
19
Euclidean Embeddings

Distances are functions that can be defined on any set of objects. Euclidean
distances, in contrast, are functions that can only be defined on sets that
possess a particular structure. Given a set of dissimilarities, one can test
whether these values are distances and, moreover, whether they can even
be interpreted as Euclidean distances. More generally, one can ask the same
questions allowing for particular transformations of the given dissimilari-
ties such as adding a constant to each value. For ordinal transformations,
the hypothesis that dissimilarities are Euclidean distances is trivially true.
Hence, in ordinal MDS, we learn nothing from the fact that the dissimilar-
ities can be represented in a Euclidean space. In interval MDS, in contrast,
Euclidean embedding is not trivial. If the data can be mapped into Eu-
clidean distances, one can ask how many dimensions at most are necessary
for a perfect representation. A further question, related to classical MDS,
is how to find an interval transformation that leads to approximate Eu-
clidean distances, while keeping the dimensionality of the MDS space as
low as possible.

19.1 Distances and Euclidean Distances

Given a matrix of distances, one can ask whether these distances can be
interpreted as Euclidean distances. This is true only if they can be embed-
ded into a Euclidean space. The answer is positive if the scalar product
matrix B derived from these distances (see Section 7.9 or 18.4) can be de-
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FIGURE 19.1. (a) Radian distances among points a, . . . , d, and (b) their inter-
pretation as Euclidean distances.

TABLE 19.1. Distances between points a, . . . , d on the circle in Figure 19.1a
measured along the circle (radius=1).

Point a b c d
a 0.0000 3.1416 0.7854 1.5708
b 3.1416 0.0000 2.3562 1.5708
c 0.7854 2.3562 0.0000 2.3562
d 1.5708 1.5708 2.3562 0.0000

composed into B = XX′, with real X, or, equivalently, if B’s eigenvalues
are nonnegative (see Chapter 7). Conversely, if B has negative eigenval-
ues, the dissimilarities on which it is based can still be distances, albeit
non-Euclidean distances. Consider an example.

Distances on a Circle
Figure 19.1a shows a configuration of four points on a circle. To determine
their distances, we usually employ a straight ruler. This yields Euclidean
distances. But here we measure the length of the shortest path (“geodesic”)
between points i and j on the circle. The circumference of a circle with
radius 1 is equal to 2π. Thus, dab = π, dac = π/4, and so on, leading
to the values in Table 19.1. These values are definitely distances: they
are symmetric, they are nonnegative and exactly equal to 0 in the main
diagonal, and the triangle inequality holds for all triples.

In fact, all triangle inequalities turn out to be equalities; for example,
dab = dac + dcb. In Euclidean geometry, this implies that a, b, and c lie
on a straight line. Moreover, dab = dad + ddb and, thus, the points a, b,
and d must also lie on a straight line if the dissimilarities are interpreted
as Euclidean distances. But in Euclidean geometry, there is just one line
through the points a and b; hence, a, b, c, and d must all lie on it.
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Figure 19.1b shows this line. The points c and d are positioned on it
so that their distances satisfy the two triangle equalities above, and this
implies that the distance between c and d should be π/4, which, however,
is not in agreement with the value in Table 19.1.

Similarly, the scalar-product matrix derived from the distances in Table
19.1 using formula (18.17) yields the eigenvalues 5.61, 2.22, 0.00, and −1.21.
Hence, this matrix is not positive semidefinite and so we are led to the same
conclusion as before: the distances in Table 19.1 cannot be embedded into
a Euclidean space.

Properties of Euclidean Distances
Because we did not arrive at the values in Table 19.1 by using a straight
ruler, they cannot be Euclidean distances. Indeed, checking through them,
we are led to contradictions if we assume that they were. Euclidean dis-
tances, therefore, have properties above and beyond those of general dis-
tances. The contradiction to which we were led in Figure 19.1b rests on the
fact that for Euclidean distances there is just one geodesic path between
any two points; that is, all points x that satisfy dab = dax + dxb must lie
between a and b on the line through a and b.

This is not always true for other Minkowski distances. If points a and b
lie on a line not parallel to the coordinate axes, then the city-block metric,
for example, allows for infinitely many geodesics between a and b, so that
the above triangle equality for x does not mean that x will be crossed if we
move from a to b on a path of length dab. Hence, other Minkowski distances
have special properties that require investigation.

Investigations of a mathematical structure typically begin by consider-
ing particular cases (such as, e.g., a plane with a straight-ruler distance
measurement). One then attempts to describe the “essential” properties of
these cases and to write them up in a simple list of axioms from which
all of the theorems one has in mind may be proved. The axioms should
be abstract in the sense that they do not rely on ad hoc features of the
cases such as the dimensionality of the chosen geometry or a particular
coordination for its points.

Euclidean distances are defined abstractly (coordinate-free and
dimension-free) as the square root of the scalar product b(i− j, i− j), where
i−j is the difference vector of the vectors i and j. Thus, Euclidean distances
have properties related to those of scalar products. Two of these proper-
ties correspond to the axioms of (general) distances, namely, symmetry and
nonnegativity. The remaining property, linearity, brings in the special prop-
erties of Euclidean distances: b(s ◦ u + t ◦ v,w) = s · b(u,w) + t · b(v,w),
for any vectors u,v,w and scalars s, t. The operation · denotes the usual
multiplication of real numbers, whereas ◦ is different. It denotes that a vec-
tor is multiplied by a number (scalar). Also, + denotes addition of vectors,
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not the usual addition of numbers.1 As long as the rules that govern scalar
multiplication and vector addition are not specified, the linearity axiom
remains meaningless. But what are these rules?

The rules are collected in a system of axioms known as Abelian vector
spaces. It comprises two structures, a field and a group. The field is usually
the set of real numbers, with its two operations of addition and multipli-
cation. A group is a set of elements with one operation that satisfies the
following axioms.

g1 for any three of its elements, x, y, and z, (x + y) + z = x + (y + z)
(+ is associative);

g2 there exists a zero element, z, so that x + z = x, for any x;

g3 there exists an inverse element x(i) for any x, so that x + x(i) = z;

g4 (for Abelian groups only) for any elements x, y, x + y = y + x
(+ is commutative).

A vector space ties together the field and the group (whose elements are
now called vectors and written in this book in bold fonts) by an operation
◦ so that:

v1 k ◦ (x + y) = k ◦ x + c ◦ y;

v2 (s + t) ◦ x = s ◦ x + t ◦ x;

v3 s ◦ (t ◦ x) = (s · t) ◦ x;

v4 e ◦ x = x,

where s, t, e are scalars, e is the neutral element of the field, and x,y are
any elements of the group.

What does that tell us? It means that when we talk about Euclidean
distances we are necessarily talking (at least by implication) about a rich
mathematical structure. The notion of Euclidean distance is defined only
in this system. It can be defined on a set of points u, v, w only if these
points are first linked to corresponding elements u,v,w of a vector space
(“embedding”). Distances in general need no such structural embeddings.
The trivial distance, for example, defined as dij = 1 and dii = 0 for all
i, j, exists on any set of elements i, j, whether they can be interpreted as
vectors or not.

This also means that the properties of vector spaces cannot be tested
for any finite set of vectors, because they must hold, for example, for any

1A different symbol (such as ⊕) might be better to denote vector addition. We do
not use such particular notation here because we are almost always dealing with vectors
that are n-tuples of real numbers in this book. In this case, addition of vectors is defined
as the familiar addition of corresponding elements.
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TABLE 19.2. (a) Dissimilarities for five objects; - denotes a missing value; (b)
completing the proximity matrix by setting δii = 0 and δij = δji, for all i, j; (c)
matrix after adding 4.8 to each element.

(a) 1 2 3 4 5 (b) 1 2 3 4 5 (c) 1 2 3 4 5
1 - - - - - 1 0.0 0.2 1.2 0.2 -1.8 1 0 5 6 5 3
2 0.2 - - - - 2 0.2 0.0 0.2 3.2 -0.8 2 5 0 5 8 4
3 1.2 0.2 - - - 3 1.2 0.2 0.0 0.2 -1.8 3 6 5 0 5 3
4 0.2 3.2 0.2 - - 4 0.2 3.2 0.2 0.0 -0.8 4 5 8 5 0 4
5 -1.8 -0.8 -1.8 -0.8 - 5 -1.8 -0.8 -1.8 -0.8 0.0 5 3 4 3 4 0

scalars s and t, and, therefore, involve all vectors of the space. This is why
testing whether a given set of numbers are Euclidean distances is often
called, more correctly, testing whether these numbers can be embedded
into distances of a Euclidean space.

19.2 Mapping Dissimilarities into Distances

MDS models almost never assume that the given dissimilarities are dis-
tances. Rather, all models (except absolute MDS) admit some transfor-
mation on the dissimilarities such as, for example, a free choice of additive
and multiplicative constants on the dissimilarities in interval MDS. We now
study to what extent one can claim that some given dissimilarities can be
embedded into a Euclidean space, given that some such transformation can
be picked in an optimal way.

Allowing for a Multiplier on the Dissimilarities
Consider the dissimilarity matrix in Table 19.2a. This table is typical in-
sofar as often only the δijs for i < j are collected. This immediately makes
it impossible to test whether these values satisfy two of the properties of
distances: δij = δji and δii = 0, for all i, j. With no data to the contrary,
we assume that these conditions are satisfied and complete the matrix as
usual (Table 19.2b).

The resulting values violate the nonnegativity condition for distances.
However, ratio MDS does not claim that the dissimilarities are distances
but only that k · δij = dij , k �= 0. Hence, one can ask whether there exists
a multiplier k such that the k · δij values satisfy all three distance axioms.
For Table 19.2a, the answer is easily found: there is no such constant k for
these data, because a negative k would make the positive values negative,
and a positive one would not reverse the sign of the negative values. Hence,
the hypothesis that the values in Table 19.2a are distances except for a
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multiplicative constant k is wrong. Because they are not distances, they
are not, a fortiori, Euclidean distances.

Generally, we note that the relation k · δij = dij (for some appropriately
chosen k) is a hypothesis that may prove to be empirically wrong. Such
hypotheses are called (empirically) falsifiable.

Allowing for an Interval Transformation on the Dissimilarities
More important than ratio MDS is interval MDS. Interval MDS also allows
for an additive constant and, hence, claims that k · δij + c = dij , for some
k �= 0 and c. Under this condition, we can transform all of the values in
Table 19.2a into positive numbers. We simply add a number c > 1.8 to
each δij (c = 1.9, say), which transforms, for example, δ35 = −1.8 into the
new value δ∗

35 = δ35 + 1.9 = 0.1.
This then leaves only the triangle inequality as a distance criterion. We

find that it is violated for the δ∗
ij-values, because δ∗

45 + δ∗
52 < δ∗

42. However,
this inequality can be reversed by adding a larger constant c to all δijs,
because c appears twice on the left-hand side δ∗

45 + δ∗
52 = δ45 + c + δ52 + c

and only once in δ∗
24 = δ24 + c. To find the smallest possible c that gives

all triangle inequalities the desired sense, we check through all inequalities
and find that δ45 + δ52 = −1.6 ≥ 3.2 = δ42 is most violated; adding
c to the dissimilarities, we should obtain −1.6 + 2c > 3.2 + c or, at least,
−1.6+2c = 3.2+c; hence, the minimal c is c = 4.8. If we turn this inequality
around in the desired way by adding some c ≥ 4.8 to all dissimilarities, then
all of the other inequalities will also have the proper sense, because in each
case c is added twice to the side that should be greater and only once to the
other side. Taking c = 4.8 and setting all δii = 0, we arrive at Table 19.2c,
which satisfies all distance axioms. We can conclude that the proposition
that given dissimilarities are distances apart from an appropriate interval
transformation is always true (tautological) if δijs are given for only i < j.

Adding a positive additive constant will, in any case, transform any set
of dissimilarities δij , i < j, into distances, provided the constant is large
enough. Yet, in the extreme case where c → ∞, the distances thus generated
approximate trivial distances.

If, on the other hand, a complete data matrix is given, it cannot be
guaranteed that such constants exist. In fact, if just the δiis are given, then
the constants k and c must be chosen such that k · δii + c = dii = 0. This
restricts them so much that it is impossible to transform the dissimilarities
into distances if n ≥ 3.

Interval Transformed Dissimilarities and Euclidean Distances
We now go on and ask whether it is always possible to transform dissimi-
larities δij , i < j, not only into distances, but into Euclidean distances by
picking appropriate additive and multiplicative constants. The answer is
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yes. Assume that some constant has already been added to the dissimilari-
ties to make them all positive and that δii = 0, for all i, by definition. The
factor k is irrelevant in the following and is set to k = 1. Substituting δij +c
for dij in (18.17) should yield a matrix of bijs that is positive semidefinite if
an appropriate c is chosen. Setting δij +c for dij (for i �= j) and dii = 0 (for
all i) in (18.17), or, more compactly, dij = δij + (1 − θij)c, where θij = 1
(for i = j) and θij = 0 (for i �= j), we obtain

b∗
ij =

[ 1
2 (δ2

i. + δ2
.j − δ2

.. − δ2
ij)

]
+2c

[ 1
2 (δi. + δ.j − δ.. − δij)

]
+

c2

2

[
θij − 1

n

]
, (19.1)

where the point subscripts mean that the δs are averaged over the respective
indices.

If c = 0, then (19.1) is equal to (18.17). Otherwise, there are two addi-
tional terms. If we store the bracketed terms in (19.1) in the ij cells of the
matrices B, Br, and J, respectively, then (19.1) reads in matrix notation

B∗ = B + 2cBr +
c2

2
J. (19.2)

Note that B is the usual scalar-product matrix associated with the δijs,
and Br is the scalar-product matrix associated with the square roots of
the dissimilarities. J, finally, is the centering matrix used in (12.2). Our
task is to choose c such that B∗ is positive semidefinite. There are several
equivalent ways to state this condition. So far, we have seen two closely
related tests: B∗ has nonnegative eigenvalues; B∗ can be factored into XX′,
with real X. A third way to state positive semidefiniteness is that x′B∗x ≥
0, for all x. That is, the number resulting from premultiplying B∗ by any
(real) vector x′ and then postmultiplying x′B∗ by x must be nonnegative
(see Chapter 7).

The condition x′B∗x ≥ 0 is trivially true if x is the zero-vector: then
we have x′B∗x = 0. If x is any other vector, this product should also be
nonnegative. This condition is generally not as convenient as the eigenvalue
test, but sometimes it leads to insights. The condition requires that

x′B∗x = x′
[
B + 2cBr +

c2

2
J
]
x

= x′Bx + 2cx′Brx +
c2

2
x′Jx

= k1 + c · k2 + c2 · k3 ≥ 0. (19.3)

We find that k3 > 0, because x′Jx is positive for any x �= 0. (x′Jx simply
says

∑
i(xi − x̄)2 in summation notation.) The term k3 is multiplied by c2,

but k2 is multiplied by c only, and k1 does not change as a function of c
at all. Thus, if c is chosen ever larger, then c2 · k3 will eventually dominate



418 19. Euclidean Embeddings

�
�

�
�

���
�

�
�

��
�

�
�

�
���

�
�

�
��









5

1

2

3

4

FIGURE 19.2. Five-point configuration, with distances among points as in Table
19.2c.

the sum of the other two terms and make x′B∗x positive semidefinite.
It is therefore always possible to find an additive constant c that turns
dissimilarities δij (i < j) into Euclidean distances.

19.3 Maximal Dimensionality for Perfect
Interval MDS

We now know that dissimilarities δij , i < j, can always be mapped into Eu-
clidean distances by an interval transformation and by setting δij = δji and
δii = 0, for all i, j. With respect to the additive constant c, any sufficiently
large value will do. There are reasons, however, to choose the smallest pos-
sible value for c. For the values in Table 19.2a, we saw that they can be
transformed into distances by adding c1 = 4.8. This value turns the triangle
inequality that was most violated into an equality. The resulting distances
in Table 19.2c are Euclidean distances, because, by applying straight-ruler
measurements, we obtain the configuration in Figure 19.2. Adding some
c2 > c1 = 4.8 also leads to values that satisfy the triangle inequalities, but
wherever we had a triangle equality for c1 we will have a triangle inequality
for c2. Geometrically, adding some segment of length c2 − c1 to each line
segment in Figure 19.2 will force point 5 out of the plane of the paper, so
that our 5-point configuration will form a pyramid, and a space of three
dimensions will be required to represent the data.

Because this makes the representation unnecessarily inaccessible for in-
terpretation, it should be avoided. Of course, there is nothing in the data
that would allow us to decide whether the pyramid or the square-with-
midpoint configuration from Figure 19.2 is the true configuration, but, in
the absence of any further knowledge or hypotheses, there is no reason not
to assume that point 5 lies in the middle of the shortest path from 1 to 3.

We show how many dimensions are needed at most for a geometric em-
bedding of an n×n matrix of Euclidean distances. In equation (12.2), D(2)

is double-centered by J. This makes the rows/columns of B linearly depen-



19.4 Mapping Fallible Dissimilarities into Euclidean Distances 419

TABLE 19.3. Matrix for finding the minimal additive constant c for data in
Table 19.1 using formula (19.4); c = 1.291, the largest real eigenvalue of this
matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 3.16 −5.48 2.24 0.08
0 0 0 0 −5.48 5.63 −1.47 1.31
0 0 0 0 2.24 −1.47 2.55 −3.32
0 0 0 0 0.08 1.31 −3.32 1.93

−1 0 0 0 −2.55 2.95 −0.98 0.59
0 −1 0 0 2.95 −4.12 1.37 −0.20
0 0 −1 0 −0.98 1.37 −2.55 2.16
0 0 0 −1 0.59 −0.20 2.16 −2.55

⎤⎥⎥⎥⎥⎥⎥⎥⎦

dent so that rank(B) < n: the centering matrix J generates deviation scores
in the matrix it operates on, and, thus, the rows or columns, respectively,
of the matrix product sum to the null vector 0. Hence, rank(B) ≤ n−1, so
that the maximum dimensionality of a Euclidean distance matrix is n − 1.
But, as we saw above in Figure 19.2, there may be a c that reduces the
dimensionality further. Cailliez (1983) presents a solution for c which guar-
antees distances that can be represented in at most n − 2 dimensions. The
minimal additive constant c is given by

c = largest (real) eigenvalue of =
[

0 2B
−I −4Br

]
. (19.4)

The matrix in (19.4) is set up by collecting the matrices 2B, 4Br, the null
matrix 0, and the identity matrix I into one supermatrix. All four matrices
have the order n × n; hence, the supermatrix has the order 2n × 2n. For
the values in Table 19.1, we find by formula (19.4) that c ≈ 1.29. Adding
1.29 to all numbers in Table 19.1 leads (almost precisely) to a positive
semidefinite B∗ with two zero eigenvalues or rank(B∗) = n − 2 = 2.

If we deal with an ordinal MDS problem, we are not restricted to inter-
val transformations for mapping dissimilarities into Euclidean distances.
However, it seems that this does not allow one to reduce the maximal di-
mensionality of the MDS space below n − 2. Lingoes (1971), in an earlier
paper, describes a simple monotonic transformation on the dissimilarities
that guarantees Euclidean distances but does not reduce the dimensionality
below n − 2.

19.4 Mapping Fallible Dissimilarities into
Euclidean Distances

In the preceding sections, we ignored the issue of measurement error. But
now that we understand how error-free dissimilarities are related to dis-
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tances and Euclidean distances under various transformations, some sta-
tistical considerations should be made. For fallible data, the transformation
problem becomes k · pij + c = dij + eij , where dij is the true distance and
eij is an error component. The task, then, is to find an additive constant c
such that the transformed dissimilarities are distances except for a random
component. In other words, the shifted data values may violate the critical
triangle inequality condition only to such an extent that the violations can
be attributed to error. This requires an error theory and results in a much
more complicated problem than those considered above. We may require, in
addition, that the dijs be Euclidean distances and that their representation
space be as small as possible. This represents a difficult problem, which is
subject to different interpretations. We consider the formulation of Mes-
sick and Abelson (1956), which, in combination with the double-centering
conversion in formula (12.3), is known as classical MDS.

The Minimum Statistical Additive Constant
For error-free Euclidean distances, the eigenvalues of the associated scalar-
product matrix B are all positive or zero. The number of positive eigen-
values is equal to the rank of B. Thus, an additive constant c should be
chosen such that (a) B becomes positive semidefinite and (b) the number
of zero eigenvalues is maximal.

For error-affected Euclidean distances, this c would be too large. Be-
cause of error, the distance estimates cannot be expected to be Euclidean
distances so that B has, in general, some negative eigenvalues. But the
distribution of the eigenvalues should have a peculiar form. If the error
component is small, there should be some large eigenvalues and some small
ones. The large eigenvalues represent the true structure, and the small ones
are due to the random over- and under-estimation of the distances. More-
over, “. . . with fallible data . . . the small roots will probably not equal zero
but will vary positively and negatively around zero” (Messick & Abelson,
1956, p. 7). If this assumption is made, the sum of the small eigenvalues
should be equal to zero, and c should be chosen accordingly.

We start with equation (12.2) and see what can be derived from this
assumption about the eigenvalue distribution. Messick and Abelson (1956)
use a theorem from matrix algebra which says that the trace of a symmetric
matrix B is equal to the sum of its eigenvalues. That is, if QΛQ′ is the
eigendecomposition of B, then

tr B = tr QΛQ′ = tr ΛQ′Q = tr Λ,

which uses Q′Q = I and the invariance of the trace function under cyclic
permutation (property 3 of Table 7.4). Assume that the eigendecomposition
of B∗—which, of course, cannot be computed before c is defined—yields
the eigenvalues λ1,. . . , λn and the corresponding eigenvectors q1,. . . ,qn.
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Thus, B∗qi = λiqi or q′
iB

∗qi = q′
iλiqi = λiq′

iqi = λi, because q′
iqi = 1,

by convention. Now, let the first r eigenvalues be large and the remaining
n − r small, as discussed above. Then, r is the dimensionality of the true
distances and their scalar products. The sum of the first r eigenvalues is∑r

i=1 λi =
∑r

i=1 q′
iB

∗qi. Hence, by the trace-eigenvalue theorem (see also
Section 7.4), we find

n∑
i=1

b∗
ii =

r∑
i=1

λi, (19.5)

or

tr B∗ =
r∑

i=1

q′
iB

∗qi. (19.6)

Substituting B + 2cBr + (c2/2)J for B∗ leads to

tr
[
B + 2cBr +

c2

2
J
]

=
r∑

i=1

q′
i

[
B + 2cBr +

c2

2
J
]
qi, (19.7)

a quadratic equation with the unknown c. The derivation hinges on (19.5):
the sum of the first r eigenvalues of B∗ is equal to the trace of B∗ only if
the sum of the remaining n − r eigenvalues is equal to zero. This means
that the n − r smallest eigenvalues are either all equal to zero or they are
distributed symmetrically about zero, as assumed.

Equation (19.7) involves two unknowns, r and c. However, even if we
assume for a moment that r has been estimated in some way, we note that
it still is not possible to solve the equation for c, because the eigenvectors
qi are computed from B∗ and thus also depend on c. Solving the problem
may therefore be attempted in the usual iterative fashion. First, choose
some value for c[0], compute the eigenvalues for B∗, and solve (19.7) for a
new c, c[1] . This c[1] leads to a new B∗, new eigenvalues, and a new c, c[2],
and so on. We show that it is better to choose c[0] too large than too small.
A good choice for c[0] would be the additive constant that strictly satisfies
all triangle inequalities.

An Illustration for Finding the Statistical Additive Constant
It is peculiar that Messick and Abelson (1956) illustrate their method by
an example in which there is no error at all in the distances, that is, a
case where we do not really have to estimate the additive constant c but
can simply compute it. We nevertheless present this example here because
it is transparent and instructive. We start by defining the configuration
in Figure 19.3, which yields the true Euclidean distances. As before, only
the values in one-half of the distance matrix are considered. Assume that
subtracting 1 from these distances generates the dissimilarities that we
observe; for example, dAB = 1 and hence δAB = dAB − 1 = 1 − 1 = 0.
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FIGURE 19.3. Configuration used in Messick and Abelson (1956) study.

Because δAC = 1 and δCB = 0, the triangle inequality δAC ≤ δAB + δBC is
violated for the dissimilarities.

To find the true additive constant c in the sense of Messick and Abelson
(1956) (which here is c = 1 because there is no error in the dissimilarities) a
starting value c[0] has to be chosen so that B∗ is defined and its eigenvectors
can be computed. Table 19.4 shows the effect of different c[0]-values on the
eigenvalues and eigenvectors of B∗. All values equal to or greater than 1
transform the dissimilarities into Euclidean distances. For c[0] = 1, the true
additive constant, only two nonzero eigenvalues result. (One eigenvalue is
equal to 0 in all cases due to the centering of B∗.) For c[0] < 1, negative
eigenvalues arise, because the triangle inequalities remain violated under
this condition. Moreover, for c[0] = 0, the first two eigenvectors define a
configuration very similar to the one in Figure 19.3, but this is not the case
for c[0] = −1 and = −2. Messick and Abelson (1956) claim that, in these
latter cases, it is the eighth and ninth eigenvectors whose coordinates define
a configuration similar to the one in Figure 19.3. However, such similarities
are more apparent than real, because negative eigenvalues correspond to
negative distances, and it is quite unclear what this means geometrically.
What is definite, in contrast, is that choosing a “small” value for c[0] may
lead to problems, because it may result in using the “wrong” r eigenvectors
in (19.7). We also note that, for larger initial c-values, two eigenvalues
are definitely dominant, which enables us to make a decision on the true
dimensionality r.

Assume now that c[0] = 4 was chosen. This defines B∗ in (19.6), which can
then be factored. Studying the resulting eigenvalue distribution suggests
setting r = 2. This defines (19.7) and yields as the solutions for its unknown
c1 = 0.997 and c2 = −0.55. The value −0.55 is evidently not the desired
additive constant, because it does not eliminate violations of the triangle
inequalities. Hence, 0.997 must be the solution. We know that the true
c = 1, so c1 = 0.997 is quite close. The Messick–Abelson procedure has,
thus, after just one iteration, almost recovered the true value. But why is
c1 not exactly equal to 1? The reason is that c[0] = 4 was too large a value.
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TABLE 19.4. First two eigenvectors (fitted to correspond to configuration in
Fig. 19.3) and all eigenvalues for different choices of c[0]; eigenvalues with star
correspond to shown eigenvectors; after Messick and Abelson (1956).

c[0] = 4 3 2 1 0 −1 −2
q1 q2 q1 q2 q1 q2 q1 q2 q1 q2 q1 q2 q1 q2

A .97 .97 .98 .98 .99 .99 1.00 1.00 1.05 1.05 .72 .72 .90 .90
B 1.05 .00 1.04 .00 1.03 .00 1.00 .00 .88 .00 1.31 .00 1.15 .00
C .97 −.97 .98 −.98 .99 −.99 1.00 −1.00 1.05 −1.05 .72 −.72 .90 −.90
D .00 1.05 .00 1.04 .00 1.03 .00 1.00 .00 .88 .00 1.31 .00 1.15
E .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
F .00 −1.05 .00 −1.04 .00 −1.03 .00 −1.00 .00 −.88 .00 −1.31 .00 −1.15
G −.97 .97 −.98 .98 −.99 .99 −1.00 1.00 −1.05 1.05 −.72 .72 −.90 .90
H −1.05 .00 −1.00 .00 −1.03 .00 −1.00 .00 −.88 .00 −1.31 .00 −1.15 .00
I −.97 −.97 −.98 −.98 −.99 −.99 −1.00 −1.00 −1.05 −1.05 −.72 −.72 −.90 −.90
λ1 23.12∗ 16.41∗ 1.70∗ 6.00∗ 2.31∗ 1.03 3.05
λ2 23.12∗ 16.41∗ 1.70∗ 6.00∗ 2.31∗ 1.03 3.05
λ3 8.02 4.34 1.67 .00 .02 .86 2.69
λ4 7.32 3.88 1.44 .00 .00 .11 2.01
λ5 6.93 3.66 1.33 .00 −.14 .00 1.68
λ6 6.36 3.24 1.12 .00 −.14 − .34 .99
λ7 6.36 3.24 1.12 .00 .33 − .34 .00
λ8 5.95 2.97 .98 .00 −.33 −.52∗ −2.17∗

λ9 .00 .00 .00 .00 −.44 −.52∗ −2.17∗

On the other hand, we see from Table 19.3 that the first two coordinate
vectors (which are the eigenvectors rotated to match the true coordinate
vectors of Figure 19.3 as closely as possible) are very similar across different
values for c ≥ 1. Thus, it hardly matters which eigenvectors are used in
(19.7). For this reason, c1 is found to be so close to the true value after
just one iteration. If, on the other hand, too small a value had been chosen
for c[0], negative eigenvalues would have resulted for B∗. In this case, one
should start all over again using a larger constant.

Geometric Effects of Nonminimal Additive Constants
Table 19.4 shows that choosing any value other than the true additive
constant has a distorting effect on the recovered configuration.2 The true
underlying configuration in Figure 19.3 is a pattern of squares in which the
points lie on a network of straight lines. If we plot the point coordinates for
c = 4 in Table 19.4, we find that the resulting configuration is very similar
to Figure 19.3, but the grid is bent convexly outwards from the origin. For
example, point B is shifted away from the origin on the Y -axis, whereas A
and C stay put. The analogous situation is true for D, F , and H. Moreover,
in the 3D MDS space, the plane that best represents Figure 19.3 is warped
to form a peculiar saddle shape: A and I are pulled upwards, but G and

2Similar distorting effects can be observed when a metric is chosen in MDS that
does not correspond to the metric used to generate the distance estimates in the true
underlying space. See Section 17.3.
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C are pushed downwards, with all other points in a horizontal plane. In
contrast, if c = 0, the points on the coordinate axes of the 2D space are,
relative to the other points, shifted towards the origin, resulting in a convex
distortion of the grid. Hence, choosing an inappropriate additive constant
results not merely in higher dimensionality but in a systematic distortion
of the configuration.

Once the data are transformed into distances, statistically or strictly
speaking, any further additive constant will change the distance function
and thus affect the geometric representation (in a metric context). This is
important because dissimilarity data may already be distances, without any
transformation, and so adding a constant to them has direct effects on their
geometry. In practice, one finds, for example, that ratings of dissimilarity
typically require an additive constant that is negative. Such data satisfy the
properties of distances so that adding a constant merely serves the purpose
of transforming them into Euclidean distances of low dimensionality or into
distances with particular segmental additivity properties (see Chapter 17).
In that case, an alternative and possibly more fruitful way to proceed would
be to consider alternative geometries in which the given distances can be
embedded as they are.

19.5 Fitting Dissimilarities into a Euclidean Space

We have seen that the additive constant problem for interval-scaled dissim-
ilarities δij , i < j, has a simple solution if it is formulated in an algebraic or
error-free way. A statistical model, in which the unknown additive constant
is not computed but estimated, is more demanding. The Messick–Abelson
solution is complicated, however, and its underlying model is not entirely
clear. It suggests, perhaps, that we should not insist on an additive constant
strictly satisfying the requirement that the transformed dissimilarities be
Euclidean distances. Yet, it seems that in most applications we could drop
the parameter r from those that have to be estimated and simply set it to
some value that appears theoretically appropriate. With a fixed r, and with
the requirement that the distances should be approximately mapped into
Euclidean distances, we end up with a familiar problem: interval MDS.

In this context, the transformation question gets a positive answer if the
resulting value for the loss criterion is sufficiently small, so that the required
conditions are more or less satisfied. What should be considered sufficiently
small depends on the context. Among the earliest proposals for treating
the additive constant problem in this way are those of Cooper (1972) and
Roskam (1972). These authors use the algebraic solution for c as a starting
value; that is, c[0] = max[δij − (δik + δkj)], over all i, j, k. The resulting
B∗ is decomposed into XX′, and the first r columns of X are used as the
starting configuration. With these starting parameters, a flip-flop procedure
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for minimizing L =
∑

[dij −(k ·δij +c)]2/
∑

d2
ij is entered. As we have seen,

however, this procedure may not produce the best possible solution for c.
Nevertheless, the method works in practice, and we can always check the
optimality of the solution by trying other starting configurations. In any
case, it is important to distinguish the optimization approach conceptually
from the algebraic and the statistical viewpoints taken above. In the first
case, c is optimized, in the second it is computed, and in the third it is
estimated.

The so-called rational starting configurations for ordinal MDS are con-
structed by using the optimization method of interval MDS. Often, ranking-
numbers are first substituted for the given dissimilarities: if the data are
dissimilarities, the smallest δij is set equal to 1, the second-smallest to
2, . . . , and the largest to

(
n
2

)
; for similarities, the largest δij is set equal

to 1, the second largest to 2, and so on. We can also use the δij values
as they are. In either case, there are several options for proceeding. One
possibility would be to add the algebraic additive constant, find the as-
sociated B, decompose this into XX′, and use the first r dimensions as
an initial configuration. Another possibility would be to use the data or
ranking-number matrix without adding any constant c and check whether
the resulting X has some small imaginary dimensions. If so, we keep the
first r and proceed with ordinal optimization. If not, a constant c can be
added to the dissimilarities repeatedly until this situation results: if there
are no negative eigenvalues for B∗, then we choose c < 0; otherwise, we set
c > 0.

19.6 Exercises

Exercise 19.1 Consider the similarities in Table 4.1 on p. 65. For this ex-
ercise you need software that can do matrix algebra.

(a) Transform the similarities into dissimilarities.

(b) Then, find the smallest possible additive constant that turns these
values into Euclidean distances.

(c) Use classical scaling on the transformed dissimilarities. Compare the
solution to the one obtained in Exercise 12.1 and in Figure 4.1. What
do you conclude?

(d) Instead of the distances being Euclidean, find the smallest possible
additive constant that turns dissimilarities into distances (not neces-
sarily Euclidean). Is this constant the same as the one for Euclidean
distance?
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(d) Using a large additive constant, the dissimilarities are turned into
distances. Are they also turned into Euclidean distances? Try a few
cases numerically.

Exercise 19.2 Consider the data matrix below (Torgerson, 1958). It shows
“absolute distances” based on 84 judgments of closeness for all possible
triads of nine colors. The colors were all of the same red hue (=5R in
Munsell notation) but differed from each other in brightness (value) and
saturation (chroma). The conversion of the triadic closeness judgments into
the values shown below involved a series of conversions aimed at adding
the best additive constant.

Number of Stimulus
No Value Chroma 1 2 3 4 5 6 7 8 9
1 7 4 – 1.23 3.48 2.98 3.83 5.16 4.69 5.62 5.83
2 6 6 1.23 – 2.59 1.67 2.70 4.40 3.13 4.65 4.38
3 6 10 3.48 2.59 – 4.30 2.28 2.93 4.67 4.30 6.22
4 5 4 2.98 1.67 4.30 – 2.82 4.85 1.85 3.88 2.88
5 5 8 3.83 2.70 2.28 2.82 – 2.58 2.37 1.95 4.09
6 5 12 5.16 4.40 2.93 4.85 2.58 – 4.17 2.93 5.48
7 4 6 4.69 3.13 4.67 1.85 2.37 4.17 – 2.42 2.30
8 4 10 5.62 4.65 4.30 3.88 1.95 2.93 2.42 – 4.02
9 3 4 5.83 4.38 6.22 2.88 4.09 5.48 2.30 4.02 –

(a) Check whether these data violate any distance axioms.

(b) Determine the minimum additive constant that turns these values
into distances, if possible. (If this constant exists, it may be equal to
zero. When?)

(c) Same as (b), but now replace “distances” by “Euclidean distances”.

(d) Use classical scaling to check to which extent the data mirror their
physical design. (The design is given by the Munsell values for value
and chroma; hue is constant.)

(e) Enforce an MDS structure that mirrors the physical design except for
possible monotonic transformations along the coordinate axes value
and chroma.




