
17
MDS as a Psychological Model

MDS has been used not only as a tool for data analysis but also as a
framework for modeling psychological phenomena. This is made clear by
equating an MDS space with the notion of psychological space. A metric
geometry is interpreted as a model that explains perceptions of similarity.
Most attention has been devoted to investigations where the distance func-
tion was taken as a composition rule for generating similarity judgments
from dimensional differences. Minkowski distances are one family of such
composition rules. Guided by such modeling hypotheses, psychophysical
studies on well-designed simple stimuli such as rectangles uncovered inter-
esting regularities of human similarity judgments. This model also allows
one to study how responses conditioned to particular stimuli are generalized
to other stimuli.

17.1 Physical and Psychological Space

In most applications of MDS today, little attention is devoted to the Shep-
ard diagram. It may therefore surprise the reader that ordinal MDS was
originally invented to study the shape of the regression curve in this dia-
gram, not the MDS configuration. This also makes clear how closely MDS
used to be related to efforts for modeling psychological phenomena, where
the MDS geometry served as a model of psychological space and the dis-
tance function as a model of mental arithmetic.
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FIGURE 17.1. (a) Four generalization gradients over the electromagnetic spec-
trum, with intervals adjusted to make gradients similar; panel (b) shows su-
perimposed gradients constructed over the nonadjusted scale; panel (c) shows
superimposed gradients from panel (a).

The Shape of Generalization Gradients in Learning
The scientific context for the interest in Shepard diagrams becomes clear
from the following experiment. Guttman and Kalish (1956) trained four
groups of pigeons to peck at a translucent plastic key when illuminated from
behind by monochromatic light with wavelengths 530, 550, 580, and 600
nm, respectively. After the learning sessions, they assessed the frequency
with which the pigeons in each group pecked at the key when illuminated
with different colors. Figure 17.1a shows that the probability of pecking at
the key is highest for the original conditioned color and decreases mono-
tonically as a function of the difference between the original and the test
color.

One can ask whether such generalization gradients always have the same
shape. Are they, say, always exponential decay functions over the stimulus
dimensions? This is difficult to decide, because it is the psychological, not
the physical, stimulus dimensions that are relevant. In a simple case such as
the Guttman–Kalish experiment, the stimuli vary on just one dimension.
The physical (here: wavelength) and the psychological (here: hue) dimen-
sions are related to each other by a psychophysical mapping. The shape of
generalization gradients depends on this mapping. This can be seen from
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Figure 17.1, taken from Shepard (1965). The X-axis in panel (a) shows
the physical wavelengths of the stimuli, but its units have been somewhat
compressed and stretched locally to make the four gradients as similar as
possible. Without these adjustments, that is, over the physical wavelength
scale, the gradients are less similar (Figure 17.1b). After the adjustment,
the gradients are almost equal in shape (Figure 17.1c).

Thus, knowledge of the psychological space of the stimuli, or at least
the “psychological” distances between any two stimuli, Si and Sk, is nec-
essary for meaningful statements on the shape of generalization gradients.
Older approaches often tried to arrive at psychological distances directly
by summing just noticeable differences (JNDs) between Si and Sk. The
idea that this sum explains the subjective dissimilarity of Si and Sk goes
back to Fechner (1860). There are many problems associated with this
model (Krantz, 1972), but one is particularly important for MDS: “Unfor-
tunately, in order to sum JNDs between two stimuli, this summation must
be carried out along some path between these stimuli. But the resulting
sum will be invariant . . . only if this path is a least path, that is, yields
a shortest distance (in psychological space) between the two stimuli. We
cannot presume, in arbitrarily holding certain physical parameters constant
. . ., that the summation is constrained thereby to a shortest path . . . in psy-
chological space, even though it is, of course, confined to a shortest path . . .
in physical space. . . . These considerations lead us to look for some way of
estimating the psychological distance between two stimuli without depend-
ing either upon physical scales or upon any arbitrary path of integration”
(Shepard, 1957, p. 334).

Relating Physical Space to Psychological Space
An external approach for the problem of estimating psychological distances
first assumes a particular correspondence of physical space to psychologi-
cal space and then explains how the response probabilities are distributed
over this space. An internal approach, in contrast, builds directly and ex-
clusively on the response probabilities and formulates how these arise as
a function of unknown psychological distances. Let us consider Shepard’s
original derivations (Shepard, 1957). Let pik be the probability of giving
the Si response to stimulus Sk. If i = k, then pik is the probability of giving
the correct response. It is postulated that there exists a function f such
that pik is proportional to f(dik), where dik is the psychological distance
between Si and Sk,

pik = ci · f(dik), (17.1)

with ci a proportionality constant associated with Si. Summing over all k,
we obtain

∑
k pik = 1 and ci ·∑k f(dik) for the two sides of (17.1), so that
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ci = 1/
∑

k f(dik). Inserting this term for ci in (17.1) yields

pik = f(dik)/
∑

j

f(dij). (17.2)

With the pik-values given as data, we now search for a function f that
satisfies (17.2). The important point here is that the d-values on the right-
hand side are not just any values that satisfy (at least approximately)
all equations of type (17.2), but they must also possess the properties of
distances and even of Euclidean distances in a space of given dimensionality.
Moreover, we would not accept any function f , but only those that are
smooth (continuous) and monotone increasing or decreasing. Then f is
invertible, so that response probabilities can in turn be derived from the
psychological distances. If we assume that the psychological space is related
to the physical space by a smooth transformation, then straight lines in
physical space are transformed into lines in psychological space that may
not be straight but smoothly curved. Hence, given any three stimuli on
a straight line in physical space, their psychological images should also
be approximately on a straight line if the stimuli are physically similar.
From this assumption and some additional simple postulates on decay and
diffusion of memory traces, Shepard (1958a) derives that f is a negative
exponential function. Elsewhere, without any assumptions, Shepard (1957)
simply defines f to be a negative exponential function. This function turns
(17.2) into

pik = exp(−dik)/
∑

j

exp(−dij). (17.3)

Because dii = 0, exp(−dii) = exp(0) = 1 and so

pik/pii = exp(−dik). (17.4)

Dividing pik by pii means that the probability of giving the i response to
stimulus k is expressed relative to the probability of responding properly
to Si. Thus, norming all response probabilities in this way, and specifying
that dik is a Euclidean distance in a space with dimensionality m, we end
up with a metric MDS problem that requires finding a point space such
that its distances satisfy (17.4) as closely as possible. A reasonable choice
for m should be the dimensionality of the physical space.

Determining the Shape of Generalization Gradients via MDS
The discussion above led to a confirmatory MDS problem: the data (i.e.,
the ratios pik/pii) are to be optimally mapped into a particular model. The
fit of the model to the data is then evaluated. Shepard (1958b) concluded
that the negative exponential function allows one to explain the data suf-
ficiently well, but other functions, such as a simple linear one, may also be
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in good or even better agreement with the data. Shepard tried to solve this
problem and allow the data to “reveal themselves” by requiring only that f
in (17.1) be monotonically decreasing rather than some specific parametric
function. In other words, expressed in terms of the generalization gradi-
ents, he required that they should decrease from the correct stimulus Sr

monotonically into all directions of the stimulus space.
To see how a psychological scale (e.g., the X-axis in Figure 17.1a) is

derived, fold Figure 17.1b at the points where the gradients peak. What
will then be obtained is nothing other than a Shepard diagram, where the
data appear on the Y -axis and the “psychological” distances on the X-
axis. Hence, finding the psychological scale amounts to using ordinal MDS
with m = 1 in the present case. Of course, the Shepard diagram will show
a scatter of points only, and the various gradients have to be found by
unfolding the Shepard diagram and connecting the respective points. The
unfolding is done simply by arraying the points in the order of their physical
stimulus coordinates (here: wavelengths) and with distances among them
as computed by the MDS procedure.

17.2 Minkowski Distances

Over a 2D stimulus space, the generalization gradients are surfaces such as
the cones and pyramids shown schematically in Figure 17.2. Assume that
the directions labeled as D1 and D2 are psychologically meaningful dimen-
sions such as hue and saturation for color stimuli. Assume further that the
correct stimulus Sr corresponds to the point where D1 and D2 intersect.
Cross (1965a) then distinguishes the following three models: (1) the ex-
citation model, which assumes that the generalization gradient decreases
evenly around Sr into all directions of the psychological space; (2) the dis-
crimination model, which says that the strength of reacting to a stimulus
different from Sr on both dimensions corresponds to the sum of the gen-
eralization of Sr on both dimensions; and (3) the dominance model, where
the strength of reacting to Si �= Sr is determined by only that dimension
on which Si and Sr differ most. These models are illustrated in Figure 17.2.
The gradients are shown as linear functions to simplify the pictures. Note
that the gradients for the discrimination model and the dominance model
have the same shape (for a two-dimensional psychological space) but differ
in their orientation relative to the dimensions.

The Family of Minkowski Distances
The generalization models in Figure 17.2 illustrate three special cases of
the Minkowski metric or, equivalently, the Minkowski distance. The general
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FIGURE 17.3. Three circles with same radius around Sr in 2D for different
p-values in the Minkowski distance formula.

formula for this metric is

dij(X) =

(
m∑

a=1

|xia − xja|p
)1/p

, p ≥ 1. (17.5)

For p = 2, equation (17.5) yields the usual Euclidean distance formula. For
p = 1, we obtain the city-block metric, and for p → ∞, the dominance
metric.

The implications of choosing different p-values can be seen from the fol-
lowing. If we look, from above, at the three gradient models in Figure 17.2,
a circle, a diamond, and a square, respectively, appear in the psychologi-
cal space. Superimposing these three figures leads to the diagram in Figure
17.3. Assume, for simplicity, that the point Sr has coordinates (0, 0). Then,
(17.5) reduces to

drj = (|xj1|p + |xj2|p)1/p. (17.6)

For p = 1 we obtain drj as just the sum of the absolute coordinates of Sj .
Thus, all stimuli located on the diamond in Figure 17.3 have the same city-
block distance to Sr. The diamond is therefore called the isosimilarity curve
of the city-block metric. It is the set of all points with the same distance to
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Sr. But this is just the definition of a circle in analytical geometry, so the
diamond is nothing but a circle in the city-block plane, even though it does
not look like a circle at all. Our Euclidean notion of a circle corresponds
exactly to the isosimilarity curve for p = 2. Finally, the circle for p → ∞
looks like a square with sides parallel to the dimensions.

It is important to realize that the distance drj for two given points Sr

and Sj remains the same under rotations of the coordinate system only if
p = 2. For p = 1, drj is smallest when both stimulus points lie on one of
the coordinate axes. If the coordinate system is rotated about Sr, then drj

grows (even though the points remain fixed), reaches its maximum at a 45◦

rotation, and then shrinks again to the original value at 90◦. This behavior
of a distance function may appear strange at first, but “. . . under a good
many situations, [this distance] describes a reasonable state of affairs. For
example, suppose one were in a city which is laid out in square blocks. A
point three blocks away in one direction and four blocks away in the other
would quite reasonably be described as seven blocks away. Few people,
if asked, would describe the point as five blocks distant. Further, if new
streets were put in at an angle to the old, the ‘distance’ between the two
points would change” (Torgerson, 1958, p. 254).

Minkowski Distances and Intradimensional Differences
Further properties of different Minkowski distances follow directly from
(17.5). Cross (1965b, 1965a) rearranges its terms in a way that we show
here for the special case of (17.6):

dp
rj = |xj1|p + |xj2|p,

drjd
p−1
rj = |xj1|p−1 · |xj1| + |xj2|p−1 · |xj2|,
drj = (|xj1|p−1/dp−1

rj )︸ ︷︷ ︸ ·|xj1| + (|xj2|p−1/dp−1
rj )︸ ︷︷ ︸ ·|xj2|),

drj = w1 ·|xj1| + w2 ·|xj2|.

(17.7)

It follows that for p = 1, drj is just the sum of the coordinate values
of stimulus Sj , because w1 = w2 = 1. If p > 1, then the coordinates
are weighted by w1 and w2 in proportion to their size. If p → ∞, drj

approximates its largest coordinate value. This can be seen most easily
from a numerical example. Table 17.1 shows such an example for Sr =
(0,0) and Sj = (1,2), for which |xj1| = 1 and |xj2| = 2. For p = 1, we
obtain drj = (1/3)0 · 1 + (2/3)2 · 2 = 1 · 1 + 1 · 2 = 3. For p = 2, we get
drj = (1/

√
5)1 · 1 + (2/

√
5)1 · 2 = 0.44721360 + 1.78885438 = 2.23606798.

Generally, if p → ∞, then drj → 2; that is, as p grows, the larger of the
two coordinates of Sj (i.e., the larger of the two-dimensional differences
between Sr and Sj) tends to dominate the global distance value. Indeed,
drj approximates the limiting value 2 quite rapidly as p grows: for p = 20,
drj differs from 2 only in the seventh position after the decimal point.
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TABLE 17.1. Demonstration of how dimensional differences (xja) enter the
distance of two points r and j under different Minkowski p parameters, with
xr1 = 0, xr2 = 0, xj1 = 1, xj2 = 2.

p w1 · xj1 w2 · xj2 w2/w1 drj

1.0 1.00000000 2.00000000 1.00 3.00000000
1.5 0.63923401 1.80802681 1.41 2.44726081
2.0 0.44721360 1.78885438 2.00 2.23606798
3.0 0.23112042 1.84896340 4.00 2.08008382
4.0 0.11944372 1.91109947 8.00 2.03054318
5.0 0.06098020 1.95136642 16.00 2.01234662

10.0 0.00195141 1.99824382 512.00 2.00019523
20.0 0.00000191 1.99999819 524288.00 2.00000010

In terms of Figure 17.3, increasing p from 1 to 2 means that the diamond
bulges outwards and approximates the Euclidean circle. For Minkowski
parameters greater than 2, the circle then moves towards the square for
p → ∞. Hence, the three generalization models in Figure 17.2 correspond
to different ways of composing a distance from given intradimensional dif-
ferences between pairs of stimuli. For example, given two tones that differ
in frequency and sound pressure, one possible composition rule yielding
their subjective global dissimilarity would be simply to add their frequency
and pressure differences in the corresponding psychological space, that is,
add their differences in pitch and loudness. This corresponds to computing
a city-block distance. The Euclidean distance formula, on the other hand,
implies a composition rule that is much harder to understand. What is
clear, though, is that, for all p > 1, the differences first are weighted and
then added, with the larger differences receiving a larger weight. In the
extreme case (p → ∞), the largest difference completely dominates the
dissimilarity judgment.1

Torgerson (1958), Garner (1962), and others argue that if the stimuli are
such that their dimensions are obvious and natural (analyzable stimuli),
then the city-block distance should be the best model to explain dissimi-
larity judgments. If, on the other hand, the stimuli are integral, then the
Euclidean metric should be more appropriate.2

1Interpreting the Minkowski distance as a composition rule is just one possibility.
Micko and Fischer (1970) and Fischer and Micko (1972), for example, present an al-
ternative conceptualization in which the composition rule is not a summation of in-
tradimensional differences. Rather, an attention distribution is postulated to exist over
all directions in space, so that the effect of an increment in p in the Minkowski model
corresponds to a concentration of attention in certain spatial directions.

2An example of an analyzable stimulus is the one-spoked wheel shown in Figure 1.6.
Its “obvious and compelling dimensions” (Torgerson, 1958, p. 254) are its size and the
inclination angle of its spoke. A color patch, on the other hand, is an integral stimulus
whose dimensions hue, saturation, and brightness can be extracted only with effort.
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Wender (1971) and Ahrens (1972) propose that as similarity judgments
become more difficult—because of, say, time constraints or increasing com-
plexity of the stimuli—subjects tend to simplify by concentrating on the
largest stimulus differences only. Hence, we should expect that such simi-
larity data could be explained best with large Minkowski p parameters.

Maximum Dimensionality for Minkowski Distances
Suppose that D is a matrix of Minkowski distances. If D is Euclidean, then
there are at most m = n − 1 dimensions. But what about other cases of
Minkowski distances? Fichet (1994) shows that for city-block distances the
dimensionality can be at most [n(n−1)/2]−1. For the dominance distance,
the maximum dimensionality is n − 1 (Critchley & Fichet, 1994), a result
that goes back to Fréchet (1910). Note though that these theoretical results
are not based on analyses that would allow us to identify the dimension-
ality of the underlying configuration X of a given D, except for Euclidean
distances (see Section 19.3).

In addition, Critchley and Fichet (1994) show that certain Minkowski
distance matrices are exchangeable. To be more precise, for every Euclidean
distance matrix, there exists a city-block and dominance distance matrix
having the same values (most likely in a different dimensionality and with
a different configuration). Also, for every city-block distance matrix there
exists a dominance distance matrix having the same values. And, of course,
all unidimensional Minkowski distance matrices are equal irrespective of
the Minkowski parameter p. These results imply that a solution found by
MDS using the Euclidean distance can be exchanged by a solution using
the city-block distance (or the dominance distance) without changing the
Stress value, although the dimensionality of the three solutions is most
likely not the same.

17.3 Identifying the True Minkowski Distance

How can the true Minkowski distance be identified? There are two ap-
proaches, one based on scaling proximities in MDS with different metrics,
and one based on analyzing the proximities and assuming certain properties
of the psychological space.

Take two points in psychological space. The Euclidean distance between
these points is not affected by rotations of the dimension system. The city-

Indeed, “if dimensions are integral, they are not really perceived as dimensions at all.
Dimensions exist for the experimenter. . . But these are constructs. . . and do not reflect
the immediate perceptual experience of the subject in such experiments. . .”(Garner,
1974, p. 119).
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FIGURE 17.4. Stress values for representing data in Table 4.1 in 2D MDS spaces
using Minkowski distances with different exponents (after Kruskal, 1964a).

block distance, however, is smallest if these points lie on a line parallel to a
dimension and greatest if this line forms an angle of 45◦ to the dimensions.

This suggests that one should test whether two points with a given Eu-
clidean distance are perceived as more dissimilar if they differ on just one
dimension rather than on several dimensions. If this matters, then the Eu-
clidean distance cannot be the true metric. Shepard (1964) attempted to
check this condition by constructing one-spoked wheels with dimensions
“size” and “angle of spoke” (as in Figure 1.6) and assuming that the psy-
chological space is essentially equivalent to this 2D physical space. He ob-
served that stimuli that differed on one dimension only were perceived as
relatively similar as compared to those that differed on two dimensions,
although their Euclidean distances in physical space were equal. He took
this finding as supporting evidence for the city-block metric, which was
predicted to be appropriate for such analyzable stimuli.

Determining the True Minkowski Distance by MDS
A second approach for determining the true Minkowski distance is to test
how well given proximities can be represented in a space with a given met-
ric. Such scaling tests are easy to compute but difficult to evaluate. If the
dimensionality question can be settled beforehand in some way, Kruskal
(1964a) suggests computing MDS representations for a large range of dif-
ferent p-values and then selecting as the true metric the one that leads to
the lowest Stress. This is shown in Figure 17.4 for Ekman’s color data from
Table 4.1. The lowest Stress (.0215) occurs at p = 2.5. Kruskal (1964a)
comments on this finding: “We do not feel that this demonstrates any sig-
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nificant fact about color vision, though there is the hint that subjective
distance between colors may be slightly non-Euclidean” (p. 24).3

Ahrens (1974) proposes varying both p and m. In this way, a curve like
the one in Figure 17.4 is obtained for each m. If these curves all dip at the
same p-value, then we can decide the metric question independently of the
dimensionality question.

Yet, proposals for deciding on the true metric empirically and not by
theoretical considerations assume that the Stress values arrived at under
different specifications for p and m are comparable. This requires that all
solutions must be global minima, because otherwise it would not make
sense to conclude that p = 1, say, yields a better solution than p = 2. The
global minimum condition can be checked by using many—Hubert, Arabie,
and Hesson-McInnis (1992) used 100!—different starting configurations for
each fixed pair of p and m.4

We must, moreover, decide whether any small difference between two
Stress values is significant. In Figure 17.4, the Stress values around p =
2.5 are quite similar. Should we really conclude that the subjects use p
= 2.5 and not, say, p = 2, because the Stress is slightly smaller for the p
parameter than for the latter? Probably not. It seems more reasonable to
decide that the subjects used a p parameter close5 to 2.

Distinguishing among MDS Solutions with Different
Minkowski Distances
There are p-values that lead to the same Stress for a given 2D configuration,
for example, the extreme cases p = 1 and p → ∞. Figure 17.3 shows
why this is so. If the dimension system is rotated by 45◦, the isosimilarity
contour for p = 1 is transformed into the isosimilarity contour for p → ∞,
except for its overall size. This means that city-block distances computed
from a given MDS configuration and a given coordinate system are, except

3 There are several ways to minimize Stress for Minkowski distances. A general gradi-
ent approach is taken in Kyst, Systat, and Minissa. Groenen et al. (1995) and Groenen
et al. (1999) give a majorization algorithm of which the Smacof algorithm of Section
8.6 is a special case. The majorizing algorithm turns out to have a quadratic majorizing
function for 1 ≤ p ≤ ∞, so that each update can be found in one step. For p outside
this range, the update has to be found by an iterative procedure.

4For the special (but important) case of city-block distances, Groenen and Heiser
(1996) found many local minima. To find the global minimum, they applied the tunneling
method (see Section 13.7). Different approaches were pursued by Heiser (1989b) and
Hubert et al. (1992), who used combinatorial strategies, and Pliner (1996), who proposed
to apply the smoothing strategy (see Section 13.5).

5Indeed, by scaling the data with more modern MDS programs, one finds that the
minimum Stress is at p = 2. Arabie (1991) conjectured, moreover, that “to the extent
that our theory predicts a circle . . ., the curve in Figure [17.4] should be flat unless
disturbed by either (a) numerical artifacts in computation or (b) noise in the data.”
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for an overall multiplicative constant, identical to dominance distances,
provided the dimension system is rotated by 45◦. The converse is also true.
Hence, given some MDS configuration that is perfect for p → ∞, it must
also be perfect for p = 1, and vice versa, because the Stress is the same for
two sets of distances that differ by a multiplicative constant only.

The close relationship between city-block distances and dominance dis-
tances holds, however, only for 2D. In 3D, the unit circles become unit
balls, and Figure 17.5 shows that these balls look quite different for p = 1
and p = ∞. The city-block ball has, for example, six corners, and the dom-
inance ball has eight corners. The two types of distances therefore cannot
be related to each other by a simple transformation and a stretch, as is
true for the 2D case.

For given 2D configurations, Stress is, moreover, almost equal for dis-
tances with p-exponents of p1 and p2 = p1/(p1 − 1) (Wender, 1969; Bortz,
1974). For example, for p = 1.5 and p = (1.5)/(1.5−1) = 3, the Stress values
should be nearly equal. The geometrical reasons for this quasi-equivalency
have been studied in detail by Wolfrum (1976a).

Furthermore, Stress may also be somewhat misleading. Consider the fol-
lowing case (Borg & Staufenbiel, 1984). For a given configuration, the dis-
tances are greatest for p = 1. When p grows, all distances that relate to line
segments not parallel to one of the dimensions drop sharply in size. They
continue to drop monotonically, but reach asymptotic values for larger ps
(p > 10, say). As long as these size functions over p do not intersect, one
obtains intervals of rank-equivalent distances over p (Wolfrum, 1976b). Yet,
one should not expect that Stress (for nonperfect solutions) is equal for each
p within such an interval, because the variance of the distances generally
shrinks substantially if p grows. This makes it easier to fit a monotone re-
gression function, and, hence, Stress tends to become smaller with greater
p. Nevertheless, the existence of rank-equivalent intervals means that there
is no unique optimal p-value but rather intervals of ps that are all equally
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FIGURE 17.6. Demonstration of an indeterminacy in a city-block plane (after
Bortz, 1974).

good, even though Stress would, in general, not allow one to diagnose this
situation correctly.

On the other hand, there is also an opposite trend that makes low-Stress
MDS solutions more likely when p = 1 than when p = 2, for example. To
see this, consider the four corner points of the diamond curve in Figure
17.3. One can readily verify that the city-block distances between these
points are all equal, whereas the Euclidean distances form two different
classes. Thus, if p = 1, four points can be represented in a plane so that
all possible distances among them are equal; but if p = 2, this is only true
for the three corners of an equilateral triangle. Because making distances
equal would reduce Stress, such solutions are systematically approximated
over the iterations (Shepard, 1974). These effects become more and more
pronounced as p approaches the extremes 1 and ∞. Shepard (1974, p. 404)
concludes, therefore, that “while finding that the lowest Stress is attainable
for p = 2 may be evidence that the underlying metric is Euclidean, the
finding that a lower Stress is attainable for a value of p that is much smaller
or larger may be artifactual.”

Interpreting Non-Euclidean MDS Spaces
It has been suggested that the problem of finding the true p-value em-
pirically is easier to solve if other criteria, especially the solution’s in-
terpretability, are also taken into account. However, interpreting non-
Euclidean Minkowski spaces requires much care. Things are not always
what they seem to be, for example, a circle in a city-block space looks
like a square. In addition, it can happen that for p = 1 and p → ∞ the
configurations are indeterminate in peculiar ways. Bortz (1974) reports
some examples of partial isometries, that is, transformations that preserve
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the distances within a point configuration while substantially changing the
configuration itself. Consider Figure 17.6. If we reflect all points labeled by
capital Ps on the diagonal line, we find that the city-block distances of their
images (primed Ps) to any point in the shaded region in the lower right-
hand corner are exactly the same as before. Hence, either configuration is
an equally good data representation, although they may suggest different
substantive interpretations. For p = 2, no such partial isometries exist in
general.

Robustness of the Euclidean Metric
Is the Euclidean metric robust if incorrect? That is, is it likely that MDS
closely approximates a true configuration defined by non-Euclidean dis-
tances if the scaling is done with p = 2? Shepard (1969) concluded from
simulation studies using as proximities non-Euclidean distances and even
semi-metrics (measures that satisfy only nonnegativity and symmetry, but
not the triangle inequality) that the true underlying configuration could be
recovered almost perfectly with p = 2.

This successful recovery of the original configuration using p = 2, how-
ever, may be partially attributed to the large number (=50) of points in
2D so that the points’ locations were highly restricted. The circular isosim-
ilarity contour of the Euclidean distance then is a good approximation to
the isosimilarity contours of other Minkowski metrics (see Figure 17.3).

There are no systematic studies that allow one to predict under what con-
ditions the Euclidean metric is robust and when it is not. However, using
the Euclidean metric if, say, the city-block metric is true may lead to erro-
neous conclusions. Consider the following case. Lüer and Fillbrandt (1970),
Lüer, Osterloh, and Ruge (1970), and Torgerson (1965) report empirical ev-
idence that similarity judgments for simple two-dimensional stimuli (such
as one-spoked wheels) seem to be perceived in an “over-determined” (3D)
psychological space. That is, the psychological space seemed to contain ad-
ditional and redundant dimensions. However, when scaling the data with
p = 1 rather than with p = 2, the underlying physical space is clearly re-
covered (Borg, Schönemann, & Leutner, 1982). Taking a closer look reveals
that using p = 2 warps the city-block plane by pulling two of its “corners”
upwards and pushing the two other corners downwards along the third
dimension.

17.4 The Psychology of Rectangles

We now consider a classic case using MDS as a model of judgmental behav-
ior. In this model, the Minkowski distance formula is taken as a theory of
how a dissimilarity judgment on two stimuli is generated. The choice of the



17.4 The Psychology of Rectangles 373

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

2

5

6

7

8

8'

12 16

14

15

13
9

10

11
3

3'

4

4'

2.75

2.00

1.25

0.50

3.00 4.25 5.50 6.75width

Stimulus 6 Stimulus 1

he
ig

ht

FIGURE 17.7. Design for two sets of rectangles by varying width and height
(upper panel). As an example, stimuli 6 and 1 are shown (lower panel).

particular p-values is decided a priori on theoretical grounds. Two different
dimension systems appear natural, so that we have to decide empirically
which one is the more appropriate.

Two-Dimensional Models for Rectangle Perception
The stimuli here are rectangles. A particular design for rectangles is given
in Figure 17.7. It defines two sets of rectangles, characterized by the grid
of 16 solid points connected by solid lines and the rotated set of 16 open
points connected by dashed lines. The first set is called the width × height
(WH) design, because it is orthogonal to the width and height dimensions.
In other words, for each level of width, there are rectangles of all height
levels. Note that for all rectangles it holds that their width exceeds their
heights.

The dashed grid is orthogonal to the WH system rotated by 45◦. The
point coordinates on this system can be computed from the width × height
system as width + height and width − height (multiplied by a constant).
Psychologically, these dimensions represent something like size and shape
(SS). (If width and height are rescaled logarithmically, then size becomes
area.) The SS system represents an alternative model for the perception of
rectangles.

Borg and Leutner (1983) randomly assigned 42 subjects to two groups
of 21 persons each, one group judging the SS rectangles and the other the
WH stimuli. Each subject rated all possible 120 stimulus pairs twice on
a scale with end categories 0=equal, identical, and 9=extremely different.
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TABLE 17.2. Dissimilarity ratings for rectangle pairs; row and column numbers
correspond to rectangle numbers in Figure 17.7; ratings averaged over all subjects
and replications in WH group (lower half) and in SS group (upper half).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.05 2.64 3.31 4.93 4.31 4.60 5.79 6.50 6.55 6.19 5.52 8.00 6.98 6.79 7.14
2 4.33 2.12 2.71 4.71 4.69 4.43 4.98 6.40 5.98 5.81 5.71 8.14 6.95 6.76 6.79
3 6.12 4.07 1.79 5.40 5.07 4.36 4.24 6.93 6.29 5.98 5.71 8.17 7.40 6.76 6.71
4 7.21 5.62 3.24 6.36 5.83 4.88 4.31 7.14 6.52 5.71 5.79 8.67 7.69 7.17 6.40
5 2.38 5.76 7.12 7.57 3.17 4.19 4.57 3.52 3.79 3.69 4.95 6.33 5.67 5.29 4.69
6 4.52 2.52 5.48 6.86 4.10 3.43 3.93 4.12 3.57 3.74 3.60 6.62 5.76 5.31 4.90
7 6.00 4.52 3.38 5.21 6.10 4.31 3.43 5.64 4.07 3.48 2.98 7.26 5.83 5.64 5.26
8 7.76 6.21 4.40 3.12 6.83 5.45 4.00 5.55 4.45 3.71 3.64 6.95 5.98 5.24 5.00
9 3.36 6.14 7.14 8.10 2.00 4.71 6.52 7.71 2.86 4.45 5.79 4.14 3.02 3.00 4.57

10 5.93 4.24 6.07 6.93 5.00 2.81 5.43 5.67 4.38 2.86 4.17 4.50 3.48 3.05 3.17
11 6.71 5.60 4.29 5.90 6.86 4.50 2.64 5.21 6.26 3.60 3.31 5.52 3.83 3.40 2.50
12 7.88 6.31 5.48 5.00 7.83 5.55 4.43 2.69 7.21 5.83 3.60 5.95 5.17 3.88 3.55
13 3.69 6.98 7.98 8.45 2.60 5.95 7.69 7.86 1.60 4.31 6.95 7.43 2.38 4.29 5.43
14 5.86 4.55 6.64 7.17 4.86 2.88 5.40 6.50 4.14 1.19 3.79 5.88 4.17 2.64 3.81
15 7.36 5.88 4.55 6.79 6.93 4.50 3.50 5.55 5.95 3.95 1.48 4.60 6.07 4.02 2.74
16 8.36 7.02 5.86 5.40 7.57 5.86 4.52 3.50 6.86 5.17 3.71 1.62 7.07 5.26 3.45

The resulting proximities, averaged over all 21 subjects in each group, are
shown in Table 17.2.

An ordinal MDS representation of the WH data is given by the solid
points in Figure 17.8. Because the city-block metric was used, the coordi-
nate axes cannot be rotated without adversely affecting Stress. The MDS
result thus suggests that the solid grid of the physical space (Figure 17.7)
was transformed into the MDS representation by simple rescalings of the
width and height dimensions. These rescalings are such that the physical
units decrease more on each dimension the more one moves away from the
origin. Thus, perceptually, physically constant increments of an attribute
affect the overall impression of similarity increasingly less the more the rect-
angle already possesses this attribute. This suggests that the psychophysi-
cal rescalings might follow the Weber–Fechner law, which postulates a log-
arithmic correspondence of psychological and physical units. Indeed, the
design configuration (grid of solid points in Figure 17.7) can be rescaled
in this way to closely fit the MDS representation (grid of open squares in
Figure 17.8). Thus, it seems that the subjects in the WH group judged the
dissimilarities of the rectangles by first logarithmically rescaling the width
and height dimensions, and then simply adding intradimensional differences
over the dimensions. But if this were so, what should be expected for the
MDS configuration of the SS data?

If width and height are the dimensions that the subjects attend to, and
not size and shape, then the SS design grid in Figure 17.7 should be psycho-
physically rescaled along the width and height axes. A nonlinear rescaling
such as the logarithm would lead to some bending of the design lattice,
destroying all right angles. The solid points in Figure 17.9 show the MDS
representation for the SS data, together with the logarithmically rescaled SS
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design grid (open squares). One notes that the predictions are not strictly
satisfied. In particular, the rectangles in the upper left-hand corner (which
look like squares!) seem to involve some further effects. The result suggests,
however, that explaining similarity judgments for rectangles seems impos-
sible with size and shape dimensions, because there is no way to explain the
bending effects by any rescalings of these dimensions. Rather, a size–shape
theory requires additional components such as “dimensional interaction”
[for such a theory, see Krantz and Tversky (1975)].

Some Open Questions on Rectangle Perception
These findings are, unfortunately, less simple to interpret than it may ap-
pear at first sight. In the following, we give a brief listing of some problem
points.

(1) Hubert et al. (1992) reanalyzed the above rectangle data to test the
performance of their combinatorial algorithm for MDS. Using 100 random
configurations as initial configurations, as well as the physical stimulus
space, they found that most solutions for the WH data were similar to Fig-
ure 17.8. However, for the SS data, there exist a number of quite different
solutions with almost the same Stress. Indeed, based on results from Sys-
tat’s MDS module, Hubert et al. (1992) concluded generally for gradient-
based algorithms that “where one begins is close to where one ends” (p.
234). In particular, it turns out that the SS data can also be explained in
a grid that is roughly similar to the SS design configuration.

(2) Staufenbiel and Borg (1987) found similar results for ellipses con-
structed in WH and SS designs. Using the city-block metric and the Kyst
program with an ordinal as well as an interval MDS model, the proximities
of both types of ellipses could be explained with low Stress by different
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configurations. These configurations were related to the WH or the SS
design configuration by monotonic adjustments of the width and height
dimension or by the size and shape dimension, respectively. The particular
configuration computed by the Kyst program was a function of the initial
configuration, as observed above. Solutions that were not either roughly
WH or SS consistent, however, did not result when random starts were
chosen. Using confirmatory MDS to enforce solutions that were perfectly
consistent with either a WH or an SS model confirmed that either dimen-
sion system allows one to explain the data well.

(3) Schönemann, Dorcey, and Kienapple (1985), Schönemann and Lazarte
(1987), and Lazarte and Schönemann (1991) studied whether it makes sense
to aggregate individual proximities in the first place. They concluded that
such aggregation “was unjustified because distinct strategy groups were
found. Some subjects used mainly height and width, others mainly area
and shape, and still others mainly shape alone to form their dissimilarity
ratings” (Schönemann, 1994, p. 156).

(4) A closer look at the raw data at the subject level also showed that
most ratings were subadditive in the sense that δ(x, y) + δ(y, z) > δ(x, z).
This relation is interesting if x, y, and z differ on one dimension only,
because for triples where y lies between x and z one should expect that
δ(x, y) + δ(y, z) ≈ δ(x, z), provided one takes the data seriously as they
come and does not allow for transformations such as adding some constant.6

Subadditivity is also evident in Table 17.2 for the unidimensional triple
(1, 5, 9), for example, where one finds δ(1, 5) + δ(5, 9) = 2.38 + 2.00 >
δ(1, 9) = 3.36. This inequality suggests “a ceiling effect. Once the ceiling
was removed (by transforming the data with Fisher’s z-transformation),
most distortions, such as curvature and non-parallelism of lines, markedly
diminished” (Schönemann, 1994, p. 156).

(5) δs that satisfy the triangle inequality “can always be modeled as dis-
tances. However, because the observed direct dissimilarities are consistently
segmentally subadditive along any possible judgment dimension [of the hy-
pothesized systems; our addition], they cannot be modeled as Minkowski
metrics because these metrics assume intradimensional additivity” (Lazarte
& Schönemann, 1991, p. 144). (This is shown in the section below.)

(6) One may even question the whole notion of a psychological space—in
the sense of a metric geometrical space—where all stimuli are represented at
the same time and whose distances, after a possible additional transforma-

6If one admits an arbitrary additive constant (interval scale), then subadditivity
becomes less meaningful, because one can at least reduce systematic subadditivity for
one-dimensional triples by subtracting a sufficiently large constant from all δs (Attneave,
1950). On an interval scale, all such constants are considered admissible and substan-
tively meaningless. One may question, however, whether it is scientifically wise to elim-
inate an apparent empirical lawfulness—subadditivity of one-dimensional triples—by
such transformations.
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tion, define the observed dissimilarities. Lazarte and Schönemann (1991),
for example, used simple linear models (“psychophysical maps”) to relate
the observed dissimilarity to physical dimensions of the observed stimulus
pair and describe a strategy that is a function of pair-by-pair comparisons.
Restle (1959) and Tversky and Gati (1982), among others, proposed al-
ternative (set-theoretical) models that explain similarity judgments on the
basis of the common and the distinctive features of the stimuli.

In summary, one notes that building psychological models via MDS is a
difficult and complex undertaking. Early MDS applications tended to be
over-optimistic, relying almost exclusively on the global loss, Stress, for
answering a whole series of questions—such as the appropriateness of a
particular mapping of the data into distances, the dimensionality of the
psychological space, the true metric of this space, or the validity of the
metric space model as such—all at the same time. This clearly was asking
too much from one measure.

17.5 Axiomatic Foundations of Minkowski Spaces

Under certain circumstances, one can study the appropriateness of a mul-
tidimensional scaling representation in a way that does not rely on com-
puting this representation and therefore does not depend on minimizing a
loss function such as Stress. The approach requires that a theory be given
that explains the observed proximities as resulting from an additive combi-
nation of dimensional differences. For example, one may hypothesize that
similarity judgments on pairs of rectangles can be explained by city-block
distances of these rectangles with respect to the physical dimensions width
and height. A somewhat less demanding theory might allow for a reason-
able psychophysical scaling of the width and height dimensions and for
a monotonic function that relates the computed distances to dissimilarity
ratings (“response function”).

Outside psychophysics, such theories may appear too difficult to for-
mulate. Yet, it is nevertheless worthwhile to study what they imply for
MDS, because they provide interesting insights into some of the mathe-
matical properties of MDS representations that are not revealed by mere
data fitting. Moreover, to view distances as the image of some underlying
composition rule for the basic dimensions of the objects corresponds to a
common way of interpreting MDS spaces.

Asking for the conditions that must be satisfied by a set of observations
(such as dissimilarity judgments) so that they can be mapped (by an ordinal
transformation, say) onto some elements of a particular mathematical sys-
tem (such as distances of a Euclidean space) is the domain of measurement
theory (see, e.g., Krantz, Luce, Suppes, & Tversky, 1971; Schönemann &
Borg, 1983). Measurement theorists attempt to specify, first of all, condi-
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FIGURE 17.10. An A × P array.

tions (axioms) that must be satisfied by the observations or else the desired
representation does not exist (with Loss = 0). Such necessary conditions
may not be sufficient, that is, they may not guarantee the existence of the
model representation, and so one typically asks for conditions that are not
only necessary but also sufficient. The art of measurement theory is to
formulate conditions that are not only necessary and sufficient, but that
also can be tested on a finite set of data assumed to have a relatively weak
scale level (such as an ordinal one). It is generally easier to axiomatize an
assumed infinite set of data for which no transformation is allowed.

The way one sets up such axiomatic systems is to start with the desired
representation and check what properties it implies for observations that
can be mapped into this model. So, what are the properties that Minkowski
spaces imply for its data? For simplicity, we consider the 2D case only. It
represents the most interesting case for psychological modeling and can be
easily generalized to higher dimensionality.

Let A = {a, b, c, . . .} and P = {p, q, r, . . .} denote the levels of two design
factors, A and P , and let A×P be the set of all combinations ap, bp, bq, . . . in
the factorial design (Figure 17.10). Assume that dissimilarities are collected
for pairs of objects characterized by the cells of this design structure. Under
what conditions can such dissimilarities (δs) be interpreted as Minkowski
distances computed on dimensions that are some monotonic functions of A
and P? This is possible only if the δs possess some general properties.

If the δs are ordinal measures, then any monotone transformation is ad-
missible. Yet, even under such transformations, some properties must hold.
For example, distances are always symmetric and, thus, δs must be sym-
metric, because there is no admissible transformation (on any scale level)
that would turn nonsymmetric δs into symmetric values. Furthermore, the
distance of any point to itself is always 0, and any distance between two dif-
ferent points in greater than zero (minimality). For ordinal dissimilarities,
symmetry and minimality require that δ(x, y) = δ(y, x) > δ(x, x) = δ(y, y),
for all objects x and y. If the δs do not satisfy this condition, they cannot
be represented by Minkowski distances or, indeed, by any other distance.

In the following, we discuss further qualitative requirements (i.e., condi-
tions involving only notions of order and equality on the δs) and also some
properties that can only be partially tested with ordinal data.
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Dimensional Axioms
According to Gati and Tversky (1982), a two-way proximity structure is
called monotone if the following three conditions are satisfied.

The first condition is called dominance:

δ(ap, bq) > δ(ap, aq), δ(aq, bq); (17.8)

that is, any two-way difference always exceeds its one-way components.
The second condition is called consistency:

δ(ap, bp) > δ(cp, dp) if and only if δ(aq, bq) > δ(cq, dq),
and

δ(ap, aq) > δ(ar, as) if and only if δ(bp, bq) > δ(br, bs); (17.9)

that is, the ordering of differences on one dimension is independent of the
other dimension. The third condition is called transitivity:

if δ(ap, cq) > δ(ap, bp), δ(bp, cp),
and δ(bp, dp) > δ(bp, cp), δ(cp, dp),
then δ(ap, dp) > δ(ap, cp), δ(bp, dp).

(17.10)

Condition (17.10) is required to hold also for the second dimension. Tran-
sitivity on the δs is equivalent to transitivity of betweenness for the points:
a|b|c and b|c|d imply a|b|d and a|c|d, where a|b|c means that b lies between
a and c (Gati & Tversky, 1982).

The conditions of dominance (17.8), consistency (17.9), and transitivity
(17.10) are called monotonicity axioms (for a two-way monotone proximity
structure) because they specify requirements on the order among the δs.

A more particular property of Minkowski distances is decomposability:

δ(ap, bq) = F [g(a, b), h(p, q)], (17.11)

where F is a strictly increasing function in two arguments, and g and
h are real-valued functions defined on A × A and P × P , respectively.
The arguments g and h are the contributions of the two dimensions to
the dissimilarity. If δ is symmetric, g and h satisfy g(a, b) = g(b, a) and
h(p, q) = h(q, p). If δ is also minimal, one can set g(a, a) = 0 and h(p, p) = 0,
for all a and p. If g and h can be assumed to be absolute-value functions,
then (17.11) can be expressed as intradimensional subtractivity:

δ(ap, bq) = F (|Xa − Xb|, |Yp − Yq|), (17.12)

where Xa and Yp represent the coordinates of a and p on dimensions X
and Y , respectively.

If one assumes that the two dimensions contribute additively to δ, then
(17.11) becomes

δ(ap, bq) = F [g(a, b) + h(p, q)], (17.13)
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FIGURE 17.11. A hierarchy of conditions necessary for Minkowski distances;
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which is called interdimensional additivity. If (17.13) holds, then the ac-
tual dissimilarities, not merely their order, are independent of the second
dimension, so that:

δ(ap, bp) = δ(aq, bq) and δ(ap, aq) = δ(bp, bq). (17.14)

The conditions (17.8)–(17.14) (sometimes collectively called dimensional
assumptions) are organized in a hierarchy (Figure 17.11). The diagram
shows, for example, that (17.11) implies both (17.8) and (17.9). All
Minkowski metrics imply (17.13) and (17.12).

If axiom (17.8), say, is not satisfied by δs that are, by construction or by
hypothesis, related to an A×P design, then these δs cannot be modeled by
any Minkowski metric that operates on A and P . This does not rule out that
the δs can be represented by a Minkowski metric computed on dimensions
other than A and P in the same space and/or in a higher-dimensional space.
(Indeed, any δ(i, j)s, i < j, can be represented by Euclidean distances in
n − 2 dimensions, where n is the number of objects. See Chapter 19.)

Distance Axioms
In addition to the dimensional assumptions, it must also be possible to
map the δs into distances d. Distances satisfy three conditions, the metric
axioms. Two of them, symmetry and minimality, were already discussed
above, but are repeated here for completeness. For any points x, y, and z,

d(x, y) = d(y, x) (symmetry), (17.15)
d(x, y) > d(x, x) = d(y, y) = 0 (minimality), (17.16)

d(x, z) ≥ d(x, y) + d(y, z) (triangle inequality). (17.17)
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Axioms (17.15)–(17.16), in practice, are almost never testable, simply
because one rarely collects a complete matrix of δs. Axiom (17.17) can
be trivially satisfied in all MDS models that allow at least an interval
transformation of the data: one simply determines the triangle inequality
that is violated most and then finds a constant c that, when added to every
δ in this inequality, turns the inequality into an equality; the same c is then
added to every δ, an admissible transformation for interval-scaled δs.

Segmental Additivity Axiom
Minkowski distances assume a dimensional structure that restricts the
choice of such additive constants c, because the triangle inequality becomes
an equality for points that lie on a straight line in psychological space. That
is, for any three points x, y, and z that are ordered as x|y|z on a straight
line (such as a dimension), segmental additivity is satisfied:

d(x, z) = d(x, y) + d(y, z). (17.18)

Minkowski Space Axioms in Practice
Tversky and Krantz (1970) have shown that segmental additivity in con-
junction with the dimensional assumptions and the metric axioms imply
the Minkowski distance. If one wants to test the dimensional conditions
(17.8)–(17.14) on real (2D) data, one has to specify the A × P structure
that supposedly underlies the δs (see, e.g., Krantz & Tversky, 1975; Tver-
sky & Gati, 1982; Schönemann & Borg, 1981b).

Staufenbiel and Borg (1987) tested some of these conditions for ellipses
constructed in designs analogous to the above WH and SS designs for rect-
angles. Their data are interesting because they also collected similarity
judgments on pairs of identical stimuli, which allow one to test the min-
imality requirement. It was found that minimality was satisfied for data
aggregated over subjects in the sense that δ(i, i) < δ(i, j), for all i �= j.
Tests of the triangle inequality showed marked subadditivity. Subadditiv-
ity correlated highly with violations of minimality on the subject level:
these subjects seemed to avoid using the category “0 = equal, identical” on
the rating scale, thus, in effect, always adding a positive constant to each δ.
Tests of the equality requirements (17.14) showed that they were satisfied
in only 20% of the cases. However, the violations revealed no particular
systematic pattern and, thus, could be explained as largely due to error.

17.6 Subadditivity and the MBR Metric

Subadditivity of dissimilarities is a frequently observed phenomenon. If
the δs are judgments on a rating scale, there are various ways to explain
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why δ(x, y) + δ(y, z) > δ(x, z) might occur even for triples (x, y, z) that
differ on one dimension only. One possibility was offered by Staufenbiel
and Borg (1987), who argue that respondents tend to stay away from the
lower bound of the scale, thus in effect adding a positive constant to all
distance estimates (see item (2) in Section 17.4). Another, or possibly ad-
ditional, explanation concentrates more on the upper bound, which makes
it impossible for the respondent to generate huge dissimilarities. Thus, if
δ(x, y) is rated as quite different, and δ(y, z) is also rated as quite dif-
ferent, then the respondent tends to run out of possibilities to properly
express the extent of the difference of x and z. Because of upper response
bounds, “the subject therefore has to contract his response in a continu-
ous fashion, more so for larger than for smaller arguments” (Schönemann,
1982, p. 318). Even with unbounded response scales, subjects typically un-
derestimate large differences (Borg & Tremmel, 1988). The MBR metric
(metric for monotone-bounded response scales) proposes a hypothesis on
how numerical dissimilarities—not just some monotone transformation of
them—might be generated under such upper-bound conditions. Let us con-
sider the 2D case and assume that u is the upper bound. The MBR metric
of Schönemann (1982) predicts that, given two stimuli, x and y, and given
their differences on the physical dimensions, ∆∗

1 and ∆∗
2 (measured in the

metric of the observations), it holds that

δ(x, y) = d∗
M (x, y) =

∆∗
1 + ∆∗

2

1 + ∆∗
1∆

∗
2/u2 , 0 ≤ d∗

M ≤ u. (17.19)

The numerator of the composition rule on the right-hand side of this for-
mula is the city-block metric. The denominator is a contraction factor that
ensures that the distance of x and y does not exceed the upper bound u
when either ∆∗

1 or ∆∗
2, or both, are close to it. This upper bound may be

experimenter-imposed (“Please tell me the dissimilarity on a scale from 0
to 9.”), but it may also be self-imposed by the subjects (e.g., as a conse-
quence of their laziness to generate best-possible answers) or imposed by
nature (e.g., in form of limitations of the subjects’ cognitive capacities).
The proper value for u is therefore open to some experimentation. Simple
specifications for u in practice are to set it equal to the greatest category
of the response scale or to the greatest observed dissimilarity. However,
Lazarte and Schönemann (1991) found that “within subjects, the MBR
with a slightly reduced upper bound was optimal in restoring additivity
among collinear points” (p. 144). Formally, one notes that “permitting [u]
to vary across subjects, one obtains a one-parameter family of subject-
specific MBR’s” (Schönemann et al., 1985, p. 6).

To apply the MBR in practice, one first expresses all observations relative
the upper bound u (which need not be the same for all subjects). Dividing
the dissimilarities by u, formula (17.19) simplifies to a standardized version,

δ(x, y) = dM (x, y) =
∆1 + ∆2

1 + ∆1∆2
, 0 ≤ a, b, dM ≤ 1. (17.20)
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This formula can be further simplified by applying the hyperbolic tangent
transformation (Schönemann, 1983). This yields

dM = (∆1 + ∆2)/(1 + ∆1∆2)
= [tanh(u) + tanh(v)]/[1 + tanh(u) tanh(v)]
= tanh(u + v), (17.21)

where ∆1 = tanh(u) and ∆2 = tanh(v). Hence,

tanh−1(dM ) = u + v. (17.22)

This offers a way for testing the model: preprocessing the given dis-
similarities by applying the inverse hyperbolic tangent should “linearize”
the data (expressed as proportions to some upper bound such such as the
greatest category on the response scale7) so that they can be explained by
a simple city-block distance

The MBR metric may strike one as a rather odd composition rule. Should
one understand it as a model for how dissimilarity judgments are actually
generated? Schönemann (1990) suggests that subjects first compute a city-
block metric and then do some contraction to fit it into the bounded rating
scale. However, he adds: “We do not expect subjects to do this literally,
but we know they must make some contracting adjustment if they want to
use the simple city-block addition rule” (p. 154).

One may want to think of alternatives to the MBR metric that seem
more plausible as composition rules. One example is the rule

f(x, y) = ∆1 + ∆2 − ∆1∆2, 0 ≤ ∆1, ∆2, f(x, y) ≤ 1. (17.23)

This function yields values that are very similar to MBR distances but al-
ways somewhat smaller. But what are the formal properties of these com-
position rules? One property that can be proved is that

max(∆1, ∆2) ≤ f(x, y) ≤ dM (x, y) ≤ ∆1 + ∆2, (17.24)

so that the two composition rules lead to values that lie between the two
extreme metrics of the Minkowski family, the dominance distance and the
city-block distance.

Formally, though, the MBR distance has some nice additional properties.
Circles in the MBR plane have a peculiar resemblance to circles in different
Minkowski planes. Namely, circles with small radius closely resemble city-
block circles (see Figure 17.3), and the larger the radius, the more they

7Note that the value for the upper bound b must be chosen such that all distance
estimates fall into the half-open interval [0, 1). This is required to make sure that the
tangent function exists everywhere. Hence, one proper choice for b is max(δ) + ε, where
ε is “a small constant” (Schönemann et al., 1985).
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FIGURE 17.12. Circles in the MBR plane, with radii 0.20, . . ., 0.90, 0.99.

approximate Euclidean circles, before they asymptotically tend towards
dominance circles. This is shown in Figure 17.12. Thus, the shape of a
circle in the MBR plane depends on its radius. MBR distances, in other
words, emulate the various Minkowski distances depending on the size of
the distance: relatively small MBR distances are like city-block distances,
large MBR distances are like dominance distances, and intermediate MBR
distances are like Euclidean distances.

But does the MBR distance solve the subadditivity problem? Tversky
and Gati (1982) report evidence that shows that subadditivity may not
affect all triples in a set of objects to the same extent. Dissimilarities
were collected for a series of simple 2D stimuli, using different methods
of assessment. Three types of stimulus triples were distinguished: corner
triples [such as (ap, aq, bq) in Figure 17.10], unidimensional triples [such as
(ap, aq, ac)], and two-dimensional triples [such as (ap, aq, ar)]. In uni- and
two-dimensional triples, all stimuli differ on the same number of dimen-
sions. Geometrically, such triples lie on a straight line in the design space
(collinear points). In corner triples, two pairs differ on one dimension only,
and one pair on both dimensions. City-block distances are additive in all
cases, but Euclidean distances are subadditive for corner triples and addi-
tive for collinear triples. (Under nonlinear transformations of the dimen-
sions, unidimensional triples, in any case, remain collinear.) The observed
dissimilarities, then, were almost additive for corner triples, but clearly
subadditive for both uni- and two-dimensional triples.

It could be argued that the data are only interval-scaled so that they
can be admissibly transformed by adding a constant, for example. Indeed,
by subtracting an appropriate constant from all dissimilarities, one could
produce values that are, more or less, segmentally additive for the collinear
triples. This transformation would, however, make the corner triples super-
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additive, so that the direct dissimilarity between two points such as ap
and bq in Figure 17.10 becomes larger than the sum of its intradimensional
differences, which is impossible to model by any distance function. MDS
analyses with the program Kyst thus showed the least Stress for p < 1
for all data sets (except for “color”). With p < 1, however, the Minkowski
formula (17.5) does not yield a distance. Tversky and Gati (1982) took
this finding as supportive for a nongeometric (“feature-matching”) model
of psychological similarity.

17.7 Minkowski Spaces, Metric Spaces, and
Psychological Models

In summary, one may question the ultimate validity of Minkowski spaces
for modeling psychological similarity. Indeed, even the much wider class
of metric spaces (i.e., sets with distance functions that relate their ele-
ments) may be inappropriate, because dissimilarities may systematically
violate the symmetry requirement, for example. In this situation, one has
four alternatives: (a) give up distance models altogether, as Tversky and
Gati (1982) and Gati and Tversky (1982) recommend; (b) modify the dis-
tance models by additional notions to make them more flexible (see, e.g.,
Krumhansl, 1978); (c) possibly drop the restriction to Minkowski spaces
and also consider other geometries such as curved spaces (see, e.g., Lind-
man & Caelli, 1978; Drösler, 1979); and (d) study the conditions under
which Minkowski models are likely to be bad or good models of similarity.

The last route is, in fact, necessary for any modeling attempts, because no
model is valid without bounds. In this sense, research by Tversky (1977) is
relevant. He reports some examples, conditions, and set-theoretical models
that allow one to predict when the general distance axioms can be expected
to be violated in dissimilarity judgments. For example, symmetry should
not hold if one object is a prototype and the other one a variant of this
prototype, just as an ellipse is an “imperfect” circle. In that case, the variant
should be judged as more similar to the prototype than vice versa. The
triangle inequality should be violated if the similarity judgments are based
on different criteria. For example, although Jamaica may be judged similar
to Cuba, and Cuba is seen as similar to Russia, Jamaica is not seen as
similar to Russia at all. (The criteria of similarity in this example could be
geographic closeness in the first case and political alignment in the second.)
In spite of such counterexamples, the distance axioms are often satisfied in
practice. The counterexamples suggest conditions when this should not be
the case.

More generally, such fine-grained studies into the foundations of MDS as
a psychological model show how one could proceed in cumulative theory
building, beginning with exploratory studies on convenient stimuli such as
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nations (see Chapter 1), proceeding to efforts where one explicitly models
judgments for well-designed stimuli such as rectangles, and finally turning
to the axiomatic foundations of a particular model.

Studying well-designed stimuli does not have to limit itself to simple
contrived stimuli such as rectangles, for example. Steyvers and Busey (2000)
study similarity ratings on extremely complex stimuli, namely faces. They
comment on the method to collect global ratings of similarity on pairs
of faces and then analyzing these data as follows: “The resulting MDS
solutions . . . can give valuable insights about the way faces are perceived,
and sometimes form a useful basis for modeling performance in recognition
and/or categorization tasks” (p. 116). However, “this approach explicitly
ignores the physical representation of the features comprising the faces.
In this purely top-down approach, the multidimensional representations
are sometime difficult to relate back to the physical stimulus” (p.116). To
remedy this problem, they suggest a complementary bottom-up approach,
which offers a way to predict the usual similarity ratings for faces on the
basis of studying, via MDS, the structure of proximities derived from a
large number of physical measurements on these faces (e.g., eye width, eye
separation, or nose length), possibly even the vectors containing the light
intensities of all the pixels of an image of each face. Using this methodology,
they conclude, for example, that facial adiposity (from narrow and skinny
to wide and pudgy) and age (from young to old) are major dimensions of
the perceived similarity of faces.

17.8 Exercises

Exercise 17.1 Consider the data in Table 1.4 on p. 12.

(a) Repeat the two-dimensional MDS analysis that led to Figure 1.7 using
an ordinal MDS approach and city-block distances.

(b) Repeat the MDS analysis using an explicit starting configuration with
coordinates as shown in Figure 1.6. Compare the solutions with and
without an external starting configuration. Discuss using such an ex-
ternal starting configuration. Is it justified?

(c) Repeat the MDS analysis with p = 2. Compare the p = 2 solution
to the one computed with the city-block metric both in terms of the
configuration and in terms of the Stress value.

(d) Specify the set of admissible transformations for the city-block and
the Euclidean solutions.

Exercise 17.2 Consider Table 17.2 on p. 374.
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(a) Check the dissimilarity ratings in the lower-half matrix for subaddi-
tivity and find the intradimensional triple and the corner triple that
violate subadditivity most.

(b) Apply the MBR theory to these data. For this you first have to trans-
form the data so that they lie in the half-open interval [0,1). One
reasonable way of doing this in this particular case is to divide all
values by the maximal value of the rating scale (i.e., by 9). Then, use
the inverse hyperbolic tangent function. Finally, check whether the
transformed data can be represented in a 2D city-block plane with
lower Stress than without this transformation, using linear MDS in
both cases.

(c) Plot the original dissimilarity ratings from Table 17.2 against the
transformed data. Describe the effect of the hyperbolic tangent trans-
formation on the values.

(d) Discuss the transformation that maps the dissimilarities into the half-
open interval [0,1). This mapping expresses the original dissimilarities
as proportions relative to an upper bound b. Dividing the dissimi-
larities by the greatest observed dissimilarity value does not strictly
achieve a mapping into the half-open interval [0, 1). The upper bound
value b must at least be “slightly” greater than the greatest dissimi-
larity. Why? (Hint: Note the “open” in half-open!)

(e) Discuss the consequences of choosing a relatively small upper-bound
value b or a huge value for b, where “small” and “huge” means “rela-
tive to the size of the dissimilarities.” How do such choices of b affect
the following hyperbolic tangent transformation?

(f) Experiment with a few different choices for upper bounds b that are
slightly greater (say, 0.1 to 0.000001) than the greatest observed dis-
similarity. Test out how such different choices of b affect the MDS
solutions of the rescaled data (see Borg & Staufenbiel, 1986).

(g) Check whether the dissimilarities in Table 17.2 provide evidence that
subadditivity affects corner triples, unidimensional triples, and two-
dimensional triples in the sense of Tversky & Gati to a different
extent.

Exercise 17.3 Consider the data matrix below (Schönemann et al., 1985).
It shows relative dissimilarity ratings (averaged over 20 subjects) for nine
different rectangles. The physical width–height design characteristics (in
cm) of the rectangles are shown in the first two columns.
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Width Height No. 1 2 3 4 5 6 7 8 9
2.7 3.1 1 0 0.388 0.491 0.405 0.613 0.771 0.649 0.769 0.865
5.4 3.1 2 0.388 0 0.305 0.660 0.466 0.527 0.749 0.630 0.752
8.1 3.1 3 0.491 0.305 0 0.802 0.655 0.369 0.849 0.777 0.585
2.7 5.4 4 0.405 0.660 0.802 0 0.508 0.669 0.358 0.583 0.757
5.4 5.4 5 0.613 0.466 0.655 0.508 0 0.397 0.594 0.447 0.530
8.1 5.4 6 0.771 0.527 0.369 0.669 0.397 0 0.777 0.608 0.369
2.7 8.1 7 0.649 0.749 0.849 0.358 0.594 0.777 0 0.474 0.660
5.4 8.1 8 0.769 0.630 0.777 0.583 0.447 0.608 0.474 0 0.377
8.1 8.1 9 0.865 0.752 0.585 0.757 0.530 0.369 0.660 0.377 0

(a) Plot the design space of the rectangles. Sketch the nine rectangles.

(b) Scale the dissimilarities with and without a rational starting config-
uration. What evidence do you find that the respondents generated
their dissimilarities from a width–height dimension system?

(c) Check the dissimilarities for subadditivities.

(d) Preprocess the data by the MBR logic and then repeat the MDS
scalings. Do you find theoretically interesting differences?

Exercise 17.4 Consider the data in Table 1.4 on p. 12. Theoretical consid-
erations suggest that they were generated by city-block composition of two
intradimensional differences. Observe what happens when you scale these
data with the “incorrect” Euclidean distance in 2D and in 3D, using the
design configuration in Figure 1.6 as a starting configuration.

Exercise 17.5 Construct a grid of points in the plane (as in Figure 19.3,
e.g.) and measure their city-block distances. Then scale these distances in
Euclidean 3D space, using

(a) ordinal MDS,

(b) interval MDS, and

(c) classical scaling.

Carefully study the resulting configurations in the planes spanned by the
principal components. Discuss the effects of using the improper Euclidean
distance function with MDS models that allow for arbitrary monotone
transformations, linear transformations, and ratio transformations of the
data, respectively.




