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Matrix Algebra for MDS

In this chapter, we build a basis for a more technical understanding of MDS.
Matrices are of particular importance here. They bring together, in one sin-
gle mathematical object, such notions as a whole configuration of points,
all of the distances among the points of this configuration, or a complete
set of proximities. Mathematicians developed a sophisticated algebra for
matrices that allows one to derive, for example, how a configuration that
represents a matrix of distances can be computed, or how the distances
among all points can be derived from a configuration. Most of these oper-
ations can be written in just a few lines, in very compact notation, which
helps tremendously to see what is going on. The reader does not have to
know everything in this chapter to read on in this book. It suffices to know
the main concepts and theorems and then later come back to this chapter
when necessary. Proofs in this chapter are meant to better familiarize the
reader with the various notions. One may opt to skip the proofs and accept
the respective theorems, as is common practice in mathematics (“It can be
shown that . . .”).

7.1 Elementary Matrix Operations

The term matrix denotes a rectangular array of objects such as numbers. A
data matrix, for example, may consist of measurement scores for n persons
on m items. Usually, a data matrix is written so that the persons form the
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rows and the items the columns. A simple example is the 3 × 2 matrix A,

A =

⎡⎣ 1 2
3 5
4 7

⎤⎦ .

It is customary to denote a matrix by a boldface capital letter (such as
A) and to use brackets around its elements. Sometimes, it is useful to
characterize a matrix by a typical element, which is written as A = (aij).
The symbol aij denotes the element in row i and column j of A.

The number of rows, n, and the number of columns, m, of a matrix define
its order . The matrix A above has order 3 by 2. Occasionally, an n × m
matrix A is denoted by An×m to show its order explicitly. If n = m, we
have a square or quadratic matrix.

Matrices where m = 1 or n = 1 are also called vectors. They are denoted
by small boldface letters such as a. A k ×1 vector is called a column vector
and a 1 × k vector a row vector. For example, the matrix A above consists
of two column vectors and three row vectors. A row vector typically is
written with a prime sign (e.g., as a′), a column vector without the prime.
The third row vector of A is r′

3 = [4 7], and the first column vector of A is

c1 =

⎡⎣ 1
3
4

⎤⎦ .

A row vector x′ is also written as the m-tuple (x1, x2, . . . , xm). Thus
x′ = (3, 2, 5) is equivalent to x′ = [3 2 5].

Transposing, Adding, and Multiplying Matrices
One obtains the row vector x′ from the column vector x simply by writing
it as a row vector, an operation called transposition. More generally, one
can also form the transpose of a matrix A by writing its rows as columns.
The transpose is written as A′. For the matrix A from above, we get

A′ =
[

1 3 4
2 5 7

]
.

Obviously, (A′)′ = A.
A matrix A is symmetric if aij = aji for all i, j, or, equivalently, if

A′ = A. In data analysis, symmetric matrices (e.g., correlation matrices)
are commonplace.

Elementary matrix algebra is concerned with when and how matrices
and vectors can be added, subtracted, multiplied, and divided. Addition
and subtraction are easily defined. Matrices are added (subtracted) by
simply adding (subtracting) corresponding elements. Expressed formally
for addition, A + B = (aij + bij) = (cij) = C. Table 7.1 gives an example.
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Addition (subtraction) is possible only if A and B have the same order,
because otherwise there are elements in one matrix for which there are
no corresponding elements in the other matrix. Table 7.1 also shows how
the product of a matrix with a simple number (called a scalar in matrix
algebra) is defined: kA = (k · aij); that is, each element of A is multiplied
by the scalar k. (Note that the scalar k differs from the 1×1 matrix M = [k]
whose only element is k.)

In contrast to multiplying a matrix by a scalar, multiplying a matrix
by another matrix is quite complicated. It would seem natural to define
AB = C as [aij · bij ] = [cij ], but this type of product plays only a very
minor role in most applications of matrix algebra. Rather, what is known
as “the” product of two matrices is defined as AB = [

∑
k aik · bkj ] = [cij ].

The formula says that each element of row i in A is to be multiplied by
the corresponding element of column j in B, and then all of these products
are to be summed to yield cij . Table 7.1 shows a concrete case, where c21
results from 1 · 2 + 2 · 0 + 0 · 1 = 2.

Matrix multiplication requires that A has as many columns as B has
rows; that is, if A’s order is n × r, then B’s order must be r × m. C’s
order is given directly by canceling r; that is, C is of order n × m. Hence,
if A and B are both square matrices, then both AB and BA exist and
are of the same order. It is important, however, to realize that AB �= BA
in general, as can be checked easily by trying some cases. We therefore
use special terms and speak of premultiplication or multiplication from the
left and postmultiplication or multiplication from the right. For example, in
AB, A premultiplies B or, expressed differently, B multiplies A from the
right.

Matrix Inverses
We now come to division. To begin, consider a real number k. If k is divided
by k, then 1 results: k/k = (k)(k−1) = (k−1)(k) = 1. The number 1
plays a special role in the multiplication of real numbers: it is the neutral
element for multiplication, because 1 · k = k · 1 = k, for all k. Similarly, the
inverse of a matrix A, A−1, should neutralize A in a product expression
so that A−1AB = B and AA−1B = B. But then both A−1A and AA−1

should be equal to a matrix that plays the role of the neutral element
in matrix multiplication. This matrix is called the identity matrix and is
denoted by I. Because pre- and postmultiplying A by A−1 is possible only
if both A and A−1 are square matrices, it follows that I is square, too.
Furthermore, as could be checked by some numerical examples, I must
consist of 0s everywhere, except for the main diagonal, which contains only
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1s. For example, the 3 × 3 identity matrix is

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (7.1)

It is easily verified that, for any 3 × 3 matrix, IA = AI = A, which shows
that I is a neutral element in matrix multiplication.

As to the existence of A−1, we have already noted that A must be
square. Moreover, A must have full rank. The rank r of an n × m matrix
is the number of linearly independent rows or columns of this matrix. It
cannot be greater than the number of rows or columns, whichever is less.
That is, r ≤ min(n, m). A set of rows (columns) is linearly independent if
no row (column) is equal to a weighted sum of the other rows (columns).
Whether this is true for all rows (columns) of a matrix is generally not easy
to diagnose without doing some computations (see Section 7.4).1

For some special matrices it is easy to compute the inverse. One case is
the diagonal matrix whose off-diagonal elements are all equal to zero; that
is, A is diagonal if aij = 0 for all i �= j. An example of a diagonal matrix is
the matrix I in (7.1). One can check that if A is diagonal, then A−1 is also
diagonal, with 1/aii as its diagonal elements. Obviously, A−1 exists only if
aii �= 0, for all i. If this is true and A is diagonal, then A has full rank.

A second type of matrix whose inverse is easily found is an n×n matrix A
that satisfies A′A = I. A matrix with that property is called orthonormal.2

But if A′A = I, then A′ = A−1 and, because A is square, we also have
AA−1 = AA′ = I. Hence, a square matrix with orthonormal columns
also has orthonormal rows. A special case of an orthonormal matrix is the
identity matrix I.

In Table 7.2, we list some properties of matrix addition and scalar multi-
plication of a matrix, and in Table 7.3 we summarize properties of matrix
multiplications, transposes, and inverses.

1A−1 denotes, strictly speaking, “the” inverse or the regular inverse. There also exist
specialized inverses that possess some but not all of the properties of the regular inverse.
Examples are the “left” and the “right” inverses. They solve the equations LA = I and
AR = I, respectively, for A-matrices that need not be quadratic. Yet, L and R require
that A has full column rank or full row rank, respectively. There are even more general
types of inverses that do not require such full-rank properties (see below, Section 7.7).
Operating with a nonregular inverse on a given matrix always entails loss of information,
so that the operation cannot be undone.

2Mathematicians typically speak of orthogonal matrices. For example, Strang (1976,
p. 119) writes: “An orthogonal matrix is simply a square matrix with orthonormal
columns . . . Perhaps orthonormal matrix would have been a better name, but it is
too late to change.” Data analysts build on much less tradition and are perhaps allowed
more freedom in their choice of terms.
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TABLE 7.1. Examples of matrix addition, scalar multiplication, and multiplica-
tion.

A + B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]

=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
= C

[
3 6
7 2

]
+

[
1 −6
4 −3

]
=

[
4 0

11 −1

]

kA = k ·
[

a11 a12
a21 a22

]
=

[
ka11 ka12
ka21 ka22

]

2 ·
[

3 5
7 2

]
=

[
6 10

14 4

]

AB =

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

][
b11 b12
b21 b22
b31 b32

]
=

[
c11 c12
c21 c22
c31 c32

]
= C

[
3 0 2
1 2 0
0 0 −1

][
2 1
0 1
1 1

]
=

[
8 5
2 3

−1 −1

]

TABLE 7.2. Some properties of matrix addition and scalar multiplication of
matrices.

A = B aij = bij for all i, j
A + B = C cij = aij + bij for all i, j
A + B = B + A Commutative property
(A + B) + C = A + (B + C) Associative property
cA Has elements c · aij for all i, j
c(kA) = (ck)A = (kc)A = k(cA) Associative property
c(A + B) = cA + cB Distributive property for matrices
(c + k)A = cA + kA Distributive property for scalars
A + 0 = A Adding a null matrix
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TABLE 7.3. Some properties of matrix multiplication, transposes, and matrix
inverses.

An×rBr×m = Cn×m if and only if cij =
∑r

k=1 aikbkj

(AB)C = A(BC)
AA = A2

(A + B)(C + D) = A(C + D) + B(C + D)
= AC + AD + BC + BD

(A′)′ = A
(AB)′ = B′A′

(ABC)′ = C′B′A′
(A + B)′ = A′ + B′

IA = A = AI
B = A−1 if and only if BA = I = AB

(A−1)−1 = A
(A′)−1 = (A−1)′

(AB)−1 = B−1A−1

7.2 Scalar Functions of Vectors and Matrices

One can take a matrix or a vector and assign to it, by some rule, a simple
number. In mathematics, such a rule is called a function. There are in-
finitely many functions, and each of them serves a different purpose. Here
we discuss some functions that are important in the MDS context.

Functions that have many arguments but only one value are frequently
used in all fields of science. A familiar example is the product-moment
correlation, which has two vector-valued arguments x and y, and a value
r that lies in the interval [−1,+1]. The correlation is closely related to the
scalar product of two vectors. Given two real-valued vectors x and y, both
of the same order, their scalar product is

< x,y >= x1y1 + · · · + xnyn.

One notes that this is computationally the same as x′y. The difference is
that the vector product is algebraically a 1×1 matrix with element < x,y >
and not just a number. In an applied context, however, one does not run
into problems by ignoring this distinction. Thus, for example,

< x,y >= x′y = [ 1 3 4 ]

⎡⎣ 2
5
7

⎤⎦ = 45.

Scalar products arise naturally in matrix multiplication. In A′B = C,
each element cij of the product matrix C is the scalar product of the ith
row vector of A and the jth column vector of B.

Of particular importance is the case where x′y = 0. Vectors whose scalar
product is zero are called orthogonal. For example, the vectors (2, 0) and



7.2 Scalar Functions of Vectors and Matrices 143

(0, 1) in the usual Euclidean plane are orthogonal. Geometrically, these
two vectors correspond to points on the X- and Y -axes, respectively. If
one connects these points with line segments to the origin, one notes that
these lines are perpendicular, just like the coordinate axes with which they
coincide. Perpendicularity of the lines that connect the points x and y with
the origin is the geometric interpretation of orthogonality of two coordinate
vectors x and y.

Another example of a function with more than one argument is the dis-
tance between two points. Distances are closely related to the norm of a
vector, a notion that captures the intuitive meaning of length,

‖x‖ =
√

x′x = (x2
1 + . . . + x2

n)1/2. (7.2)

A whole family of norms arises by first substituting xr
i for x2

i and replacing
1/2 by 1/r and then choosing other positive numbers instead of r = 2. For
r = 1, for example, we obtain the absolute norm ‖x‖1 = |x1| + . . . + |xn|.
For a large r, the greatest absolute xi dominates the norm, so that ‖x‖∞ =
maxi |xi|. The natural norm, however, is the Euclidean norm, where r = 2
as in the formula above. Without any special comments to the contrary,
the term norm always refers to the Euclidean norm.

All norms satisfy four properties:

‖x‖ ≥ 0 for x �= 0 and
‖x‖ = 0 precisely when x = 0 (nonnegativity),

‖kx‖ = |k|‖x‖, for any scalar k,

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

The norm of a vector is used, for example, to normalize a given vector to
unit length. If x is any real-valued vector, then u = (1/‖x‖)x is a normal
or unit vector so that ‖u‖ = 1.

Norms can be used to express the distance between two points in vector
terms. Let x and y be the coordinate vectors of some points x and y. Then,
‖x − y‖, the norm of the difference vector x − y, is equal to the Euclidean
distance between x and y. This is easy to see by checking formula (3.3) for
the Euclidean distance.

Norms are closely related to loss functions, as we will see. Here, the
natural extension of vector norms to matrices is also helpful. The norm
of a matrix A is simply the square root of its sum-of-squares. Thus, the
function ‖A‖ is a familiar measure of A.

Another matrix function often found in the context of optimization prob-
lems is the trace. The trace function of an n × n matrix A is defined as

tr A =
n∑

i=1

aii, (7.3)
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TABLE 7.4. Some properties of the trace function.

(1) tr A =
∑n

i=1 aii Definition of trace function

(2) tr A = tr A′ Invariance under transposing A

(3) tr ABC = tr CAB = tr BCA Invariance under “cyclic” permutation

(4) tr (A′B) = tr (A′B)′ =
tr B′A = tr AB′ Combining properties (2) and (3)

(5) tr ab′ = a′b

(6) tr (A + B) = tr A + tr B Summation rule

the sum of A’s elements in the main diagonal. This function becomes partic-
ularly interesting when we are studying the difference of two corresponding
matrices, such as, for example, two configurations X and Y whose points
have a 1–1 correspondence. A common case is where X and Y are two
MDS configurations for replicated data. The function tr (X − Y)(X − Y)′

assesses, then, the sum of squared differences of the coordinates of the
corresponding points of X and Y. This is considered in detail in Chapter
21.

Later on, we need some properties of matrix traces that are conveniently
summarized together in Table 7.4. These properties are easy to verify by
considering some simple numerical examples.

7.3 Computing Distances Using Matrix Algebra

An important concept in MDS is the distance between two points. Let
Xn×m be the matrix of coordinates of the points. Each row i of X gives the
coordinates of point i on m dimensions, that is, xi1, xi2, . . . , xim. In MDS
we are concerned with the distances among all n points. We can use the
matrix algebra from the previous section to obtain a compact expression
for computing the squared Euclidean distances between all points. The
squared Euclidean distance is defined by

d2
ij(X) = d2

ij =
m∑

a=1

(xia − xja)2 =
m∑

a=1

(x2
ia + x2

ja − 2xiaxja). (7.4)

Suppose that X contains the coordinates of three points in two dimensions.
Now the matrix of squared distances, denoted by D(2)(X), is

D(2)(X) =

⎡⎣ 0 d2
12 d2

13
d2
12 0 d2

23
d2
13 d2

23 0

⎤⎦ =
m∑

a=1

⎡⎣ x2
1a x2

1a x2
1a

x2
2a x2

2a x2
2a

x2
3a x2

3a x2
3a

⎤⎦
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+
m∑

a=1

⎡⎣ x2
1a x2

2a x2
3a

x2
1a x2

2a x2
3a

x2
1a x2

2a x2
3a

⎤⎦−2
m∑

a=1

⎡⎣ x1ax1a x1ax2a x1ax3a

x2ax1a x2ax2a x2ax3a

x3ax1a x3ax2a x3ax3a

⎤⎦
= c1′ + 1c′ − 2

m∑
a=1

xax′
a = c1′ + 1c′ − 2XX′, (7.5)

where xa is column a of matrix X, 1 is an n × 1 vector of ones, and c is
a vector that has elements

∑m
a=1 x2

ia, the diagonal elements of XX′. The
matrix B = XX′ is called a scalar product matrix.

Suppose that

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ =

x1 x2
p1 1 2
p2 3 1
p3 2 0

(7.6)

is a coordinate matrix. Its rows show the coordinates of three points on
dimensions 1 (the first column of X) and 2 (the second column of X),
respectively, of Figure 7.1. The distances can be computed using (7.5). The
first step is to compute the scalar product matrix B = XX′; that is,

XX′ =

⎡⎣ 1 2
3 1
2 0

⎤⎦[
1 3 2
2 1 0

]
=

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦ = B. (7.7)

The second step is to find c. It can be verified that the diagonal elements
of XX′ are

∑m
a=1 x2

ia, which are the elements of c. Thus c′ = (5, 10, 4).
Inserting these results into (7.5) gives

D(2)(X) =

⎡⎣ 0 d2
12 d2

13
d2
12 0 d2

23
d2
13 d2

23 0

⎤⎦ =

⎡⎣ 5 5 5
10 10 10
4 4 4

⎤⎦
+

⎡⎣ 5 10 4
5 10 4
5 10 4

⎤⎦−2

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦=

⎡⎣ 0 5 5
5 0 2
5 2 0

⎤⎦.
Taking the square root of all elements gives the distance matrix

D(X) =

⎡⎣ 0
√

5
√

5√
5 0

√
2√

5
√

2 0

⎤⎦ ≈
⎡⎣ .000 2.236 2.236

2.236 .000 1.414
2.236 1.414 .000

⎤⎦.
In Section 7.9, we show how we can solve the reverse problem, that is, how
to find the coordinates X from a given scalar product matrix B.
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p2

p3

FIGURE 7.1. Geometrical representation of configuration in (7.6).

7.4 Eigendecompositions

Every n × n matrix A of real numbers can be decomposed into a product
of several matrices. We now consider a particularly useful case, the eigen-
decomposition, which can be constructed for most matrices, but always for
symmetric ones. Formally,

A = QΛQ′, (7.8)

with Q orthonormal (i.e., Q′Q = QQ′ = I) and Λ diagonal. Equation (7.8)
is often written as a system of eigenequations

Aqi = λiqi, with qi �= 0 (i = 1, . . . , n). (7.9)

These equations can also be written more compactly as

AQ = QΛ. (7.10)

The column vectors of Q are called the eigenvectors of A. The λis in
the diagonal of Λ are the eigenvalues of A. It is customary to order the
eigenvalues (and the corresponding eigenvectors) so that λ1 ≥ λ2 ≥ . . . ≥
λn. For example, for matrix

A =
[

23 36
36 2

]
we get

Q =
[

0.8 −0.6
0.6 0.8

]
and Λ =

[
50 0
0 −25

]
.

A slightly different view of eigendecompositions leads to the important
spectral decomposition theorem. Consider again equation (7.8). We can
think of the product QΛQ′ as a product of two vectors: the row vector
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consisting of the column vectors in the product QΛ, and the column vec-
tor made up of the row vectors in Q′,

A = [ λ1q1 λ2q2 . . . λnqn ]

⎡⎢⎢⎢⎣
q′

1
q′

2
...

q′
n

⎤⎥⎥⎥⎦
= λ1q1q′

1 + λ2q2q′
2 + · · · + λnqnq′

n. (7.11)

The right-hand side of (7.11) says that A can be decomposed into a sum
of matrices. To illustrate, consider again matrix A from above. Here, the
decomposition is

A = 50
[

0.8
0.6

] [
0.8 0.6

] − 25
[ −0.6

0.8

] [ −0.6 0.8
]

=
[

32 24
24 18

]
−

[
9 −12

−12 16

]
=

[
23 36
36 2

]
. (7.12)

Some Properties of Spectral Decompositions
Eigenvalues and eigenvectors are important in practice, because they have
numerous useful properties. Some of them are listed in the following. Also,
some theorems are discussed that should help to better understand such
decompositions.

(1) Not every n × n real matrix possesses an eigendecomposition over
the real numbers, even if nonorthogonal eigenvectors are admitted. That
is, some matrices can be spectrally decomposed only if one allows for com-
plex eigenvalues and/or eigenvectors, which, in any case, complicates in-
terpretations. An example is the matrix A in the following. Consider the
eigenequation

Aq =
[

1 −1
1 1

] [
q1
q2

]
= λ

[
q1
q2

]
.

This says that q1−q2 = λq1, so that q2 = q1−λq1. Substituting this into the
second equation, q1 + q2 = λq2, yields q1 = 0, and back-substitution yields
q2 = 0. Thus, the only real vector that solves the eigenequation is the null
vector 0. If one allows for complex numbers, then, for example, λ1 = 1 + i
and q1 = (i, 1), with i2 = −1, solve the eigenequation Aq1 = λ1q1.

(2) Eigenvectors are not unique. They can, for example, be multiplied by
−1, because, if Aqi = λiqi, then also A(−1)qi = (−1)Aqi = λi(−1)qi =
(−1)λiqi. Therefore, reflections of the eigenvectors are admissible. One also
notes that choosing Q such that QQ′ = I is an arbitrary (although useful)
convention. Consider (7.8) and assume that we scale Λ by the factor 3.
This is accomplished by replacing Λ in equation (7.8) by Λ∗ = KΛ, where
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K = diag(3, 3, . . . , 3), a diagonal matrix with all nonnull elements equal
to 3. We note that KΛ can be written as K1/2ΛK1/2, where K1/2 is the
same as raising the diagonal elements of K to the power 1/2 because K is
diagonal. Hence, we must replace Q in equation (7.8) by Q∗ = QK−1/2 to
compensate for the scaling of the eigenvalues. Thus, Q∗Λ∗(Q∗)′ is another
eigendecomposition of A. One cannot, however, replace K by a matrix
that is not diagonal, because this would destroy the requirement that Λ be
diagonal.

(3) The number of eigenvalues that are not equal to zero is equal to
the rank r of a matrix. If no eigenvalue of A is equal to zero, A has full
rank. If there are eigenvalues equal to zero, the matrix has a null space
with dimensionality greater than zero. It is spanned by the eigenvectors
associated with the eigenvalues that are equal to zero.

(4) It can be shown (e.g., Searle, 1982) that if A is symmetric (A = A′),
its eigenvalues and eigenvectors are always real-valued. Because symmetric
matrices are so predominant in MDS, we always assume in the sequel that
this condition is satisfied unless stated otherwise. If A is symmetric, it also
has orthogonal eigenvectors. If we assume what is almost always true in
practice, namely, that λi �= λj , the orthogonality of eigenvectors follows
from λiq′

jqi = q′
jλiqi = q′

jAqi = q′
iA

′qj = q′
iAqj = q′

iλjqj = λjq′
iqj =

λjq′
jqi. That is, λiq′

jqi = λjq′
jqi. Because λi �= λj , q′

jqi = 0, so qj and
qi are orthogonal. If λi = λj , the eigenvectors can also be constructed
orthogonally.

(5) It is natural to ask to what extent the sum-of-squares of A is ac-
counted for by each of its component matrices, λiqiq′

i. In equation (7.12)
we have ‖A‖2 = (232 + · · · + 22) = 3125. For the spectral sum of A, we
get ‖λ1q1q′

1 + · · ·+λnqnq′
n‖2 = 3125. This expression can be split up into

‖λ1q1q′
1‖2+· · ·+‖λnqnq′

n‖2. Using (7.3), this is equal to λ2
1‖q1q′

1‖2+· · ·+
λ2

n‖qnq′
n‖2. But each ‖qiq′

i‖2 = 1, which follows as a consequence of choos-
ing Q so that QQ′ = I. Hence, the sum-of-squares of A is equal to the sum
of the squared eigenvalues. In our example in equation (7.12), we therefore
have 502 + (−25)2 = 3125, the same value as before for ‖A‖2. Hence, the
first component matrix in (7.12), λ1q1q′

1, accounts for 502/(502+252) = .80
or 80% of A’s sum-of-squares.

(6) The eigendecomposition of A can be understood in many ways. One
way is that it is an attempt to approximate A by a matrix of lower rank k.
The best-possible approximation is the matrix λ1q1q′

1+ · · ·+λkqkq′
k. Each

component matrix λiqiq′
i has rank 1, and adding k such matrices leads to

a matrix with rank k.
(7) Matrices may not only be understood as configurations but also as

transformations. For example, formula (7.9) says that the matrix A acts
on the vector qi just like a scalar, the eigenvalue λi, a particularly simple
transformation. Usually, things are not that simple. Consider the case where
we want to reflect the vector x in the plane about the line x = y. This is
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accomplished by premultiplying x by a reflection matrix T so that Tx = x∗

is the reflected vector:

Tx =
[

0 1
1 0

] [
x1
x2

]
=

[
x2
x1

]
=

[
x∗

1
x∗

2

]
= x∗.

If we replace T by its spectral decomposition, we have split up the trans-
formation T into a sum of operations. We can understand each operation
λiqiq′

i by noting some peculiar properties of its matrix qiq′
i. Let Pi = qiq′

i

for short. First, we observe that (λiPi)(λiPi) = λ2
i Pi. A matrix A for

which AA=A is called idempotent or a projector. Pi projects the vector x
onto the eigenvector qi. The length of x on this eigenvector is λi. Second,
PiPj = 0, for i �= j, because QQ′ = I. Hence, the projections effected
by P1, . . . ,Pr are onto r orthogonal dimensions, the eigenvectors. Third,
P1+. . .+Pr = I, which means that the total length of the projected vector
is equal to the original vector. For our example and a vector x = (2, 3), we
get

Tx =
[

0 1
1 0

] [
2
3

]
= (λ1q1q′

1 + λ2q2q′
2)x

=
(

(−1)
[

.5 −.5
−.5 .5

]
+ (1)

[
.5 .5
.5 .5

])[
2
3

]
=

[
3
2

]
= x∗.

One can check here geometrically that the transformation T is such that
x is projected onto the two bisector lines of the plane that can be gener-
ated from multiplying the two eigenvectors by all possible real numbers.
Postmultiplying the first component matrix by x means projecting x onto
the eigenvector q1, which lies on the line x = −y, and then reflecting this
projection by multiplying it by λ1 = −1. The analogous is true for the
second component matrix and the second eigenvector. The reflected vector
x∗, then, is built from these two vectors that lie on the eigenvalue lines.

(8) An n × n real symmetric matrix is called positive definite if for every
x �= 0 we have x′Ax > 0. This definition implies that all eigenvalues of
A are strictly greater than 0. This can be seen as follows. If we choose a
particular vector x, namely, an eigenvector qi of A, then q′

iAqi = λiq′
iqi =

λi, because q′
iqi = 1. Thus, λi > 0 because q′

iAqi is positive. If λi ≥
0, we call A positive semidefinite.3 Similarly, a negative definite matrix
has eigenvalues λa < 0 and consequently x′Ax < 0 for every x, whereas
a negative semidefinite matrix has eigenvalues λa ≤ 0 and consequently
x′Ax ≤ 0.

3Positive definite matrices are closely related to sums-of-squares and, thus, play an
important role in multivariate data analysis and in MDS. For example, we can write the
sum of squared deviations as

∑
i
(xi − x̄)2 =

∑
i
x2

i − nx̄2 = x′x − nx̄2 = x′Jx, where
J is the “centering” matrix J = I − (1/n)11′ and 11′ is an n × n matrix of ones.
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Finding a Matrix Inverse via Eigendecomposition
The eigendecomposition can be used for computing the inverse of a matrix.
Suppose that we have the eigendecomposition A = QΛQ′ and we want to
compute the inverse B = A−1. From Table 7.3, we know that A−1A = I,
so that BA = I. Replacing A by QΛQ′ gives

BQΛQ′ = I. (7.13)

The unknown B can be derived by using the orthonormality of Q and the
diagonality of Λ. Because Q is orthonormal and square, we have Q′Q =
QQ′ = I. Hence, postmultiplying (7.13) by Q gives

BQΛ = Q.

The matrix of eigenvalues Λ is diagonal so that its inverse is simply
diag(1/λ1, . . . , 1/λn) = Λ−1. If we postmultiply both sides by Λ−1 (us-
ing ΛΛ−1 = I), we get

BQ = QΛ−1.

Using the orthonormality of Q again and postmultiplying both sides by
Q′, we obtain an expression for the inverse of A:

A−1 = B = QΛ−1Q′.

From this expression, one can see that if Λ contains zero eigenvalues, Λ−1

does not exist, because its diagonal elements 1/λi are undefined for the
λi = 0. In other words, if A is not of full rank, then its inverse does not
exist.

7.5 Singular Value Decompositions

A decomposition closely related to the eigendecompositions and even more
useful in algebra and for computational purposes is the singular value de-
composition, SVD, of a matrix. The SVD is also known as the Eckart–Young
theorem. The main idea of the SVD is that every n × m matrix A can be
decomposed into

A = PΦQ′ (7.14)

with P an n × m matrix of left singular vectors, all orthonormal to each
other (i.e., P′P = I), Φ an m × m diagonal matrix with singular values
φi ≥ 0, and Q an m × m matrix of right singular vectors, all orthonormal
to each other (i.e., Q′Q = I).
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By exploiting the properties of the SVD, it becomes clear how we may
compute the SVD. Assume for the moment that we know the SVD of A as
given in (7.14). Then,

A′A = QΦP′PΦQ′ = QΦΦQ′ = QΦ2Q′,

which is just the eigendecomposition of A′A. This proves that the eigen-
values of A′A are all nonnegative because they consist of φ2

i and squared
numbers are always nonnegative. Thus, for computing the SVD of A we
start by computing the eigendecomposition of A′A = QΦ2Q′, which gives
us Φ and Q as a result. Using the orthonormality of Q and the diagonality
of Φ, we obtain P; that is,

A = PΦQ′

AQ = PΦQ′Q = PΦ

AQΦ−1 = PΦΦ−1 = P. (7.15)

As an example, we want to find the SVD of

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ .

First, we have to find the eigendecomposition of X′X; that is,

X′X = QΦ2Q′ =
[

14 5
5 5

]
=

[
.91 −.41
.41 .91

] [
16.03 0.00
0.00 2.77

] [
.91 .41

−.41 .91

]
, (7.16)

which gives us Φ (with φ1 = 4.03 and φ2 = 1.67) and Q. With (7.15) we
can compute P; that is,

P = XQΦ−1

=

⎡⎣ 1 2
3 1
2 0

⎤⎦[
.91 −.41
.41 .91

] [
4.03 0.00
0.00 1.67

]−1

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦ .

Combining these results shows that the SVD of X is given by

X = PΦQ′

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦[
4.03 0.00
0.00 1.67

] [
.91 .41

−.41 .91

]
. (7.17)
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It may be verified that the product PΦQ′ does indeed reconstruct X. Let
us check whether P′P = I. This means that the columns p1 and p2 must
satisfy p′

1p1 = 1, p′
2p2 = 1, and p′

1p2 = 0: p2
11 + p2

21 + p2
31 = .432 +

.782 + .452 = 1.00, p2
12 + p2

22 + p2
32 = .852 + (−.19)2 + (−.49)2 = 1.00, and

p11p12 + p21p22 + p31p32 = .43 · .85 + .78 · (−.19) + .45 · (−.49) = .00. This
shows that P′P = I. In the same way, the orthonormality of Q can be
checked.

The number of nonzero singular values is equal to the rank of A. Thus,
if A has one or more zero singular values, it is singular or rank deficient,
which means that the columns (rows) are linearly dependent. That is, any
column (row) of A is equal to a weighted sum (linear combination) of
the other columns (rows). If A has rank 2, for example, then exactly two
columns (rows) can be identified, which, with appropriate weights, allows
one to reproduce all other columns (rows) of A. Consider the matrix

A = [a1|a2|a3] =

⎡⎣ 3 2 4
1 4 −2
4 1 7

⎤⎦ ,

where a1,a2,a3 are column vectors. The singular values of A are 9.672,
4.738, 0.000, which implies that any one of the columns is a weighted sum
of the other two. For example, b1a1 + b2a2 = b3a3. It may be verified that
choosing b1 = 2, b2 = −1, and b3 = 1 solves the equation. Note that we
might as well have chosen b2a2 + b3a3 = b1a1, which gives an equivalent
solution for b1 = 1, b2 = 1/2, and b3 = 1/2.

7.6 Some Further Remarks on SVD

In the following, we list some properties of SVD that are useful in the
remaining sections of this book.

(1) An SVD of a real n × m matrix can be written in several ways.
The most parsimonious way is called full rank decomposition. It uses only
those parts of the three component matrices that are needed to reconstruct
A. That is, we choose P and Q so that P′P = Q′Q = Ir, and of Φ we
only use the upper left-hand corner r × r submatrix, where r = rank(A).
The version used above in (7.14) or (7.17) is a potentially rank deficient
case, because here P, for example, may have unnecessary columns if there
are zero singular values in Φ. An often-used rank deficient case is when
we augment both P and Q with appropriate vectors so that they become
n × n and m × m orthonormal matrices, respectively. We symbolize this as
follows.

A = Pn×n

[
Φr×r 0
0 0

]
n×m

Qm×m.
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The leading submatrix Φr is square and positive definite. As an example,
consider equation (7.17), which becomes

X = P3×3Φ3×2Q′
2×2

=

⎡⎣ .43 .85 .30
.78 −.19 −.18
.45 −.49 .75

⎤⎦⎡⎣ 4.03 0.00
0.00 1.67

0 0

⎤⎦[
.91 .41

−.41 .91

]
.

Obviously, the third column of P3×3 is needed to make P3×3 orthonormal,
but it is not needed to reconstruct X, because it is eliminated by the zero
singular value in the SVD matrix product.

The full rank case allows one to reduce the three-matrix SVD product to
two matrices, for example, by splitting Φr×r into two matrices Φ1/2

r×r and
then setting L = Pn×rΦ

1/2
r×r and R′ = Φ1/2

r×rQ
′
r×m. Thus, X = LR′. The

factors L and R′ are unique up to an arbitrary but full rank transformation
Tr×r, because LR′ = (LT)(T−1R′) if T has full rank r. Factorizations of
this sort are used in unfolding and in correspondence analysis, for example.
The rank-deficient case of SVD is often useful in algebraic manipulations,
because it always has orthogonal matrices P and Q.

(2) If all singular values are different—which is almost always true with
real data—then the singular vectors in P and Q are uniquely determined
except for reflections.

(3) If A is symmetric, then its SVD is simply A = TΦT′. If A = A′,
we have PΦQ′ = QΦP′, which, after pre- and postmultiplying by P and
Q and using their orthogonality, yields P′Q = I and thus P = Q. Thus,
if A is symmetric and positive semidefinite, the SVD corresponds to an
eigendecomposition.

(4) The SVD, like the spectral decomposition, provides an optimal least-
squares approximation of a matrix A by a matrix of lower rank. For
rank(A) = r ≥ k, the best approximating matrix results from retaining
the first k singular values in Φ and replacing the remaining k − r by zeros.
A is thus approximated by the matrix sum φ1p1q′

1 + · · · + φkpkq′
k, where

pi and qi are the ith column vectors of P and Q, respectively. This matrix
sum has similar properties as the spectral decomposition discussed above.
To illustrate, consider the picture in Figure 7.2a. This picture is gener-
ated from a 200-by-320 matrix that contains the codes for its pixels. One
can approximate this matrix with matrices of much lower rank than 200
in the sense of the above SVD. Figures 7.2b and 7.2c show that some 10
to 20 SVD components suffice to recognize the picture (Gramlich, 2004).
Hence, the essential information of the 200-dimensional space of the picture
is contained in a space of only about 20 dimensions, and the SVD shows
how to obtain this reduced space. This not only provides a solution of a
technical compression problem: it also suggests a bottom-up model for the
recognition of faces in psychology (see Section 17.7).
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a. b. c.

FIGURE 7.2. A 200-by-320 pixel picture (left side), approximated by 10 (center)
and 20 (right side) SVD components (Gramlich, 2004).

7.7 Linear Equation Systems

Matrices are closely related to systems of linear equations. Consider an
example:

−x1 + 2x2 + x3 = −2,
3x1 − 8x2 − 2x3 = 4,
x1 + 4x3 = −2.

(7.18)

The system is called linear because each equation is a weighted sum of the
unknowns x1, x2, and x3. The graph of such an equation in a Cartesian
coordinate system corresponds to a straight line. The equations in (7.18)
consist of the unknowns x1, x2, x3, the coefficients −1, 2, . . . , 4, and the
constants −2, 4, and −2. If we remove all symbols from (7.18) except the
coefficients, we obtain the matrix

A =

⎡⎣ −1 2 1
3 −8 −2
1 0 4

⎤⎦ . (7.19)

We can also array the unknowns and the constants from (7.18) in vectors:

x =

⎡⎣ x1
x2
x3

⎤⎦ and b =

⎡⎣ −2
4

−2

⎤⎦ . (7.20)

Combining (7.19) and (7.20), we can write the equation system (7.18) in
matrix notation, very compactly, as

Ax = b

or, more explicitly, as⎡⎣ −1 2 1
3 −8 −2
1 0 4

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =

⎡⎣ −2
4

−2

⎤⎦ . (7.21)

That (7.21) is equivalent to (7.18) can be seen by multiplying A by x
according to the multiplication rule for matrices.
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Solving a System of Linear Equations
The linear equation system Ax = b can be solved by premultiplying both
sides of the equation with A−1 so that A−1Ax = A−1b or x = A−1b. The
vector A−1b is a solution, because inserting this vector for x into Ax = b
leads to b = b.

Let the SVD of A be given by PΦQ′, where as usual P′P = I, Φ is
diagonal, and Q′Q = I. Making extensive use of these properties allows us
to solve the linear system Ax = b as follows.

Ax = b,

(PΦQ′)x = b,

P′PΦQ′x = P′b,

ΦQ′x = P′b,

Φ−1ΦQ′x = Φ−1P′b,

QQ′x = QΦ−1P′b,

x = QΦ−1P′b. (7.22)

The linear system Ax = b is solved by x = QΦ−1P′b. Note that if A
is not square or of full rank, then Φ has diagonal elements that are zero,
so that Φ−1 does not exist. If this is true, then there is no unique x that
solves Ax = b.

Let us apply (7.22) to solve (7.21). The SVD of A is given by[
.27 .07 -.96

-.96 .11 -.26
.09 .99 .10

][
9.12 .00 .00
.00 4.08 .00
.00 .00 .32

][
-.34 .90 .28
.30 -.17 .94
.89 .40 -.22

]
.

For x = QΦ−1P′b, we thus find

x =

[
-.34 .30 .89
.90 -.17 .40
.28 .94 -.22

][
.11 .00 .00
.00 .25 .00
.00 .00 3.10

][
.27 -.96 .09
.07 .11 .99

-.96 -.26 .10

][
-2
4

-2

]
=

[
2.0
0.5

-1.0

]
.

Hence, x = (2, 0.5, –1) solves (7.18). Here, QΦ−1P′ is equal to its inverse
A−1. It may be verified that the condition A−1A = AA−1 = I holds, as
is required for the inverse.

Uniqueness, Existence, and g-Inverses
Consider the simple equation ax = b, where a, b, and x are scalars. One
tends to say that the solution of this equation is x = b/a. However, there
are three possibilities: (1) if a �= 0, then x = b/a and b/a is the unique
solution whatever the value of b; (2) if a = 0 and b = 0, then any number
x is a solution because 0x = 0; (3) if a = 0 and b �= 0, then 0x �= 0
and no solution exists, because the equation is inconsistent, implying the
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contradiction 0 = b �= 0. Exactly the same three possibilities exist for a
system of linear equations Ax = b.

The natural approach to solving Ax = b is to ask for the inverse A−1 so
that x = A−1b. If this inverse exists, we have a unique solution. But the
inverse may not exist because (a) we have “too few” independent equations
or (b) because we have “too many” independent equations. Case (a) is
illustrated by the following example.

A1x1 =
[ −1 2 1

3 −8 −2

]⎡⎣ x1
x2
x3

⎤⎦ =
[ −2

4

]
= b1. (7.23)

Obviously, this system is underdetermined, so that if we solve it for two un-
knowns, the solutions will always contain the third unknown. For the third
unknown, we can pick any value. The system, therefore, is not uniquely
solvable. Case (b) is illustrated as follows.

A2x2 =

⎡⎣ −1 2
3 −8
1 0

⎤⎦[
x1
x2

]
=

⎡⎣ −2
4

−2

⎤⎦ = b2. (7.24)

This system is inconsistent. It has no solution. But consider also the fol-
lowing case.

A3x3 =

⎡⎣ −1 2 1
3 −8 −2
1 −2 −1

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ =

⎡⎣ −2
4

−2

⎤⎦ = b3. (7.25)

Even though this system has three equations and three unknowns, it has
no solution. The three equations contain only two different pieces of infor-
mation, because one notes that the third row in A3 is just −1 times the
first row. Hence, the rank of A is only 2, and we could, at best, have an
under-determined system. It turns out, however, that the system is also
inconsistent, because the first and the third equations, being the same ex-
cept for a multiplier of −1, do not have the same relationship on the side
of the coefficients. That is, we do not have b1 = −b3. This example shows,
therefore, that having as many equations as unknowns or, in other words,
having a square matrix A is only necessary but not sufficient for a unique
solution to exist.

The case where no solution exists is typical in empirical research. For
example, in regression problems where one claims that one dependent vari-
able y is a linear combination of a set of independent variables X, this
is typically only “approximately” true. In this case, the equation system
y = Xw is inconsistent and we are looking for an optimal approximate
solution for w that minimizes ‖Xw−y‖. Assuming that X has full column
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rank, the best Xw is ŷ = X(X′X)−1X′y, where X(X′X)−1X′ projects4

the vector y onto the space spanned by the columns of X. If X is rank
deficient, however, we cannot directly compute this solution but first must
eliminate linear dependencies from the predictors X.

It is not easy to keep track of all of this, but, fortunately, there exists a
unified treatment that makes things pleasantly simple. Instead of A−1, one
can use a generalized inverse, which is equal to the usual inverse if it exists
and provides a least-squares solution in that case. One such generalized
inverse is the Moore–Penrose inverse or pseudoinverse, A+. It is the unique
matrix that can be computed from the full rank SVD A = PΦr×rQ′ as
A+ = QΦ−1

r×rP
′. The above regression problem is solved even if there are

linear dependencies in X by replacing the term (X′X)−1 by (X′X)+. For
linear equation systems Ax = b in general, optimal solutions are found by
setting x = A+b. If an exact solution exists—as in (7.23)—then x = A+b
will yield it. (One can show that a system Ax = b has an exact solution
if and only if AA+b = b.) If no exact solution exists—as in (7.24) and
(7.25)—x = A+b gives the optimal least-squares solution.

There are plenty of generalized inverses. They are usually denoted by
A−. They all share the property that A = AA−A, which obviously also
holds for the regular inverse A−1. The Moore–Penrose has a number of
additional properties. They are not always needed, and other forms of gen-
eralized inverses may suffice and may be cheaper to compute for a particular
purpose. However, not all generalized inverses have the property that they
provide least-squares solutions to Ax = b.

7.8 Computing the Eigendecomposition

We now show how an eigendecomposition can be computed. We consider a
typical case, the symmetric matrix B used previously in (7.7). To find B’s
eigenvalues, we can use one of the many sophisticated iterative procedures
available in modern computer packages. It would take too much time to
explain any of these, but we can convey a sense of how they work by
demonstrating the simple power method.

For scalar product matrices in the empirical sciences, we can safely as-
sume that their eigenvalues are all positive and distinct so that λ1 > · · · >
λk ≥ 0. The number k is either equal to m or is the last eigenvector of in-
terest. We then arbitrarily define some starting vector q[0] �= 0 and iterate
the system

q[t+1] = ‖Bq[t]‖−1Bq[t]

4The solution is derived by geometric arguments in Chapter 22. See Figure 22.2 and
the accompanying text.
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TABLE 7.5. Computing eigenvalues and eigenvectors by the power method. The
product q[t]′Bq[t] estimates the eigenvector λ at iteration t, λ[t].

B q[0] q[1] q[2] q[3] q[4] q1

5 5 2 1/
√

3 .444 .431 .429 .429 .429
5 10 6 1/

√
3 .778 .781 .781 .781 .781

2 6 4 1/
√

3 .444 .452 .453 .454 .454
λ[t] 15.000 16.215 16.227 16.227 16.227 16.227

λ1q1q′
1 =

[
2.986 5.437 3.160
5.437 9.898 5.754
3.160 5.754 3.345

]

B − λ1q1q′
1 q[0] q[1] q[2] q2

2.016 -.437 -1.156 1/
√

3 .853 .853 .853
-.437 .095 .251 1/

√
3 -.185 -.185 -.185

-1.156 .251 .663 1/
√

3 -.489 -.489 -.489
λ[t] .030 2.776 2.776 2.776

λ2q2q′
2 =

[
2.020 −.438 −1.158
−.438 .095 .251

−1.158 .251 .664

]

λ1q1q′
1 + λ2q2q′

2 =

[
2.99 5.44 3.16
5.44 9.90 5.75
3.16 5.75 3.34

]
+

[
2.02 −.44 −1.16
−.44 .10 .25

−1.16 .25 .66

]

=

[
5 5 2
5 10 6
2 6 4

]

a few times until q[t+1] remains essentially invariant over the iterations.5

The scalar factor ‖Bq[t]‖−1 normalizes Bq[t] which prevents the values
of q from becoming extremely large or small over the iterations. After
convergence, q is equal to the first eigenvector and q′Bq = λ1 is the first
eigenvalue. An example is shown in Table 7.5.

Starting with q[0] = (1/
√

3, 1/
√

3, 1/
√

3) in Table 7.5, Bq[0] =
(6.928, 12.124, 6.928) and ‖Bq[0]‖ = q[0]′B′Bq[0] =

√
242.986 = 15.588,

so that q[1] = (1/15.588) · (6.928, 12.124, 6.928) = (.444, .778, .444). Further
iterations of the same kind yield q[2], q[3], and so on. After four itera-
tions, the results have stabilized. We obtain q[4] = (.429, .781, .454) and
an estimate of the eigenvalue λ1 of q[4]′Bq[4] = 16.227.

5The notation q[t] indicates that we are dealing with vector q at time t. Vector q[0],
thus, is q at time t = 0, that is, the starting vector.
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How can we find the second eigenvector? Remember that the eigende-
composition of a square 3 × 3 matrix amounts to

B = λ1q1q′
1 + λ2q2q′

2 + λ3q3q′
3.

At this stage, we know the first eigenvalue λ1 and the first eigenvector q1.
Moving the known part to the left-hand side of the equations gives

B − λ1q1q′
1 = λ2q2q′

2 + λ3q3q′
3.

To compute the second eigenvalue and eigenvector, we apply the procedure
to B − λ1q1q′

1. This is shown in the second part of Table 7.5. Eigenvector
q2 is (.853,−.185,−.489) and λ2 equals 2.776. To find the third eigenvalue,
we have to repeat the procedure to B − λ1q1q′

1 − λ2q2q′
2, which in this

example is equal to zero everywhere. Therefore, the third eigenvalue must
be zero and the first two components suffice to specify B.

Finally, we show why the power method works at all. We started by
assuming that |λ1| > |λj |, j = 2, . . . , k. Also, for scalar product matrices,
it holds that B = B′. The iterations can be written6 explicitly as

q[1] = ‖Bq[0]‖−1Bq[0],

q[2] = ‖Bq[1]‖−1Bq[1]

= ‖BBq[0]‖−1B(Bq[0]), etc., or as

q[t] = ‖Btq
[0]‖−1Btq[0]. (7.26)

But because B = QΛQ′, B2 = (QΛQ′)(QΛQ′) = QΛ(Q′Q)ΛQ′ =
QΛ2Q′ and, in general, Bt = QΛtQ′. If λ1 dominates all other eigen-
values, then Bt will be more and more approximated by the additive fac-
tor λ1q1q′

1 in the eigendecomposition as t → ∞. Hence, we get Btq[0] ≈
(λt

1q1q′
1)q

[0] = λt
1q1(q′

1q
[0]) = λt

1q1k = constant · q1. So, the iterations
eventually grind out the first eigenvector, q1. The irrelevant scaling con-
stant is removed through normalization. The corresponding eigenvalue re-
sults from q′

1Bq1 = λ1 which follows from equation (7.9).
Apart from its assumptions concerning the distribution of the eigenval-

ues, the power method is not without problems. Suppose that the matrix
to which the power method is applied is not a scalar product matrix, but
any square symmetric matrix. Then it may happen that some eigenval-
ues are negative. Assume that the eigenvalues are ordered decreasingly, so
that the largest eigenvalue is λ1 and the smallest negative eigenvalue is
λn. If the largest eigenvalue is smaller than minus the smallest eigenvalue,
that is, λ1 < |λn|, then the power method converges to the smallest nega-
tive eigenvalue λn and not to λ1. A second problem occurs if by accident

6Bt is the product of B multiplied t times with itself. Thus, Bt = BBB . . . B, with
t times B.
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the start vector q[0] is chosen exactly equal to an eigenvector. Then, the
power method finishes in one iteration, but the obtained eigenvalue is not
necessarily the largest one. The third problem of the power method is its
slow convergence if two eigenvalues are almost equal. In general, the power
method can be accelerated by using BB instead of B, so that the power
method converges to the largest squared eigenvalue. The use of BB makes
differences between the eigenvalues larger.

7.9 Configurations that Represent Scalar Products

We now return to the problem of finding a point configuration that repre-
sents a given scalar-product matrix. In matrix notation, this amounts to
solving the equation

B = XX′, (7.27)

where X is the n×m coordinate matrix of n points in m-dimensional space.
Let

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ and B = XX′ =

⎡⎣ 5 5 2
5 10 6
2 6 4

⎤⎦ , (7.28)

as in Sections 7.3 and 7.5. Suppose that we do an eigendecomposition of B
= QΛQ′. We know that scalar product matrices are symmetric and have
nonnegative eigenvalues (see Section 7.5). Therefore, we may write B =
(QΛ1/2)(QΛ1/2)′ = UU′, where Λ1/2 is a diagonal matrix with diagonal
elements λ

1/2
i . Thus, U = QΛ1/2 gives coordinates that reconstruct B. In

Table 7.5 the eigendecomposition of matrix B is given. The coordinates are

U = QΛ1/2

=

⎡⎣ .43 .85
.78 −.19
.45 −.49

⎤⎦[ 4.03 0.00
0.00 1.67

]
=

⎡⎣ 1.73 1.42
3.15 −.31
1.83 −.81

⎤⎦. (7.29)

The coordinates in U differ from those of X in (7.28). This simply means
that they are expressed relative to two different coordinate systems, which,
however, can be rotated into each other. For the problem of finding a vector
configuration for given scalar products, it is irrelevant how the coordinate
axes are rotated. What matters is the configuration.

7.10 Rotations

For the purpose of easy interpretation, some rotations are more useful than
others, especially if one wants to check hypotheses about the dimensions. In
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FIGURE 7.3. Rotation of coordinate system by α◦.

factor analysis where dimensions play a dominant role, numerous criteria
for rotating a configuration have been proposed (see, e.g., Mulaik, 1972).
Probably the best known of these criteria is the varimax principle. It seeks
to rotate a given configuration X such that the sum of the variances of the
x2

ij in each column j of X is maximized across all columns. This criterion is
designed to make the “loadings” xij either very small or very large so that
each point of X lies, ideally, on or very close to just one of the dimensions.

This type of simple structure rotation is motivated by a particular theory
about the dimensional structure of the configuration X and by consider-
ations about the robustness of this dimensional structure (Kaiser, 1958).
Another rotation criterion of a more formal nature is rotation to principal
axes. Principal axes are the dimensions of a particular orthogonal coor-
dinate system. It has the property that its first dimension (1st principal
axis or 1st PA) lies closest to all points of the configuration X. The second
PA accounts for most of the points scatter that is orthogonal to the first
PA, and so on. If the coordinates in X refer to a coordinate system whose
dimensions are principal axes, then XX′ is diagonal, and the norm of the
first column of X, ‖x1‖, is larger than the norm for any column of any
rotation of X. The norm of the second column is similarly the largest one,
subject to the condition that x2 is orthogonal to x1, and so on.

Let us consider rotations in matrix terms. Rotations can be conceived
of in two different ways. (1) The points (say, p1, . . . , p3 in Figure 7.1) are
transformed, but the coordinate system remains fixed. This is called the
alibi interpretation of the transformation, because the points are moved
somewhere else. (2) The points remain fixed, but the coordinate axes are
transformed. This is the alias interpretation, because the points change
their coordinates or names.

Consider Figure 7.3. The point p1 has coordinates (x11, x12) relative to
the axes x1 and x2. In an alias interpretation of rotation, p1 is now to be
coordinatized relative to new axes, such as the 1st PA and the 2nd PA,
which result from x1 and x2 by a counterclockwise rotation through the
angle α. The new coordinates, x∗

11 and x∗
12, must depend, in some way, on

the old coordinates, x11 and x12, and the angle α.
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First, we note in Figure 7.3 that x11 = d cos(β), x12 = d sin(β), x∗
11 =

d cos(β−α), and x∗
12 = d sin(β−α), whence, using the well-known formulas

for the sine and the cosine of the difference of two angles,

x∗
11 = d cos(β − α) = d[cos(β) cos(α) + sin(β) sin(α)]

= [d cos(β)] cos(α) + [d sin(β)] sin(α)
= x11 cos(α) + x12 sin(α), and

x∗
12 = d sin(β − α) = d[sin(β) cos(α) − cos(β) sin(α)]

= [d sin(β)] cos(α) − [d cos(β)] sin(α)
= x12 cos(α) − x11 sin(α).

Expressing this in matrix notation yields[
x∗

11 x∗
12

]
=

[
x11 x12

] [ cos(α) − sin(α)
sin(α) cos(α)

]
. (7.30)

The matrix on the right-hand side of (7.30) is the rotation matrix T. If
we collect the point coordinates in an n × m matrix as usual, the new
coordinate matrix X∗ is related to the old X by X∗ = XT. The rotation
matrix T is orthonormal.

A general m×m rotation matrix can be composed as the product of all
planewise rotations. In m-dimensional space, there are

(
m
2

)
= m(m − 1)/2

such rotations. For example, in 4D the rotation in the plane spanned by
the first and the fourth coordinate axes, T14, is

T14 =

⎡⎢⎢⎣
cos(α14) 0 0 − sin(α14)

0 1 0 0
0 0 1 0

sin(α14) 0 0 cos(α14)

⎤⎥⎥⎦ .

The rotation of the entire 4D space is accomplished by

T = T12T13T14T23T24T34.

That rotations leave all of the distances in a configuration unchanged
is easy to see. Consider (7.5). Replacing X by XT has no effect on XX′,
because XTT′X′ = XX′. Also, the vector c is simply the collection of the
diagonal elements of XX′, and they are not affected by T, as we just saw.

A particular choice of T is the matrix of Q from the SVD of X = PΦQ′.
With T = Q, XT yields a principal axes orientation of the coordinate axes,
because XQ = PΦ, with orthogonal columns of maximal norm (Gower,
1966). Consider a case of rotating the coordinate axes x1 and x2 in Figure
7.1 to principal axes. We begin with the given coordinates

X =

⎡⎣ 1 2
3 1
2 0

⎤⎦ .
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Using the Q from (7.16) we have

XQ =

⎡⎣ 1 2
3 1
2 0

⎤⎦[
.91 −.41
.41 .91

]
=

⎡⎣ 1.73 1.42
3.15 −.31
1.83 −.81

⎤⎦ . (7.31)

How does Q rotate the plane? The answer is found by comparing Q with
the symbolic rotation matrix in formula (7.30). Because .91 corresponds to
cos(α), the rotation angle α is arccos(.91) = 24◦. The same α results, for
example, from arcsin−1(.41). Hence, Q rotates X by 24◦ in the positive
sense, that is, anticlockwise.

If we compare the coordinates in XQ of (7.31) with those in Figure 7.3,
we note that XQ = X∗ does indeed contain the PA coordinates of the
points. The squared coordinates on x∗

1 now sum to 1.732 + 3.152 + 1.832 =
16.26. This sum is not only greater than the corresponding sum on x1
(12 + 32 + 22 = 14), but is also the maximum possible for any coordinate
axis.

7.11 Exercises

Exercise 7.1 The following exercises cast some additional light on the sym-
metry and asymmetry of a matrix.

(a) Compute A = 0.5(M + M′) and B = 0.5(M − M′) for the upper
left-hand corner submatrix A, . . ., G in Table 4.2.

(b) A square matrix M is called skew-symmetric if M′ = −M. Show that
B = 0.5(M − M′) is skew-symmetric.

(c) Show that M = A + B.

(d) Characterize the decomposition of M into A and B in words. Into
what two components is M decomposed here?

Exercise 7.2 Specify the 2 × 2 matrix T that effects a counterclockwise
rotation of the 2D plane through an angle of 45 degrees.

Exercise 7.3 The square of a matrix M is defined by M2 = MM.

(a) What properties must M possess so that M2 exists?

(b) Assume T is a rotation matrix. Characterize what T2 means geomet-
rically.

(c) If Q is orthogonal, is the same true of Q3?
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Exercise 7.4 Find all 3×3 orthogonal matrices whose entries are zeros and
ones.

Exercise 7.5 Use a computer package that does matrix algebra, for exam-
ple, MatLab, S-plus, R, and Ox. (Note that some statistics packages such
as SPSS and SAS can also do matrix algebra.)

(a) Find the pseudoinverse of A =
[

3 2
]

through the SVD compo-
nents of A.

(b) Find the pseudoinverses for A1, A2, and A3 in (7.23), (7.24), and
(7.25).

Exercise 7.6 What 2 × 2 matrix projects the X−Y plane onto the X-axis?

Exercise 7.7 Let A =
[

1 x
y −1

]
. Specify x and y so that

(a) AA′ is symmetric;

(b) AA′ is skew-symmetric;

(c) A is orthogonal.

Exercise 7.8 Define A =

⎡⎣ 1 2 3
4 0 1

−5 −2 6

⎤⎦ and B =

⎡⎣ 7 −4 0
3 2 1
1 −1 6

⎤⎦.

(a) Compute (A + B)2.

(b) Compute (A + B)(A − B).

Exercise 7.9 Construct a 2 × 2 matrix with nonzero entries that does not
have an inverse.

Exercise 7.10 Find 2×2 matrices A and B, both unequal to the null matrix
0, so that A2 + B2 = 0.

Exercise 7.11 Find 2 × 2 matrices A and B with nonzero entries so that
AB = 0.

Exercise 7.12 Suppose that X is a matrix in which the third column is
equal to twice the first column. Show that the same must be true for any
product YX.

Exercise 7.13 Let X be a 3 × 2 matrix. Try a few cases and demonstrate
that tr X′X = tr XX′. Show that this property holds in general.
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Exercise 7.14 Consider the matrices A and B of Exercise 7.8.

(a) Find the eigenvalues and eigenvectors of AA′, A′A, BB′, and B′B.

(b) Verify that the trace of these four matrix products is equal to the
sum of the respective eigenvalues.

(c) Explain what the traces A′A and B′B represent geometrically. (Hint:
What do the elements in the main diagonal of these product matrices
represent? They are measures of what?)

Exercise 7.15 Consider the equation (7.23).

(a) Interpret this equation geometrically in terms of image vectors, pre-
image vectors, and transformations. What vectors are mapped here
onto what images? What affects the mapping?

(b) Can you decompose the transformations into a set of more basic trans-
formations?

Exercise 7.16 For matrix B of equation (7.28), use the power method with
at least five iterations to find the dominant eigenvalue.

Exercise 7.17 Consider matrix A2 of equation (7.24). How many nonzero
eigenvalues exist for A2A′

2? Why? (You don’t have to do any computa-
tions.)

Exercise 7.18 Consider the matrices

A =

⎡⎢⎢⎣
1 2 3
2 3 4
3 4 5
4 5 6

⎤⎥⎥⎦ and B =

⎡⎢⎢⎣
1 2 3
2 4 6
3 6 9
4 8 12

⎤⎥⎥⎦ .

(a) Plot the first two coordinates of each row of A and B as vectors in
the X−Y plane.

(b) Find the ranks of A and of B. Explain why the rank of A is not
equal to 1, even though the second and the third column of A can be
generated from the first column by a2 = a1+1·1 and by a3 = a1+2·1,
respectively.

(c) Find the linear combinations that generate the third column from the
first two columns of A and of B, respectively.

Exercise 7.19 Matrix B below is a permutation of matrix A. Therefore,
there exists a row permutation matrix P and a column permutation matrix
Q such that B = PAQ. Note that any permutation matrix P has in each
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row and column a single value of one and all other values zero. Find the
permutation matrices that turn B back into A. (Hint: Build the desired
permutation matrices as products of elementary permutation matrices. You
get the permutation matrix P that exchanges rows i and j of X in PX by
exchanging columns i and j of an identity matrix.)

A =

⎡⎣ a b c
d e f
g h i

⎤⎦ and B =

⎡⎣ e f d
h i g
b c a

⎤⎦ .

Exercise 7.20 Show that (AB)′ = B′A′.

Exercise 7.21 Demonstrate that (AB)−1 = B−1A−1 for the matrices A
and B in Exercise 7.8.

Exercise 7.22 Consider the matrices A and B in Exercise 7.8.

(a) Normalize the column vectors of A and B numerically.

(b) Express this normalization in matrix notation.

Exercise 7.23 Consider the matrices A in Exercise 7.8.

(a) Compute the correlation matrix of the column vectors of matrix A.

(b) Express the operations that generate this correlation matrix in matrix
notation.

(c) Spectrally decompose the correlation matrix as in (7.11).

(d) Specify what sum-of-squares is accounted for by each component.

(e) Check whether the correlation matrix is positive semidefinite or pos-
itive definite.

Exercise 7.24 Compute the distances among the rows of matrix A of Ex-
ercise 7.18 by using formula 7.5.

Exercise 7.25 Consider Figure 7.3.

(a) The coordinate axes in this plot are almost optimal in terms of simple
structure. Explain why.

(b) The best simple structure orientation of the plane leads to

X∗ =

⎡⎣ 0.60 2.15
2.76 1.56
1.96 0.38

⎤⎦ .

Show that X∗ more closely satisfies the simple structure criterion
than the point coordinates of both the system spanned by x1 and x2,
and the system of principal axes in Figure 7.3.
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(c) Find the rotation matrix that turns the system spanned by x1 and
x2 so that X∗ results.

Exercise 7.26 Prove that the least-squares solution for x in the equation
system Ax = b coincides with the one and only solution for x if A is invert-
ible. (Hint: Use theorems of Table 7.2 to simplify the regression projector.)

Exercise 7.27 Find the solution vector x in the equation system (7.18) by

(a) inverting A;

(b) by solving Ax = b as if it were a regression problem with the un-
known x, that is, by determining the least-squares solution for x;

(c) by solving the system using the generalized inverse based on the SVD
of A.

(d) Discuss the findings.

Exercise 7.28 Assume you have five vectors with four elements each. What
can you conclude about their linear dependency?

Exercise 7.29 Let P be a projector.

(a) Show that PP = P (idempotency).

(b) Explain why a projector is idempotent by geometric arguments.

Exercise 7.30 Consider the picture compression problem illustrated in Fig-
ure 7.2 on page 154. If you have MatLab, you can easily replicate this ex-
ample with a few commands. The data for this picture are provided by
MatLab under the name “clown.mat”. Hence, all you need to do is type
the commands

load clown % Load matrix X with pixel codes
image(X) % Display original picture
[U,S,V]=svd(X); % SVD of the 200-by-320 pixel matrix
k=10; % Set compression factor k
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’) % Approximate picture
colormap(gray) % Set image to grayscale

If you do not have MatLab, download the data from our website and do
the exercise in your favorite matrix language.

(a) Test out the performance of some additional ks.

(b) Determine the compression rate accomplished by choosing k SVD
components rather than the original matrix of pixels. (Hint: The orig-
inal matrix contains 64,000 pieces of information; the rank-reduced
matrix contains as many pieces as there are elements in its SVD
components.)
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(c) Try the above problem in color by inserting colormap(map) after
image(X) in the above set of commands.

(d) Measure objectively how well the various matrices of rank k “explain”
the original data.

(e) Attempt an interpretation of the SVD approximations. What infor-
mation is picked up first?




