
16
Special Unfolding Models

In this chapter, some special unfolding models are discussed. First, we dis-
tinguish internal and external unfolding. In the latter case, one first derives
an MDS configuration of the choice objects from proximity data and af-
terwards inserts ideal points to represent preference data. Then, the vector
model for unfolding is introduced as a special case of the ideal-point model.
In the vector model, individuals are represented by vectors and choice ob-
jects as points such that the projections of the objects on an individual’s
vector correspond to his or her preference scores. Then, in weighted un-
folding, dimensional weights are chosen freely for each individual. A closer
investigation reveals that these weights must be positive to yield a sensi-
ble model. A variant of metric unfolding is discussed that builds on the
Bradley–Terry–Luce (BTL) choice theory.

16.1 External Unfolding

We now turn to external unfolding models. These models assume that a
similarity configuration of the choice objects is given, possibly obtained
from a previous MDS analysis. If we have preference data on these objects
for one or more individuals, then external unfolding puts a point (ideal
point) for each individual in this space so that the closer this point lies to
a point that represents a choice object, the more this object is preferred
by this individual. In an internal unfolding problem, by contrast, only the
preference data are given, from which both the object configuration and the
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ideal points have to be derived. Thus, external unfolding for the breakfast
objects, say, would require a coordinate matrix on the objects A, . . ., O and,
in addition, preference data as in Table 14.1. The coordinate matrix could
be obtained from an MDS analysis of an additional matrix of proximities
for the 15 objects. Afterwards, an ideal point S would have to be embedded
into this MDS configuration for each person in turn such that the distances
from S to the points A, . . ., O have an optimal monotonic correspondence
to the preference ranks in Table 14.1.

Finding the optimal location for individual i’s ideal point is straightfor-
ward. Consider the majorization algorithm for internal unfolding in Section
14.2. The coordinates for the set of objects, X1, are given and hence are
fixed. Thus, we only have to compute iteratively the update for X2, the
coordinates of the individuals, given by (14.2). Instead of δij we may use d̂ij

to allow for admissibly transformed preference values of individual i with
respect to object j. In this case, we do not have to be concerned about
degenerate solutions, because the coordinates of the objects are fixed. Be-
cause the distances among the individuals do not represent any data (the
within-individuals proximities are missing in external unfolding), the indi-
viduals’ points can be computed one at a time or simultaneously without
giving different solutions. However, if the coordinates of the individuals are
fixed and we use external unfolding to determine the coordinates of the
objects, then the trivial solution in Figure 14.7b can occur in which all
objects collapse in one point.

In Figure 14.1, we saw that unfolding can be viewed as MDS of two sets of
points (represented by the coordinates in X1 for the individuals and X2 for
the objects), where the within-sets proximities are missing. Additionally, in
external unfolding, X1 (or X2) is fixed. Groenen (1993) elaborates on this
idea to identify special cases for MDS on two sets of objects. Table 16.1
shows some relations of the MDS models. For example, if the proximity
weights wij of the within-individuals and within-objects proximities are
nonmissing (W11 �= 0, W22 �= 0), and all coordinates of X1 and X2 are
free, then the model is full MDS. But if W11 = 0 and W22 = 0, we have
(internal) unfolding. For almost complete MDS we have one of the within-
blocks portion of the data matrix missing. (Therefore, almost complete
MDS appears twice in Table 16.1.) It is semi-complete MDS if additionally
X1 is fixed, so that the between-blocks and within-objects proximities are
fitted by X2 for given X1. Note that for fixed X1, W11 is immaterial and
W22 determines the model.

16.2 The Vector Model of Unfolding

The ideal-point model for unfolding has a popular companion, the vector
model of unfolding, which goes back to Tucker (1960). It differs from the
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TABLE 16.1. Relation of unfolding, external unfolding, and MDS using the par-
titioning in two sets, X1 (objects) X2 (individuals), as in Figure 14.1. We assume
that X2 is always free and W12 �= 0.

Model
X1 Free W11 = 0 W22 = 0 Unfolding
X1 Free W11 = 0 W22 �= 0 Almost complete MDS
X1 Free W11 �= 0 W22 = 0 Almost complete MDS
X1 Free W11 �= 0 W22 �= 0 Complete MDS
X1 Fixed W11 = 0 W22 = 0 External unfolding
X1 Fixed W11 = 0 W22 �= 0 Semi-complete MDS
X1 Fixed W11 �= 0 W22 = 0 External unfolding
X1 Fixed W11 �= 0 W22 �= 0 Semi-complete MDS
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FIGURE 16.1. Illustration of the vector model of unfolding; L1 and L2 represent
two individuals.

ideal-point model in representing each individual i not by a point but by a
directed line (segment), a vector. From now on, we switch to the notation
X for the objects and Y for the individuals.

Representing Individuals by Preference Vectors
For each individual i, a linear combination of the coordinate vectors of X
is to be found so that it corresponds as much as possible to the preference
data pi of this individual. Figure 16.1 should clarify the situation. The
diagram shows a configuration of five choice objects (points A, . . . , E) and,
in addition, two preference lines, L1 and L2.

Assume that individual i had ordered the objects as A > B > C > D >
E in terms of preference. Then, L2 is a perfect (ordinal) representation of
i’s preferences, because the projections of the object points onto this line
perfectly match i’s preference rank-order.
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FIGURE 16.2. Illustrating the relation of the ideal-point and the vector model
for preferential choice. Panel (a) shows that the more the ideal points move away
from the object points (solid points) on line L, the more the ideal-point model
approximates the vector model. Panel (b) zooms in on the box in panel (a). The
straight dashed lines show the projections according to the vector model.

Of course, with so few points, many other lines around L2 would be
equally perfect representations for the empirical preference order A > · · · >
E. On the other hand, any arbitrary direction would not do, and for some
preference orders (such as D > C > E > A > B) no perfect representation
exists at all in Figure 16.1.

The vector model is, in a way, but a special case of the ideal-point model.
To see this, consider Figure 16.2 and assume that person i’s ideal point I is
moved from ideal point 1 to 3 along the direction of vector L. As I moves
away from the object points A, . . . , D in the direction of line L, the iso-
preference circles grow and grow in diameter, so that the circle segments
from the object points to L will become increasingly less curved. When I’s
distance from the centroid of the object points approaches ∞, the circle
segments approximate the straight projection lines of A, . . . , D onto L (Car-
roll, 1972; Coombs, 1975). Expressed differently, the distances from I to
the various object points approximate the distances of I to the projections
of the object points onto the line L. Hence, in terms of fitting the models
to data, the ideal and the vector models become very similar. However,
this does not imply that the psychological models also become equivalent
(Van Deun, Groenen, & Delbeke, 2005). The main difference is that in the
vector model, preferences are confined to a subspace of the unfolding space
(i.e., the preference vector) and any variation in the surrounding space is
ignored. In a dimensional interpretation of the unfolding models, we note
that in the vector model the attributes (dimensions) contribute with fixed
weights to the preference function of an individual, however close or distant
the object points are from line L, whereas in the ideal-point model a low
score on one attribute can be compensated by a very high score on other
dimensions to lead to the same projection onto L (see also Section 14.7).



16.2 The Vector Model of Unfolding 339

Hence, the vector model and the ideal-point model imply similar decision
functions only for points that are close to the vector.

Apart from this difference, the vector model also represents a particular
preference notion that can be described as “the more, the better” on all
dimensions. Obviously, this property does not hold in general. For example,
suppose that respondents have to rate how much they like teas of various
temperatures. It is certainly not true that the hotter the tea the better.
The opposite (the colder, the better) is not plausible either, not even for
iced tea.

Metric and Ordinal Vector Models
In a metric model, the indeterminacy of locating Li is eliminated or at
least reduced, because the distances of the projection points on Li are
also meaningful in some quantitative sense. For example, if we require that
d(B,E) = d(E, D) on Li, then only a line corresponding closely to the
vertical coordinate axis may be selected as a representation. But then we
could conclude that this individual based his or her preference judgments
on the vertical dimension only, whereas some other person whose preference
line is the bisector from the lower left-hand to the upper right-hand corner
used both dimensions with equal weight. Note that if we put the arrowhead
at the other end of the line, the person represented by this line would still
weight both dimensions equally, but now the negative, not the positive,
ends of each dimension are most attractive.

Fitting the Vector Model Metrically
In the vector model, one has to find an m-dimensional space that contains
two sets of elements: (a) a configuration X of n points that represent the
objects and (b) an m-dimensional configuration Y of N vectors that repre-
sent the individuals. The projections of all object points onto each vector
of Y should correspond to the given preference data in the N columns of
Pn×N . The model attempts to explain individual differences of preference
by different weightings of the objects’ dimensions.

Formally, we have the loss function

L(X;Y) = ||Xn×mY′
m×N − Pn×N ||2. (16.1)

Note that P corresponds to the upper corner matrix in Figure 14.1. The
vector model is fitted by minimizing (16.1) over X and Y.

The loss function can be minimized by a singular value decomposition.
Let P = KΛL′ be the SVD of P. Then, the first m columns of KΛ and of
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L define optimal solutions for X and for Y, respectively. Setting X = K
and Y = LΛ would do equally well.1

However, there are many more than just these two solutions. Minimizing
L(X;Y) by choice of X and Y does not uniquely determine particular
matrices X and Y. Rather, if X is transformed into X∗ = XM by a
nonsingular matrix M, then we simply have to transform Y into Y∗ =
Y(M−1)′ to obtain the same matrix product. Such transformations can be
conceived of as rotations and stretchings along the dimensions, because M
can be decomposed by SVD into PΦQ′, where P and Q are orthonormal
and Φ is a diagonal matrix of dimension weights [see (7.14)]. Geometrically,
this means, for example, that one can stretch out a planar X along the Y -
axis (like a rubber sheet), provided Y is stretched out along by the same
amount along the X-axis. This destroys relations of incidence, for example,
and thus makes interpretation difficult.

By restricting the vectors of Y to the same length (1, say), the model
becomes more meaningful:

L(X;Y) = ||XY′ − P||2,
diag(YY′) = diag(I). (16.2)

The indeterminacy now reduces to a rotation; that is, M must satisfy
MM′ = I, because only then does Y∗ = Y(M−1)′ satisfy the additional
side constraint in formula (16.2). This rotation is unproblematic for in-
terpretations because it affects both X and Y in the same way because
Y(M−1)′ = YM if M is orthonormal.

Chang and Carroll (1969) developed a popular program, Mdpref, for
solving the length-restricted vector model in (16.2). It first finds an SVD
of P and then imposes the side constraint of unit length onto Y’s vectors.
Schönemann and Borg (1983) showed that this sequential approach may
be misleading. The argument is based on first deriving a direct solution for
(16.2). It exists only if the data satisfy certain conditions implied by the
side condition diag(YY′) = diag(I). Hence, (16.2) is a testable model that
may or may not hold, whereas Mdpref always provides a solution.

If X is given, then things become very simple. The vector model for
external unfolding only has to minimize (16.1) over the weights Y. This
problem is formally equivalent to one considered in Chapter 4, where we
wanted to fit an external scale into an MDS configuration. If the preferences
are rank-orders, then an optimal transformation also has to be computed.2

1In contrast to ordinary PCA, P has individuals as column entries and the objects
as row entries. Hence, the vector model for unfolding is sometimes referred to as a
“transposed PCA.”

2This model can be fitted by the Prefmap program (for computational details, see
Carroll, 1972).
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Fitting the Vector Model Ordinally
Now, suppose that P contains preference rank-orders. Gifi (1990) proposes
to minimize the closely related problem

∑N
i=1 ||X− p̂iy′

i||2, where yi is row
i of Y and p̂i has the same rank-order as pi but is optimally transformed.
This resembles the strategy for conditional unfolding for the ideal-point
model, except that in this case the data are treated as column conditional.
To avoid the degenerate solution of Y = 0, X = 0, and p̂i = 0, Gifi
(1990) imposes the normalization constraint p̂′

ip̂i = n and X′X = nI. This
model can be computed by the program Catpca (categorical principal
components analysis) formerly known under the name Princals (nonlinear
principal components analysis), both available in the SPSS package. Note
that Catpca has to be applied to the objects × individuals matrix, because
the ordinal transformations are computed columnwise. More details about
this and related approaches can be found in Gifi (1990).

Van Deun et al. (2005) discuss the Vipscal model for unfolding. This
model allows some subjects to be presented by an ideal point and others
by the vector model. The model also allows some length and orthogonality
constraints on X and Y. Special cases within Vipscal are the ordinary
ideal point model and an (ordinal) vector model.

An Illustrative Application of the Vector Model
Consider the breakfast data in Table 14.1 again. Figure 16.3 shows the
result of the vector model for unfolding obtained by Catpca, using the
preference rank-orders only. The preference vectors for every individual
are scaled to have equal length, because it is the direction that matters,
not the actual length. Note that high values in Table 14.1 indicate least
preferred breakfast items; hence the correlations of p̂i with X (called com-
ponent loadings in Catpca) have to be multiplied by minus one to obtain
the preference vectors in Figure 16.3. The Catpca solution indicates that
there are three groups of individuals. The first group of 15 respondents is
represented by the preference vectors directed away from A. This group
has a strong dislike for A (toast pop-up) and does not care much about
the other breakfast items either. The other groups are orthogonally related
to the first group, indicating that they are indifferent to breakfast A, be-
cause A projects onto the origin. The second group is directed to the lower
left-hand corner. This group prefers the breakfast items K, D, L, M, and
N, and dislikes breakfast items with toast, that is, B, G, and J. The third
group has the opposite preference of the second group. The interpretation
of this solution is not very different from the ideal-point solution in Figure
14.2.
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FIGURE 16.3. The vector model of unfolding of the breakfast items in Table 14.1
computed by Catpca.

16.3 Weighted Unfolding

We now consider a generalization of external unfolding, that is, weighted
unfolding (Carroll, 1980). Assume that the coordinate axes could be cho-
sen to correspond to the dimensions that determined person i’s preference
judgment. It is then possible to conjecture that person i weights these di-
mensions in some particular way depending on how important he or she
feels each dimension to be. Consider, for example, an investment problem
and assume that various portfolios are distinguished with respect to risk
and expected profit. All individuals agree, say, that portfolio x is riskier
than y, and that y has a higher expected yield than z; that is, all individuals
perceive the portfolios in the same way. But person i may be more cau-
tious than j, so in making a preference judgment the subject weights the
risk dimension more heavily than j. In other words, in making preference
judgments on the basis of a common similarity space, person i stretches
this space along the risk dimension, but j compresses it, and this will, of
course, affect the the distances differentially. We can express such weight-
ings of dimensions as follows.

dij(X;Y;W) =

[
m∑

a=1

(wiayia − wiaxja)2
]1/2

=

[
m∑

a=1

w2
ia(yia − xja)2

]1/2

, (16.3)

where xja is the coordinate of object j on dimension a, yia is the coordinate
of the ideal points for individual i on dimension a, and wia is the weight
that this individual assigns to dimension a.
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FIGURE 16.4. MDS configuration for tea proximities (circles); numbers indicate
teaspoons of sugar, letters temperature of tea (sh=“steaming hot”, h=“hot”,
lw=“lukewarm”, c=“cold”, ic=“ice cold”). Crosses show ideal points for ten sub-
jects; length of bars proportional to dimensional weights; dashed/solid bars indi-
cate negative/positive weights, respectively (after Carroll, 1972).

Private Preference Spaces and Common Similarity Space
This seemingly minor modification of the distance formula has important
consequences. The most obvious one is that the weighted model generally
does not permit the construction of a joint space of objects and individu-
als in which the differences among the various individuals are represented
by the different locations of the respective ideal points. Rather, each in-
dividual has his or her own private preference space, independent of the
preference spaces for other individuals, even though they are all related to
a common similarity space by dimensional stretchings. Further implications
of the weighted unfolding model can be seen from the following example.

In an experiment by Wish (see Carroll, 1972), 12 subjects evaluated 25
stimuli with respect to (a) their dissimilarities and (b) their subjective val-
ues. The dissimilarity data were collected by rating each of the stimulus
pairs on a scale from 0 (= identical) to 9 (= extremely different). The stim-
uli were verbal descriptions of tea, varying in temperature and sweetness.
The proximities are represented by the MDS configuration in Figure 16.4,
where the different teas are shown by circles. The configuration X reflects
the 5 × 5 design of the stimuli very clearly: the horizontal axis corresponds
to the temperature factor and the vertical one to the sweetness scale.

Additionally, the individuals indicated their preferences for each type of
tea. These data and the fixed coordinates X of the stimuli are used to find
the dimension weights and the ideal points for each individual i. To do this,
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Carroll (1972) minimized the loss function

L(Y;W) =
n∑

i=1

n∑
j=1

(
d2

ij(Y;X;W) − δ2
ij

)2
(16.4)

over ideal points Y and dimension weights W. L(Y;W) differs from a
Stress-based criterion in that it uses squared distances d2

ij for computational
convenience instead of the distance dij (just as in S-Stress; see Section 11.2).
L(Y;W) is minimized in an alternating least-squares fashion, where the
update of Y with W fixed is alternated by the update of W for fixed Y,
until convergence is reached.

Figure 16.4 also represents the resulting 12 private preference spaces
through weight crosses on the ideal points. The scatter of the ideal points
shows that the individuals differ considerably with respect to the preferred
sweetness of the tea. There is much less variation on the temperature di-
mension, but, strangely, most individuals seem to prefer lukewarm tea,
because the ideal points are concentrated mostly in the lukewarm range of
the temperature dimension. On the other hand, it is not very surprising
that no individual preferred steaming hot tea, and the inclusion of these
choice objects might have obscured the situation in Figure 16.4, according
to Carroll (1972). He therefore eliminated the steaming hot stimuli from the
analysis. This led to an unfolding solution very similar to Figure 16.4 but,
of course, without the “sh” points. Its ideal points were still in the luke-
warm range, but now the (squared) dimension weights on the temperature
dimension were negative for all individuals.

Negative Dimension Weights and Anti-Ideal Points
How are we to interpret negative dimension weights w2

ia? Assume that a
given object is considered “ideal” on all dimensions except for dimension
a. Then, all dimensional differences are zero in (16.3), except for the one
on a. If w2

ia < 0, the term under the square root will be negative. Hence,
d2

ij is negative, and dij is an imaginary number. But then dij is not a dis-
tance, because distances are nonnegative real numbers, by definition. Thus,
without any restrictions on the dimension weights, the weighted unfolding
model is not a distance model.

Is such a model needed? Assume that we have a 2D configuration, with
person i’s ideal point at the origin, and dimension weights w2

i1 = 1 and
w2

i2 = −1. Then, according to (16.3), all points on the bisector between
dimensions 1 and 2 have distance zero to the ideal point yi and, thus, are
also ideal points. For all points x on, below, and above the bisector, we
get d2(x, yi) = 0, d2(x, yi) > 0, and d2(x, yi) < 0, respectively. The plane
thus becomes discontinuous and thereby incompatible with the ideal-point
model that underlies unfolding. In such a situation, it remains unclear
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what purpose further generalizations of this model might serve (Srinivasan
& Shocker, 1973; Roskam, 1979b; Carroll, 1980).

Should one preserve the idea of negative dimension weights? Carroll
(1972) writes: “This possibility of negative weights might be a serious prob-
lem except that a reasonable interpretation attaches to negative w’s . . . This
interpretation is simply that if wit [corresponding to our w2

ia] is negative,
then, with respect to dimension t, the ideal point for individual i indicates
the least preferred rather than the most preferred value, and the farther a
stimulus is along that dimension from the ideal point, the more highly pre-
ferred the stimulus” (p. 133). Coombs and Avrunin (1977) argue, however,
that anti-ideal points are artifacts caused by confounding two qualitatively
different sets of stimuli. For tea, they argue that one should expect single-
peaked preference functions over the temperature dimension for each iced
tea and for hot tea, respectively. For iced tea, each individual has some pre-
ferred coldness, and the individual’s preference drops when the tea becomes
warmer or colder. The same is true for hot tea, except that the ideal tem-
perature for hot tea lies somewhere in the “hot” region of the temperature
scale. Thus, iced tea and hot tea both yield single-peaked preference func-
tions over the temperature dimension. Superimposing these functions—and
thus generating a meaningless value distribution for “tea”—leads to a two-
peaked function with a minimum at lukewarm.

If one restricts the dimension weights to be nonnegative, then there are
two models. If zero weights are admitted, dij in (16.3) is not a distance, be-
cause it can be zero for different points. This characteristic means that one
cannot interpret the formula as a psychological model saying that person i
generates his or her preferences by computing weighted distances in a com-
mon similarity space. Rather, the model implies a two-step process, where
the individual first weights the dimensions of the similarity space and then
computes distances from the ideal point in this (“private”) transformed
space.

In summary, sensible dimensional weighting allows for better account-
ing of individual differences, but it also means giving up the joint-space
property of simple unfolding. In most applications so far, it turned out
that the weighted unfolding model fitted the data only marginally better,
and so “relatively little appears to be gained by going beyond the simple
(equal-axis weighting) ideal-point model” (Green & Rao, 1972, p.113).

16.4 Value Scales and Distances in Unfolding

We now return to internal unfolding and the simple unfolding model. So
far, not much attention has been paid to the exact relationship of the
distances between ideal points and object points and the subjective value
of the represented objects. We simply claimed that preference strength is
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linearly or monotonically related to the unfolding distances. The particular
shape of the preference function was not derived from further theory. We
now consider a model that does just that.

Relating Unfolding Distances to Preference Strength Data by
the BTL Model
There are many proposals for modeling preference behavior and subjec-
tive value (see, e.g., Luce & Suppes, 1963). One prominent proposal is the
Bradley–Terry–Luce (BTL) model (Luce, 1959). This model predicts that
person i chooses an object oj over an object ok with a probability pjk|i that
depends only on the pair (oj , ok), not on what other choice objects there
are. Restricting the set of choice objects to those that are neither always
chosen nor never chosen, a subjective-value scale v can be constructed for
i by first selecting some object oa as an “anchor” of the scale, and then
setting

vi(oj) =
pja|i
paj|i

. (16.5)

Conversely, pairwise choice probabilities can be derived from the ratio scale
values by using

pjk|i =
vi(oj)

vi(oj) + vi(ok)
. (16.6)

Given a set of preference frequencies, it is possible to first find v-values
for the choice objects and then map these values into the distances of an
unfolding representation. This permits one to test a choice theory (here,
the BTL theory) as a first step of data analysis. If the test rejects the
choice theory, then it makes little sense to go on to unfolding, because the
choice process has not been understood adequately and must be modeled
differently. If, on the other hand, the test comes out positive, the distance
representation has a better justification.

Luce (1961) and Krantz (1967) discuss two functions that connect the
scale v with corresponding distances in the unfolding space. One would
want such a function to be monotonically decreasing so that greater v-
scale values are related to smaller distances. One reasonable function in
this family is

d(xj , yi) = − ln[vi(oj)], (16.7)

or, expressed differently,

vi(oj) = exp[−d(xj , yi)], (16.8)

where d(xj , yi) denotes the distance between the points xj and yi represent-
ing object oj and individual i, respectively, in the unfolding space. Thus,
vi(oj) = max = 1 if d(xj , yi) = 0 (i.e., at the ideal point) and 0 < vi(oj) < 1
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FIGURE 16.5. (a.) Distance (vertical) from ideal point yi with coordi-
nates (0,0) in 2D to stimulus xj , and (b) the corresponding scale value
vi(oj) = exp[−d(xj , yi)] according to (16.8).

for all other objects. Figure 16.5b shows the the preference function for in-
dividual i with ideal point (0, 0) in 2D. The circles in the horizontal plane
indicate the positions of the object points with equal preference. The cor-
responding preference strength is shown on the vertical axis. The model
defines an inverted bowl over the plane, and this bowl never touches the
plane, even though it comes very close to it when we move far away from
the ideal point.

A similar function is discussed by Schönemann and Wang (1972) and
Wang, Schönemann, and Rusk (1975):

vi(oj) = exp[−c · d2(xj , yi)], (16.9)

where c > 0 is some arbitrary multiplier. Setting c = 1, the only differ-
ence3 between (16.9) and (16.8) is that the distances are squared in the
former case. For squared distances, the value surface over the object space
is normal for each ideal point yj . Thus, in a 2D case like the one in Figure
16.5b, the inverted bowl has the familiar bell shape. Equation (16.9) is then
connected to individual i’s pairwise preference probabilities pjk|i by using
the BTL choice model. Inserting the vi(oj) values into (16.9) yields

pjk|i =
1

1 + exp[d2(xj , yi) − d2(xk, yi)]2
. (16.10)

Thus, preference probabilities and (squared) distances of the unfolding
space are related, according to this model, by a logistic function4 oper-
ating on differences of (squared) distances.

3That difference, however, is critical, because it renders the model mathematically
tractable so that the exact case can be solved algebraically, without iteration. The alge-
braic solution given in Schönemann (1970) generalizes the Young–Householder theorem
to the asymmetric case.

4The exact form of the probability distribution is not of critical importance for fitting
the model to the data. This follows from many detailed investigations on generalized
Fechner scales (see, e.g., Baird & Noma, 1978), which include the logistic function as just
one special case. An alternative is the normal curve, but almost any other approximately
symmetrical function would do as well.
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TABLE 16.2. Politicians and interviewee groups of Wang et al. (1975) study.

1. Wallace (Wal) 5. Humphrey (Hum) 9. Nixon (Nix)
2. McCarthy (McC) 6. Reagan (Rea) 10. Rockefeller (Roc)
3. Johnson (Joh) 7. Romney (Rom) 11. R. Kennedy (Ken)
4. Muskie (Mus) 8. Agnew (Agn) 12. LeMay (LeM)

Interviewee Group Code Ni

1. Black, South BS 88
2. Black, Non-South BN 77
3. White, strong Democrat, South, high ed. SDSH 17
4. White, strong Democrat, South, low education SDSL 43
5. White, weak Democrat, South, high education WDSH 27
6. White, weak Democrat, South, low education WDSL 79
7. White, strong Democrat, Non-South, high ed. SDNH 21
8. White, strong Democrat, Non-South, low ed. SDNL 85
9. White, weak Democrat, Non-South, high ed. WDNH 65

10. White, weak Democrat, Non-South, low ed. WDNL 180
11. White, Independent, South, high education ISH 8
12. White, Independent, South, low education ISL 27
13. White, Independent, Non-South, high ed. INH 25
14. White, Independent, Non-South, low ed. INL 46
15. White, strong Republican, South, low ed. SRSL 13
16. White, strong Republican, Non-South, high ed. SRNH 40
17. White, strong Republican, Non-South, low ed. SRNL 60
18. White, weak Republican, South, high ed. WRSH 34
19. White, weak Republican, South, low ed. WRSL 36
20. White, weak Republican, Non-South, high ed. WRNH 90
21. White, weak Republican, Non-South, low ed. WRNL 117

An Application of Schönemann and Wang’s BTL Model
Consider an application. Wang et al. (1975) analyzed data collected in 1968
on 1178 persons who were asked to evaluate 12 candidates for the presi-
dency on a rating scale from 0 (= very cold or unfavorable feeling for the
candidate) to 100 (= very warm or favorable feeling toward the candidate)
(Rabinowitz, 1975). The respondents were classified into 21 groups accord-
ing to their race, party preference, geographical region, and education. The
21 groups and the 12 candidates are listed in Table 16.2. Twenty-one 12×12
preference matrices were derived from the rating values of the respondents
in each group. The pjk|i values (where i indicates the group i = 1, . . . , 21)
were computed as the relative frequencies with which candidate oj ’s rating
score was higher than the score for candidate ok.

The least-squares BTL scale values for the 12 candidates and the 21
groups are shown in Table 16.3. It turned out that these scale values ac-
counted for the probabilities sufficiently well; that is, it is possible to ap-
proximately reconstruct the

(12
2

)
probability data from the 12 scale values

for each group. By taking the logarithm of both sides of (16.9), the v-values
can be transformed into squared distances, which in turn are the dissim-
ilarities for our unfolding analysis. Wang et al. (1975) then employed an
iterative optimization method for finding an unfolding configuration. (Of
course, the internal unfolding solution could also be computed by the ma-
jorization algorithm in Section 14.2.) The final fit to the i = 1, . . . , 21 em-
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TABLE 16.3. BTL scale values for interviewee groups and politicians from
Table 16.2.

Wal Hum Nix McC Rea Roc Joh Rom Ken Mus Agn LeM
BS .11 9.00 .95 .75 .28 .66 9.10 .51 21.70 1.52 .35 .14
BN .03 12.09 .95 1.27 .29 1.78 7.54 .58 16.02 2.15 .26 .11
SDSH .49 3.82 1.00 1.17 .42 .94 1.48 .45 1.89 3.43 .62 .43
SDSL .86 2.64 1.09 .58 .46 .70 2.54 .53 1.89 1.70 .74 .67
WDSH .72 1.08 2.82 1.01 .84 1.21 1.27 .56 1.37 1.52 .69 .44
WDSL 1.24 1.20 2.30 .76 .68 .66 1.12 .64 1.45 .93 1.03 .86
SDNH .09 4.72 1.11 1.67 .40 1.07 2.64 1.23 5.92 4.44 .38 .09
SDNL .26 3.80 .95 .86 .43 .81 3.12 .64 5.99 2.38 .49 .25
WDNH .12 2.99 1.46 1.68 .42 1.61 1.54 .92 5.13 2.46 .49 .19
WDNL .37 1.99 1.57 .98 .59 .82 1.58 .68 3.69 1.71 .70 .40
ISH .43 1.24 4.07 .76 .89 .97 .88 .60 2.88 1.10 1.34 .31
ISL 6.68 .90 3.40 .87 .83 .86 .95 .51 2.53 .87 1.03 .71
INH .43 1.77 2.54 1.49 .66 .84 1.01 .77 1.69 1.80 .88 .30
INL 6.37 1.48 2.30 1.13 .74 .95 1.12 .71 2.66 1.82 .83 .31
SRSL .11 .66 20.37 .55 1.43 .82 .86 .78 1.93 .77 3.20 .34
SRNH .16 .55 14.29 1.05 1.98 1.44 .54 1.29 1.26 .98 1.19 .26
SRNL .28 .62 8.49 1.02 1.39 1.02 .61 .95 1.28 .87 1.78 .41
WRSH .76 .45 7.53 .64 1.78 .99 .82 .65 .86 .82 1.15 .80
WRSL .85 .56 5.23 1.07 1.03 1.10 .78 .62 1.55 .55 1.23 .66
WRNH .28 .89 4.78 1.56 1.12 1.46 .68 .75 1.38 1.34 1.01 .34
WRNL .33 .86 5.84 1.06 1.08 1.06 .76 .73 1.75 .99 1.17 .43

pirical preference probabilities can be checked by substituting the d2(xj , yi)
terms in (16.10) with the reconstructed distances in the unfolding solution.
Wang et al. (1975) concluded from statistical tests that a 3D representation
was sufficiently precise.

The 3D unfolding representation, however, possesses a peculiar property:
the ideal points are not distributed throughout the whole space, but lie al-
most completely in a plane. This implies that the solution has a considerable
indeterminacy with respect to the point locations.5 Figure 16.6 illustrates
the problem with a 2D example. All ideal points y1, . . . , y4 lie on a straight
line, whereas the object points x1, . . . , x5 scatter throughout the space. In
internal unfolding, the only information available for determining the loca-
tion of the points is the closeness of object and ideal points. But then each
xj can be reflected on the line running through yis, because this does not
change any between-sets distance. Thus, for example, instead of the solid
point x2 in Figure 16.6, we could also choose its counterpoint shown as an
open circle. Such choices have a tremendous effect on the appearance of
the unfolding solution and, by way of that, on its interpretation.

How can one diagnose this subspace condition in practice? One can do a
principal axes rotation of the X configuration and of the Y configuration,
respectively, and then check, on the basis of the eigenvalues, whether either
one can be said to essentially lie in a subspace of the joint space. Table 16.4

5This indeterminacy is not restricted to the Schönemann and Wang model, but it is
a property of all Euclidean ideal-point unfolding models.
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FIGURE 16.6. An indeterminacy in an unfolding space; the xj points can be
reflected on the line of the yis without affecting the distance d(xj , yi).

TABLE 16.4. Coordinates for candidates and subgroup ideal points in 3D: un-
rotated (left-hand side, X and Y) and after subspace rotation (right-hand side,
X∗ and Y∗).

X 1 2 3 Y 1 2 3 X∗ 1 2 3 Y∗ 1 2 3
Wal -1.17 -1.40 -.31 NS .66 .21 -.39 Wal .99 -1.38 -.97 NS -.10 .63 -.14
Hum 1.41 -.31 .24 NN .74 .51 -.42 Hum .78 1.24 .14 NN -.40 .75 -.00
Nix -1.21 .15 -.09 SDSH .21 -.53 .29 Nix -.20 -1.25 .05 SDSH .80 .03 .04
McC .07 .53 1.42 SDSL .14 -.59 .20 McC .49 -.09 1.56 SDSL .79 -.04 -.08
Rea -.93 .56 1.19 WDSH -.06 -.22 .10 Rea .18 -1.05 1.35 WDSH .40 -.18 .03
Roc -.03 .63 1.39 WDSL -.11 -.43 .12 Roc .37 -.18 1.58 WDSL .57 -.26 -.07
Joh 1.02 -.89 -.80 SDNH .48 .22 -.08 Joh .66 .89 -1.06 SDNH .02 .42 .13
Rom -.12 .71 1.47 SDNL .37 -.16 -.02 Rom .32 -.26 1.69 SDNL .35 .26 -.02
Ken 1.16 -.46 -.54 WDNH .32 .20 -.10 Ken .46 1.06 -.61 WDNH .00 .26 .09
Mus .53 .29 1.28 WDNL .15 -.12 -.03 Mus .69 .34 1.31 WDNL .28 .05 -.01
Agn -.96 -.89 -1.05 ISH -.05 .22 -.26 Agn .21 -1.04 -1.31 ISH -.16 -.08 -.04
LeM -.96 -1.34 -.91 ISL -.11 -.06 -.12 LeM .66 -1.11 -1.44 ISL .14 -.19 -.07

INH .03 -.07 .03 INH .25 -.07 .05
INL .06 .01 -.05 INL .15 -.02 .03
SRSL -.25 1.14 -.92 SRSL -1.31 -.09 -.10
SRNH -.27 .85 -.50 SRNH -.85 -.19 .09
SRNL -.26 .53 -.39 SRNL -.52 -.23 .01
WRSH -.34 .09 -.15 WRSH -.04 -.40 -.02
WRSL -.25 .03 -.14 WRSL .02 -.32 -.04
WRNH -.13 .28 -.15 WRNH -.16 -.16 .09
WRNL -.15 .32 -.27 WRNL -.26 -.17 .01
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FIGURE 16.7. Unfolding representation of BTL values in Table 16.3; for labels,
see Table 16.2 (after Wang et al., 1975).

illustrates this approach for the Wang et al. case. The panels on the left-
hand side show the coordinates for the candidates and the ideal points in
some 3D joint space. The panels on the right-hand side exhibit the coordi-
nates of both configurations in a rotated 3D joint space whose dimensions
correspond to the principal axes of the ideal-point configuration. The table
(rightmost column) shows that the ideal points lie essentially in a plane of
the 3D joint space, because their coordinates on the third principal axis are
all very similar (here: close to zero). If one projects the candidates into this
plane, one obtains an unfolding representation that is free from reflection
indeterminacies.

Figure 16.7 represents the person groups as stars and the candidates as
points. The dimensions correspond to the interpretation given by Wang
et al. (1975) on the basis of considering the projections of the candidates
onto various straight lines. But one could also proceed by studying the
ideal-point labels. For example, a Republican vs. Democrat dimension is
suggested by studying the party affiliations of the various groups of white
voters. If we draw lines around the groups with party preference SR, WR,
I, WD, and SD, respectively, regions of ideal points result that can be parti-
tioned almost perfectly by parallel straight lines. These lines are, however,
not quite orthogonal to the direction of the Republican–Democrat dimen-
sion chosen by Wang et al. Rather, they partition the axis through the
points Nixon and Humphrey. The two other group facets, education and
region, do not allow simple partitionings. Wang et al.’s liberal–conservative
dimension essentially distinguishes blacks from whites.

Interpreting dimensions is not affected by the reflection indeterminacy
discussed above. In contrast, the usual ideal-point interpretation is only
partially possible in Figure 16.7. A naive approach can lead to gross mis-
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takes. We know from Table 16.4 that a number of candidate points such
as Rockefeller, for example, are positioned far above or below the subspace
plane shown in Figure 16.7. But Figure 16.7 shows “Roc” close to most ideal
points, so that one might expect, incorrectly, that Rockefeller is among the
top choices for most groups. The usual ideal-point unfolding interpretation
leads to correct preference predictions only for those candidates close to
the subspace plane, such as Nixon and Humphrey.

How should one interpret such extra dimensions? There is no simple an-
swer, and additional information beyond the data on which the unfolding
is based is required in any case. In the given example, one might specu-
late that the extra dimension for the candidates reflects additional features
of the candidates, unrelated to the preferential choice criteria that distin-
guish the different groups, such as, for example, the extent to which the
candidates are known or unknown. In any case, such interpretations remain
complicated because each point can be reflected on this dimension.

Although the meaning of the joint space and its ideal-point subspace
remains somewhat unclear in the given example, it is easy to derive some
testable implications. The BTL model states a function between v-values
of objects and the probability for choosing one object oj out of any set of
choice objects. This function is simply the v-value of object oi divided by
the sum of the v-values of all choice objects. The v-values, in turn, can be
estimated from the unfolding distances using (16.9). For the three candi-
dates Nixon, Humphrey, and Wallace (i.e., those that actually remained as
candidates in the general presidential election) we can thus estimate, for
each group, the probability for choosing each candidate out of the three
remaining ones. The prediction for a candidate’s chances in the general
election is then the (weighted) average of all 21 group-specific probabilities.
The predicted preference probabilities of voting for Wallace, Humphrey, or
Nixon, computed in this way, are 0.0797, 0.3891, and 0.5311, respectively.
These values are quite close to the relative frequencies of direct votes given
in the interviews, which are 0.1091, 0.4122, and 0.4788, respectively.

16.5 Exercises

Exercise 16.1 Consider the vector model for unfolding.

(a) First, set up a configuration X such as the one shown in the ta-
ble below. Then, define preference vectors for a number of persons,
pi (i = 1, . . .), as lines that run through the origin E = (0, 0) and
through one other point (x1i, x2i) of X. Finally, construct the pref-
erence scale for each person i by projecting the points of X onto the
ideal vectors.
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Object Dim. 1 Dim. 2
A -1 1
B 0 1
C 1 1
D -1 0
E 0 0
F 1 0
G -1 -1
H 0 -1
I 1 -1

(b) Discuss, in terms of psychology, the meaning of the coordinates yi1
and yi2 of each person i. What do these “weights” express? (Hint: How
much do the dimensions of X contribute to an ideal line’s direction?)

(c) How should yi1 and yi2 be restricted in model (16.2)? (Hint: Note the
constraint on diag(YY′). How can you interpret the thus-constrained
coordinates?

(d) Unfold the preference data thus constructed and compare the solution
to the X and the Y from which you started.

(e) Add random error to X and Y and repeat the above investigations
for different levels of error. Discuss the robustness of the scaling pro-
cedure.

(f) Construct a preference vector that does not fit into the space of the
objects, X. What could you do to represent it in the preference vector
model anyway? (Hint: Consider augmenting the dimensionality of the
unfolding space.)

Exercise 16.2 Consider the country-by-attributes data in Exercise 15.1.

(a) Discuss the ideal-point unfolding model for these data. How does it
differ from scaling the proximities for the countries (as in Section 1.3)
and then fitting external property scales (as in Section 4.3)?

(b) Discuss the difference between an ideal-point model and a vector
model in unfolding preferential data and what this difference means
in the context of the attribute-by-country data.

(c) Scale the country-by-attributes data into a vector unfolding model,
with countries as points and attributes as vectors. Then, scale the
same data into an ideal-point model. Compare the solutions in terms
of what they suggest about how the student-subjects perceived these
countries.

(d) Would it make sense to also scale the countries into vectors, and the
attributes into points? How would you interpret such a solution?
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Exercise 16.3 The following data set is a data set reported by SAS (1999).
It contains the ratings by 25 judges of their preference for each of 17 auto-
mobiles. The ratings are made on a 0 to 9 scale, with 0 meaning very weak
preference and 9 meaning very strong preference for the automobile.

Manufacturer Type Rating per Judge
1 Cadillac Eldorado 8 0 0 7 9 9 0 4 9 1 2 4 0 5 0 8 9 7 1 0 9 3 8 0 9
2 Chevrolet Chevette 0 0 5 1 2 0 0 4 2 3 4 5 1 0 4 3 0 0 3 5 1 5 6 9 8
3 Chevrolet Citation 4 0 5 3 3 0 5 8 1 4 1 6 1 6 4 3 5 4 4 7 4 7 7 9 5
4 Chevrolet Malibu 6 0 2 7 4 0 0 7 2 3 1 2 1 3 4 5 5 4 5 6 6 8 6 5 8
5 Ford Fairmont 2 0 2 4 0 0 6 7 1 5 0 2 1 4 4 3 5 3 0 6 4 8 6 5 5
6 Ford Mustang 5 0 0 7 1 9 7 7 0 5 0 2 1 1 0 1 8 5 0 6 5 7 5 5 5
7 Ford Pinto 0 0 2 1 0 0 0 3 0 3 0 3 0 2 0 1 5 0 0 5 1 4 0 7 8
8 Honda Accord 5 9 5 6 8 9 7 6 0 9 6 9 9 9 5 2 9 9 8 9 7 5 0 7 8
9 Honda Civic 4 8 3 6 7 0 9 5 0 7 4 8 8 8 5 2 5 6 7 7 6 5 0 7 5
10 Lincoln Continental 7 0 0 8 9 9 0 5 9 2 2 3 0 4 0 9 9 6 2 0 9 1 9 0 9
11 Plymouth Gran Fury 7 0 0 6 0 0 0 4 3 4 1 0 1 1 0 7 3 3 3 4 5 8 7 0 8
12 Plymouth Horizon 3 0 0 5 0 0 5 6 3 5 4 6 1 3 0 2 4 4 4 6 7 5 6 5 5
13 Plymouth Volare 4 0 0 5 0 0 3 6 1 4 0 2 1 6 0 2 7 5 4 4 7 6 5 5 5
14 Pontiac Firebird 0 1 0 7 8 9 5 6 1 3 2 0 1 2 0 6 9 5 8 2 6 5 9 0 7
15 Volkswagen Dasher 4 8 5 8 6 9 6 5 0 8 8 7 7 7 9 5 3 7 7 8 9 5 0 0 0
16 Volkswagen Rabbit 4 8 5 8 5 0 9 7 0 9 6 9 5 7 9 5 4 8 7 8 8 5 0 0 0
17 Volvo DL 9 9 8 9 9 9 8 9 0 9 9 9 9 9 8 7 9 8 9 9 1 9 0 0 0

(a) Unfold these preference data into the vector model, with cars as points
and vectors as persons. Discuss the solution in terms of what it says
about the different automobiles, and what it suggests about groups
of potential buyers of automobiles and their preferences.

(b) It was previously observed from unfolding these data that the
solution “suggests that there is a market for luxury Japanese
and European cars” (http://rocs.acomp.usf.edu/sas/sashtml/stat
/chap53/sect25.htm). How did the market researchers arrive at this
insight? On what assumptions does this interpretation hinge? Would
you be willing to bet your money on this interpretation?

Exercise 16.4 Use the data in Table 16.3 on p. 349to construct a vector-
model unfolding representation. Compare your solution to the configuration
in Figure 16.7. Discuss where the models suggest similar substantive con-
clusions (despite possibly different “looks” of the plots), and where they
differ.

Exercise 16.5 The table below shows the (contrived) preferences of six dif-
ferent persons for the composition of an ideal family in terms of how many
children a person wants, and whether these children should be girls or boys.
For example, person 1 wants no children at all, and his or her second choice
is one boy. Person 2, on the other hand, ideally wants 2 girls and 2 boys.
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Number of Person
Girls Boys 1 2 3 4 5 6

0 0 1 9 5 6 6 7
0 1 2 8 3 7 2 3
0 2 5 5 1 9 7 8
1 0 3 7 8 2 3 4
1 1 4 4 4 4 1 1
1 2 8 2 2 8 4 5
2 0 6 6 9 1 8 9
2 1 7 3 7 3 5 2
2 2 9 1 6 5 9 6

(a) Use ordinal unfolding to study the structure of these preference data.
Some programs and some model specifications are likely to yield de-
generate solutions. Is your solution degenerate? If so, can you prevent
this degeneracy?

(b) The space of choice objects and its dimensions can be thought of as
a “boys by girls” space. Does your unfolding yield this space?

(c) Experiment with constraints on the unfolding model so that the boys-
by-girls configuration in its solution space approximates a rectangular
grid pattern.

(d) Although such family composition preference data have been ana-
lyzed before within an unfolding framework, the unfolding model is
not really adequate for them. Why? (Hint: Can you have a prefer-
ence for 1.3 boys and 2.8 girls, for example? Take a close look at the
ideal-point isopreference-contours model.)




