallace 10 2.9 9.1 9.1

the Stress loss function to the loss function (9.12). This could be solved by
trying to minimize the same function (9.12) for updating the configuration
X. However, because Rd is dependent on the distances and thus on X,
it is very hard to minimize (9.12) over X. Nevertheless, we can still use
rank-images in the Smacof algorithm, although convergence is no longer
guaranteed. As De Leeuw and Heiser (1977) remark: “It is, of course, per-
fectly legitimate to use the rank-images . . . in the earlier iterations (this
may speed up the process, cf. Lingoes & Roskam, 1973). As long as one
switches to [monotone regression] in the final iterations convergence will
be achieved” (p. 742). Lingoes and Roskam (1973) do exactly this in their
Minissa program, because they claim that “the rank-image transformation
is more robust against trivial solutions and local minima” (Roskam, 1979a,
p. 332).

As an example of the calculation of rank-images, we again use the data
on the similarity of politicians from Table 9.2. The proximities are already
ordered from small to large, so that Rp = I. The disparities according to
the rank-image transformation are given in Table 9.7.

In Guttman (1968) and in some computer programs, rank-images are
denoted by d∗

ij (d-star) as opposed to d̂ij (d-hat) obtained by monotone
regression. Here, we retain the notation of d̂ij for a disparity, even if the
disparity is a rank-image.

9.6 Monotone Splines

Quite flexible transformations are obtained by using splines. We show that
special cases of (monotone) splines include interval transformations, poly-
nomial transformations, and ordinal transformations. In this section, we
limit ourselves to the class of monotone splines, which are also called I-
splines (integrated splines) in the literature. Whenever we refer to a spline
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in the sequel, we mean a monotone spline. One of its main characteristics is
that the resulting transformation is smooth. For a good review of applica-
tions of monotone splines in statistics, we refer to Ramsay (1988). For more
general references on splines, see De Boor (1978) and Schumaker (1981).

There are three reasons for wanting a smooth transformation in MDS.
First, ordinal MDS can result in a crude transformation. For example, in
Figure 9.3 the rank-order of ten different proximities was transformed in
only two different disparities. Such crude transformations neglect much of
the variation in the proximities. A second reason is that we want to retain
more than ordinal information of the data. For example, if the proximities
are correlations, we may want to consider more than just the rank-orders of
the correlations (as in ordinal MDS), but less than the interval information
(as in interval MDS). Third, degenerate solutions (see Chapter 13) can be
avoided by imposing smooth transformations. In general, a spline trans-
formation yields a much smoother transformation curve than an ordinal
transformation. Compare, for example, the nonsmooth ordinal transforma-
tion in Figure 9.1 and the smooth spline transformation in the same figure.
Thus, splines can be used to obtain smooth transformation curves, while
keeping the ordinal information of the proximities intact.

Characterization of Monotone Splines
What does a spline transformation look like? In general, the transformation
is a smooth monotone increasing curve. The conceptual idea is that it is not
possible to map all proximities into disparities by one simple function (such
as the linear transformation in interval MDS). Then, splines can be used to
specify such simple mappings for several intervals. The additional restric-
tion on the separate transformation of each interval is that they should
be smoothly connected and monotone increasing. We discuss later that
interval and ordinal transformations are two extreme cases of monotone
spline transformations. Hence, other spline mappings can be seen as more
restrictive than ordinal mappings and less restrictive than linear mappings.

The endpoints (extrema) of the intervals are called knots. Because splines
are required to be smooth, the endpoint of one interval coincides with
an extremal point of the adjacent interval, so that a knot ties together
the two intervals. The size of the intervals is characterized by the knot
sequence of the knots ti. As before in this chapter, we string out the s =
n(n−1)/2 proximities in the vector p and index its elements by i, where i =
1, 2, . . . , s. We also assume that the elements in p are ordered increasingly.
Two knots are reserved, one for the smallest value of the proximities t0 =
pmin and the other for the largest value tm = pmax. The other knots, if
present, are called interior knots, because they must be greater than t0
and smaller than tm. Thus, the ordered knot sequence of the m knots
t0 = pmin, t1, t2, . . . , tm = pmax defines the intervals [t0, t1], [t1, t2], . . . ,
[tm−1, tm], so that every observed value pij falls into one of these intervals.
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FIGURE 9.7. Example of a spline transformation with three interior knots.

Usually, the interior knots are placed at K − 1 quantiles so that the K
intervals are equally filled with proximities. Figure 9.7 shows an example of
a spline transformation with three interior knots that define four intervals.

The smoothness within an interval is guaranteed by choosing the trans-
formation as a polynomial function of the proximities. Examples of poly-
nomial functions are f(p) = 3p2 − 2p + 1 (a second degree polynomial),
and f(p) = 6p − 3 (a first degree polynomial). In general, a polynomial
function of degree r is defined as f(p) =

∑r
k=0 akpk, where ak are weights

and p0 = 1. The degree r of the polynomial is specified by the order of the
spline, or the degree of the spline. Because the entire spline transformation
must be smooth, we must also have smoothness between the intervals at
the knots. The smoothness at the knots is also determined by the order of
the spline in the following way: at knot ti, the first r − 1 derivatives of two
polynomials of the adjacent intervals [ti−1, ti] and [ti, ti+1] must be equal.
For a spline of order 1, this property implies that the lines are joined at
each interior knot, so that the transformation is continuous. A quadratic
spline has—apart from continuity—equal first derivatives at each interior
knot. A third-order spline has continuity up to the second derivatives at
the interior knots, and so on. Note that a spline of order 0 is not even
continuous.

It remains to be seen how a spline transformation can be computed.
Suppose that we specify a spline of degree r with k interior knots. It turns
out that the spline transformation (with the properties outlined above)
can be computed by using a special s × (r + k) matrix M that can be
derived from p. The spline transformation is defined simply as d̂ = Mb
for any vector of nonnegative weights b. Viewed this way, finding a spline
transformation is nothing more than solving a multiple regression problem
for optimal weights b. These weights are used to predict the fixed distances
d by the weighted sum d̂ = Mb. We restrict b to be nonnegative, which
ensures that the transformation is monotone increasing.
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FIGURE 9.8. Separate columns of spline bases M belonging to a monotone spline
of order 2 with three interior knots. The plot on the bottom right is a transfor-
mation resulting from a weighted sum of the previous five columns of M plus an
intercept.

Specifying the Matrix M

The crux of a spline transformation lies in how the matrix M is set up. It
turns out that for monotone splines each column is a piecewise polynomial
function of p, in such a way that any linear combination satisfies the re-
quired smoothness restrictions at the knots. To accomplish this, matrix M
has a special form. The elements of column j of M in the first max(0, j −r)
intervals are equal to 0, and the elements in the last max(0, k−j +1) inter-
vals are equal to 1. The remaining intervals contain a special polynomial
function of degree r, which we specify below for splines of orders zero, one,
and two. Figure 9.8 shows an example of the columns of M as a function of
p for k = 3 and r = 2. The first column m1 has elements equal to 1 in the
last three intervals, the second column m2 has elements 1 in the last two
intervals, the third column m3 has 0s in the first interval and 1s in the last
interval, the fourth column m4 has 0s in the first and second intervals, and
the fifth and final column has 0s in the first, second, and third intervals.
The values in the intervals that are not 0 or 1 are a quadratic function in
pij that is continuous and has equal derivatives at the knots.

We now come to explicit expressions for splines of orders zero, one, and
two. The columns of M for an order-zero spline are defined by an indicator
function that is 0 if pi is smaller than knot j and 1 otherwise; that is, the
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spline basis M is an s × k matrix with elements

mij =
{

0 if t0 ≤ pi < tj ,
1 if tj ≤ pi < tk+1.

If the number of interior knots k is 0, then M is not defined in a zero-
order spline, because all values pi fall in the same interval [t0, t1], so that
mi = 1 for all i. Clearly, for our purpose, the transformation d̂ij = 1 for
all i, j is not acceptable, because it ignores the variability in the observed
proximities.

The columns of M of an order-one spline are defined by a piecewise linear
function; that is,

mij =

⎧⎪⎨⎪⎩
0 if t0 ≤ pi < tj−1,
pi − tj−1
tj − tj−1

if tj−1 ≤ pi < tj ,

1 if tj ≤ pi ≤ tk+1.

For a monotone spline of order two, we can write a direct formulation of
the elements of M; that is,

mij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if t0 ≤ pi < tj−2,
(tj−2 − pi)2

(tj−1 − tj−2)(tj − tj−2)
if tj−2 ≤ pi < tj−1,

1 − (tj − pi)2
(tj − tj−1)(tj − tj−2)

if tj−1 ≤ pi < tj ,

1 if tj ≤ pi < tk+1,

after Ramsay (1988). Note that for j = 1 we have reference to tj−2 = t−1,
which we define as t−1 = t0. Equivalently, for j = k + 1 we define knot
tj = tk+1. The lower-right plot in Figure 9.8 plots the proximities against
d̂ = Mb for some given vector b. For the calculation of monotone splines
of higher order and for more general information on splines, we refer to
Ramsay (1988) and De Boor (1978).

Let the proximity matrix P be given by

P =

⎡⎢⎢⎣
0 1.0 1.5 3.2
1.0 0 2.0 3.8
1.5 2.0 0 4.5
3.2 3.8 4.5 0

⎤⎥⎥⎦ ,

or in vector notation p′ = (1.0, 1.5, 2.0, 3.2, 3.8, 4.5). Let the knots be given
by t0 = 1.0, t1 = 3.0, t2 = 4.5, so that the number of interior knots k equals
1. For these data Table 9.8 shows M for a zero-order spline, a first-order
spline, and a second-order spline.

The spline basis M of p is invariant under linear transformation of p.
It turns out that by choosing the two extrema as knots, we obtain a row
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TABLE 9.8. Example of spline bases M for a zero-order spline, a first-order
spline, and a second-order spline. The knots are t0 = 1.0, t1 = 3.0, t2 = 4.5.

r = 0 r = 1 r = 2
p m1 m1 m2 m1 m2 m3

1.0 0 0.00 0.00 0.00 0.00 0.00
1.5 0 0.25 0.00 0.44 0.04 0.00
2.0 0 0.50 0.00 0.75 0.14 0.00
3.2 1 1.00 0.13 1.00 0.68 0.02
3.8 1 1.00 0.53 1.00 0.91 0.28
4.5 1 1.00 1.00 1.00 1.00 1.00

of 0s for the smallest proximity and a row of 1s for the largest proximity,
as can be verified in the examples of Table 9.8. This implies that whatever
the weights b, the disparity of the smallest proximity will be 0. This is
not desirable in MDS, because the smallest proximity does not necessarily
have to be represented by a zero distance. Therefore, we include a positive
intercept in our spline transformation; that is, d̂ = b01 + Mb. For MDS,
we need the intercept, so that the disparity corresponding to the smallest
proximity can be transformed into any nonnegative value.

Special Cases of Monotone Splines
Let us look at two special cases of monotone splines. The first case is a
spline with order larger than zero (r > 0) and no interior knots (k = 0),
so that there are only two knots, one at the smallest value of p and one at
the largest value of p. For this case, monotone splines have the property
that the row sum of M is equal to cp (with c > 0 an arbitrary factor);
that is, cpi =

∑
j mij . An example of a transformation plot for this case is

given in Figure 9.9a. A second property is that such spline transformations
are equivalent to transformations obtained by polynomial regression of the
same degree. If we deal with a first-order spline, then M consists of one
column only that is linearly related to p. Therefore, a first-order spline with
two knots and an intercept is equivalent to an interval transformation, as
can be seen in Figure 9.9b.

The second special case of a monotone spline occurs if exactly k = n − 1
interior knots and the order r = 0 are specified. If an intercept is included,
then this is equivalent to performing monotone regression. A small example
clarifies this statement. Let the proximities be p′ = (1, 2, 3, 4, 5) and the
knots be at t′ = (0.5, 1.5, 2.5, 3.5, 4.5, 5.5). Then, the matrix M of a
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FIGURE 9.9. Special cases of spline transformation: (a) all weights bi = 1, two
knots, and order larger than zero; (b) spline with two knots and order one, which
is equal to an interval transformation if an intercept is included.

zero-order spline is equal to

M =

⎡⎢⎢⎢⎢⎣
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎦ .

For monotone splines, we require weights b to be larger or at most equal
to 0, so that Mb plus an intercept b01 (with b0 ≥ 0) is always larger than
0. The matrix multiplication plus the intercept results in

d̂ = b01 + Mb = b0

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

b1
b2
b3
b4

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
b0
b0 + b1
b0 + b1 + b2
b0 + b1 + b2 + b3
b0 + b1 + b2 + b3 + b4

⎤⎥⎥⎥⎥⎦ . (9.13)

But the restrictions bj ≥ 0 for j = 0 to 4 in (9.13) imply that 0 ≤ d̂1 ≤ d̂2 ≤
d̂3 ≤ d̂4 ≤ d̂5, which is exactly the same restriction as in monotone regres-
sion. Thus, a zero-order monotone spline transformation with appropriately
chosen knots is exactly equal to a monotone regression transformation.

Therefore, a monotone spline transformation can be seen as a general
transformation with linear and ordinal transformations as extreme cases.
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Solving the Nonnegative Least-Squares Problem for
Monotone Splines

How can we calculate the disparities d̂ for a monotone spline transforma-
tion? Remember that the disparities for splines with intercept are defined
by d̂ = Mb, where M here is augmented with a column of 1s for the
intercept and the weight vector b is augmented with element b0 for the
intercept. We have to find weights bj such that they are as close as possible
to the (fixed) distance vector d, subject to the constraints that bj ≥ 0.
Thus, we have to minimize

τ(b) = (d − d̂)′(d − d̂) = (d − Mb)′(d − Mb), (9.14)

subject to bj ≥ 0. Minimizing τ(b) over b is a nonnegative least-squares
problem. It can be solved by alternating least squares (ALS), which, in this
case, amounts to the following strategy. First, start with an initial weight
vector b, with bj ≥ 0. Then, fix all weights except bj . Then, compute
r = d − ∑

l �=j blml, where mj denotes column j of matrix M. Problem
(9.14) simplifies into

τ(bj) = (r − bjmj)′(r − bjmj) = r′r + b2
jm

′
jmj − 2bjm′

jr,

which reaches its unconstrained minimum at bj = m′
jr/m

′
jmj . If bj < 0,

then we set bj = 0. Then, we update the next weight, while keeping the
other weights fixed, compute the unconstrained minimum (if negative, then
set it to zero), and so on, until we have updated all of the weights once.
These steps define one iteration of the alternating least-squares algorithm,
because every weight bj has been updated once. Iterate over this process
until the weights b do not change anymore. It can be proved that this
alternating least-squares algorithm always reaches a global minimum of the
nonnegative least-squares problem. A different strategy for solving (9.14)
under nonnegative constraints is described in Lawson and Hanson (1974,
p. 161).

9.7 A Priori Transformations Versus Optimal
Transformations

In data analysis it is not uncommon to preprocess the data to make their
distribution more “normal.” The researcher may want to preprocess his
or her dissimilarity data with a similar goal in mind. It may appear more
attractive from a theoretical point-of-view not to optimally transform dis-
similarities into d-hats by “some” monotonic function, but to apply a fixed
a priori transformation on them. One such choice was suggested by Buja
and Swayne (2002): they recommend using a power transformation of the
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FIGURE 9.10. Distribution of the Morse code dissimilarities.

dissimilarities; that is, d̂ij = δq
ij with q any positive or negative value. A

positive value of q yields a convex transformation that stretches the larger
dissimilarities and shrinks the smaller ones. In the case where the distribu-
tion of the dissimilarities is negatively skewed (thus with relatively many
large values and few small values), then a positive q will make the d̂ijs
more evenly distributed. For negative q, the power transformation has a
concave form thereby shrinking the larger dissimilarities and stretching the
smaller ones. For dissimilarities that have a positively skewed distribution
(i.e., data with few large and many small values), a negative q stretches the
larger values and shrinks the smaller ones. The larger (or smaller) q, the
stronger the shrinking and stretching. Values of q close to zero or exactly
equal to zero are not very informative as all d-hats become the same; that
is, d̂ij = δ0

ij = 1 for all ij. These d-hats can be seen as totally uninformative
because they do not depend on the data (see also Section 13.3).

Let us consider the Morse code data from Section 4.2. To apply MDS, we
first have to symmetrize the similarities in Table 4.2. To apply the power
transformation, we also need to transform the similarities into dissimilar-
ities. This was done by setting δij = maxij((sij + sji)/2) − (sij + sji)/2
thereby ensuring that the smallest δij is zero and the largest is equal to
maxij((sij + sji)/2). Note that Buja and Swayne (2002) also extensively
discuss the Morse code data but use a different way of constructing the
dissimilarities. Figure 9.10 shows the distribution of the dissimilarities ob-
tained this way. This distribution has a tail to the left (a negatively skewed
distribution), so that there are more large dissimilarities than small dissim-
ilarities. A power transformation using q = 3.1 yields the distribution in
Figure 9.11e which seems to be reasonably evenly distributed. One way to
find out how to choose the value of q is simply trying out different values
and see which one gives the best Stress value. In our case, the optimal value
for q was 3.1.

We now compare the power transformation to an ordinal MDS on these
data. Figure 9.11 exhibits the results for both analyses with the left panels
showing the results of a power transformation and the right panels the
ordinal MDS results. The Stress-1 for the power transformation is .2290
and for ordinal MDS 0.2102 indicating that only a little information is
lost by switching from ordinal to a power transformation. Looking at the
distributions of the d̂ijs, the ordinal transformation seems to be better able
to stretch the smaller values than the the power transformation. Thus, the
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a. Solution power transformation. b. Solution ordinal MDS.

c. Shepard diagram power
    transformation.

d. Shepard diagram ordinal MDS.

e. Distribution of d-hats of the power
    transformation.

f. Distribution of d-hats of ordinal
   MDS.

0 0.5 1 1.5 2
Transformed data

0 0.5 1 1.5 2
Transformed data

FIGURE 9.11. MDS of the Morse code data using the power transformation with
q = 3.1 (left panels) and an ordinal MDS (right panels).
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gain in fit is due to the better ability of the ordinal MDS to properly
represent the smaller dissimilarities, because their errors in the Shepard
plot are smaller for ordinal MDS than for the power transformation. The
solutions in Figures 9.11a and 9.11b are highly similar. Close inspection
reveals small differences in location, perhaps most notably so for points “–
– – – .” (9), “.” (e), and “–” (t).

The example shows that a power transformation using only a single pa-
rameter can yield an MDS solution that is close to ordinal MDS. Clearly,
a power transformation is a more parsimonious function than an ordinal
transformation. A strong point of Buja and Swayne (2002) is to consider
the distribution of the d̂ijs. We conjecture that good transformations tend
to give d-hats that are evenly distributed. For dissimilarities that have an
“irregular” shape (e.g., a bimodal shape), we expect that the power trans-
formation will not be able to yield a solution close to an ordinal one. For
regularly shaped but skewed distributions, we expect the power transfor-
mation to work fine.

Applying the power transformation in MDS is easily done in the Ggvis
software discussed extensively in Buja and Swayne (2002) (see also, Ap-
pendix A). In an interactive way, Ggvis allows you to determine the opti-
mal q. Note that Systat has a special option to find the optimal q by the
program itself.

9.8 Exercises

Exercise 9.1 Consider the dissimilarity data in Exercise 2.4 and the MDS
coordinates for these data in Exercise 3.2. For convenience, they are both
reproduced in the table below.

Dissimilarities MDS Coordinates
Color Red Orange Green Blue Dim.1 Dim. 2
Red - 1 3 5 0 2
Orange 1 - 2 6 0 0
Green 3 2 - 4 4 0
Blue 5 6 4 1 6 6

(a) String out the dissimilarities for the different pairs of colors in a
column vector.

(b) Compute the MDS distances from the points’ coordinates, and ap-
pend a column with these distances to the vector of dissimilarities
from above.

(c) Derive the d̂ijs for the data-distance pairs, proceeding as we did above
in Table 9.4.
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(d) Plot a Shepard diagram for the data, distances, and d̂ijs.

(e) Find the rank-images of the distances.

(f) Make a scatter plot of the distances vs. the rank-images. What does
that plot tell you about the MDS solution?

Exercise 9.2 Discuss the Lingoes–Roskam conjecture that rank-images are
less prone to degenerated solutions than monotone regression in Kruskal’s
sense. What is the rationale for this conjecture?

Exercise 9.3 Consider the notion of primary and secondary approaches to
ties in ordinal MDS.

(a) List arguments or describe circumstances where the primary approach
makes more sense than the secondary approach.

(b) Collect and discuss arguments in favor of the secondary approach.

Exercise 9.4 Consider the transformation plots in Figure 9.1. Sketch some
monotone functions that satisfy the primary approach to ties. How do they
differ from functions for the secondary approach to ties? (Hint: Consider
Figure 3.3.)




